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Errata to the thesis ”Pricing Portfolio Credit Deriva-

tives”

• Introduction, p. 5, l. -5: The expression ”that B suffers” should be ”that A suffers”.

• Introduction, p. 10, l. 7: The expression ”strictly increasing process” should be
”increasing process”.

• Introduction, p. 11, l. 4: The expression L
(a,b)
t should be L

(a,b)
T .

• Introduction, p. 11, Figure 2.7: The expression ”L
(a,b)
t i.e. all credit losses in [a, b]

up to T” should be ”L
(a,b)
T , i.e. all credit losses in [a, b] up to T”.

• Paper 3, p. 5. In Equation (3.1.5), Eik should everywhere be replaced by ∆C
ik

.

• Paper 3, p. 5. In Equation (3.1.6), Eim should be ∆C
im

.

• Paper 3, p. 11, l. -11. The expression ”P [Tk > t] = α̃eQt
m̃

(k)” should be ”P [Tk > t] =
α̃eT t

m̃
(k)”.

• Paper 3, p. 15, l. -10. The expression ”that each dp ∈ d
−

only appears once in the
matrix {Di,j}” should be ”that each p, such that dp ∈ d

−
, only appears once in the

matrix {Di,j}”.

• Paper 3, p. 34.
In Table 13, the row ”a1 a2 . . . a10” should be ”aVOLV aBMW . . . aVW”
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Abstract

This thesis consist of four papers on dynamic dependence modelling in portfo-
lio credit risk. The emphasis is on valuation of portfolio credit derivatives. The
underlying model in all papers is the same, but is split in two different submod-
els, one for inhomogeneous portfolios, and one for homogeneous ones. The latter
framework allows us to work with much bigger portfolios than the former. In both
models the default dependence is introduced by letting individual default intensities
jump when other defaults occur, but be constant between defaults. The models
are translated into Markov jump processes which represents the default status in
the credit portfolio. This makes it possible to use matrix-analytic methods to find
convenient closed-form expressions for many quantities needed in dynamic credit
portfolio management and valuation of portfolio credit derivatives.

Paper one presents formulas for single-name credit default swap spreads and kth-
to-default swap spreads in an inhomogeneous model. In a numerical study based
on a synthetic portfolio of 15 telecom bonds we study, e.g., how kth-to-default swap
spreads depend on the amount of default interaction and on other factors.

Paper two derives computational tractable formulas for synthetic CDO tranche
spreads and index CDS spreads. Special attention is given to homogenous portfolios.
Such portfolios are calibrated against market spreads for CDO tranches , index CDS-
s, the average CDS and FtD baskets, all taken from the iTraxx Europe series. After
the calibration, which leads to perfect fits, we compute spreads for tranchelets and
kth-to-default swap spreads for different subportfolios of the main portfolio. We also
investigate implied tranche-losses and the implied loss distribution in the calibrated
portfolios.

Paper three is devoted to derive and study, in an inhomogeneous model, conve-
nient formulas for multivariate default and survival distributions, conditional multi-
variate distributions, marginal default distributions, multivariate default densities,
default correlations, and expected default times. We calibrate the model for two dif-
ferent portfolios (with 10 obligors), one in the European auto sector, the other in the
European financial sector, against their market CDS spreads and the corresponding
CDS-correlations.

In paper four we perform the same type of studies as in Paper 3, but for a
large homogenous portfolio. We use the same market data as in Paper 2. Many of
the results differ substantially from the corresponding ones in the inhomogeneous
portfolio in Paper 3. Furthermore, these numerical studies indicates that the market
CDO tranche spreads implies extreme default clustering in upper tranches.
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1. Introduction

”Modelling dependence between default events and between credit qual-
ity changes is, in practice, one of the biggest challenges of credit risk
models”.

David Lando, [23], p. 213.

”Default correlation and default dependency modelling is probably the
most interesting and also the most demanding open problem in the pric-
ing of credit derivatives. While many single-name credit derivatives are
very similar to other non-credit related derivatives in the default-free
world (e.g. interest-rate swaps, options), basket and portfolio credit
derivative have entirely new risks and features.”

Philipp Schönbucher, [27], p. 288.

”Empirically reasonable models for correlated defaults are central to the
credit risk-management and pricing systems of major financial institu-
tions.”

Darrell Duffie and Kenneth Singleton [12], p. 229.

In recent years, understanding and modelling default dependency has attracted
much interest. A main reason for this is the growing financial market of products
whose payoffs are contingent on the default behavior of a whole credit portfolio
consisting of, for example, mortgage loans, corporate bonds or single-name credit
default swaps (CDS-s). Another reason is the incentive to optimize regulatory cap-
ital in credit portfolios given by regulatory rules such as Basel II.
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This thesis consist of four papers treating dynamic dependence modelling in
portfolio credit risk. The underlying model in all papers are the same, but is split
into two different submodels, one for inhomogeneous portfolios, and one for homo-
geneous ones. The latter framework allows us to work which much bigger portfolios
than the former.

In this introductory part of the thesis we briefly present the underlying concepts
and give a short introduction to the models treated in the articles. Subsection
1.1 discuss the market of credit derivatives and some general aspect on credit risk.
Chapter 2 gives a introduction to the credit derivatives that are the main object of
study in the two first papers, as well as being important calibration instruments in
the final two papers. The presentation of these instrument are independent of the
underlying model for the default times and introduces notation needed in the rest
of the chapters.

Chapter 3 is devoted to describe the model used in all papers and give a brief
overview of the main results in the four papers that constitute this thesis.

1.1 The credit derivatives market

Credit risk is the risk that an obligor does not honor his payments. In this thesis a
typical example of an obligor is a company that has issued bonds. We say that the
company defaults, if, for example:

• The company goes bankrupt.

• The company fails to pay a coupon on time, for some of its issued bonds.

There are standardized and more exact definitions of a credit event, see for example
Moodys definition of a credit event.

A credit derivative is a financial instrument that allows banks, insurance compa-
nies and other market participants to isolate, manage and trade their credit-sensitive
investments. Roughly speaking, credit derivatives are tools that partially or com-
pletely remove credit risks. They constitute a very broad class of derivatives and
it is hard to give a an exact mathematical definition that covers all the different
versions. This in contrast to the case of equity and interest rate derivatives where a
precise and short mathematical definition can cover most of these contingent claims,
see for example [6].

Sometimes credit derivatives are classified into two different categories (see e.g.
in [7] and [4]). The first category is so called default products. These are credit
derivatives that are intimately connected to one or several specified default events.
A default event can for example be the default of one specific obligor or the third
default in a portfolio of, say, 10 obligors. In this thesis, we will only study credit
derivatives of default product type, and at the writing moment they are the far
most dominating type of credit derivative. Examples of such derivatives are single-
name credit default swaps (CDS) which roughly speaking is an insurance against

2



credit losses on one obligor. Credit default swaps are today the most traded credit
derivatives and constitute over 65 % of the market. They are used as building
blocks for synthetic CDO’s and basket default swaps, such as kth-to-default swaps.
A kth-to-default swaps is a generalization of the CDS, to a portfolio of several oblig-
ors. It offers protection against credit losses on default number k in the portfolio.
The most common type of kth-to-default swaps are first-to-default swaps (FtD), i.e
k = 1, which pay protection on the first default in the portfolio. A collateralized
debt obligation (CDO) is a financial instrument with a more complicated protection
structure for a big credit portfolio. Today, the most common type of such instru-
ments are synthetic CDO’s which are defined on large portfolios of CDS-s. An index
CDS is a special version of a synthetic CDO.
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Figure 1.1: The estimated credit and equity derivatives markets in trillions of US-dollars
(left) and there annual growth (right). Source: ISDA

The second, and much smaller class of credit derivatives are so called spread
products which roughly speaking are instruments whose payoff is determined by
changes in the credit quality of an asset. Typical examples are default spread options
which are standard European put and call options where the underlying asset is the
so called credit spread between two bonds. The credit spread is often defined as the
yield difference between a sovereign bond, (or a specified interest rate) and a bond
issued by a corporate. Today spread products constitute only a small fraction of the
credit derivatives market compared with default products.

Credit derivatives are at the writing moment, with few exceptions, not traded
on an exchange but are private contracts negotiated between two counterparties,
that is, they are so called OTC (over-the-counter) derivatives. An exception are
credit futures, which was launched on the European market in the end of March
2007 and are currently traded on an exchange. Despite the fact that most credit
derivatives are of OTC-type there exists very liquidly quoted ”prices” on CDS-s,
standardized synthetic CDO-s, index CDS-s and FtD-s credit derivatives, see e.g.
Reuters, Bloomberg or GFI. Further, due to their OTC nature, it is difficult to
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give an accurate estimation of the credit derivatives market size. However, several
estimates indicate that the market for credit derivatives has grown explosively during
the last 5-6 years, see Figure 1.1.
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2. Credit Derivatives and CDO-s

In this chapter we give short descriptions of CDS-s (Section 2.1), kth-to-default swaps
(Section 2.2), synthetic CDO tranches (Section 2.3) and index CDS-s (Section 2.4).
The presentation is independent of the underlying model for the default times and
introduces notation needed later on. In the sequel all computations are assumed to
be made under a risk-neutral martingale measure P. Typically such a P exists if we
rule out arbitrage opportunities.

2.1 Credit default swaps

A single-name credit default swap (CDS) with maturity T and where the reference
entity is a bond issued by a obligor, is a bilateral contract between two counter-
parties, A and B, where B promises A to pay the credit losses that B suffers if
the obligor defaults before time T . As compensation for this A pays be B a fee
up to the default time τ or until T , whichever comes first, see Figure 2.1 and Fig-
ure 2.2. The fee is determined so that expected discounted cashflows between A

A B

obligor
N = protected notional

τ = default time for the obligor

fee quarterly up to T ∧ τ

credit-loss by the obligor if τ < T

Figure 2.1: The structure of a single-name CDS.

and B are equal when the CDS contract is started. In order to mathematically
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express this we need a more detailed description. Let the notional amount on the
bond be N . The protection buyer A pays R (T )N∆n to the protection seller B,
at 0 < t1 < t2 < . . . < tnT

= T or until τ < T , where ∆n = tn − tn−1. If default
happens for some τ ∈ [tn, tn+1], A will also pay B the accrued default premium up
to τ . On the other hand, if τ < T , B pays A the amount N(1 − φ) at τ where
φ denotes the recovery rate for the obligor in % of the notional bond value. Since
R(T ) is determined so that expected discounted cashflows between A and B are
equal when the CDS contract is settled, we get that

R (T ) =
E
[

1
{τ≤T}

D(τ)(1 − φ)
]

∑nT

n=1 E
[

D(tn)∆n1
{τ>tn} + D (0, τ) (τ − tn−1) 1

{tn−1<τi≤tn}

]

where D(t) = exp
(

−
∫ t

0
rsds

)

and rt is the so called short term risk-free interest

rate at time t. Note the expression for R (T ) it is independent of the amount N

that is protected. Assuming that the default time τ and the risk-free interest rate
are mutually independent, and that the recovery rate is deterministic, then reduces
the above expression to

R(T ) =
(1 − φ)

∫ T

0
BsdF (s)

∑nT

n=1

(

Btn∆n(1 − F (tn)) +
∫ tn

tn−1
Bs (s − tn−1) dF (s)

)

where Bt = E [D(t)] and F (t) = P [τ ≤ t] is the distribution functions of the default
time for obligor. The quantity R (T ) is called the T -year CDS spread for the obligor.
In order to find R(T ), we need a probabilistic model for the default time τ . However,

A to B

B toA

R(T )N
4

R(T )N
4

R(T )N
4

R(T )N
4

0
1
4

2
4

3
4

q−1
4

τ

T

N(1 − φ)

1 − φ = loss in %

Figure 2.2: The undiscounted cash-flows in a CDS-contract for a scenario where the
obligor defaults in the q-th quarter counting from t = 0 where q

4 < T . The
fees are quarterly and the accrued premium is ignored.

there exists liquidly quoted CDS spreads on most big companies, and standard
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maturities are T = 3, 5, 7, 10. Major corporates have even finer term structures
where T = 1, 2, 3, 5, 7, 9, 10. Hence, by using these market spreads we can ”back
out” the implied default distribution F (t) = P [τ ≤ t] for the obligor. In other
words, market CDS-spreads can be used as calibration instruments. Note that
these probabilities are measured under the risk-neutral measure and should not be
confused with real default probabilities. The latter quantity is difficult to extract
on a daily basis and has historically been substantially smaller than implied default
probabilities. The market CDS spreads increases as T increases, since the probability
of default of a obligor increases with time T , as seen in Table 2.1.

Table 2.1: The bid/ask CDS-spreads for some major Swedish and European companies
where T = 3, 5, 7, 10 (Reuters 2007-02-15)

T = 3 T = 5 T = 7 T = 10
Volvo 17/21 25/27 34/38 45/49

TeliaSonera 21/24 35/37 55/59 74/78
Ericsson 22/22 26/29 55/ -

StoraEnso 21/25 35/39 52/57 67/72
Vattenfall 6.5/9.5 12/15 15/20 21.5/24.5
Fortum 5/10 10.5/13.5 15.5/20.5 23.5/28.5

Akzo Nobel 14/19 25.5/28 34/39 44.5/49.5
BMW AG 4/8 9/10 12.5/16.5 17/21

Deutsche Telekom 17.5/20.5 31/32.5 43/46 59/62
ABN AMRO 2/3 5/7 7/9 10/13

2.2 kth-to-default swaps

A kth-to default swap is a generalization of a the single-name credit default swap,
to a portfolio of m obligors, and pays protection at the k-th default in the portfolio.
To be more specific, consider a basket of m bonds each with notional N , issued
by m obligors with default times τ1, τ2, . . . , τm and recovery rates φ1, φ2, . . . , φm.
Further, let T1 < . . . < Tk be the ordering of τ1, τ2, . . . , τm. A kth-to-default swap
with maturity T on this basket is a bilateral contract between two counterparties,
A and B, where B promises A to pay the credit losses that B suffers at Tk if
Tk < T . Just as in the CDS, A pays be B a fee up to the default time Tk or until T ,
whichever comes first, see Figure 2.3. The payments dates and the accrued premium
are identical to those in the CDS case and the fee is Rk(T )N∆n where ∆n is defined
as in the CDS contract. The main difference lies in the default payment at Tk. If
Tk < T , B pays A N(1 − φi) if it was obligor i which defaulted at time Tk.

7



A B

obligor 1
obligor 2

obligor m

N, τ1

N, τ2

N, τm

Rk(T )N
4

quarterly up to Tk ∧ T

N(1 − φi) if τi = Tk and Tk < T

Figure 2.3: The structure of a kth-to-default swap.

A to B

B to A

R3(T )N
4

R3(T )N
4

R3(T )N
4

R3(T )N
4

0
1
4

2
4

3
4

q−1
4

T1 T2 T3 = τ2

T

φ2 = recovery rate for obligor 2
N(1 − φ2)

Figure 2.4: The undiscounted cash-flows in a third-to-default swap for a scenario where
obligor 2 is the third default in the portfolio which occurs in the q-th quarter
counting from t = 0 where q

4 < T . The fees are quarterly and the accrued
premium is ignored.

The constant Rk(T ), often called kth-to-default spread, is expressed in bp per
annum and determined so that the expected discounted cash-flows between A and
B coincide at t = 0. For an example, see Figure 2.4. Assuming that all the default
times and the short time riskfree interest rate are mutually independent, that the
recovery rates are deterministic, and following the same arguments as in the CDS-
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case gives that

Rk(T ) =

∑m

i=1 (1 − φi)
∫ T

0
BsdFk,i(s)

∑nT

n=1

(

Btn∆n(1 − Fk(tn)) +
∫ tn

tn−1
Bs (s − tn−1) dFk(s)

) . (2.2.1)

Here are Fk (t) = P [Tk ≤ t] and Fk,i (t) = P [Tk ≤ t, Tk = τi] the distribution func-
tions of the ordered default times, and the probability that the k-th default is by
obligor i and that it occurs before t, respectively. The rest of the notation are the
same as in the CDS contract. Note that again N does not enter into the expression
for Rk(T ). Furthermore, in the special case when all recovery rates are the same,

say φi = φ the denominator in (2.2.1) can be simplified to (1 − φ)
∫ T

0
BsFk(s), and

hence the Fk,i are not needed in this case.
At the writing moment, so called FtD-swaps, (First-to-Default, i.e. k = 1) are

liquidly traded for standardized portfolios where m = 5, see Table 2.2. However, for
k > 1 and for nonstandardized portfolios we need a model to determine P [Tk ≤ t]
and P [Tk ≤ t, Tk = τi] in order to compute Rk(T ). This in turn often requires explicit
expressions for the joint distribution of τ1, τ2, . . . , τm.

Table 2.2: The market bid, ask and mid spreads for different FtD spreads on subsectors
of iTraxx Europe (Series 6), November 28th, 2006. Each subportfolio have
five obligors. We also display the sum of CDS-spreads (SoS) in each basket,
as well as the mid FtD spreads in % of SoS.

Sector bid ask mid SoS mid/SoS %
Autos 154 166 160 202 79.21 %
Energy 65 71 68 86 79.07 %

Industrial 114 123 118.5 141 84.04 %
TMT 167 188 177.5 217 81.8 %

Consumers 113 122 117.5 140 83.93 %
Financial Sen 30 34 32 43 74.42 %

2.3 Synthetic CDO tranches

A collateralized debt obligation (CDO) is a financial instrument with a protection
structure for a big credit portfolio. Depending on the type of credit instrument in
the portfolio, CDO-s are sometimes called CLO (L as in loan) if the portfolio consist
of loans, CBO-s (B as in bond), or cash-CDO if there are bonds underlying. Today,
the far most common CDO-type are so called synthetic CDO-s, which are defined
on large portfolios of CDS-s.

The main idea in all kind of CDO-s are roughly the same, which is to offer credit
protection on a certain part of the total credit loss in the portfolio. In order to make
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this concrete, we will from now on focus on a synthetic CDO. Consider a portfolio
consisting of m single-name CDS-s on obligors with default times τ1, τ2 . . . , τm and
recovery rates φ1, φ2, . . . , φm. It is standard to assume that the nominal values are
the same for all obligors. It is denoted by N . The accumulated credit loss Lt at
time t for this portfolio is

Lt =
m
∑

i=1

ℓi1{τi≤t} where ℓi = N(1 − φi). (2.3.1)

The loss process Lt is a strictly increasing process, see Figure 2.5.

Lt

τ5 τ8 τ1 τ12

ℓ5

ℓ5 + ℓ8

ℓ5 + ℓ8 + ℓ1

ℓ5 + ℓ8 + ℓ1 + ℓ12

t

Figure 2.5: A loss scenario where T1 = τ5, T2 = τ8, T3 = τ1 and T4 = τ12

From now on, we will without loss of generality express the loss Lt in percent of
the nominal portfolio value at t = 0. Now consider a tranche [a, b] of the loss where
0 ≤ a < b ≤ 1, which is a ”slice” of the total accumulated loss. The accumulated
loss L

(a,b)
t of tranche [a, b] at time t is L

(a,b)
t = (Lt − a) 1

{Lt∈[a,b]} + (b − a)) 1
{Lt>b},

see Figure 2.6.

Lt

L
(a,b)
t

L
(a,b)
t = (Lt − a) 1

{Lt∈[a,b]} + (b − a) 1
{Lt>b}

a b

b − a

Figure 2.6: The tranche loss for [a, b] as function of the total loss Lt.
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The financial instrument that constitutes a synthetic CDO tranche [a, b] with
maturity T is a bilateral contract where the protection seller B agrees to pay the
protection buyer A, all losses that occurs in the interval [a, b] derived from Lt up to

time T , that is L
(a,b)
t . The payments are made at the corresponding default times,

if they arrive before T , and at T the contract ends. As compensation for this, A

pays B a periodic fee proportional to the current outstanding (possible reduced due
to losses) value on tranche [a, b] up to time T . Thus, if the payments are quarterly,
A pays B

S(a,b)(T )
(

(b − a) − L
(a,b)
t

)

4
for t =

1

4
,
2

4
,
3

4
, . . . , T

where we assume that no accrued premiums are paid at the defaults. Note that the
contract does not terminate after default time τi < T , unless Lτi

≥ b and Lτi−
< b,

since then (b− a)−L
(a,b)
τi

= 0 and there is nothing left of the tranche, see Figure 2.7
and Figure 2.8.

A B

S(a,b)(T )
�
(b−a)−L

(a,b)

t

�
4

for t = 1
4
, 2

4
, 3

4
, . . . , T

L
(a,b)
t i.e. all credit losses in [a, b] up to T

Lt

L
(a,b)
t

b%

a%

0%

100%

b − a

L
(a,b)
t =







0 if Lt < a

Lt − a if a ≤ Lt ≤ b

b − a if Lt > b

Lt

L
(a,b)
t

L
(a,b)
t

(b − a) − L
(a,b)
t

Portfolio credit loss

Figure 2.7: The structure of a CDO tranche [a, b].

The expected value of the payment done by B is sometimes called the protection
leg, denoted by V(a,b)(T ). Further, the expected value of the payment scheme from
A is often refereed to as premium leg which we here denote W(a,b)(T ). If we assume
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A to B

B to A

s(b − a) s(b − a) s(b − a)

s(b − a − ℓi) s(b − a − ℓi)

s(b − a− ℓi − ℓj) s(b − a− ℓi − ℓj)

1
4

2
4

n−1
4

n
4

p−1
4

p

4

Tk Tk+1

T0

t

ℓi ℓj

ℓi = loss in % due to obligor i ℓj = loss in % due to obligor j

s =
S(a,b)(T )

4

Tk = τi Tk+1 = τj

Figure 2.8: The undiscounted cash-flows for a CDO tranche [a, b] where LTk−1
< a <

LTk
< LTk+1

< b and Tk = τi, Tk+1 = τj. Furthermore, the ordered default
times Tk and Tk+1 < T arrive in quarter n and p, counting from t = 0 where
Tk+2 > T . The fees are quarterly and the accrued premium is ignored.

that the interest rate rt is deterministic, then it is easy to see that

V(a,b)(T ) = E

[
∫ T

0

BtdL
(a,b)
t

]

= BT E

[

L
(a,b)
T

]

+

∫ T

0

rtBtE

[

L
(a,b)
t

]

dt,

and

W(a,b)(T ) = S(a,b)(T )

nT
∑

n=1

Btn

(

b − a − E

[

L
(a,b)
tn

])

∆n

where ∆n = tn − tn−1 denote the times between payments (measured in fractions
of a year). The rest of the notation is the same as for the CDS and kth-to-default
swap. The constant S(a,b)(T ) is called the spread of tranche [a, b] and if a > 0 it is
determined so that the value of the premium leg equals the value of the corresponding
protection leg, that is V(a,b)(T ) = W(a,b)(T ). For a tranche where a = 0, i.e. [0, b],
sometimes called a equity tranche, S(0,b)(T ) is set to a fixed constant, often 500

bp and a up-front fee S
(u)
b (T ) is added to the premium leg so that V(0,b)(T ) =

S
(u)
b (T )b + W(0,b)(T ). Hence, we get that

S(a,b)(T ) =
BT E

[

L
(a,b)
T

]

+
∫ T

0
rtBtE

[

L
(a,b)
t

]

dt

∑nT

n=1 Btn

(

b − a − E

[

L
(a,b)
tn

])

∆n

if a > 0

and for [a, b] = [0, b],

S
(u)
b (T ) =

1

b

[

BT E

[

L
(1)
T

]

+

∫ T

0

rtBtE

[

L
(1)
t

]

dt − 0.05

nT
∑

n=1

Btn

(

b − E

[

L
(0,b)
tn

])

∆n

]

.
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The spread S(a,b)(T ) is quoted in bp per annum while S
(u)
b (T ) is quoted in percent per

annum and they are independent of the nominal size of the portfolio. Today there
exists standardized synthetic CDO portfolios, for example, the iTraxx Europe series,
which consist of the 125 most liquid traded European CDS-s, equally weighted. On
this series, tranche spreads are liquidly traded for [a, b] = [0, 3], [3, 6], [6, 9], [9, 12]
and [12, 22] with T = 3, 5, 7, 10, see Table 2.3. Furthermore, a new index is rolled
every 6th month. Up to June 2007, 7 series have been rolled since 2004. The index
decomposition and default events are currently determined by 38 market makers.

Table 2.3: The bid/ask tranche-spreads for iTraxx Europe Series 6, (Reuters, 15 Febru-
ary 2007) where T = 3, 5, 7, 10. The [0, 3] spread is quoted in % while the rest
of the tranches are quoted in bp.

Tranche T = 3 T = 5 T = 7 T = 10
[0, 3] -/1.75 9.75/10.5 23.25/24 38.75/39.5
[3, 6] 2/- 42/44 106/- 310/313
[6, 9] 2/6 11.5/13.5 31/35 83/84
[9, 12] 0.5/3 5/6.5 -/17 37/38
[12, 22] -/4 1.5/2.5 4.25/6 12/14

Assume that we want to compute nonstandard tranches in, for example the
iTraxx portfolio, where [a, b] = [0, 1], [1, 2], . . . , [11, 12] and T is arbitrary. In order to
price such tranches consistently with the standard tranches, or for risk-management
of the CDO portfolio, or computing sensitive test, hedge ratios etc. we need a model.
It is crucial that such model can produce model spreads that are consistent with the
corresponding market spreads, that is, it should be flexible enough so that it can be
calibrated against market spreads.

From the above expressions we see that in order to compute tranche spreads we

have to compute E

[

L
(a,b)
t

]

, that is, the expected loss of the tranche [a, b] at time t.

If we let FLt
(x) = P [Lt ≤ x], then the definition of the tranche loss implies that

E

[

L
(a,b)
t

]

= (b − a)P [Lt > a] +

∫ b

a

(x − a) dFLt
(x).

Hence, to compute E

[

L
(a,b)
t

]

we must know the loss distribution FLt
(x) at time t.

Recall that Lt =
∑m

i=1 ℓi1{τi≤t}, so to find FLt
(x) in our model, we need the joint

distribution of τ1, τ2, . . . , τm. To illustrate this we have in Figure 2.9, displayed two
loss scenarios, one with ”weak” default dependency, the other with a strong default
dependency. In the latter case, the ordered defaults tend to cluster and we see
that the loss reaches upper tranches faster, and thus makes them more ”riskier”
than in the weaker dependency case. Consequently, it we do not take this into
account in our model, we will likely have more troubles in the risk-management of
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the underlying credit portfolio, and it may be difficult to even calibrate the model
against the market spreads.

Lt

T1 T2 T3

3%

6%

t

A loss scenario with ”weak” default dependence

Lt

T1 T2 T3 T4 T5 T6 T7T8

3%

6%

t

A loss scenario with ”strong” default dependence.

Figure 2.9: Two loss scenarios. Note that upper tranches are reached faster when there
is ”stronger” default dependency.

2.4 Index CDS-s

Consider the same synthetic CDO as above. An index CDS with maturity T , has
almost the same structure as a corresponding CDO tranche, but with two main
differences. First, the protection is on all credit losses that occurs in the CDO
portfolio up to time T , so in the protection leg, the tranche loss L

(a,b)
t is replaced

by the total loss Lt. Secondly, in the premium leg, the spread is paid on a notional
proportional to the number of obligors left in the portfolio at each payment date.
Thus, if Nt denotes the number of obligors that have defaulted up to time t, i.e
Nt =

∑m

i=1 1
{τi≤t}, then the index CDS spread S(T ) is paid on the notional (1− Nt

m
).
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Since the rest of the contract has the same structure as a CDO tranche, the value
of the premium leg W (T ) is

W (T ) = S(T )

nT
∑

n=1

Btn

(

1 −
1

m
E [Ntn ]

)

∆n

and the value of the protection leg, V (T ), is given by V (T ) = BT E [LT ]+
∫ T

0
rtBtE [Lt] dt.

The index CDS spread S(T ) is determined so that V (T ) = W (T ) which implies

S(T ) =
BT E [LT ] +

∫ T

0
rtBtE [Lt] dt

∑nT

n=1 Btn

(

1 − 1
m

E [Ntn ]
)

∆n

where 1
m

E [Nt] = 1
1−φ

E [Lt] if φ1 = φ2 = . . . = φm = φ. Here, the rest of the notation

is the same as in the CDO-tranche. The spread S(T ) is quoted in bp per annum
and is independent of the nominal size of the portfolio.

Table 2.4: The bid/ask tranche-spreads for the index on iTraxx Europe Series 6,
(Reuters, 15 februari 2007) where T = 3, 5, 7, 10. The spreads are quoted
in bp.

T = 3 T = 5 T = 7 T = 10
index 11.25/11.75 22.5/22.75 31/31.75 41.5/42.25
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3. Modelling dynamic default

dependence using matrix-analytic

methods

In the previous sections we treated kth-to-default swaps, CDO-s and index CDS-s.
To find expressions for the spreads on these instruments, we often need a model
for the joint default distribution τ1, τ2, . . . , τm. The number of articles on dynamic
models for portfolio credit risk has grown exponentially during the last years. It is
outside the scope of this introduction (and thesis) to treat even some of them.

This chapter gives a description of the intensity based model used in all papers
in the thesis. The model is specified by letting the individual default intensities be
constant, except at the times when other defaults occur: then the default intensity
for each obligor jumps by an amount representing the influence of the defaulted
entity on that obligor. If the jump is positive, the likelihood of a default for the
obligor increase. This phenomena is often called default contagion since it describes
how defaults can ”propagate” like a disease in a financial market (see e.g. [10]).
Default contagion in an intensity based setting have previously also been studied in
for example [2], [3], [4], [5], [8], [9], [11], [10], [13], [14], [15], [16], [21], [22],[23], [24],
[25], [26] and [28]. The material in all these papers and books are related to the
results discussed in this thesis.

We consider two versions of our model, one for inhomogeneous portfolios, and
one for homogeneous ones. Section 3.1 describes the inhomogeneous version, treated
in Paper 1 and Paper 3 for small CDS portfolios. This model is difficult to use for
larger CDS portfolios, such as synthetic CDO-s. In Section 3.2 we therefore consider
a simplification of the framework in Section 3.1, to a homogeneous portfolio where
all obligors are exchangeable. Such symmetric models are studied in Paper 2 and
Paper 4. Finally, Section 3.3 gives a more detailed description of the four papers
that constitute this thesis.
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3.1 The inhomogeneous portfolio

For the default times τ1, τ2 . . . , τm, define the point process Nt,i = 1
{τi≤t} and intro-

duce the filtrations

Ft,i = σ (Ns,i; s ≤ t) , Ft =

m
∨

i=1

Ft,i.

Let λt,i be the Ft-intensity of the point processes Nt,i. The model studied in Paper
1, 2, and 3 is specified by requiring that the default intensities have the form,

λt,i = ai +
∑

j 6=i

bi,j1{τj≤t}, τi ≥ t, (3.1.1)

and λt,i = 0 for t > τi. Further, ai ≥ 0 and bi,j are constants such that λt,i is
non-negative. In this model the default intensity for obligor i jumps by an amount
bi,j if it is obligor j which has defaulted. Thus a positive bi,j means that obligor i is
put at higher risk by the default of obligor j, while a negative bi,j means that obligor
i in fact benefits from the default of j, and finally bi,j = 0 if obligor i is unaffected
by the default of j, see Figure 3.10.

t

λt,5

a5

a5 + b5,7

a5 + b5,7 + b5,3

a5 + b5,7 + b5,3 + b5,1

b5,7

b5,3

b5,1

τ7 τ3 τ1

Figure 3.10: The default intensity for obligor 5 when T1 = τ7, T2 = τ3 and T3 = τ1. The
defaults put obligor 5 at higher risk.

It is well known from point-process theory that the intensities uniquely determine
all distributions for a point-process. Hence, Equation (3.1.1) determines the default
times through their intensities. However, as discussed in Chapter 2, the expressions
for e.g. kth-to-default swap spreads and CDO-tranche spreads are in terms of their
joint distributions of the default times. The joint distribution is also needed in credit
portfolio management. It is by no means obvious how to find these from (3.1.1).
The following result is proved in Paper 1, ([20]).
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Proposition 3.1.1. There exists a Markov jump process (Yt)t≥0 on a finite state
space E and a family of sets {∆i}

m

i=1 such that the stopping times

τi = inf {t > 0 : Yt ∈ ∆i} , i = 1, 2, . . . , m,

have intensities (3.1.1). Hence, any distribution derived from the multivariate stochas-
tic vector (τ1, τ2 . . . , τm) can be obtained from {Yt}t≥0.

In Paper 1 ([20]), Paper 2 ([19]) and Paper 3 ([18]) we us Equation (3.1.1) as
the intuitive way of describing the dependencies in a credit portfolio. However,
Proposition 3.1.1 is used for computing credit derivatives spreads, expected credit
losses, and other related quantities.

The number of states in the Markov jump processes for a nonhomogeneous port-
folio is |E| = 2m. In practice, this forces us to work with portfolios of size, say, 25
or smaller. Standard synthetic CDO-s typically contains 125 obligors. We therefore
also (in Section 3.2 below) consider a special case of (3.1.1) which leads to a sym-
metric portfolio where the state space E can be simplified to make |E| = m + 1.
This allows us to work with portfolios where m is 125 or larger. Using homogeneous
models when pricing CDO tranches is currently standard in most credit literature.

3.2 The homogeneous portfolio

The homogeneous model is a special case of (3.1.1) where all obligors have the same
default intensities λt,i = λt specified by parameters a and b1, . . . , bm−1, as

λt = a +
m−1
∑

k=1

bk1{Tk≤t} (3.2.1)

where {Tk} is the ordering of the default times {τi}. In this model the obligors are
exchangeable. The parameter a is the base intensity for each obligor i, and given
that τi > Tk, then bk is how much the default intensity for each remaining obligor
jump at default number k in the portfolio.

We know that Equation (3.2.1) determines the default times through their in-
tensities as well as their joint distribution. To find these expressions, Paper 2 ([19])
proves the following simpler version of Proposition 3.1.1.

Corollary 3.2.1. There exists a Markov jump process (Yt)t≥0 on a finite state space
E = {0, 1, 2, . . . , m}, such that the stopping times

Tk = inf {t > 0 : Yt = k} , k = 1, . . . , m

are the ordering of m exchangeable stopping times τ1, . . . , τm with intensities (3.2.1).

Hence, in the homogeneous model the states in E can be interpreted as the
number of defaulted obligors in the portfolio. Therefore there is no need of keeping
track of which obligors that have defaulted, as in the inhomogeneous portfolio. The
model (3.2.1) is used in Paper 2 and Paper 4.
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3.3 Summary of papers

We here give a short summary of the four papers that constitute this thesis.

Paper 1

In this paper ([20]) we find expressions for single-name credit default swap spreads
and kth-to-default swap spreads. This is done in the inhomogeneous model (3.1.1),
by using Proposition 3.1.1. We reparameterize the basic description (3.1.1) of the
default intensities to the form

λt,i = ai

(

1 + c

m
∑

j=1,j 6=i

θi,j1{τj≤t}

)

, (3.3.1)

where the ai are the base default intensities, c measures the general ”interaction
level” and the θi,j measure the ”relative dependence structure”. The last quantity is
assumed to be exogenously given, which makes the number of unknown quantities to
be m + 1. We then ”semi-calibrate” a portfolio consisting of 15 telecom companies,
against their corresponding 5-year market CDS spreads, for different interaction lev-
els c and two different dependence structures. In all calibrations, the CDS fits where
perfect. After this we study the influence of portfolio size on kth-to-default spreads,
of changing the interaction level, the impact of using inhomogeneous recovery rates,
the sensitivity to the underlying CDS spreads, and finally compare the inhomoge-
neous model with a non-symmetric dependence to a corresponding symmetric model
(i.e. (3.2.1)).

Most of the numerical results where qualitatively as expected. However, it would
be difficult to guess the sizes of the effects without actually doing the computations.

Paper 2

The paper ([19]) derives formulas for synthetic CDO spreads and index CDS spreads.
This is first done in the inhomogeneous model (3.1.1). Then we show that derivation
is identical in the homogeneous model (3.2.1). However, from a practical point of
view, the formulas simplify considerable in the latter case. Furthermore, in the
homogeneous model, we also give expressions for the average CDS spreads and kth-
to-default swap spreads on subportfolios in the CDO portfolio. This problem is
different from the corresponding one in Paper 1, since the obligors undergo default
contagion both from the subportfolio and from obligors outside the subportfolio, in
the main portfolio. Because to the reduction of the state space in the homogeneous
model, we use it as a basis for our numerical studies. A homogeneous portfolio is
calibrated against CDO tranche spreads, index CDS spread and the average CDS
and FtD spreads, all taken from the iTraxx series, for a fixed maturity of five years.
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The resulting fits where perfect. The parameter space {bk} in (3.2.1) is reduced by
using the following parameterization

bk =



















b(1) if 1 ≤ k < µ1

b(2) if µ1 ≤ k < µ2
...
b(c) if µc−1 ≤ k < µc = m

where 1, µ1, µ2, . . . , µc is an partition of {1, 2, . . . , m}. This means that all jumps in
the intensity at the defaults 1, 2, . . . , µ1 − 1 are same and given by b(1), all jumps
in the intensity at the defaults µ1, . . . , µ2 − 1 are same and given by b(2) and so on.
We let c + 1 be equal to the number of calibration instruments, that is the number
of credit derivatives used in the calibration.

After the calibration, we computed spreads for tranchelets, which are CDO
tranches with smaller loss-intervals than standardized tranches. We also investi-
gated kth-to-default swap spreads as function of the size of the underlying subport-
folio in main calibrated portfolio. The implied expected loss in the portfolio and
the implied expected tranche-losses were studied. Finally, we explored the implied
loss-distribution as function of time.

Paper 3

Paper 3 ([18]) is devoted to derive and study multivariate default and survival
distributions, conditional multivariate distributions, marginal default distributions,
multivariate default densities, default correlations, and expected default times. This
is done in the inhomogeneous model (3.1.1). Some of the results in this paper were
stated in [1], but without proofs.

After the derivations, we introduce two inhomogeneous CDS portfolios, one in
the European auto sector, the other in the European financial sector. Both consist
of 10 companies. The baskets are calibrated against their market CDS spreads and
corresponding CDS correlations. This gives a perfect fit for the banking case and
good fit for the auto case. The major difference in this calibration compared to
the one in Paper 1, is that we use a CDS-correlation matrix for each portfolio,
retrieved from time-series data on the market spreads in the portfolio. While we
in paper 1 only used m ”observations”, our data sets now consist of m market
CDS spreads and their m(m − 1)/2 pairwise CDS correlations, that is m(m + 1)/2
market observations. This is still only around half as many as the unknown model
parameters {ai},{θi,j} in the parametrization (3.3.1) used in Paper 1, with c = 1.
To overcome this problem, we assume that some of the θi,j-s are equal. Formally,
we make a reduction of the dependence structure {θi,j} as follows,

λt,i = ai

(

1 +
m
∑

j=1,j 6=i

εdDi,j
1
{τj≤t}

)

,
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where ε = ±1 and {Di,j} is a exogenously given matrix Di,j ∈
{

1, 2 . . .
(m−1)m

2

}

and

{d1, d2, . . . , d(m−1)m/2} are (m − 1)m/2 different nonnegative parameters. The dq-s
will be determined in the calibration, together with the nonnegative base default
intensities ai. The sign ε = ±1 for dDi,j

is set equal to the sign in the CDS correlation
matrix for entry (i, j). Although, {Di,j}, is fictitious, we avoid to use the phrase
”semi-calibration” (as in Paper 1), since we here use (m+1)m/2 market observations,
compared to m in [20].

In the calibrated portfolios, we study the implied joint default and survival distri-
butions and the implied univariate and bivariate conditional survival distributions.
Furthermore, the implied default correlations, the implied expected default times
and expected ordered defaults times are also investigated.

Paper 4

In [17], we perform the same type of studies as in Paper 3, but for a homogenous
model (3.2.1) and thus a much larger portfolio. Using the same numerical data and
the same parameterizations of the homogenous model as in Paper 2, we calibrate
the model against CDO tranche spreads, index CDS spread and the average CDS,
all taken from the iTraxx Europe series, with a fixed maturity of five years. We
study the implied expected ordered defaults times, implied default correlations,
and implied multivariate default and survival distributions, both for ordered and
unordered default times. Many of the results differ substantially from the ones in the
inhomogeneous portfolio in Paper 3. Furthermore, the numerical studies indicates
that the market spreads produce extreme default clustering in upper tranches, as
illustrated in Figure 2.9.
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Paper I





PRICING kth-TO-DEFAULT SWAPS UNDER DEFAULT CONTAGION:

THE MATRIX-ANALYTIC APPROACH

ALEXANDER HERBERTSSON AND HOLGER ROOTZÉN

Abstract. We study a model for default contagion in intensity-based credit risk and
its consequences for pricing portfolio credit derivatives. The model is specified through
default intensities which are assumed to be constant between defaults, but which can
jump at the times of defaults. The model is translated into a Markov jump process
which represents the default status in the credit portfolio. This makes it possible to
use matrix-analytic methods to derive computationally tractable closed-form expressions
for single-name credit default swap spreads and kth-to-default swap spreads. We ”semi-
calibrate” the model for portfolios (of up to 15 obligors) against market CDS spreads
and compute the corresponding kth-to-default spreads. In a numerical study based on
a synthetic portfolio of 15 telecom bonds we study a number of questions: how spreads
depend on the amount of default interaction; how the values of the underlying market
CDS-prices used for calibration influence kth-th-to default spreads; how a portfolio with
inhomogeneous recovery rates compares with a portfolio which satisfies the standard as-
sumption of identical recovery rates; and, finally, how well kth-th-to default spreads in a
nonsymmetric portfolio can be approximated by spreads in a symmetric portfolio.

1. Introduction

In this paper we study dynamic dependence modelling in intensity-based credit risk. We
focus on the concept of default contagion and its consequences for pricing kth-to-default
swaps. The paper is an extension of Chapter 6 of the licentiate thesis [28].

Default dependency has attracted much interest during the last few years. A main
reason is the growing financial market of products whose payoffs are contingent on the
default behavior of a whole credit portfolio consisting of, for example, corporate bonds or
single-name credit default swaps (CDS-s). Example of such instruments that have gained
popularity are kth-to-default swaps and (synthetic) CDO-s. These products are designed
to manage and trade the risk of default dependencies. We refer to [6], [8], [16], [18], [28],
[40], [44] or [53] for more detailed descriptions of the instruments. Models which capture
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Key words and phrases. Portfolio credit risk, intensity-based models, default dependence modelling,

default contagion, CDS, kth-to-default swaps, Markov jump processes, Matrix-analytic methods.
AMS 2000 subject classification: Primary 60J75; Secondary 60J22, 65C20, 91B28.
JEL subject classification: Primary G33, G13; Secondary C02, C63, G32.
Research supported by Jan Wallanders and Tom Hedelius Foundation and by the Swedish foundation

for Strategic Research through GMMC, the Gothenburg Mathematical Modelling Centre.
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2 ALEXANDER HERBERTSSON AND HOLGER ROOTZÉN

default dependencies in a realistic way is at the core of pricing, hedging and managing such
instruments.

As the name suggest, default contagion, treats the phenomenon of how defaults can
”propagate” like a disease in a financial market (see e.g. [13]). There may be many
reasons for this kind of domino effect. For a very interesting discussion of sources of
default contagion, see pp. 1765-1768 in [38].

It is, of course, important for credit portfolio managers to have a quantitative grasp
of default contagion. This paper describes a new numerical approach to handle default
interactions. The underlying idea is the same as in [5], [7], [19], [21], which is to model
default contagion via a Markov jump process that represents the joint default status in
the credit portfolio. The main difference is that [19], [21] use time-varying parameters in
their practical examples and solve the Chapman-Kolmogorov equation by using numerical
methods for ODE-systems. In [7], the authors implement results from [5] by using Monte
Carlo simulations to calibrate and price credit derivatives.

In this article, we focus on intensities which are constant between defaults, but which may
jump at the default times. This makes it possible to obtain compact and computationally
tractable closed-form expressions for many quantities of interest, including kth-to-default
spreads. For this we use the so-called matrix-analytic approach, see e.g. [1]. From a
portfolio credit risk modeling point of view, it also turns out that this method posses
useful intuitive and practical features, both analytical and computationally. We believe
that these features in many senses are at least as attractive as the copula approach which
is current a standard for practitioners. (For a critical study of the copula approach in
financial mathematics, see [45]).

The number of articles on dynamic models for portfolio credit risk has grown exponen-
tially during the last years. The subtopic of default contagion in intensity based models is
not an exception and has been studied in for example [3], [6], [9], [10], [12], [14], [16], [24],
[25], [31] [33], [38], [39], [40], [44], [50], [51], [52], [56], [58].

The paper [3] considers a chain where states record if obligors have defaulted or not,
and implemented this model for a basket of two bonds. The intensities in the model
were calibrated to market data using linear regression. In [14] the authors model default
contagion in symmetric portfolio by using a piecewise-deterministic Markov process and
find the default distribution. The book [40], pp. 126-128, studies a Markov chain model
for two firms that undergo default contagion. Further, [58] treats default contagion using
the total hazard construction of [49], [54], as first suggested in [15]. This method allows for
general time dependent and stochastic intensities and that the intensities are functionals of
the default times. The latter seems difficult to handle in a Markov jump process framework.
Given the parameters of the model, the total hazard method gives a way to simulate default
events. The total hazard construction seems rather complicated to implement even in
simple cases such as piece-wise deterministic intensities considered in this paper.

The paper [38] assumes a so called primary-secondary structure, were obligors are divided
into two groups called primary obligors and secondary obligors. The idea is that the default-
intensities of primary obligors only depend on macroeconomic market variables while the
default intensity for secondary obligors can depend on both the macroeconomic variables
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and on the default status of the primary firms, but not on the default status of the other
secondary firms. Assuming this structure, [38] derives closed formulas for defaultable
bonds, default swaps, etc, also for stochastic intensities. In the article [10] the authors
propose a method where one can value defaultable claims without having to use the so
called ”no-jump condition”. This technique is then applied to find survival distributions
for a portfolio of two obligors that undergo default contagion. In [56] the author studies
counterparty risk in CDS valuation by using a four state Markov process that includes
contagion effects. [56] considers time dependent intensities and then uses perturbation
techniques to approximately solve the Chapman-Kolmogorov equation. The framework
in [56] is similar to [12], where the author treats the same problem in a setup where the
intensities are constant.

The rest of this paper is organized as follows. In Section 2 we give a short introduction
to pricing of credit kth-to-default swaps. Section 3 contains the formal definition of default
contagion used in this paper, given in terms of default intensities. It is then used to
construct such default times as hitting times of a Markov jump process.

In Section 5 we use the results of Section 4, for numerical investigation of a number
of properties of kth-to-default spreads. Specifically, we semi-calibrate portfolios with up
to 15 obligors against market CDS spreads and then compute the corresponding kth-to-
default spreads. The results are used to illustrate how kth-to-default spreads depend on the
strength of default interaction, on the underlying market CDS-prices used for calibration,
and on the amount of inhomogeneity in the portfolios.

Section 6 discusses numerical issues and some possible extensions, and the final section,
Section 7 summarizes and discusses the results.

2. Pricing kth-to-default swap spreads

In this section and in the sequel all computations are assumed to be made under a
risk-neutral martingale measure P. Typically such a P exists if we rule out arbitrage
opportunities.

Consider a kth-to-default swap with maturity T where the reference entity is a basket
of m bonds, or obligors, with default times τ1, τ2, . . . , τm and recovery rates φ1, φ2, . . . , φm.
Further, let T1 < . . . < Tk be the ordering of τ1, τ2, . . . , τm. For kth-to-default swaps, it is
standard to let the notional amount on each bond in the portfolio have the same value,
say, N , so we assume this is the case.

The protection buyer A pays a periodic fee RkN∆n to the protection seller B, up to
the time of the k-th default Tk, or to the time T , whichever comes first. The payments are
made at times 0 < t1 < t2 < . . . < tn = T . Further let ∆j = tj − tj−1 denote the times
between payments (measured in fractions of a year). Furthermore, if default happens for
some Tk ∈ [tj, tj+1], A will also pay B the accrued default premium up to Tk. On the
other hand, if Tk < T , B pays A the loss occurred at Tk, that is N(1−φi) if it was obligor
i which defaulted at time Tk.

The constant Rk, often called k-th-to default spread, is expressed in bp per annum and
determined so that the expected discounted cash-flows between A and B coincide at t = 0.
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This implies that Rk is given by

Rk =

∑m

i=1 E
[

1
{Tk≤T}

D(Tk)(1 − φi)1{Tk=τi}

]

∑n

j=1 E
[

D(tj)∆j1{Tk>tj} + D(Tk) (Tk − tj−1) 1
{tj−1<τ≤tj}

] , (2.1)

where D(T ) = exp
(

−
∫ T

0
rsds

)

, and rt is the so called short term risk-free interest rate

at time t. Note that N does not enter into this expression. Thus, we will from now on
without loss of generality let N = 1 when discussing spreads on credit swaps.

In the credit derivative literature today, it is standard to assume that the default times
and the short time riskfree interest rate are mutually independent, and that the recovery
rates are deterministic. Under these assumptions Equation (2.1) can be simplified to

Rk =

∑m

i=1 (1 − φi)
∫ T

0
B(s)dFk,i(s)

∑n

j=1

(

B(tj)∆j(1 − Fk(tj)) +
∫ tj

tj−1
B(s) (s − tj−1) dFk(s)

) (2.2)

where B(t) = E [D(t)] is the expected value of the discount factor, and Fk (t) = P [Tk ≤ t]
and Fk,i (t) = P [Tk ≤ t, Tk = τi] are the distribution functions of the ordered default times,
and the probability that the k-th default is by obligor i and that it occurs before t, respec-
tively. It may be noted that in the special case when all recovery rates are the same, say

φi = φ the denominator in (2.2) can be simplified to (1− φ)
∫ T

0
B(s)dFk(s), and hence the

Fk,i are not needed in this case.
The latter of course in particular holds if there is only one bond (or obligor) so that

m = 1. This case gives the most liquidly traded instrument, called a single-name Credit
Default Swap (CDS), which has special importance in this paper as our main calibration
tool.

3. Intensity based models reinterpreted as Markov jump processes

In this section we define the intensity-based model for default contagion which is used
throughout the paper. The model is then reinterpreted in terms of a Markov jump process.
This interpretation makes it possible to use a matrix-analytic approach to derive computa-
tionally tractable closed-form expressions for single-name CDS spreads and k-th-to default
spreads. These matrix analytic methods has largely been developed for queueing theory
and reliability applications, and in these context are often called phase-type distributions,
or multivariate phase-type distributions in the case of several components (see e.g. [2]).

With τ1, τ2 . . . , τm default times as above, define the point process Nt,i = 1
{τi≤t} and

introduce the filtrations

Ft,i = σ (Ns,i; s ≤ t) , Ft =

m
∨

i=1

Ft,i.

Let λt,i be the Ft-intensity of the point processes Nt,i. Below, we will for convenience often
omit the filtration and just write intensity or ”default intensity”. With a further extension
of language we will sometimes also write that the default times {τi} have intensities {λt,i}.
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The model studied in this paper is specified by requiring that the default intensities have
the following form,

λt,i = ai +
∑

j 6=i

bi,j1{τj≤t}, t ≤ τi, (3.1)

and λt,i = 0 for t > τi. Further, ai ≥ 0 and bi,j are constants such that λt,i is non-negative.
The financial interpretation of (3.1) is that the default intensities are constant, except at

the times when defaults occur: then the default intensity for obligor i jumps by an amount
bi,j if it is obligor j which has defaulted. Thus a positive bi,j means that obligor i is put
at higher risk by the default of obligor j, while a negative bi,j means that obligor i in fact
benefits from the default of j, and finally bi,j = 0 if obligor i is unaffected by the default
of j.

The intensities in Equation (3.1) only depend on which obligors that have defaulted, and
not by the order in which the defaults have occurred. Thus it is a model for Unordered
Default Contagion. A more general case is when the intensities also are affected by the
order in which defaults have happened. The approach outlined below works equally well
for such Ordered Default Contagion. We make some further comments on this at the end
of the present section.

Equation (3.1) determines the default times through their intensities. However, the
expressions (2.1) and (2.2) for the kth-to-default spreads are in terms of their joint distri-
butions. It is by no means obvious how to go from one to the other. Here we will use the
following observation.

Proposition 3.1. There exists a Markov jump process (Yt)t≥0 on a finite state space E

and a family of sets {∆i}
m

i=1 such that the stopping times

τi = inf {t > 0 : Yt ∈ ∆i} , i = 1, 2, . . . , m, (3.2)

have intensities (3.1). Hence, any distribution derived from the multivariate stochastic
vector (τ1, τ2, . . . , τm) can be obtained from {Yt}t≥0.

In this paper, Proposition 3.1 is throughout used for computing distributions. However,
we still use Equation (3.1) to describe the dependencies in a credit portfolio since it is
more compact and intuitive. Proposition 3.1 is rather obvious, and perhaps most easily
understood by examples, see below. However, we still give one possible formal construction,
since it provides notation which anyhow is needed later on.

Proof of Proposition 3.1. We construct the state space as a union,

E =

m
⋃

k=0

Ek, (3.3)

where Ek is set of states consisting of precisely k elements of {1, . . .m},

Ek = {j = {j1, . . . jk} : 1 ≤ ji ≤ m, i = 1, . . . k} . (3.4)

for k = 1, . . .m, and where E0 = {0}. The interpretation is that on the set E0 no obligors
have defaulted, on {j1, . . . jk} the obligors in the set have defaulted, and on Em all obligors
have defaulted.
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The Markov jump process (Yt)t≥0 on E is specified by making {1, . . .m} absorbing and
starting Y in {0}, and by specifying its intensity matrix Q. The latter specification is that
transitions are only possible from Ek to Ek+1, and that for a state j = {j1, j2, . . . , jk} ∈
Ek a transition can only occur to a state j

′ = (j, jk+1) ∈ Ek+1 where jk+1 6= ji for
i = 1, 2, . . . , k. Further, the intensity for transitions from j = {j1, j2, . . . , jk} ∈ Ek to such
a j

′ is

Qj,j′ = ajk+1
+

k
∑

i=1

bjk+1,ji
. (3.5)

The diagonal elements of Q is determined by the requirement that the row sums of an
intensity matrix is zero.

Next, set

∆i = {j ∈ E : jn = i for some jn ∈ j}

and define the hitting times τ1, . . . , τm by

τi = inf {t > 0 : Yt ∈ ∆i} . (3.6)

This construction is illustrated in Figure 1 for the case m = 3. It is clear from the
construction that τ1, . . . , τm have the intensities (3.1), see e.g. [34], Chapter 4. As a final

{0}

{1}

{2}

{3}

{1, 2}

{1, 3}

{2, 3}

{1, 2, 3}

a1

a2

a3

a2 + b2,1

a2 + b2,3

a
3 +

b
3,1

a
3 +

b
3,2

a1
+

b1,3

a 1
+

b1,2 a
3 +

b
3,1 +

b
3,2

a2 + b2,1 + b2,3

a1
+ b1,3

+ b1,2

Figure 1: Illustration of the construction for m = 3. Arrows indicate possible transitions, and
the transition intensities are given on top of the arrows.

aside, when we write down Q as a matrix it is computationally convenient to order the
states in E so that Q is upper triangular. This can be done by letting {0} be first, then
taking the states in E1 in some arbitrary order, followed by the states in E2 in some
arbitrary order, and so on. �
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Table 1: The number of states in the unordered and ordered case for different number of obligors,
m.

m unordered ordered
5 32 326
6 64 1957
7 128 13700
8 256 109601
9 512 986410

10 1024 9864101

So far we have considered Unordered Default Contagion. In Ordered Default Contagion,
also the order in which the defaults occur influence default intensities. In our setup, this
corresponds to changing the form (3.1) of the intensities to

λt,i = ai +
∑

j∈P

bi,j1nτj1
<...<τj

|j |
≤t
o, τi ≥ t, (3.7)

and λt,i = 0 when t > τi. Here P contains all the ordered subsets j =
(

j1, . . . , j|j|
)

of the
set {1, 2, . . . , m}. Furthermore, ai and bi,j are constants such that λt,i ≥ 0.

It is easy to see that the construction for Proposition 3.1 can be extended to the case
(3.7). The basic change which has to be made is to change Ek from the set of all subsets
of size k of {1, . . .m} to the set of all ordered subsets of size k.

Changing from unordered to ordered default contagion however increases the number of
states in E violently. For unordered default contagion

|E| = 2m

while for ordered default contagion

|E| =

m
∑

n=0

n!

(

m

n

)

.

Table 1 shows the number of states in the unordered respectively ordered case for different
sizes of the number m of obligors.

It is of course up to the modeler to decide if it is appropriate to use ordered or unordered
default contagion. However, from the table we see that in practice it is mainly convenient
to work with unordered default contagion. Further, if possible one should for large m try
to reduce the number of states in E further, for example by using symmetries.

4. The matrix-analytic method

We now use the matrix analytic method, see e.g. [1] to find expressions for Fk (t) =
P [Tk ≤ t] and Fk,i (t) = P [Tk ≤ t, Tk = τi], the distribution functions of the ordered default
times, and the probability that the k-th default is by obligor i and that it occurs before t.
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The first one is more or less standard, while the second one is less so. These expressions
in turn give possibilities to compute the quantities which are at the center of interest
in this paper, the kth-to-default spreads. Our development is closely related to so-called
multivariate phase type distributions, see e.g. [2].

Define the probability vector p (t) = (P [Yt = j])j∈E and let α = (1, 0, . . . , 0) ∈ R
|E|

be the initial distribution of the Markov jump process and let its generator be Q. From
Markov theory we know that

p (t) = αeQt, and P [Yt = j] = αeQt
ej, (4.1)

where ej ∈ R
|E| is a column vector where the entry at position j is 1 and the other entries

are zero. Furthermore, eQt is the matrix exponential which has a closed form expression
in terms of the eigenvalue decomposition of Q.

Next, define vectors m
(k) of length |E| by requiring that

m
(k)
j =

{

1 if j ∈ ∪k−1
i=0 Ei

0 otherwise .
(4.2)

Then,

P [Tk > t] = αeQt
m

(k), (4.3)

since m
(k) sums the probabilities of states where there has been less than k defaults.

Hence, what is left to compute is P [Tk > t, Tk = τi]. For this we use the imbedded
Markov chain (YTn

)m
n=0. By definition, the transition probability matrix P for (YTn

)m
n=0 is

given by

P j,j′ = P
[

YTn
= j

′ |YTn−1
= j
]

=
Qj,j′

∑

k6=j Qj,k

, j, j ′ ∈ E,

with the ordering of the states in P the same as for Q.
Further, let h

i,k be vectors of length |E| and let G
i,k be |E| × |E| diagonal matrices,

defined by

h
i,k
j =

{

1 if j ∈ ∆i ∩ Ek

0 otherwise ,

and

G
i,k
j,j =

{

1 if j ∈ ∆C
i ∩ Ek

0 otherwise .

We now establish the following result.

Proposition 4.1. With notation as above,

P [Tk > t, Tk = τi] = αeQt

k−1
∑

ℓ=0

(

k−1
∏

p=ℓ

G
i,p

P

)

h
i,k, (4.4)

for k = 1, . . .m.
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Proof of Proposition 4.1. We will use the following fact, which is straightforward to estab-
lish, and standard in Markov chain theory:

If {Xn} is a stationary, discrete time, finite state space, Markov chain with initial dis-
tribution p and transition matrix P , and E0, . . .Ek are subsets of the state space, then

P [X0 ∈ E0, . . .Xk ∈ Ek] = pG0PG1P . . .Gk−1Phk,

where the Gℓ-s are diagonal matrices with diagonal elements equal to one for state j if
j ∈ Eℓ and zero otherwise, for ℓ = 0, . . . k − 1, and hk is a column vector with a 1 in
position j if j ∈ Ek.

Let ∆C
i be the complement of ∆i in E, i.e. the set of all states where i has not defaulted.

By an appropriate translation to the situation and notation above, in particular replacing
p by αeQt, and if Tℓ ≤ t < Tℓ+1 < Tk, we obtain that

P
[

Yt ∈ ∆C
i ∩ Eℓ, YTℓ+1

∈ ∆C
i ∩ Eℓ+1, . . . YTk−1

∈ ∆C
i ∩ Ek−1, YTk

∈ ∆i ∩ Ek

]

= αeQt
G

i,ℓ
PG

i,ℓ+1 . . .Gi,k−1
Ph

i,k.

Since

P [Tk > t, Tk = τi]

=

k−1
∑

ℓ=0

P
[

Yt ∈ ∆C
i ∩ Eℓ, YTℓ+1

∈ ∆C
i ∩ Eℓ+1, . . . YTk−1

∈ ∆C
i ∩ Ek−1, YTk

∈ ∆i ∩ Ek

]

,

this proves (4.4). �

5. Numerical studies

In this section we will use the theory developed in previous sections to study, in a realistic
numerical example, how different factors affect the size of k-th to default spreads. For this
it is convenient to reparameterize the basic description (3.1) of the default intensities to
the form

λt,i = ai

(

1 + c

m
∑

j=1,j 6=i

θi,j1{τj≤t}

)

, (5.1)

which was suggested in [20]. In this parametrization, the ai are the base default intensities,
c measures the general ”interaction level” and the θi,j measure the ”relative dependence
structure”.

First, in Subsection 5.1 we introduce a portfolio consisting of 15 telecom companies
which is used as a basis for the numerical studies. We further ”semi-calibrate” our model
to this portfolio, using CDS spreads taken from Reuters.

We then study the influence of portfolio size on kth-to-default spreads, (Subsection 5.2),
of changing the interaction level (Subsection 5.3), the impact of using inhomogeneous
recovery rates (Subsection 5.4), the sensitivity to the underlying CDS spreads (Subsection
5.5), and finally compare a model with non-symmetric dependence to a corresponding
symmetric model (Subsection 5.6).
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For the rest of this paper we will assume that the θi,j are given - hence the term ”semi-
calibrations”, cf. Subsection 5.1. It is a topic for future research to find out how to
estimate the θi,j . For example, using liquid market data on CDO’s will give us more
information which can be used for some cases. The rapidly increasing market of credit
portfolio products may also help. In Section 7 we discuss this topic in more detail.

Numerical studies always carry the risk of programming errors and numerical instabil-
ity. However, fortunately we have been able to benchmark our numerical methods to an
example from [19], pp. 19-20 and [20], which as far as we know, are the only available
results on default contagion for nonsymmetric portfolios with more than three bonds.

The paper [19] studies a portfolio with five bonds and time-dependent default intensities,
and uses numerical solution of differential equations to compute spreads for a number of
cases. Our model for intensities doesn’t directly allow for time-dependence, but it was still
possible to approximate the portfolio in [19] with our model, calibrate it as discussed in
Section 6 below, and compare the spreads thus obtained with those in [20]. The results
agreed to at least four significant digits in all cases, which lends some confidence to our
numerical implementation.

5.1. A telecom portfolio. Table 2 describes the portfolio which is used in our numerical
studies. The data was obtained from Reuters at August 23, 2005. We have assumed a
fictive recovery rate structure and also a fictive relative dependence structure θi,j which is
given in Table 8 in Appendix, and we used the interaction level c = 0.5. The interest rate
was assumed to be constant and set to 3%, and the protection fees were assumed to be
paid quarterly. The maturity was 5 years. The ai-s are obtained by individual calibration
to the CDS spreads in Table 2. From Table 8 we see that the intensities can jump up to
284% of their ”base values” ai, when c = 0.5. In case both bid and ask prices for the CDS-s
were given, we used their average. The calibration is described in more detail in Section 6.
We refer to the entire procedure - using the fictive recovery rates, the fictive dependence
structure and the calibrated base intensities - as semi-calibration.

5.2. Dependence on portfolio size. To study the dependence on portfolio size, we
considered 6 different sub-portfolios. The first portfolio consisted of the 10 first bonds
from Table 2, the second of the 11 first bonds, and so on, until the last portfolio which
contained all the 15 bonds in the table. Each subportfolio with m obligors had a dependence
structure given by upper left m × m submatrix of the matrix given in Table 8. When we
calibrated the subportfolios against the market CDS spreads, the corresponding sum of
the absolute calibration error never exceeded two hundreds of a bp. For each portfolio the
kth-to-default spreads were computed from Equation (2.2). The results are shown in Table
3. The spreads are only shown for k ≤ 5. The remaining spreads were all less than six
hundreds of a basis point.

In the table the spreads increase as the size of the portfolio increases, as they should.
Quantitatively, the increase from a portfolio of size 10 to one of size 15 is 47% for a 1st-
to-default swap, 92% for a 2nd-to-default swap, 168% for a 3rd-to-default swap, and for
a 5th-to-default swap the increase is 700%. Further, for a portfolio of size 10 the price
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Table 2: The Telecom companies and their 5 year CDS spreads.

Company bid ask time recovery %
British Telecom 40 44 23 Aug, 09:33 32%
Deutsche Telecom 34 23 Aug, 19:18 48%
Ericsson 54 54 23 Aug, 18:27 45%
France Telecom 38 42 23 Aug, 17:13 34%
Nokia 21 23 23 Aug, 12:25 42%
Hellenic Telecom 43 23 Aug, 19:18 41%
Telefonica 34 38 23 Aug, 09:34 29%
Telenor 26 23 Aug, 12:25 39%
Telecom Italia 47 23 Aug, 19:34 51%
Telia 35 23 Aug, 12:25 41%
Port Telecom Int 34 38 23 Aug, 12:10 47%
MM02 47 23 Aug, 16:29 33%
Vodafone 24 28 23 Aug, 12:59 35%
KPN 38 42 23 Aug, 09:33 43%
Telekom Aus 35 04 Aug, 19:59 50%

Table 3: The k-th-to default swap premiums in basis points (bp). The first column is for the 10
first obligors in Table 2, the second is for the 11 first obligors, and so on.

k m = 10 m = 11 m = 12 m = 13 m = 14 m = 15
1 357.7 389.8 432.3 456.6 493.3 526.1
2 55.38 65.27 77.48 84.34 95.96 106.8
3 7.649 9.963 12.84 14.49 17.47 20.40
4 0.8698 1.281 1.814 2.132 2.744 3.366
5 0.08026 0.1373 0.2167 0.2678 0.3701 0.4795

of a 1st-to-default swap is about 4500 times higher than for a 5th-to-default swap. The
corresponding ratio for a portfolio of size 15 is about 1100.

5.3. Dependence on the interaction level. In this subsection we use a portfolio con-
sisting of the 9 first obligors in Table 2 to study how spreads are affected by the interaction
parameter c which was taken to be 0.5 in the previous section. As above, we let the depen-
dence parameters be given by the upper left part of Table 8. We first note that by (5.1)
the value of c enters into the calibration of the base intensities ai: a higher value of c will
lead to smaller ai-s, and hence c affects spreads both directly, and indirectly through its
influence on the base intensities.

The dependence of the spreads on the interaction level is illustrated in Figure 2. The
1st-to-default spread decreases with increasing interaction level, and for k larger than 2



12 ALEXANDER HERBERTSSON AND HOLGER ROOTZÉN

the spreads increase. However, it looks as if the 2nd-to-default spread may have a local
maxima. To confirm that this is indeed possible, we experimented with different depen-
dence structures. One result was Figure 3, which depicts the same graphs as Figure 2 but
for different θi,j , given by Table 7 where some of elements θi,j are much bigger than the
corresponding numbers in Table 8. In this figure, the 2nd-to-default spread has a clear local
maximum.

It might be worth noting that the graph of the 1st-to-default spread as a function of
the interaction level c, roughly had the same structure as the corresponding graph for
the intensity for T1, see Figure 6. However, the same was not true for the 2nd-to-default
spread. This can be seen from Figure 7 which shows the intensity

∑9
i=1,i6=j ai(1 + cθi,j) for

the second default T2, when the first default was by obligor j, for j = 1, 2, . . . 9.
The case c = 0 is of special interest since it means that the defaults are independent

of one-another. In particular, Figures 2, 3 and 4 quantifies the errors made in computing
spreads as if obligors where independent in cases where there in fact is default contagion.
Further, in Figure 3 we note that for very large interaction levels, the spreads for 1 ≤
k ≤ 5 tend to converge into a narrow interval, compared with the case with very small
interactions. The intuitive explanation for this may be that once one obligor default,
several other will quickly follow. Finally, note that as the interaction level increases, the
spreads for 6 ≤ k ≤ 9 drastically increases and can thus no longer be neglected (see Figure
4), as for example in the Table 3 where c = 0.5.
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Figure 2: The kth-to-default spreads as a function of the interaction level c, for a portfolio
consisting of the first 9 obligors in Table 2.
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Figure 3: The different kth-to-default spreads for k ≤ 5 as a function of the interaction level c,
for a portfolio consisting of the first 9 obligors in Table 2 with dependence structure
given by Table 7.
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structure given by Table 7.
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Figure 5: The base intensities ai as functions of the interaction level c for a portfolio consisting
of the first 9 obligors in Table 2 with dependence structure given by Table 7.
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the 9 first obligors in Table 2 with dependence structure given by Table 7.

Table 4: The relative difference in percent between kth-to-default swap spreads priced with ho-
mogeneous recovery rates and nonhomogeneous recovery rates. The different recovery
rates are displayed in Table 6 in Appendix 8

k std = 3.24 std = 4.90 std = 6.92 std = 11.10
1 0.13 0.16 0.20 0.23
2 1.27 1.35 2.05 2.74
3 2.81 3.25 5.13 6.71
4 4.27 5.17 8.45 11.10
5 5.60 6.99 11.69 15.51

5.4. Dependence on the recovery rates. In this subsection the numerical experiment
aimed at investigating to what extent kth-to-default swaps spreads for portfolios with non-
homogeneous recovery rates differ from the spreads in a corresponding portfolio where all
recovery rates are the same and equal to the average of the nonhomogeneous rates.

The experiment was performed on a portfolio consisting of the first 11 obligors in Table
2 with dependence structure given by the upper left 11 × 11 submatrix of the matrix
given in Table 8. We studied five different cases. In the first one all recovery rates were
set to 40%. In the other four cases the recovery rates were varied ”randomly” around
approximately the mean 40%, but with the different standard deviations 3.24, 4.90, 6.92
and 11.10, respectively. The results are displayed in Table 4. For the 1st- and 2nd-to-
default spreads, the inhomogeneous cases differed from the homogenous one by at most
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3%, and even the largest difference, for k = 5 and for the standard deviation equal to
11.10%, was only 15%. The different recoveries are displayed in Table 6 in Appendix 8

5.5. Dependence on the market spreads. In this subsection we investigate in numer-
ical experiments how the kth-to-default swap prices change when the market prices of the
underlying single-name CDS prices change.

The first experiment used a portfolio consisting of the 5 first obligors in Table 2. The
CDS spreads for obligors 1, 3, 4 were held at their market values, and while the CDS spreads
for obligors 2 and 5 were varied from 10 to 225 in steps of 10 bp. The resulting kth-to-
default spreads increased smoothly as the CDS spreads increased, and this increase was
more dramatic for larger k-s, see Figure 8.
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Figure 8: kth-to-default spreads as function of market CDS spreads. The portfolio consisted of
the first 5 obligors in Table 2. The CDS spreads for obligors 1 and 5 were varied,
while the others were held constant.
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5.6. Approximation by a symmetric portfolio. A portfolio is symmetric if the obligors
are completely interchangeable. In the intensity formulation (5.1) for unordered default
contagion, this means that the parameters ai all are equal, and similarly the θi,j are the
same for each obligor and the φi are equal. To compute spreads it then is sufficient to
keep track of how many obligors have defaulted, but there is no need to know which ones
it was. Here we consider the special case of (3.1) where all obligors have the same default
intensities λt,i = λt specified by λt = a +

∑m−1
k=1 bk1{Tk≤t} where {Tk} is the ordering of

the default times {τi}. For this symmetric case, the Markov jump process constructed in
Proposition 3.1 can be collapsed into a chain with the m + 1 states {0}, {1}, . . .{m}. The
interpretation is that the chain is in the state {k} if precisely k obligors have defaulted.
In the literature such a process is called a death process. This new state space is very
much smaller state than the one in Proposition 3.1, which means that it is possible to do
numerical computation for much larger portfolios, with hundreds or thousands of obligors,
see e.g. [30] where CDO-tranche spreads are computed on portfolios with 125 obligors in
such a symmetric model.

It is hence of interest to understand how well non-symmetric portfolios can be approx-
imated by symmetric ones. To explore this we constructed and semi-calibrated three dif-
ferent portfolios, 1) the telecom portfolio from Table 2 with all recovery rates set to 40%,
2) the telecom portfolio with the recovery rates given in Table 2 (the standard deviation of
these rates are 6.88%), and 3) the telecom portfolio with the first 11 recovery rates given
by the last row in Table 6 and the remaining rates for obligors 12 to 15 set to 30, 32, 40
and 60% (the rates then have standard deviation 11.71%). In all cases the dependence
structure was given by Table 8 and the interaction level was c = 0.5.

Each of these three portfolios was then approximated by a symmetric portfolio. In the
symmetric approximating portfolio all recovery rates were set equal to the average of the
recovery rates in the original portfolio. The jump parameters where assumed to be the
same so bk = b at each default time Tk. Further, the parameters a and b were chosen so
that the model CDS spread in the symmetric portfolio coincided with the average market
CDS spread in the nonsymmetric counterpart, and so that the first-to-default spreads also
agreed.

From Table 5 we see that the relative differences are small. For k = 2 and 3 they
increase as the standard deviation of the recovery rates increase. However, for k = 4 and
5 the relative differences for the second portfolio (std = 6.88) somewhat surprisingly are
smaller than for the other two cases. For the nonhomogeneous recovery rate cases, the
relative differences are not monotone in k. Finally, for 6 ≤ k ≤ 15 the differences can
range between 9% up to 130% where the error on average increases with k. However, for
each case the sum of these spreads are smaller than one tenth of a bp.

6. Calibration and numerical implementation

In this section we discuss the computational aspects in more detail. Subsection 6.1 gives
a short description how to calibrate (or semi-calibrate) the model (5.1) against market data
and formulas for the CDS and kth-to-default spreads, and Subsection 6.2 discusses how to
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Table 5: The difference in kth-to-default swap spreads between an approximating symmetric
portfolio and a nonsymmetric portfolio, in percent of the spreads for the nonsymmetric
portfolio; for three different cases. For k = 1 the difference is by construction (almost)
zero.

k std = 0 std = 6.88 std = 11.71
2 0.153 0.587 1.98
3 0.811 0.850 3.37
4 2.24 0.339 3.82
5 4.65 1.26 3.13

compute the matrix exponential. Subsections 6.3 and 6.4 consider more general models
and computation by simulation, respectively.

6.1. Calibration. As discussed above, we assume that the relative dependence structure
θi,j , the interaction level c and the recovery rate structure φ1, . . . , φm all are exogenously
given - hence the term ”semi-calibration”. The base intensities ai are then obtained by
individual calibration to the market CDS spreads. The calibration uses a nonlinear least
squares method where the model CDS spreads R(i) are matched against the corresponding
market CDS spreads Ri,M . Thus the base intensities are computed as

(a1, . . . , am) = argmin
ã=(ã1,...,âm)

m
∑

i=1

(

Ri,M − R(i)(â)
)2

where we have emphasized that the R(i) are functions of the parameters a = (a1, . . . , am).
We then use the calibrated base intensities ai with {θi,j , φi, c} to compute the kth-to default
spreads Rk.

Reverting to the notation of (3.1), closed-form expressions for Rk and R(i) may be
obtained by inserting (4.3) and (4.4) into (2.2). For ease of reference we exhibit the
resulting formulas (detailed proofs can be found in [28] or [29]).

Proposition 6.1. Consider m obligors with default intensities (3.1) and assume that the
interest rate r is constant. Then,

Rk =
α (A(0) − A(T ))φ

(k)

α

(

∑n

j=1 (∆je
Qtje−rtj + C(tj−1, tj))

)

m(k)

and

R(i) =
(1 − φi)α (A(0) − A(T ))g

(i)

α

(

∑n

j=1 (∆je
Qtje−rtj + C(tj−1, tj))

)

g(i)
.

Here

φ
(k) =

m
∑

i=1

(1 − φi)R
i,k

h
i,k and R

i,k =
k−1
∑

ℓ=0

(

k−1
∏

p=ℓ

G
i,p

P

)
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and
C(s, t) = s (A(t) − A(s)) − B(t) + B(s),

where

A(t) = eQt (Q − rI)−1
Qe−rt

B(t) = eQt
(

tI + (Q − rI)−1) (Q − rI)−1
Qe−rt

Finally, g
(i) is an |E| column vector such that

g
(i)
j =

{

1 if j ∈ ∆C
i

0 otherwise .

There are several possible computational shortcuts. The quantities g
(i), h

i,k, g
i,k and

m
(k) do not depend on the parametrization, and hence only have to be computed once. The

row vectors α (A(0) − A(T )) and α
(
∑nT

n=1

(

∆neQtne−rtn + C(tn−1, tn)
))

are the same for

all CDS spreads and all kth-to-default swap spreads and hence only have to be computed
once for each parametrization {ai, θi,j, φi, c}. The same holds for φ

(k) for each k. Further-
more, if ∆n is constant then α

(
∑nT

n=1

(

∆neQtne−rtn + C(tn−1, tn)
))

can be simplified in

terms of eQtn . If the φi are the same for all obligors, φ
(k) can be replaced by (1 − φ)m(k).

Next, if we rewrite the sum R
i,k as R

i,k =
∑k−1

ℓ=0 M
i,ℓ,k where M

i,ℓ,k =
∏k−1

p=ℓ G
i,p

P then

M
i,ℓ−1,k = G

i,ℓ−1
PM

i,ℓ,k which is useful for computation. Also note that (Q − rI) is
invertible since it is upper diagonal with strictly negative diagonal elements. The condi-
tioning number of (Q − rI) is often large, but still we have not encountered numerical
problems in computing the inverse.

6.2. Computation of the matrix exponential. The main challenge in Proposition 6.1
is to compute the matrix exponential eQt. We have mainly experimented with two different
numerical methods; direct series expansion of the matrix exponential and the uniformiza-
tion method (which sometimes also is called the randomization method). Both were fast
and robust for our problems. However, while the series expansion method lacks lower
bounds on possible worst case scenarios (see [46]), the uniformization method provides
analytical expressions for the residual error. Furthermore, previous studies indicate that it
can handle large sparse matrices with remarkable robustness, see e.g. [55], [26] or Appendix
C.2.2 in [40]. We have therefore chosen the uniformization method. A probabilistic inter-
pretation of the method can be found in [26] and pure matrix arguments which motivates
the method are given in [55] and Appendix C.2.2 in [40].

There are many different methods to compute the matrix exponential ([46] [47]). How-
ever, most of the other standard methods are not adapted to very large, but sparse, matrices
and don’t seem possible when the state space is larger than a few hundred (see [55],[26]).
As one example, it is tempting to try eigenvalue decomposition since the eigenvalues are
given by the diagonal of Q. However, in our examples this method failed already for m = 9
since the eigenvector matrices turned out to be ill-conditioned, which introduced large nu-
merical errors in the inversions. Compared to e.g. Krylov-based methods or ODE methods
the uniformization method is relatively simple to implement.
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The uniformization method works as follows. Let Λ = max
{

|Qj,j| : j ∈ E
}

and set
˜P = Q/Λ + I. Then

eQt =

∞

∑

n=0

˜P
n
e−Λt (Λt)n

n!
. (6.2.1)

Recall that p (t) = αeQt and define p̃ (t, N) = α
∑N

n=0
˜P

n
e−Λt (Λt)n

n!
. Let ε > 0 be arbitrary

and pick N(ε) so that 1 −
∑N(ε)

n=0 e−Λt (Λt)n

n!
< ε. Then the L1 error ‖p (t) − p̃ (t, N(ε))‖1

is also less than ε, i.e., p̃ (t, N(ε)) approximates p (t) with an accumulated absolute error
which is less than ε. Furthermore, since all entries in p̃ (t, N(ε)) are positive there are no
cancelation effects and the approximation error decreases monotonically with increasing
N . Furthermore, for fixed N , the error ‖p (t) − p̃ (t, N)‖1 is also decreasing in t.

Further useful properties of (6.2.1) are that it separates the computation of ˜P
n

from the
time dependent components and that

∫ T

0

e(Q−rI)tdt =

∞

∑

n=0

˜P
n Λn

n!
I(Λ+r)
n (T ), (6.2.2)

where

I(β)
n (t) =

∫ t

0

sne−βsds

=
e−βt

(−β)n+1

[

(−βt)n − n(−βt)n−1 + n(n − 1)(−βt)n−2 − . . . + (−1)n−1(n − 1)!(−βt)
]

.

Since I
(β)
n (t) > 0, there are no cancelation effects in the approximation of the RHS in

(6.2.2). Truncating the sum in the RHS in (6.2.2) gives an approximation to the integral
in the LHS. In this case, the error control requires a little more work.

For m ≤ 13, we used a standard laptop with 1024 MB RAM. For m = 14 and m = 15
the memory requirements were too big for the laptop so the computations were done on
a Sun Solaris, 2x900 MHz UltraSPARC-III with 5GB RAM. As an example if m = 15,
c = 0.5, T = 5 and θi,j were as in Table 8 and if we put ε = 3.33 · 10−16 (the floating-point
relative accuracy for the number 1 in Matlab is 2.22 · 10−16) then our calibration against
Table 2 implied that Λ = 0.2500 and that N(ε) = 19 terms were needed in the computation
of p̃ (T, N). Furthermore, the calibration errors were neglige: the sum of the individual
absolute calibration errors were less than two tenths of a bp.

A further point is that our matrices in general are very large, for example if m = 15 then
the generator has 215 = 32768 rows and thus contain 230 ≈ 1. billion entries. However,
at the same time it is extremely sparse and the sparseness is increasing with m. E.g., for
m = 15 there are only 0.025% nonzero entries in Q, and hence only about 280.000 elements
have to be stored.

A final point is that we are not interested in finding the matrix exponential itself, but
only the probability vector p(t). This is important, since computing eQt is very time and
memory consuming compared with computing αeQt. For example, using the uniformization
method with t = 5, m = 14 and ε = 3.331 · 10−16, which implies that N(ε) = 19 the time
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to find p(t) in Matlab, by first computing eQt with the uniformization method and then
multipling this matrix with α, was 42.3 seconds. On the other hand, computing p(t) via

the vectors α ˜P
n

only took 0.14 seconds, and hence was about 300 times faster.
To get the same accuracy with direct Taylor method required 32 terms in the truncated

sum. For this case, the corresponding computational times where 108 seconds and 0.25
seconds. The quick method was about 450 times faster than the slow one. Further, the
uniformization method was about 2.5 and 1.8 times faster compared to the corresponding
slow and quick Taylor methods. The reason was that the Taylor method required 32 terms
in the sums, compared to the 19 needed for the uniformization method.

6.3. Extensions. It is natural to believe that the default intensity of a obligor in addition
to dependence on defaults of other obligors also depends on exogenous macroeconomic
and market factors. It is possible generalize Proposition 3.1 in Section 3 to the case
when the parameters ai

t and b
i,j
t in the formula (3.1) for the intensity depend on some

background random process. The idea is to first condition on the whole realization of the
background process and then treat (Yt)t≥0 as an inhomogeneous Markov jump process with
time-dependent generator. It is usually impossible to find tractable closed-form expressions
for distributions derived from (τ1, . . . , τm) for this case. Instead, to use our method one
has to rely on a fine discretisation of time.

We also note that Proposition 3.1 does not seem easily applicable if the parameters in the
intensities depend of the default times. For example, so called self-exciting point processes
(or Hawkes processes), see e.g. [27] with intensities given by

λt,i = ai +
∑

j 6=i

bi,je
−(t−τj )1

{τj≤t} (6.3.1)

are therefore not suited to our setup. Applications of Hawkes processes in credit risk are
discussed in e.g. [23], [22] and [17].

6.4. Simulation. An alternative to numerical computation is to use simulation to produce
realizations of the random vector (τ1, τ2 . . . , τm). If the intensities are given by (3.1) this
is straightforward, see e.g. [34].

The so called total hazard construction ([49], [54]) can be used in more general circum-
stances where the intensities may be functionals of the default times as well as of time, see
e.g. (6.3.1). The paper, [15], we believe, was the first to point out that the total hazard
construction can be used in credit risk. In Chapter 5 of [58], the author used the total-
hazard construction to study four cases of default contagion. Three of these cases can be
handled without invoking the total-hazard construction, for example using our approach,
cf also [49]. The fourth case, which considers stochastic parameters, can actually also be
treated without the total hazard construction. The case with a stochastic processes X t in
the parameters as in [58], is handled by doing a straightforward extension of the results in
[49], [54].

To simulate one needs to know the values of the parameters. It is far from trivial how to
estimate the parameters in general. Although one can repeat the simulations with different
parameters until the model is calibrated, this is often very time consuming.
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7. Discussion and conclusions

In this paper we considered the intensity based default contagion model (3.1), where the
default intensity of one firm is allowed to change when other firms default. The model was
reinterpreted in terms of a Markov jump process, and this reinterpretation made it possi-
ble to derive closed form expressions for kth-to-default spreads. With the computational
resources available to us these expressions were tractable for general portfolios with up to
15 obligors. These are much larger than the general examples treated by other authors.

We used a synthetic telecom portfolio with 15 companies taken from Reuters at August
23, 2005 in a numerical study of how default contagion influences kth-to-default spreads.
For this we performed a ”semi-calibration” of the portfolios where interaction parameters,
interest rates and recovery rates were assumed obtained from prior knowledge but where
the baseline default intensities were calibrated to market CDS spreads. The questions we
tried to illustrate were:

How did the size of the portfolio influence kth-to-default spreads? In our example, the
1th-to-default spread increased by about 50% when the portfolio size increased from 10 to
15 and by about 700% for a 5th-to-default spread. For a portfolio of size 10 the prize of
a 1st-to-default spread was about 4500 times higher than for a 5th-to-default spread and
for a portfolio of size 15 the spread was about 1100 times higher. Qualitatively this is
completely as expected. However it would seem rather impossible to guess the sizes of the
effects without computation.

How were kth-to-default spreads influenced by the strength of interaction in the portfo-
lio? We considered two examples. In those the 1th-to-default spread decreased when the
interaction became stronger, and the higher order than 2nd-to-default spreads decreased.
In the first example there was some indication that 2nd-to-default spreads first increased
and then decreased, and this was clear in the second example. This last finding may be
somewhat counterintuitive. A possible intuitive explanation may be that as the interaction
increases, the 2nd-to-default will have a behavior more like the 1th-to-default spread. This
view is also supported by nothing that when the interaction level is extremely big, all swap
spreads tend to converge into a narrow interval, compared with the case with very small
interaction, see e.g. Figure 3. The results also illustrate the error made if one assumes
independence in cases where there in fact is default contagion.

How did kth-to-default spreads depend on the underlying market CDS spreads? The kth-
to-default spreads increased smoothly with increasing market spreads. The increase was
greater for larger k-s. This first result was complectly as expected, and the second one
perhaps slightly less obvious.

How were spreads affected by non-homogeneities in the recovery rates? The spreads were
virtually unchanged by moderate inhomogeneities in the recovery rates. This agrees with
earlier findings for single-name CDS-s, see e.g. [32].

Does approximation of a non-homogeneous portfolio with a homogenous one work well?
In our example the approximation worked quite well. The interest of this comparison is
that the computational burden for a homogenous portfolios is very much smaller than for
non-homogeneous ones.
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As a general comment, qualitatively most of the results summarized above were as was
expected beforehand. However, it seems difficult to guess the sizes of the effects without
actually doing the computations.

How can we estimate the dependence structure ? There are several possible ways to
estimate, or calibrate the dependence matrix θ. One approach is to use historical time series
data on the traded CDS spreads and consider the quadratic covariance process between
the obligors i and j to get an indication of θi,j . A similar procedure can also be done
on the corresponding bonds. Another approach is to estimate equity correlation and use
this as a proxy for default correlation. To be more specific, using Proposition 3.1 it is
straightforward to find computational tractable closed-form expression for pairwise default
correlation (i.e. Corr(1

{τi≤t}, 1{τj≤t})) as function of time, the matrix θ, c and the baseline
intensities ai. These analytical expressions for the default correlations can be used to
extract θ from the numerical values on the corresponding equity correlations. However,
further assumptions have to be done since the equity correlations are only half as many
as the entities in the matrix θ. Using equity correlation as a proxy for default correlation
has previously been very common when modelling default dependencies, see e.g. [4], [35],
[41], [42], [43] and [48]. For example, in [41], the authors value kth-to-default swaps by
using two different copulas for a portfolio with 6 obligors. First, a one-factor Gaussian
copula is used where the six correlations are estimated from equity returns. The one-factor
Gaussian copula lacks correlations in the tails and [41] redoes the computations with a
Clayton copula where the lower tail dependence is estimated from equity returns by using
Kendall’s tau on this data. Similar techniques are also pursued in e.g. [4] and [42].

A third approach to extract θ is first to estimate default correlation in an intensity
based model from historical corporate data under the statistical probability measure. This
is done in e.g. [11], [36] and [37]. Then, if we know the relationship between the statistical
probability measure and the risk-neutral martingale measure, this can be used to extract
θ. Determining the relationship between these two measures is equivalent to finding the
connection between the intensities when changing the measures. Such a procedure is far
from trivial and a discussion of how this can be done is given in e.g. [5], [6], [44] and [57].

Finally, as discussed above the approach of this paper can be generalized to time-
dependent and stochastic intensities. Further, it also gives a possibility to price other
products, such as CDO-s. This will be presented in further papers by the first author.
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Frey, Universität Leipzig.

[29] A. Herbertsson. Modelling default contagion using Multivariate Phase-Type distributions. Working
paper, November 2006.

[30] A. Herbertsson. Pricing synthetic CDO tranches in a model with Default Contagion using the Matrix-
Analytic approach. Working paper, January 2007.

[31] U. Horst. Stochastic cascades, credit contagion and large portfolio losses. Working paper. Humboldt
Universität Berlin, Januari 2004.



DEFAULT CONTAGION IN PORTFOLIO CREDIT RISK 25

[32] P. Houweling and T. Vorst. Pricing default swaps: Empirical evidence. Journal of International Money

and Finance, 24(8):1200–1225, 2005.
[33] B. Huge. On defaultable claims and credit derivatives. PhD thesis, University of Copenhagen, 2001.
[34] M. Jacobsen. Point process theory and applications, marked point and piecewise deterministic pro-
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8. Appendix

In this appendix we display the recovery rate cases and the dependence structures used
in Section 5.

Table 6: Different recovery rate cases used in Table 4 and Table 5. Recoveries expressed in %.

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 φ11 mean std
36 43 45 37 41 44 38 37 43 39 43 40.55 3.24
33 47 46 34 44 41 36 39 42 39 46 40.64 4.90
32 48 45 34 42 41 29 39 51 41 47 40.82 6.93
27 52 41 31 45 31 29 35 52 41 61 40.45 11.10

Table 7: The θ matrix describing the alternative dependence structure, rounded to two decimal
places.

i j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9
1 0 3.03 5.13 2.5 4.69 6.36 5.69 6.7 1.32
2 3.84 0 2.96 3.49 1.41 4.18 4.27 1.03 3.44
3 1.84 5.62 0 3.04 1.92 2.31 4.91 6.09 2.87
4 4.18 0.59 0.51 0 4.39 3.35 0.65 5.39 3.25
5 0.35 6.62 3.88 4.32 0 4.18 2.98 3.11 4.28
6 4 6.41 2.05 0.8 0.42 0 2.63 4.35 0.5
7 4.91 4.22 6.01 6.29 0.63 5.81 0 6.66 2.2
8 6.74 1.78 2.35 5.28 1.9 6.69 5.83 0 4.26
9 5.25 6.11 4.76 5.54 2.87 4.17 5.87 1.74 0
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School of Business, Economics and Law, Göteborg University. P.O Box 600, SE-405 30
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Table 8: The θ matrix describing the dependence structure, rounded to two decimal places. This matrix is used in all
examples except in Figure 3 to Figure 7.

i j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10 j = 11 j = 12 j = 13 j = 14 j = 15

1 0 5.68 0.11 0.12 0.13 0.16 0.11 0.16 0.13 0.1 0.12 0.12 0.13 0.14 0.15

2 0.15 0 2.91 2.22 0.14 0.2 0.16 0.11 0.2 0.1 0.15 0.11 0.14 0.19 0.14

3 0.13 0.16 0 0.11 4.61 5.21 0.18 0.16 0.11 0.13 0.13 0.15 0.19 0.14 0.16

4 2.5 4.79 0.17 0 0.14 0.13 2.11 1.83 0.14 0.16 0.17 0.12 0.17 0.11 0.19

5 0.1 0.13 0.18 0.18 0 0.2 0.16 0.16 3.87 1.29 0.13 0.17 0.2 0.11 0.19

6 0.1 0.13 0.16 0.2 0.19 0 0.14 0.16 0.11 0.17 1.87 3.28 0.17 0.17 0.12

7 0.19 0.19 0.12 0.13 0.2 0.17 0 0.14 0.1 0.17 0.1 0.18 2.42 2.8 0.15

8 1.57 0.17 2.8 0.15 2.94 0.17 3.36 0 2.04 0.16 2.6 0.18 1.19 0.18 1.38

9 0.18 2.46 0.11 2.76 0.13 2.5 0.14 0.9 0 2.3 0.13 2.22 0.16 1.92 0.15

10 1.62 2.45 1.29 0.12 1.76 2.47 1.87 0.18 0.13 0 1.72 2.6 1.44 0.14 0.18

11 1.59 1.52 0.12 1.28 1.05 0.87 0.13 0.71 0.11 2.15 0 0.15 0.13 0.58 1.4

12 0.1 0.11 0.84 0.12 1.08 0.14 0.8 0.18 1.51 0.14 0.16 0 0.2 0.15 1.14

13 0.19 0.69 0.12 0.41 0.12 0.19 0.11 0.64 0.17 1.32 0.12 0.17 0 0.76 0.11

14 0.5 0.15 0.94 0.16 0.27 0.2 0.74 0.12 0.18 0.12 0.39 0.13 0.7 0 0.16

15 0.2 0.33 0.16 0.16 0.1 0.4 0.15 0.19 0.14 0.14 0.15 0.57 0.14 0.17 0
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Abstract. We value synthetic CDO tranche spreads, index CDS spreads, kth-to-default
swap spreads and tranchelets in an intensity-based credit risk model with default con-
tagion. The default dependence is modelled by letting individual intensities jump when
other defaults occur. The model is reinterpreted as a Markov jump process. This allow
us to use a matrix-analytic approach to derive computationally tractable closed-form ex-
pressions for the credit derivatives that we want to study. Special attention is given to
homogenous portfolios. For a fixed maturity of five years, such a portfolio is calibrated
against CDO tranche spreads, index CDS spread and the average CDS and FtD spreads,
all taken from the iTraxx Europe series. After the calibration, which render perfect fits,
we compute spreads for tranchelets and kth-to-default swap spreads for different subport-
folios of the main portfolio. We also investigate implied tranche-losses and the implied
loss distribution in the calibrated portfolios.

1. Introduction

In recent years the market for synthetic CDO tranches and index CDS-s, which are
derivatives with a payoff linked to the credit loss in a portfolio of CDS-s, have seen a
rapid growth and increased liquidity. This has been followed by an intense research for
understanding and modelling the main feature driving these products, namely default
dependence.

In this paper we derive computationally tractable closed-form expressions for synthetic
CDO tranche spreads and index CDS spreads. This is done in an intensity based model
where default dependencies among obligors are expressed in an intuitive, direct and com-
pact way. The financial interpretation is that the individual default intensities are constant,
except at the times when other defaults occur: then the default intensity for each obligor
jumps by an amount representing the influence of the defaulted entity on that obligor.
This phenomena is often called default contagion. The above model is then reinterpreted
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in terms of a Markov jump process. This interpretation makes it possible to use a matrix-
analytic approach to derive practical formulas for CDO tranche spreads and index CDS
spreads. Our approach is the same as in [15] and [17] where the authors study aspects of
kth-to default spreads in nonsymmetric as well as in symmetric portfolios. The contribu-
tion of this paper is a continuation of this technique to synthetic CDO tranches and index
CDS-s.

Except for [15] and [17], the methods presented in [2], [4], [7], [8], [9], [11], [12], Section
5.9 in [22] and Subsection 9.8.3 in [23], are currently closest to the approach of this article.
The framework used here (and in [15] and [17]) is the same as in [11], [12] and is related
to [2], [4]. The main differences are that [11], [12] use time-varying parameters in their
practical examples and then solve the corresponding Chapman-Kolmogorov equation us-
ing numerical methods for ODE-systems. Furthermore, in [12], the authors also consider
numerical examples where the portfolio is split into homogeneous groups with default con-
tagion both within each group and between groups. [4] use Monte Carlo simulations to
calibrate and price the instruments.

Default contagion in an intensity based setting have previously also been studied in for
example [1], [3], [6], [13], [14], [19], [21], [25], [26] and [27]. The material in all these papers
and books are related to the results discussed here.

This paper is organized as follows. In Section 2 we give an introduction to synthetic
CDO tranches and index CDS-s which motivates results and introduces notation needed
in the sequel. Section 3 presents the intensity-based model for default contagion. Using
a result from [17], the model is reinterpreted in terms of a Markov jump process. The
results in Section 4, convenient analytical formulas for synthetic CDO tranche spreads and
index CDS spreads, are the main theoretical contribution in this paper. We assume that
the recovery rates are deterministic and that the interest rate is constant. In Section 5
we apply the results from Section 4 to a homogenous model. Then, in Section 6, for a
fixed maturity of five years, this portfolio is calibrated against CDO tranche spreads, the
index CDS spread and the average CDS and FtD spreads, all taken from the iTraxx series,
resulting in perfect fits. After the calibration, we compute kth-to-default swap spreads
for different subportfolios of the main portfolio. This problem is slightly different from
the corresponding one in previous studies, e.g. [15] and [17], since the obligors undergo
default contagion both from the subportfolio and from obligors outside the subportfolio,
in the main portfolio. Further, we compute spreads on tranchelets which are nonstandard
CDO tranches with smaller loss-intervals than standardized tranches. We also investigate
implied tranche-losses and the implied loss distribution in the calibrated portfolios. The
final section, Section 7 summarizes and discusses the results.

2. Valuation of Synthetic CDO tranche spreads and index CDS spreads

In this section we give a short description of tranche spreads in synthetic CDO-s and
of index CDS spreads. It is independent of the underlying model for the default times
and introduces notation needed later on. At the end of the section we give a technical
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motivation for the main purpose of this article, which, roughly speaking, is to derive
practical formulas for functions of the credit loss in a portfolio.

2.1. The cash-flows in a synthetic CDO. In this section and in the sequel all com-
putations are assumed to be made under a risk-neutral martingale measure P. Typically
such a P exists if we rule out arbitrage opportunities. Further, we assume the that risk-free
interest rate, rt is deterministic.

A synthetic CDO is defined for a portfolio consisting of m single-name CDS’s on obligors
with default times τ1, τ2 . . . , τm and recovery rates φ1, φ2, . . . , φm. It is standard to assume
that the nominal values are the same for all obligors, denoted by N . The accumulated
credit loss Lt at time t for this portfolio is

Lt =

m
∑

i=1

N(1 − φi)1{τi≤t}. (2.1.1)

We will without loss of generality express the loss Lt in percent of the nominal portfolio
value at t = 0. For example, if all obligors in the portfolio have the same constant recovery
rate φ, then LTk

= k(1 − φ)/m where T1 < . . . < Tk is the ordering of τ1, τ2, . . . , τm.
A CDO is specified by the attachment points 0 = k0 < k1 < k2 < . . . kκ = 1 with

corresponding tranches [kγ−1, kγ]. The financial instrument that constitutes tranche γ

with maturity T is a bilateral contract where the protection seller B agrees to pay the
protection buyer A, all losses that occurs in the interval [kγ−1, kγ] derived from Lt up to
time T . The payments are made at the corresponding default times, if they arrive before
T , and at T the contract ends. The expected value of this payment is called the protection
leg, denoted by Vγ(T ). As compensation for this, A pays B a periodic fee proportional
to the current outstanding (possible reduced due to losses) value on tranche γ up to time
T . The expected value of this payment scheme constitutes the premium leg denoted by

Wγ(T ). The accumulated loss L
(γ)
t of tranche γ at time t is

L
(γ)
t = (Lt − kγ−1) 1

{Lt∈[kγ−1,kγ ]} + (kγ − kγ−1) 1
{Lt>kγ}

. (2.1.2)

Let Bt = exp
(

−
∫ t

0
rsds

)

denote the discount factor where rt is the risk-free interest rate.

The protection leg for tranche γ is then given by

Vγ(T ) = E

[
∫ T

0

BtdL
(γ)
t

]

= BT E

[

L
(γ)
T

]

+

∫ T

0

rtBtE

[

L
(γ)
t

]

dt,

where we have used integration by parts for Lebesgue-Stieltjes measures together with
Fubini-Tonelli and the fact that rt is deterministic. Further, if the premiums are paid at
0 < t1 < t2 < . . . < tnT

= T and if we ignore the accrued payments at defaults, then the
premium leg is given by

Wγ(T ) = Sγ(T )

nT
∑

n=1

Btn

(

∆kγ − E

[

L
(γ)
tn

])

∆n
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where ∆n = tn − tn−1 denote the times between payments (measured in fractions of a
year) and ∆kγ = kγ − kγ−1 is the nominal size of tranche γ (as a fraction of the total
nominal value of the portfolio). The constant Sγ(T ) is called the spread of tranche γ and
is determined so that the value of the premium leg equals the value of the corresponding
protection leg.

2.2. The tranche spreads. By definition, the constant Sγ(T ) is determined at t = 0
so that Vγ(T ) = Wγ(T ), that is, so that the value of the premium leg agrees with the
corresponding protection leg. Furthermore, for the first tranche, often denoted the equity

tranche, S1(T ) is set to 500 bp and a so called up-front fee S
(u)
1 (T ) is added to the premium

leg so that V1(T ) = S
(u)
1 (T )k1 + W1(T ). Hence, we get that

Sγ(T ) =
BT E

[

L
(γ)
T

]

+
∫ T

0
rtBtE

[

L
(γ)
t

]

dt

∑nT

n=1 Btn

(

∆kγ − E

[

L
(γ)
tn

])

∆n

γ = 2, . . . , κ

and

S
(u)
1 (T ) =

1

k1

[

BT E

[

L
(1)
T

]

+

∫ T

0

rtBtE

[

L
(1)
t

]

dt − 0.05

nT
∑

n=1

Btn

(

∆k1 − E

[

L
(1)
tn

])

∆n

]

.

The spreads Sγ(T ) are quoted in bp per annum while S
(u)
1 (T ) is quoted in percent per

annum. Note that spreads are independent of the nominal size of the portfolio.

2.3. The index CDS spread. Consider the same synthetic CDO as above. An index
CDS with maturity T , has almost the same structure as a corresponding CDO tranche,
but with two main differences. First, the protection is on all credit losses that occurs in the

CDO portfolio up to time T , so in the protection leg, the tranche loss L
(γ)
t is replaced by the

total loss Lt. Secondly, in the premium leg, the spread is paid on a notional proportional
to the number of obligors left in the portfolio at each payment date. Thus, if Nt denotes
the number of obligors that have defaulted up to time t, i.e Nt =

∑m

i=1 1
{τi≤t}, then the

index CDS spread S(T ) is paid on the notional (1− Nt

m
). Since the rest of the contract has

the same structure as a CDO tranche, the value of the premium leg W (T ) is

W (T ) = S(T )

nT
∑

n=1

Btn

(

1 −
1

m
E [Ntn ]

)

∆n

and the value of the protection leg, V (T ), is given by V (T ) = BT E [LT ] +
∫ T

0
rtBtE [Lt] dt.

The index CDS spread S(T ) is determined so that V (T ) = W (T ) which implies

S(T ) =
BT E [LT ] +

∫ T

0
rtBtE [Lt] dt

∑nT

n=1 Btn

(

1 − 1
m

E [Ntn ]
)

∆n

(2.3.1)

where 1
m

E [Nt] = 1
1−φ

E [Lt] if φ1 = φ2 = . . . = φm = φ. The spread S(T ) is quoted in bp
per annum and is independent of the nominal size of the portfolio.
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2.4. The expected tranche losses. From Subsection 2.2 we see that to compute tranche

spreads we have to compute E

[

L
(γ)
t

]

, that is, the expected loss of the tranche [kγ−1, kγ] at

time t. If we let FLt
(x) = P [Lt ≤ x] then (2.1.2) implies that

E

[

L
(γ)
t

]

= (kγ − kγ−1) P [Lt > kγ ] +

∫ kγ

kγ−1

(x − kγ−1) dFLt
(x). (2.4.1)

Hence, in order to compute E

[

L
(γ)
t

]

and E [Lt] and we must know the loss distribution

FLt
(x) at time t. Furthermore, if the recoveries are nonhomogeneous, then to determine

the index CDS spread, we also must compute E [Ntn ], which is equivalent to finding the
default distributions P [τi ≤ t] for all obligors, or alternatively determining the distributions
P [Tk ≤ t] for all ordered default times Tk.

To find analytical expressions for expected tranche losses, expected losses, and thus for
tranche spreads and index CDS spread, is the main objective in this paper.

3. Intensity based models reinterpreted as Markov jump processes

In this section we define the intensity-based model for default contagion which is used
throughout the paper. The model is then translated into a Markov jump process. This
makes it possible to use a matrix-analytic approach to derive computationally convenient
formulas for CDO tranche spreads, index CDS spreads, single-name CDS spreads and kth-
to-default spreads. The model presented here is identical to the setup in [17] where the
authors study aspects of kth-to-default spreads in nonsymmetric as well as in symmetric
portfolios. In this paper we focus on synthetic CDO trances, index CDS and kth-to-default
swaps on subportfolios to the CDO portfolio.

With τ1, τ2 . . . , τm default times as above, define the point process Nt,i = 1
{τi≤t} and

introduce the filtrations

Ft,i = σ (Ns,i; s ≤ t) , Ft =
m
∨

i=1

Ft,i.

Let λt,i be the Ft-intensity of the point processes Nt,i. Below, we for convenience often
omit the filtration and just write intensity or ”default intensity”. With a further extension
of language we will sometimes also write that the default times {τi} have intensities {λt,i}.
The model studied in this paper is specified by requiring that the default intensities have
the form,

λt,i = ai +
∑

j 6=i

bi,j1{τj≤t}, τi ≥ t, (3.1)

and λt,i = 0 for t > τi. Further, ai ≥ 0 and bi,j are constants such that λt,i is non-negative.
The financial interpretation of (3.1) is that the default intensities are constant, except at

the times when defaults occur: then the default intensity for obligor i jumps by an amount
bi,j if it is obligor j which has defaulted. Thus a positive bi,j means that obligor i is put
at higher risk by the default of obligor j, while a negative bi,j means that obligor i in fact
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benefits from the default of j, and finally bi,j = 0 if obligor i is unaffected by the default
of j.

Equation (3.1) determines the default times through their intensities. However, the
expressions for the loss and tranche losses are in terms of their joint distributions. It is by
no means obvious how to go from one to the other. Here we will use the following result,
proved in [17].

Proposition 3.1. There exists a Markov jump process (Yt)t≥0 on a finite state space E

and a family of sets {∆i}
m

i=1 such that the stopping times

τi = inf {t > 0 : Yt ∈ ∆i} , i = 1, 2, . . . , m,

have intensities (3.1). Hence, any distribution derived from the multivariate stochastic
vector (τ1, τ2, . . . , τm) can be obtained from {Yt}t≥0.

Each state j in E is of the form j = {j1, . . . jk} which is a subsequence of {1, . . .m}
consisting of k integers, where 1 ≤ k ≤ m. The interpretation is that on {j1, . . . jk} the
obligors in the set have defaulted. The Markov jump process Yt on E is specified by making
{1, . . .m} absorbing and starting in {0}.

In this paper, Proposition 3.1 is throughout used for computing distributions. However,
we still use Equation (3.1) to describe the dependencies in a credit portfolio since it is
more compact and intuitive. In the sequel, we let Q and α denote the generator and
initial distribution on E for the Markov jump process in Proposition 3.1. The generator
Q is found by using the structure of E, the definition of the states j, and Equation (3.1),
see [17]. By construction α = (1, 0, . . . , 0). Further, if j belongs to E then ej denotes a
column vector in R

|E| where the entry at position j is 1 and the other entries are zero.
From Markov theory we know that P [Yt = j] = αeQt

ej were eQt is the matrix exponential
which has a closed form expression in terms of the eigenvalue decomposition of Q.

4. Using the matrix-analytic approach to find CDO tranche spreads and
index CDS spreads

In this section we derive practical formulas for CDO tranche spreads and index CDS
spreads. This is done under (3.1) together with the standard assumption of deterministic
recovery rates and constant interest rate r. Although the derivation is done in an inhomo-
geneous portfolio, we will in Section 5 show that these formulas are almost the same in a
homogeneous model.

The following observation is a key to all results in this article. If the obligors in a
portfolio satisfy (3.1) and have deterministic recoveries, then Proposition 3.1 implies that
the corresponding loss Lt can be represented as a functional of the Markov jump process
Yt, Lt = L (Yt) where the mapping L goes from E to all possible loss-outcomes determined

via (2.1.1). For example, if j ∈ E where j = {j1, . . . jk} then L (j) = 1
m

∑k

n=1(1 − φjn
).

The range of L is a finite set since the recoveries are deterministic. This implies that for
any mapping g(x) on R and a set A in [0,∞), we have

∫

A

g(x)dFLt
(x) = αeQt

h(g, A)
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where h(g, A) is a column vector in R
|E| defined by h(g, A)j = g(L(j))1

{L(j)∈A}
. From

this we obtain the following easy lemma, which is stated since it provides notation which
is needed later on.

Lemma 4.1. Consider a synthetic CDO on a portfolio with m obligors that satisfy (3.1).
Then, with notation as above,

E

[

L
(γ)
t

]

= αeQt
ℓ
(γ) , E [Lt] = αeQt

ℓ and E [Nt] = αeQt

m
∑

i=1

h
(i)

where ℓ
(γ) is a column vector in R

|E| defined by

ℓ
(γ)
j =







0 if L(j) < kγ−1

L(j) − kγ−1 if L(j) ∈ [kγ−1, kγ]
∆kγ if L(j) > kγ

(4.1)

and L is the mapping such that Lt = L(Yt). Furthermore, ℓ and h
(i) are column vectors in

R
|E| defined by ℓj = L(j) and h

(i)
j = 1

{j∈∆i}
where the sets ∆i are as in Proposition 3.1.

We now present the main results of this paper.

Proposition 4.2. Consider a synthetic CDO on a portfolio with m obligors that satisfy
(3.1) and assume that the interest rate r is constant. Then, with notation as above,

Sγ(T ) =

(

αeQT e−rT + αR(0, T )r
)

ℓ
(γ)

∑nT

n=1 e−rtn

(

∆kγ − αeQtnℓ
(γ)
)

∆n

γ = 2, . . . , κ (4.2)

and

S
(u)
1 (T ) =

1

k1

(

αeQT e−rT + αR(0, T )r + 0.05

nT
∑

n=1

αeQtne−rtn∆n

)

ℓ
(1) − 0.05

nT
∑

n=1

e−rtn∆n

(4.3)

where

R(0, T ) =

∫ T

0

e(Q−rI)tdt =
(

eQT e−rT − I
)

(Q − rI)−1
. (4.4)

Furthermore,

S(T ) =

(

αeQT e−rT + αR(0, T )r
)

ℓ

∑nT

n=1 e−rtn

(

1 − αeQtn ̂ℓ

)

∆n

(4.5)

where

̂ℓ =

{ 1
1−φ

ℓ if φ1 = φ2 = . . . = φm = φ
1
m

∑m

i=1 h
(i) otherwise

. (4.6)

Proof. Since rt = r, using Lemma 4.1 we have that
∫ T

0

rtBtE

[

L
(γ)
t

]

dt = α

∫ T

0

e(Q−rI)tdtℓ(γ)r = αR(0, T )ℓ(γ)r
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where R(0, T ) is given by (4.4). So by Lemma 4.1 again, we get

Vγ(T ) = BT E

[

L
(γ)
T

]

+

∫ T

0

rtBtE

[

L
(γ)
t

]

dt =
(

αeQT e−rT + αR(0, T )r
)

ℓ
(γ)

and

Wγ(T ) = Sγ(T )

nT
∑

n=1

Btn

(

∆kγ − E

[

L
(γ)
tn

])

∆n = Sγ(T )

nT
∑

n=1

e−rtn

(

∆kγ − αeQtnℓ
(γ)
)

∆n.

Recall that for all tranches γ, except for the equity tranche, the spreads Sγ(T ) are deter-
mined so that Vγ(T ) = Wγ(T ). Thus, the equations above prove (4.2). Furthermore, for

the equity tranche, S1(T ) is set to 500 bp and the up-front premium S
(u)
1 (T ) is determined

so that V1(T ) = S
(u)
1 (T )k1 + W1(T ). The expressions for V1(T ) and W1(T ) together with

the fact that ∆k1 = k1 then imply that S
(u)
1 (T ) is given by

S
(u)
1 (T ) =

1

k1

[

BT E

[

L
(1)
T

]

+

∫ T

0

rtBtE

[

L
(1)
t

]

dt − 0.05

nT
∑

n=1

Btn

(

∆k1 − E

[

L
(1)
tn

])

∆n

]

=
1

k1

[

(

αeQT e−rT + αR(0, T )r
)

ℓ
(1) − 0.05

nT
∑

n=1

e−rtn

(

∆k1 − αeQtnℓ
(1)
)

∆n

]

=
1

k1

(

αeQT e−rT + αR(0, T )r + 0.05

nT
∑

n=1

αeQtne−rtn∆n

)

ℓ
(1) − 0.05

nT
∑

n=1

e−rtn∆n

which establish (4.3). Finally, to find expressions for the index CDS spreads S(T ), recall
that this contract is almost identical to a CDO tranche (see (2.3.1)), with the differences

that ℓ
(γ) is replaced by ℓ in the protection leg, and in the premium leg ∆kγ is replaced by

1 and ℓ
(γ) by ̂ℓ, where

̂ℓ =

{ 1
1−φ

ℓ if φ1 = φ2 = . . . = φm = φ
1
m

∑m

i=1 h
(i) otherwise

which proves (4.5) and (4.6). �

The message of Proposition 4.2 is that under (3.1), computations of CDO tranche spreads
and index CDS spreads are reduced to compute the matrix exponential. Finding the gener-

ator Q and column vectors ℓ
(γ), ℓ, ̂ℓ are straightforward and the matrix (Q − rI) is invert-

ible since it is upper diagonal with strictly negative diagonal elements, see [17]. Computing
eQt efficiently is a numerical issue, which for large state spaces requires special treatment,
see [17]. For small state spaces, typically less then 150 states, the task is straightfor-
ward using standard mathematical software. Several computational shortcuts are possible

in Proposition 4.2. The quantities ℓ
(γ), ℓ and ̂ℓ do not depend on the parametrization,

and hence only have to be computed once. The row vectors αeQT e−rT + αR(0, T )r and
∑nT

n=1 αeQtne−rtn∆n are the same for all CDO tranche spreads and index CDS spreads and
hence only have to be computed once for each parametrization determined by (3.1). In
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particular note that
∑nT

n=1 αeQtne−rtn∆n and (Q − rI)−1 also appears in the expressions
for single-name CDS spreads and kth-to-default spreads studied in [17].

In a nonhomogeneous portfolio we have |E| = 2m which in practice will force us to
work with portfolios of size m less or equal to 25, say ([17] used m = 15). Standard
synthetic CDO portfolios typically contains 125 obligors so we will therefore, in Section
5 below, consider a special case of (3.1) which leads to a symmetric portfolio where the
state space E can be simplified to make |E| = m + 1. This allows us to practically work
with the Markov setup in Proposition 4.2 for large m, where m ≥ 125 with no further
complications. Using homogeneous credit portfolio models when pricing CDO tranches is
currently standard in almost all credit literature today.

5. A homogeneous portfolio

In this section we apply the results from Section 4 to a homogenous portfolio. First,
Subsection 5.1 introduces a symmetric model and shows how it can be applied to price
CDO tranche spreads and index CDS spreads. Subsection 5.2 presents formulas for the
single-name CDS spread in this model. Finally, Subsection 5.3 is devoted to formulas
for kth-to-default swaps on subportfolios of the main portfolio. This problem is slightly
different from the corresponding task in previous studies, e.g. [15] and [17], since the
obligors undergo default contagion both from the subportfolio and from obligors outside
the subportfolio, in the main portfolio.

5.1. The homogeneous model for CDO tranches and index CDS-s. In this sub-
section we use the results from Section 4 to compute CDO tranche spreads and index CDS
spreads in a totally symmetric model. We consider a special case of (3.1) where all obligors
have the same default intensities λt,i = λt specified by parameters a and b1, . . . , bm, as

λt = a +

m−1
∑

k=1

bk1{Tk≤t} (5.1.1)

where {Tk} is the ordering of the default times {τi} and φ1 = . . . = φm = φ where φ

is constant. In this model the obligors are exchangeable. The parameter a is the base
intensity for each obligor i, and given that τi > Tk, then bk is how much the default
intensity for each remaining obligor jump at default number k in the portfolio. We start
with the simpler version of Proposition 3.1.

Corollary 5.1. There exists a Markov jump process (Yt)t≥0 on a finite state space E =
{0, 1, 2, . . . , m}, such that the stopping times

Tk = inf {t > 0 : Yt = k} , k = 1, . . . , m

are the ordering of m exchangeable stopping times τ1, . . . , τm with intensities (5.1.1).
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Proof. If {Tk} is the ordering of m default times {τi} with default intensities {λt,i}, then

the arrival intensity λ
(k)
t for Tk is zero outside of {Tk−1 ≤ t < Tk}, otherwise

λ
(k)
t =

(

m
∑

i=1

λt,i

)

1
{Tk−1≤t<Tk}

. (5.1.2)

Hence, since λt,i = λt for every obligor i where τi ≥ t, (5.1.2) implies

λt1{Tk−1≤t<Tk}
=

λ
(k)
t

m − k + 1
, k = 1, . . . , m. (5.1.3)

Now, let (Yt)t≥0 be a Markov jump process on a finite state space E = {0, 1, 2, . . . , m},
with generator Q given by

Qk,k+1 = (m − k)

(

a +
k
∑

j=1

bj

)

k = 0, 1, . . . , m − 1

Qk,k = −Qk,k+1, k < m and Qm,m = 0

where the other entries in Q are zero. The Markov process always starts in {0} so the
initial distribution is α = (1, 0, . . . , 0). Define the ordered stopping times {Tk} as

Tk = inf {t > 0 : Yt = k} , k = 1, . . . , m.

Then, the intensity λ
(k)
t for Tk on {Tk−1 ≤ t < Tk} is given by λ

(k)
t = Qk−1,k. Further, we

can without loss of generality assume that {Tk} is the ordering of m exchangeable default
times {τi}, with default intensities λt,i = λt for every obligor i. Hence, if τi ≥ t, (5.1.3)
implies

λt1{Tk−1≤t<Tk}
=

λ
(k)
t

m − k + 1
=

Qk−1,k

m − k + 1
= a +

k−1
∑

j=1

bj , k = 1, . . . , m

and since λt =
∑m

k=1 λt1{Tk−1≤t<Tk}
, it must hold that λt = a+

∑m−1
k=1 bk1{Tk≤t}, when τi ≥ t,

which proves the corollary. �

By Corollary 5.1, the states in E can be interpreted as the number of defaulted obligors
in the portfolio.

Recall that the formulas for CDO tranche spreads and index CDS spreads in Proposition
4.2 where derived for an inhomogeneous portfolio with default intensities (3.1). However,
it is easy to see that these formulas (with identical recoveries) also can be applied in a

homogeneous model specified by (5.1.1), but with ℓ
(γ) and ℓ slightly refined to match the

homogeneous state space E. This refinement is shown in the following lemma.

Lemma 5.2. Consider a portfolio with m obligors that all satisfy (5.1.1) and let E, Q and
α be as in Corollary 5.1. Then, (4.2), (4.3) and (4.5) hold, for

ℓ
(γ)
k =







0 if k < nl(kγ−1)
k(1 − φ)/m − kγ−1 if nl(kγ−1) ≤ k ≤ nu(kγ)
∆kγ if k > nu(kγ)

(5.1.4)
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where nl(x) = ⌈xm/(1 − φ)⌉ and nu(x) = ⌊xm/(1 − φ)⌋. Furthermore, ℓk = k(1 − φ)/m.

Proof. Since Lt = L(Yt) and due to the homogeneous structure, we have

{Lt = k(1 − φ)/m} = {Yt = k}

for each k in E. Hence, the loss process Lt is in one-to-one correspondence with the process
Yt. Define nl(x) = ⌈xm/(1 − φ)⌉ and nu(x) = ⌊xm/(1 − φ)⌋. That is, nl(x) (nu(x)) is
the smallest (biggest) integer bigger (smaller) or equal to xm/(1− φ). These observations

together with the expression for ℓ
(γ) and ℓ in Proposition 4.1, yield (5.1.4). �

In the homogeneous model given by (5.1.1), we have now determined all quantities needed
to compute CDO tranche spreads and index CDS spreads as specified in Proposition 4.2.

5.2. Pricing single-name CDS in a homogeneous model. If F (t) is the distribution
for τi, which by exchangeability is the same for all obligors under (5.1.1), then the single-
name CDS spread R(T ) is given by (see e.g. [17])

R(T ) =
(1 − φ)

∫ T

0
BtdF (t)

∑nT

n=1

(

Btn∆n(1 − F (tn)) +
∫ tn

tn−1
Bt (t − tn−1) dF (t)

) (5.2.1)

where the rest of the notation are the same as in Section 2. Hence, to calibrate, or
price single-name CDS-s under (5.1.1), we need the distribution P [τi > t] (identical for all
obligors). This leads to the following lemma.

Lemma 5.3. Consider m obligors that satisfy (5.1.1). Then, with notation as above

P [τi > t] = αeQt
g and P [Tk > t] = αeQt

m
(k) , k = 1, . . . , m

where m
(k) and g are column vectors in R

|E| such that m
(k)
j = 1

{j<k} and gj = 1 − j/m.

Proof. By the construction of Tk in Corollary 5.1, we have

P [Tk > t] = P [Yt < k] =
k−1
∑

j=0

αeQt
ej = αeQt

m
(k) where m

(k)
j = 1

{j<k}

for k = 1, . . . , m. Furthermore, due to the exchangeability,

P [Tk > t] =

m
∑

i=1

P [Tk > t, Tk = τi] = mP [Tk > t, Tk = τi]

so

P [τi > t] =
m
∑

k=1

P [Tk > t, Tk = τi] =
m
∑

k=1

1

m
P [Tk > t] = αeQt

m
∑

k=1

1

m
m

(k) = αeQt
g,

where g = 1
m

∑m

k=1 m
(k). Since m

(k)
j = 1

{j<k} this implies that gj = 1 − j/m which
concludes the proof of the lemma. �

A closed-form expression for R(T ) is obtained by using Lemma 5.3 in (5.2.1). For ease
of reference we exhibit the resulting formulas (proofs can be found in [15] or [16]).
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Proposition 5.4. Consider m obligors that all satisfies (5.1.1) and assume that the interest
rate r is constant. Then, with notation as above

R(T ) =
(1 − φ)α (A(0) − A(T )) g

α (
∑nT

n=1 (∆neQtne−rtn + C(tn−1, tn)))g

where

C(s, t) = s (A(t) − A(s)) − B(t) + B(s), A(t) = eQt (Q − rI)−1
Qe−rt

and

B(t) = eQt
(

tI + (Q − rI)−1) (Q − rI)−1
Qe−rt.

For more on the CDS contract, see e.g [10], [15] or [23].

5.3. Pricing kth-to-default swaps on subportfolios in a homogeneous model. Con-
sider a homogenous portfolio defined by (5.1.1). Our goal in this subsection is to find
expressions for kth-to-default swap spreads on a subportfolio in the main portfolio. The
difference in this approach, compared with for example [17] and [12] is that the obligors
undergoes default contagion both from entities in the selected basket and from obligors
outside the basket, but in the main portfolio.

Let s be a subportfolio of the main portfolio, that is s ⊆ {1, 2, . . . , m} and let |s| denote
the number of obligors in s so |s| ≤ m. The market standard is |s| = 5. If the recoveries
are homogeneous, it is enough to find the distribution for the ordering of the default times
in the basket. Hence, we seek the distributions of the ordered default times in s denoted

by {T
(s)
k }. The kth-to-default swap spreads R

(s)
k (T ) on s are then given by (see e.g. [17])

R
(s)
k (T ) =

(1 − φ)
∫ T

0
BtdF

(s)
k (t)

∑nT

n=1

(

Btn∆n(1 − F
(s)
k (tn)) +

∫ tn

tn−1
Bt (t − tn−1) dF

(s)
k (t)

) (5.3.1)

where F
(s)
k (t) = P

[

T
(s)
k ≤ t

]

are the distribution functions for {T
s)
k }. The rest of the

notation are the same as in Section 2. In Theorem 5.5 below, we derive formulas for the

survival distributions of {T
(s)
k }. This is done by using the exchangeability, the matrix-

analytic approach and the fact that default times in s always coincide with a subsequence
of the default times in the main portfolio.

Theorem 5.5. Consider a portfolio with m obligors that satisfy (5.1.1) and let s be an
arbitrary subportfolio with |s| obligors. Then, with notation as above

P

[

T
(s)
k > t

]

= αeQt
m

k,s for k = 1, 2, . . . , |s| (5.3.2)

where

m
k,s
j =







1 if j < k

1 −
∑j∧|s|

ℓ=k

(|s|
ℓ
)(m−|s|

j−ℓ
)

(m

j
)

if j ≥ k.
(5.3.3)
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Proof. The events {Tℓ > t} and
{

T
(s)
k = Tℓ

}

are independent where k ≤ ℓ ≤ m−|s|+k. To

motivate this, note that since all obligors are exchangeable, the information
{

T
(s)
k = Tℓ

}

will not influence the event {Tℓ > t}. Thus, P

[

Tℓ > t, T
(s)
k = Tℓ

]

= P [Tℓ > t] P
[

T
(s)
k = Tℓ

]

.

This observations together with Lemma 5.3 implies that

P

[

T
(s)
k > t

]

=

m−|s|+k
∑

ℓ=k

P

[

T
(s)
k > t, T

(s)
k = Tℓ

]

=

m−|s|+k
∑

ℓ=k

P

[

T
(s)
k = Tℓ

]

P [Tℓ > t]

=

m−|s|+k
∑

ℓ=k

P

[

T
(s)
k = Tℓ

]

αeQt
m

(ℓ) = αeQt
m

k,s

where

m
k,s =

m−|s|+k
∑

ℓ=k

P

[

T
(s)
k = Tℓ

]

m
(ℓ).

Using this and the definition of m
(ℓ)
j renders

m
k,s
j =

{

1 if j < k

1 −
∑j

ℓ=k P

[

T
(s)
k = Tℓ

]

if j ≥ k

and in order to compute m
k,s
j for j ≥ k, note that

j
⋃

ℓ=k

{

T
(s)
k = Tℓ

}

=
{

k ≤ N
(s)
j ≤ j ∧ |s|

}

where N
(s)
j is defined as N

(s)
j = sup

{

n : T
(s)
n ≤ Tj

}

, that is, the number of obligors that

have defaulted in the subportfolio s up to the j-th default in the main portfolio. Due to

the exchangeability, N
(s)
j is a hypergeometric random variable with parameters m, j and

|s|. Hence,

j
∑

ℓ=k

P

[

T
(s)
k = Tℓ

]

=

j∧|s|
∑

ℓ=k

P

[

N
(s)
j = ℓ

]

=

j∧|s|
∑

ℓ=k

(

|s|

ℓ

)(

m−|s|

j−ℓ

)

(

m

j

) .

which proves the theorem. �

Returning to kth-to-default swap spreads, expressions for R
(s)
k (T ) may be obtained by

inserting (5.3.2) into (5.3.1). The notation and proof are the same as in Proposition 5.4
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Corollary 5.6. Consider a portfolio with m obligors that satisfy (5.1.1) and let s be an
arbitrary subportfolio with |s| obligors. Assume that the interest rate r is constant. Then,
with notation as above,

R
(s)
k (T ) =

(1 − φ)α (A(0) − A(T ))m
k,s

α (
∑nT

n=1 (∆neQtne−rtn + C(tn−1, tn))) mk,s
, k = 1, 2, . . . , |s|.

For a more detailed description of kth-to-default swap, see e.g. [10], [15], [17] or [23].

6. Numerical study of a homogeneous portfolio

In this section we calibrate the homogeneous portfolio to real market data on CDO
tranches, index CDS-s, average single-name CDS spreads and average FtD-spreads (i.e
average 1th-to-default swaps). We match the theoretical spreads against the corresponding
market spreads for individual default intensities given by (5.1.1). First, in Subsection 6.1
we give an outline of the calibration technique used in this paper. Then, in Subsection
6.2 we calibrate our model against an example studied in several articles, e.g [12] and
[18], with data from iTraxx Europe, August 4, 2004. The iTraxx Europe spreads has
changed drastically in the period between August 2004 and November 2006. We therefore
recalibrate our model to a more recent data set, collected at November 28th, 2006. This
second calibration also lends some confidence to the robustness of our model.

Having calibrated the portfolio, we can compute spreads for exotic credit derivatives,
not liquidly quoted on the market, as well as other quantities relevant for credit portfo-
lio management. In Subsection 6.3 we compute spreads for tranchelets, which are CDO
tranches with smaller loss-intervals than standardized tranches. Subsection 6.4 investigates
kth-to-default swap spreads as function of the size of the underlying subportfolio in main
calibrated portfolio. Continuing, Subsection 6.5 studies the implied expected loss in the
portfolio and the implied expected tranche-losses. Finally, Subsection 6.6 is devoted to
explore the implied loss-distribution as function of time.

6.1. Some remarks on the calibration. The symmetric model (5.1.1) can contain at
most m different parameters. Our goal is to achieve a ”perfect fit” with as many parameters
as there are market spreads used in the calibration for a fixed maturity T . For a standard
synthetic CDO such as the iTraxx Europe series, we can have 5 tranche spreads, the index
CDS spread, the average single-name CDS spread and the average FtD spread. Hence, for
calibration, there is at most 8 market prices with maturity T available. However, all of
them do not have to be used. We make the following assumption on the parameters bk for
1 ≤ k ≤ m − 1

bk =



















b(1) if 1 ≤ k < µ1

b(2) if µ1 ≤ k < µ2
...
b(c) if µc−1 ≤ k < µc = m

(6.1.1)

where 1, µ1, µ2, . . . , µc is an partition of {1, 2, . . . , m}. This means that all jumps in the
intensity at the defaults 1, 2, . . . , µ1−1 are same and given by b(1), all jumps in the intensity
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at the defaults µ1, . . . , µ2 − 1 are same and given by b(2) and so on. This is a simple way
of reducing the number of unknown parameters from m to c + 1.

If η is the number of calibration-instruments, that is the number of credit derivatives
used in the calibration, we set c = η − 1. Let a = (a, b(1), . . . , b(c) denote the parameters
describing the model and let {Cj(T ; a)} be the η different model spreads for the instruments
used in the calibration and {Cj,M(T )} the corresponding market spreads. In Cj(T ; a)
we have emphasized that the model spreads are functions of a = (a, b(1), . . . , b(c)) but
suppressed the dependence of interest rate, payment frequency, etc. The vector a is then
obtained as

a = argmin
â

η
∑

j=1

(Cj(T ; â) − Cj,M(T ))2 (6.1.2)

with the constraint that all elements in a are nonnegative. Note that it would have been
possible to let the jump parameters bk be negative, as long as λt > 0 for all t. In economic
terms this would mean that the non-defaulted obligors benefit from the default at Tk.

The model spreads {Cj(T ; a)}, such as average CDS spread R(T ; a), index CDS spread
S(T ; a), CDO tranche spreads {Sγ(T ; a)} etc. are given in closed formulas derived in
the previous sections. We use Padé-approximation with scaling and squaring, (see [24])
to compute the matrix exponential, since in the present setting, it outperforms all other
methods, both in computational time and accuracy. Note that this is not the case for a
nonhomogeneous portfolio with a large state space E, where the uniformization method is
better, see [17]. The reason for the lesser performance of the uniformization method in the
homogeneous CDO model is that the quantity max

{

|Qj,j| : j ∈ E
}

is very large, which
introduces many terms in the approximation of the matrix exponential.

The initial parameters in the calibration can be rather arbitrary. The ”optimal solution”
for this first iteration, is taken as a the initial value in a new calibration. Repeating this
procedure one, or if needed, two or three times, have in our numerical examples (see next
subsections) always lead to perfect calibrations. Finding good initial parameters when
using the model in practice is most likely a minor problem. This is due to the fact that
calibrations are performed on a daily basis and the initial guess could simply be the optimal
solution from the previous calibration.

Finally, it should be mentioned that the calibrated parameters are not likely to be
unique. By perturbing the initial guesses, we have been able to get calibrations that are
worse, but ”close” to the optimal calibration, and where some of the parameters in the
calibrated perturbed vector, are very different from the corresponding parameters in the
optimal vector. We do not further pursue the discussion of potential nonuniqueness here,
but rather conclude that the above phenomena is likely to occur also in other pricing
models.

6.2. Calibration to the iTraxx Europe series. In this subsection we calibrate our
model against credit derivatives on the iTraxx Europe series with maturity of five years.
There are five different CDO tranche spreads with tranches [0, 3], [3, 6], [6, 9], [9, 12] and
[12, 22], and we also have the index CDS spreads and the average CDS spread.
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First, a calibration is done against data taken from iTraxx Europe on August 4, 2004
used in e.g. [12] and [18]. Here, just as in [12] and [18], we set the average CDS spread
equal to (i.e. approximated by) the index CDS spread. No market data on FtD spreads
are available in this case. The iTraxx Europe spreads has changed drastically since August
2004. We therefore recalibrate our model to a more recent data set, collected at November
28th, 2006. This data also contains the average CDS spread and average FtD spread (see
Table 8). All data is taken from Reuters on November 28th, 2006 and the bid, ask and
mid spreads are displayed in Table 7.

In both calibrations the interest rate is set to 3%, the payment frequency is quarterly
and the recovery rate is 40%.

Table 1: iTraxx Europe, August 4th 2004. The market and model spreads and the corresponding
absolute errors, both in bp and in percent of the market spread. The [0, 3] spread is
quoted in %. All maturities are for five years.

Market Model error (bp) error (%)
[0, 3] 27.6 27.6 0.0004514 1.635e-005
[3, 6] 168 168 0.003321 0.001977
[6, 9] 70 70.07 0.06661 0.09515
[9, 12] 43 42.91 0.09382 0.2182
[12, 22] 20 20.03 0.03304 0.1652
index 42 41.99 0.01487 0.03542

avg CDS 42 41.96 0.04411 0.105
Σ abs.cal.err 0.2562 bp

Table 2: iTraxx Europe Series 6, November 28th, 2006. The market and model spreads and the
corresponding absolute errors, both in bp and in percent of the market spread. The
[0, 3] spread is quoted in %. All maturities are for five years.

Market Model error (bp) error (%)
[0, 3] 14.5 14.5 0.007266 0.0005011
[3, 6] 62.5 62.41 0.08523 0.1364
[6, 9] 18 18.1 0.09727 0.5404
[9, 12] 7 6.881 0.1193 1.704
[12, 22] 3 3.398 0.3979 13.26
index 26 26.13 0.1299 0.4997

avg CDS 26.87 26.12 0.7535 2.804
Σ abs.cal.err 1.59 bp

We choose the partition µ1, µ2, . . . , µ6 so that it roughly coincides with the number of
defaults needed to reach the upper attachment point for each tranche, see Table 10 in
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Appendix. The numerical values of the calibrated parameters a, obtained via (6.1.2), are
shown in Table 9 in Appendix 8.

For both data sets we also performed calibrations where some of the available market
spreads were excluded from the fitting and where the model spreads for the omitted in-
struments were computed with the parameters obtained from the rest of the instruments
in the calibration.

There were two reasons for these tests. First, we wanted to explore if the derivatives not
used in the calibration, but computed with the parameters obtained from the rest of the
instruments, produces model spreads that are close to the corresponding market spreads.
Secondly, we wished to investigate the ”robustness” of the model, that is, would the model
spreads change drastically if we used different calibration instruments. For the August 4th

2004 data set, this was done for two cases. In the first fitting we excluded the index CDS
and in the second, the average CDS spread was omitted in the calibration. The sum of the
absolute calibration error for the two cases (and sum of total absolute model error, equal
to the total calibration error and sum of absolute differences between model and market
spreads for instruments not used in the calibration) were approximately 1.14 bp (1.577 bp)
and 1.129 bp (1.623 bp) respectively. We can therefore, in all three calibrations, speak of a
perfect fit for T = 5 years. A superior fit was in this case obtained when both the average
CDS spread and index CDS were included, see Table 1

We also performed the same procedure for the November 28th, 2006 data set, but now
with one more case since we had one more market observation, the average FtD spread.
The sum of the absolute calibration error for the three cases (and sum of total absolute
model error) were approximately 1.661 bp (4.096 bp), 0.7527 bp (3.921 bp) and 3.919
bp (3.919 bp), where the last case included the average FtD-spread. Hence, once again,
we can in all four cases speak of a perfect fit when T = 5. In the 2006-11-28 study we
observed that the FtD model spread was very robust, that is, the computed model spreads
differed very little after each calibration. This may indicate that the average FtD spread is
difficult to calibrate using the model in (5.1.1). To summarize, in both data sets, the best
calibrations where obtained when both the index CDS spread and average CDS spread
where included, but where the average FtD-spread was excluded, see Tables 1 and 2.

Finally, since the calibrations where performed on two data sets where the corresponding
spreads differed substantially, the above observations lend some confidence in the robust-
ness of our model.

6.3. Pricing tranchelets in a homogeneous model. As discussed above, a tranchelet
is a nonstandard CDO tranche with smaller loss-intervals than standardized tranches, see
e.g. [5] or [20]. Tranchelets are typically computed for losses on [0, 1], [1, 2], . . . , [5, 6].
Currently, there are no liquid market for these instruments, so they can still be regarded
as somewhat ”exotic”. Nevertheless, tranchelets have recently become popular and pricing
these instruments are done in the same ways as for standard tranches.

In this subsection we compute the five year tranchelet spreads for [0, 1], . . . , [11, 12], on
iTraxx Europe Series 6, November 28th 2006, and iTraxx Europe, August 4th, 2004 as well
as the corresponding absolute difference in % of the 2004-08-04 spreads. The computations
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Table 3: Tranchelet spreads on iTraxx Europe, November 28th 2006 (Series 6) and August 4th

2004 and the absolute difference in % of the 2004-08-04 spreads. The [0, 1] and [1, 2]
spreads are the upfront premiums on the tranche nominals, quoted in % where the
running fee is 500 bp. Tranchelets above [1, 2] are expressed in bp. All maturities are
five years.

Tranchelet 04/08/04 06/11/28 diff. (in %)
[0, 1] 60.85 47.93 21.25
[1, 2] 22.43 7.006 68.76
[2, 3] 488.9 245.5 49.79
[3, 4] 240.9 97.85 59.39
[4, 5] 154 54.49 64.61
[5, 6] 110.2 35.13 68.12
[6, 7] 84.29 24.26 71.22
[7, 8] 68.41 17.35 74.65
[8, 9] 57.53 12.69 77.94
[9, 10] 49.29 9.315 81.1
[10, 11] 42.53 6.676 84.3
[11, 12] 36.9 4.652 87.39

are done with parameters obtained from the calibrations in the Tables 1 and 2, where all
other quantities such as recovery rate, interest rate, payment frequency etc. are the same
as in these tables. The [0, 1] and [1, 2] spreads are computed with Equation (4.3) where

ℓ
(1) is replaced by a corresponding column vector adapted for [0, 1], and [1, 2] respectively,

given as in Lemma 5.2. Furthermore, in (4.3), k1 is set to 0.01 for both tranchelets [0, 1]
and [1, 2]. Tranchelets above [1, 2] are computed with Equation (4.2). It is interesting to
note that the average for the three tranchelets between 3 and 6 are 168.4 (2004-08-04)
and 62.49 (2006-11-28) which both are close to the corresponding [3, 6] spreads. The same

Table 4: The market spreads (used for calibration) on iTraxx Europe, November 28th 2006
(Series 6) and August 4th 2004 and the absolute difference in % of the 2004-08-04
spreads. All maturities are five years.

[0, 3] [3, 6] [6, 9] [9, 12] [12, 22] index avg CDS
04/08/04 27.6 168 70 43 20 42 42
06/11/28 14.5 62.5 18 7 3 26 26.87
diff. (%) 47.46 62.8 74.29 83.72 85 38.1 36.02

holds for the averages of tranchlets between 6 to 9 and 9 to 12, which are 70.08, 18.1 and
42.91, 6.881 respectively. These observations explain why the average of the differences for
the three tranchelets between 3 to 6, 6 to 9 and 9 to 12, given by 64 %, 74.6 % and 84.3
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%, are close to the corresponding differences in the [3, 6], [6, 9] and [9, 12] tranche spreads,
displayed in Table 4.

6.4. Pricing kth-to-default swaps on subportfolios in a homogeneous model. In

this subsection we price five year kth-to-default spreads R
(s)
k with k = 1, . . . , 5 for different

subportfolios s, of the main portfolio. The subportfolios have sizes |s| = 5, 10, 15, 25, 30
and the computations are done for the two different data sets, iTraxx Europe Series 6,
November 28th, 2006 and iTraxx Europe August 4th, 2004. The computations are done
with parameters obtained from the calibrations in the Tables 1 and 2 , where all other
quantities such as recovery rate, interest rate, payment frequency etc. are the same as in
these tables.

Table 5: The five year kth-to-default spreads R
(s)
k with k = 1, . . . , 5 for different subportfolios

s in the main portfolio calibrated to iTraxx Europe, November 28th 2006 (Series 6)
and August 4th 2004 and the absolute difference in % of the 2004-08-04 spreads. We
consider |s| = 5, 10, 15, 25, 30.

|s| Date k = 1 k = 2 k = 3 k = 4 k = 5
5 04/08/04 180.9 25.19 7.002 3.037 1.404

06/11/28 119 9.597 2.31 1.728 1.59
diff. (%) 34.19 61.9 67.01 43.09 13.25

10 04/08/04 331 67.94 22.39 10.85 6.35
06/11/28 226.8 30.6 6.183 2.6 1.937
diff. (%) 31.47 54.96 72.39 76.03 69.49

15 04/08/04 467.4 117.1 41.91 21.13 12.9
06/11/28 327.7 58.89 13.69 4.848 2.68
diff. (%) 29.89 49.7 67.33 77.05 79.22

20 04/08/04 594.6 170.1 64.57 32.96 20.6
06/11/28 423.1 91.73 24.34 8.69 4.234
diff. (%) 28.84 46.07 62.31 73.63 79.44

25 04/08/04 714.9 225.5 90.06 46.15 29
06/11/28 514.1 127.6 37.6 14 6.691
diff. (%) 28.08 43.42 58.25 69.67 76.93

There exists liquid quoted market spreads on FtD baskets (i.e. k = 1) and often the FtD
spreads are also quoted in percent of the sum of the individual spreads in the subportfolio
s (see Table 8 in Appendix). No market spread on FtD swaps are available for 2004-08-04
but the model FtD-spread is 180.9 bp which is around 86 % of the SoS (sum of spreads)
given by 5 · 42 = 210 bp. As seen in Table 8 in Appendix, this is a very realistic FtD
spread in terms of the SoS. Furthermore, for 2006-11-28 we have access to the average FtD
market-spread which is 116.8 bp, see Table 8.
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From Table 5 we see that, for fixed s and k, the spreads differ substantially between the
two dates. Given the difference between the market spreads in the calibration (Table 4),
this should not come as a surprise. For example, when |s| = 5, k = 1 the difference is 34
%, and for |s| = 15, k = 5 the 2006-11-28 spread is 79 % lower than the 2004-08-04 spread.
The spreads increase as the size of the portfolio increases, as they should.

For the 2006-11-28 case, the increase from a portfolio of size 5 to one of size 25 is 432%
for a 1st-to-default swap, 1330% for a 2nd-to-default swap, 1628% for a 3rd-to-default swap,
and for a 5th-to-default swap the increase is 421%. Further, for a portfolio of size 10 the
price of a 1st-to-default swap is about 117 times higher than for a 5th-to-default swap and
the corresponding ratio for a portfolio of size 15 is about 122. These ratios are much
smaller than for a ”isolated” portfolio, which only undergo default contagion from obligors
within the basket, see [17]. Qualitatively the above results are completely as expected,
however, given market spreads on CDO tranches, index CDS spreads etc. it would seem
rather impossible to guess the sizes of the effects without computation.

6.5. The implied tranche losses and implied loss in a homogeneous portfolios.

In the credit literature today, expected risk-neutral tranche losses are often called implied
tranche losses. Here ”implied” is refereing to the fact that the quantities are retrieved from
market data via a model. Similarly, the implied portfolio loss refers to the expected risk-
neutral portfolio loss. In this subsection we compute the expected risk-neutral portfolio
loss and the implied expected tranche losses at different time points.

Table 6: The implied tranche losses in % of tranche nominal, at t = 3, 5, 7, 10 for the calibrated
CDO portfolios on iTraxx Europe Series 6, November 28th 2006, and iTraxx Europe,
August 4th, 2004 and the absolute differences in % of the 2004-08-04 tranche losses.

t Date [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]
3 04/08/04 26.52 0.7142 0.1014 0.03198 0.005744

06/11/28 19.31 0.2082 0.01647 0.002157 0.0004121
diff. (%) 27.18 70.85 83.75 93.26 92.83

5 04/08/04 49.26 8.649 3.67 2.258 1.059
06/11/28 36.61 3.255 0.954 0.3641 0.1802
diff. (%) 25.67 62.37 74.01 83.88 82.99

7 04/08/04 69.28 28.61 18.7 14.74 10.13
06/11/28 54.39 13.7 7.005 4.161 2.9
diff. (%) 21.49 52.09 62.54 71.78 71.38

10 04/08/04 87.91 63.57 54.27 49.67 43.12
06/11/28 75.73 40.75 30.24 24.01 20.58
diff. (%) 13.86 35.89 44.27 51.65 52.28

These are important quantities for a credit manager and Lemma 4.1 and Lemma 5.2

provides formulas for computing them. We study 100 · E

[

L
(γ)
t

]

/∆kγ for 3, 5, 7 and 10
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Figure 1: The implied tranche losses in % of tranche nominal for the 2006-11-28 portfolio.
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Figure 2: The implied portfolio losses in % of nominal, for the 2004-08-04 and 2006-11-28 port-
folios.

years on CDO portfolios calibrated against iTraxx Europe Series 6, November 28th 2006,
and iTraxx Europe, August 4th, 2004. Just as for previous computations, the corresponding
tranche losses differ substantially between the two dates. For example, in the 2006-11-28
case, the tranche loss on [0, 3] for t = 3 is 27 % smaller than the corresponding quantity for
the 2004-08-04 collection, but this differences drastically increases for the upper tranches,
[6, 9], [9, 12] to 84% and 93%, as seen in Table 6. Further, for the 2006-11-28 case, we clearly
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see the effect of default contagion on the upper tranche losses, making them lie close to each
other, see Figure 1. From Figure 2 we conclude that our model, with a constant recovery
rate of 40%, calibrated to market spreads on the five year iTraxx Europe Series implies
that the whole portfolio has defaulted within approximately 30 years (for both data sets).
In reality, this will likely not happen, since risk-neutral (implied) default probabilities are
substantially larger than the ”real”, so called actuarial, default probabilities.

6.6. The implied loss distribution in a homogeneous portfolio. In this subsection
we study the implied distribution for the loss process Lt at different time points. Since we
are considering constant recovery rates, then for every t, the distribution of Lt is discrete
and formally the values for P [Lt = x] should be displayed as bars at x = k(1−φ)/m where
0 ≤ k ≤ m.
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Figure 3: The implied loss distributions for the 2004-08-04 and 2006-11-28 portfolios.
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Figure 4: The implied loss distributions (in log-scale) for the 2004-08-04 and 2006-11-28 port-
folios.

However, since there are totaly 126 different outcomes we do not bother about this and
connect the graph continuously between each discrete probability. The loss probabilities
are computed by using that Lt = L(Yt) so P [Lt = k(1 − φ)/m] = P [Yt = k] = αeQt

ek for
k = 0, 1, . . . , m, see Corollary 5.1.

In Figure 3 for 0 < x < 12, the implied loss probabilities in the 2006-11-28 case are bigger
than their 2004-04-28 counterparts, at several occasions in time t, which at first glance may
contradict the results in Table 6. However, a more careful study, using a log-scale, shows
that for 20 < x < 50 and at most time points t, the 2004-04-28 loss distribution is about
10 times bigger than the corresponding values for the 2006-11-28 case, see Figure 4. This
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supports the results in Table 6 where the expected tranche losses for the 2004-04-28 case
are always bigger than in the 2006-11-28 case.

7. Conclusions

In this paper we have derived closed-form expressions for CDO tranche spreads and index
CDS spreads. This is done in a inhomogeneous model where dynamic default dependencies
among obligors are expressed in an intuitive, direct and compact way. By specializing this
model to a homogenous portfolio, we show that the CDO and index CDS formulas simplify
considerably in a symmetric model. The same method are used to derive kth-to-default
swap spreads for subportfolios in the main CDO portfolio. In this setting, we calibrate
a symmetric portfolio against credit derivatives on the iTraxx Europe series for a fixed
maturity of five years. We do this at two different dates, where the corresponding market
spreads differ substantially. In both cases we obtain perfect fits. These two calibrations
therefore lends some confidence to the robustness of our model.

In the calibrated portfolios, we compute tranchelet spreads and investigate kth-to-default
swap spreads as function of the portfolio size. Further, the implied tranche losses and the
implied loss distributions are also extracted. All these computations and investigations
would be difficult to perform without having convenient formulas for the quantities that
we want to study. Furthermore, given the recovery rate, the number of model parameters
are as many as the market instruments used in the calibration. This implies that all
calibrations are performed without inserting ”fictitious” numerical values for some of the
parameters, making the calibration more realistic.
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8. Appendix

Tables 7 shows the market spreads collected from iTraxx Europe Series 6, November
28th, 2006 and taken from Reuters. Table 8 shows the FtD spreads, i.e. 1st-to-defaults
spreads for 6 standardized subportfolios on iTraxx Europe Series 6, launched September
20th, 2006. Each basket consist of five obligors that are taken from a sector in the iTraxx
Series 6 (Autos, Energy, Industrial, TMT, Consumers and Financial). The names of the
obligors in each basket as well as the selection criteria can be found on the webpage for
iboxx. In the financial FtD basket, we have used the subordinated FtD spread, since the
senior spread is much smaller (30 bp) than the other spreads, which will pull down the
average mid FtD spread to 112.25 bp.

The numerical values of the calibrated parameters a, obtained via (6.1.2), are shown in
Table 9 and the partition (see Equation (6.1.1)) in Table 10.
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Table 7: The market bid, ask and mid spreads for iTraxx Europe (Series 6), November 28th,
2006. All data is taken from Reuters. The mid spreads, i.e. average of the bid and ask
spread, are used in the calibration in Section 6.

bid ask mid time
[0, 3] 14.5 14.5 28 Nov, 18:23
[3, 6] 60 65 62.5 28 Nov, 17:14
[6, 9] 16.5 19.5 18 28 Nov, 13:36
[9, 12] 5.5 8.5 7 28 Nov, 13:36
[12, 22] 2 4 3 28 Nov, 13:36
index 25.75 26.25 26 28 Nov, 18:34

avg CDS 25.94 27.8 26.87 28 Nov, 19:40

Table 8: The market bid, ask and mid spreads for different FtD spreads on subsectors of iTraxx
Europe (Series 6), November 28th, 2006. Each subportfolio have five obligors. We also
display the sum of CDS-spreads (SoS) in each basket, as well as the mid FtD spreads
in % of SoS. The mid spread is used in the calibration in Section 6.

Sector bid ask mid SoS mid/SoS % time
Autos 154 166 160 202 79.21 % 28 Nov, 10:26
Energy 65 71 68 86 79.07 % 28 Nov, 10:26

Industrial 114 123 118.5 141 84.04 % 28 Nov, 10:26
TMT 167 188 177.5 217 81.8 % 28 Nov, 10:26

Consumers 113 122 117.5 140 83.93 % 28 Nov, 10:26
Financial 55 63 59 79 74.68 % 28 Nov, 10:26
average 111.3 122.2 116.8 144.2 80.98 %

Table 9: The calibrated parameters that gives the model spreads in the Tables 1 and 2.

a b(1) b(2) b(3) b(4) b(5) b(6)

04/08/04 33.0 16.4 84.5 145 86.4 124 514 ×10−4

06/11/28 24.9 13.9 73.6 62.4 0.823 2162 4952 ×10−4

Table 10: The integers 1, µ1, µ2, . . . , µc are partitions of {1, 2, . . . ,m} used in the models that
generates the spreads in the Tables 1 and 2

partition µ1 µ2 µ3 µ4 µ5 µ6

7 13 19 25 46 125
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MODELLING DEFAULT CONTAGION USING MULTIVARIATE

PHASE-TYPE DISTRIBUTIONS

ALEXANDER HERBERTSSON
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Abstract. We model dynamic credit portfolio dependence by using default contagion
in an intensity-based framework. Two different portfolios (with 10 obligors), one in the
European auto sector, the other in the European financial sector, are calibrated against
their market CDS spreads and the corresponding CDS-correlations. After the calibration,
which are perfect for the banking portfolio, and good for the auto case, we study several
quantities of importance in active credit portfolio management. For example, implied
multivariate default and survival distributions, multivariate conditional survival distribu-
tions, implied default correlations, expected default times and expected ordered defaults
times. The default contagion is modelled by letting individual intensities jump when
other defaults occur, but be constant between defaults. This model is translated into a
Markov jump process, a so called multivariate phase-type distribution, which represents
the default status in the credit portfolio. Matrix-analytic methods are then used to derive
expressions for the quantities studied in the calibrated portfolios.

1. Introduction

In recent years, understanding and modelling default dependency has attracted much
interest. A main reason is the incentive to optimize regulatory capital in credit portfolios,
provided by new regulatory rules such as Basel II. Another reason is the growing financial
market of products whose payoffs are contingent on the default behavior of a whole credit
portfolio consisting of, for example, mortgage loans, corporate bonds or single-name credit
default swaps (CDS-s).

In this paper we model dynamic credit portfolio dependence by using default contagion
and consider two different portfolios, one in the European auto sector, the other in the
European financial sector. Both baskets consist of 10 companies which are calibrated
against their market CDS spreads and the corresponding CDS correlations, resulting in a
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perfect fit for the banking case and good fit for the auto case. We then study the implied
joint default and survival distributions, the implied univariate and bivariate conditional
survival distributions, the implied default correlations, and the implied expected default
times and expected ordered defaults times. These quantities are of importance in active
credit portfolio management.

We us an intensity based model where default dependencies among obligors are expressed
in an intuitive and compact way. The financial interpretation is that the individual default
intensities are constant, except at the times when other defaults occur: then the default
intensity for each obligor jumps by an amount representing the influence of the defaulted
entity on that obligor. This model is then translated into a Markov jump process, which
leads to so called multivariate phase-type distributions, first introduced in [3]. This trans-
lation makes it possible to use a matrix-analytic approach to derive practical formulas for
all quantities that we want to study. The contribution of this paper is to adapt results from
[3] to credit portfolio applications. Special attention is given how to retrieve the model
parameters from market CDS spreads and their CDS-correlations.

The framework used here is the same as in [19], where the authors consider CDS and
kth-to default spreads and in [18] where the same technique is applied to synthetic CDO
tranches and index CDS-s. In this paper however, we focus on multivariate default and
survival distributions. As mentioned above, computing such quantities is at the core of
active credit portfolio management. The paper is an extension of Chapter 6 in the licentiate
thesis [17]. Default contagion in an intensity based setting have previously also been studied
in for example [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [21], [22],[23], [24],
[25], [26] and [28]. The material in all these papers and books are related to the results
discussed here.

The rest of this paper is organized as follows. Section 2 contains the formal definition
of default contagion used in this paper, given in terms of default intensities. It is then
used to construct such default times as hitting times of a Markov jump process. The
joint distribution of these hitting times is called a multivariate phase-type distribution, see
[3]. The results in Section 3 give convenient analytical formulas for multivariate default
and survival distributions, conditional multivariate distributions, marginal default distri-
butions, multivariate default densities, default correlations, and expected default times.
These are the main theoretical contribution of this paper. Some of the results in this
section have previously been stated in [3], but without proofs. Section 4 gives formulas
for CDS-spreads. They are our main calibration instruments. We provide a detailed de-
scription of the calibration against CDS spreads and their correlations. Special attention
is given to the relation between market CDS-correlations and the corresponding default
correlations. Furthermore, we discuss how to deal with negative jumps in the intensities,
which are required if there are negative CDS-correlations. In Section 5 we use the results
of Section 3 for our numerical investigations. Two CDS portfolios are calibrated against
market CDS spreads and their CDS-correlations. We then study several quantities of in-
terest in credit portfolio management. Section 6 is devoted to numerical issues and the
final section, Section 7, summarizes and discusses the results.
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2. Intensity based models reinterpreted as Markov jump processes:
multivariate phase-type distributions

In this section we define the intensity-based model for default contagion which is used
throughout the paper. The model is then reinterpreted in terms of a Markov jump process,
a so called multivariate phase-type distribution, introduced in [3]. Such constructions have
largely been developed for queueing theory and reliability applications, see e.g. [1] and
[3]).

For the default times τ1, τ2 . . . , τm, define the point process Nt,i = 1
{τi≤t} and introduce

the filtrations

Ft,i = σ (Ns,i; s ≤ t) , Ft =

m
∨

i=1

Ft,i.

Let λt,i be the Ft-intensity of the point processes Nt,i. Below, we will for convenience often
omit the filtration and just write intensity or ”default intensity”. With a further extension
of language we will sometimes also write that the default times {τi} have intensities {λt,i}.
The model studied in this paper is specified by requiring that the default intensities have
the following form,

λt,i = ai +
∑

j 6=i

bi,j1{τj≤t}, t ≤ τi, (2.1)

and λt,i = 0 for t > τi. Further, ai ≥ 0 and bi,j are constants such that λt,i is non-negative.
The financial interpretation of (2.1) is that the default intensities are constant, except at

the times when defaults occur: then the default intensity for obligor i jumps by an amount
bi,j if it is obligor j which has defaulted. Thus a positive bi,j means that obligor i is put
at higher risk by the default of obligor j, while a negative bi,j means that obligor i in fact
benefits from the default of j, and finally bi,j = 0 if obligor i is unaffected by the default
of j.

Equation (2.1) determines the default times through their intensities as well as their
joint distribution. However, it is by no means obvious how to find these expressions. Here
we will use the following observation, proved in [19].

Proposition 2.1. There exists a Markov jump process (Yt)t≥0 on a finite state space E

and a family of sets {∆i}
m

i=1 such that the stopping times

τi = inf {t > 0 : Yt ∈ ∆i} , i = 1, 2, . . . , m, (2.2)

have intensities (2.1). Hence, any distribution derived from the multivariate stochastic
vector (τ1, τ2, . . . , τm) can be obtained from {Yt}t≥0.

The joint distribution of (τ1, τ2, . . . , τm) is sometimes called a multivariate phase-type
distribution (MPH), and was first introduced in [3]. In this paper, Proposition 2.1 is
throughout used for computing distributions. However, we still use Equation (2.1) to
describe the dependencies in a credit portfolio since it is more compact and intuitive.

Each state j in E is of the form j = {j1, . . . jk} which is a subsequence of {1, . . .m}
consisting of k integers, where 1 ≤ k ≤ m. The interpretation is that on {j1, . . . jk} the
obligors in the set have defaulted. Before we continue, further notation are needed. In the
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sequel, we let Q and α denote the generator and initial distribution on E for the Markov
jump process in Proposition 2.1. The generator Q is found by using the structure of E,
the definition of the states j, and Equation (2.1). The states are ordered so that Q is
upper triangular, see [19]. In particular, the final state {1, . . .m} is absorbing and {0} is
always the starting state. The latter implies that α = (1, 0, . . . , 0). Furthermore, define
the probability vector p (t) = (P [Yt = j])j∈E. From Markov theory we know that

p (t) = αeQt, and P [Yt = j] = αeQt
ej, (2.3)

where ej ∈ R
|E| is a column vector where the entry at position j is 1 and the other entries

are zero. Recall that eQt is the matrix exponential which has a closed form expression in
terms of the eigenvalue decomposition of Q.

3. Using Multivariate Phase-type distributions and the matrix-analytic
approach to find multivariate default distributions

In this section we derive expressions for various quantities of importance in active credit
portfolio management. The portfolio consists of m obligors with default intensities (2.1).
Subsection 3.1 presents formulas for multivariate default and survival distributions, condi-
tional multivariate default distributions, and multivariate default densities. In subsection
3.2 we briefly restate some expressions for marginal survival distributions, originally pre-
sented in [19]. These distributions are needed in Section 4. Analytical formulas for the
default correlations are given in Subsection 3.3. Finally, in Subsection 3.4 we present
compact expressions for the moments of the default times and the ordered default times.

3.1. The multivariate default distributions. In this subsection we derive formulas for
multivariate default and survival distributions, conditional multivariate default distribu-
tions, and multivariate default densities. Let Gi be |E| × |E| diagonal matrices, defined
by

(Gi)j,j = 1{j∈∆C

i }
and (Gi)j,j′ = 0 if j 6= j

′. (3.1.1)

Further, for a vector (t1, t2, . . . , tm) in R
m
+ = [0,∞)m, let the ordering of (t1, t2, . . . , tm) be

ti1 < ti2 < . . . < tim where (i1, i2, . . . , im) is a permutation of (1, 2, . . . , m). The following
proposition was stated in [3], but without a proof.

Proposition 3.1. Consider m obligors with default intensities (2.1). Let (t1, t2, . . . , tm) ∈
R

m
+ and let ti1 < ti2 < . . . < tim be its ordering. Then,

P [τ1 > t1, . . . , τm > tm] = α

(

m
∏

k=1

e
Q(tik−tik−1

)
Gik

)

1 (3.1.2)

where ti0 = 0.
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Proof. First, note that

P [τ1 > t1, . . . , τm > tm] = P [τi1 > ti1 , . . . , τim > tim ]

= P
[

Yti1
∈ ∆C

i1
, . . . , Ytim

∈ ∆C
im

]

= P
[

Y0 = 0, Yti1
∈ ∆C

i1
, . . . , Ytim

∈ ∆C
im

]

=
∑

ji1
∈∆C

i1

· · ·
∑

jim
∈∆C

im

P
[

Y0 = 0, Yti1
= ji1

, . . . , Ytim
= jim

]

(3.1.3)

where 0 = {0} is the state representing that no default have occurred. Further,

P
[

Y0 = 0, Yti1
= ji1

, . . . , Ytim
= jim

]

= P [Y0 = 0] P
[

Yti1
= ji1

∣

∣Y0 = 0
]

· . . . · P
[

Ytim
= jim

∣

∣Ytm−1
= jim−1

]

= αeQti1eji1

e
T
ji1

eQ(ti2−ti1)eji2

e
T
ji2

· . . . · ejim−1

e
T
jim−1

eQ(tim−tim−1)ejim

(3.1.4)

where the first equality follows from the Markov property of Yt, and P [Y0 = 0] = 1. The
second equality is because

P

[

Yt = jik

∣

∣Ys = jik−1

]

= P

[

Yt−s = jik

∣

∣Y0 = jik−1

]

=
(

e
T
j

ik−1

eQ(t−s)
)

ji
k

since Yt is a homogeneous Markov process. Next,

∑

ji
k
∈Ei

k

ej
ik

e
T
ji

k

e
Q(ti

k
−ti

k−1
) =





∑

ji
k
∈Ei

k

ej
ik

e
T
ji

k



 e
Q(ti

k
−ti

k−1
) = Gike

Q(ti
k
−ti

k−1
) (3.1.5)

for k = 1, 2, . . .m − 1, and
∑

j
im

∈Eim

eQ(tim−tim−1)ejim
= eQ(tim−tim−1)Gim1. (3.1.6)

Hence, inserting the equations (3.1.4)-(3.1.6) into (3.1.3) shows that (3.1.2) hold. �

Let (ti1 , ti2 , . . . , tim) be the ordering of (t1, t2, . . . , tm) ∈ R
m
+ and fix a p, 1 ≤ p ≤ m − 1.

We next consider conditional distributions of the types

P
[

τip+1
> tip+1

, . . . , τim > tim
∣

∣ τi1 ≤ ti1 , . . . , τip ≤ tip
]

and

P
[

τip+1
> tip+1

, . . . , τim > tim
∣

∣ τi1 ≤ ti1 , . . . , τip ≤ tip , Tp+1 > tip
]

There is a subtle but important difference between these two probabilities. The condition-
ing in the first expression includes the possibility that all obligors have defaulted before tip .
This is not the case in the second one, where the event excludes the possibility that other
obligors than i1, . . . , ip default before tip. These probabilities may of course be computed
from (3.1.2) without any further use of the structure of the problem. However, using this
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structure leads to compact formulas. For this, further notation is needed. Define ∆ as the
final absorbing state for Yt, i.e.

∆ =

m
⋂

i=1

∆i, (3.1.7)

and let F i and H i be |E| × |E| diagonal matrices, defined by

(F i)j,j = 1
{j∈∆i\∆}

and (F i)j,j′ = 0 if j 6= j
′. (3.1.8)

(H i)j,j = 1
{j∈∆i}

and (H i)j,j′ = 0 if j 6= j
′. (3.1.9)

The following proposition is useful.

Proposition 3.2. Consider m obligors with default intensities (2.1). Let (t1, t2, . . . , tm) ∈
R

m
+ and let ti1 < ti2 < . . . < tim be its ordering. If 1 ≤ p ≤ m − 1 then,

P
[

τi1 ≤ ti1 , . . . , τip ≤ tip , τip+1
> tip+1

, . . . , τim > tim
]

= α

(

p
∏

k=1

e
Q(ti

k
−ti

k−1
)
F ik

)(

m
∏

k=p+1

e
Q(ti

k
−ti

k−1
)
Gik

)

1.
(3.1.10)

Further,

P
[

τip+1
> tip+1

, . . . , τim > tim
∣

∣ τi1 ≤ ti1 , . . . , τip ≤ tip
]

=
α

(

∏p

k=1 e
Q(ti

k
−ti

k−1
)
F ik

)(

∏m

k=p+1 e
Q(ti

k
−ti

k−1
)
Gik

)

1

α

(

∏p

k=1 e
Q(tik−tik−1

)
H ik

)

1
.

(3.1.11)

and

P
[

τip+1
> tip+1

, . . . , τim > tim
∣

∣ τi1 ≤ ti1 , . . . , τip ≤ tip, Tp+1 > tip
]

=
α

(

∏p

k=1 e
Q(tik−tik−1

)
F ik

)(

∏m

k=p+1 e
Q(tik−tik−1

)
Gik

)

1

α

(

∏p

k=1 e
Q(tik−tik−1

)
F ik

)

1

(3.1.12)

where ti0 = 0.

Proof. First we prove (3.1.10). Similarly as in the proof of Proposition 3.1

P
[

τi1 ≤ ti1 , . . . , τip ≤ tip , τip+1
> tip+1

, . . . , τim > tim
]

= P

[

Y0 ∈ E, Yti1
∈ ∆i1 \ ∆, . . . , Ytip

∈ ∆ip \ ∆, Ytip+1
∈ ∆C

ip+1
, . . . , Ytim

∈ ∆C
im

]

=
∑

j0∈E

∑

ji1
∈∆i1

\∆

· · ·
∑

jip
∈∆ip

\∆

∑

jip+1
∈∆C

ip+1

· · ·
∑

jim
∈∆C

im

P
[

Y0 = j0, Yti1
= ji1

, . . . , Ytim
= jim

]

= α

(

p
∏

k=1

e
Q(ti

k
−ti

k−1
)
F ik

)(

m
∏

k=p+1

e
Q(ti

k
−ti

k−1
)
Gik

)

1.
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Here the last equality follows from similar arguments as in the equations (3.1.4)-(3.1.6) in
Proposition 3.1, using the definition of the matrix F k.

To prove (3.1.11) it is enough to show that

P
[

τi1 ≤ ti1 , . . . , τip ≤ tip
]

= α

(

p
∏

k=1

e
Q(ti

k
−ti

k−1
)
H ik

)

1

since Equation (3.1.11) then follows from (3.1.10) and the definition of conditional proba-
bilities. Now,

P
[

τi1 ≤ ti1, . . . , τip ≤ tip
]

= P

[

Y0 ∈ E, Yti1
∈ ∆i1 , . . . , Ytip

∈ ∆ip

]

=
∑

j0∈E

∑

ji1
∈∆i1

· · ·
∑

jip
∈∆ip

P

[

Y0 = j0, Yti1
= ji1

, . . . , Ytip
= jip

]

= α

(

p
∏

k=1

e
Q(ti

k
−ti

k−1
)
H ik

)

1

where the last equality follows from arguments as in Proposition 3.1, using the definition
of the matrix Hk. Finally, for Equation (3.1.12), note that

P
[

τip+1
> tip+1

, . . . , τim > tim
∣

∣ τi1 ≤ ti1 , . . . , τip ≤ tip , Tp+1 > tip
]

=
P
[

τi1 ≤ ti1 , . . . , τip ≤ tip , τip+1
> tip+1

, . . . , τim > tim
]

P
[

τi1 ≤ ti1 , . . . , τip ≤ tip, Tp+1 > tip
] .

Hence, by using (3.1.10) it is enough to show that

P
[

τi1 ≤ ti1 , . . . , τip ≤ tip , Tp+1 > tip
]

= α

(

p
∏

k=1

e
Q(tik−tik−1

)
F ik

)

1.

Let En be the set of states representing precisely n defaults. Then,

P
[

τi1 ≤ ti1 , . . . , τip ≤ tip , Tp+1 > tip
]

= P

[

Yti1
∈ ∆i1 , . . . , Ytip

∈ ∆ip , Ytip
∈

m
⋃

k=p+1

Eik

]

= P

[

Y0 ∈ E, Yti1
∈ ∆i1 \ ∆, . . . , Ytip

∈ ∆ip \ ∆
]

=
∑

j0∈E

∑

ji1
∈∆i1

\∆

· · ·
∑

jip
∈∆ip

\∆

P

[

Y0 = j0, Yti1
= ji1

, . . . , Ytip
= jip

]

= α

(

p
∏

k=1

e
Q(ti

k
−ti

k−1
)
F ik

)

1

where the second equality comes from the fact that ∆ is an absorbing state representing
default of all obligors. The last equality follows from arguments as in Proposition 3.1,
using the definition of the matrix F k. �
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The following corollary is an immediate consequences of Equation (3.1.10) in Proposition
3.2.

Corollary 3.3. Consider m obligors with default intensities (2.1). Let {i1, . . . , ip} and
{j1, . . . , jq} be two disjoint subsequences in {1, . . . , m}. If t < s then

P
[

τi1 > t, . . . , τip > t, τj1 < s, . . . , τjq
< s
]

= αeQt

(

p
∏

k=1

Gik

)

eQ(s−t)

(

q
∏

k=1

Hjk

)

1

and for s < t

P
[

τi1 > t, . . . , τip > t, τj1 < s, . . . , τjq
< s
]

= αeQs

(

q
∏

k=1

F jk

)

eQ(t−s)

(

p
∏

k=1

Gik

)

1.

We can of course generalize, the above proposition for three time points t < s < u, four
time points t < s < u < etc. Using the notation of Corollary 3.3 we conclude that if t < s

then

P
[

τj1 < s, . . . , τjq
< s

∣

∣ τi1 > t, . . . , τip > t
]

=
αeQt (

∏p

k=1 Gik) eQ(s−t) (
∏q

k=1 Hjk
) 1

αeQt (
∏p

k=1 Gik) 1

and for s < t

P
[

τi1 > t, . . . , τip > t
∣

∣ τj1 < s, . . . , τjq
< s
]

=
αeQs (

∏q

k=1 F jk
) eQ(t−s) (

∏p

k=1 Gik) 1

αeQs (
∏q

k=1 Hjk
) 1

.

Our next task is to find the probability density f(t1, . . . , tm) of the multivariate ran-
dom variable (τ1, . . . , τm). For (t1, t2, . . . , tm), let (ti1 , ti2, . . . , tim) be its ordering where
(i1, i2, . . . , im) is a permutation of (1, 2, . . . , m). We denote (i1, i2, . . . , im) by i, that is,
i = (i1, i2, . . . , im). Furthermore, in view of the above notation, we let fi(t1, . . . , tm) denote
the restriction of f(t1, . . . , tm) to the set ti1 < ti2 < . . . < tim . The following proposition
was stated in [3], but without a proof.

Proposition 3.4. Consider m obligors with default intensities (2.1). Let (t1, t2, . . . , tm) ∈
R

m
+ and let ti1 < ti2 < . . . < tim be its ordering. Then, with notation as above

fi(t1, . . . , tm) = (−1)m
α

(

m−1
∏

k=1

e
Q(ti

k
−ti

k−1
) (QGik − GikQ)

)

eQ(tim−tim−1)QGim1

(3.1.13)
where ti0 = 0.

Proof. By Proposition 3.1, since the order of partial differentiation is irrelevant

fi(t1, . . . , tm) = (−1)m ∂m

∂ti1 · · ·∂tim
P
[

τi1 > ti1 , . . . , τip > tip
]

= (−1)m
α

(

∂m

∂ti1 · · ·∂tim

m
∏

k=1

e
Q(tik−tik−1

)
Gik

)

1

(3.1.14)
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where ti0 = 0. First, note that

∂

∂ti1

m
∏

k=1

e
Q(tik−tik−1

)
Gik = e

Qti1 QGi1

m
∏

k=2

e
Q(tik−tik−1

)
Gik

− e
Qti1Gi1e

Q(ti2−ti1)QGi2

m
∏

k=3

e
Q(tik−tik−1

)
Gik

= e
Qti1 QGi1

m
∏

k=2

e
Q(tik−tik−1

)
Gik

− e
Qti1Gi1Q

m
∏

k=2

e
Q(tik−tik−1

)
Gik

= e
Qti1 (QGi1 − Gi1Q)

m
∏

k=2

e
Q(tik−tik−1

)
Gik

(3.1.15)

where the second equality is due to the fact that e
Qt

Q = Qe
Qt. Next, (3.1.15) implies

that

∂2

∂ti1∂ti2

m
∏

k=1

e
Q(tik−tik−1

)
Gik = e

Qti1 (QGi1 − Gi1Q)
∂

∂ti2

m
∏

k=2

e
Q(tik−tik−1

)
Gik . (3.1.16)

The derivative of the product in the right-hand side in Equation (3.1.16) is treated exactly
as in (3.1.15) but now with ti2 instead of ti1 . Hence, by repeating this procedure for
k = 3, . . . , m − 1 and noting that

∂

∂tim
eQ(tim−tim−1)Gim = eQ(tim−tim−1)QGim

and inserting the results in Equation (3.1.14) finally yields

fi(t1, . . . , tm) = (−1)m
α

(

m−1
∏

k=1

e
Q(ti

k
−ti

k−1
) (QGik − GikQ)

)

eQ(tim−tim−1)QGim1

where ti0 = 0. This proves (3.1.13). �

3.2. The marginal distributions. In this section we state expressions for the marginal
survival distributions P [τi > t] and P [Tk > t], and for P [Tk > t, Tk = τi] which is the prob-
ability that the k-th default is by obligor i and that it not occurs before t. The first ones
are more or less standard, while the second one is less so. These marginal distributions
are needed to compute single-name CDS spreads and kth-to-default spreads, see e.g [17],
[19]. Note that CDS-s are used as calibration instruments when pricing portfolio credit
derivatives. We come back to this in Section 4. The following lemma is trivial, but stated
since it is needed later on.

Lemma 3.5. Consider m obligors with default intensities (2.1). Then,

P [τi > t] = αeQt
g

(i) and P [Tk > t] = αeQt
m

(k) (3.2.1)
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where the column vectors g
(i), m

(k) of length |E| are defined as

g
(i)
j = 1{j∈(∆i)

C} and m
(k)
j = 1{j∈∪k−1

n=0
En}

and En is set of states consisting of precisely n elements of {1, . . .m} where E0 = {0}.

The lemma immediately follows from the definition of τi in Proposition 2.1. The same
holds for the distribution for Tk, where we also use that m

(k) sums the probabilities of
states where there has been less than k defaults. We next restate the following result,
proved in [19].

Proposition 3.6. Consider m obligors with default intensities (2.1). Then,

P [Tk > t, Tk = τi] = αeQt

k−1
∑

ℓ=0

(

k−1
∏

p=ℓ

G
i,p

P

)

h
i,k, (3.2.2)

for k = 1, . . .m, where

P j,j′ =
Qj,j′

∑

k6=j Qj,k

, j, j ′ ∈ E,

and h
i,k is column vectors of length |E| and G

i,k is |E| × |E| diagonal matrices, defined
by

h
i,k
j = 1

{j∈∆i∩Ek}
and G

i,k
j,j = 1{j∈(∆i)

C
∩Ek} and G

i,k

j,j′
= 0 if j 6= j

′.

Equipped with the above distributions, we can derive closed-form solutions for single-
name CDS spreads and kth-to-default swaps for a nonhomogeneous portfolio, see e.g [17],
[19]. In the present we focus on CDS spreads as our main calibration tools, see Section 4.

3.3. The default correlations. In this subsection we derive expressions for pairwise
default correlations, i.e. ρi,j(t) = Corr(1

{τi≤t}, 1{τj≤t}) between the obligors i 6= j belonging
to a portfolio of m obligors satisfying (2.1).

Lemma 3.7. Consider m obligors with default intensities (2.1). Then, for any pair of
obligors i 6= j,

ρi,j(t) =
αeQt

c
(i,j) − αeQt

h
(i)

αeQt
h

(j)

√

αeQth
(i)

αeQth
(j)
(

1 − αeQth
(i)
)(

1 − αeQth
(j)
)

(3.3.1)

where the column vectors h
(i), c

(i,j) of length |E| are defined as

h
(i)
j = 1

{j∈∆i}
and c

(i,j)
j = 1

{j∈∆i∩∆j}
= h

(i)
j h

(j)
j . (3.3.2)

Proof. By the definition of covariance and variance

Cov(1
{τi≤t}, 1{τj≤t}) = P [τi ≤ t, τj ≤ t] − P [τi ≤ t] P [τj ≤ t] ,
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and Var(1
{τi≤t}) = P [τi ≤ t] (1 − P [τi ≤ t]). According to Equation (2.2) we have that

P [τi ≤ t] = αeQt
h

(i) where h
(i)
j = 1

{j∈∆i}
, and that

P [τi ≤ t, τj ≤ t] = P [Yt ∈ ∆i ∩ ∆j ] =
∑

j∈∆i∩∆j

P [Yt = j] = αeQt
c

(i,j)

where c
(i,j)
j = 1

{j∈∆i∩∆j}
= h

(i)
j h

(j)
j . Inserting these expressions into the definition for

correlation between two random variables yields (3.3.1). �

Note that if we have determined the vector g
(i), then h

(i) is retrieved from g
(i) according

to h
(i) = 1 − g

(i) which is useful for practical implementation.

3.4. Expected default times. By construction (see Proposition 2.1), the intensity matrix
Q for the Markov jump process Yt on E has the form

Q =

(

T t

0 0

)

where t is a column vector with |E| − 1 rows. The j-th element tj is the intensity for Yt

to jump from the state j to the absorbing state ∆ = ∩m
i=1∆i. Furthermore, T is invertible

since it is upper diagonal with strictly negative diagonal elements. Thus, we have the
following standard lemma.

Lemma 3.8. Consider m obligors with default intensities (2.1). Then, with notation as
above

E [τn
i ] = (−1)nn!α̃T

−n
g̃

(i) and E [T n
k ] = (−1)nn!α̃T

−n
m̃

(k)

for n ∈ N where α̃, g̃(i), m̃(k) are the restrictions of α, g(i), m(k) from E to E \ ∆.

Proof. We prove the results for n = 1. By Lemma 3.5 we have that

P [τi > t] = α̃eT t
g̃

(i) and P [Tk > t] = α̃eQt
m̃

(k)

where α̃, g̃(i), m̃(k) are the restrictions of α, g(i), m(k) from E to E \ ∆. If FTk
(t) =

P [Tk ≤ t], then fTk
(t) is given by

fTk
(t) =

d

dt
FTk

(t) = −
d

dt
P [Tk > t] = −α̃eT t

Tm̃
(k)

so that

E [Tk] =

∫

∞

0

tfTk
(t) dt = −α̃

∫

∞

0

teT tdtTm̃
(k) = −α̃T

−1
m̃

(k).

To motivate the last equality we use partial integration and the fact that T is invertible
to conclude that

∫

∞

0

teT tdtT = lim
t→∞

eT t
(

tI − T
−1
)

+ T
−1 = T

−1

since limt→∞
eT t
(

tI − T
−1
)

= 0 because the eigenvalues of T are strictly negative. The
expression for E [T n

k ] and E [τn
i ] are derived analogously for n = 1, 2, 3, . . .. �
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The above proof can also be done by using Laplace transforms, see e.g. [2]. From Lemma
3.8 we can determine the risk-neutral, i.e implied, expected default times according to
E [τi] = −α̃T

−1
g̃

(i) and E [Tk] = −α̃T
−1

m̃
(k). Furthermore, the implied variances of the

default times are then given by

Var[τi] = 2α̃T
−2

g̃
(i) −

(

α̃T
−1

g̃
(i)
)2

for i = 1, 2, . . . , m

Var[Tk] = 2α̃T
−2

m̃
(k) −

(

α̃T
−1

m̃
(k)
)2

for k = 1, 2, . . . , m.

3.5. Some remarks. The message in Subsections 3.2-3.3 is that under (2.1), computa-
tions of multivariate default and survival distributions, conditional multivariate default
and survival distributions, marginal default distributions, multivariate default densities
and default correlations can be reduced to compute the matrix exponential. Computing
eQt efficiently is a numerical issue, which for large state spaces requires special treatment.
This is discussed in Section 6. Finally, recall that |E| = 2m which in practice will force us
to work with portfolios where m is less or equal to 25, say ([19] used m = 15).

4. Calibrating the model parameters against CDS spreads and CDS
correlations

In this section we discuss how to find the parameters in the model (2.1). First, Subsection
4.1 derives the model spreads for single-name credit default swaps, CDS-s, which are the
most liquid traded credit derivative today. Next, Subsection 4.2 gives a detailed description
of the calibration against CDS spreads and the corresponding CDS-correlations. We also
discuss how to deal with negative jumps in the intensities, which are required if there are
negative CDS-correlations

4.1. Using the matrix-analytic approach to find CDS spreads. Given the model
(2.1), we will in this subsection derive expressions for CDS-spreads, which constitute our
primary calibration instruments. In the sequel all computations are assumed to be made
under a risk-neutral martingale measure P. Typically such a P exists if we rule out arbitrage
opportunities.

Consider a single-name credit default swap (CDS) with maturity T where the reference
entity is a obligor i with default times τi and recovery rates φi. The protection premiums
are paid at 0 < t1 < t2 < . . . < tnT

= T if τi > T , or until the default time of obligor i,
whichever comes first. Assuming that the default time and the risk-free interest rate are
independent for each obligor and that the recovery rate is deterministic, one can show that
the CDS spread is given by (see e.g. [17] or [19]),

Ri(T ) =
(1 − φi)

∫ T

0
BsdFi(s)

∑nT

n=1

(

Btn∆n(1 − Fi(tn)) +
∫ tn

tn−1
Bs (s − tn−1) dFi(s)

) (4.1.1)

where Bt = exp
(

−
∫ t

0
rsds

)

denote the discount factor, rt is the risk-free interest rate, and

Fi (t) = P [τi ≤ t] is the distribution function of the default time for obligor i. Note that
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the CDS spread is independent of the amount that is protected. Expressions for Ri(T )
may be obtained by inserting the expression for P [τi > t] in (3.2.1) into (4.1.1), and have
previously been stated in [18], [19], but without proofs. For completeness, this is done in
the following proposition.

Proposition 4.1. Consider m obligors with default intensities (2.1) and assume that the
interest rate r is constant. Then,

Ri(T ) =
(1 − φi)α (A(0) − A(T ))g

(i)

α (
∑nT

n=1 (∆neQtne−rtn + C(tn−1, tn))) g(i)
(4.1.2)

where C(s, t) = s (A(t) − A(s)) − B(t) + B(s) for A(t) = eQt (Q − rI)−1
Qe−rt and

B(t) = eQt
(

tI + (Q − rI)−1) (Q − rI)−1
Qe−rt.

Proof. Let fi (t) denote the density for τi,

fi (t) =
d

dt
Fi (t) = −

d

dt
P [τi > t] = −αQeQt

g
(i)

where the last equality is due to Lemma 3.5. Then,
∫ T

0

BtdFi(t) =

∫ T

0

e−rtfi(t)dt = −α

∫ T

0

Qe(Q−rI)tdtg(i) = α (A(0) − A(T ))g
(i)

since
∫ b

a

Qe(Q−rI)tdt = A(b) − A(a) where A(t) = eQt (Q − rI)−1
Qe−rt.

Furthermore,
∫ tn

tn−1

Bt (t − tn−1) dFi(t) =

∫ tn

tn−1

te−rtfi(t)dt − tn−1

∫ tn

tn−1

e−rtfi(t)dt

= −α

(
∫ tn

tn−1

tQe(Q−rI)tdt − tn−1

∫ tn

tn−1

Qe(Q−rI)tdt

)

g
(i)

= α (tn−1 (A(tn) − A(tn−1)) − B(tn) + B(tn−1))g
(i)

= αC(tn−1, tn)g(i)

where C(s, t) = s (A(t) − A(s)) − B(t) + B(s) and
∫ b

a

tQe(Q−rI)tdt = B(b) − B(a) for B(t) = eQt
(

tI + (Q − rI)−1) (Q − rI)−1
Qe−rt.

Now, inserting the above expressions in Equation (4.1.1) renders (4.1.2). �

By using the technique in Proposition 4.1 and the expressions for P [Tk > t, Tk = τi] and
P [Tk > t] in Subsection 3.2, we can derive formulas for kth-to-default swaps, which are
generalizations of CDS contracts, to a portfolio of several obligors. These contracts offers
protection on the kth default in the portfolio. For more on this, see e.g. [17], [19].
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4.2. The calibration. The parameters in (2.1) are obtained by calibrating the model
against market CDS spreads and market CDS correlations. As in [19] we reparameterize
the basic description (2.1) of the default intensities to the form

λt,i = ai

(

1 +
m
∑

j=1,j 6=i

θi,j1{τj≤t}

)

, (4.2.1)

where the ai-s are the base default intensities and the θi,j measure the ”relative dependence
structure”. In [19] we assumed that the matrix {θi,j} was exogenously given and then
calibrated the ai-s against the m market CDS spreads. In this paper we use the m market
CDS spreads as in [19] but in addition also determine the {θi,j} from market data. Let
ρi,j(T ) = Corr(1

{τi≤T}
, 1

{τj≤T}
) be the default correlation matrix computed under the risk

neutral measure. This matrix is a function of the parameters {θi,j}, but is not observable.

Instead we use β{ρ
(CDS)
i,j (T )} as a proxy for it, where {ρ

(CDS)
i,j (T )} is the observed correlation

matrix for the T -years market CDS spreads, and β is a parameter at our disposal. Thus,

in the calibration we match ρi,j(T ) against β{ρ
(CDS)
i,j (T )}.

For standardized portfolios, CDS-correlation matrices can be obtained from e.g. Reuters.
However, given times-series for the CDS-spreads on obligors in any portfolio, these matrices
can easily be computed using standard mathematical software.

A further issue remains. This is that the CDS correlation matrix is symmetric and
thus only contains m(m − 1)/2 pairwise CDS correlations. Hence, together with the m

market CDS spreads we have m(m + 1)/2 data observations, while there are m2 unknown
parameters in (4.2.1); the m(m − 1) different θi,j-s and the m base intensities {ai}. To
make the number of model parameters and the number of market observations match, we
hence assume that the θi,j-s are the same for some of the ordered pairs (i, j), so that there
are only m(m − 1)/2 different θi,j-s.

We now explain the calibration in more detail. First, we reduce the m(m − 1) un-
known variables {θi,j} to a set of (m − 1)m/2 different nonnegative parameters {dq} =
{d1, d2, . . . d(m−1)m/2}, so that the total number of model parameters are as many as
the market observations. Secondly, we assume a exogenously given dependence matrix
{Di,j} where Di,j ∈ {1, 2, . . . (m − 1)m/2} which determines the matrix {θi,j} according

to θi,j = ±dDi,j
, where the sign is the same as the market CDS correlation ρ

(CDS)
i,j (T ). It

is a topic for future research to find methods to estimate the dependence matrix {Di,j}.
For example, from corporate data or from the rapidly increasing market of credit portfolio
products, such as CDO’s and basket default swaps. In this paper, the matrix {Di,j} is
determined randomly, see Appendix 8.

Let v = ({ai}, {dq}) denote the parameters describing the model and let {Ri(T ; v)}
be the m different model T -year CDS spreads and {Ri,M(T )} the corresponding market
spreads. Furthermore, as above, we let ρi,j(T ; v) = Corr(1

{τi≤T}
, 1

{τj≤T}
) denote the pair-

wise T -year default correlations. Here we have emphasized that the model quantities are
functions of v = ({ai}, {dq}) but suppressed the dependence of the matrix {Di,j}, interest
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rate, payment frequency, etc. The vector v is obtained as

v = argmin
v̂

[δCDS(T ; v̂) + δcorr(T ; v̂)] (4.2.2)

where

δCDS(T ; v) = F

m
∑

i=1

(Ri(T ; v) − Ri,M(T ))2

δcorr(T ; v) =
m
∑

i=1

m
∑

j=i+1

(

ρi,j(T ; v) − βρ
(CDS)
i,j (T )

)2
(4.2.3)

with F > 0 and 0 < β ≤ 1 exogenously chosen. The second expression in (4.2.3) is due to

that we use β{ρ
(CDS)
i,j (T )} as a proxy for {ρi,j(T )}. It is possible to include F and β in the

unknown parameter vector v and we make some further comments on this at the end of
the present subsection.

If all CDS-correlations are positive, the minimization in (4.2.2) is performed with the
constraint that all elements in v are nonnegative. However, if there are negative CDS-

correlations, that is ρ
(CDS)
i,j (T ) < 0 for some pairs (i, j), then we require that θi,j =

sign(ρ
(CDS)
i,j (T ))dDi,j

= −dDi,j
< 0, since it otherwise is difficult to generate negative default

correlations. Because λt,i must be positive and all parameters are nonnegative, we have to
bound some of the {dq} if there are negative CDS-correlations. It is then practical to as-
sume that the dependence matrix {Di,j} is constructed so that it splits {dq} in two disjoint

groups, {dq} = d
−
∪ d+ such that if ρ

(CDS)
i,j (T ) < 0 then dDi,j

∈ d
−

and if ρ
(CDS)
i,j (T ) ≥ 0

then dDi,j
∈ d+. Let Ni denote the sets of obligors j 6= i which are negatively correlated

with entity i, that is, where ρ
(CDS)
i,j (T ) < 0. Thus, if j ∈ Ni then dDi,j

∈ d
−

and the
following constraints

ai −
∑

j∈Ni

aidDi,j
> 0 that is, 1 >

∑

j∈Ni

dDi,j
, (4.2.4)

must simultaneously hold for every i = 1, 2, . . . , m. These joint bounds finally determine
the proper constraints on the parameters in d

−
, which heavily depend on the elements

Di,j and the sign of ρ
(CDS)
i,j (T ). If the number of negative CDS correlations are less than

positive CDS correlations, it may be convenient to assume that each dp ∈ d
−

only appears
once in the matrix {Di,j} and use the constraints dp < 1

|Ni|
if θi,j = −dp for some j ∈ Ni.

Recall that in economic terms, negative CDS correlation, and thus negative jumps in the
intensities for a obligor i, means that entity i benefits from defaults of obligors j ∈ Ni.

Let us finally give some remarks on the parameters β and F . A naive first attempt
is to let F = 1 and β = 1 in the calibration (4.2.2). However, the market CDS spreads

Ri,M(T ) are about 100 times smaller than ρ
(CDS)
i,j (T ), which then implies unrealistic model

CDS spreads. The problem can be avoided by letting
√

F = 100 so that
√

FRi,M(T )

and ρ
(CDS)
i,j (T ) are approximately in the same order. This leads to bad correlation fits, i.e.

δcorr(T ; v) is big, when β = 1. In our examples, the calibrations produce default correlations
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much smaller than the corresponding CDS correlations. Motivated by this we assume that
0 < β << 1 and in our numerical studies we let β = 0.05 and

√
F = 100. This gives

perfect correlation calibrations for our data sets where all entities in the CDS-correlation
matrix are nonnegative, and reasonable calibrations when the correlation matrix contains
both positive and negative entities (see Subsection 5.1). It is possible to include β and F

in the parameter vector v, and then decrease the set {dq} so that |{dq}| = m(m−1)/2−2,
where the total number of model parameters still are as many as the market observations.

5. Numerical studies

In this section we will use the theory developed in previous sections to study quantities of
importance in active credit portfolio management. We consider the same parameterization
of (2.1) as in Subsection 4.2, that is

λt,i = ai

(

1 +

m
∑

j=1,j 6=i

εi,jdDi,j
1
{τj≤t}

)

,

where εi,j is the sign of ρ
(CDS)
i,j (T ), and {Di,j} is a exogenously given matrix such that

Di,j ∈
{

1, 2 . . .
(m−1)m

2

}

. Further, the dq-s are (m−1)m/2 different nonnegative parameters

which will be determined in the calibration, together with the base default intensities ai.
In Subsection 5.1 we introduce two CDS portfolio, one in the European auto sector,

the other in the European financial sector. These portfolios, which both consist of 10
companies, are used as a basis for the numerical studies in the rest of this section. For
exogenously given dependence matrices {Di,j}, we calibrate the portfolios against market
CDS spreads and their correlations. In the calibrated portfolios, we then study the implied
joint default and survival distributions and the implied univariate and bivariate condi-
tional survival distributions (Subsection 5.2), the implied default correlations (Subsection
5.3), and finally the implied expected default times and expected ordered defaults times
(Subsection 5.4).

5.1. Two CDS portfolios. Table 1 and Table 2 describe the two CDS portfolios which
are used in our numerical studies and Table 3 and Table 4 their correlation matrices. The
maturity was 5 years and the data was obtained from Reuters at February 15, 2007 for
the auto portfolio and March 28, 2007 for the financial portfolio.

The correlation matrices are based on rolling 12 months 5-years CDS midpoint market
spreads for each obligor, with a daily sampling frequency of the closing level of the spreads.
In both portfolios, we have assumed a fictive relative dependence structure {Di,j} which
are given in Table 11 and Table 12 in Appendix 8 together with a description how they
where created. Further, we have also assumed a fictive recovery rate structure which is the
same in both baskets. The interest rate was assumed to be constant and set to 3%, and
the protection fees were assumed to be paid quarterly.

For each portfolio, the ai-s and dq-s are obtained by simultaneously calibrate the CDS
spreads in Table 1 and Table 2 and the corresponding correlation matrices in Table 3
and Table 4, as described in Subsection 4.2. In both portfolios the CDS calibrations
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Table 1: The auto companies and their 5 year market (2007-02-15) and model CDS spreads, the
absolute calibration errors, and the recoveries. The spreads are given in bp.

Company name Market Model abs.error recovery %
Volvo AB 25.84 25.87 0.03336 32
BMW AG 9.415 9.593 0.178 48
Comp. Fi. Michelin SA 25.34 25.53 0.1915 45
Continental AG 43.66 43.68 0.01789 34
DaimlerChrysler AG 44 43.98 0.02175 42
Fiat SPA 58 58.02 0.016 41
Peugeot SA 24.84 24.9 0.06289 29
Renault SA 28.67 28.72 0.05989 39
Valeo SA 66 65.98 0.01812 51
Volkswagen AG 22.17 22.08 0.08343 41
Σ abs.cal.err 0.6828 bp

Table 2: The financial companies and their 5 year market (2007-03-28) and model CDS spreads,
the absolute calibration errors, and the recoveries. The spreads are given in bp.

Company name Market Model abs.error recovery %
ABN Amro Bank NV 6.085 6.225 0.1402 32
Barclays Bank PLC 7 6.9 0.1 48
BNP Paribas 6.665 6.562 0.1026 45
Commerzbank AG 9.335 9.41 0.07492 34
Deutsche Bank AG 13.59 13.5 0.08747 42
HSBC Bank PLC 7.25 7.247 0.002626 41
Hypovereinsbank AG 7 7.217 0.2173 29
The Royal Bank of Scotland PLC 7 6.844 0.1556 39
Banco Santander Central Hispano 8.25 8.22 0.02998 51
Unicredito Italiano SPA 9.915 9.989 0.07363 41
Σ abs.cal.err 0.9844 bp

where perfect. The correlation fit for the financial portfolio was also perfect, as seen in
Table 5, while the corresponding calibration for the auto case was mediocre. One possible
explanation for the lesser performance in the auto portfolio, is that the negative jumps
in the intensities are bounded, which may bound the absolute value of the negative CDS-
correlations by a scalar smaller than one.

A quick look in Table 14 reveals that 15 (out of 18) ”negative” parameters hit their
upper bounds (for more details on this, see Appendix). Such limitations can be avoided
by using a different parametrization of the intensities in (2.1), making the jumps-sizes also
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Table 3: The auto CDS correlation matrix, based on 5-years CDS midpoint market spreads for
each obligor, between 2006-02-15 and 2007-02-15, with a daily sampling frequency of
the closing level of the spreads.

VOLV BMW MICH CONT DCX FIAT PEUG RENA VALE VW

VOLV 1
BMW 0.63 1
MICH 0.81 0.64 1
CONT -0.5 -0.69 -0.23 1
DCX 0.12 0.47 0.51 0.13 1
FIAT 0.67 0.97 0.76 -0.64 0.52 1
PEUG 0.66 0.28 0.81 0.14 0.34 0.37 1
RENA 0.55 0.24 0.79 0.1 0.42 0.39 0.82 1
VALE 0.22 -0.42 0.2 0.44 -0.1 -0.31 0.39 0.41 1
VW 0.12 0.66 0.47 -0.2 0.77 0.71 0.16 0.34 -0.44 1

Table 4: The financial CDS correlation matrix, based on 5-years CDS midpoint market spreads
for each obligor, between 2006-03-28 and 2007-03-28, with a daily sampling frequency
of the closing level of the spreads.

ABN BACR BNP CMZB DB HSBC HVB RBOS BSCH CRDIT

ABN 1
BACR 0.91 1
BNP 0.98 0.94 1
CMZB 0.92 0.95 0.92 1
DB 0.88 0.84 0.89 0.81 1
HSBC 0.66 0.96 0.76 0.9 0.88 1
HVB 0.82 0.9 0.89 0.89 0.8 0.85 1
RBOS 0.93 0.98 0.95 0.94 0.85 0.98 0.88 1
BSCH 0.84 0.95 0.89 0.95 0.78 0.88 0.89 0.92 1
CRDIT 0.78 0.9 0.82 0.91 0.76 0.81 0.87 0.84 0.96 1

be functions of the level of the intensity. To be more specific, the bigger the intensity, the
bigger negative jumps are allowed.

From Table 14 and Table 15 in Appendix, we see that in the auto portfolio, the base
intensities can have positive jumps up to 589% of their ”base values” ai, and up to 1749
% in the financial portfolio.

5.2. The implied default and survival distributions and the conditional survival

distributions. In the credit literature today, risk-neutral distributions are often called im-
plied distributions. Here ”implied” is refereing to the fact that the quantities are retrieved
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Table 5: The average, median, min and max absolute calibration-errors in percent of the scaled

market CDS-correlations, i.e. {βρ
(CDS)
i,j (T )}, where β = 0.05

Portfolio mean median min max
Auto 29.2 18.8 0.347 122
Financial 1.43 0.213 0.00988 13.1

from market data via a model. The implied (joint) default and survival distributions at
different time points, are important quantities for a credit manager. The results in Section
3 provides formulas for computing these expressions. In this subsection we use them to find
the implied default and survival distributions, as well as conditional survival distributions,
for different pairs of obligors, in the calibrated portfolios.

We want to study the bivariate default and survival distributions for the pairs Fiat, BMW
and Continental, BMW. Given the CDS spreads and their correlations, it may in general be
difficult to draw some qualitative conclusions about these bivariate probabilities and their
mutual relations, without actually computing them. The CDS spreads for Fiat and BMW
are positively correlated while Continental and BMW are negatively correlated, and the
difference in percent between the spreads for Continental and Fiat are (58 − 43.66)/58 =
24%. From this, we intuitively guess that BMW-s bivariate default probabilities with Fiat
should be bigger than the bivariate default probabilities with Continental. Conversely,
the bivariate survival distributions of the pair Fiat, BMW should be smaller than for
Continental, BMW. These hypothesis are confirmed by the Figures 1, 2, 3 and 4. Similar
shapes of the bivariate default and survival distributions are obtained by obligors in the
financial portfolio, as seen in Figure 5 and 6.

We also note that the CDS spreads for Continental is positively correlated with the
spreads for DaimlerChrysler, Peugeot, Renault and Valeo. We therefore suspect that the
conditional survival distributions for continental are decreasing with the number of defaults
among DaimlerChrysler, Peugeot, Renault and Valeo. For example, when s is fixed, we
guess that the survival distribution P [τCont > t | τDCX < s] as function of t for t > s, should
lie above the curve P [τCont > t | τDCX < s, τPeu < s]. This claim is supported by Figure 7 for
s = 10 and 10 ≤ t ≤ 104 (and also by Figure 9, for a similar test in the financial portfolio).
Furthermore, the CDS spreads for Continental are negatively correlated with the spreads
for Volvo, BMW, Michelin, Fiat and Volkswagen. In view of the above results, it is tempting
to believe that the conditional survival distributions for continental, are increasing with
the number of defaults among for Volvo, BMW, Michelin, Fiat and Volkswagen.

We investigate this for s = 10 and 10 ≤ t ≤ 104, and note that the claim is only true on
the interval 10 ≤ t ≤ 45, as seen in Figure 8. For t > 53, we see that the curves do not lie
in increasing order with increasing amount of negatively correlated defaults. One possible
explanation for this is that the negative jumps in the intensities where bounded, in the
specification that we use, which implies that the effect of a negative jump will diminish as
time progress since several positive jumps then have occurred previously.
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Figure 1: The implied bivariate default distribution for Fiat and BMW (left) and Continental
and BMW (right) in the auto portfolio.
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Figure 2: The isolines for the implied bivariate default distribution for Fiat and BMW (left)
and Continental and BMW (right) in the auto portfolio.

We also compare univariate conditional survival distribution, with bivariate conditional
survival distribution, in the banking portfolio. In Figure 9 and Figure 10 we see that
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Figure 3: The implied bivariate survival distribution for Fiat and BMW (left) and Continental
and BMW (right) in the auto portfolio.

60

65
65

70
70

75

75
80

8085

8590

90
95

 t 
(in

 y
ea

rs
),

F
IA

T

 s (in years),BMW

isolines for P[τ
FIAT

>t,τ
BMW

>s] ( in %)

5 10 15 20 25 30

5

10

15

20

25

30

35

40 7075

7580

8085

8590

90
95

 t 
(in

 y
ea

rs
),

C
on

tin

 s (in years),BMW

isolines for P[τ
Contin

>t,τ
BMW

>s] ( in %)

5 10 15 20 25 30

5

10

15

20

25

30

35

40

Figure 4: The isolines for the implied bivariate survival distribution for Fiat and BMW (left)
and Continental and BMW (right) in the auto portfolio.

the bivariate conditional survival distribution declines much faster than the corresponding
univariate conditional survival distribution.
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Figure 5: The implied bivariate default (left) and survival (right) distributions for Royal Bank
of Scotland and HSBC Bank in the financial portfolio.
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Figure 6: The isolines for the implied bivariate default (left) and survival (right) distributions
for Royal Bank of Scotland and HSBC Bank in the financial portfolio.

So far we have only computed joint bivariate distributions, or distributions involving
two time points. To show that we can handle distributions with all 10 obligors for 10
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Figure 7: The survival distribution for Continental, conditional on defaults before time 10 years,
by firms which are positively correlated with Continental. The firms which have
defaulted are indicated in the legend.
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Figure 8: The survival distribution for Continental, conditional on defaults before time 10 years,
by firms which are negatively correlated with Continental. Left figure t < 45, right
figure t > 52. The firms which have defaulted are indicated in the legend.

different time points, Table 6 and 7 displays the joint multivariate default and survival
distributions for all obligors, in each portfolio. Recall that implied default probabilities are
often substantially larger then the ”real” so called actuarial default probabilities.
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Figure 9: The survival distribution for ABN Amro, conditional on defaults before time 10 years.
The firms which have defaulted are indicated in the legend.
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Table 6: The multivariate default and survival probabilities P [τVolv > n, . . . , τVW > 10n] and
P [τVolv ≤ n, τBMW ≤ 2n, . . . , τVW ≤ 10n] (in %) where n = 0.5, 1, 1.5, . . . , 4, in the auto
portfolio.

n = 0.5 n = 1 n = 1.5 n = 2 n = 2.5 n = 3 n = 3.5 n = 4
multi.def.prob 11.1 21 29.8 37.6 44.5 50.7 56.2 61
multi.surv.prob 98.3 96.6 94.9 93.1 91.4 89.7 88 86.2

Table 7: The multivariate default and survival probabilities P [τABN > n, . . . , τCDRIT > 10n] and
P [τABN ≤ n, τBACR ≤ 2n, . . . , τCDRIT ≤ 10n] (in %) where n = 0.5, 1, 1.5, . . . , 4, in the
financial portfolio.

n = 0.5 n = 1 n = 1.5 n = 2 n = 2.5 n = 3 n = 3.5 n = 4
multi.def.prob 29.4 49.3 63.3 73.3 80.4 85.6 89.5 92.3
multi.surv.prob 99.3 98.6 97.9 97.3 96.7 96.1 95.5 95

5.3. The implied default correlations. It may be of interest for a credit manager to
have a quantitative grasp of the pairwise default correlations ρi,j(t) = Corr(1

{τi≤t}, 1{τj≤t})
between two obligors i 6= j, as a function of time t. Especially, if we can study several
pairs for a fixed obligor i, simultaneously. Recall that we have calibrated ρi,j(T ) against

0.05ρ
(CDS)
i,j (T ) for T = 5, as discussed in Subsection 4.2.

We first consider the same example as in the previous subsection, where the CDS spreads
for Continental is positively correlated with DaimlerChrysler, Peugeot, Renault and Valeo,
and negatively correlated with Volvo, BMW, Michelin, Fiat and Volkswagen. We therefore
suspect that for most time points t, the corresponding default correlations ρCont,j(t) are
positive for j = Volv, BMW . . . , CW and negative for j = DCX, Peu, . . . , Valeo. This is
confirmed by Figure 11. Note that the correlations have parabolic shapes as function of
time t.

Furthermore, the CDS-correlation matrix in Table 4 indicate a strong positive correlation
among the different CDS-spreads for the banks. This is also the case for the corresponding
default correlations, as seen in Figure 12, which displays the correlation between Deutsche
Bank and the other banks.

5.4. The implied expected default times and their ordering. In this subsection we
study implied expected default times E [τi] and the implied expected ordered default times
E [Tk] for the two calibrated portfolios in Subsection 5.1.

If we order the sequence {E [τi]} in increasing order {E [τik ]} so that E [τik ] < E
[

τik+1

]

and study the corresponding sequence of model CDS-spreads {Rik}, one would expect that
{Rik} are strictly decreasing. However, from Table 8 and Table 9 we see that this is far
from true.
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Figure 11: The default correlations between Continental and the companies in the auto port-
folio which are negatively correlated (left) and positively correlated (right) with
Continental.
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Figure 12: The default correlations between Deutsche Bank and the other banks in the financial
portfolio.
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Table 8: The expected default times in the auto portfolio, sorted in increasing order E [τik ] <

E
[

τik+1

]

, and the corresponding model CDS-spreads.

VALE FIAT DCX RENA PEUG MICH VOLV VW CONT BMW

E [τik ] 47.3 66.9 68.1 78.9 86.3 86.6 89.2 91.8 116 118
Rik 66 58 44 28.7 24.9 25.5 25.9 22.1 43.7 9.59

Table 9: The expected default times in the financial portfolio, sorted in increasing order E [τik ] <

E
[

τik+1

]

, and the corresponding model CDS-spreads.

DB BSCH CMZB BACR CRDIT RBOS HSBC HVB BNP ABN

E [τik ] 113 114 116 117 120 120 126 127 131 133
Rik 13.5 8.22 9.41 6.9 9.99 6.84 7.25 7.22 6.56 6.23

In the financial portfolio, the spreads {Rik} are not decreasing. The auto portfolio has
a decreasing trend in the sequence {Rik}, except for the Continental spread, RCont = 43.7
which is the forth biggest spread, while E [τCont] = 116 years, is the ninth biggest expected
default time in the auto portfolio. These irregularities are likely due to the dependence
structure in (2.1), (4.2.1), which plays a major roll in the calibration. For example, in the
auto case, the CDS spread for Continental is negatively correlated with the spreads for
Volvo, BMW, Michelin, Fiat and Volkswagen which means that Continental will benefit
from defaults on these firms. In Table 3 we also note that for Continental, the average of the
absolute value for the negative correlations is bigger than the corresponding quantity for the
positive correlations and no other car company has so many negative default correlations.
These observations may explain why E [τCont] is the ninth biggest in the sequence {E [τik ]}.
Hence, from an average default timing point of view, Continental is the second less riskiest
company in the auto portfolio, even though the CDS spread is the third biggest. Note
however that the base intensity aCont is the third biggest in the auto basket, see Table 13
in Appendix.

These examples indicate that it can be misleading to use the reverse ordering of the CDS
spreads as a measure for the relative default riskiness among the obligors in the portfolio.

Table 10: The expected ordered default times E [Tk].

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
Auto 17.8 33.7 50.2 62.9 74.1 85.1 96.8 111 131 186
Financial 85.3 98.7 107 113 118 124 129 136 145 162

Other observations are that the difference between the smallest and biggest expected
default time, is 19.5 years in the financial portfolio and 71 years in the auto portfolio.
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Also note that in the banking portfolio, the smallest expected default time lie between the
expected value of the fourth and fifth ordered default time and the biggest between the
seventh and eight. The corresponding quantities in the auto case lie between the second
and third, and between the eight and ninth expected ordered default time.

6. Computation of the matrix exponential

All results derived in this paper include computations of the matrix exponential. In this
section we describe the method for computing eQt that is used throughout this article, the
so called uniformization method (sometimes also is called the randomization method). It

works as follows. Let Λ = max
{

|Qj,j| : j ∈ E
}

and set ˜P = Q/Λ+I. Then, e
ePΛt = eQteΛt

since I commutes with all matrices, and using the definition of the matrix exponential
renders

eQt =
∞

∑

n=0

˜P
n
e−Λt (Λt)n

n!
. (6.1)

Recall that p (t) = αeQt and define p̃ (t, N) = α
∑N

n=0
˜P

n
e−Λt (Λt)n

n!
. Furthermore, for a

vector x = (x1, . . . , xn) ∈ R
n, let ‖x‖1 denote the L1 norm, that is ‖x‖1 =

∑n

i=1 |xi|. Given
Q, the uniformization method allows us to find the L1 approximation error for p̃ (t, N)
apriori, as shown in the following lemma, stated in e.g. [16] and [27], but without a proof.

Lemma 6.1. Let ε > 0 and pick N(ε) so that 1 −
∑N(ε)

n=0 e−Λt (Λt)n

n!
< ε. Then,

‖p (t) − p̃ (t, N(ε))‖1 < ε. (6.2)

Proof. By construction, all elements in ˜P are in [0, 1] and all rows in ˜P sums up to one.

We can therefore view ˜P as a transition matrix for a discrete time Markov chain on E.
Since α is a probability distribution on E we conclude that ‖α ˜P

n
‖1 = 1 for all n ∈ N.

These observations imply

‖p (t) − p̃ (t, N(ε))‖1 =
∣

∣

∣

∣

∣

∣

∞

∑

n=N(ε)+1

α ˜P
n
e−Λt (Λt)n

n!

∣

∣

∣

∣

∣

∣

1

≤

∞

∑

n=N(ε)+1

‖α ˜P
n
‖1e

−Λt (Λt)n

n!

= 1 −

N(ε)
∑

n=0

e−Λt (Λt)n

n!
< ε

(6.3)

which proves the lemma. �

The lemma implies that, given Q, we can for any ε > 0 find a N(ε) so that p̃ (t, N(ε))
approximates p (t) with an accumulated absolute error which is less than ε. Note that
the sharp error estimation in Lemma 6.1 relies on a probabilistic argument leading to

‖α ˜P
n
‖1 = 1 for all n ∈ N. It is tempting to try to prove (6.2) without this observation,

by using that ‖α ˜P
n
‖1 ≤ ‖α‖1‖ ˜P ‖n

1 = ‖ ˜P ‖n
1 where ‖ ˜P ‖1 is the corresponding matrix
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norm, and then try show that ‖ ˜P ‖1 is smaller or equal to one. However, it is easy to see

that ‖ ˜P ‖1 > 1 for ˜P = Q/Λ + I when Q is the generator of a transient Markov process
on a finite state E with a final absorbing state, where Λ = max

{

|Qj,j| : j ∈ E
}

. This
implies that if we use the uniformization method for an arbitrary matrix Q, which is not
a generator, it may be difficult to find effective apriori error estimates. For such matrices

the elements in ˜P may not even be positive, which makes this method no better than the
standard Taylor-series expansion method.

The probabilistic argument for the matrix ˜P in Lemma 6.1 is no coincidence. The
following result can be found in [20].

Theorem 6.2. Let (Yt)t≥0 be a Markov jump process on a finite state E with generator
Q where Λ = max

{

|Qj,j| : j ∈ E
}

< ∞. Then there exists a discrete time Markov chain

(Xn)∞n=0 on E with transition matrix ˜P = Q/Λ+I and a Poisson process Nt with intensity
Λ, independent of (Xn)∞n=0, such that the processes (XNt

)t≥0 and (Yt)t≥0 have the same finite
dimensional distributions.

Recall that the p (t) = (P [Yt = j])j∈E so pj (t) = P [Yt = j] and Theorem 6.2 implies
that

pj (t) = P [Yt = j]

= P [XNt
= j]

=
∞

∑

n=0

P [XNt
= j |Nt = n] P [Nt = n]

=
∞

∑

n=0

P [Xn = j] e−Λt (Λt)n

n!
.

(6.4)

Define the row vectors ϕ(n) =
(

ϕj(n)
)

j∈E
for n ∈ N as ϕj(n) = P [Xn = j] when n ∈

N \ {0} and ϕ(0) = α. Theorem 6.2 then implies that ϕ(n) = ϕ(n − 1) ˜P which together
with Equation (6.4) renders

p (t) =

∞

∑

n=0

α ˜P
n
e−Λt (Λt)n

n!
. (6.5)

But we also know that p (t) = αeQt, so (6.5) is therefore Equation (6.1) restated.
Further benefits with the uniformization method is that all entries in p̃ (t, N(ε)) are posi-

tive so there are no cancelation effects and the approximation error decreases monotonically

with increasing N . If we set f(t, N) = 1 −
∑N

n=0 e−Λt (Λt)n

n!
then ∂f(t,N)

∂t
= e−Λt (Λt)N

N !
> 0

so for a fixed N , the approximation error is bounded by a strictly increasing function
in t. This is practical, since we then only have to compute one error tolerance for
T , that will uniformly bound the error ‖p (t) − p̃ (t, N)‖1 for all t ≤ T . For example,
when approximating

∑nT

n=1 αeQtne−rtn where t1 < . . . < tnT
= T , we choose N(ε/nT ) so

1 −
∑N(ε/nT )

n=0 e−Λt (Λt)n

n!
< ε

nT

which implies that the total approximation error for the sum
∑nT

n=1 αeQtne−rtn is smaller than ε (since e−rtn ≤ 1 for every n).
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Figure 13: The structure of the nonzero elements in the sparse matrix Q where m = 10.

A further point is that our matrices in general are very large, for example if m = 10
then the generator has 210 = 1024 rows and thus contain 220 ≈ 1. millon entries. However,
at the same time it is extremely sparse, see Figure 13. For m = 10 there are only 0.59%
nonzero entries in Q, and hence only about 6100 elements have to be stored, which roughly
is the same as storing a full quadratic matrix with 78 rows.

A final point is that we are not interested in finding the matrix exponential itself, but
only the probability vector p(t), or a subvector of p(t). This is important, since computing
eQt is very time and memory consuming compared with computing αeQt.

For more on the uniformization method with applications in credit derivatives valuations
and credit risk, see e.g. [19] and [23].
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7. Discussion and conclusions

In this paper we considered the intensity based default contagion model (2.1), where
the default intensity of one firm is allowed to change when other firms default. The model
was reinterpreted in terms of a Markov jump process, a so called multivariate phase-type
distribution. This reinterpretation made it possible to derive practical formulas for many
quantities, such as multivariate default and survival distributions, conditional multivariate
distributions, marginal distributions, multivariate densities, correlations, expected default
times, CDS-spreads and so on.

In the model we used two CDS portfolios for numerical studies, one in the European auto
sector, the other in the European financial sector. Both baskets contained 10 companies.
For an exogenously given dependence matrices {Di,j}, we calibrated the portfolios against
their market CDS spreads and the corresponding CDS-correlations. In both portfolios the
CDS-fits where perfect, and in the financial case the correlation fit was also perfect, while
the autos correlation matching was mediocre.

We then computed the implied joint default and survival distributions, the implied
univariate and bivariate conditional survival distributions, the implied default correlations,
and the implied expected default times and expected ordered defaults times. Qualitatively,
many of the results where as expected. However it would seem rather impossible to guess
the sizes of the probabilities and other quantities, without computation.

Future extensions of the model (2.1) is for example to include first-to-default swaps,
other portfolio credit derivatives and corporate information, so that {Di,j} can be deter-
mined more realistically. Further empirical investigations of the approximation ρi,j(T ) ∼

βρ
(CDS)
i,j (T ) is also needed.
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8. Appendix

The dependence matrix {Di,j} for the financial portfolio was generated by drawing a
random matrix where the entities lie in the interval 1, 2, . . . , 45. If some of the elements in
1, 2, . . . , 45 are not present in the sampling, we removed doublets in Di,j until all integers
between 1 and 45 were present.

The {Di,j} matrix for the auto portfolio was created in the same way. However, we
also made sure that {Di,j} was constructed so that it split {dq} in two disjoint groups,

{dq} = d
−
∪ d+ such that if ρ

(CDS
i,j (T )) < 0 then dDi,j

∈ d
−

and if ρ
(CDS)
i,j (T ) ≥ 0 then

dDi,j
∈ d+, where ρ

(CDS)
i,j (T )) is the CDS-correlation matrix, retrieved from market data.

Furthermore, we also constructed d
−

so that dp ∈ d
−

only appeared once in the matrix
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{Di,j}. Then we constrained the parameters in d
−

as follows

dp ≤
1

|Ni|
− 0.005 if θi,j = −dp for some j ∈ Ni,

where Ni is the set of obligors j 6= i which are negatively correlated with entity i, that is,

where ρ
(CDS)
i,j (T ) < 0.

Table 11: The dependence matrix Di,j for the autos portfolio. Entries with a negative subscript
indicates that the corresponding entry in the correlation matrix is negative.

VOLV BMW MICH CONT DCX FIAT PEUG RENA VALE VW

VOLV 0 28 45 5
−

29 25 10 26 36 2
BMW 10 0 16 34

−
35 31 40 7 43

−
1

MICH 27 41 0 20
−

31 7 37 29 39 40
CONT 22

−
6
−

4
−

0 17 24
−

29 26 40 9
−

DCX 40 15 2 21 0 7 37 17 8
−

13
FIAT 45 42 25 19

−
23 0 23 32 44

−
23

PEUG 21 42 25 29 32 17 0 25 12 13
RENA 2 41 27 39 35 39 13 0 11 21
VALE 37 18

−
12 25 14

−
38

−
15 31 0 3

−

VW 16 40 25 30
−

25 27 39 28 33
−

0

Table 12: The dependence matrix Di,j for the financial portfolio.

ABN BACR BNP CMZB DB HSBC HVB RBOS BSCH CRDIT

ABN 0 10 31 39 22 28 15 20 1 2
BACR 13 0 34 4 29 17 35 12 35 41
BNP 8 6 0 22 2 15 35 19 21 44
CMZB 41 24 24 0 15 40 5 31 2 30
DB 12 31 15 21 0 11 15 38 4 33
HSBC 17 32 3 27 4 0 12 37 43 22
HVB 29 42 12 9 31 14 0 18 27 31
RBOS 14 1 45 23 1 8 40 0 11 16
BSCH 9 26 17 7 14 32 35 7 0 18
CRDIT 10 25 35 33 2 36 11 15 19 0
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Table 13: The calibrated base intensities ai.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Auto 34.7 16.5 43.2 65.4 71.5 94.4 31.5 43.3 128 33.7 ×10−4

Financial 7.85 10.5 10.5 11.4 20.7 10.6 8.48 8.70 13.8 14.8 ×10−4

Table 14: The dependence variables dq s.t θi,j = ±dDi,j
for the autos portfolio. Entries with a

negative subscript indicates that θi,j = −dDi,j
.

d1, . . . , d9 5.49 0.903 0.245
−

0.195
−

0.995
−

0.195
−

0.675 0.0191
−

0.195
−

d10, . . . , d18 3.93 0 0.434 1.78 0.245
−

0.946 0.383 0.445 0.245
−

d19, . . . , d27 0.495
−

0.813
−

0 0.195
−

0.394 0.195
−

1.62 0.758 2.83
d28, . . . , d36 1.53 0.355 0.495

−
1.11 0.826 0.495

−
0.495

−
1.17 0

d37, . . . , d45 1 0.142
−

0 0 2.66 3.53 0.495
−

0.495
−

0.936

Table 15: The dependence variables dq s.t θi,j = dDi,j
for the financial portfolio.

d1, . . . , d9 7.66 4.56 5.43 1.63 9.52 0 7.15 17.9 6.76
d10, . . . , d18 8.68 9.39 10.4 9.68 6.18 7.61 5.2 12.2 11
d19, . . . , d27 1.45 14.3 1.47 2.42 13.4 13.3 0 6.4 7.48
d28, . . . , d36 0.482 7.88 9.77 3.07 4.72 2.98 17 7.34 9.32
d37, . . . , d45 1.47 3.37 4.83 7.21 13.3 9.7 8.22 4.76 17.5

Table 16: The absolute calibration errors for the default correlation matrices, in percent of

matrix {0.05ρ
(CDS)
i,j (T )}, for the auto portfolio.

VOLV BMW MICH CONT DCX FIAT PEUG RENA VALE VW

VOLV 0
BMW 3.4 0
MICH 9.6 32 0
CONT 46 83 12 0
DCX 12 17 9.1 9.4 0
FIAT 8.9 7.9 2.8 57 11 0
PEUG 2 49 39 11 31 27 0
RENA 35 89 14 93 9.1 20 23 0
VALE 45 64 19 55 7.3 4.7 9.1 0.41 0
VW 120 0.35 26 20 5.1 24 97 6.8 47 0
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DEFAULT CONTAGION IN LARGE HOMOGENEOUS PORTFOLIOS

ALEXANDER HERBERTSSON

Centre For Finance and Department of Economics, Göteborg University

Abstract. We study default contagion in large homogeneous credit portfolios. Using
data from the iTraxx Europe series, two synthetic CDO portfolios are calibrated against
their tranche spreads, index CDS spreads and average CDS spreads, all with five year
maturity. After the calibrations, which render perfect fits, we investigate the implied
expected ordered defaults times, implied default correlations, and implied multivariate
default and survival distributions, both for ordered and unordered default times. Many of
the numerical results differ substantially from the corresponding quantities in a smaller in-
homogeneous CDS portfolio. Furthermore, the studies indicate that market CDO spreads
imply extreme default clustering in upper tranches. The default contagion is introduced
by letting individual intensities jump when other defaults occur, but be constant between
defaults. The model is translated into a Markov jump process. Expressions for the inves-
tigated quantities are derived by using matrix-analytic methods.

1. Introduction

In this paper we model dynamic credit dependence in a large homogeneous portfolio
with default contagion. The approach is the same as in [15] where the author studies a
smaller inhomogeneous credit portfolio, in [17], where the authors focus on kth-to default
spreads and in [16] where the same technique are applied to synthetic CDO tranches
and index CDS-s. Here we focus on multivariate default and survival distributions and
related quantities in a large homogeneous portfolio. Many of the numerical results differ
substantially from the corresponding quantities in a smaller inhomogeneous CDS portfolio.
Default contagion in an intensity based setting has been studied in for example [1], [2], [3],
[4], [5], [6], [8], [7], [10], [11], [12], [13], [19], [20],[21], [22], [25], [26] and [27]. The material
in all these papers and books are related to the results discussed here.

The paper is organized as follows. Subsection 2 gives the definition of the intensity based
model used in this paper. This framework is then translated into a Markov jump process.
In Subsection 3 we present formulas for multivariate default and survival distributions,
marginal default distributions, default correlations, and expected default times. Section 4
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restates expressions, taken from [16], for our calibration instruments. These are synthetic
CDO tranche spreads, index CDS-spread and average CDS-spreads. A short description
how to reduce the parameters space is then given. Section 5 is devoted to numerical
investigations of several portfolio quantities, derived in Section 3. We use data from the
iTraxx series and calibrate two homogeneous CDO portfolios against their CDO tranche
spreads, index CDS spread and the average CDS spreads. The maturity is five years and
the fits are perfect. We then study the implied expected ordered defaults times, implied
default correlations, and implied multivariate default and survival distributions, both for
ordered and unordered default times. The numerical studies indicates that the market
spreads imply extreme default clustering in upper tranches. The final section summarizes
and discusses the results.

2. Intensity based models in a homogeneous model reinterpreted as
Markov jump processes

The model we use in this paper is a simplification of the one in [15], [17] to the case where
the obligors are exchangeable. It is defined in terms of intensities and then reinterpreted as
a Markov jump process. Closely following the cited references, for m exchangeable default
times τ1, τ2 . . . , τm, define the point process Nt,i = 1

{τi≤t} and introduce the filtrations

Ft,i = σ (Ns,i; s ≤ t) , Ft =

m
∨

i=1

Ft,i.

Let λt,i be the Ft-intensity of the point processes Nt,i, which we refer to just as ”intensity”
or ”default intensity”. By exchangeability we have that all the intensities are the same
λt,i = λt, if τi ≥ t and λt,i = 0 if τi < t. The model that we study is specified by

λt = a +

m−1
∑

k=1

bk1{Tk≤t} (2.1)

where {Tk} is the ordering of the default times {τi}. Further, a > 0 and b1, . . . , bm−1, are
constants such that λt is non-negative. Thus, the default intensities are constant, except at
the times when defaults occur: the parameter a is the base intensity for each obligor i, and
given that τi > Tk, then bk is how much the default intensity for each remaining obligor
jump at default number k in the portfolio. A positive bk means that all remaining obligors
are put at higher risk by the k-th default in the portfolio, while a negative bk means that
the nondefaulted obligors in fact benefits from the k-th default in the basket, and finally
bk = 0 if the remaining obligors are unaffected by the k-th default

Equation (2.1) determines the joint distribution of the default times. We will use the
following observation, originally proved in [16], but restated here since it provide us with
notation needed later on.

Proposition 2.1. There exists a Markov jump process (Yt)t≥0 on a finite state space E =
{0, 1, 2, . . . , m}, such that the stopping times

Tk = inf {t > 0 : Yt = k} , k = 1, . . . , m
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are the ordering of m exchangeable stopping times τ1, . . . , τm with intensities (2.1). The
generator Q to Yt is given by

Qk,k+1 = (m − k)

(

a +
k
∑

j=1

bj

)

and Qk,k = −Qk,k+1 for k = 0, 1, . . . , m − 1

where the other entries in Q are zero. The Markov process always starts in {0}.

The states in E can be interpreted as the number of defaulted obligors in the portfolio.
In the sequel, we let α = (1, 0, . . . , 0) denote the initial distribution on E. Further, if k

belongs to E then ek denotes a column vector in R
m+1 where the entry at position k is

1 and the other entries are zero. From Markov theory we know that P [Yt = k] = αeQt
ek

where eQt is the matrix exponential which has a closed form expression in terms of the
eigenvalue decomposition of Q.

3. Using the matrix-analytic approach to find multivariate default
distributions and related quantities

In this section we derive formulas for multivariate default and survival distributions,
both for ordered and unordered default times (Subsection 3.1). The marginal survival
distributions are then easily retrieved as special cases (Subsection 3.2). Analytical formulas
for the default correlations are given in Subsection 3.3 and the moments of the default times
and the ordered default times are presented in Subsection 3.4.

3.1. The multivariate distributions. In this subsection we derive formulas for multi-
variate default and survival distributions both for ordered as well as unordered default
times. We start with the latter. Let M k and N k be (m + 1)× (m + 1) diagonal matrices,
defined by (M k)j,j = 1

{j<k} and (N k)j,j = 1
{j≥k} where (N k)j,j′ = (M k)j,j′ = 0 if j 6= j′.

Note that M k = I − N k. The following proposition is similar to Proposition 3.1 in [15].

Proposition 3.1. Consider m obligors with default intensities (2.1) and let k1 < . . . < kq

be an increasing subsequence in {1, . . . , m} where 1 ≤ q ≤ m. Furthermore, let t1 < t2 <

. . . < tq. Then,

P
[

Tk1
> t1, . . . , Tkq

> tq
]

= α

(

q
∏

i=1

eQ(ti−ti−1)
M ki

)

1 (3.1.1)

and

P
[

Tk1
≤ t1, . . . , Tkq

≤ tq
]

= α

(

q
∏

i=1

eQ(ti−ti−1)
N ki

)

1 (3.1.2)

where ti0 = 0.
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Proof. By Proposition 2.1,

P
[

Tk1
> t1, . . . , Tkq

> tq
]

= P
[

Yt1 < k1, . . . , Ytq < kq

]

=

k1−1
∑

j1=0

· · ·

kq−1
∑

jq=0

P
[

Y0 = 0, Yt1 = j1, . . . , Ytq = jq

]

=

k1−1
∑

j1=0

· · ·

kq−1
∑

jq=0

P [Y0 = 0] P [Yt1 = j1 |Y0 = 0] · . . . · P
[

Ytq = jq

∣

∣Ytq−1
= jq−1

]

=

k1−1
∑

j1=0

· · ·

kq−1
∑

jq=0

αeQt1ej1e
T
j1

eQ(t2−t1)
ej2e

T
j2
· . . . · ejq−1

e
T
jq−1

eQ(tq−tq−1)
ejq

= αeQt1(
k1−1
∑

j1=0

ej1e
T
j1

)eQ(t2−t1)

(

k2−1
∑

j2=1

ej2e
T
j2

)

· · · eQ(tq−tq−1)

kq−1
∑

jq=0

ejq

= αeQt1M k1
eQ(t2−t1)

M k2
· · · eQ(tq−tq−1)

M kq
1

which proves (3.1.1). The third equality follows from the Markov property of Yt, the fourth
since Yt is a homogeneous Markov process and that P [Y0 = 0] = 1. The final equality is
due to the definition of the matrix M k. Equation (3.1.2) is proved in the same way. �

Finding joint distributions for {τi} in a homogeneous model with default intensities
(2.1) is a more complicated task than in an inhomogeneous model. For 1 ≤ q ≤ m,
fix a vector t1, . . . , tq ∈ R

q
+. For a set of q distinct obligors i1, i2, . . . , iq, the probabil-

ity P
[

τi1 ≤ t1, . . . , τiq ≤ tq
]

is by exchangeability the same for any such distinct sequence
of q obligors. Therefore we will in this section without loss of generality only consider
P [τ1 ≤ t1, . . . , τq ≤ tq] where t1 ≤ . . . ≤ tq and similarly for P

[

τi1 > t1, . . . , τiq > tq
]

. To
exemplify, we start with the following proposition, where we let q = 2 and t1 < t2.

Proposition 3.2. Consider m obligors with default intensities (2.1) and let t1 < t2. Then,

P [τ1 ≤ t1, τ2 ≤ t2] =
(m − 2)!

m!
αeQt1n +

(m − 2)!

m!

m
∑

k1=1

m
∑

k2=k1+1

αeQt1N k1
eQ(t2−t1)

N k2
1.

(3.1.3)

where n is a column vector in R
m+1 such that nj = j(j−1)

2
.
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Proof. First, note that

P [τ1 ≤ t1, τ2 ≤ t2] =

m
∑

k1=1

m
∑

k2=1,k2 6=k1

P [τ1 = Tk1
, τ2 = Tk2

, τ1 ≤ t1, τ2 ≤ t2]

=

m
∑

k1=1

m
∑

k2=1,k2 6=k1

P [τ1 = Tk1
, τ2 = Tk2

, Tk1
≤ t1, Tk2

≤ t2]

=
m
∑

k1=1

m
∑

k2=1,k2 6=k1

P [τ1 = Tk1
, τ2 = Tk2

] P [Tk1
≤ t1, Tk2

≤ t2]

=
(m − 2)!

m!

m
∑

k1=1

m
∑

k2=1,k2 6=k1

P [Tk1
≤ t1, Tk2

≤ t2]

(3.1.4)

where the third and fourth equalities are due to the exchangeability in the portfolio. Now,
if k1 < k2, then Proposition 3.1 renders P [Tk1

≤ t1, Tk2
≤ t2] = αeQt1N k1

eQ(t2−t1)
N k2

1.
However, if k1 > k2, we can no longer use this arguments. To see this, note that since
t1 < t2 and Tk1

> Tk2
we get

P [Tk1
≤ t1, Tk2

≤ t2] = P [Tk1
≤ t1] = αeQt1N k1

1 6= αeQt1N k1
eQ(t2−t1)

N k2
1.

Hence,
m
∑

k1=1

m
∑

k2=1,k2 6=k1

P [Tk1
≤ t1, Tk2

≤ t2]

=

m
∑

k1=1

(

∑

1≤k2<k1

P [Tk1
≤ t1, Tk2

≤ t2] +
∑

k1<k2≤m

P [Tk1
≤ t1, Tk2

≤ t2]

)

=

m
∑

k1=1

(

k1−1
∑

k2=1

P [Tk1
≤ t1] +

m
∑

k2=k1+1

P [Tk1
≤ t1, Tk2

≤ t2]

)

=

m
∑

k1=1

(

(k1 − 1)P [Tk1
≤ t1] +

m
∑

k2=k1+1

P [Tk1
≤ t1, Tk2

≤ t2]

)

=
m
∑

k1=1

(k1 − 1)αeQt1N k1
1 +

m
∑

k1=1

m
∑

k2=k1+1

αeQt1N k1
eQ(t2−t1)

N k2
1

= αeQt1

(

m
∑

k1=1

(k1 − 1)N k1

)

1 +

m
∑

k1=1

m
∑

k2=k1+1

αeQt1N k1
eQ(t2−t1)

N k2
1.

Note that the column vector n =
(
∑m

k1=1(k1 − 1)N k1

)

1 can be simplified according to

nj =

m
∑

k1=1

(k1 − 1)(Nk1
)j =

m
∑

k1=1

(k1 − 1)1
{j≥k1}

=

j
∑

k1=1

(k1 − 1) =
j(j − 1)

2
.
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Inserting the above expressions in (3.1.4) renders Equation (3.1.3). �

By using the same technique as in Proposition 3.2 we can state the following corollary.

Corollary 3.3. Consider m obligors with default intensities (2.1) and let t1 < t2. Then,

P [τ1 > t1, τ2 > t2] =
(m − 2)!

m!
αeQt2m +

(m − 2)!

m!

m
∑

k1=1

m
∑

k2=k1+1

αeQt1M k1
eQ(t2−t1)

M k2
1.

(3.1.5)

where m is a column vector in R
m+1 such that mj = (m−j)(m−j−1)

2
.

It is possible to generalize Proposition 3.2 and Corollary 3.3 to more that two default
times. These expressions do not seem to be easily simplified. However, if t1 = . . . = tq = t

we can find compact formulas.

Proposition 3.4. Consider m obligors with default intensities (2.1) and let q be a integer
where 1 ≤ q ≤ m. Then,

P [τ1 ≤ t, . . . , τq ≤ t] = αeQt
d

(q) and P [τ1 > t, . . . , τq > t] = αeQt
s

(q) (3.1.6)

where d
(q) and s

(q) are column vectors in R
m+1 defined by

d
(q)
j =

(

j

q

)

(

m

q

)1
{j≥q} and s

(q)
j =

(

m−j

q

)

(

m

q

) 1
{j≤m−q}. (3.1.7)

Proof. By Proposition 2.1,

P [τ1 ≤ t, . . . , τq ≤ t] =
m
∑

j=q

P [τ1 ≤ t, . . . , τq ≤ t, Yt = j]

=

m
∑

j=q

P [τ1 ≤ t, . . . , τq ≤ t |Yt = j] P [Yt = j]

=

m
∑

j=q

(

j

q

)

(

m

q

)αeQt
ej

= αeQt
d

(q)

(3.1.8)

where d
(q) is a column vector in R

m+1 defined by d
(q)
j =

(j

q
)

(m

q
)
1
{j≥q}. To motivate the third

equality in (3.1.8), note that P [τ1 ≤ t, . . . , τq ≤ t | Yt = j] is the probability that q specified
obligors have defaulted before t given that exactly j obligors have defaulted until time t

where j ≥ q. Since the portfolio consist of m obligors, and by exchangeability in the model,
there are

(

m−q

j−q

)

ways to choose a group of j obligors that contains our q specified obligors,

where j ≥ q. Further, there are
(

m

j

)

ways to pick out a set containing j obligors. Hence,

P [τ1 ≤ t, . . . , τq ≤ t |Yt = j] =

(

m−q

j−q

)

(

m

j

) =

(

j

q

)

(

m

q

) for j ≥ q,
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where the last equality follows from straightforward calculations. This proves the first
equality in Equation (3.1.6). Next, by Proposition 2.1 again,

P [τ1 > t, . . . , τq > t] =

m−q
∑

j=0

P [τ1 > t, . . . , τq > t, Yt = j]

=

m−q
∑

j=0

P [τ1 > t, . . . , τq > t |Yt = j] P [Yt = j]

=

m−q
∑

j=0

(

m−j

q

)

(

m

q

) αeQt
ej

= αeQt
s

(q)

(3.1.9)

where s
(q) is a column vector in R

m+1 defined by s
(q)
j =

(m−j

q
)

(m

q
)

1
{j≤m−q}. To motivate the

third equality in (3.1.9), note that P [τ1 > t, . . . , τq > t |Yt = j] is the probability that q

specified obligors have survived before t given that exactly m−j obligors have survived until
time t where m − j ≥ q. Since the portfolio consist of m obligors, and by exchangeability
in the model, there are

(

m−q

m−j−q

)

ways to choose a group of m − j obligors that contains

our q specified obligors, where m − j ≥ q. Further, there are
(

m

m−j

)

ways to pick out a set

containing m − j obligors. Hence,

P [τ1 > t, . . . , τq > t |Yt = j] =

(

m−q

m−j−q

)

(

m

m−j

) =

(

m−j

q

)

(

m

q

) for j ≤ m − q,

where the last equality follows from straightforward calculations. This proves the second
equality in Equation (3.1.6). �

Note that the indicator functions 1
{j≥q} and 1

{j≤m−q} can be dropped in (3.1.7) since

(

j

q

)

=
j(j − 1)(j − 2) · · · (j − q + 1)

q!
= 0 for j = 0, 1, . . . , q − 1

and
(

m − j

q

)

=
(m − j)(m − j − 1)(m − j − 2) · · · (m − j − q + 1)

q!
= 0

for j = m, m− 1, . . . , m− q + 1. We can now check that Proposition 3.2 and Corollary 3.3
are consistent with Proposition 3.4. Letting t1 = t2 = t in Equation (3.1.3) in Proposition
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3.2 yields that

P [τ1 ≤ t, τ2 ≤ t] =
(m − 2)!

m!
αeQt

n +
(m − 2)!

m!

m
∑

k1=1

m
∑

k2=k1+1

αeQt
N k1

N k2
1

=
(m − 2)!

m!
αeQt

(

n +
m
∑

k1=1

m
∑

k2=k1+1

N k2
1

)

=
(m − 2)!

m!
αeQt (n + n) =

1
(

m−2
2

)αeQt
n = αeQt

d
(2)

(3.1.10)

where the second equality follows from N k1
N k2

= N k2
since k2 > k1. To prove the third

equality in (3.1.10), note that
(

m
∑

k1=1

m
∑

k2=k1+1

N k2
1

)

j

=

m
∑

k1=1

m
∑

k2=k1+1

(N k2
1)j =

m
∑

k1=1

m
∑

k2=k1+1

1
{j≥k2}

=
m
∑

k1=1

(

j
∑

k2=k1+1

1

)

1
{j≥k1+1} =

m
∑

k1=1

(j − k1)1{j≥k1}
=

j
∑

k1=1

(j − k1) =
j(j − 1)

2
= nj

and the final equality in (3.1.10) is due to the definition of d
(q) in Equation (3.1.7), d

(q)
j =

(j

q
)

(m

q
)

which for q = 2 implies that d
(2) = 1

(m−2

2 )
n. Hence, Proposition 3.2 is consistent with

Proposition 3.4 for q = 2 and the bivariate default distribution. Now, letting t1 = t2 = t

in Equation (3.1.5) in Corollary 3.3 we get

P [τ1 > t, τ2 > t] =
(m − 2)!

m!
αeQt

m +
(m − 2)!

m!

m
∑

k1=1

m
∑

k2=k1+1

αeQt
M k1

M k2
1

=
(m − 2)!

m!
αeQt

(

m +
m
∑

k1=1

m
∑

k2=k1+1

M k1
1

)

=
(m − 2)!

m!
αeQt (m + m) =

1
(

m−2
2

)αeQt
m = αeQt

s
(2)

(3.1.11)

where the second equality follows from M k1
M k2

= M k1
since k2 > k1. To prove the third

equality in (3.1.11), note that
(

m
∑

k1=1

m
∑

k2=k1+1

M k1
1

)

j

=

(

m
∑

k1=1

(m − k1)M k1
1

)

j

=

m
∑

k1=1

(m − k1) (M k1
1)j

=
m
∑

k1=1

(m − k1)1{j<k1}
=

m
∑

k1=j+1

(m − k1) =
(m − j)(m − j − 1)

2
= mj
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and the final equality in (3.1.11) is due to the definition of s
(q) in Equation (3.1.7), s

(q)
j =

(m−j

q
)

(m

q
)

, which for q = 2 implies that s
(2) = 1

(m−2

2 )
m. Hence, Corollary 3.3 is consistent with

Proposition 3.4 for q = 2 and the bivariate survival distribution.

3.2. The marginal distributions. By Proposition 3.4 with q = 1 we get P [τi > t] =

αeQt
s

(1) where s
(1)
j = (m − j)/m = 1 − j/m. Furthermore, letting m

(k) denote m
(k) =

M k1, then Proposition 3.1 with q = 1 for any 1 ≤ k ≤ m, renders that P [Tk > t] =

αeQt
m

(k) where m
(k)
j = 1

{j<k}.

3.3. The default correlations. In this subsection we use Proposition 3.4 to give expres-
sions for pairwise default correlations between two different obligors belonging to a homo-
geneous portfolio of m obligors satisfying (2.1). By exchangeability, Corr(1

{τi≤t}, 1{τj≤t}) is
the same for all pairs i 6= j and therefore, we write ρ(t) to denote Corr(1

{τi≤t}, 1{τj≤t}).

Lemma 3.5. Consider m obligors with default intensities (2.1). Then, with notation as
in Subsection 3.1

ρ(t) =
αeQt

d
(2) −

(

αeQt
d

(1)
)2

αeQtd
(1)
(

1 − αeQtd
(1)
) . (3.3.1)

Proof. By exchangeability we have that Var(1
{τj≤t}) = Var(1

{τi≤t}). Further, using the
definition of covariance and variance we get that

Cov(1
{τi≤t}, 1{τj≤t}) = P [τi ≤ t, τj ≤ t] − P [τi ≤ t] P [τj ≤ t]

Var(1
{τi≤t}) = P [τi ≤ t] (1 − P [τi ≤ t])

and by Proposition 3.4, P [τi ≤ t, τj ≤ t] = αeQt
d

(2) and P [τi ≤ t] = αeQt
d

(1). Inserting
this into the definition for correlation between two random variables yields (3.3.1). �

3.4. Expected default times. In this subsection we present formulas for the moments
for default times and ordered default times. By construction, the intensity matrix Q for
the Markov jump process (see Proposition 2.1) has the form

Q =

(

T t

0 0

)

where t is a column vector such that tm−1 is nonzero and tk = 0 for k = 0, 1, . . . , m − 2,
because the k-th element tk, k ≤ m− 1 is the intensity for the Markov jump process Yt to
jump from the state k to the absorbing state {m}. Furthermore, T is invertible since it is
upper diagonal with strictly negative diagonal elements. The following lemma is standard.

Lemma 3.6. Consider m obligors with default intensities (2.1). Then,

E [τn
i ] = (−1)nn!α̃T

−n
s̃

(1) and E [T n
k ] = (−1)nn!α̃T

−n
m̃

(k)

for n ∈ N where α̃, s̃(1), m̃(k) are the restrictions of α, s(1), m(k) from E to E \ {m}.
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For a proof, see Lemma 3.8 in [15]. The implied variances of the default times can now
be computed as

Var[Tk] = 2α̃T
−2

m̃
(k) −

(

α̃T
−1

m̃
(k)
)2

for k = 1, 2, . . . , m,

and in the same way Var[τi] = 2α̃T
−2

s̃
(i) −

(

α̃T
−1

s̃
(i)
)2

, which by the exchangeability is

identical for all obligors.

3.5. A remark. The main message in this section is that under (2.1), computations of
multivariate default and survival distributions, marginal default distributions, default cor-
relations, expected default times, and so on have been reduced to compute the matrix
exponential. Computing eQt efficiently for large state spaces, is a numerical issue which
requires special treatment, see [17]. For small state spaces, perhaps less then 150 states,
there are many different methods to compute the matrix exponential ([23], [24]). Most of
them are straightforward to implement using standard mathematical software. Following
[16], we will in this paper use Padé approximation with scaling and squaring, see [23]. In
the model (2.1) with m = 125, this approach outperforms all other methods which we have
tried, both in computational time and accuracy. The robustness of the Padé approximation
with scaling and squaring have previously also been verified in [23], [24].

Finally, recall that eQt has a closed form expression in terms of the eigenvalue decom-
position of Q. Thus, if the eigenvalues of Q are distinct and letting D be a diagonal
matrix containing them, then eQt = UeDt

U
−1 where U is the matrix whose rows are the

corresponding eigenvectors. In this paper Q is upper diagonal, so the eigenvalues are given
by its diagonal. It is therefore tempting to use this decomposition. However, the method
is numerically unstable even for moderate sizes of m ([23]) since U is often ill-conditioned,
making it difficult to compute its inverse U

−1 without introducing large numerical errors.

4. Calibrating the model parameters against CDO tranche spreads, index
CDS spreads and average CDS spreads.

In this section we discuss how to find the parameters in the model (2.1). First, Subsec-
tion 4.1 presents formulas for the single-name CDS spread in this model. Then, Subsection
4.2 gives expressions for CDO tranche spreads and index CDS spreads. Finally, Subsection
4.3 is devoted to a short description how to calibrate the model spreads against the corre-
sponding market spreads. In the sequel all computations are assumed to be made under a
risk-neutral martingale measure P. Typically such a P exists if we rule out arbitrage op-
portunities. Further, we assume the that risk-free interest rate is a deterministic constant
given by r.

4.1. The single-name CDS spread. In this subsection we give a short description of a
single-name credit default swap, which is one of our calibration instruments.

Consider a obligor i with default time τi and recovery rate φi. A single-name credit
default swap (CDS) with maturity T where the reference entity is obligor i, is a bilateral
contract between two counterparties, A and B, where B promises to pay A the credit
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losses (1 − φi) at τi if obligor i defaults before time T . As compensation for this, A pays
Ri (T )∆n to the protection seller B, at 0 < t1 < t2 < . . . < tnT

= T or until τi < T ,
where ∆n = tn − tn−1. If default happens for some τi ∈ [tn, tn+1], A will also pay B

the accrued default premium up to τi. By exchangeability in the model (2.1), τi has the
same distribution for all obligors and φ1 = φ2 = . . . = φm = φ so R1 (T ) = R1 (T ) =
. . . = Rm (T ) = R (T ). The CDS spread R(T ) is determined so that expected discounted
cashflows between A and B are equal when the CDS contract is settled at t = 0. It is
expressed in bp per annum and independent of the nominal size protected. Closed-form
expression for R(T ) is obtained by using the expression for P [τi > t] in Subsection 3.2. For
ease of reference we exhibit the resulting formulas (proofs can be found in [14] or [15]).

Proposition 4.1. Consider m obligors that all satisfies (2.1) and assume that the interest
rate r is constant. Then, with notation as above

R(T ) =
(1 − φ)α (A(0) − A(T )) s

(1)

α (
∑nT

n=1 (∆neQtne−rtn + C(tn−1, tn))) s(1)

where C(s, t) = s (A(t) − A(s)) − B(t) + B(s) and

A(t) = eQt (Q − rI)−1
Qe−rt

B(t) = eQt
(

tI + (Q − rI)−1) (Q − rI)−1
Qe−rt.

For more on the CDS contract, see e.g [9], [14], [15] or [22].

4.2. CDO tranche spreads and index CDS spreads. In this subsection we present
formulas for CDO tranche spreads and index CDS spreads in a model given by (2.1). These
expression are then used in the calibration of the model. Our outline is a shorter version
of the one presented in Section 2 in [16]. We restate it here in order to make our paper
self-contained.

A synthetic CDO is defined for a portfolio consisting of m single-name CDS’s on obligors
with default times τ1, τ2 . . . , τm and recovery rates φ1, φ2, . . . , φm. It is standard to assume
that the nominal values are the same for all obligors. Here we focus on the model (2.1)
where all obligors are exchangeable and thus φ1 = φ2 = . . . = φm = φ. The credit loss Lt

for this portfolio at time t, in percent of the nominal portfolio value at t = 0, is given by

Lt =
1 − φ

m

m
∑

i=1

1
{τi≤t} =

1 − φ

m

m
∑

k=1

1
{Tk≤t} (4.2.1)

where {Tk} is the ordering of the default times {τi}.
Recall that a CDO is specified by the attachment points 0 = k0 < k1 < k2 < . . . kκ = 1

with corresponding tranches [kγ−1, kγ]. The financial instrument that constitutes tranche
γ with maturity T is a bilateral contract where the protection seller B agrees to pay the
protection buyer A, all losses that occurs in the interval [kγ−1, kγ] derived from Lt up to
time T . The payments are made at the corresponding default times, if they arrive before
T , and at T the contract ends. As compensation for this, A pays B a periodic fee at

0 < t1 < t2 < . . . < tnT
= T , given by Sγ(T )

(

∆kγ − L
(γ)
t

)

∆n where ∆kγ = kγ − kγ−1,

∆n = tn − tn−1 and L
(γ)
t = (Lt − kγ−1) 1

{Lt∈[kγ−1,kγ ]} + ∆kγ1{Lt>kγ}
. Note that ∆kγ − L

(γ)
t
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is what is left of the tranche γ at time t. For upper tranches γ > 1, the tranche spread
Sγ(T ) is determined so that the expected discounted cashflows between A and B are the
same at t = 0. It is quoted in bp per annum. Furthermore, for the first tranche, often

denoted the equity tranche, S1(T ) is set to 500 bp and a so called up-front fee S
(u)
1 (T ) is

added to the protection payments so that the expected discounted cashflows between A

and B are equal at t = 0. It is quoted in percent. Note that the spreads Sγ(T ), S1(T ) are
independent of the nominal size of the portfolio.

Consider the same synthetic CDO as above. An index CDS with maturity T , has almost
the same structure as a corresponding CDO tranche, but with two main differences. First,
the protection is on all credit losses that occurs in the CDO portfolio up to time T , so

in the protection leg, the tranche loss L
(γ)
t is replaced by the total loss Lt. Secondly, in

the protection payments, the index spread S(T ) is paid on a notional proportional to the
number of obligors left in the portfolio at each payment date, that is 1 − 1

m

∑m

k=1 1
{Tk≤t}.

The rest of the contract has the same structure as a CDO tranche. Hence, the index CDS
spread S(T ) is determined so that the expected value of cashflows between A and B are
the same at t = 0.

From Proposition 2.1 and Equation (4.2.1) it is clear that the loss Lt can be represented
as a functional of the Markov jump process Yt, Lt = L (Yt), see Lemma 5.2 in [16]. The
mapping L goes from E = {0, 1, . . . , m} to all possible loss-outcomes determined via
(4.2.1). For example, if k ∈ {0, 1, . . . , m} then L (k) = 1−φ

m
k. In view of these observations,

we state the following result, proved in [16].

Proposition 4.2. Consider a synthetic CDO on a portfolio with m obligors that satisfy
(2.1) and assume that the interest rate r is constant. Then, with notation as above,

Sγ(T ) =

(

αeQT e−rT + αR(0, T )r
)

ℓ
(γ)

∑nT

n=1 e−rtn

(

∆kγ − αeQtnℓ
(γ)
)

∆n

γ = 2, . . . , κ (4.2.2)

and

S
(u)
1 (T ) =

1

k1

(

αeQT e−rT + αR(0, T )r + 0.05

nT
∑

n=1

αeQtne−rtn∆n

)

ℓ
(1) − 0.05

nT
∑

n=1

e−rtn∆n.

(4.2.3)

Furthermore,

S(T ) =

(

αeQT e−rT + αR(0, T )r
)

ℓ

∑nT

n=1 e−rtn

(

1 − αeQtnℓ
1

1−φ

)

∆n

(4.2.4)

where

R(0, T ) =

∫ T

0

e(Q−rI)tdt =
(

eQT e−rT − I
)

(Q − rI)−1
.
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Here ℓ
(γ) is a column vector in R

m+1, defined by

ℓ
(γ)
k =







0 if k < nl(kγ−1)
k(1 − φ)/m − kγ−1 if nl(kγ−1) ≤ k ≤ nu(kγ)
∆kγ if k > nu(kγ)

(4.2.5)

where nl(x) = ⌈xm/(1 − φ)⌉ and nu(x) = ⌊xm/(1 − φ)⌋. Finally, ℓ is a column vector in
R

m+1, defined by ℓk = k(1 − φ)/m.

4.3. The calibration. In this subsection we show how to calibrate the model (2.1) against
the credit instruments described in the previous subsections. Let a = (a, b1, b2, . . . , bm−1)
denote the m parameters in (2.1). Furthermore, let {Cj(T ; a)} be the κ+2 model spreads
for the instruments used in the calibration. These are the average CDS spread R(T ; a), the

index CDS spread S(T ; a) and the κ different CDO tranche spreads {Sγ(T ; a)}, S
(u)
1 (T ; a).

We let {Cj,M(T )} denote the corresponding market spreads. In Cj(T ; a) we have empha-
sized that the model spreads are functions of a = (a, b1, b2, . . . , bm−1) but suppressed the
dependence of interest rate, payment frequency, etc. The vector a is then obtained as

a = argmin
â

η
∑

j=1

(Cj(T ; â) − Cj,M(T ))2 (4.3.1)

with the constraint that all elements in a are nonnegative. For a fixed maturity T , we use
κ = 5 tranche spreads. This gives us 7 market observations, while the model can contain
up to m = 125 parameters. In order to reduce the number of unknown parameters to as
many as the market observations, we make following assumption on the parameters bk for
1 ≤ k ≤ m − 1

bk =



















b(1) if 1 ≤ k < µ1

b(2) if µ1 ≤ k < µ2
...
b(c) if µ5 ≤ k < µ6 = m

(4.3.2)

where 1, µ1, µ2, . . . , µ6 is an partition of {1, 2, . . . , m}. This means that all jumps in the
intensity at the defaults 1, 2, . . . , µ1−1 are same and given by b(1), all jumps in the intensity
at the defaults µ1, . . . , µ2 − 1 are same and given by b(2) and so on. Hence, in (4.3.1) we
now minimize over the unknown vector a = (a, b(1), . . . , b(6).

5. Numerical studies

In this section we will, in a homogeneous CDO portfolio, study several quantities of
importance in active credit portfolio management. In Section 5.1 we calibrate the port-
folio against market data on CDO tranches, index CDS-s and average single-name CDS
spreads. We then investigate the implied expected ordered default times (Subsection 5.2),
the implied default correlation (Subsection 5.3) and finally various kinds of implied mul-
tivariate default and survival distributions, both for ordered as well as unordered default
times (Subsection 5.4).
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5.1. Calibration of a homogeneous portfolio. In this subsection we calibrate our ho-
mogenous model against data on the iTraxx Europe Series collected from Reuters at
August 4th, 2004 and November 28th, 2006. For each date, the data contains five different
CDO tranche spreads with tranches [0, 3], [3, 6], [6, 9], [9, 12] and [12, 22], the index CDS
spreads and the average CDS spread. For the 2004-08-04 portfolio, we set the average
CDS spread equal to (i.e. approximated by) the index CDS spread, as in [11] and [18]. All
maturities are for five years, and these instruments are used in the calibration described
in Subsection 4.3. The interest rate is set to 3%, the payment frequency is quarterly and
the recovery rate is 40%.

Table 1: iTraxx Europe, August 4th, 2004. The market and model spreads and the corresponding
absolute errors, both in bp and in percent of the market spread. The [0, 3] spread is
quoted in %. All maturities are for five years.

Market Model error (bp) error (%)
[0, 3] 27.6 27.6 0.0004514 1.635e-005
[3, 6] 168 168 0.003321 0.001977
[6, 9] 70 70.07 0.06661 0.09515
[9, 12] 43 42.91 0.09382 0.2182
[12, 22] 20 20.03 0.03304 0.1652
index 42 41.99 0.01487 0.03542

avg CDS 42 41.96 0.04411 0.105
Σ abs.cal.err 0.2562 bp

Table 2: iTraxx Europe Series 6, November 28th, 2006. The market and model spreads and the
corresponding absolute errors, both in bp and in percent of the market spread. The
[0, 3] spread is quoted in %. All maturities are for five years.

Market Model error (bp) error (%)
[0, 3] 14.5 14.5 0.007266 0.0005011
[3, 6] 62.5 62.41 0.08523 0.1364
[6, 9] 18 18.1 0.09727 0.5404
[9, 12] 7 6.881 0.1193 1.704
[12, 22] 3 3.398 0.3979 13.26
index 26 26.13 0.1299 0.4997

avg CDS 26.87 26.12 0.7535 2.804
Σ abs.cal.err 1.59 bp

We choose the partition µ1, µ2, . . . , µ6 so that it roughly coincides with the number of
defaults needed to reach the upper attachment point for each tranche, see Table 4. The
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sum of the absolute calibration error where 0.2562 bp for the 2004-08-04 case and 1.59 bp
for the 2006-11-28 set, so in both portfolios we can therefore speak of a perfect fit for T = 5
years, see Table 1 and Table 2.

Table 3: The calibrated parameters that gives the model spreads in the Tables 1 and 2.

a b(1) b(2) b(3) b(4) b(5) b(6)

04/08/04 33.0 16.4 84.5 145 86.4 124 514 ×10−4

06/11/28 24.9 13.9 73.6 62.4 0.823 2162 4952 ×10−4

Table 4: The integers 1, µ1, µ2, . . . , µc are partitions of {1, 2, . . . ,m} used in the models that
generates the spreads in Table 1 and Table 2

partition µ1 µ2 µ3 µ4 µ5 µ6

7 13 19 25 46 125

The numerical values of the calibrated parameters a, obtained via (4.3.1), show that in
both portfolios the parameters a, b(1) and b(2) are approximately in the same order while
b(3) is around two times bigger for the 2004-08-04 case compared with the 2006-11-28
collection. However, the parameters b(4), b(5) and b(5) differ substantially between the two
portfolios and given the big difference among the corresponding market spreads, this may
not come as a surprise. In the 2004-08-04 case, the variables b(4), b(5) and b(5) varies rather
smoothly, while for the 2006-11-28 collection, the jump parameters virtually explodes after
default number 25, see Table 3. This drastic increase of the jumps after the 26th default
will have a big impact on the different distributions and other quantities, as will be seen
in the next subsections. We want to remind the reader that the intensities are implied, or
so called risk-neutral intensities, measured under a risk-neutral martingale measure, which
exists if we rule out arbitrage opportunities in our model. Here ”implied” is refereing to
the fact that the quantities are retrieved from market data via a model. Recall that risk-
neutral default intensities are substantially larger than the real, so called actuarial, default
probabilities.

5.2. The implied expected ordered default times. Given the implied distributions
we can compute important quantities for a credit manager. In this subsection we study
the expected ordered default times E [Tk] and their standard deviations. Further, the
expected default times E [τi], which by exchangeability are the same for all obligors, are
also computed. The formulas for all these quantities are given in Subsection 3.4.

In Figure 1, left, we note that the implied expected ordered default times take values
roughly between 3.5 years and 14 years. A striking feature in the 2006-11-28 portfolio
is that after the 25 default, the E [Tk] cluster around 14 years. This is a consequence of
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Figure 1: The implied expected ordered default times E [Tk] for the 2004-08-04 and 2006-11-28
portfolios where k = 1, . . . , 125 (left) and k = 26, . . . , 125 (right, for 2006-11-28 ).
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Figure 2: The implied standard deviations StD[Tk] for the ordered default times where k =
1, . . . , 25 (left) and k = 26, . . . , 125 (right) for the 2006-11-28 portfolio.

the explosion in the jump intensities for k ≥ 25, as discussed in Subsection 4.3. Under
the risk-neutral measure, implied by the market data in Table 2, this clustering of E [Tk]
means that we expect extreme losses in year 13 and 14 for the 2006-11-28 portfolio. This is
confirmed by computation of the loss probability, see [16], which renders P [L15 > 11.52%] =
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P [Y15 > 24] = 66.62%, where a loss of 11.52% corresponds to 24 defaults when the recovery
is 40%. As a matter of fact, P [L15 = 60%] = P [Y15 = 125] = 64.256%. Again, recall that
all computations are under the risk-neutral measure, and should not be confused with real
default probabilities and their expectations. These are likely to be substantially smaller
for the loss probability and much bigger for the expected ordered default times. Since {Tk}
are strictly increasing, so are the E [Tk].

It is interesting to note that the curves for the standard deviation of the Tk roughly
have the same shape as for E [Tk]. Finally, the implied expected default times, which
by the exchangeability are the same for all obligors i, have the values E [τi] = 11.21,
StD[τi] = 3.927 for the 2004-08-04 portfolio and E [τi] = 13.38, StD[τi] = 4.890 for the
2006-11-28 portfolio

5.3. The implied default correlation. It may be of interest for a credit manager to have
a quantitative grasp of the implied pairwise default correlation ρ(t) = Corr(1

{τi≤t}, 1{τj≤t})
for two distinct obligors i, j, as function of time t. In this subsection, we study ρ(t) in the
calibrated portfolios in Table 1 and Table 2.s
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Figure 3: The implied default correlation ρ(t) = Corr(1
{τi≤t}, 1{τj≤t}), i 6= j as function of time

for the 2004-08-04 and 2006-11-28 portfolios.

In the 2006-11-28 portfolio, we see that ρ(t) is less than 2% when t ≤ 4, but then starts to
increase rapidly, first to 4% for t = 4.5, then to 77% for t = 10 and reaches 88% at t = 15.
After this drastic development, the implied default correlation flattens out and converges
to 91% as time increases against 30 years. The explosive increase of ρ(t) from 2% to 88%
in the time interval [4.5, 15] is due to the default contagion and is also consistent with the
clustering of {Tk} around t = 14. We also note that the implied default correlation for
the 2004-08-04 portfolio follows an almost identical trend up to 8 years. This is consistent
with the jump-to-default parameters for the first 13 defaults, which are in the same order
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Figure 4: The implied default correlation ρ(t) = Corr(1
{τi≤t}, 1{τj≤t}), i 6= j as function of time

t, where 15 ≤ t ≤ 30, for the 2004-08-04 portfolio.

as in 2006-11-28 case, see also Figure 1. Even though there is a big difference between the
corresponding contagious parameters for k > 13 in the two portfolios, the implied default
correlations never differ more than 10%− 12% during the first 30 years. Furthermore, the
2004-08-04 portfolio seem to have a global maxima of 80.2% around 19 years, as seen in
Figure 4.

We observe that implied default correlations around 90% which occur already for t = 16
are quite big. In [15] the author studied implied default correlations in an inhomogeneous
portfolio consisting of 10 obligors and with very high 5 years CDS-spread correlations.
This gave rise to implied default correlations around 70%, but first when t ≥ 95 years.
The corresponding correlation when t = 15 was around 12%, see [15].

5.4. The implied multivariate default and survival distributions. In this subsec-
tion we study the implied bivariate default and survival distributions, the implied survival
and default distributions for a fixed t and the joint implied survival and default distribu-
tions for the ordered default times.

All computations are done with parameters obtained from the calibrated portfolio in
Table 2. From Figure 5 and Figure 6 we note some interesting features in the 2006-11-28
portfolio. For example, the bivariate default distribution P [τ1 ≤ t1, τ2 ≤ t2] is approxi-
mately constant on the lines (t1, t2) where t1 is fixed, and 6 < t1 < t2. By exchangeability,
this is also the case for the lines (t1, t2) where t2 is fixed, and 6 < t2 < t1. Intuitively, this
observation imply that the default events {τi ≤ t1} and {τj ≤ t2} are approximately
independent for (t1, t2) ∈ [6,∞] × [6,∞]. This property is not present in the region
(t1, t2) ∈ [0, 6] × [0, 6, ], see Figure 7. It does not hold for the bivariate survival distri-
bution P [τ1 > t1, τ2 > t2] either.
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Figure 5: The implied bivariate default (left) and survival (right) distribution for two obligors
in the 2006-11-28 portfolio.
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Figure 6: The implied bivariate default (left) and survival (right) distribution for two obligors
in the 2006-11-28 portfolio.

Figure 8 shows that P [τ1 ≤ t, . . . , τq ≤ t] seems to be independent of q. Similarly,
P [Tk > t] appear to be unchanged for k > 25. However, a closer study reveals that the
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Figure 8: The implied survival distributions P [τ1 > t, . . . , τq > t] (left) and default distribution
P [τ1 ≤ t, . . . , τq ≤ t], as functions of q and time t, for the 2006-11-28 portfolio.
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k = 26, . . . , 100 for the 2006-11-28 portfolio.
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computed survival distributions P [Tk > t] are strictly increasing with k, as the should be,
although this is on very narrow intervals, see Figure 10.

Table 5 shows that the effect of the default contagion is clear. For example, in the
2006-11-28 portfolio, P [T1 ≤ 1, . . . , T25 ≤ 25] = 6% while P [T1 ≤ 14, . . . , T25 ≤ 38] = 95%
and P [T101 ≤ 1, . . . , T125 ≤ 25] = 0% while P [T101 ≤ 14, . . . , T125 ≤ 38] = 57%.

Furthermore, we also see some big differences between the two portfolios. For example,
P [T1 > 1, . . . , T25 > 25] and P [T26 ≤ 13.5, . . . , T125 ≤ 38.5] are 0.25%, 2.3% and 80%, 54%
respectively, for the 2004-08-05 and 2006-11-28 portfolio.

Table 5: The multivariate default (D) and survival (S) probabilities P
[

Tk1
≤ nt1, . . . , Tkq

≤ ntq
]

and P
[

Tk1
> nt1, . . . , Tkq

> ntq
]

(in %), for the 2004-08-04 (04) and 2006-11-28 (06)
portfolios where n = 0.25, 0.5, 0.75, 1 for different sequences k1 < . . . < kq and t1 <

t2 < . . . < tq with ti − ti−1 constant.

t1, t2, . . . , tq k1, . . . , kq n = 0.25 n = 0.5 n = 0.75 n = 1
1, 2, . . . , 25 1, . . . , 25 D, 04 0.021 1 5.1 12
1, 2, . . . , 25 1, . . . , 25 D, 06 0.0048 0.35 2.2 6
1, 2, . . . , 25 1, . . . , 25 S, 04 84 25 2.9 0.25
1, 2, . . . , 25 1, . . . , 25 S, 06 91 51 13 2.3
1, 2, . . . , 25 101, . . . , 125 D, 04 0 0 0 0
1, 2, . . . , 25 101, . . . , 125 D, 06 0 0 0 0
1, 2, . . . , 25 101, . . . , 125 S, 04 100 49 7.1 0.65
1, 2, . . . , 25 101, . . . , 125 S, 06 99 58 15 2.5

14, 15, . . . , 38 1, . . . , 25 D, 04 11 68 93 99
14, 15, . . . , 38 1, . . . , 25 D, 06 4.2 46 81 95
14, 15, . . . , 38 1, . . . , 25 S, 04 22 1.7 0.052 0.0012
14, 15, . . . , 38 1, . . . , 25 S,06 33 6.7 0.62 0.039
14, 15, . . . , 38 101, . . . , 125 D, 04 0.00046 4.1 37 74
14, 15, . . . , 38 101, . . . , 125 D, 06 0.0022 2.6 24 57
14, 15, . . . , 38 101, . . . , 125 S, 04 84 6.4 0.16 0.0032
14, 15, . . . , 38 101, . . . , 125 S, 06 85 14 0.89 0.048

13.5, 13.75, . . . , 38.5 26, . . . , 125 D, 04 0.055 11 49 80
13.5, 13.75, . . . , 38.5 26, . . . , 125 D, 06 0.0027 2.4 22 54
13.5, 13.75, . . . , 38.5 26, . . . , 125 S, 04 81 5.8 0.14 0.0028
13.5, 13.75, . . . , 38.5 26, . . . , 125 S, 06 85 13 0.84 0.045

6. Discussion and conclusions

In this paper we considered the intensity based default contagion model (2.1), where the
default intensity of one obligor is allowed to change when other firms default. The portfolio
was homogenous so that all obligors were exchangeable. This implied that the individual
intensives were expressed using the ordered default times. The model was translated into
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a Markov jump process. This made it possible to derive computationally tractable closed-
form expressions for many quantities of importance in credit portfolio management.

In the above framework we calibrated two CDO portfolios containing 125 obligors,
against market data for CDO tranches, index CDS and average CDS spread. In both
cases we obtained perfect fits. In the calibrated portfolios, we then studied the implied ex-
pected ordered default times, the implied default correlations and the implied joint default
and survival distributions both for ordered and unordered default times. Some of the re-
sults where surprising, other not so. For example, in the 2006-11-28 portfolio, the bivariate
default distributions revealed that the corresponding marginal events was approximately
independent after 10 years.

The calibrated default intensities for the 2006-11-28 portfolio, exploded after 25 defaults,
which gave rise to heavy default clustering after 14 years (under the risk-neutral measure).
This had profound effect on several of the studied quantities.
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