

Master Thesis in Software Engineering and Management

Measuring the Usage of Open Source Software

Mathias Bronner
Göteborg, Sweden 2007

Department of Applied Information Technology

REPORT NO. 2007/66

Measuring the Usage of Open Source Software

MATHIAS BRONNER

Department of Some Subject or Applied Information Technology
IT UNIVERSITY OF GÖTEBORG

GÖTEBORG UNIVERSITY AND CHALMERS UNIVERSITY OF
TECHNOLOGY

Göteborg, Sweden 2007

Measuring the Usage of Open Source Software

MATHIAS BRONNER

© MATHIAS BRONNER, 2007

Report no 2007:66

ISSN: 1651-4769

Department of Applied Information Technnology

IT University of Göteborg

Göteborg University and Chalmers University of Technology

P O Box 8718

SE – 402 75 Göteborg

Sweden

Telephone + 46 (0)31-772 4895

[Printer’s name]

Göteborg, Sweden 2007

Measuring the Usage of Open Source Software

MATHIAS BRONNER

Department of Software Engineering and Management

IT University of Göteborg

Göteborg University and Chalmers University of Technology

SUMMARY
The rapid pace of development of software products, particular in Open Source Software
(OSS), generates an increasing number of product releases. The success of such product
releases relies on several factors, e.g. strategic timing, functionality, usability, market focus.
In the end, what can often be measured is the number of users downloading the software
product.

Measuring the usage of OSS, enables mapping the exact functionality exploited by users,
thereby assisting developers to improve the product. Tailoring of the product based on user
statistics, could optimize the product to its market. One option to optimize the product is
removing sparsely used functionality and focusing on the elements central to the user.
Following the same line of thought, potential investors of OSS can estimate the potential
market of a software product by receiving statistical information on the usage of the software.

For acquiring feedback on the usage of an OSS product, this Master Thesis Study provides a
proposal for a system measuring the usage of OSS. The proposal includes an investigation of
usage in both traditional software -and open source development, breaking down the findings
to measurable points, analyzing the most common interests of open source project
stakeholders, and combining this into usage metrics specific for the proposed platform. In
addition, a system infrastructure is created containing requirements, architecture and thorough
analysis of important system qualities are performed.

The result is a proposal for a platform, capable of measuring the end users usage of OSS. This
provides open source project stakeholders with statistics. The interests of open source project
stakeholders will be investigated to determine appropriate measurement factors from both
commercial software and OSS.

Keywords: open source, measure, usage, statistic.

Preface

This report presents the results of a master thesis study, conducted from the 19th of
January 2007 to the 25th of May 2007 at the IT University of Gothenburg. The
purpose of the study is to propose a method of measuring the usage of open source
software.

This report is the result of a literature study partially accomplished with a
collaborative effort involving a fellow Master student, Maria Josefsson, who shared
the same research area although with a different focus. The collaboration resulted in a
background chapter – Open Source Software, presenting a general picture of open
source software including an economical perspective.

I would like to thank my supervisor Thomas Lundqvist and mentor Friedrich Bosch
for their support and advice during this study. I would also like to thank Maria
Josefsson, who I worked with on the literature study and who incorporated some
questions in her interviews on my behalf. Furthermore I would like to thank the
respondents for providing me with valuable information.

Mathias Bronner, Master Student
IT University of Gothenburg
May 2007
mathiasbronner@gmail.com

Table of Content

1 INTRODUCTION...2

2 METHODOLOGY..4

3 OPEN SOURCE SOFTWARE ..6

3.1 HOSTING OPEN SOURCE ...7
3.2 OPEN SOURCE ECONOMY ...7
3.2.1 OPEN SOURCE PROJECT CONTRIBUTIONS ...8

4 USAGE METRICS..10

4.1 EXISTING AND POTENTIAL USAGE METRICS ..10
4.2 INTERESTS AND USAGE METRICS ..16

5 SYSTEM INFRASTRUCTURE ..19

5.1 REQUIREMENTS ...19
5.2 SYSTEM OVERVIEW ..21
5.3 IMPORTANT QUALITIES ..23
5.3.1 SECURITY...23
5.3.2 MODIFIABILITY ..24
5.3.3 AVAILABILITY ...25
5.3.4 PORTABILITY ...26

6 EVALUATION..27

6.1 EVALUATION AGAINST THE DEBIAN POPULARITY CONTEST ..27

7 DISCUSSION...30

7.1 MEASURING OSS – IDEOLOGY AND CORPORATE INTERESTS..31
7.2 TRUSTWORTHINESS...32

8 CONCLUSION..33

9 FUTURE WORK...34

10 REFERENCES ..35

1

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 2/36

1 Introduction

This Master Thesis presents a new approach to measuring the usage of Open Source
Software (OSS). At present time no such solution exists covering the most popular
OSS platforms. Such a platform could provide information about the user-interaction
of a specific OSS application, e.g. number of users, user activity or functionality used.

The rapid pace of development of software products, particular in OSS, generates an
increasing number of product releases [3, 16]. The success of such product releases
relies on several factors, e.g. strategic timing, functionality, usability, market focus. In
the end, what is often measured is the number of users downloading the software
product. Although what can be of interest, to both the developing community and
potential investors, is the actual usage of the product.

The usage of a product can refer to the amount of time and functionality used, which
can be measured to provide valuable feedback. For interested investors, private or
venture capitalists, the feedback from an early release of the product can be utilized to
foresee a potential product success. This enables them to make decisions based on
statistics. On the other hand, the feedback used by the development community to
monitor the functionality use, gives them a chance to improve, add or remove
functionality for creating a better product.

The research question is the following:

How to measure usage of open source software?

The main research question leads to the following two questions:

1. What factors are of importance when measuring usage of open
source software?
2. Is it possible to create general frameworks and development tools to
support measurements for open-source applications?

The result of this Thesis Project will be a proposal of a system which measures the
usage of OSS, including a definition of measurement factors with interest to the
context, requirements and system architecture.

Currently one software solution exists to measure the usage of OSS, being the Debian
Popularity Contest named after the Open Source Debian Linux distribution [21]. The
purpose of Debian Popularity Contest is to measure the usage of programs or
packages installed on computers running the Debian operating system. The Debian
Popularity Contest, though functional, is limited to the Debian Linux distribution
platforms, and is not thoroughly or systematically documented. This hinders further
research to be performed upon this solution [21].

The traditional approach of software development referred to as closed source, is
based on the assumption that software development is a specialized process. This
process is best handled by a localized team of skilled developers and a manager [3].
This development results in the form of periodical releases. Open source is on the
other hand based on inter-geographical collaboration between developers and users,

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 3/36

continuous improvement and frequent releases, and conformance to open standards
using open source licenses [3].

Unlike the traditional approach of software development, open source users have free
access to the source code. This enables users to modify the code and correct possible
errors which might include porting the software to another hardware, or software
platform. As a result the users can create add-ons to solve perceived problems or just
use the software as it is [2]. In addition, unlike the traditional software development
approach no broader OSS platform is available for measuring the usage. For
traditional software applications different levels of usage measurement platforms and
tools are available, providing concrete measurable information to the stakeholders of
the software [27, 28]. This study will look at usage metrics, currently used for
measuring traditional and OSS applications, and apply the knowledge to the proposed
measurement system.

The development of a system for measuring usage could help to establish an open
standard for collecting information of importance to the stakeholders. Following an
open industry standard gives a certain degree of freedom, while easing the decision
taking process. A good method is to offer a software solution in a number of proven
industry-standard configurations, and let the users choose between them.

There is an interest from people in the open source community to acquire usage
statistics. From an interview with representative for KDE Cornelius Schumacher, a
genuine interest for usage measurement was expressed [13]. It was stated that
currently, information regarding the number of users and other types of usage
statistics, was unavailable to KDE. KDE is searching for methods or tools that can
provide this information.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 4/36

2 Methodology

This section contains the methodology used for conducting the Master Thesis study,
as well as an explanation of the work process and motivation behind the steps taken to
achieve the result. The reason for defining the work process is to make the study
repeatable, thus reaching the similar result if the study was to be performed again.

The methodology used for the Master Thesis study is a Design Research approach.
This method consists of the construction and evaluation of technological artifacts in
relation to their area of use, and the proposal of new theories if seemed necessary.

The aim when conducting research is to make a contribution to academia as to
practice. This implies that the research conducted should both add to the existing base
of theory in order to make a contribution [11], and assist in solving current or
expected practical problems [14].

The use of the Design Research approach is directly associated with the expected
result, which is to create a platform for measuring OSS. The result of the study has to
be evaluated both to ensure the validity and reliability of the study, and to determine
to which extend the result can be used as a base for further research. For this purpose
the result will be evaluated against the existing Debian Popularity Contest as a frame
of reference.

As the initial step an adequate background on OSS will be consolidated, providing a
foundation to the study. The background will contain the central idea of OSS and
motivation behind it, as well as the economy and interests associated with an open
source project - see chapter 3. Open Source Software.

The next step is to investigate common used platforms supporting OSS, assess their
market share and to which extent OSS is used on that platform – see chapter 4. Open
Source Platforms.

In order to consolidate the relevant measurement points for the technological
suggestion, a set of requirements will be developed. These requirements will be a
result of usage metrics developed from the operationalization of current and potential
measurements of usage [13]. The usage metrics providing measurable indicators of
usage will add a certain degree of validity to the research – see chapter 5.Usage
Metrics

The elicited requirements are used as a foundation for creating the architecture for the
measurement system. The requirements will be refined into a concrete architectural
solution, where the non-functional requirements will have a major influence – see
chapter 6. System Infrastructure. The non-functional requirements will be elicited
based upon both the functional requirements and a systematically analysis on the
importance of the various “ilities” to the proposed system [12]. The break down of the
non-functional requirements is done to ensure technical reliability. The result will
then facilitate the production of proper counter measures to help the system manage
these constrains.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 5/36

As a final precaution the proposed system, containing requirements and architectural
design is to undergo an evaluation. This is to ensure its conformance to its purpose
and to verify that the solution is more covering than possible alternatives – see section
7. Evaluation.

A discussion of the study will elaborate the findings and put the methodology and
proposed solution into perspective. Furthermore the discussion will contain subjects
mentioned in the report which requires additional attention – see section 8.
Discussion. The conclusion will present a summary of the findings and their
implications found throughout the Master Thesis study – see section 9. Conclusion.
Areas of interest to the current study which could enhance or extend it are found in
chapter 10. Future Work. The final chapter, 11. References, lists the references used in
the report and ensures that material and statements in the report are well founded.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 6/36

3 Open Source Software

This chapter gives an overview of OSS and the economy behind, necessary to
comprehend the context in which the proposed measurement system is to operate in.
The chapter includes an explanation of the idea driving OSS, the hosting of open
source projects, and the contributions they receive by the various project stakeholders.

OSS gives at one end the developers, the possibility to contribute in the form of
source code and at the other end the users, the right to use or modify a program and its
code base.

One basic requirement of an open source project is the availability of the source code
[7]. That implies that open source refers to shared software code with open standards,
and the collaboration between software developers and users, to build software [1]. In
addition this includes identifying and correcting errors and making improvements to
the software [1]. That means that OSS gives individual developers, the possibility to
contribute in the form of source code while at the same time giving individual users
the right to use or modify a program and its code.

The central element in open source development model is the open and collaborative
environment in which software products are created swiftly. The cooperation between
both developers and end users in the open source community encourages the building
of products with a higher level of quality throughout the product life-cycle [9].

The exact degree of freedom included in the distribution of code, relies on the license
type on which the software is released. Many of license types exist and are being
constructed to support the interest of the producing community, meaning that OSS
and the license applied to them are closely associated [1]. Certain restrictions are
imposed on OSS licensing; an OSS license must not discriminate against any type of
user group, field or endeavor [16]. In addition, an OSS license must be applied to all
parties where the software is distributed, meaning that the Open Source distribution
cannot be re-licensed by any user [16].

Most contributors in OS projects are driven by a personal motivation, not directly
linked to the size of the salary, but rather factors of a more veiled nature. One
explanation behind the personal motivation referred to in Maslow’s hierarchy of needs
as the category of self-actualization [15]. Other possible factors of motivation are
proposed to be learning and skill opportunities, together with social and political
factors [16]. Prior studies show that Open Source developers are the most talented and
highly motivated software developers [24].

Using OSS in a commercial context has been explored for some time now, and unlike
traditional software this revenue is not generated from the actual product. Open source
business models in its many shapes tries to overcome the limitations gaining direct
revenue by the product, often by using a less strict license or releasing the same
software under several licenses. Thus, this implies that business models and license
types are closely related and built to suit one another.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 7/36

3.1 Hosting Open Source

The hosting of open source projects is a necessity and important foundation for the
distribution of the code in an open Source project, among members of a community.

SourceForge is one of the world’s largest OSS development web sites that hosts and
provides services to more than 100 000 projects [9]. SourceForge.net is owned by
OSTG (Open Source Technology Group, Inc.) which is a network of technology sites
for IT managers and development professionals.

SPI (Software in the Public Interest, Inc.) is a non-profit organization which was
founded to help organizations develop and distribute open hardware and software
[10]. SPI is like OSTG a non profit organization.

Besides the hosting of the code, hosting organizations like SourceForge [9] and SPI
[10] provide a starting open source project with an array of various tools for inter-
group communication, version control and a donation system. Minimizing the
interdependency between project members by focusing on a small mutual web based
platform, enables members to utilize custom tools and techniques, ensuring their
freedom of choice.

The result of gathering numerous open source projects at a central place, gives
potential investors a possibility to search and contact open source projects developing
software of interest. In addition private contributors can be members of the
community and search for projects where they can join the development.

3.2 Open Source Economy

In OSS the main source of income is generated from what is around the product,
rather from the product itself. Red Hat for example, charges for setting up an Apache
Web server, developer training or “24-hour technical support for one year” [25, 29].

The financial model of conventional software development is mistakenly built upon
the assumption, that software development is a manufacturing industry and not mainly
a service industry [30]. The high purchase price and low service support fee is not
correlated with the maintenance cost, which is estimated to be 70-80% of the total
software development cost [31, 32]. This is acknowledged in the OSS model, where
the purchase price is low and companies can contest on the service to the user,
viewing the software as a commodity product where the ingredients are free [33].
Conventional software development companies can gain benefits from embracing
open source development and distribution, and by such enhancing their reputation
[29]. In open source development the research and development is conducted by the
community members, from potentially hundreds of skilled developers, minimizing the
costs and facilitating a rapid development and release pace [8].

OSS is often mentioned as being free. “Free” does not refer to the price tag it comes
with, but instead to freedom [16, 17]. The founder of the Free Software Foundation
(FSF), Richard Stallman, defines free software as the freedom to run, copy, modify

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 8/36

and redistribute the program for any purpose [17, 18]. The policy of FSF is formed by
ideological tendencies, much like the Open Source Initiative (OSI), despite the
significant differences in the definition of terms like “free” and “open” [22, 23].
According to FSF, the freedom to sell copies is of great importance to this freedom.
Selling collections of free software on a media e.g. a CD-ROM will raise funds for
free software development. The software that cannot be included in these collections
is not free software according to FSF.
Even redistributing a program for a fee is defined as free software, since it again
refers to the freedom of use and not the price. As a consequence, selling a free
program is accepted and it can help to finance further development of free software
[17].

The mechanism which ensures the adherence to the principles of the freedom of
software is the General Public License (GPL) and copylefts, where the latter is
copyrights with GPL regulations [16, 19]. Basically the GPL is a restriction forcing
variations of free software to follow the same license, thus providing a guarantee that
resulting software contains the same degree of freedom [16, 19].

3.2.1 Open Source Project Contributions

This section contains an overview of the contributions received by an open source
project, which can consist of economical resources or time.

Economical resources are one of the types of resources that can be provided to an
open source project. Economical funding is most of the time provided by venture
capitalists but also private persons or companies.

The financial contribution of investors is a more unreliable source of funds for most
open source projects but it does exist along side funding in the form of donations.
Venture capitalists, private investors and companies all have their reasons to invest in
certain Open Source projects.

For companies the natural reason for investing in an Open Source development
project is that the company uses the software that is developed in that project, and
wants to encourage the evolvement of that software. With the economical donation it
might be possible to influence the direction of the development, e.g. the development
of certain functionalities, covering the needs of the company.

The illustration below (see Figure 1) is based on the personal investigations made
during the literature studies made in this area. The figure presents the approximate
size of the contributions, money and time, as well as the two main factors that can be
invested in an Open Source project. Time refers to the effort of developers, managers
and coordination. The size of the arrows in the illustration below represents the
approximate amount of the contribution that can be received from the two factors,
money and time.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 9/36

Figure 1 Describes possible sources of contribution to an open source project.

The private contributor can be both a private donator, giving money to an open source project or
a developer contributing with time in an open source development project.

The government organization is a user of open source that is willing to contribute with money
(and time) in order to achieve specific functionality beneficial to a need, e.g. language specific
software support.

Companies can have different interests in open source project, investing both time and money for
achieving a long term return of investment. Like government organizations, companies can have
the need of specific functionality critical to their business goal.

Venture capitalists have a direct interest in open source projects, due to the possibility to gain
attention by the possibility to add a successful open source project to their portfolio. Many
Venture capitalists are interested in earning money from the success of the open source project.

Business models and licenses can bring financial support to an open source project. Open source
business models and licenses focuses on retrieving money from services around the product, e.g.
software support and distribution.

Non-Profit Organizations (NPO) does not generate a profit, but may receive money for the
purpose of distribution these to projects which suit the goal of the NPO.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 10/36

4 Usage metrics

In this chapter currently applied usage metrics are investigated, in order to elicit
potential usage metrics which will be a part of the requirements for the usage
measurements system.

For describing a conceptual variable such as usage, one has to break them into parts to
capture meaning. In order to perform this process the variables will be operationalized
into more measurable indicators, thus producing usage metrics [13]. This quantitative
approach provides metrics which will be used, in correlation with the goal of the
research to elaborate a comprehensive list of measurable points of interest to the
research.

For gathering information on end-users interaction, in specific the practical usage of
software products, measuring techniques can be used. The usage can be characterized
in several factors depending on interest e.g. time, functionality or number of users.

4.1 Existing and potential usage metrics

The existing and potential usage metrics is a survey for the measurement points which
could be applied when measuring the usage of software, in the area of traditional and
open source development.

The close relation between a central service or product and a price in traditional
software development, makes some measurement points specialized for their context
and not applicable for contexts where the cause and effect is more complicated. In
OSS development however the product is not so evident, it’s rather what lies around
the software itself which is in focus. By consequence some measurement points might
not be exactly the same.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 11/36

Figure 2. An overview of the existing and potential usage metrics in the area of traditional
software development and OSS development found or developed during the literature study. The
dotted boxes illustrate potential usage metrics which has been chosen to be a part of the
requirements for the usage measurement system. Only two of the chosen usage metrics where
found, the UUID and Wall Clock Time, the rest is proposed. The dotted lines show that the
resulting usage metric is dependent on more than one usage metric source. Further explanation
of the chosen usage metrics can be seen in the following sub-figures.

In traditional software development many of the measurement points are closely tied
to a business model, where the measurement is done to formalize a usage which is to
be paid for by the user. The telecom industry has had a large influence on how usage
is viewed and therefore measured. Measurement factors like Data Amount
Transferred and Time are typical for the telecom industry (see Figure 3), e.g. when
using a mobile phone for making a call or using a GPRS service. The same factors are
important as well for Internet Service Providers for measuring the end users usage and
thereby the size of the bill.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 12/36

Figure 3. Data usage.

Several measurement points can be specialized into more precisely described
measurement point, facilitating the practical set-up of measuring. An example of this
is the Time usage (see Figure 4) which can be measured using different time scales,
and seen from different perspectives. The Time can be the CPU Time, System Time or
Wall Clock Time usage in a software program, where the latter represents the total
execution time of a program [38].

Figure 4. Time usage. Wall Clock Time – The accumulated time usage of a program, which can be
divided time intervals, e.g. for viewing program time usage over a week. Activity Time – The
accumulated time usage of a program, where Key Strokes or Mouse Clicks is inputted by the user.
The dependency between Key Strokes, Mouse Clicks and Activity Time is depictured in the
overview - Figure 2.

While prior existing measurement points addresses time, e.g. Time usage (see Figure
4), the typical viewpoint has been from the computers’ logically. The time usage is
usually measured in CPU Time - the time the program code uses on the CPU, System
Time – the time used by the program code running kernel code, also referred to as I/O
operations, and finally Wall Clock Time – which is a combination of the first two and
the time spent idle, including waiting for resources [38]. Even though these time
usage metrics can be valuable, the first metric CPU Time is proportional to the
performance of the CPU, System Time is dependable on the system configuration and
operating system, and Wall Clock Time is itself a measurement of how long the
program has been running.

The measurement of the end users input, e.g. Key Strokes (see Figure 5), are often
used to characterize various factors of efficiency. This measurement point could
contain the potential to uncover the users behavior at different points in the software
program, showing the raw activity of the user.

Figure 5. Activity usage. Activity Level – A relationship between the accumulated time usage of a
program and the time where key strokes or mouse clicks has been inputted by the user. A higher

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 13/36

level of user input produces a higher activity level. The dependency between Key Strokes, Mouse
Clicks and Activity Time is depicted in the overview - Figure 2.

The prior mentioned usage metrics Data Amount Transferred, Time and Key Strokes
(see Figure 2) are by themselves measuring basic factors. These alone might not
provide any significant information but functions like building stones to acquire the
desired information.

Switching the viewpoint from the computers Time towards the Activity Time or
Activity Level (see Figure 4 and Figure 5), where the two latter focus on the users
actual time usage, or activity level. The time usage of a program measured in the Wall
Clock Time, does not show the users usage of a running program, but probably
measures a large amount of idle time. Different software application requires different
amount of user interaction, while some are merely a background service showing the
status of something other applications like a word processor requires a larger amount
of user input to produce the intended result. The Activity Level would be usage metric
to be applied to whole software programs or specified parts in the program which
includes a high level of user interaction. For creating a generic usage metric for
measuring the Activity Level the relationship between Key Strokes extended with
Mouse Clicks and Time measured in Wall Clock Time (see Figure 4), would provide
an indicator for the level of Activity Level. The reason for not naming the usage metric
Efficiency is because the metric does not describe what information the user provides
the software program with or relevance of the input. Put in another way, the Activity
Level metric is too generic to be able to distinguish right input from wrong and hence
measuring the efficiency of the user; the metric simply describes the user’s activity
level. The scaling of the Activity Level should be arranged so that many user inputs
over a short amount of time should produce a higher number, or level of activity than
the inverse.

Most usage metrics in traditional software development can be categorized as a
service due to the close association between what is measurement and what the end
user is debited for. However what is described as an Application Specific usage (see
Figure 6) is a software application which provides a service to the end user, where the
content of the service is of a more generic nature, e.g. downloading music over the
internet. This implies that more basic services measured in factors such as Data
Amount Transferred and Time are not included in Application Specific usage.

The context which the measurement is conducted in, either in traditional software or
OSS development, as mentioned earlier, influences the measurement of interest. As a
result, the measurement of License Usage (see Figure 6) has a valid position in the
traditional software development context, where in OSS development the same
measurement lacks a genuine sense of meaning [35].

Figure 6. Application Specific usage. Functional Points – A measurement counting the number of
times a specific functionality of program has been used. The definition of a functionality is

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 14/36

defined by the program being measured. The number of times a functionality has been used can
be divided into time frames of e.g. 24 hours or one week.

The behavior of the user includes measuring what kind of information the user
chooses to gain access to and not only what is presented to every user that utilizes the
software program by default. The information which is of interest to the user in a
program depends on many factors, e.g. for what purpose did the user start the
application, or what can the program do for the user beside the initial intended use.
Nevertheless the user’s program experience could be recorded to chart which
functionality was used or not used, providing valuable feedback to the software
developers. The feedback could subsequently be employed to allow software
developers to improve the existing software by streamlining the software product
depending on market strategy. For the users of the software, this could mean that very
sparsely used functionality was removed and the popular parts of the software was
extended or improved, thus creating an overall better product.

For measuring the Functional Points (see Figure 6) the various functionality should
have an indicator attached to them, in order to receive a notification when specific
functionality is used. For making the functionality measurable in the first place, the
software application vendor should provide the definition of what a block of
functionality is. This is needed in order for the measurement of the functionality to
have a meaning for the vendor. The granularity of the block of functionality should be
course enough, to have a logical reference to a user of the software, but at the same
time fine enough to provide the software vendor with feedback to improve the
software.

Several software applications currently perform measurements regarding the end users
behavior, and with the conformance of the end user, sending this over the internet to a
receiver. An example of this is the media player application Winamp, which supports
anonymous program usage statistics, consisting of “how much Winamp is used” [39].
The content or results of such measurements are in such applications a grey area to the
end user, not providing in-depth information regarding what, how, when and why the
measurement is conducted.

In both traditional software development and OSS development the number of
Downloads (see Figure 7) is measured to give an estimate of how many users that are
downloading and potentially installing and thus using the software program. Though
being a measurement of usage, no clear analogy exists between the number of
Downloads and users, due to the many uncertainties involved. When the user wishes
to download a specific piece of software, he or she presses the link which has a
reference to a file containing the installation program, and executes or saves the file
locally for the purpose of installation. Several scenarios are possible, the user might
not install the software even though downloading it, or the user might install the same
software on many machines to save time and not downloading it again. Even if the
user installs the problem, the usage of the software is unknown by only looking at the
number of Downloads making this measurement a rough estimate.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 15/36

Figure 7. Number of Users. UUID – Universally Unique Identifier to distinguish each user for the
system and is used to calculate the total number of users of a program.

In a usage measuring system where the usages of software on many computers are
monitored, the Number of Users retrieved by counting the number of UUIDs (see
Figure 7) is a logical measurement point. Besides being a viable alternative to another
measurement point Downloads (see Figure 7), it could provide precise and accurate
information regarding number of users and possibly their geographical distribution. A
number of paths could be presented for how exactly the measurement is performed.
One solution is to let every user who is using the usage measuring system have a
unique number or name, and simply count the number of unique names. Another way
to measure the Number of Users in a distributed measurement where the
communication is conducted through a network adapter is to employ the in-built
MAC-Address of the network adapter. An uncertainty when relying on information
provided by a network adapter is that the user uses several channels of
communication, e.g. a wireless network adapter and a cabled network adapter,
resulting in a higher number of users. A third way to identify users of the internet, or
in a distributed usage measuring system is their external IP-Address. Though reading
the IP-Address might identify a user, it is not possible to measure the number of users
sorely by counting the IP-addresses used in relation with the usage measurement
system over time. But the external IP-Addresses provided can be mapped to a
geographical region, often a country, giving some indication on where the users are. A
unique user identification, e.g. a number of a name, combined with the external IP-
Address, could be used to map the number of users in a specific country or even
region, providing government organization with possible valuable feedback.

Figure 8. Regional Usage. Users per Region – A number identifying the number of users of a
program in a specific region. The dependency between UUID and Regional Usage is depicted in
the overview - Figure 2.

An area when measuring software usage is performance, influencing both availability
and usability. In this study the Time usage is measured to some degree. While this
study acknowledges the importance software performance as a quality, the measuring
of performance itself is not the primary focus of this study. The usage is seen from the
direct interest of the project stakeholders, shown in the following section, and not
from the perspective of the computer. In addition, to conduct covering performance

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 16/36

measurements it would require extensive configuration of the measurement set-up
customized for each application.

4.2 Interests and Usage Metrics

This section establishes a connection between the interests of the project stakeholders,
the open source context, and the usage metrics used for the usage measurements
system.

When looking back in time, complete business models founded upon a direct
connection between the actual user usage of software and the price has been suggested
without any success [36]. What exists today for non-OSS, is typically a license based
agreement where the price of the license gives the users the right to install and use a
product how frequently he or she wishes. Most license based software products
includes a service, both in the form of documentation, support in case of problems,
and future updates to the software. What is sometimes defined is the exact quality of
the services included, while software updates might be supplied at a regular basis for
several years, but again further development of the product might be discontinued by
the supplier. This issue is a legacy from a time where the software was less
complicated and in general did not change as much during its lifetime. The dynamic
nature of current software makes the expression product and the borders around it
increasingly unclear and hard to define.

The recognition of the dynamic nature of software is a natural part of OSS
development, with its user driven focus, frequent releases and where maintenance is
shifted for evolution. For improving existing software a usage measurement system
can be utilized, collecting a variety of information, and returning this information to
OSS project stakeholders who will be able to benefit from this feedback. The
measurement factors suggested in this thesis report which could be used to optimize
an OSS product are shown in Figure 2.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 17/36

Figure 9 Open Source Project stakeholders and their measurement interests.

Identifying the open source project stakeholders and their interests in terms of
measurement points is the first step towards consolidating a set of requirements, for a
usage measurement system (see Figure 9). The connection between the stakeholders
and their interests where investigated during the literature study.

The Private Contributor can be subdivided into a Private Developer and a Private
User (see Figure 9). The Private Developer is the main contributor of code (time) to
the open source project, making this stakeholder an important decision maker. The
code is the central artifact of an open source project. The Private Developer could be
interested in feedback on which parts of the functionality that are used by the Private
User, which can be used to improve the product. Furthermore the Number of Users
can be a factor of motivation to the Private Developer, realizing that their creation is
actually used. The Private User uses the OSS, donates money to the project from time
to time and could want to see how popular different products are.

The Company and Government Organization will have similar measurement interests
(see Figure 9). The Number of User/ Number of User in a Specific Region is as
mentioned before a measurement for the popularity of the product. Companies and
Government Organizations can have a strategic dependency on a specific open source
product. They might want to extend functionality important to them, by contribution
with development of the code base (time) or invest in the project (money). An
example is Government Organizations wanting an open source product to support a
specific language.

Non-Profit Organizations and Venture Capitalists are interested in the same
measurements point, although their intended agenda can be quite different. While both
Non-Profit Organizations and Venture Capitalists support an open source project
financially, the latter does it for the expectations of significant return of investment.
Both stakeholders will have an interest in promoting their company names and gain a
positive reputation. The Number of Users determines if product is used and the

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 18/36

Time/Activity Usage to which extent the product is used, helping to Non-Profit
Organizations and Venture Capitalists to select open source projects to invest in.

The six usage metrics found beneficial for OSS development are: UUID, Users per
Region, Wall Time Usage, Activity Time, Activity Level and Functional Points (see
Figure 2). These types of usage measurements are distilled from the interests of
stakeholders in an open source project found during the literature study (see Figure 9).
The aim of conducting these measurements is to improve the software produced in the
open source project during its lifespan.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 19/36

5 System Infrastructure

The System Infrastructure section contains a description of the proposed system,
including a list of system requirements, an overview of the system and an explanation
of the important qualities of the system. This section is important for understanding
how the system operates and the functionality supported.

5.1 Requirements

In this section the requirements of the system are listed to provide an overview of the
functionality and the manner in which they collaborate. The requirements are the basis
for the usage measurement system, specifying the types of measurements and how the
system should support the actual measuring. As the requirements are extracted from
the usage metrics, the requirements are a part of a suggested solution for a usage
measurement system.

The usage measurement system consists of two main parts. The first is installed on the
client machine and the other positioned on a server. The part installed on the client
machine, referred to as the client program, is a standalone application measuring the
usage of other programs on the client machine. The programs that are to be monitored
for usage activities have to first register to the client program in order for the
measurement to take place. The part installed on the server, referred to as the server
program, is an application which can serve several client programs, receive, organize
and store the data sent from the client programs.

1. Client program
1.1 The program shall run as a background service in the operating system
1.2 The program shall provide a service for other programs to register to, for
performing the usage measurement
1.2.1 The other programs is when registering, able to choose the usage measurements
the they wishes to have performed
1.3 The program shall provide a service for other programs to deregister from, for no
longer perform the measurement
1.4 The program shall be able to measure the six measurements point specified in the
subsections
1.4.1 The program shall be capable of measuring the Wall Time Usage of a registered
program
1.4.2 The program shall be capable of measuring the Activity Level of a registered
program
1.4.3 The program shall be capable of measuring the Activity Time of a registered
program
1.4.4 The program shall be capable of measuring the Number of Users of a registered
program, by counting the unique identifier of the user.
1.4.5 The program shall be capable of measuring the Users per Region of a registered
program, by counting the unique identification of the user registered in a certain
region.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 20/36

1.4.6 The program shall be capable of measuring the Functionality of a registered
program, which has defined functional measurements point
1.5 The program shall be capable of storing the usage data measured on the same
computer which the program is executed on
1.5.1 The program shall encrypt the stored data
1.6 The program shall be able to connect to the server program over the internet, if the
server program is available
1.6.1 If the server program is not available within 20 seconds, the client program shall
attempt to retry the connection procedure every 6 hours if an internet connection is
available
1.6.1.1 If an internet connection is not available the program shall attempt connection
every hour
1.7 When connected to the server program, the client program shall be able to
authenticate itself to the server program
1.7.1 The program shall have a unique identifier which is available only to the
program itself and the server program
1.8 When connected to the server program, the client program shall be capable of
sending the stored data
1.8.1 The data sent shall be sent using an encrypted protocol
1.8.2 If the transfer is disrupted or error prone the transfer shall be cancelled, and the a
new connection is to be established
1.8.3. If the transfer was successful, the transferred data shall be deleted from the
client machine
2 Server program
2.1 The program shall be able to connect to the client program over the internet, if the
server client is available
2.2 When connected to the client program, the server program shall be able to
authenticate the client program
2.3 When connected to the client program, the server program shall be capable of
receiving the data sent
2.3.1 If the transfer is disrupted or error prone the transfer shall be cancelled,
2.3.2 If the transfer was successful, this should be communicated to the client
2.4 The program shall encrypt the stored data
2.5 The program shall provide a service for other computers to register to, for them to
receive usage measurement statistics
3 Additional constrains on the client –and server program (for detailed description on
important system qualities – see section 5.3)
3.1 Modifiability – Highly modular design [1]
3.2 Security – Establish audit trail for legal purposes in case of connection attempts
followed by a failed authentication procedure
3.3 Availability – The server program shall be executed in a distributed server
environment, supporting load balancing, migration and transaction control
3.4 Portability – The client program shall be implemented on all of the following
major platforms: Linux, Windows and MacOS

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 21/36

5.2 System Overview

The System Overview gives an architectural description of the system both in graphic
and text, showing the various nodes, software components and interfaces which the
system consists of.

The usage measurement system consists of two parts situated at the Client System and
the Server System (see Figure 10).

The client system contains the Measurement Program which measures the usage of
programs which are registered using the Internal Interface. The Measurement
Program was previously named the client program in the requirements (see section
5.1), but has been renamed in the Figure 10 in order to not confuse it with the
programs installed on the Client System being measured. In the figure, two programs:
Program 1 and Program 2, are monitored by the Measurement Program which
collects data, stores it encrypted, and sends the data through the External Interface
towards the Server Program using an encrypted communication protocol.

Figure 10 – Component diagram of the usage measurement system, illustrating a setup of one
Client System and three Server Systems, united in a Distributed Server System.

The Server Program, here situated on three Server System machines, receives the
measurement data through the Client Interface and stores it (see Figure 10). The
Server System machines themselves are interconnected in Distributed Server System,
e.g. using middleware which can enhance location transparency, availability and
scalability [40]. Even setups enlisting multiple Distributed Server Systems are a
feasible option for spreading the risk of system failure, connected to the geographical
position of the Server Programs. The Server Program provides a public Presentation
Interface for everyone to use. This interface provides access to the statistics from the
users of the usage measurement system.

The usage measuring system’s client part could have several forms, of which the four
main candidates are explained below.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 22/36

• Library – One solution is to install a library on the client, containing

functionality for measuring and communicating with the server. Each program
that supports usage measurements needs to include the library in order to use the
functionality. Depending on the design of the library, a library solution leaves
many decisions and options to its user. The user of the library will require
knowledge to use the library correctly. In terms of modifiability a library works
as a central repository providing functionality to its users, making updates to the
library a small matter. This is only true while the library interface is not reduced
in functionality, forcing users to change their implementation relationship to
adapt to the changes.

• Plug-in – Using a plug-in containing measurement functionality, which the
individual measured program installs before or after reaching the end-user. This
solution is related to using a library, although some of the responsibility of
configuring the library can be moved towards the plug-in, making the plug-in
easier to use, and less configurable too. The initial distribution of the plug-in
might be easy, although an upgrade could require an upgrade of all applications
measured. An alternative would be to use a plug-in which uses a measurement
library, to facilitate configuration and modifications. Either way, an upgrade to
the plug-in itself would impose a modifiability issue.

• Stand-Alone Application – A traditional application which provides a specified
interface to application wishing to have the usage monitored and measured.
While a stand-alone application is similar to a library during installation and
distribution, the modifiability of such a solution is more versatile. In a stand-
alone application the GUI can be extended to support new functionality, e.g.
visualization of personal usage statistics, where the same extension for the
library solution would require modification on multiple places. Depending on
the resources available by the operating system, a stand-alone application will
have better control of the application environment than a library or plug-in
solution. Better control of the application environment helps ensure that the
intended quality constrains will be enforced.

• Two Part Application – In this solution the stand-alone application is divided
into two parts, with the same responsibility, working in parallel. One part of the
application operates closer to the operating system, e.g. in Linux as functionality
embedded in kernel space. The other part operates as a normal application using
the resources provided by the surrounding environment. The parallel work
process provides a way for the server program to compare the measured result
with each other, detecting inconsistencies. Most importantly the difference en
the working environment provides a variance in the security level, serving as
precaution against both application parts getting compromised. Installing the
application part close to the core of the operation system can pose problems in
regards to gaining access to the system core.

The choice of form for the client fell upon a stand alone application where the
application can be controlled, facilitating the imposing of quality restrictions, and
supporting modifiability by making functionality additions feasible.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 23/36

5.3 Important Qualities

In this section selected system qualities are highlighted in order to elaborate certain
choices and how these choices influence the system architecture.

5.3.1 Security

Security is a concern in most systems; threats may arise from within or outside the
borders of an organization. For a system measuring and collecting data from clients to
be used by various actors, the system must be trustworthy and that requires the system
to deal with potential attacks.

The fist step against attacks is resisting attacks where the goal is to ensure integrity,
confidentiality and assurance [12]. In the measurement system the client program will
have to authenticate itself to the server program, using a unique ID and comparing
the ID against existing IDs. When the client program is installed, a unique ID is
generated and will initiate a registration process with the server program to store the
ID and IP-address of the client machine. The registration of the ID and IP-address
serves as a precaution against tampering with the intended use of the measurement
system by having a large number of IDs per IP-address. In addition, the IP-address is
used in the measuring of the number of users in a specific geographical region.
Furthermore using client program’s unique ID end users can connect to the server
program which authorize users to access their usage statistics. For maintaining data
confidentiality the data measured and stored should be encrypted, minimizing
unauthorized access. Persistently stored data should be asymmetrically encrypted
using two pairs of keys, meaning that both client and server program contains a
private and a public key which they can use to encrypt and sign the data. The stored
data must be transferred from the client program to the server program over publicly
accessible network, escalating the potential threat level. For this purpose a Transport
Layer Security (TSL) protocol can be used for preventing eavesdropping, message
forgery and tampering, by providing communication encryption [12]. Besides
confidentiality issues, the data should be delivered as anticipated, maintaining
integrity of the data can be realized using a checksum, e.g. MD5. Checking for the
correctness of the transfer by analyzing if the data is corrupt or incomplete, enables
for the server program to request the data to be retransferred. The last tactic for
resisting attacks is to limit access to the usage measurement system, limiting access to
the implicated machines. The server program executing in a distributed server system
will have a firewall situated for restricting the access based on where the request
comes from and the destination port [12]. Although the server side environment can
be controlled, the security level at the client machine is depending on the
administrator of the machine, meaning that a firewall, hardware or software, might be
available and in working state.

The second step to achieving security is detecting attacks, using an intrusion detection
system, where network traffic patterns are analyzed and compared against prior
patterns in history saved in a database [12].

The final step is the ability to recover from attacks made on the system, where the
recovering involves identifying the attacker and to restoring the system [12]. The

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 24/36

usage measurement system has to identify the attacker in order for legal actions to be
taken. To identify the attacker and collect evidence, the appropriate tactic is to
maintain an audit trail, where the IP-address and a copy of the transactions made in
the system are logged. Additionally, the copy of the transactions including the data in
system that has been changed in the transactions can help system recovery [12]. The
second part of recovering from the attack is to restore the system, setting the system in
a working state using the same tactics described in the section regarding availability
(5.3.3).

The overall security goal for the usage measurement system is for the users to trust it.
The trustworthiness perceived by a user is related to the dependability which the
system exhibits. Besides the availability and the reliability of the system, the
dependability of the usage measurement system relies on the security, which for the
users is expressed as the personal integrity. Personal integrity is typically maintained
by applying various encryption techniques, making it difficult to view the data. Even
well protected, a system is never unbreakable, thus posing a risk for the systems
perceived trustworthiness.

5.3.2 Modifiability

Modifiability is a key factor in a broad range of systems, in open source development
a modular architecture is especially important [1]. A modular architecture enables
developers to extend the functionality of the system without being forced to change
the core of the system [1]. In addition, a modular architecture enables increased
parallel development, due to the alignment between the architecture and the physical
distribution of the person involved in an open source project.

Tactics can be used to control the time and cost to implement, test, and deploy
changes, to accomplish modifiability. One set of tactics which will be applied to the
system is to localize modifications. This has the overall goal to assign specific
responsibilities to modules, which limits consequences if the module is replaced by
another [12]. Maintaining semantic coherence is a tactic to ensure that a module
functions without being too dependent on other modules, and a method to realize this
is to abstract common services. Abstracting common services, e.g. with middleware
is to be used for the distributed server system, providing the server program with
services such as transaction control and load balancing.

Another modifiability tactic could be used when designing the system to avoid a
ripple effect. A ripple effect occurs when a change to a module initiates changes to
another module and so forth. In this tactic the existing interface of a module is
maintained, keeping the name and signature of the interface unaffected by an internal
change to the module. Nevertheless, maintaining existing interfaces can not solve
module inter-dependency problems regarding semantics or quality of service [12].

By improving the testability, e.g. using separate interface from implementation, the
modifiability would be improved, facilitating the testing process when modifying the
application [12]. Creating separate interfaces for testing purposes allows substitution
of implementations, which can be useful when testing different measurement
techniques in the client program.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 25/36

The possibility and essentially the effort required for making a modification to the
measurement system, e.g. adding new measurement factors, is important for the
success and survival of the system. Open source products are released more frequently
than non-OSS products, making modifiability a quality to consider in detail.

5.3.3 Availability

Availability is about being able to control faults arising in the system, making sure
that faults do not create a system failure, thus causing the system to be unavailable to
the user [12]. The consequences associated with system failure are not simple
unavailability; on the contrary a system failure can manifest itself by providing a
service which is different from the expected response. Ideally the system should be
maintained by rectifying the faults thereby ensuring the continuous correctness of the
system.

For the usage measuring system, availability in terms of 24/7 uptime is not the highest
priority. However a lower availability e.g. at least 80%, would be sufficient. A client
failing to connect and transfer the measured data will attempt to retry periodically,
and transfer the measured data later. If the retransfer of the data is successful, the
delay must be taken into consideration, in order for data measurements based on time
intervals to be adjusted accordingly. This will of cause create an increased standard
deviation of the measurements results.

What is of importance to the system in terms of availability is the correctness by
which the system makes measurements and handles these, both in the client and
server program. Faults in the measurement system creating malfunction of system
functions, must be handled by the system to ensure the perceived trustworthiness of
the system.

To handle availability issues several tactics need to be exploited to prevent, detect and
recover from faults before they lead to system failure, thus compromising the
availability and possibly the correctness of the system. Many tactics for managing the
availability of the system are in-build options in operating systems, application
frameworks and middleware [12]. Nevertheless, detecting the uprising faults as they
appear is a crucial step for dealing with faults in a controlled manner. To detect faults
using exceptions is a tactic where the faults are dealt at the place they rise, which
facilitates isolating faults causing as little consequences for the remaining system as
possible. Though many faults can be detected, the system should recover from these
by preparing for possible faults and have means for repairing them. Most tactics
regarding fault recovery include having redundant software components or even spare
hardware, which need to be synchronized in order for them to relieve the faulty part
system from work [12]. The client program should have a redundant measuring
component which could compare the results, to establish whether the results are
correct and if a misalignment was caused by a fault in one of the components. For the
client program the application environment is harder to control, and a redundant
hardware or a spare computer is not possible. For the server program a distributed
server system using middleware, can help to ensure availability and even have in-
build functionality for fault prevention like transaction control and advanced process
monitoring.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 26/36

Availability is closely associated with performance in practice, e.g. when many clients
are in contact with the server, the server can become overloaded and thereby
unavailable. As shown many availability tactics consist of adding more parallel
computer resources, which is the same tactic used for achieving higher performance.

A simple technique for improving the availability of the server program and the
distributed server system is to use DNS round robin, where a DNS request is handled
by a DNS server, mapping the request to a list of IP-addresses sequentially. This
means that the client program needs only to have one point of contact, specified in the
communication information as one IP-address. The round robin increases the
availability by providing load distribution which can be enhanced to providing load
balancing by routinely asking the servers in the list if they are available and not
overloaded. Subsequently the servers which are overloaded or unavailable are then
temporarily removed from the server list, ensuring that operational servers receive
requests.

5.3.4 Portability

Portability is important for the wide acceptance and usage of the proposed
measurement system, where users can have a diversity of operating systems.
Portability is closely associated with modifiability, where portability is modifications
made to the platform. A platform in this context is an operating system.

The measurement system needs to be available on the most common operating
systems, such as Windows, Linux and MacOS. An aspect to consider when
mentioning software platforms and OSS, are the correlation between the number of
users of a platform and the amount of OSS used on that platform. On some software
platforms, e.g. Linux, UNIX and FreeBSD, most of the software is OSS, while the
market share of the platforms are quite small on desktop machine. While machines
running Windows as a platform typically contain a significant amount of non-OSS
and less OSS, Windows has a desktop market share of nearly 90% (ref). This makes
the Windows platform an important measurement platform and portability a quality
worth prioritizing.

The realization of the usage measurement system on multiple software platforms
requires for the implementations to be tailored and optimized on each platform. While
some practical measurement details are specific to a platform the general architecture
remains the same for all the platforms. This means that depending on design choices,
much of the design and implementation can be reused as well.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 27/36

6 Evaluation

This section contains the evaluation of the results, consisting of the usage
measurement system. The evaluation is important for analyzing and expressing the
forces and weaknesses of the proposed system.

The usage measurement system and its architecture is a broad solution, providing a
platform for extracting usage measurements from clients, and making this available to
stakeholders of an open source project being measured or simply anyone with an
interest. Supporting six isolated usage metrics this solution is a good proposal for a
measurement system capable of measuring OSS. While true, details of measurement
system need to be specified in depth to assist the realization of the system. In specific,
the connection between the usage metrics of interest found (see section 4) and the
actual system infrastructure (see section 5) should be defined in detail. This involves
creating a description in which manner the system conducts the actual measurement
of one of the proposed usage metrics’. Conducting the actual measurements in
isolation has been done before with success, what is interesting is the way the
information is collected and managed by the usage measurement system. Of cause
parts of the issue is solved by performing the design phase, specifying the proposed
architecture, thus creating scenarios for measurement process.

In order to evaluate the usage measurement system further, a frame of references aids
to compare and articulate the forces and weaknesses, and the choices leading to these
differences. For this purposes the proposed usage measurement system is evaluated
with the Debian Popularity Contest (DPC) as a point of reference [21].

6.1 Evaluation against the Debian Popularity Cont est

The results presented in this study, contain a proposal for a usage measurement
system with a similar functionality as the existing DPC. The two systems have
different scope and the proposed system is not constructed as an extension of the
DPC. The evaluation structure is the same as section 5.3 – Important Qualities
combined with the requirements and measured usage metrics of both systems (see
section 5.1).

The security issue is addressed in the proposed system, by tactics ensuring resisting
attacks e.g. using multiple encryption techniques, detecting attacks and recovering
from a potential attack both using audit trail and various availability tactics (see
section 5.3.1 and 5.3.3).

In the DPC the security issue is mentioned in regards to the encryption of the
communication but it is not enforced or implemented [21]. Other tactics regarding
detection or recovering from attacks are not mentioned in the documentation
available.

The modifiability of the proposed system is regarded an important system quality,
especially in open source development [1] and tactics for achieving modifiability are

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 28/36

documented for the proposed system. The usage measurement system is to be
implemented as a stand-alone application, where each application monitored needs to
define functionality usage points and use an interface to register, provided by the
system (see section 5.3.2).

The DPC documentation states no specific goals for reaching a higher level of
modifiability [21]. What can be observed of the DPC is the way that it is distributed
and installed. The DPC is often included as a package in distributions based on
Debian, e.g. Ubuntu [26], which makes facilitates the installation process.
Furthermore, the DPC generates a list of installed packages on the client machine and
monitors these, making it possible to monitor all installed packages without making
modifications to them for supporting the measurement. On the other hand the DPC
does not define interfaces which can be used to support the removal of specific parts
of the system and replacing them with other parts, thus making it possible to enhance
it without changing the boundaries.

The availability of the usage measurement system is defined and tactics for ensuring a
certain degree of availability are in place. For the detection of faults, exceptions are
used. Having at least one distributed server system using middleware and DNS round
robin, facilitates the prevention and recovery from faults (see section 5.3.3).

The DPC degree of availability is not defined, although the server part of the DPC is
described, in the frequently asked questions, as a server responsible of receiving the
collected information [21]. This would imply that no distributed server system or
hardware redundancy is in place, having significant negative implications on
performance, availability and security. The one positive factor, making the necessary
availability less than 24/7 for the DPC, is that some part of the communication is done
using email, where the unavailability of the server would result in later received
information.

The portability has been of great importance when developing a proposal for a usage
measurement system, monitoring and reporting usage on major platforms used for
open source software. The issue of having cross platform portability is more
important for the client program since the end users have the authority of the client
machine. By consequence the system should be able to support Windows, Linux and
MacOS (see section 5.3.4).

The DPC approach towards portability designed specifically for supporting the
Debian Linux distribution and distributions founded on Debian. The narrow platform
support and the specific implementation for Debian Linux, where the DPC measures
the time usage of installed packages, make it hard to reuse the architecture, design and
implementation for new platforms at a later point.

The usage measurement system supports six individual measurements points:
UUID – Universally Unique Identifier to distinguish each user for the system and is
used to calculate the total number of users of a program.
Users per Region – A number identifying the number of users of a program in a
specific region.
Wall Clock Time – The accumulated time usage of a program, which can be divided
time intervals, e.g. for viewing program time usage over a week.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 29/36

Activity Time – The accumulated time usage of a program, where key strokes or mouse
clicks is inputted by the user.
Activity Level – A relationship between the accumulated time usage of a program and
the time where key strokes or mouse clicks has been inputted by the user. A higher
level of user input produces a higher activity level.
Functional Points – A measurement counting the number of times a specific
functionality of program has been used. The definition of a functionality is defined by
the program being measured. The number of times a functionality has been used can
be divided into time frames of e.g. 24 hours or one week.

The DPC supports one measurement point being the accumulated access time for an
installed package (referred to as Wall Clock Time for the usage measurement system)
[21].

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 30/36

7 Discussion

This section contains the discussion where the methodology used for conducting the
research is discussed in conjunction with the proposed solution. Furthermore, matters
mentioned in the report, deserving additional attention are discussed in this section.

The used methodology utilized in the study is closely related to the result, creating a
system measuring usage. The scope of the research is rather broad. First, an
investigation of usage in both traditional software -and open source development,
breaking down the findings to measurable points, analyzing the most common
interests of open source project stakeholders, and combining this into usage metrics
specific for the proposed system. Secondly, creation of a system infrastructure
containing requirements, architecture and thorough analysis of important system
qualities is performed. This broad scope of the methodology has some consequences
for the result, meaning that some issues are not addressed in particular some details of
proposed system (as described in the Evaluation - see section 6). The consequences
for the result are the following issues I shall address below.

In the area of security as an important system quality, no system is completely secure;
however a great deal of effort should be directed towards ensuring a high degree of
security. For enabling an increased level of security in practice, the communication
between the client –and server program should be documented thoroughly. Examples
of the exact communication messages, at bit-level, should be illustrated for
guaranteeing the proper use of encryption and other methods to ensure security.

In the area of modifiability, among others, the interfaces mentioned in the system
infrastructure should be described in details, giving an overview of the actual data
exchange through the interfaces. Especially the public interface from the server
program (see section 5.2), named the Presentation Interface, should be specified to
illustrate the services provided by usage measurement system.

An issue in regard to the system architecture is how to manage and ensure data
consistency between geographical distributed Server Programs (see section 5.2). The
issue becomes relevant when multiple Server Programs, or even multiple Distributed
Server Systems need to synchronize or store the measured client data at a repository in
order to provide a uniform service from the Presentation Interface.

Prioritizing the content of the study and thus report, as a result of the choosing to use
a methodology with a broad scope, is necessary and crucial for reaching the expected
result. The utilized methodology served its purpose well, achieving a result which
fulfills the estimated result. And the result, a usage measurement system capable
when realized, of providing open source project stakeholders with valuable usage
statistics enhances open source products.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 31/36

7.1 Measuring OSS – Ideology and Corporate Intere sts

The uprising of OSS development (FSF – see section 3.2), is founded upon some
essential ideas, insuring openness and freedom in manners how the software can be
used. Although large corporations and venture capitalists invest money and time in
open source projects as a positive input for the development of the project (Investment
Flow – see section 3.2.1), they tend to have an agenda.

Corporate interests can be compared to the more unspoken interests of the many
developers, who in their private time contribute to developing OSS. Both obviously
have interests, but where private contributors seek glory and knowledge from the
development, corporations are merely driven by money. The company tactics can be
versatile, making long term investments for branding or ensuring goodwill, or more
eminent investments to influence the direction of the development. By controlling the
direction, investing money in open source projects depending on others or staffing
people for implementing a specific functionality, corporations can align the software
development with their own strategy. Goals in a corporate strategy could be to ensure
a certain quality of an OSS product, adding in feature imperative to the corporation or
supporting an OSS product to diminish the competitive power of a commercial
product.

The interests of a project or of a corporation or a venture capitalist are frequently the
same, since both sides are interested in enhancing the open source project product and
infrastructure. Even though a strong correlation in interests exists between private
contributors, corporations and venture capitalist, the motivation behind the interests
differ. Driven by personal motivation, private contributors strive to put their
accumulated knowledge and experience into the open source project, habitually with
the honor of doing the job as payment. Seeing their work being measured for usage
statistics and used by corporations for achieving their goals, even if the result of
measurements would benefit the project, they might reduce the involvement of private
contributors. In such a scenario the outcome would be a possible loss of productivity.

The statistics collected and presented by the usage measurement system would be
publicly available and would have significant value to the future development of open
source projects, since feedback, e.g. on used functionality, number of users and user
activity, is gained.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 32/36

7.2 Trustworthiness

The success of a system such as the usage measure system relies in the end on the
support of the users. The end users decide whether or not they feel comfortable with
installing the application and letting it collect information regarding the usage
behavior of the user. For ensuring a continuous positive experience when using the
usage measuring system, an important factor is the systems trustworthiness,
mentioned under the important qualities section (5.3.1).

Seen from the end users perspective, the usage measurement system will be an
application which will have access to the client machine, collecting information and
sending this information to a foreign actor. By consequence the system needs to fulfill
some expectations in terms of functionality, the quality of the functionality, and more
importantly the actor receiving the client information must be trusted.

Trusting an actor means trusting that the information is handled carefully in the data
gathering process, in addition to using the information for a matter that is supported
by the end user. The first issue is maintaining data integrity, for the end user this
relates to the protections of personal data. For the receivers of statistical information it
relates to the correctness of the statistical information. In practice, it has been proven
that most encryption techniques can be defeated using proper techniques. As a result,
complete data integrity can never be guaranteed; nevertheless a strong level of effort
should be upheld for maintaining a high level of data integrity.

The second issue in trusting the usage measurement system is associated with whether
the end user trusts or believes in the purposes which the measurements are used for. A
large influence for conducting this research was the conviction that measurements
statistics, on e.g. functionality usage, from the end users could help developers
enhance the software. Although counting the number of users of a promising OSS
product, making potential investors interested in the further development of the
product, this interest might not be approved by the people involved in the open source
project. This second issue is closely related to Ideology and Corporate Interests (7.1
).

The trustworthiness of the usage measurement system as mentioned earlier, is a
central matter to the wide acceptance of the system. For reaching a high level of trust
from the user of the system, a high level of security is necessary, e.g. making sure that
data integrity is sustained. A method to accomplish a higher level of security is to let
the end users of the system register with a user profile when installing the client
program. This could provide additional means of authentication, secure information
used in case of a security breach and gain more information on the user. While this
might seem as a positive control by the system and the consumers of the statistical
information, the end users might regard it as a restrain on their personal freedom. In
addition, though the registration will add to the security and perceived trustworthiness
of the usage measurement system, the willingness to register requires a high level of
trustworthiness in the first place. The goal is to strike a good balance between
freedom, control, and trustworthiness for an open source application. As a
consequence registration is not included for the proposed usage measurement system.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 33/36

8 Conclusion

The rapid pace of release of many OSS products enables a constant improvement of
the functionality and quality. On the other hand, this development requires an existing
knowledge of what improvements are of the essence.

Measuring the usage of OSS, enables mapping the exact functionality exploited by
users, thereby assisting developers to improve the product. Tailoring of the product
based on user statistics, could optimize the product to its market. One option to
optimize the product is removing sparsely used functionality and focusing on the
elements central to the user. Following the same line of thought, potential investors of
OSS can estimate the potential market of a software product by receiving statistical
information on the usage of the software.

For acquiring feedback on the usage of an OSS product, this Master Thesis Study
provides a proposal for a system measuring the usage of OSS. In the proposal, the
requirements and architecture for such a system is presented together with a logical
explanation of the decisions made and their consequences in relation to the resulting
system.

The usage measurement system can measure six separate measurement points from
the end users: UUID, Users per Region, Wall Clock Time, Activity Time, Activity
Level and Functional Points. The result is a usage measurement system, capable when
realized, of providing open source project stakeholders with valuable usage statistics
for enhancing open source products.

With the knowledge that an interest exists, from actors like KDE in the open source
community, it would be interesting to realize the proposed platform for measuring
usage.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 34/36

9 Future work

This chapter describes possible issues emerged from this research which deserves
further investigation.

• Realize proposed platform – Implement proposed requirements and architectural
description into a concrete solution. This can be followed by an analysis on
additional usage metrics.

• Propose a structure for an independent organization, responsible of administer
the proposed platform, which includes the Client and Server Program, the
hosting and continuous evolution of the measurement platform. This is point is
associated with the discussion about ideology and corporate interests, and
trustworthiness (see section 7.1 7.2).

• Propose and develop a monitoring mechanism for the Client Program, which
ensures that the measured programs are authenticated and digital signed.

• Extend the proposed platform to support the measurement of non-OSS,
including an analysis of the implications.

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 35/36

10 References

[1] T. O’Reilly, Lessons from open-source software development, Commun. ACM,
vol. 42, no. 4, pp. 32-37, 1999
[2] G. Von Krogh, Open source software development, Sloan Manage. Rev, vol. 44,
no. 3, pp. 14-18, 2003.
[3] S. Raghunathan, A. Prasad, B. K. Mishra, H. Chang, Open Source Versus Closed
Source: Software Quality in Monopoly and Competitive Markets, IEEE Transactions
on Systems, Man, and Cybernetics – Part A: Systems and Humans, Vol. 35, No. 6,
2005.
[4] G. P. Dwyer, Jr., The Economics of Open Source and Free Software, Federal
Reserve Bank of Atlanta, 1999.
[5] I.L Hann, J. Roberts, S. Slaughter, Why Do Developers Contribute to Open Source
Projects? - First Evidence of Economic Incentives, Graduate School of Industrial
Administration Carnegie Mellon University, 2002.
[6] J. Lerner, J. Tirole, The Simple Economies of Open Source, Journal Industrial
Economy, vol. 52, no. 2, pp. 197-234, 2002.
[7] Cristina Gacek and Budi Arief, Januari/Februari 2004, The Many Meanings of
Open Source, IEEE Software, www.computer.org/software
[8] Michel J. Karels, Commercializing Open Source Software, 2003, 1542-
7730/03/0700, ACM

[9] OSTG Open Source Technology Group, Inc. 2007, Source Forge,
http://sourceforge.net/
[10] SPI, Software in the Public Interest, Inc. 2007, SPI, http://www.spi-inc.org/
[11] R. Baskerville, “Conducting Action Research: High Risk and High Reward in
Theory and Practice,” in Qualitative Research in IS: Issues and Trends, E. M. Trauth,
Idea Group Publishing, Hershey, 2001
[12] L. Bass, P. Clements, R. Kazman, “Software Architecture in Practice”, 2nd
edition, Carnegie Mellon, Software Engineering Institute, Addison Wesley, 2005
[13] G. David Garson, “Guide to Writing Empirical Papers, Theses, and
Dissertations”. Marcel Dekker, Inc, New York, pp. 121-162, 2002
[14] A. R. Hevner, S. T. March, J. Park, S. Ram, “Design Science in Information
Systems Research,” MIS Quarterly (28:1), pp. 75-105, 2004
[15] A. H. Maslow, “Motivation and Personality”, 2nd edition, Harper and Row, New
York, 1970
[16] J. Feller, B. Fitzgerald, A Framework Analysis of the Open Source Software
Development Paradigm, University College Cork, Ireland, ACM, 2000
[17] R. Stallman, “Open Sources: Voices from the Open Source Revolution”, 1st
edition, O’Reiley Media, 1999
[18] Free Software Foundation (FSF), Plone Copyright by Alexander Limi, Alan
Runyan samt Vidar Andersen, Accessed Mars 2007, http://www.fsf.org/
[19] The GNU Project, Copyright by Richard Stallman, Accessed Mars 2007,
http://www.gnu.org/gnu/thegnuproject
[20] Tim O’Reilly, “Open Source Business Model Design Patterns” O’Reilly Media
Inc., EclipseCon, March 1, 2005
[21] Debian Popularity Contest, A. Pennarum, B. Allombert and P. Reinholdtsen,
viewed January 2007, http://popcon.debian.org/
[22] Open Source Initiative, Open Source, www.opensouce.org

Version 2.1 Master Thesis Report 2007-05-25

Author – Mathias Bronner Measuring the Usage of OSS Page 36/36

[23] Raymond, Eric. Shut Up and Show Them the Code, Linux Today, 1999,
http://linuxtoday.com/stories/7196.html, viewed March 2007
[24] Raymond, Eric. The Cathedral & the Bazaar. Musings on Linux and Open
Source by an Accidental Revolutionary, First edition, 2001, O’Reilly Media.
[25] Red Hat Inc, Red Hat, www.redhat.com, viewed March 2007
[26] Canonical Ltd, Ubuntu, www.ubuntu.com, viewed March 2007
[27] salesforce.com, Inc., salesforce.com, www.salesforce.com, views March 2007
[28] Open IT Inc., OpenIT – LICENSEAnalyser,
www.openit.com/products/licenseanalyzer.html, viewed March 2007
[29] Wu, Ming-Wei, Lin, Ying-Dar, Open Source Software Development: An
Overview, National Chaio Tung university, Taiwan, 2001
[30] Raymond, Eric. The Magic Cauldron, 1999, found in The Cathedral & the
Bazaar. Musings on Linux and Open Source by an Accidental Revolutionary, First
edition, 2001, O’Reilly Media.
[31] Boehm, Barry. Software Engineering, IEEE Transactions on Computers (25:12),
1976, pp. 1226-1241.
[32] Flaatten, Per, McCubbrey, Donald, O’Riordan, P. Declan, and Burgess, Keith.
Foundations of Business Systems, Chicago, Dryden Press, 1989.
[33] Young, Robert. Giving it Away: How Red Hat Stumbled Across a New Economic
Model and Helped Improve an Industry, in Open Sources: Voices from the Open
Source Revolution, Sebastopol, CA, O’Reilly & Associates, 1999.
[34] Omidyar Network, Omidyar Network, http://home.omidyar.net/index.php,
viewed January 2007
[35] Open iT, LicenseAnalyzer, http://www.openit.com/products/licenseanalyzer.html,
viewed March 2007
[36] Box, Brad, Superdistribution?, Wired Magazine September 1994 Idea Fortes,
http://www.virtualschool.edu/cox/pub/94WiredSuperdistribution/, viewed February
2007
[37] KDE e.V., KDE e.V., Accessed May 2007, http://ev.kde.org/
[38] Brunch, Jr., John. SDSC DataStar – Parallel Programming Tools, UC Santa
Barbara, College of Engineering, http://www.engineering.ucsb.edu/~stefan/perf-tools-
06.ppt#318,17,Timers, viewed May 2007
[39] Nullsoft, Winamp, General Preferences,
http://www.winamp.com/support/help/50/General_Preferences.htm, viewed May
2007
[40] Bray, Mike, Middleware, Software Technology Roadmap, Carnegie Mellon
University, 2007, http://www.sei.cmu.edu/str/descriptions/middleware_body.html,
viewed May 2007

