Master Thesis in Software Engineering and Management @

Measuring the Usage of Open Source Software

Mathias Bronner IT University
of Goteborg

GOteborg’ Sweden 2007 CHALMERS ‘ GOTEBORG UNIVERSITY
Department of Applied Information Technology

REPORT NO. 2007/66

Measuring the Usage of Open Source Software

MATHIAS BRONNER

Department of Some Subject or Applied Information Technology
IT UNIVERSITY OF GOTEBORG
GOTEBORG UNIVERSITY AND CHALMERS UNIVERSITY OF
TECHNOLOGY
Goteborg, Sweden 2007

Measuring the Usage of Open Source Software
MATHIAS BRONNER

© MATHIAS BRONNER, 2007

Report no 2007:66

ISSN: 1651-4769

Department of Applied Information Technnology

IT University of Goteborg

Goteborg University and Chalmers University of Technology
P O Box 8718

SE - 402 75 Goteborg

Sweden

Telephone + 46 (0)31-772 4895

[Printer’'s name]
Goteborg, Sweden 2007

Measuring the Usage of Open Source Software
MATHIAS BRONNER

Department of Software Engineering and Management
IT University of Goteborg

Goteborg University and Chalmers University of Technology

SUMMARY

The rapid pace of development of software prodyststicular in Open Source Software
(0SS), generates an increasing number of prodleases. The success of such product
releases relies on several factors, e.g. strateging, functionality, usability, market focus.
In the end, what can often be measured is the nuwibasers downloading the software
product.

Measuring the usage of OSS, enables mapping thet é&xactionality exploited by users,

thereby assisting developers to improve the prodieioring of the product based on user
statistics, could optimize the product to its markane option to optimize the product is
removing sparsely used functionality and focusing tbe elements central to the user.
Following the same line of thought, potential inees of OSS can estimate the potential
market of a software product by receiving statitinformation on the usage of the software.

For acquiring feedback on the usage of an OSS ptpthis Master Thesis Study provides a
proposal for a system measuring the usage of OBSpioposal includes an investigation of
usage in both traditional software -and open sodeselopment, breaking down the findings
to measurable points, analyzing the most commoerests of open source project
stakeholders, and combining this into usage mesexific for the proposed platform. In
addition, a system infrastructure is created cairigirequirements, architecture and thorough
analysis of important system qualities are perfatrme

The result is a proposal for a platform, capablmefsuring the end users usage of OSS. This
provides open source project stakeholders witlsstas. The interests of open source project
stakeholders will be investigated to determine appate measurement factors from both
commercial software and OSS.

Keywords: open source, measure, usage, statistic.

Preface

This report presents the results of a master tretsidy, conducted from the 4 ®f
January 2007 to the 950f May 2007 at the IT University of Gothenburg.€eTh
purpose of the study is to propose a method of angmsthe usage of open source
software.

This report is the result of a literature study tiadly accomplished with a
collaborative effort involving a fellow Master stermt, Maria Josefsson, who shared
the same research area although with a differentstolhe collaboration resulted in a
background chapter ©pen Source Softwar@resenting a general picture of open
source software including an economical perspective

| would like to thank my supervisor Thomas Lundépaad mentor Friedrich Bosch
for their support and advice during this study. duld also like to thank Maria
Josefsson, who | worked with on the literature gtadd who incorporated some
questions in her interviews on my behalf. Furthelenb would like to thank the
respondents for providing me with valuable inforioiat

Mathias Bronner, Master Student
IT University of Gothenburg

May 2007
mathiasbronner@gmail.com

Table of Content

L INTRODU CT ION .. itiiitiiii s iiieteee e eeeteeae e sseeesseeenserenseeeneeenreensseensreenaeennnsceensseeenserenses 2
2 METHO D O L O G Y uiiiiiiiit it e ittt eee s tee st mmeeeesseeenseensseensseensseensseensseenstannnseeensseensseennss 4
3 OPEN SOURCE SOF TV A RE ...iiiuuiiitiiitiiies s iiseeteeesteeesteeesteeessreesteeetreesteessasrensareees §]
S.LHOSTING OPEN SOURGCE ..vuiituiitiiiteiteetsess st st s st st s e sean st st st eea ettt s st setaarnrernreenns 7
3.20PEN SOURCE ECONOMY ...iiei ettt ettt 7
3.2.10PENSOURCEPROJECTCONTRIBUTIONS ...euiitniiteeteeeneeeneeeeeaeesaeesnsesnsernessnsessensesnseens 8
4 U S AGE ME T RIC S . ittt iiitiiiit ittt ieee e ss e seee s seeessesesteee s ses s tesssteesateseansseeesteresterentees 10
4. 1EXISTING AND POTENTIAL USAGE METRICS ..etuteet et e e et e e e aeeeeeaeeenaeae 10
4. 2INTERESTS AND USAGE METRICS ..euieeeeeeee et e e eae e e e e e e e e e e e e enaeeenn 16
5 SYSTEM INFRASTRUGCTURE ...iiiuuiiiuiiisiiee s seestressteessteeesteeestreesieeeesreesteensseeees 19

D L REQUIREMENTS ..uuiiitti e ittt e et et e e et e e e e et e e e e e e m e e s ea e e s s b s e e saba e e s eaba e esesassnsaeneranss 19
B.2SYSTEM OVERVIEW ...ttt et et eeeen 21
5.3IMPORTANT QUALITIES ...iittuiieiiiiieeiiiee e ettt e e e et e e e e tbmeaae e e et e e e sata e esesta e esasanaeeeatnaaaees 23
LTS T I 0 = I 12 23

D .3 2 0D ABILITY ettt e e et ettt et e e e et e e e ———— 24
TR T AN N [= X 122 25
LIRS T T o = 17 = 1 72 26

B EV A LU AT ION ...ttt i it e e eeee s se s e sseeessaeeseeensasenteeenseenseensennnneeeensseennsernnserenss 27
6.1EVALUATION AGAINST THE DEBIAN POPULARITY CONTEST .ovueeeieeeeeeeeeeeeeeeeeeaeeeaeeenn 27
7 DI S C U S S ON .t titutiitieie s teeesseeessese s et eee s eees s eee s see s ee s tes s tes s teseanstessstessatessareesases 30
7.1MEASURING OSS—IDEOLOGY AND CORPORATE INTERESTS...cvutiteeuieenieeresarenaeenneensees 31
7 2 T RUSTWORTHINESS. . et et ettt et e e e ettt e et e e e ma e e e et e e e e et e e e e e e e e e e eeeeaeneaannnn 32

S CON C LU STON L.ttt ittt ittt ittt tees s tees s te e seeesseeesseeessee s see s tesestessatess s tenssteresterenterenses 33
O FUTURE WV O R K ittt iitu ittt ittt ieessseessses s ee s sees s sess s tessstesestesestesesseessseeeaseeeessseessreerarees 34
10 REFE REN CES ... iitiiitiiitiitiit it sttt st eomeeeesseesteesseesseeseeneesteesseesseneenasensteenteenteenseenses 35

1

Version 2.1 Master Thesis Report 2007-05-25

1 Introduction

This Master Thesis presents a new approach to megdte usage of Open Source
Software (OSS). At present time no such solutioistexcovering the most popular
OSS platforms. Such a platform could provide infation about the user-interaction
of a specific OSS application, e.g. number of ysgser activity or functionality used.

The rapid pace of development of software prodymsticular in OSS, generates an
increasing number of product releases [3, 16]. Jinecess of such product releases
relies on several factors, e.g. strategic timingcfionality, usability, market focus. In
the end, what is often measured is the number efsudownloading the software
product. Although what can be of interest, to btite developing community and
potential investors, is the actual usage of thelpco

The usage of a product can refer to the amountrad &ind functionality used, which

can be measured to provide valuable feedback. ritereisted investors, private or
venture capitalists, the feedback from an earlgast of the product can be utilized to
foresee a potential product success. This enabbrs to make decisions based on
statistics. On the other hand, the feedback useth®dydevelopment community to

monitor the functionality use, gives them a chamgeimprove, add or remove

functionality for creating a better product.

The research question is the following:
How to measure usage of open source software?

The main research question leads to the followivayquestions:
1. What factors are of importance when measuriraggaf open
source software?
2. Is it possible to create general frameworks dadelopment tools to
support measurements for open-source applications?

The result of this Thesis Project will be a propagfaa system which measures the
usage of OSS, including a definition of measurenfantors with interest to the
context, requirements and system architecture.

Currently one software solution exists to measheeusage of OSS, being the Debian
Popularity Contest named after the Open Sourceddebinux distribution [21]. The
purpose of Debian Popularity Contest is to meagbee usage of programs or
packages installed on computers running the Debparating system. The Debian
Popularity Contest, though functional, is limitenl the Debian Linux distribution
platforms, and is not thoroughly or systematicalbcumented. This hinders further
research to be performed upon this solution [21].

The traditional approach of software developmeiférred to asclosed sourceis

based on the assumption that software developnseat specialized process. This
process is best handled by a localized team oegkdevelopers and a manager [3].
This development results in the form of periodipgleases. Open source is on the
other hand based on inter-geographical collabordtietween developers and users,

Author — Mathias Bronner Measuring the Usage of OSS Page 2/36

Version 2.1 Master Thesis Report 2007-05-25

continuous improvement and frequent releases, anfbenance to open standards
using open source licenses [3].

Unlike the traditional approach of software devehgmt, open source users have free
access to the source code. This enables usersdibyrttte code and correct possible
errors which might include porting the software aonother hardware, or software
platform. As a result the users can create addasslve perceived problems or just
use the software as it is [2]. In addition, unlike traditional software development
approach no broader OSS platform is available faasuring the usage. For
traditional software applications different levelsusage measurement platforms and
tools are available, providing concrete measuratitemation to the stakeholders of
the software [27, 28]. This study will look at usagetrics, currently used for
measuring traditional and OSS applications, andyape knowledge to the proposed
measurement system.

The development of a system for measuring usaghl dmlp to establish an open
standard for collecting information of importancethe stakeholders. Following an
open industry standard gives a certain degreeeefdfsrm, while easing the decision
taking process. A good method is to offer a sofensolution in a number of proven
industry-standard configurations, and let the uskmose between them.

There is an interest from people in the open sogm®munity to acquire usage
statistics. From an interview with representative KDE Cornelius Schumacher, a
genuine interest for usage measurement was exdrdd$}. It was stated that
currently, information regarding the number of gsend other types of usage
statistics, was unavailable to KDE. KDE is searghior methods or tools that can
provide this information.

Author — Mathias Bronner Measuring the Usage of OSS Page 3/36

Version 2.1 Master Thesis Report 2007-05-25

2 Methodology

This section contains the methodology used for notidg the Master Thesis study,
as well as an explanation of the work process aotivation behind the steps taken to
achieve the result. The reason for defining thekwmiocess is to make the study
repeatable, thus reaching the similar result ifstiuely was to be performed again.

The methodology used for the Master Thesis study Besign Research approach.
This method consists of the construction and evianaf technological artifacts in
relation to their area of use, and the proposakwei theories if seemed necessary.

The aim when conducting research is to make a iboibn to academia as to
practice. This implies that the research condushtemnlild both add to the existing base
of theory in order to make a contribution [11], aasdsist in solving current or
expected practical problems [14].

The use of the Design Research approach is direstpciated with the expected
result, which is to create a platform for measu@®S. The result of the study has to
be evaluated both to ensure the validity and raiiplof the study, and to determine

to which extend the result can be used as a bagartber research. For this purpose
the result will be evaluated against the existirepian Popularity Contest as a frame
of reference.

As the initial step an adequate background on O#l%& consolidated, providing a
foundation to the study. The background will comtéhie central idea of OSS and
motivation behind it, as well as the economy anérests associated with an open
source project - see chap8rOpen Source Software

The next step is to investigate common used plagosupporting OSS, assess their
market share and to which extent OSS is used drpthtdiorm — see chaptdr Open
Source Platforms

In order to consolidate the relevant measurementtgpdor the technological
suggestion, a set of requirements will be develogduwbse requirements will be a
result of usage metrics developed from the operalipation of current and potential
measurements of usage [13]. The usage metricsdmngvimeasurable indicators of
usage will add a certain degree of validity to teeearch — see chapterlUsage
Metrics

The elicited requirements are used as a found&iocreating the architecture for the
measurement system. The requirements will be mfined a concrete architectural
solution, where the non-functional requirements wdve a major influence — see
chapter6. System InfrastructureThe non-functional requirements will be elicited
based upon both the functional requirements angstematically analysis on the
importance of the various “ilities” to the proposagtem [12]. The break down of the
non-functional requirements is done to ensure teehmeliability. The result will
then facilitate the production of proper counteramees to help the system manage
these constrains.

Author — Mathias Bronner Measuring the Usage of OSS Page 4/36

Version 2.1 Master Thesis Report 2007-05-25

As a final precaution the proposed system, comtginequirements and architectural
design is to undergo an evaluation. This is to engis conformance to its purpose
and to verify that the solution is more coveringrttpossible alternatives — see section
7. Evaluation

A discussion of the study will elaborate the firginand put the methodology and
proposed solution into perspective. Furthermorediseussion will contain subjects
mentioned in the report which requires addition#lergion — see sectior.
Discussion The conclusion will present a summary of the ifugd and their
implications found throughout the Master Thesigdgty see sectioA. Conclusion
Areas of interest to the current study which coedhance or extend it are found in
chapterl0. Future WorkThe final chapterl 1. Referencedists the references used in
the report and ensures that material and statenretits report are well founded.

Author — Mathias Bronner Measuring the Usage of OSS Page 5/36

Version 2.1 Master Thesis Report 2007-05-25

3 Open Source Software

This chapter gives an overview of OSS and the eognbehind, necessary to
comprehend the context in which the proposed measemt system is to operate in.
The chapter includes an explanation of the idewirdyi OSS, the hosting of open
source projects, and the contributions they receywthe various project stakeholders.

OSS gives at one end the developers, the posgibditcontribute in the form of
source code and at the other end the users, thietoigise or modify a program and its
code base.

One basic requirement of an open source projeteisvailability of the source code

[7]. That implies that open source refers to shativare code with open standards,
and the collaboration between software developedsusers, to build software [1]. In

addition this includes identifying and correctingoes and making improvements to
the software [1]. That means that OSS gives indaidlevelopers, the possibility to

contribute in the form of source code while at saene time giving individual users

the right to use or modify a program and its code.

The central element in open source development hiedlee open and collaborative
environment in which software products are createiftly. The cooperation between
both developers and end users in the open sourseuaity encourages the building
of products with a higher level of quality throughohe product life-cycle [9].

The exact degree of freedom included in the digtidim of code, relies on the license
type on which the software is released. Many odrige types exist and are being
constructed to support the interest of the produ@ommunity, meaning that OSS
and the license applied to them are closely aswatifl]. Certain restrictions are

imposed on OSS licensing; an OSS license mustigotimhinate against any type of

user group, field or endeavor [16]. In addition,@8S license must be applied to all
parties where the software is distributed, meanina the Open Source distribution
cannot be re-licensed by any user [16].

Most contributors in OS projects are driven by aspeal motivation, not directly
linked to the size of the salary, but rather faxtof a more veiled nature. One
explanation behind the personal motivation refetoeith Maslow’s hierarchy of needs
as the category of self-actualization [15]. Othesgible factors of motivation are
proposed to be learning and skill opportunitiegetber with social and political
factors [16]. Prior studies show that Open Soumestbpers are the most talented and
highly motivated software developers [24].

Using OSS in a commercial context has been explimresome time now, and unlike
traditional software this revenue is not generétech the actual product. Open source
business models in its many shapes tries to ovexdbe limitations gaining direct
revenue by the product, often by using a lesstsliGense or releasing the same
software under several licenses. Thus, this impghes business models and license
types are closely related and built to suit onelzero

Author — Mathias Bronner Measuring the Usage of OSS Page 6/36

Version 2.1 Master Thesis Report 2007-05-25

3.1 Hosting Open Source

The hosting of open source projects is a necesasitimportant foundation for the
distribution of the code in an open Source projastong members of a community.

SourceForge is one of the world’s largest OSS dgweent web sites that hosts and
provides services to more than 100 000 projects $8urceForge.net is owned by
OSTG (Open Source Technology Group, Inc.) which metwork of technology sites
for IT managers and development professionals.

SPI (Software in the Public Interest, Inc.) is an4poofit organization which was
founded to help organizations develop and distebopen hardware and software
[10]. SPI is like OSTG a non profit organization.

Besides the hosting of the code, hosting orgamaatiike SourceForge [9] and SPI
[10] provide a starting open source project withaaray of various tools for inter-
group communication, version control and a donatgystem. Minimizing the
interdependency between project members by focuming small mutual web based
platform, enables members to utilize custom toald &éechniques, ensuring their
freedom of choice.

The result of gathering numerous open source @mojat a central place, gives
potential investors a possibility to search andt@cinopen source projects developing
software of interest. In addition private contriimst can be members of the
community and search for projects where they camtjee development.

3.2 Open Source Economy

In OSS the main source of income is generated fndrat is around the product,
rather from the product itself. Red Hat for examplearges for setting up an Apache
Web server, developer training or “24-hour techinscgoport for one year” [25, 29].

The financial model of conventional software depet@nt is mistakenly built upon

the assumption, that software development is a faatwring industry and not mainly

a service industry [30]. The high purchase pricd Ew service support fee is not
correlated with the maintenance cost, which isnestied to be 70-80% of the total
software development cost [31, 32]. This is ackmulgkd in the OSS model, where
the purchase price is low and companies can coworegshe service to the user,
viewing the software as a commodity product whére ingredients are free [33].

Conventional software development companies can banefits from embracing

open source development and distribution, and sy ®nhancing their reputation
[29]. In open source development the research andldpment is conducted by the
community members, from potentially hundreds ofie#idevelopers, minimizing the

costs and facilitating a rapid development andassepace [8].

OSS is often mentioned as being free. “Free” daggefer to the price tag it comes
with, but instead to freedom [16, 17]. The foundéthe Free Software Foundation
(FSF), Richard Stallman, defines free softwarehasfteedom to run, copy, modify

Author — Mathias Bronner Measuring the Usage of OSS Page 7/36

Version 2.1 Master Thesis Report 2007-05-25

and redistribute the program for any purpose [B[, The policy of FSF is formed by
ideological tendencies, much like the Open Sourtéative (OSI), despite the
significant differences in the definition of ternike “free” and “open” [22, 23].
According to FSF, the freedom to sell copies ig@at importance to this freedom.
Selling collections of free software on a media a@D-ROM will raise funds for
free software development. The software that cabeahcluded in these collections
is not free software according to FSF.

Even redistributing a program for a fee is defirmedfree software, since it again
refers to the freedom of use and not the price.aAsonsequence, selling a free
program is accepted and it can help to financenéurtlevelopment of free software
[17].

The mechanism which ensures the adherence to theigtes of the freedom of
software is the General Public License (GPL) angylwts, where the latter is
copyrights with GPL regulations [16, 19]. Basicalhe GPL is a restriction forcing
variations of free software to follow the same fise, thus providing a guarantee that
resulting software contains the same degree ofitreg/ 16, 19].

3.2.1 Open Source Project Contributions

This section contains an overview of the contridmsi received by an open source
project, which can consist of economical resouozene.

Economical resources are one of the types of ressuthat can be provided to an
open source project. Economical funding is mosthaf time provided by venture
capitalists but also private persons or companies.

The financial contribution of investors is a momaeliable source of funds for most
open source projects but it does exist along simhelihg in the form of donations.

Venture capitalists, private investors and compaalehave their reasons to invest in
certain Open Source projects.

For companies the natural reason for investing nnCgpen Source development
project is that the company uses the software ithdeveloped in that project, and
wants to encourage the evolvement of that softwafith the economical donation it

might be possible to influence the direction of tevelopment, e.g. the development
of certain functionalities, covering the needsha tompany.

The illustration below (see Figure 1) is based lo& personal investigations made
during the literature studies made in this areae Tiure presents the approximate
size of the contributions, money and time, as wasglthe two main factors that can be
invested in an Open Source project. Time refethaoeffort of developers, managers
and coordination. The size of the arrows in thasiilation below represents the
approximate amount of the contribution that canrdeeived from the two factors,

money and time.

Author — Mathias Bronner Measuring the Usage of OSS Page 8/36

Version 2.1 Master Thesis Report 2007-05-25

Company

Revenue from Business

T s Models and Licenses an
Non-Profit Organization Venture Capitalist

Figure 1 Describes possible sources of contributicio an open source project.

The private contributor can be both a private donabr, giving money to an open source project or
a developer contributing with time in an open soure development project.

The government organization is a user of open sougcthat is willing to contribute with money
(and time) in order to achieve specific functionaty beneficial to a need, e.g. language specific
software support.

Companies can have different interests in open soce project, investing both time and money for
achieving a long term return of investment. Like ggernment organizations, companies can have
the need of specific functionality critical to thei business goal.

Venture capitalists have a direct interest in opersource projects, due to the possibility to gain
attention by the possibility to add a successful @m source project to their portfolio. Many
Venture capitalists are interested in earning moneyrom the success of the open source project.

Business models and licenses can bring financialpuort to an open source project. Open source
business models and licenses focuses on retrievimpney from services around the product, e.g.
software support and distribution.

Non-Profit Organizations (NPO) does not generate grofit, but may receive money for the
purpose of distribution these to projects which suithe goal of the NPO.

Author — Mathias Bronner Measuring the Usage of OSS Page 9/36

Version 2.1 Master Thesis Report 2007-05-25

4 Usage metrics

In this chapter currently applied usage metrics iavestigated, in order to elicit
potential usage metrics which will be a part of tteguirements for the usage
measurements system.

For describing a conceptual variable such as ugsagehas to break them into parts to
capture meaning. In order to perform this prochesvariables will be operationalized
into more measurable indicators, thus producingesaetrics [13]. This quantitative
approach provides metrics which will be used, imreation with the goal of the
research to elaborate a comprehensive list of mallsu points of interest to the
research.

For gathering information on end-users interactiarspecific the practical usage of
software products, measuring techniques can be Ui$edusage can be characterized
in several factors depending on interest e.g. tiomggtionality or number of users.

4.1 Existing and potential usage metrics

The existing and potential usage metrics is a suimethe measurement points which
could be applied when measuring the usage of soffviia the area of traditional and
open source development.

The close relation between a central service odygband a price in traditional
software development, makes some measurement matsalized for their context
and not applicable for contexts where ttmiseand effectis more complicated. In
OSS development however the product is not so etjidtés rather what lies around
the software itself which is in focus. By conseqeeesome measurement points might
not be exactly the same.

Author — Mathias Bronner Measuring the Usage of OSS Page 10/36

Version 2.1 Master Thesis Report 2007-05-25

Usage
—p{ Number of Users
»I” UUID |
f— -
IP-Address \

| MAC-Address

—] Downloads \

—— Time
—p{ Wall Clock Tima‘r_r &Activity Tima_r:

e e -——- - -

p1 CPU Time \”

L]

\
—p] System Time //\
L [Activity ' / \

[»[Key Strokes IL/ Lﬁ}c’tiﬁt; Level |

--1---

»| Mouse Clicks P
L]

—p| Application Specific

—p] License Usage \

' \
L »JFunctional Points !

[t | \

——| Regional Usage \

L—— 3 Number of Regions ﬂ;ﬁszgp;rR;ngﬁl

T ——--l————l

— Data
|—b- Data Amount Transfered

Figure 2. An overview of the existing and potentialusage metrics in the area of traditional
software development and OSS development found oedeloped during the literature study. The
dotted boxes illustrate potential usage metrics wbh has been chosen to be a part of the
requirements for the usage measurement system. Ontwo of the chosen usage metrics where
found, the UUID and Wall Clock Time, the rest is ppposed. The dotted lines show that the
resulting usage metric is dependent on more than enusage metric source. Further explanation
of the chosen usage metrics can be seen in thedaling sub-figures.

In traditional software development many of the sugament points are closely tied
to a business model, where the measurement istddoemalize a usage which is to
be paid for by the user. The telecom industry rea$ dnlarge influence on how usage
iIs viewed and therefore measured. Measurement réacide Data Amount
Transferredand Time are typical for the telecom industry (see Figuree3y. when
using a mobile phone for making a call or usingRRS service. The same factors are
important as well for Internet Service Providensifieasuring the end users usage and
thereby the size of the bill.

Author — Mathias Bronner Measuring the Usage of OSS Page 11/36

Version 2.1 Master Thesis Report 2007-05-25

| Data
|—b Data Amount Transfered

Figure 3. Data usage.

Several measurement points can be specialized nmboe precisely described
measurement point, facilitating the practical sgetefi measuring. An example of this
is theTime usage (see Figure 4) which can be measured udiiegedit time scales,
and seen from different perspectives. Timecan be th€€PU Time, System Tinoe
Wall Clock Timeusage in a software program, where the latteresgmts the total
execution time of a program [38].

Time
P S L ——

———pi Wall Glu:k Time b— HAl:twlty Time |
------- — — ﬂ — —

»{ CPU Tlme

—pp] System Time
L

Figure 4. Time usageWall Clock Time — The accumulated time usage of a program, whiclaa be

divided time intervals, e.g. for viewing program tme usage over a weekActivity Time — The

accumulated time usage of a program, wherkey Strokes or Mouse Clicks is inputted by the user.

The dependency betweerKey Strokes, Mouse Clicks and Activity Time is depictured in the

overview - Figure 2.

While prior existing measurement points addresses, te.g.Timeusage (see Figure
4), the typical viewpoint has been from the commitkgically. The time usage is
usually measured i@PU Time- the time the program code uses on the CRidiem
Time— the time used by the program code running kexoéé, also referred to as 1/0
operations, and finallyvall Clock Time- which is a combination of the first two and
the time spent idle, including waiting for resowwd@8]. Even though these time
usage metrics can be valuable, the first me@RU Timeis proportional to the
performance of the CPlBystem Times dependable on the system configuration and
operating system, anwall Clock Timeis itself a measurement of how long the
program has been running.

The measurement of the end users input, key. Strokeqsee Figure 5), are often
used to characterize various factors of efficienthis measurement point could
contain the potential to uncover the users behaatialifferent points in the software
program, showing the raw activity of the user.

| Activity
—p[Key Strokes |— — yiActivity Level |
T / - — * ———
L3I Mouse Clicks

Figure 5. Activity usage.Activity Level — A relationship between the accumulated time usagof a
program and the time wherekey strokes or mouse clicks has been inputted by the user. A higher

Author — Mathias Bronner Measuring the Usage of OSS Page 12/36

Version 2.1 Master Thesis Report 2007-05-25

level of user input produces a higher activity levie The dependency betweeiey Strokes, Mouse
Clicks and Activity Timeis depicted in the overview - Figure 2.

The prior mentioned usage metridata Amount TransferredlimeandKey Strokes
(see Figure 2) are by themselves measuring bastor§éa These alone might not
provide any significant information but functiorikd building stones to acquire the
desired information.

Switching the viewpoint from the computeifSme towards theActivity Time or
Activity Level(see Figure 4 and Figure 5), where the two ldtieus on the users
actual time usage, or activity level. The time wsafja program measured in t&ll
Clock Time does not show the users usage of a running progbait probably
measures a large amount of idle time. Differentvemfe application requires different
amount of user interaction, while some are merdiaekground service showing the
status of something other applications like a wanacessor requires a larger amount
of user input to produce the intended result. Abgvity Levelwould be usage metric
to be applied to whole software programs or spettifparts in the program which
includes a high level of user interaction. For tirepa generic usage metric for
measuring theActivity Levelthe relationship betweeKey Strokesextended with
Mouse Clicksand Time measured inWall Clock Time(see Figure 4), would provide
an indicator for the level dictivity Level The reason for not naming the usage metric
Efficiencyis because the metric does not describe whatnve#ton the user provides
the software program with or relevance of the inpuit in another way, th&ctivity
Levelmetric is too generic to be able to distinguigihtiinput from wrong and hence
measuring the efficiency of the user; the metriopdy describes the user’s activity
level. The scaling of théctivity Levelshould be arranged so that many user inputs
over a short amount of time should produce a higlenber, or level of activity than
the inverse.

Most usage metrics in traditional software develeptncan be categorized as a
service due to the close association between vghateasurement and what the end
user is debited for. However what is describedrad@plication Specifizisage (see
Figure 6) is a software application which provideservice to the end user, where the
content of the service is of a more generic naterg, downloading music over the
internet. This implies that more basic services suead in factors such d3ata
Amount TransferredndTimeare not included i\pplication Specifizisage.

The context which the measurement is conductedither in traditional software or
OSS development, as mentioned earlier, influenteesrteasurement of interest. As a
result, the measurement bicense Usagdsee Figure 6) has a valid position in the
traditional software development context, where O8S development the same
measurement lacks a genuine sense of meaning [35].

| Application Specific

——p| License Usage

L »IFunctional Points !

l.__-_l__-_l

Figure 6. Application Specific usageFunctional Points — A measurement counting the number of
times a specific functionality of program has beerused. The definition of a functionality is

Author — Mathias Bronner Measuring the Usage of OSS Page 13/36

Version 2.1 Master Thesis Report 2007-05-25

defined by the program being measured. The numberfdimes a functionality has been used can
be divided into time frames of e.g. 24 hours or oneeek.

The behavior of the user includes measuring what lof information the user
chooses to gain access to and not only what iepted to every user that utilizes the
software program by default. The information whishof interest to the user in a
program depends on many factors, e.g. for what gaerpdid the user start the
application, or what can the program do for ther mside the initial intended use.
Nevertheless the user's program experience couldrelbberded to chart which
functionality was used or not used, providing valeafeedback to the software
developers. The feedback could subsequently be ogegl to allow software
developers to improve the existing software byastining the software product
depending on market strategy. For the users o$dftevare, this could mean that very
sparsely used functionality was removed and thaulpopparts of the software was
extended or improved, thus creating an overalebgttoduct.

For measuring th&unctional Points(see Figure 6) the various functionality should
have an indicator attached to them, in order teiveca notification when specific
functionality is used. For making the functionalityeasurable in the first place, the
software application vendor should provide the mgén of what a block of
functionality is. This is needed in order for theasurement of the functionality to
have a meaning for the vendor. The granularityheflilock of functionality should be
course enough, to have a logical reference to aafsie software, but at the same
time fine enough to provide the software vendorhwiéedback to improve the
software.

Several software applications currently perform sueaments regarding the end users
behavior, and with the conformance of the end wsarding this over the internet to a
receiver. An example of this is the media playepliaption Winamp, which supports
anonymous program usage statistics, consistingp@fv“much Winamp is usef89].
The content or results of such measurements anecim applications a grey area to the
end user, not providing in-depth information regagdwhat, how, when and why the
measurement is conducted.

In both traditional software development and OSSetbpment the number of
Downloads(see Figure 7) is measured to give an estimat®wfmany users that are
downloading and potentially installing and thusngsthe software program. Though
being a measurement of usage, no clear analogyselketween the number of
Downloadsand users, due to the many uncertainties involM#aen the user wishes
to download a specific piece of software, he or phesses the link which has a
reference to a file containing the installationgraom, and executes or saves the file
locally for the purpose of installation. Severagrsarios are possible, the user might
not install the software even though downloadingitthe user might install the same
software on many machines to save time and not admg it again. Even if the
user installs the problem, the usage of the soéwsaunknown by only looking at the
number ofDownloadsmaking this measurement a rough estimate.

Author — Mathias Bronner Measuring the Usage of OSS Page 14/36

Version 2.1 Master Thesis Report 2007-05-25

INumhar of User
- —— -y

——»! UUID _,

L--F—

—p] [P-Address

] MAC-Address

L |
ee——p Downloads
L

Figure 7. Number of UsersUUID — Universally Unique Identifier to distinguish eat user for the
system and is used to calculate the total number ofers of a program.

In a usage measuring system where the usages tefasefon many computers are
monitored, theNumber of Usersetrieved by counting the number BUIDs (see
Figure 7) is a logical measurement point. Besidgsda viable alternative to another
measurement poirldownloads(see Figure 7), it could provide precise and aateur
information regarding number of users and possiidyr geographical distribution. A
number of paths could be presented for how exdbdymeasurement is performed.
One solution is to let every user who is using tisage measuring system have a
unique number or name, and simply count the nurabenique names. Another way
to measure theNumber of Usersin a distributed measurement where the
communication is conducted through a network adaistdo employ the in-built
MAC-Addressof the network adapter. An uncertainty when redyon information
provided by a network adapter is that the user usegeral channels of
communication, e.g. a wireless network adapter andabled network adapter,
resulting in a higher number of users. A third waydentify users of the internet, or
in a distributed usage measuring system is theerealIP-Address Though reading
theIP-Addresamight identify a user, it is not possible to measihe number of users
sorely by counting the IP-addresses used in relatdh the usage measurement
system over time. But the externB?-Addressesprovided can be mapped to a
geographical region, often a country, giving sondkdation on where the users are. A
unique user identification, e.g. a number of a nacoenbined with the extern#P-
Address could be used to map the number of users in aifspeountry or even
region, providing government organization with pbkesvaluable feedback.

Regional Usage

i Number of Regions -I:Users per Region_:

T PRy

Figure 8. Regional UsageUsers per Region — A number identifying the number of users of a
program in a specific region. The dependency betwadJUID and Regional Usage is depicted in
the overview - Figure 2.

An area when measuring software usage is perforepamituencing both availability
and usability. In this study th€ime usage is measured to some degree. While this
study acknowledges the importance software perfoceas a quality, the measuring
of performance itself is not the primary focusluktstudy. The usage is seen from the
direct interest of the project stakeholders, shawnhe following section, and not
from the perspective of the computer. In addititmnconduct covering performance

Author — Mathias Bronner Measuring the Usage of OSS Page 15/36

Version 2.1 Master Thesis Report 2007-05-25

measurements it would require extensive configomatf the measurement set-up
customized for each application.

4.2 Interests and Usage Metrics

This section establishes a connection betweemtkeests of the project stakeholders,
the open source context, and the usage metrics foseithe usage measurements
system.

When looking back in time, complete business modelsnded upon a direct
connection between the actual user usage of saftarzdt the price has been suggested
without any success [36]. What exists today for-Q&58, is typically a license based
agreement where the price of the license givesiees the right to install and use a
product how frequently he or she wishes. Most keemased software products
includes a service, both in the form of documeatatsupport in case of problems,
and future updates to the software. What is sonestidefined is the exact quality of
the services included, while software updates mighsupplied at a regular basis for
several years, but again further development optieeuct might be discontinued by
the supplier. This issue is a legacy from a timeemghthe software was less
complicated and in general did not change as mucingl its lifetime. The dynamic
nature of current software makes the expresprmauct and the borders around it
increasingly unclear and hard to define.

The recognition of the dynamic nature of softwase a natural part of OSS
development, with its user driven focus, frequetases and where maintenance is
shifted for evolution. For improving existing sofive a usage measurement system
can be utilized, collecting a variety of informatjcand returning this information to
OSS project stakeholders who will be able to bénbm this feedback. The
measurement factors suggested in this thesis regoch could be used to optimize
an OSS product are shown in Figure 2.

Author — Mathias Bronner Measuring the Usage of OSS Page 16/36

Version 2.1 Master Thesis Report 2007-05-25

-Functionality Used
Money -Number of Users in
— = —— a Specific Region

prganization
|

Private Confibutor
-Functionality Usead Sy
-Number of Users

Copgpany
= -Functionality Used
-Mumber of Users

-Time/Activity Usage

-Number of Users
-Time/Activity Usage

-Number of Users
-Time/Activity Usage

Revenue from

Business Models
Non-Profit Organization and Licenses Venture Capitalist

Figure 9 Open Source Project stakeholders and theimeasurement interests.

Identifying the open source project stakeholderd #meir interests in terms of
measurement points is the first step towards caletolg a set of requirements, for a
usage measurement system (see Figure 9). The ¢mmbetween the stakeholders
and their interests where investigated during iteealture study.

The Private Contributorcan be subdivided into Rrivate Developerand aPrivate
User (see Figure 9). ThBrivate Developers the main contributor of code (tin®
the open source project, making this stakeholdeimgortant decision maker. The
code is the central artifact of an open sourceggtojThePrivate Developecould be
interested in feedback on which parts of the funmglity that are used by thirivate
User, which can be used to improve the product. Funtioee theNumber of Users
can be a factor of motivation to tieivate Developerrealizing that their creation is
actually used. Therivate Useruses the OSS, donates money to the project fromn ti
to time and could want to see how popular diffemoducts are.

The CompanyandGovernment Organizatiowill have similar measurement interests
(see Figure 9). Thé&lumber of User/ Number of User in a Specific Reg®ms
mentioned before a measurement for the populafith® product.Companiesand
Government Organizatiorsan have a strategic dependency on a specific paice
product. They might want to extend functionalitypiontant to them, by contribution
with development of the code base (time) or investhe project (money). An
example isGovernment Organizationsanting an open source product to support a
specific language.

Non-Profit Organizationsand Venture Capitalistsare interested in the same
measurements point, although their intended ageadde quite different. While both
Non-Profit Organizationsand Venture Capitalistssupport an open source project
financially, the latter does it for the expectasaof significant return of investment.
Both stakeholders will have an interest in pronmtimeir company names and gain a
positive reputation. ThéNumber of Userdetermines if product is used and the

Author — Mathias Bronner Measuring the Usage of OSS Page 17/36

Version 2.1 Master Thesis Report 2007-05-25

Time/Activity Usageto which extent the product is used, helpingNon-Profit
OrganizationsandVenture Capitalist$o select open source projects to invest in.

The six usage metrics found beneficial for OSS hbgrment areUUID, Users per
Region Wall Time UsageActivity Time Activity Leveland Functional Points(see
Figure 2). These types of usage measurements atiledi from the interests of
stakeholders in an open source project found duhediterature study (see Figure 9).
The aim of conducting these measurements is toawnepthe software produced in the
open source project during its lifespan.

Author — Mathias Bronner Measuring the Usage of OSS Page 18/36

Version 2.1 Master Thesis Report 2007-05-25

5 System Infrastructure

The System Infrastructure section contains a dasoni of the proposed system,
including a list of system requirements, an ovenwe the system and an explanation
of the important qualities of the system. This ecis important for understanding
how the system operates and the functionality supgo

5.1 Requirements

In this section the requirements of the systenlisted to provide an overview of the
functionality and the manner in which they colladter The requirements are the basis
for the usage measurement system, specifying resstgf measurements and how the
system should support the actual measuring. Asdfeirements are extracted from
the usage metrics, the requirements are a part safggested solution for a usage
measurement system.

The usage measurement system consists of two rag# phe first is installed on the
client machine and the other positioned on a sefMee part installed on the client
machine, referred to as tleBent program is a standalone application measuring the
usage of other programs on the client machine.pfograms that are to be monitored
for usage activities have to first register to ttieent programin order for the
measurement to take place. The part installed ersénver, referred to as therver
program is an application which can serve sevet@nt programsreceive, organize
and store the data sent from thient programs

1. Client program

1.1 The program shall run as a background servitieei operating system

1.2 The program shall provide a service for othemgmms to register to, for
performing the usage measurement

1.2.1 The other programs is when registering, tblthoose the usage measurements
the they wishes to have performed

1.3 The program shall provide a service for othregpams to deregister from, for no
longer perform the measurement

1.4 The program shall be able to measure the sasutements point specified in the
subsections

1.4.1 The program shall be capable of measuriny\fak Time Usage of a registered
program

1.4.2 The program shall be capable of measuringAtieity Level of a registered
program

1.4.3 The program shall be capable of measuringAtiwvity Time of a registered
program

1.4.4 The program shall be capable of measuring\tiraber of Users of a registered
program, by counting the unique identifier of tleeu

1.4.5 The program shall be capable of measurindgJees per Region of a registered
program, by counting the unique identification bEtuser registered in a certain
region.

Author — Mathias Bronner Measuring the Usage of OSS Page 19/36

Version 2.1 Master Thesis Report 2007-05-25

1.4.6 The program shall be capable of measuringFtivectionality of a registered
program, which has defined functional measuremeoitst

1.5 The program shall be capable of storing thegeistata measured on the same
computer which the program is executed on

1.5.1 The program shall encrypt the stored data

1.6 The program shall be able to connect to theesg@rogram over the internet, if the
server program is available

1.6.1 If the server program is not available witBihseconds, the client program shall
attempt to retry the connection procedure every@r if an internet connection is
available

1.6.1.1 If an internet connection is not availaible program shall attempt connection
every hour

1.7 When connected to the server program, the tclpeogram shall be able to
authenticate itself to the server program

1.7.1 The program shall have a unique identifieictvhis available only to the
program itself and the server program

1.8 When connected to the server program, thetchergram shall be capable of
sending the stored data

1.8.1 The data sent shall be sent using an encrypteocol

1.8.2 If the transfer is disrupted or error prome transfer shall be cancelled, and the a
new connection is to be established

1.8.3. If the transfer was successful, the transfedata shall be deleted from the
client machine

2 Server program

2.1 The program shall be able to connect to trentfprogram over the internet, if the
server client is available

2.2 When connected to the client program, the sepvegram shall be able to
authenticate the client program

2.3 When connected to the client program, the sgovegram shall be capable of
receiving the data sent

2.3.1 If the transfer is disrupted or error prame transfer shall be cancelled,

2.3.2 If the transfer was successful, this shoelddmmunicated to the client

2.4 The program shall encrypt the stored data

2.5 The program shall provide a service for otleenpguters to register to, for them to
receive usage measurement statistics

3 Additional constrains on the client —and serveigpam (for detailed description on
important system qualities — see section 5.3)

3.1 Modifiability — Highly modular design [1]

3.2 Security — Establish audit trail for legal pesps in case of connection attempts
followed by a failed authentication procedure

3.3 Availability — The server program shall be axed in a distributed server
environment, supporting load balancing, migratiod &ansaction control

3.4 Portability — The client program shall be impénted on all of the following
major platforms: Linux, Windows and MacOS

Author — Mathias Bronner Measuring the Usage of OSS Page 20/36

Version 2.1 Master Thesis Report 2007-05-25

5.2 System Overview

The System Overview gives an architectural desonpaf the system both in graphic
and text, showing the various nodes, software compis and interfaces which the
system consists of.

The usage measurement system consists of twogiudsed at th€lient Systenand
the Server Systergsee Figure 10).

The client system contains tiMeasurement Programwhich measures the usage of
programs which are registered using thmernal Interface The Measurement
Programwas previously named thaient programin the requirements (see section
5.1), but has been renamed in the Figure 10 dieroto not confuse it with the
programs installed on th@lient Systenieing measured. In the figure, two programs:
Program 1 and Program 2 are monitored by théleasurement Programvhich
collects data, stores it encrypted, and sends dte tthrough thdexternal Interface
towards theServer Progranusing an encrypted communication protocol.

Client System Distributed Server System |

% Program 1 % Program 2 Server System 1
] y
Server Program
] Server System 3

Internal Interface Server Program
Meaurement Program T [|

Extemal Interface

Server System 2

TCP/IP - Encrypled % SENSIE Ot

_ ‘L Client Interface J—" Presentation Interface
TCP/IP - Encrypted

Figure 10 — Component diagram of the usage measuremt system, illustrating a setup of one
Client System and three Server Systems, united inRistributed Server System.

The Server Program here situated on thregerver Systemmachines, receives the
measurement data through tBéent Interfaceand stores it (see Figure 10). The
Server Systemachines themselves are interconnecteDigtributed Server System
e.g. using middleware which can enhance locatiansparency, availability and
scalability [40]. Even setups enlisting multipstributed Server Systemae a
feasible option for spreading the risk of systeitufa, connected to the geographical
position of theServer ProgramsThe Server Progranprovides a publi®resentation
Interfacefor everyone to use. This interface provides axteghe statistics from the
users of the usage measurement system.

The usage measuring system’s client part could baveral forms, of which the four
main candidates are explained below.

Author — Mathias Bronner Measuring the Usage of OSS Page 21/36

Version 2.1 Master Thesis Report 2007-05-25

e Library — One solution is to install a library oinet client, containing
functionality for measuring and communicating wikie server. Each program
that supports usage measurements needs to intledierary in order to use the
functionality. Depending on the design of the lifgraa library solution leaves
many decisions and options to its user. The usetheflibrary will require
knowledge to use the library correctly. In termsyafdifiability a library works
as a central repository providing functionalityit®users, making updates to the
library a small matter. This is only true while tliierary interface is not reduced
in functionality, forcing users to change their iempentation relationship to
adapt to the changes.

* Plug-in — Using a plug-in containing measuremenicfionality, which the
individual measured program installs before orraf@ching the end-user. This
solution is related to using a library, althoughmgoof the responsibility of
configuring the library can be moved towards theggh, making the plug-in
easier to use, and less configurable too. Thealndlistribution of the plug-in
might be easy, although an upgrade could requingpamade of all applications
measured. An alternative would be to use a plughiith uses a measurement
library, to facilitate configuration and modificatis. Either way, an upgrade to
the plug-in itself would imposeraodifiability issue.

« Stand-Alone Application — A traditional applicatievhich provides a specified
interface to application wishing to have the usagenitored and measured.
While a stand-alone application is similar to adity during installation and
distribution, themodifiability of such a solution is more versatile. In a stand-
alone application the GUI can be extended to suppew functionality, e.g.
visualization of personal usage statistics, whére $ame extension for the
library solution would require modification on miple places. Depending on
the resources available by the operating systestarad-alone application will
have better control of the application environméran a library or plug-in
solution. Better control of the application envineent helps ensure that the
intended quality constrains will be enforced.

* Two Part Application — In this solution the starildree application is divided
into two parts, with the same responsibility, warkin parallel. One part of the
application operates closer to the operating syséegn in Linux as functionality
embedded in kernel space. The other part operatasyarmal application using
the resources provided by the surrounding envirenm€&he parallel work
process provides a way for teBerver programo compare the measured result
with each other, detecting inconsistencies. Mogtartantly the difference en
the working environment provides a variance in $keeurity level, serving as
precaution against both application parts gettioghgromised. Installing the
application part close to the core of the operatigstem can pose problems in
regards to gaining access to the system core.

The choice of form for the client fell upon a staalbne application where the

application can be controlled, facilitating the imsphg of quality restrictions, and
supportingmodifiability by making functionality additions feasible.

Author — Mathias Bronner Measuring the Usage of OSS Page 22/36

Version 2.1 Master Thesis Report 2007-05-25

5.3 Important Qualities

In this section selected system qualities are lggteéd in order to elaborate certain
choices and how these choices influence the syatehitecture.

5.3.1 Security

Securityis a concern in most systems; threats may ar@a frvithin or outside the
borders of an organization. For a system measuamagcollecting data from clients to
be used by various actors, the system must beviousty and that requires the system
to deal with potential attacks.

The fist step against attacksresisting attacksvhere the goal is to ensure integrity,
confidentiality and assurance [12]. In the meas@m@system thelient programwill
have toauthenticateitself to theserver programusing a unique ID and comparing
the ID against existing IDs. When tloéient programis installed, a unique ID is
generated and will initiate a registration proce#f the server programto store the

ID and IP-address of the client machine. The regjisin of the ID and IP-address
serves as a precaution against tampering withrttemded use of the measurement
system by having a large number of IDs per IP-agidri addition, the IP-address is
used in the measuring of the number of users ipexiic geographical region.
Furthermore usinglient program’sunique ID end users can connect to seever
programwhich authorize userso access their usage statistics. Faintaining data
confidentiality the data measured and stored should be encrypt@amizing
unauthorized access. Persistently stored data ¢hwoeilasymmetrically encrypted
using two pairs of keys, meaning that baffent and server programcontains a
private and a public key which they can use to ystcand sign the data. The stored
data must be transferred from fttieent programto theserver progranover publicly
accessible network, escalating the potential tHieagl. For this purpose a Transport
Layer Security (TSL) protocol can be used for prevey eavesdropping, message
forgery and tampering, by providing communicationcrgption [12]. Besides
confidentiality issues, the data should be delidess anticipatedmaintaining
integrity of the data can be realized using a checksum M. Checking for the
correctness of the transfer by analyzing if theadatcorrupt or incomplete, enables
for the server programto request the data to be retransferred. Thet#asic for
resisting attackss tolimit accesgo the usage measurement system, limiting acoess t
the implicated machines. Tiserver progranexecuting in a distributed server system
will have a firewall situated for restricting thecaess based on where the request
comes from and the destination port [12]. Althodlyd server side environment can
be controlled, thesecurity level at the client machine is depending on the
administrator of the machine, meaning that a filevaardware or software, might be
available and in working state.

The second step to achievigsgcurityis detecting attacksusing anntrusion detection
system, where network traffic patterns are analyaad compared against prior
patterns in history saved in a database [12].

The final step is the ability teecover from attacksnade on the system, where the
recovering involves identifying the attacker andréstoring the system [12]. The

Author — Mathias Bronner Measuring the Usage of OSS Page 23/36

Version 2.1 Master Thesis Report 2007-05-25

usage measurement system has to identify the ettaclorder for legal actions to be
taken. To identify the attacker and collect evidenthe appropriate tactic is to
maintain an audit trail where the IP-address and a copy of the transectitade in
the system are logged. Additionally, the copy & tlansactions including the data in
system that has been changed in the transactionketp system recovery [12]. The
second part of recovering from the attack is téoresthe system, setting the system in
a working state using the same tactics describetarsection regardingvailability
(5.3.3).

The overallsecuritygoal for the usage measurement system is for e tis trust it.
The trustworthiness perceived by a user is relapethe dependabilitywhich the
system exhibits. Besides thavailability and thereliability of the system, the
dependabilityof the usage measurement system relies on theityeevhich for the
users is expressed as the personal integrity. Rargdegrity is typically maintained
by applying various encryption techniques, makingifficult to view the data. Even
well protected, a system is never unbreakable, frasng a risk for the systems
perceived trustworthiness.

5.3.2 Modifiability

Modifiability is a key factor in a broad range of systems, enagpurce development
a modular architecture is especially important [A]Jmodular architecture enables
developers to extend the functionality of the systgithout being forced to change
the core of the system [1]. In addition, a modudachitecture enables increased
parallel development, due to the alignment betwtbenarchitecture and the physical
distribution of the person involved in an open seyproject.

Tactics can be used to control the time and cosimgement, test, and deploy
changes, to accomplish modifiability. One set atitzs which will be applied to the
system is tolocalize modifications This has the overall goal to assign specific
responsibilities to modules, which limits consequemnif the module is replaced by
another [12].Maintaining semantic coherends a tactic to ensure that a module
functions without being too dependent on other niegjuand a method to realize this
Is to abstract common servicedAbstracting common services, e.g. with middleavar
is to be used for the distributed server systerayiging theserver programwith
services such as transaction control and load baign

Another modifiability tactic could be used when ideshg the system to avoid a
ripple effect. A ripple effect occurs when a chamgea module initiates changes to
another module and so forth. In this tactic thestxg interface of a module is
maintained, keeping the name and signature ofriteeface unaffected by an internal
change to the module. Neverthelessgintaining existing interfacesan not solve
module inter-dependency problems regarding sensaotiquality of service [12].

By improving thetestability, e.g. usingseparate interface from implementatidhe
modifiability would be improved, facilitating the testing praeeghen modifying the
application [12]. Creating separate interfacestésting purposes allows substitution
of implementations, which can be useful when tegstoifferent measurement
techniques in thelient program

Author — Mathias Bronner Measuring the Usage of OSS Page 24/36

Version 2.1 Master Thesis Report 2007-05-25

The possibility and essentially the effort requifed making a modification to the
measurement system, e.g. adding new measuremdntsfacs important for the
success and survival of the system. Open sourckipi® are released more frequently
than non-OSS products, makingpdifiability a quality to consider in detalil.

5.3.3 Availability

Availability is about being able to control faults arising e system, making sure

that faults do not create a system failure, thusicg the system to be unavailable to
the user [12]. The consequences associated wittersy$ailure are not simple

unavailability; on the contrary a system failuren aaanifest itself by providing a

service which is different from the expected resggorideally the system should be
maintained by rectifying the faults thereby ensgriine continuous correctness of the
system.

For the usage measuring systawailability in terms of 24/7 uptime is not the highest
priority. However a loweavailability e.g. at least 80%, would be sufficient. A client
failing to connect and transfer the measured dallaattempt to retry periodically,
and transfer the measured data later. If the refiearof the data is successful, the
delay must be taken into consideration, in ordeidta measurements based on time
intervals to be adjusted accordingly. This will asfuse create an increased standard
deviation of the measurements results.

What is of importance to the system in termsaegéilability is the correctness by
which the system makes measurements and handiss, theth in theclient and
server program Faults in the measurement system creating mdlamof system
functions, must be handled by the system to enthagerceived trustworthiness of
the system.

To handle availability issues several tactics nedok exploited to prevent, detect and
recover from faults before they lead to systemufail thus compromising the
availability and possibly the correctness of the system. Mactycs for managing the
availability of the system are in-build options aperating systems, application
frameworks and middleware [12]. Nevertheless, detgdhe uprising faults as they
appear is a crucial step for dealing with fault&icontrolled manner. To detect faults
using exceptionds a tactic where the faults are dealt at theeldey rise, which
facilitates isolating faults causing as little cegsences for the remaining system as
possible. Though many faults can be detected, s should recover from these
by preparing for possible faults and have meansrdépairing them. Most tactics
regardingfault recoveryinclude having redundant software components en&pare
hardware, which need to be synchronized in ordethfem to relieve the faulty part
system from work [12]. Thelient programshould have a redundant measuring
component which could compare the results, to &skabvhether the results are
correct and if a misalignment was caused by a fawdhe of the components. For the
client programthe application environment is harder to contanid a redundant
hardware or a spare computer is not possible. k@sdrver programa distributed
server system using middleware, can help to enauadability and even have in-
build functionality forfault preventionike transaction control and advanced process
monitoring.

Author — Mathias Bronner Measuring the Usage of OSS Page 25/36

Version 2.1 Master Thesis Report 2007-05-25

Availability is closely associated wigserformancean practice, e.g. when many clients
are in contact with the server, the server can fnecmverloaded and thereby
unavailable. As shown mangvailability tactics consist of adding more parallel
computer resources, which is the same tactic uzegchieving higher performance.

A simple technique for improving thavailability of the server programand the
distributed server system is to use DNS round robirere a DNS request is handled
by a DNS server, mapping the request to a listFehddresses sequentially. This
means that thelient programneeds only to have one point of contact, specifidtie
communication information as one I|P-address. Thendorobin increases the
availability by providing load distribution which can be enhah¢o providing load
balancing by routinely asking the servers in tls i they are available and not
overloaded. Subsequently the servers which arelaadgad or unavailable are then
temporarily removed from the server list, ensurihgt operational servers receive
requests.

5.3.4 Portability

Portability is important for the wide acceptance and usage hef proposed
measurement system, where users can have a diveafibperating systems.
Portability is closely associated wittmodifiability, whereportability is modifications
made to the platform. A platform in this contexais operating system.

The measurement system needs to be available omds common operating
systems, such as Windows, Linux and MacOS. An aspecconsider when
mentioning software platforms and OSS, are theetation between the number of
users of a platform and the amount of OSS usedhanpiatform. On some software
platforms, e.g. Linux, UNIX and FreeBSD, most oé thoftware is OSS, while the
market share of the platforms are quite small oskig machine. While machines
running Windows as a platform typically contain igndicant amount of non-OSS
and less OSS, Windows has a desktop market shareaofy 90% (ref). This makes
the Windows platform an important measurement @tatfandportability a quality
worth prioritizing.

The realization of the usage measurement systermultiple software platforms
requires for the implementations to be tailored aptimized on each platform. While
some practical measurement details are specificgiatform the general architecture
remains the same for all the platforms. This mehasdepending on design choices,
much of the design and implementation can be reasadkll.

Author — Mathias Bronner Measuring the Usage of OSS Page 26/36

Version 2.1 Master Thesis Report 2007-05-25

6 Evaluation

This section contains the evaluation of the resuttsnsisting of the usage
measurement system. The evaluation is importanaf@lyzing and expressing the
forces and weaknesses of the proposed system.

The usage measurement system and its architestieébioad solution, providing a

platform for extracting usage measurements froentdi, and making this available to
stakeholders of an open source project being medsoir simply anyone with an

interest. Supporting six isolated usage metrics $mlution is a good proposal for a
measurement system capable of measuring OSS. Windedetails of measurement
system need to be specified in depth to assisttllezation of the system. In specific,

the connection between the usage metrics of intévesd (see section 4) and the
actual system infrastructure (see section 5)lshioei defined in detail. This involves

creating a description in which manner the systemdacts the actual measurement
of one of the proposed usage metrics’. Conductimg actual measurements in
isolation has been done before with success, whahteresting is the way the

information is collected and managed by the usagasmrement system. Of cause
parts of the issue is solved by performing the gltegihase, specifying the proposed
architecture, thus creating scenarios for measureprecess.

In order to evaluate the usage measurement systener, a frame of references aids
to compare and articulate the forces and weakneasdghe choices leading to these
differences. For this purposes the proposed usaggsumement system is evaluated
with the Debian Popularity Contest (DPC) as a pofrreference [21].

6.1 Evaluation against the Debian Popularity Cont est

The results presented in this study, contain a geapfor a usage measurement
system with a similar functionality as the existib®’C. The two systems have
different scope and the proposed system is notteated as an extension of the
DPC. The evaluation structure is the same as se&iB8 - Important Qualities

combined with the requirements and measured usageceof both systems (see
section 5.1).

The ®curity issue is addressed in the proposed system, hgdamisuring resisting
attacks e.g. using multiple encryption techniquistecting attacks and recovering
from a potential attack both usirgudit trail and variousavailability tactics (see
section 5.3.1 and 5.3.3).

In the DPC thesecurity issue is mentioned in regards to the encryptiorthef
communication but it is not enforced or implemenf2dl]. Other tactics regarding
detection or recovering from attacks are not metib in the documentation
available.

The modifiability of the proposed system is regarded an importastesy quality,
especially in open source development [1] anddadbr achievingnodifiability are

Author — Mathias Bronner Measuring the Usage of OSS Page 27/36

Version 2.1 Master Thesis Report 2007-05-25

documented for the proposed system. The usage measot system is to be
implemented as a stand-alone application, wherlk application monitored needs to
define functionality usage points and use an iat&fto register, provided by the
system (see section 5.3.2).

The DPC documentation states no specific goalsréaching a higher level of
modifiability [21]. What can be observed of the DPC is the way ithis distributed
and installed. The DPC is often included as a pgekia distributions based on
Debian, e.g. Ubuntu [26], which makes facilitatelse tinstallation process.
Furthermore, the DPC generates a list of instglerkages on the client machine and
monitors these, making it possible to monitor aitalled packages without making
modifications to them for supporting the measurem@m the other hand the DPC
does not define interfaces which can be used tpa@tphe removal of specific parts
of the system and replacing them with other painiss making it possible to enhance
it without changing the boundaries.

Theavailability of the usage measurement system is defined aticstéar ensuring a
certain degree odivailability are in place. For the detection of faukgceptionsare
used. Having at least one distributed server syst&ing middleware and DNS round
robin, facilitates the prevention and recovery friamlts (see section 5.3.3).

The DPC degree a@vailability is not defined, although the server part of the D®C
described, in the frequently asked questions, saneer responsible of receiving the
collected information [21]. This would imply thabrdistributed server system or
hardware redundancy is in place, having significamgative implications on
performanceavailability andsecurity The one positive factor, making the necessary
availability less than 24/7 for the DPC, is that some pat®@fcommunication is done
using email, where the unavailability of the servesuld result in later received
information.

The portability has been of great importance when developing pogad for a usage
measurement system, monitoring and reporting usagenajor platforms used for
open source software. The issue of having crosffopta portability is more
important for theclient program since the end users have the authority of thatclie
machine. By consequence the system should be @lsigpport Windows, Linux and
MacOS (see section 5.3.4).

The DPC approach towardsortability designed specifically for supporting the
Debian Linux distribution and distributions founded Debian. The narrow platform
support and the specific implementation for Deliamux, where the DPC measures
the time usage of installed packages, make it trarduse the architecture, design and
implementation for new platforms at a later point.

The usage measurement system supports six indivicegsurements points

UUID — Universally Unique Identifier to distinguish &aaser for the system and is
used to calculate the total number of users obgnam.

Users per Regior A number identifying the number of users of agpam in a
specific region.

Wall Clock Time- The accumulated time usage of a program, whachbe divided
time intervals, e.g. for viewing program time usager a week.

Author — Mathias Bronner Measuring the Usage of OSS Page 28/36

Version 2.1 Master Thesis Report 2007-05-25

Activity Time— The accumulated time usage of a program, wkeyestroke®r mouse
clicksis inputted by the user.

Activity Level- A relationship between the accumulated time eisdg program and
the time wherekey strokeor mouse clickdhas been inputted by the user. A higher
level of user input produces a higher activity leve

Functional Points— A measurement counting the number of times eifipe
functionality of program has been used. The ded@inibf a functionality is defined by
the program being measured. The number of timemetibnality has been used can
be divided into time frames of e.g. 24 hours or week.

The DPC supports onmeasurement poirlieing the accumulategtcess timdor an

installed package (referred to\a&ll Clock Timefor the usage measurement system)
[21].

Author — Mathias Bronner Measuring the Usage of OSS Page 29/36

Version 2.1 Master Thesis Report 2007-05-25

7 Discussion

This section contains the discussion where the mdetogy used for conducting the
research is discussed in conjunction with the psedacsolution. Furthermore, matters
mentioned in the report, deserving additional aib@nare discussed in this section.

The used methodology utilized in the study is dipselated to the result, creating a
system measuring usage. The scope of the researdiather broad. First, an
investigation of usage in both traditional softwaeed open source development,
breaking down the findings to measurable pointsaly@ng the most common
interests of open source project stakeholders,canabining this into usage metrics
specific for the proposed system. Secondly, creatb a system infrastructure
containing requirements, architecture and thoroaghlysis of important system
qualities is performed. This broad scope of theho@blogy has some consequences
for the result, meaning that some issues are rdreaded in particular some details of
proposed system (as described inEvaluation- see section 6). The consequences
for the result are the following issues | shall dd below.

In the area o$ecurityas an important system quality, no system is cetapl secure;
however a great deal of effort should be directadlards ensuring a high degree of
security For enabling an increased level s#curityin practice, the communication
between thelient—andserver progranshould be documented thoroughly. Examples
of the exact communication messages, at bit-legblpuld be illustrated for
guaranteeing the proper use of encryption and otietihods to ensuecurity

In the area oimodifiability, among others, the interfaces mentioned in théesys
infrastructure should be described in details, givan overview of the actual data
exchange through the interfaces. Especially thelipubterface from theserver
program (see section 5.2), named fresentation Interfageshould be specified to
illustrate the services provided by usage measuregsystem.

An issue in regard to the system architecture & @ manage and ensure data
consistency between geographical distribiBedver Programgsee section 5.2). The
issue becomes relevant when multiSlerver Programsor even multipleDistributed
Server Systemeed to synchronize or store the measured cligatataa repository in
order to provide a uniform service from tAeesentation Interface

Prioritizing the content of the study and thus rgpas a result of the choosing to use
a methodology with a broad scope, is necessarycamiial for reaching the expected
result. The utilized methodology served its purpesd, achieving a result which
fulfills the estimated result. And the result, sags measurement system capable
when realized, of providing open source projeckedtalders with valuable usage
statistics enhances open source products.

Author — Mathias Bronner Measuring the Usage of OSS Page 30/36

Version 2.1 Master Thesis Report 2007-05-25

7.1 Measuring OSS - Ideology and Corporate Intere sts

The uprising of OSS development (FSF — see se&idn), is founded upon some
essential ideas, insuring openness and freedomammens how the software can be
used. Although large corporations and venture abgi$ invest money and time in
open source projects as a positive input for theeld@ment of the project (Investment
Flow — see section 3.2.1), they tend to havegamda.

Corporate interests can be compared to the morpokas interests of the many
developers, who in their private time contributedveloping OSS. Both obviously
have interests, but where private contributors sgleky and knowledge from the
development, corporations are merely driven by rgofiee company tactics can be
versatile, making long term investments for bragdim ensuring goodwill, or more
eminent investments to influence the directionh&f development. By controlling the
direction, investing money in open source projetgpending on others or staffing
people for implementing a specific functionalityrporations can align the software
development with their own strategy. Goals in gpooate strategy could be to ensure
a certain quality of an OSS product, adding indeaimperative to the corporation or
supporting an OSS product to diminish the competitpower of a commercial
product.

The interests of a project or of a corporation eeature capitalist are frequently the
same, since both sides are interested in enhatteengpen source project product and
infrastructure. Even though a strong correlationnterests exists between private
contributors, corporations and venture capitatise, motivation behind the interests
differ. Driven by personal motivation, private cobtitors strive to put their
accumulated knowledge and experience into the gparce project, habitually with
the honor of doing the job as payment. Seeing thenk being measured for usage
statistics and used by corporations for achievimgrtgoals, even if the result of
measurements would benefit the project, they migtitice the involvement of private
contributors. In such a scenario the outcome wbeald possible loss of productivity.

The statistics collected and presented by the usaggsurement system would be
publicly available and would have significant vatoethe future development of open
source projects, since feedback, e.g. on usedifunatity, number of users and user
activity, is gained.

Author — Mathias Bronner Measuring the Usage of OSS Page 31/36

Version 2.1 Master Thesis Report 2007-05-25

7.2 Trustworthiness

The success of a system such as the usage megstem selies in the end on the
support of the users. The end users decide whetheot they feel comfortable with
installing the application and letting it colleabfermation regarding the usage
behavior of the user. For ensuring a continuoustipesexperience when using the
usage measuring system, an important factor is dfgtems trustworthiness,
mentioned under the important qualities sectioB.(5.).

Seen from the end users perspective, the usageuregsnt system will be an
application which will have access to the clientchiae, collecting information and
sending this information to a foreign actor. By sequence the system needs to fulfill
some expectations in terms of functionality, thaldgy of the functionality, and more
importantly the actor receiving the client informoat must be trusted.

Trusting an actor means trusting that the infororats handled carefully in the data
gathering process, in addition to using the infdramafor a matter that is supported
by the end user. The first issue is maintainingadategrity, for the end user this
relates to the protections of personal data. Ferdkeivers of statistical information it
relates to the correctness of the statistical midron. In practice, it has been proven
that most encryption techniques can be defeatet)ysoper techniques. As a result,
complete data integrity can never be guaranteedtrtieeless a strong level of effort
should be upheld for maintaining a high level ailedategrity.

The second issue in trusting the usage measuresystieim is associated with whether
the end user trusts or believes in the purposeshithe measurements are used for. A
large influence for conducting this research waes ¢bnviction that measurements
statistics, on e.g. functionality usage, from thed eusers could help developers
enhance the software. Although counting the nundbersers of a promising OSS
product, making potential investors interested he further development of the
product, this interest might not be approved bypeeple involved in the open source
project. This second issue is closely relatetdemlogy and Corporate Interes(g.1

)-

The trustworthiness of the usage measurement syatemmentioned earlier, is a
central matter to the wide acceptance of the sysk@mreaching a high level of trust
from the user of the system, a high leveseturityis necessary, e.g. making sure that
data integrity is sustained. A method to accompdigtigher level of security is to let
the end users of the system register with a usafilgrwhen installing theclient
program This could provide additional means of authemitice secure information
used in case of a security breach and gain moognvation on the user. While this
might seem as a positive control by the systemthadconsumers of the statistical
information, the end users might regard it as &asson their personal freedom. In
addition, though the registration will add to tleewgrity and perceived trustworthiness
of the usage measurement system, the willingnessgister requires a high level of
trustworthiness in the first place. The goal isstoike a good balance between
freedom, control, and trustworthiness for an opewurce application. As a
consequence registration is not included for tlppsed usage measurement system.

Author — Mathias Bronner Measuring the Usage of OSS Page 32/36

Version 2.1 Master Thesis Report 2007-05-25

8 Conclusion

The rapid pace of release of many OSS productsleshabconstant improvement of
the functionality and quality. On the other harids development requires an existing
knowledge of what improvements are of the essence.

Measuring the usage of OSS, enables mapping tha &xactionality exploited by

users, thereby assisting developers to improveptbduct. Tailoring of the product
based on user statistics, could optimize the protludts market. One option to
optimize the product is removing sparsely used tianality and focusing on the
elements central to the user. Following the samedif thought, potential investors of
OSS can estimate the potential market of a softwasduct by receiving statistical
information on the usage of the software.

For acquiring feedback on the usage of an OSS ptpthis Master Thesis Study
provides a proposal for a system measuring theeusd@SS. In the proposal, the
requirements and architecture for such a systepresented together with a logical
explanation of the decisions made and their coresgzps in relation to the resulting
system.

The usage measurement system can measure six teepaasurement points from
the end users: UUID, Users per Region, Wall Cloakel Activity Time, Activity
Level and Functional Points. The result is a usagasurement system, capable when
realized, of providing open source project stakééxd with valuable usage statistics
for enhancing open source products.

With the knowledge that an interest exists, fronomclike KDE in the open source

community, it would be interesting to realize thepgnsed platform for measuring
usage.

Author — Mathias Bronner Measuring the Usage of OSS Page 33/36

Version 2.1 Master Thesis Report 2007-05-25

9 Future work

This chapter describes possible issues emerged tinsnresearch which deserves
further investigation.

» Realize proposed platform — Implement proposedirequents and architectural
description into a concrete solution. This can bkoWwed by an analysis on
additional usage metrics.

* Propose a structure for an independent organizatesponsible of administer
the proposed platform, which includes ttdient and Server Program the
hosting and continuous evolution of the measurerpkitorm. This is point is
associated with the discussion about ideology aogborate interests, and
trustworthiness (see section 7.1 7.2).

» Propose and develop a monitoring mechanism forGinent Program which
ensures that the measured programs are authedtaradedigital signed.

* Extend the proposed platform to support the measemé of non-OSS,
including an analysis of the implications.

Author — Mathias Bronner Measuring the Usage of OSS Page 34/36

Version 2.1 Master Thesis Report 2007-05-25

10 References

[1] T. O'Reilly, Lessons from open-source software developn@oimun. ACM,
vol. 42, no. 4, pp. 32-37, 1999

[2] G. Von Krogh,Open source software developmediipan Manage. Rev, vol. 44,
no. 3, pp. 14-18, 2003.

[3] S. Raghunathan, A. Prasad, B. K. Mishra, H. ii¢h®pen Source Versus Closed
Source: Software Quality in Monopoly and Competitiarkets,|EEE Transactions
on Systems, Man, and Cybernetics — Part A: SystamisHumans, Vol. 35, No. 6,
2005.

[4] G. P. Dwyer, Jr.,The Economics of Open Source and Free Softweeeeral
Reserve Bank of Atlanta, 1999.

[5] I.L Hann, J. Roberts, S. Slaughté/hy Do Developers Contribute to Open Source
Projects? - First Evidence of Economic Incentjv€saduate School of Industrial
Administration Carnegie Mellon University, 2002.

[6] J. Lerner, J. TiroleThe Simple Economies of Open Sourtdeurnal Industrial
Economy, vol. 52, no. 2, pp. 197-234, 2002.

[7] Cristina Gacek and Budi Arief, Januari/Febru2@04, The Many Meanings of
Open SourcelEEE Softwarewww.computer.org/software

[8] Michel J. Karels, Commercializing Open Source Softwar2003, 1542-
7730/03/0700ACM

[9] OSTG Open Source Technology Group, Inc. 2003purce Forge
http://sourceforge.net/

[10] SPI, Software in the Public Interest, Inc. 208P|, http://www.spi-inc.org/

[11] R. Baskerville, “Conducting Action Researchighl Risk and High Reward in
Theory and Practice,” in Qualitative Research inl$Sues and Trends, E. M. Trauth,
Idea Group Publishing, Hershey, 2001

[12] L. Bass, P. Clements, R. Kazman, “Software hitecture in Practice”, 2nd
edition, Carnegie Mellon, Software Engineering itng¢, Addison Wesley, 2005

[13] G. David Garson, “Guide to Writing Empirical apers, Theses, and
Dissertations”. Marcel Dekker, Inc, New York, p21t162, 2002

[14] A. R. Hevner, S. T. March, J. Park, S. Ramgsign Science in Information
Systems Research,” MIS Quarterly (28:1), pp. 75; 2094

[15] A. H. Maslow, “Motivation and Personality”, @redition, Harper and Row, New
York, 1970

[16] J. Feller, B. FitzgeraldA Framework Analysis of the Open Source Software
Development Paradignuniversity College Cork, Ireland, ACM, 2000

[17] R. Stallman, “Open Sources: Voices from thee@Bource Revolution”, 1st
edition, O’Reiley Media, 1999

[18] Free Software Foundation (FSF), Plone Copyrigi Alexander Limi, Alan
Runyan samt Vidar Andersen, Accessed Mars 2007/ fttvw.fsf.org/

[19] The GNU Project, Copyright by Richard Stallmaficcessed Mars 2007,
http://www.gnu.org/gnu/thegnuproject

[20] Tim O’Reilly, “Open Source Business Model DgsiPatterns” O’Reilly Media
Inc., EclipseCon, March 1, 2005

[21] Debian Popularity Contest, A. Pennarum, B.oAlbert and P. Reinholdtsen,
viewed January 200Wh{tp://popcon.debian.org/

[22] Open Source Initiativé)pen Sourcenww.opensouce.org

Author — Mathias Bronner Measuring the Usage of OSS Page 35/36

Version 2.1 Master Thesis Report 2007-05-25

[23] Raymond, Eric.Shut Up and Show Them the Codénux Today, 1999,
http://linuxtoday.com/stories/7196.htmwiewed March 2007

[24] Raymond, Eric. The Cathedral & the Bazaar. Mgs on Linux and Open
Source by an Accidental Revolutionary, First editid001, O’Reilly Media.

[25] Red Hat IncRed Hat www.redhat.comviewed March 2007

[26] Canonical LtdUbunty www.ubuntu.comviewed March 2007

[27] salesforce.com, Incsalesforce.conwww.salesforce.conviews March 2007

[28] Open IT Inc., OpenIT - LICENSEAnNalyser,
www.openit.com/products/licenseanalyzer.htwéwed March 2007

[29] Wu, Ming-Wei, Lin, Ying-Dar, OpenSource Software Development: An
Overview National Chaio Tung university, Taiwan, 2001

[30] Raymond, Eric. The Magic Cauldron, 1999, foundThe Cathedral & the
Bazaar. Musings on Linux and Open Source by andeetal Revolutionary, First
edition, 2001, O’'Reilly Media.

[31] Boehm, Barry Software EngineerindEEE Transactions on Computers (25:12),
1976, pp. 1226-1241.

[32] Flaatten, Per, McCubbrey, Donald, O’Riordan,Oclan, and Burgess, Keith.
Foundations of Business Systems, Chicago, DrydessP1989.

[33] Young, RobertGiving it Away: How Red Hat Stumbled Across a Neanbmic
Model and Helped Improve an Indugtin Open Sources: Voices from the Open
Source Revolution, Sebastopol, CA, O'Reilly & Asstes, 1999.

[34] Omidyar Network, Omidyar Network, http://home.omidyar.net/index.php
viewed January 2007

[35] Open iT LicenseAnalyzehttp://www.openit.com/products/licenseanalyzer.html
viewed March 2007

[36] Box, Brad, Superdistribution? Wired Magazine September 1994 Idea Fortes,
http://www.virtualschool.edu/cox/pub/94WiredSupstdbution/ viewed February
2007

[37] KDE e.V.,KDE e.V, Accessed May 2007, http://ev.kde.org/

[38] Brunch, Jr., JohnSDSC DataStar — Parallel Programming TqoldC Santa
Barbara, College of Engineeringttp://www.engineering.ucsb.edu/~stefan/perf-tools-
06.ppt#318,17, Timerviewed May 2007

[39] Nullsoft, Winamp General Preferences,
http://www.winamp.com/support/help/50/General_Pmriees.htm viewed May
2007

[40] Bray, Mike, Middleware Software Technology Roadmap, Carnegie Mellon
University, 2007, http://www.sei.cmu.edu/str/descriptions/middlewdnedy.htm]|
viewed May 2007

Author — Mathias Bronner Measuring the Usage of OSS Page 36/36

