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Abstract: The BCR-ABL fusion gene product is a constitutively activated tyrosine 
kinase, which is fundamental in the pathogenesis of chronic myeloid leukemia 
(CML). Imatinib mesylate (imatinib, Glivec® or Gleevec®), a small molecule 
inhibitor of the BCR-ABL tyrosine kinase, is now the first-line treatment for all newly 
diagnosed chronic phase CML patients. Imatinib treatment results in a high frequency 
of complete cytogenetic response (CCgR). Patients in CCgR can be further stratified 
by the degree of minimal residual disease, measured by quantitative reverse 
transcriptase-polymerase chain reaction (qRT-PCR). The present thesis deals with 
different aspects on molecular monitoring of imatinib treated CML patients. By 
serially analyzing peripheral blood and bone marrow BCR-ABL transcript levels using 
qRT-PCR in CML patients commencing imatinib therapy, we found that the major 
decline in BCR-ABL transcripts occurred within 6 months after start of imatinib 
treatment. An apparent plateau in BCR-ABL transcript level seems to have been 
reached after 12-15 months of imatinib treatment, which indicates a stable number of 
remaining BCR-ABL positive cells. To search for markers associated with molecular 
response in CML patients treated with imatinib, we studied the mRNA expression of 
apoptosis-related genes in peripheral blood nucleated cells from chronic phase CML 
patients commencing imatinib treatment. We found that a lower BAD expression at 
diagnosis correlates with a better molecular response at 12 months of imatinib 
therapy. Studies of BCR-ABL kinase domain mutations in imatinib treated CML 
patients revealed that point mutations were mainly associated with acquired 
resistance, but not with cytogenetic or molecular disease persistence in CML patients 
without signs of increasing leukemia burden. Finally we studied “off-target” effects of 
imatinib on peripheral blood on T-lymphocytes. We found that therapeutic doses of 
imatinib alter the expression of apoptosis related genes in CD3+ lymphocytes and 
change the phenotype of CD4+CD28+ T-helper cells.  
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ABBREVIATIONS 
 

ABL Abelson murine leukemia viral oncogene 
ACAD Activated T-cell autonomous death  
AICD Activation-induced cell death  
ALL Acute lymphoblastic leukemia 
AML Acute myeloid leukemia 
AP Accelerated phase 
ARG Abelson-related gene 
BAD BCL-2-antagonist of cell death 
BAX BCL-2-associated X protein 
BC  Blast crisis  
BCL-2 B-cell CLL/lymphoma 2 
BCL-XL BCL-X long isoform 
BCL-XS BCL-X short isoform 
BCR Breakpoint cluster region 
CBL Casitas B-lineage lymphoma pro-oncogene  
CCgR Complete cytogenetic response 
CHR Complete hematologic response 
CML Chronic myeloid leukemia 
CP Chronic phase 
Ct Cycle threshold  
GRB2 Growth factor receptor-bound protein 2 
D-HPLC Denaturing-high performance liquid chromatography  
ERK Extracellular signal-regulated kinase 
FACS Fluorescence activated cell sorting 
FISH Fluorescence in situ hybridization 
FRET Fluorescence resonance energy transfer 
GAPDH Glyceraldehyde-3-phosphate dehydrogenase  
HPK1 Hematopoietic progenitor kinase 1  
HPK1-C HPK1 C-terminal cleavage fragment 
JAK Janus family of tyrosine kinases 
JUK JUN kinase 
LCK Lymphocyte cell-specific protein-tyrosine kinase 
LDA Low density array 
MAPK Mitogen-activated protein kinase 
MCgR Major cytogenetic response 
MFI Median fluorescence intensity  
MoAb Monoclonal antibody  
mRNA Messenger ribonucleic acid 
NK Natural killer  
PDGFR Platelet derived growth factor receptor 
Ph Philadelphia  
PI-3K Phosphatidylinositol-3 kinase 
qRT-PCR Quantitative reverse transcriptase-polymerase chain reaction 
SHC SRC homology 2-containing protein  
STAT5 Signal transducer and activator of transcription 5 
TCR T-cell receptor  
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INTRODUCTION 
 

Chronic myeloid leukemia (CML) is a clonal disorder of hematopoietic stem cells [1]. 

The disease arises as a consequence of a rare gene abnormality. The course of the disease 

is characteristically triphasic: a chronic phase (CP) lasting three to six years is followed 

by transformation to an accelerated phase (AP) and then a terminal blast phase of short 

duration [2, 3].  

 

Initially described in 1845 [4, 5], CML is one of the best understood diseases from the 

aspect of its cytogenetic abnormalities and the molecular mechanisms involved. CML 

was the first human disease in which a specific abnormality of the karyotype, the 

Philadelphia (Ph) chromosome, could be linked to a malignant disease [6]. Later on, it 

was shown that the Ph chromosome results from a reciprocal translocation between the 

long arms of chromosomes 9 and 22, which produces the BCR-ABL fusion oncogene [7]. 

The BCR-ABL oncoprotein, a constitutively activated tyrosine kinase, recruits and 

activates several pathways transducing intracellular signals, which ultimately lead to 

abnormal cellular adhesion, enhanced proliferation and inhibition of apoptosis [8, 9].  

 

The treatment of CML has long been in the frontier of cancer therapy. It was among the 

first neoplastic diseases in which therapy with a biologic agent, interferon alpha (INF-α), 

was found to suppress the leukemic clone and prolong survival [10]. CML was also 

among the first neoplastic diseases treated with a specific molecular target agent, imatinib 

mesylate (STI571, imatinib, Glivec® or Gleevec®, Novartis, Basel, Switzerland). The 

remarkable therapeutic efficacy of imatinib led treatment of CML into a new era.  

 

Clinical characteristics of CML  

CML has an incidence of 1 case per 100,000 people per year and accounts for 15 percent 

of leukemias in adults [11]. The median age of patients at presentation is 45 to 55 years. 

Up to one third of the patients are over 60 years old, which is an important consideration 

for therapeutic strategies such as stem cell transplantation and INF-α treatment. In 
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general, the cause of CML is unclear but high doses of ionizing radiation may be an 

etiologic factor [12]. 

 

Most cases (85 percent) of CML are diagnosed in CP. The typical symptoms at 

presentation are fatigue, anorexia, and weight loss.  The most common abnormality on 

physical examination is splenomegaly, which is present in up to half of the patients. 

About 40 percent of patients are asymptomatic, and in these patients, the diagnosis is 

suspected because of accidental detection of abnormal blood counts [3]. The main 

laboratory findings are peripheral blood neutrophilia with a left shift of the differential 

count, and basophilia. Bone marrow examination shows myeloid predominance, left shift 

and megakaryocytic abnormalities.  

 

Without curative intervention, CP CML will invariably transform through an AP, often 

heralded by the appearance of increased number of immature myeloid cells in the bone 

marrow and peripheral blood, as well as new cytogenetic changes in addition to the Ph 

chromosome. AP often manifests itself by unexplained fever, bone pain, weight loss and 

a general loss of well-being. However, the laboratory definition of the AP is vague [2]. 

After a short period of 3-18 months, progression then proceeds to blast crisis (BC), which 

is defined by the presence of 30 percent or more blast cells in peripheral blood or bone 

marrow, or the presence of extramedullary infiltrates of blast cells [13, 14]. In two thirds 

of cases, the blasts belong to the myeloid lineage, with a phenotype similar to that of 

acute myeloblastic leukemia. The remaining one third of cases has blasts with a 

phenotype which is similar to acute lymphoblastic leukemia (ALL). In addition, few 

cases are biphenotypic, or have magakaryoblastic or erythroblastic phenotype [15]. BC is 

highly resistant to treatment, with death generally occurring from infection and bleeding 

complications. The median survival of patients in BC receiving chemotherapy, is 4-6 

months for myeloid blast transformation and 12 months for lymphoid blast 

transformation [2]. 
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Pathology of CML 

The Ph chromosome  

In 1960, a major clue to the pathogenesis of CML was provided by Nowell & 

Hungerford’s landmark discovery of the Ph chromosome and its association with the 

disease [6]. Using quinacrine fluorescence and Giemsa banding, Rowley and colleagues 

showed that the Ph chromosome resulted from a reciprocal translocation between the 

long arms of chromosomes 9 and 22; t(9;22)(q34;q11) [7]. This is the hallmark of CML 

and is found in more than 95 percent of CML patients [16]. It is also found in 5 percent of 

children and in 15 to 30 percent of adults with ALL, and in 2 percent of patients with 

newly diagnosed acute myeloblastic leukemia [17, 18].  

 

The t(9;22)(q34;q11) adds a 3' segment of the ABL gene from chromosome 9q34 to the 5' 

part of the BCR gene on chromosome 22q11, creating a hybrid BCR–ABL gene that is 

transcribed into a chimeric BCR–ABL messenger RNA (mRNA) (Figure 1). The ABL 

gene contains 11 exons among which the first exon has two variants: 1a and 1b [17]. The 

ABL gene encodes a ubiquitously expressed, non-receptor tyrosine kinase with a 

molecular mass of 145 kD (p145ABL). The isoforms of ABL, i.e. 1a and 1b, derive from 

alternative splicing of the first exon. The breakpoint in the ABL gene may occur within a 

region longer than 300 kilobases (kb), but usually before exon 2. The ABL exons 2 to 11 

(also called a2 to a11) are juxtaposed to the 5’ part of BCR. The major breakpoint cluster 

region (M-bcr) of the BCR gene on chromosome 22 is located between exon 12 and 16 

(referred to as b1 to b5) and extends over 5.8 kb [19]. Two fusion transcripts, e13a2 and 

e14a2 (b2a2 and b3a2, respectively), are created, and both translate into a chimeric 

protein of 210 kD named p210BCR-ABL [17] (Figure1). In 95% of BCR-ABL positive CML, 

the leukemic cells have either b2a2 or b3a2 transcripts, but in 5 percent of cases, 

alternative splicing events cause the expression of both fusion products [20]. The clinical 

features, response to treatment and prognosis are similar in patients with b2a2 and b3a2 

transcripts, except for a higher platelet count in patients with b3a2 transcripts [16].  

 

The breakpoint in the minor breakpoint cluster region (m-bcr) results in a fusion 

transcript named e1a2, which gives rise to a 190 kD protein, p190BCR-ABL [21, 22] (Figure 
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1). P190BCR-ABL is rare in CML and is mainly seen in adults and children with Ph-positive 

ALL [23] (Figure 1). Breakpoints in the micro breakpoint cluster region (µ-bcr) create 

another fusion transcript (e19a2) which is translated into a 230 kD protein, p230BCR-ABL. 

P230BCR-ABL has been identified to associate with neutropenic CML [24] as well as some 

rare cases of CML [25]. 

 
Figure 1. The translocation of t(9;22)(q34;q11) in CML. 

The Ph chromosome is a shortened chromosome 22 that results from the translocation of 
3' (toward the telomere) ABL segments on chromosome 9 to 5' BCR segments on 
chromosome 22. In most cases breakpoints (arrowheads) in the ABL gene are located in 
the 5' end (toward the centromere) of exon a2. Various breakpoint locations have been 
identified along the BCR gene on chromosome 22. Depending on which breakpoints are 
involved, differently sized segments from BCR are fused with the 3' sequences of the ABL 
gene. This results in fusion messenger RNA molecules (e1a2, b2a2, b3a2, and e19a2) of 
different lengths that are translated into different chimeric protein products (p190, p210 
and p230) with variable molecular weights. m-bcr: minor breakpoint cluster region, M-
bcr: major breakpoint cluster region, and µ-bcr: micro breakpoint cluster region. 
(reproduced and modified  from [2]) 
 

The BCR-ABL protein 

The leukemogenic potential of p210BCR-ABL resides in the fact that the normally regulated 

tyrosine kinase activity of the ABL protein is constitutively activated in the fusion 
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oncoprotein. ABL proteins are non-receptor tyrosine kinases that have important roles in 

signal transduction and the regulation of cell growth [26]. There are two isoforms of 

ABL, isoform 1a and isoform 1b. Isoform 1b, which is expressed at higher levels in early 

hematopoietic progenitor cells, is myristoylated on its second glycine residue at the N-

terminal [27]. Loss of myristoylation in ABL dramatically enhances its tyrosine kinase 

activity [28]. Downstream to the myristoylation site, at the N-terminal segment of ABL, 

there are three SRC homology domains (SH3, SH2 and SH1). SH2 and SH3 regulate the 

tyrosine kinase function of ABL and SH1 harbors the tyrosine kinase activity of ABL. 

SH3 has a negative regulatory effect on the tyrosine kinase function. Deletion of SH3 or 

mutation in SH3 facilitates tyrosine kinase activity of ABL [27, 29, 30]. Defects in the 

functional integrity of SH2 decrease phosphotyrosine binding and reduce the 

transforming capacities of ABL [31]. The C-terminal part of ABL contains a DNA-

binding domain, nuclear localization signals, and a binding site for actin [32] (Figure 2). 

The disruption of ABL protein by genetic fusion is responsible for the up-regulated 

tyrosine kinase activity. 

 

The uncontrolled tyrosine kinase activity of BCR-ABL is also caused by the juxtaposition 

of alien BCR sequences. The N-terminal coiled-coil motif of BCR promotes dimerization 

and increases BCR-ABL tyrosine kinase activity and enables binding of F-actin to ABL 

[33]. The serine-threonine kinase domain of BCR activates signaling pathways mediated 

by BCR-ABL tyrosine kinase [34]. BCR which also contains SH2 binding sites fusion to 

ABL adds a large amino acid sequence to the SH2 segment of ABL [35] (Figure 2). BCR 

interferes with the adjacent SH3 and SH2 kinase regulatory domain, which in turn causes 

ABL to become constitutively active as a tyrosine phosphokinase.  
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Figure 2. Functional domains in p160BCR, p145ABL and p210BCR-ABL. 
Important functional domains of the BCR and ABL gene products as well as different 
fusion-protein products are shown (p190BCR-ABL, p210BCR-ABL and p230BCR-ABL). 
Breakpoints are indicated by arrowheads. N: N-terminal amino acid sequence, C: C-
terminal amino acid sequence, Ser-thr: serine-threonine, GDP: guanosine diphosphate, 
GTP: guanosine triphosphate, GEF: GDP-GTP exchange factor, DBL: diffuse B-cell 
lymphoma oncogene, RAC: a RAS-like GTPase, GAP: guanosine triphosphatase-
activating function protein, and SH: SRC homology domain. (Reproduced and modified 
from [2]) 
 

Signaling pathways of BCR-ABL 

The structure of p210BCR-ABL allows multiple protein-protein interactions which involves 

diverse intracellular signaling pathways. Several domains in BCR-ABL serve to bind 

adapter proteins such as growth factor receptor-bound protein 2 (GRB2), CRK-like 

protein (CRKL), casitas B-lineage lymphoma pro-oncogene protein (CBL), and SRC 

homology 2-containing protein (SHC) [36]. The SH2 domain of GRB2 binds to a 

conserved tyrosine residue (Y177) of BCR in p210BCR-ABL, which links p210BCR-ABL to 

RAS, a guanosine triphosphate (GTP) –binding protein involved in the regulation of cell 

proliferation and differentiation, and located at the core of the most prominent signaling 

pathway in the pathogenesis of CML [37] (Figure 3). Signaling events downstream of 

RAS are not well characterized and may involve mitogen-activated protein kinases 
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(MAPKs), such as the JUN kinase (JUK) [38]. Activation of the CRKL or SHC protein 

which bind to the SH2 and SH3 domains of BCR-ABL, respectively, can also initiate 

signal transduction of the RAS signaling pathway [39, 40].  

 

Figure 3. Signaling pathways of p210BCR-ABL. 
Several regions of BCR-ABL serve as important control elements for RAS, which is at the 
center of the most prominent signaling pathways in CML. Activation of RAS is mediated 
through a series of adapter proteins, such as GRB2, CBL, SHC, and CRKL. Adapter 
proteins also connect p210BCR-ABL to focal adhesion complexes, PI-3 kinase, and other 
messenger systems such as JAK-STAT kinases. Signaling events downstream of RAS are 
less well characterized. They appear to involve mainly mitogen-activated protein kinases 
(MAPKs), preferably the JUN kinase (JNK) pathway. BAP-1: BCR-associated protein 1, 
GRB2: growth factor receptor-bound protein 2, CBL: casitas B-lineage lymphoma 
protein, SHC: SRC homology 2-containing protein, CRKL: CRK-oncogene-like protein, 
JAK-STAT: Janus kinase-signal transducers and activators of transcription, FAK: focal 
adhesion kinase, SOS: son-of-sevenless, GDP: guanosine diphosphate, GTP: guanosine 
triphosphate, SRE: stimulated response element, Ser-thr: serine-threonine, Y177: a 
conserved tyrosine residue, GEF: GDP-GTP exchange factor, and SH: SRC homology 
domain (Reproduced and modified from [2]). 
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Signal transducer and activator of transcription 5 (STAT5) of the JAK/STAT5 pathway 

can be phosphorylated directly by BCR-ABL, independent of the RAS signaling pathway 

[41, 42], which leads to the up-regulation of the anti-apoptotic protein BCL-XL [43, 44]. 

Mediated by CRKL and CRK, phosphorylation of the phosphatidylinositol-3 kinase (PI-

3K) pathway is activated by BCR-ABL, which results in enhanced pro-mitogenic and 

anti-apoptotic signals [45]. C-Myc has also been identified to be involved in the BCR-

ABL signaling pathway [46]. 

 

Although the different signaling pathways of BCR-ABL have been intensively studied, 

none has been identified to explain all phenotypic features described in CML. It has to be 

remembered that most interactions and activation processes have been studied only in cell 

lines in vitro and under conditions of forced overexpression. Therefore, their existence in 

primary leukemic cells and their contribution to the CML phenotype in vivo remain 

uncertain. However, as an end result, the uncontrolled kinase activity of BCR-ABL gives 

rise to deregulated cell proliferation, decreased adherence of leukemic cells to the bone 

marrow stroma, and inhibition of apoptosis. 

 

Diagnosis and monitoring of CML 

Morphologic findings 

The typical laboratory findings in CP CML are leukocytosis with a remarkable left shift 

of the differential count, basophilia and eosinophilia. Platelet count may be either high or 

low, and mild anemia is commonly observed. The leukocyte alkaline phosphatase activity 

is reduced, although phagocytic function remains essentially normal [47]. Blasts can be 

present in peripheral blood. Eosinophils, mature or immature, are also present, but their 

count may not be significantly increased. The peripheral blood findings change with 

disease progression. Quantifying the proportion of basophils, circulating blasts and 

platelets in peripheral blood is important because they can serve as prognostic predictors 

[48-50].  
 

The bone marrow of patients with CML is notoriously hypercellular and devoid of fat. 

All stages of myeloid maturation are present, with predominance of myelocytes [51, 52]. 

 17



In CP, the sum of myeloblasts and promyelocytes usually accounts for less than 15% of 

the marrow cellularity. Megakaryocytes may be increased, and Gaucher-like cells can be 

observed in 10% of cases [53-55]. Bone marrow basophilia and eosinophilia are 

frequently encountered. Blasts are scant, with morphologic characteristics indistinct form 

those of normal myeloblasts. Varying degree of fibrosis in bone marrow may be present 

[56]. As the disease progresses, the proportion of blasts increases, morphologic 

alterations of the myeloid cells can become noticeable, and the fibrosis of bone marrow 

may increase [57]. 

 

Cytogenetic analysis 

As the BCR-ABL fusion is the hallmark for CML, a conclusive diagnosis of CML relies 

on cytogenetic and/or molecular testing to identify this specific genetic abnormality. The 

G-banding karyotyping is utilized for cytogenetic analysis and usually 25-30 metaphase 

cells are examined. Cytogenetic analysis detects the Ph chromosome in approximately 

95% of patients with CML at the time of diagnosis. The rest CML cases carry masked  

translocations that can be detected only by molecular techniques, such as fluorescence in 

situ hybridization (FISH) or reverse transcriptase-polymerase chain reaction (RT-PCR) 

for the BCR-ABL fusion [58, 59]. Occasionally, additional chromosome abnormalities 

occur in CML, e.g. trisomy 8, i(17q), an extra Ph chromosome and trisomy 19. Less 

common chromosomal abnormalities found in CML include -7, -17, +17, +21, -Y and 

t(3;21)(q26.2;q22) [60].  

 

Because of the limited number of cells being examined, the sensitivity of cytogenetics in 

detection of residual disease post treatment is only 1 leukemic cell in 25-30 normal cells. 

In other words, the sensitivity of detection is 3-4% Ph-positive cells. However, its ability 

to quantify makes cytogenetics a useful test for monitoring therapeutic responses. 

Nevertheless, the accuracy of quantification is poor, especially when Ph-positive cells 

constitute less than 10% of the total. Moreover, cytogenetics requires dividing cells for 

analysis of metaphase chromosomes, and the best specimen is bone marrow, which 

contains more proliferating cells than blood does. 
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In spite of its low sensitivity for detecting minimal residual disease, cytogenetics is 

currently a standard tool for monitoring CML patients. Also, cytogenetics can reveal 

karyotypic abnormalities in addition to the Ph chromosome that can arise during disease 

progression.  

 

Fluorescence in situ hybridization (FISH) 

FISH analysis is typically performed by co-hybridization of a BCR and an ABL probe to 

denatured metaphase chromosomes or interphase nuclei. Traditional FISH (also known as 

S-FISH or dual-FISH) is a two-colour technique in which a 5′ BCR fluorescent probe as 

well as a second 3′ ABL fluorescent probe are utilized with contrasting colours to detect 

the position of the respective genes [61]. The random superimposition of fluorescent 

probes in normal interphase nuclei can lead to a false-positive result. The frequency of 

false positivity can be as high as 3-10%, making quantification below 10% unreliable 

[62-64].  

 

Triple probe FISH (or three-colour FISH) increases the sensitivity of the two-probe S-

FISH technique by introducing a third probe that spans the breakpoints in either BCR or 

ABL. Each probe is labelled with a separate, distinct fluorochrome. In the Ph-positive 

cells, in addition to the BCR/ABL fusion signal, the signal from the third probe is lost. 

This two-step verification process allows for an increased sensitivity in the detection of 

Ph-positive cells, with a false-positive rate of 0.065-0.27% [65, 66]. 

  

Double FISH (or D-FISH) utilizes four probes. Except those two used in S-FISH, that 

bind to the 3′ BCR and the 5′ ABL, respectively. The additional two probes span the 

breakpoints of both chromosomes 9 and 22. In the presence of the BCR-ABL 

translocation, D-FISH yields a double fusion signal because the four probes bind to their 

respective BCR-ABL and ABL-BCR loci (Figure 4). This further reduces the frequency of 

both false-positive and false-negative results compared to S-FISH [62, 67].  
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Figure 4. D-FISH for detection of BCR-ABL fusion in interphase cells. 

FISH detects BCR-ABL in about 95% of CML cases and it detects the approximately 5% 

of cases with masked  translocations that are missed by conventional cytogenetics [68, 

69]. It also detects rare cases with variant breakpoints falling outside the regions covered 

by PCR primers [70-72]. In addition, a FISH study usually analyzes 200 to 500 nuclei. 

Thus, quantification generated by FISH might be more accurate than conventional 

cytogenetics. FISH can also be performed on interphase cells from both peripheral blood 

and bone marrow. Therefore, FISH is another tool that can be routinely used for 

quantification of residual leukemic cells [73-75]. 

 

Quantitative RT-PCR  

A method with high sensitivity is required to monitor patients treated with regimens 

inducing a marked reduction in tumor burden. PCR techniques, such as RT-PCR, 

multiplex PCR and nested-PCR, targeting the BCR-ABL oncogene or onco-mRNA have 

been shown to detect the CML disease with high sensitivity [76]. Over the past decade, 

quantitative RT-PCR (qRT-PCR) assays have been established to measure BCR-ABL 

transcript levels in peripheral blood and bone marrow, which enables monitoring the 

dynamics of residual disease over time [77-81].  
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Figure 5. Real-time PCR with TaqMan® technique. 
The probe consists of two types of fluorophores and is complementary to the template. 
Before the polymerase acts, the quencher (Q) fluorophore (usually a long wavelength 
colored dye, such as red) reduces the fluorescence from the reporter (R) fluorophore 
(usually a short wavelength colored dye, such as green). This procedure that one dye is 
inhibited by another without emission of a proton terms fluorescence resonance energy 
transfer (FRET). After denaturation, the primers and the probe anneal to the single 
strand template. During the elongation, Taq polymerase reaches the probe and its 
exonuclease activity separates the quencher from the reporter, which allows the reporter 
to emit its light that can be quantified.  
 

The most common qRT-PCR technique for monitoring CML makes use of sequence-

specific probes, e.g. TaqMan® single exonuclease hydrolysis probe. The probe, with 

sequence complementary to BCR-ABL cDNA, is dual-labeled. One fluorophore serves as 

reporter and its emission spectra is inhibited by the second fluorophore (quencher). 

Specifically binding to the BCR-ABL template, the probe is cleaved by the exonuclease 

activity of Taq polymerase during PCR reaction, which separates the reporter and the 

quencher, and results in a detectable fluorescent emission (Figure 5). During the ongoing 
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PCR reaction, the fluorescence intensity increases parallel with the amount of the PCR 

product and can be detected in real time [81]. 

 

The transcript level reflects the number of leukemic cells in the blood and marrow, and 

can be used as a reliable measure of the response to therapies. The clinical usefulness of 

BCR-ABL quantitation by qRT-PCR has been demonstrated in several studies. Early 

reduction of BCR-ABL transcript levels predicts cytogenetic response in CP CML patients 

treated with imatinib and the degree of reduction of BCR-ABL correlates with prognosis 

[82-84].  

 

Treatment of CML 

Conventional treatment before the imatinib era 

Standard treatment options for CML patients in CP, before the imatinib era were 

cytoreductive chemotherapies, INF-α and allogeneic stem cell transplantation. 

Chemotherapies, as hydroxyurea and busulfan, can effectively reduce the tumor burden. 

However, cytogenetic response is rare, and these drugs can hardly modify the natural 

history of CML [85].  

 

IFN-α is a member of glycoprotein family, which has antiviral and antiproliferative 

properties. IFN-α was first shown to be an active agent in CML in the early 1980s, and it 

became the non-transplant treatment of choice for CP CML patients [86]. IFN-α has been 

shown to increase survival when administered in CP. While hematologic responses are 

seen in the majority (80%) of patients, cytogenetic responses are seen in only 30-50% of 

patients, with complete cytogenetic responses (CCgR) in only 10-20% of IFN-treated 

patients [87-89]. Unfortunately, many patients tolerate IFN-α poorly, necessitating dose 

reduction or discontinuation of treatment.  

 

Currently, the only curative approach for CML is allogeneic stem cell transplantation. 

The outcome of this procedure depends on a series of risk factors, the most important of 

which are the patient’s age and the phase of the disease [57]. For young (age <40 years) 

CP patients undergoing HLA-matched transplants within 1 years from diagnosis, long-
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term survival rates are reported to be 70-80% [90]. With advances in molecular HLA-

typing, improvements in infection control and graft versus host disease prophylaxis, 

outcomes for related and unrelated donor transplants appear similar [91]. Unfortunately, 

up to one third of CML patients are over the age of 60, for whom the allogeneic stem cell 

transplantation usually is not feasible, because of the high risk of treatment-related 

mortality. Donor availability is another obstacle. Therefore, for many patients with CML, 

stem cell transplantation is not an option. 

 

Imatinib and its advantages 

As the BCR-ABL tyrosine kinase plays a key roll in CML pathogenesis, attempts to 

target the BCR-ABL tyrosine kinase evolved as new therapeutic strategies. The 

antecessor of imatinib was initially developed, by scientists at Ciba-Geigy (currently 

Novartis, Basel, Switzerland), as a specific platelet-derived growth factor receptor 

(PDGFR) inhibitor. It was also found to be a potent ABL tyrosine kinase inhibitor [92]. 

Further optimized for v-ABL tyrosine kinase inhibition, imatinib mesylate was generated 

[93, 94]. Imatinib selectively inhibits ABL tyrosine kinase, including BCR-ABL [94, 95]. 

Further studies revealed that a limited number of other tyrosine kinases are also targeted 

by imatinib, including PDGFR [96], c-KIT [97] and ARG [98]. Preclinical studies 

showed that imatinib selectively inhibits the proliferation of cell lines holding p210BCR-

ABL and the clonal growth of myeloid cells from CML patients [99, 100]. It was also 

shown in mice models that imatinib had in vivo activity against BCR-ABL positive cells 

and that continuous exposure to imatinib was necessary to eradicate the tumors, 

suggesting this would be important for an optimal antileukemic effect [99, 101]. Prior to 

clinical testing, imatinib was shown to have an acceptable toxicology profile in animal 

models. 

 

A phase I clinical trial with imatinib started in June 1998, in CP CML patients refractory 

or resistant to IFN-based therapies. Targeting a dose of 300 mg or greater, 53 of 54 

patients on treatment for at least 4 weeks had complete hematologic response (CHR); 

cytogenetic responses were seen within 5 months in 29 patients including 17 with major 

cytogenetic response (MCgR; <35% Ph-positive metaphases) and 7 with CCgR (no Ph-
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positive metaphases). Side-effects, such as nausea, myalgias and edema, were 

manageable. Thrombocytopenia and neutropenia occurred in 16% and 14% of the 

patients treated, respectively. Pharmacokinetic studies showed that the half-life of 

imatinib was 13-16 hours, which is sufficiently long to permit one daily dosing [102]. 

Although the follow-up on this group of patients was relatively short, these data indicated 

that an ABL specific tyrosine kinase inhibitor had significant activity in CML, even in 

IFN refractory patients. This trial also demonstrated the essential role of BCR-ABL 

tyrosine kinase activity in CML and provided an example of successful drug development 

based on a specific molecular abnormality present in a human malignancy. 

 

Based on these extremely promising results, the phase I study was expanded to patients 

with myeloid and lymphoid blast crisis of CML and patients with relapsed or refractory 

Ph-positive ALL [103]. Although a satisfying frequency of hematologic responses was 

seen, most patients relapsed within weeks to months. Thus, imatinib had remarkable 

single agent activity in CML BC and Ph-positive ALL, but responses were not durable. 

However, these studies demonstrated that in the majority of cases, the leukemic clone in 

BCR-ABL positive acute leukemias, including CML blast crisis, remains at least partially 

dependent on BCR-ABL kinase activity for survival. 

 

The success of imatinib treatment in CP CML patients in phase I studies led to large-scale 

phase II and phase III studies. Phase II studies began in late 1999 using imatinib as a 

single agent for all stages of CML. For patients in BC and with Ph-positive ALL, these 

studies confirmed the results of the phase I trials [104, 105]. Patients in CP who had 

failed IFN-α therapy did much better than expected: 95% of those patients treated with 

400 mg imatinib daily achieved a CHR and 60% achieved a MCgR [106]. As expected, 

the efficacy in patients with AP was intermediate between CP and BC [107].  

 

Imatinib and the combination of IFN-α plus cytarabine were compared in the 

international randomised study of interferon versus STI-571 (IRIS), which rapidly 

showed that imatinib was superior compared to IFN-α [108]. The five-year follow-up 

data of the IRIS trial showed that, at 60 months of imatinib treatment, 98% have achieved 
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CHR and 87% CCgR. The event-free survival was 83%, and the overall survival is 89% 

at five years [109]. These good responses could be further stratified by qRT-PCR and 

those with the best molecular response, i.e. at least a 3 log reduction in the BCR-ABL 

transcript number at 12 months, had negligible risk of disease progression [110]. 

 

Some concerns with imatinib remain 

(i) Molecular persistence  

Although approximately 80% of previously untreated CP patients can be expected to 

achieve CCgR, a majority of  patients remain durably positive when tested by qRT-PCR 

for BCR-ABL transcripts [110], i.e. they have a persisting minimal residual disease. Even 

those who have undetectable BCR-ABL transcripts, may still harbor as many as 107 

leukemic cells in their bodies [111], and there is a high likelihood for relapse if the drug 

is stopped [112, 113]. Bone marrow studies have shown that the residual Ph-positive cells 

are part of the leukemic stem cell compartment [114, 115]. Studies performed in vitro 

suggest that many primitive Philadelphia-positive progenitor or stem cells are relatively 

insensitive to imatinib [116]. These different lines of evidence suggest that imatinib, 

although being highly active against the differentiated mass of CML cells, probably fails 

to eradicate leukemic stem cells.  

 

The cancer stem cell hypothesis postulates that a very rare population of cells within 

tumors have the capacity for limitless self-renewal [117]. This theory is exemplified by 

the following model in CML [118]. In CML, the leukemic stem cells can be considered 

quiescent, spending most of their time in G0. Under certain circumstances, leukemic stem 

cells can enter cell cycle and give rise to progenitors, which produce differentiated 

leukemic cells. Thus, the disease relapses [117, 119, 120]. Expansion of Ph-positive 

progenitors is inhibited by imatinib [99] and life-long imatinib therapy is likely required 

to continuously suppress the remaining leukemic cells in CML patients, even in the best 

responders. Development of treatment targeting these quiescent stem cells, e.g. 

immunotherapy, is a challenge in CML.  
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(ii) Resistance 

Although imatinib induces a high frequency of satisfactory responses, primary and 

acquired resistance can be seen in all stages of CML. Resistance to imatinib is 

multifaceted. Various definitions of resistance have been used in previous published 

studies. Generally, there are two types of resistance, primary and acquired. Primary 

resistance may be defined at the hematologic, cytogenetic or molecular levels. Acquired 

resistance can be defined as: (i) progression into AP or BC; (ii) loss of a sustained CHR 

or cytogenetic response; (iii) a 5- to 10-fold rise in BCR-ABL transcript number [121].  

 

The mechanism of resistance has been intensively studied in the recent five years. 

However, the mechanism of primary resistance is still mainly unsolved. In general, there 

are two possible categories of the molecular mechanisms of imatinib resistance, i.e. BCR-

ABL independent and BCR-ABL dependent [122]. In the first category, secondary 

oncogenic changes can occur in the leukemic cells and render the cell proliferation 

independent of BCR-ABL. In this scenario, BCR-ABL is no longer a relevant target and 

even the most ideal BCR-ABL inhibitor would be ineffective in this setting. However, 

this BCR-ABL-independent mechanisms may be rare events, especially in CP CML 

[123].  

 

In the second, BCR-ABL-dependent category, something has changed in either the 

patient (host-mediated) or the leukemic clone (cell-intrinsic) that prevents the drug from 

effectively shutting down the target BCR-ABL protein. Host-mediated resistance can 

occur through enzymatic modification of imatinib by a P450 enzyme in the liver or by 

production of a protein that neutralizes drug activity, such as alpha-1 acid glycoprotein 

[124-126]. Cell-intrinsic resistance could occur by modification of the target BCR-ABL 

tyrosine kinase through gene amplification or BCR-ABL kinase domain mutations, or by a 

reduction of intracellular drug concentration through overexpression of multidrug 

resistance genes. Among these mechanisms, the BCR-ABL kinase domain mutations are 

the most studied. 
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The first reported mutation mediating resistance was T334I (T315I in the type 1a 

numbering scheme originally used) [127]. To date, more than 50 different BCR-ABL 

kinase domain mutations have been found to be associated with imatinib resistance [128-

131]. A point mutation in BCR-ABL kinase domain can cause an amino acid change, 

which impairs the critical contact points of imatinib binding or alters the conformation of 

the protein. Regarding the three dimensional distribution, the BCR-ABL kinase mutations 

cluster into four main groups. The first group (G250E, Q252H, Y253F and E255K) 

includes the corresponding amino acids in the nucleotide-binding loop for ATP, also 

known as the p-loop [128, 132, 133]. The second group of mutations locates in the 

imatinib-binding site and directly interacts with the drug via a hydrogen bond (T315I) 

and Van der Waals’ interactions (V289A, T315I and F317L) [127, 128]. The third group 

of mutations (M388L and H396P) is found in the activation loop (A-loop) [132]. These 

mutations result in a transition of the protein from inactive conformation to active 

conformation to which imatinib can not bind [134]. The fourth group includes amino 

acids distant from the imatinib binding site [128, 131], which form a hydrophobic patch 

between helices E, F and I in the C-terminal lobe of the enzyme, highly conserved region 

within the tyrosine kinase family [128, 135]. The kinase activity is not abrogated by these 

mutations. However, some mutants have enzymatic activity lower than that of wild-type 

BCR-ABL [136]. Also, the p-loop mutations are considered to bear a poor prognosis 

[128]. Despite their different locations, several mutants, such as T315I and E255K, are 

completely insensitive to imatinib at clinically achievable doses, whereas others, such as 

M351T and Y253F retain intermediate levels of sensitivity to imatinib [130]. 

 

“Off-target” effects of imatinib 

Besides the BCR-ABL protein, imatinib also target ABL, ARG, PDGFRα and β, and c-

KIT. These tyrosine kinases are involved in many signaling pathways crucial for basic 

cellular processes. For instance, the transmembrane receptor tyrosine kinase c-KIT plays 

a crucial role in the development of various cell types including hematopoietic cells, 

germ cells, neuronal cells, melanocytes and intestinal pacemaker cells [137, 138]. It also 

regulates the proliferation and differentiation of early T-cell progenitors [139]. ABL and 

ARG (also known as ABL1 and ABL2) are indispensable in the regulation of cell 
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proliferation and survival, cytoskeletal reorganization, cell migration, and the response to 

oxidative stress and DNA damage [140]. PDGFR has been shown to be important for the 

ex vivo expansion of normal early stem and progenitor cells [141]. Thus, inhibition of 

these tyrosine kinases may lead to alterations of the normal cell function.  

 

Recently “off-target” effects of imatinib have been recognized, such as a reversible and 

dose-dependent lymphocytopenia and hypogammaglobulinemia [142], changes of serum 

phosphate levels [143], immunosuppression [102, 106, 144] and inducing apoptosis of 

cardiomyocytes [145]. Moreover, inhibitory and antiproliferative effects of imatinib on 

different compartments of the normal hematopoietic hierarchy have been reported. 

Imatinib impairs the function of hematopoietic stem cells [104, 106, 146] and CD34+ 

peripheral blood progenitor cells [147], which might in part explain the mild 

myelosuppression that is seen during imatinib treatment. Imatinib has also been shown to 

deregulate the function of monocyte-derived dendritic cells [148] and monocytes [149], 

and to inhibit both CD4+ and CD8+ T-cell proliferation and activation [150-152]. 

However, most of these results have been obtained from in vitro studies or animal 

models. The effect on the immune system of therapeutic doses of imatinib and its 

mechanism in vivo is still unclear.  

 

Regulation of T-cell apoptosis is critical for lymphocyte homeostasis and immune 

functions. During an adaptive immune response, naïve and memory T-cells proliferate 

and fulfill their effector function. This expansion is followed by a contraction phase in 

which the number of T-cells declines and reaches normal levels. This process is highly 

regulated and requires a switch from an apoptosis-resistant towards an apoptosis-sensitive 

state [153]. T-cell homeostasis is basically controlled by two separate apoptosis 

pathways: activation-induced cell death (AICD) [154] and activated T-cell autonomous 

death (ACAD) [155]. Preactivated and expanded T-lymphocytes, which receive a 

restimulation via their T-cell receptor (TCR) undergo AICD involving death receptors, 

e.g. CD95 (Apo-1/Fas) [156, 157]. This extrinsic death pathway is crucial for AICD. In 

ACAD, where T-cells undergo apoptosis without TCR restimulation, cell death is 

determined by the ratio between anti- and pro-apoptotic BCL-2 family members [158, 
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159]. This intrinsic death pathway is critical for ACAD. Too little cell death of activated 

lymphocytes can result in autoimmune disorders and too much cell death can lead to 

immunodeficiency. Several factors control the shift between apoptosis resistance and 

sensitivity in T-cells: (i) cytokines, (ii) death receptors, (iii) mitochondria and BCL-2 

proteins, (iv) NF- B and MAPK signaling, (v) hematopoietic progenitor kinase 1 

(HPK1)/HPK1 C-terminal cleavage fragment (HPK1-C), and (vi) lysosomes (Figure 6). 

Recently, an immunosuppressive effect of imatinib has been suggested. However, if this 

effect is mediated by imatinib induced alteration of apoptosis is unresolved. 

Apoptosis
resistant T-cells

Apoptosis
sensitive T-cells

Cytokines

Death receptors

Mitochondrias

BCL-2 proteins

NFκB/MAPK

HPK1/HPK1-C

Lysosomes

Figure 6. T-lymphocytes can switch between life and death. 
Apoptosis resistance and apoptosis sensitivity of T-cells is controlled at several levels of 
cellular decision making.
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AIMS OF THE STUDY 

 
The objective of the present thesis was to study the following aspects of CML:  

 

(i) To compare the results of qRT-PCR for BCR-ABL transcript quantification 

and conventional cytogenetics in CML patients commencing imatinib 

treatment.  

 

(ii) To evaluate the prognostic value of measuring the expression of five different 

members of the BCL-2 family in CML.  

 

(iii) To study the frequency of BCR-ABL kinase domain mutations in CML.  

 

(iv) To study the effect of imatinib on “normal” T-lymphocytes in vivo.  
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MATERIALS AND METHODS 

Statement of official approval 

All studies were approved by the Regional Ethics Committee, Göteborg University, 

Göteborg, Sweden. Informed consents were obtained from all patients and healthy 

volunteers.  
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Figure 7. Monitoring of CML patients treated with imatinib.  
BM: bone marrow, PB: peripheral blood, M: morphologic evaluation of bone marrow 
smears, K: metaphase karyotyping, F: FISH and Q: qRT-PCR. 

 

The diagnosis of CML was confirmed prior to imatinib treatment by morphologic review 

of peripheral blood and bone marrow, and by documentation of the presence of the BCR-

ABL fusion gene using conventional metaphase cytogenetic analysis or molecular studies. 
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The patients were treated with imatinib targeting a dose of 400 mg/day for CP, 600 

mg/day for AP and 800 mg/day for BC. The patients were routinely monitored every 

three months by morphologic evaluation of bone marrow smears, metaphase karyotyping 

and/or FISH and qRT-PCR analysis of BCR-ABL transcripts on peripheral blood and/or 

bone marrow specimens (Figure 7).  

 

Healthy volunteers were included in Paper II and IV. In paper IV, the healthy individuals 

were age and gender matched to the CML patients. 

 

Morphologic review 

Peripheral blood smears were evaluated for basophilia, the presence of myeloid 

precursors, and immature cells. Wright-stained bone marrow smears were used to 

calculate a myeloid-to-erythroid cellular ratio, and to evaluate the total myeloid and 

erythroid cell compartments. 

 

Cytogenetic analysis 

Cytogenetic studies were performed on 24 hours or 48 hours bone marrow cell culture, 

using standard methods for preparation and G-banding. Chromosome identification and 

karyotype designation were made according to the International System for Human 

Cytogenetic Nomenclature [160]. The number of metaphases analyzed on each specimen 

varied from 16 to 30. Cytogenetic responses were defined using standard criteria [103, 

161]: no Ph-positive metaphases = complete cytogenetic response (CCgR), 1-35% Ph-

positive metaphases = partial cytogenetic response, 36-65% positive metaphases = minor 

cytogenetic response, 66%-95% Ph-positive metaphases = minimal cytogenetic response 

and above 95% Ph-positive metaphases= no cytogenetic response. 

 

Cell preparation 

The nucleated cell fraction was used in Paper I-IV and purified CD3+ T-cells were used 

in Paper IV. The nucleated cell fraction was isolated from EDTA-anticoagulated whole 

blood and/or bone marrow aspirates, by lysis of erythrocytes and pelleting the remaining 

cells by centrifugation. 
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Peripheral blood mononuclear cells (PBMCs) were isolated from EDTA-anticoagulated 

whole blood by Ficoll™ (GE Healthcare Bio-Sciences, Uppsala, Sweden) density 

gradient centrifugation. After removal of the CD14+ monocytes, CD3+ T-cells were 

purified from the isolated PBMC using immunomagnetic cell sorting (MACS™, Miltenyi 

Biotec, Bergisch Gladhach, Germany). The purity of the isolated T-cells was confirmed 

by fluorescence-activated cell sorting (FACS) analysis and was in mean 96.2% (Paper 

IV). 

 

RNA isolation and reverse transcription 

Messenger RNA was used in Paper I-III and total RNA was used in Paper IV. Messenger 

RNA was extracted from 105 nucleated cells using an automated poly-A RNA 

purification method, GenoM-48 Robotic Workstation (GenoVision, Oslo, Norway), 

according to the manufacturer’s standard protocol. Total RNA was isolated from 2-4×106 

purified CD3+ T-cells using RNeasy® Mini Kit (Qiagen, Solna, Sweden). The RNA 

quality and concentration were determined using the NanoDrop spectrophotometer 

(NanoDrop, Wilmington, USA). Complementary DNA (cDNA) was generated by reverse 

transcriptase (RT) with random primers (Hexanucleotidemix, Roche, Sweden) using the 

Superscript II enzyme (Invitrogen, Stockholm, Sweden). The RT was optimized to obtain 

the maximal and parallel reaction efficiency. The cDNA was stored at -20°C. 

 

Quantitative PCR 

Generally, the real-time PCR to quantify the target gene expression was based on 

TaqMan® technique. All samples were analyzed in duplicate. Absolute quantification 

was used in Paper I-III. BCR-ABL cDNA (Paper I-III) was quantified using self-designed 

primers and TaqMan® probe. Both GAPDH and ABL served as reference genes. In paper 

II, self-designed assays were used to quantify the apoptosis-related genes, BCL-2, BAX, 

BCL-XL, BAD and BCL-XS , together with GAPDH as reference gene. For these assays, 

plasmids containing the target genes in serial dilutions were used to construct the 

respective calibration curves. Using the cycle threshold (Ct) value obtained from the real-

time PCR, the copy numbers of individual genes were calculated from the respective 

calibration curves. The estimated amount of target gene was the quote between target 
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gene copies and reference gene copies. Duplicate samples of calibrators were included in 

every reaction to measure the reliability and variability of the assays.  

 

Relative quantification was used in Paper IV. Commercial available TaqMan® Gene 

Expression Assay for GAPDH (Applied Biosystems, Stockholm, Sweden) was used to 

optimize and validate the efficiency of RT and real-time PCR. Apoptosis related gene 

expression was determined by TaqMan® Low Density Array (LDA) human apoptosis 

panel (Applied Biosystems, Stockholm, Sweden). This array was designed to quantify the 

expression of 93 genes involved in the apoptosis pathways and three reference genes 

(18S, actin-β and GAPDH). Complementary DNA from one patient and the age and 

gender matched control was loaded in duplicate on one array card and was analyzed by 

the Applied Biosystems ABI prism 7900HT real-time PCR system equipped with a 

TaqMan® LDA upgrade (Applied Biosystems, Foster City, CA, USA), according to the 

manufacturer’s instruction. Gene expression levels were calculated based on the ΔΔCt 

method. Briefly, every target gene expression in every patient or control was calculated as 

ΔCt=Ct target gene -Ct reference gene. For an individual target gene, the difference in ΔCt between 

the patient and his paired control was calculated as ΔΔCt= ΔCt patient -ΔCt control. Setting the 

target gene expression level as one in the control, the relative quantities in patients were 

determined using the equation: relative quantity=2-ΔΔCt, i.e. fold change in patients 

compared to controls. 

 

Sequencing of BCR-ABL kinase domain 

Analysis of mutations was performed using a method modified from Shah et al [131]. 

The BCR-ABL kinase domain was amplified using a two-step RT-PCR procedure. With 

cDNA as template, and forward and reverse primers located in BCR exon b2 and ABL 

exon 9, respectively, the first PCR step generated a 1.3 kb fragment containing BCR-ABL 

junction and ABL kinase domain. In the second PCR step, using a forward primer 

annealing in ABL exon 4 and the same reverse primer as in the first step, an 858 bp 

fragment was generated. After purification, the 858 bp fragment was sequenced in the 

forward and reverse direction using BigDye Terminator Cycle Sequencing Ready 

Reaction Kit version 3.1 (Applied Biosystems, Stockholm, Sweden) and ABI Prism 3100 
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Genetic Analyzer system (Applied Biosystems, Foster City, CA, USA). Using GenBank 

accession No. M14752 as reference, sequences were aligned and analyzed with the 

CodonCode sequence analysis software (CodonCode, Corporation, Dedham, MA, USA). 

From subcloning experiment it was estimated that this assay will reveal mutant clones 

once they represent more than 20%-30% of the leukemic clones.  

 

Flow cytometry 

A 6-colour FACS analysis was used to study the surface expression of receptors and 

activation markers on T-lymphocyte (Paper IV). The following fluorochrome conjugated 

monoclonal antibodies (MoAbs): CD3-PerCP, CD4-FITC, CD16-PE-Cy7, CD28-APC 

and CD8-APC-Cy7 (all from BD Bioscience, Stockholm, Sweden), were used to quantify 

lymphocyte subsets, i.e. T-lymphocytes (CD3+), T-helper lymphocytes 

(CD3+CD4+CD28+), cytotoxic T-lymphocytes (CD3+CD8+CD28+) [162], suppressor 

T-lymphocytes (CD3+CD8+CD28-) [163] and natural killer cells (NK; CD3-CD16+). 

The lymphocyte phenotype was studied using the following MoAbs: CD140-PE 

(PDGFRβ), CD95-PE (FAS; TNF receptor superfamily, member 6), CD69-PD (T-cell 

activation antigen), CD49d-PE (VLA-4; integrin alpha 4 chain of the adhesion receptor), 

CD25-PE (IL-2 receptor α), CD158a-PE (KIR2DL1; killer cell immunoglobin-like 

receptor, two domains, long cytoplasmic tail, 1), CD158b-PE (KIR2DL2/DL3), NKB1-

PE (KIR3DL1; killer cell immunoglobin-like receptor, three domains, long cytoplasmic 

tail, 1), CD94-PE (NK cell receptors for MHC class I), CD184-PE (CXCR4; chemokine 

(C-X-C motif) receptor 4), CCR4-PE (chemokine (C-C motif) receptor 4), CCR6-PE 

(chemokine (C-C motif) receptor 6) (all from BD Bioscience, Stockholm, Sweden) and 

CX3CR1-PE (chemokine (C-X3-C motif) receptor1) (Nordic Bio-Site, Stockholm, 

Sweden).  

 

Peripheral blood nucleated cells were prepared from EDTA-anticoagulated whole blood 

after removal of red cells by lysis. 5-10×105 nucleated cells, in a volume of 100 µl, were 

incubated with 6 different fluorochrome-conjugated MoAbs at 4°C in dark for 15 min. 

Thereafter, the cells were washed once and resuspended in 0.5 ml 0.01M phosphate 

buffered saline. The expression of cell surface antigens was assessed using flow 

 35



cytometry (FACSCanto, BD Bioscience, San Jose, CA, USA) and the BD FACSDiva™ 

software (BD Bioscience, San Jose, CA, USA). The quantity of lymphocyte subsets was 

presented as percentage and the expression of cell surface antigens was presented as 

median fluorescence intensity (MFI). 

 

Statistical analysis 

The statistical analysis was performed using SPSS 11.0 software (SPSS, Inc., Chicago, 

IL, USA). Differences between groups were evaluated by Student’s t-test, Mann-Whitney 

U-test and Wilcoxon signed rank test, where appropriate. Logistic regression analysis was 

used in Paper II. The aim of the regression model was to establish an equation which can 

predict the molecular response. Briefly, the analysis was undertaken by including 

candidate variables one by one into the equation. The accuracy of the prediction was 

determined after each step, i.e. forward stepwise. If inclusion of a variable in the equation 

can change the accuracy of the prediction significantly, the variable was kept in the 

equation in the following steps; otherwise, it was removed from the equation. The 

statistical model is demonstrated in Figure 8. 
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Figure 8. Flow chart of the logistic regression model used in Paper II. 
The aim of the regression model is to establish an equation which can predict the 
molecular response at 12 months of imatinib therapy. The dependent which is the 
molecular response at 12 months of imatinib treatment, is a binary categorical variable, 
i.e. good or poor responders. The covariates are the candidate variables. The analysis 
will identify which of the candidate variables that can be included in the equation of 
prediction. The first step is to set the baseline by including no covariates in the model and 
set all patients as good responders. The regression starts with the BCR-ABL in the 
equation but there is no significant difference in the accuracy of prediction. Thus, BCR-
ABL is removed from the equation. In the next step, BCL-XL was included, which 
significantly changes the accuracy of prediction. Therefore, BCL-XL is kept in the 
equation. In this way, the factors having significant impact on the molecular response at 
12 months of imatinib therapy were identified.  
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RESULTS AND DISCUSSION 

 
1. Quantitative RT-PCR is a useful and reliable method to monitor CML patients 

treated with imatinib (Paper I) 

We established a qRT-PCR method to detect BCR-ABL transcripts in CP CML patients 

treated with imatinib. The detection limit of the method corresponded to five copies of 

the BCR-ABL plasmid or one K562 cell. After CCgR was obtained, BCR-ABL transcript 

could still be detected by qRT-PCR. The BCR-ABL transcript number analyzed by qRT-

PCR showed a significant correlation with the number of Ph-positive metaphases 

detected by cytogenetic analysis (r=0.7; p<0.001). There was also a highly significant 

correlation between the BCR-ABL/GAPDH ratios obtained in peripheral blood and bone 

marrow (r=0.9; p<0.001), implying that peripheral blood specimens are as reliable as 

bone marrow specimens, for quantification of the leukemia burden. Therefore, unlike 

conventional cytogenetics which requires “bone marrow” cells, it is an easier and more 

convenient technique for frequent monitoring.  

 

Several other qualitative or semi-quantitative RT-PCR assays for BCR-ABL transcripts 

quantification have been shown to be equally sensitive in peripheral blood and bone 

marrow [75, 164, 165]. However, these techniques are more labor intensive compared to 

the real-time RT-PCR assays. Although, the reagents for qRT-PCR are more expensive 

than for cytogenetics and the other RT-PCR assays, the total cost is lower if the labor cost 

is accounted for [166].  

 

A generally accepted qRT-PCR protocol, for quantification of BCR-ABL transcripts, has 

not been agreed on, and there is a variation in results reported from different laboratories 

using these assays. Efforts have been made by European Against Cancer program [167, 

168] and by Hughes et al [169], to standardize the protocol. In these reports ABL was 

recommended as a reference gene. Also, the validity of GAPDH as a reference gene has 

been questioned because of inconsistent mRNA levels [170] and the existence of 

pseudogenes [168]. In our study, we analyzed the GAPDH and ABL expression in 40 

blood samples from healthy individuals and 22 blood samples from CML patients. No 
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significant differences were seen between the healthy individuals and the CML patients 

as regards ABL/GAPDH and GAPDH/ABL quotes. A significant correlation was found 

between the GAPDH Ct value and the ABL Ct value obtained on the same sample 

(r=0.84; p<0.01), suggesting that these genes are expressed in parallel and that GAPDH 

should perform as well as ABL as reference gene. 

 

Although the sensitivity of cytogenetic analysis is not as good as that of qRT-PCR, 

cytogenetics can reveal other cytogenetic abnormalities in addition to the Ph chromosome 

and warn for disease progression. In our cytogenetic analyses, we found losses of 

chromosomes both before and during imatinib therapy. Most interestingly, a Ph-negative 

clone with an extra chromosome 8 (trisomy 8) evolved in two patients, after 9 and 15 

months of imatinib therapy, respectively. The clinical significance of this additional 

cytogenetic abnormality, in Ph-negative cells, is still unresolved. Thus, cytogenetics still 

plays an important role in diagnosis and monitoring of CML patients and can not be fully 

substituted by qRT-PCR. 

 

2. Dynamics of BCR-ABL in CML patients treated with imatinib (Paper I) 

After 3 months of imatinib treatment, 16 out of the 17 CML patients studied in Paper I 

had obtained CHR (Figure 9) and there was no morphologic evidence of CML, with 

normal or slightly decreased cellularity in bone marrow.  

 

The serial BCR-ABL/GAPDH ratios obtained by qRT-PCR analysis on peripheral blood 

samples collected every three months are presented in Figure 10. The major decline in 

BCR-ABL/GAPDH ratio occurred within 6 months after start of imatinib therapy. 

Thereafter, the decline in BCR-ABL/GAPDH ratio levelled off and an apparent plateau 

was obtained after 12-15 months. There was no significant difference (p=0.1) between 

the mean BCR-ABL/GAPDH ratios obtained at 15 and 30 months of imatinib therapy, 

19.1±14.5 and 11.2±10.0, respectively (Figure 10). 

 

The molecular plateau represents the residual BCR-ABL positive cells. According to the 

stem cell theory, the plateau might represent the leukemic stem cell compartment [118]. It 
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can be hypothesized that these cells are not in the cell cycles and will not be eliminated 

by imatinib treatment. Therefore, they might be the origin of relapse if imatinib treatment 

is discontinued. 
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Figure 9. Peripheral blood counts in CP CML patients treated with imatinib 
 

 40



Time (months)

0 5 10 15 20 25 30 35

BC
R

-A
BL

/G
AP

D
H

-r
at

io
no

rm
al

iz
ed

 to
 b

as
el

in
e 

(%
)

0

50

100

150

200

 

Figure 10. The results for serial measurements of BCR-ABL/GAPDH ratio in 
peripheral blood for 17 CML patients treated with imatinib.  

The results for individual patients were normalized to their baseline value, i.e., the value 
recorded immediately before start of imatinib therapy. The main reduction in BCR-ABL 
transcripts occurred within the first 6 months of imatinib treatment. After 12 to 15 
months of imatinib treatment, an obvious plateau was achieved with small fluctuations. 
 

3. Clinical significance of monitoring CML by qRT-PCR (Paper I) 

A high frequency of CCgR is obtained in imatinib treated CML patients, but most of 

them remain qRT-PCR positive. Our data showed that the BCR-ABL/GAPDH ratio can 

vary with 3-log (base 10) magnitude when a CCgR is obtained, indicating that the 

patients should be further stratified by qRT-PCR. The ultimate objective of CML 

treatment must be to eradicate the disease and to achieve a sustained “molecular 

remission”. A major molecular response means ≥3-log reduction in BCR-ABL transcript 

number compared to a standardized pre-treatment baseline value [110]. Obtaining a 

major molecular response appears to bear prognostic information. In the IRIS study, in 

patients who had a CCgR and a reduction in transcript number of at least 3 log (base 10) 
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at 12 months, the probability of remaining progression-free was 100 percent at 24 

months, as compared to 95 percent for patients with a reduction less than 3 log and 85 

percent for patients who were not in CCgR at 12 months (P<0.001) [110].  

 

Also, in our patients with an “apparent molecular plateau” small changes in BCR-ABL 

transcript numbers, but without other signs of disease relapse, were frequently observed 

upon serial measurements. This finding corroborates Goldman and co-workers criteria for 

loss of response to imatinib [171]. They proposed that an increase in BCR-ABL/ABL ratio 

of 1 log or more on serial testing, or a BCR-ABL/ABL ratio that rises into the range 

associated with Ph-positivity, should be considered as a loss of response. However, 

Branford et al reported that a rise in BCR-ABL of more than 2-fold can be used as an 

indicator to test patients for BCR-ABL kinase domain mutations [172]. These diverging 

results are most likely explained by differences in laboratory practice, and emphasize the 

need for standardization.  

 

A baseline value for BCR-ABL transcript number is required for adequate monitoring of 

the disease and for evaluation of the response to imatinib. In the IRIS study, a 

standardized baseline value was applied to all patients, and the log (base 10) reduction in 

BCR-ABL transcripts was calculated at different time points. Unfortunately, this 

standardized baseline reference is not universally available, and most laboratories can not 

express the results in a way that is fully comparable to the IRIS data. While waiting for 

an international standard, we suggest that the values should be normalized to the 

individual baseline value. However, it has to be taken into account that at baseline, i.e. 

before treatment, there is a 1-log variation in BCR-ABL/GAPDH ratio. 

  

4. Lower BAD expression at diagnosis correlates to better molecular response after 

12 months of imatinib therapy (Paper II) 

We performed a landmark analysis at 12 months of imatinib treatment and divided the 

patients into good and poor molecular responders, based on whether they had a reduction 

of the BCR-ABL transcript number above or below 3 log (base 10) compared to their 

individual baseline value. 
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The good responders had significantly lower BAD expression before commencing 

imatinib therapy compared to patients with a poor molecular response (p=0.02). It 

appears unlikely that differences in cell subsets, i.e. percentage of lymphoid and myeloid 

cells, in the samples from which mRNA was prepared, can account for the difference in 

BAD expression; at diagnosis there were no statistical differences in the mean peripheral 

blood hemoglobin level, total leukocyte count, lymphocyte count, number of immature 

cells and platelet count between the good and poor molecular responders. 

 

To evaluate the association between the apoptosis-related gene expressions before start of 

imatinib therapy, and molecular response at 12 months of imatinib treatment, BCR-ABL 

transcript levels, expression of the BCL-2 family members, baseline clinical features, i.e. 

age, hemoglobin levels, white blood cell counts, platelet counts, and the proportion of 

peripheral basophiles were introduced as continuous variables into a logistic regression 

model. Variables with a p-value <0.1 in the univariate analysis were included in a 

multivariate ‘Wald forward’ regression model. In the univariate model, expression of 

BCL-XL and BAD as well as platelet counts were correlated with the molecular response. 

However, in the multivariate model, only BAD expression had a significant impact on the 

molecular response at 12 months (Table 1). We also introduced the continuous variables 

as categorical variables in a logistic model described by Lange et al [173]. Same result 

was found, i.e. BAD expression level at baseline related to the molecular response seen at 

12 months (p=0.018).  

 

Apoptosis-related genes have previously been successfully used for identification of 

prognostic factors in acute myeloid leukemia (AML) [174] and CML in myeloid BC 

[173]. BAD is a pro-apoptotic protein and the survival function of BCR-ABL oncogene is 

mediated partly by BAD-dependent pathways [175]. Our finding that lower BAD 

expression correlated with a good molecular response is unexpected since one might 

assume the opposite. However, similar results were seen in an AML study, that higher 

BAD expression correlated with negative outcome in AML [174]. These findings can not 

be easily interpreted by the current paradigm. However, the net apoptotic signals 
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delivered by the BCL-2 family depend not only on the relative ratios of pro- and anti-

apoptotic members but also on the degree of phosphorylation of BCL-2 family members 

as well. Further preclinical and clinical studies are required to determine whether 

apoptotic alterations can serve as prognostic markers and if additional targeting of 

apoptotic pathways will be a successful strategy for improving the efficacy of CML 

treatment.  

 

Variables Univarate Multivariate Odds ratio 
BCR-ABL 0.157   
BCL-2 0.146   
BCL-XL 0.085 0.936  
BAX 0.68   
BAD 0.017 0.042 353.5 
BCL-XS 0.238   
Age 0.143   
White blood cell count 0.764   
Platelet count 0.098 0.102  
Peripheral basophil count 0.448   

Table 1. The association between the apoptosis-related gene expressions prior to 
imatinib therapy and molecular response at 12 months of imatinib treatment. 

BCR-ABL transcript levels and expression of the BCL-2 family members were introduced 
as continuous variables into a logistic regression model. Variables with a p-value <0.1 in 
the univariate analysis were included in a multivariate ‘Wald forward’ regression model. 
In the univariate and multivariate models, expression of BAD correlated with the 
molecular response at 12 months. 
 

5. Not all resistance is BCR-ABL kinase domain mutations (Paper III) 

In Paper III, we screened for BCR-ABL kinase domain mutations every 3-6 months from 

start of imatinib treatment in 40 CML patients. Irrespective of disease phase, no BCR-

ABL kinase domain mutation was detected in any sample collected before start of 

imatinib therapy. During imatinib treatment, mutations in BCR-ABL kinase domain were 

found in 2 (7%) of the 30 early-CP patients, 4 (57%) of 7 late-CP patients, and in all 3 

(100%) AP patients. Six different point mutations were detected. Three mutations 

(G250E, Y253H and E255K) clustered in the p-loop, one mutation (T315I) was located in 

the imatinib binding site, one mutation (E355K) was located in the activation loop, and 
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one mutation (E450G) was located in the C-terminal part of the kinase domain. The 

E450G was the most frequently observed mutation, detected in 4 of our 40 patients. 

  

Four of the 30 early-CP patients had a primary cytogenetic resistance, defined as failure 

to achieve at least a minimal cytogenetic response at 6 months or a MCgR at 12 months, 

and none of them displayed any BCR-ABL kinase domain mutation up to 12 months after 

start of imatinib therapy. Also, none of the patients with molecular disease persistence, 

detectable only by qRT-PCR but without other signs of imatinib resistance, had any 

kinase domain mutation at 12 months. These patients have been followed with mutation 

screening every six months and no mutations have evolved during a median follow-up of 

31 months (range from 12 to 59 months). Conversely, acquired imatinib resistance is 

frequently associated by mutations. Three of our 30 patients treated in early-CP lost an 

earlier obtained MCgR or CHR. Two of these patients were found to bear kinase domain 

mutations at the time of resistance detection; in one them the mutation was discernible in 

a sample collected 3 months prior to clinical signs for imatinib resistance. Furthermore, 8 

out of our 40 patients developed an acquired imatinib resistance, either hematologic 

resistance (n=6), defined as loss of CHR or transformation into BC, or cytogenetic 

resistance (n=2), defined as loss of MCgR or CCgR. BCR-ABL kinase domain mutations 

were found in 6 of them.  

 

The degree of response to imatinib therapy in CML seems to be the best predictor of 

prognosis [110]. Monitoring for unsatisfactory response has therefore become routine to 

identify patients at risk of disease progression. Such imatinib resistance can either be 

primary or acquired. Our results suggest that primary cytogenetic resistance or molecular 

persistence, in an otherwise stable disease, is rarely caused by point mutations in the 

BCR-ABL kinase domain. In contrast, we found point mutations in the majority of cases 

with acquired resistance.  

 

 

6. Clinical significance of mutation screening 
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There is evidence in the majority of patients with acquired resistance of either increased 

expression of BCR-ABL or, more frequently, mutations in the kinase domain of BCR-ABL. 

The resistance caused by some mutants, such as M351T or Y253F, can be overcome by 

dose increase of imatinib, whereas other mutants, such as T315I and E255K, are 

insensitive to imatinib at clinically achievable doses [130]. Today, alternative ABL 

inhibitors that have higher potency or capture additional conformations of the ABL 

kinase have become available. Two of these compounds, Sprycel® (BMS-354825, 

dasatinib, Bristol-Myers Squibb, New York City, NY, USA) and Tasigna® (AMN107, 

Nilotinib, Novartis, Basel, Switzerland), have passed phase I trials and phase II trials are 

still ongoing [176-180]. Both compounds demonstrate very encouraging clinical activity, 

even against the most imatinib-resistant BCR-ABL kinase domain mutants, with the 

notable exception of the T315I mutant, which is completely resistant to imatinib, nilotinib 

and dasatinib [181, 182]. Thus, evaluating imatinib-resistant patients for BCR–ABL 

kinase domain mutations provides a guide for clinical management. 

 

The sensitivity of the sequencing method is about 20-30%. Other methods, e.g. allele-

specific oligonucleotide PCR and denaturing-high performance liquid chromatography 

(D-HPLC), will detect BCR-ABL kinase domain mutations with better sensitivity. 

However, it can be argued that mutant clones at low levels may not have the same clinical 

significance as clones that are detected in the context of rising disease burden. Even using 

direct sequencing, we found in our study two patients treated in late CP with temporary 

mutations. These patients have been followed for 23 and 54 months, respectively, and the 

mutations have not reappeared and no imatinib resistance has evolved. Thus, a mutation 

out of the context of imatinib resistance should be interpreted with caution. 

 

In conclusion, monitoring all patients for mutations at regular time points is not cost-

effective. Patients with stable or decreasing BCR-ABL levels do not require mutation 

screening. Conversely, in patients with signs of an expanding disease burden, a search for 

BCR-ABL kinase domain mutations are warranted.  
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7. Therapeutic doses of imatinib alter the expression of apoptosis-related genes in T-

lymphocytes 

Using TaqMan® Low Density Array, 93 genes within the apoptosis pathways were 

quantitatively analyzed in T-cells from CP CML patients in CCgR, and age and gender 

matched controls. Among these genes, 12 had significantly different expression levels in 

the patients compared to the controls. All these 12 genes had lower expression levels in 

the patients, with 1.2- to 12- fold differences compared to the controls.  

 

Apoptosis of T-lymphocytes is a fundamental process regulating antigen receptor 

repertoire selection during T-cell maturation and homeostasis of the immune system. 

Resting mature T-cells are activated by an antigen to elicit an appropriate immune 

response. In contrast, pre-activated T-cells undergo AICD in response to TCR triggering 

alone [183, 184]. Thus, death by apoptosis is essential for function, growth and 

differentiation of T-lymphocytes. However, our gene expression results can not tell the 

ultimate effect of imatinib on apoptosis in T-cells, since both anti-apoptotic and pro-

apoptotic genes were found among the 12 genes which showed significantly lower 

expression levels in T-cells from imatinib treated CML patients. It has to be kept in mind 

that apoptosis is the end result of the interplay between different pathways mediating 

death signals and the ultimate fate of the cell can not in a simple way be predicted by the 

relative ratios of anti- and pro-apoptotic members.  

 

8. Therapeutic doses of imatinib alter the T-cell phenotype 

Fourteen different antigens, representing PDGFRβ, FAS, adhesion receptors, activation 

markers, KIRs and chemokine receptors, were analyzed on three subsets of T-cells, i.e. T-

helper lymphocytes, cytotoxic T-lymphocytes, suppressor T-lymphocytes, and NK-cells. 

Differences in surface expression of these antigens were only observed for CD4+CD28+ 

T-helper lymphocytes. For these cells, CD140 (PDGFRβ), CD158b (KIR2DL2/DL3) and 

NKB1 (KIR3DL1) had significantly lower surface expression in the CML patients 

compared to controls, whereas CD49 (VLA-4, integrin alpha 4 chain of the adhesion 

receptor) showed significantly higher median fluorescence intensity in the CML patients 
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(p≤0.05). No statistically significant changes were seen for cytotoxic T-lymphocytes, 

suppressor T-lymphocytes or NK-cells between CML patients and controls. 

 

CD4+ T-cells are not required for the development of efficient primary CD8+ T-cell 

responses against infectious agents. However, without CD4+ T-cells, memory CD8+ T-

cells will produce a poorer secondary response [185, 186]. Thus, it is possible that the 

inhibitory effect of imatinib on the expansion of memory CD8+ T-cells, reported by other 

investigators [187], is partly mediated through its effect on T-helper cell activity. It has 

been reported that imatinib suppress the phosphorylation of LCK and ERK1/2. These two 

proteins are associated with TCR-mediated signaling [188], and may account for the 

previously reported suppression of cytokine synthesis by CD4+ T-cells from CML 

patients treated with imatinib. In addition, since imatinib affects functions of dendritic 

cells, this effect on antigen presenting cells may compromise CD4+ T-helper cell activity 

[148, 189]. The effects of imatinib on CD4+ helper T-cells responses in vivo merit further 

investigation and could shed light on the depressed memory CD8+ T-cell response, 

previously reported by other investigators.  
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CONCLUSIONS 

 
1. Quantitative RT-PCR is a sensitive and reliable method to monitor CML patients 

treated with imatinib. Using this method, the CML patients in complete cytogenetic 

response can be further stratified, based on their BCR-ABL transcript numbers. The BCR-

ABL transcripts level reaches an apparent plateau after 12-15 months of imatinib 

treatment, which indicates a stable number of remaining BCR-ABL positive cells. 

 

2. The expression of the apoptosis related gene BAD at diagnosis correlates with the 

molecular response seen at 12 months of imatinib therapy. Further studies are required to 

confirm this finding. 

 

3. BCR-ABL kinase domain mutations are linked to acquired imatinib resistance in CML. 

The primary imatinib resistance and molecular persistence can not be explained by BCR-

ABL kinase domain mutations. 

 

4. Therapeutic doses of imatinib alter the expression of apoptosis related genes in CD3+ 

lymphocytes and change the phenotype of CD4+CD28+ T-helper cells. The effect of 

imatinib on T-helper cell responses in vivo merits further investigation and could shed 

light on the suppressed memory CD8+ T-cell response reported by other investigators. 
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