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Bioinformatics pipeline development to support Helicobacter pylori genome
Seyedeh Shaghayegh Hosseini
Department of Computer Science and Engineering University of Gothenburg

Abstract
Helicobacter pylori is a bacterium related to a variety of diseases and is a major
risk factor for gastric cancer [1]. There can be differences in the genomes of H.
pylori bacteria that are isolated from different patient groups and this project is
motivated by the desire of biologists to investigate how these differences correlate
with differences in disease. The development of high-throughput technologies in bi-
ological science has lead to big data phenomena. Next generation sequencing (NGS)
is an example of such techniques which generate large text-based files, to store short
fragments of the whole genome sequence data of an organism quickly and at rela-
tively low-cost [2]. Achieving methods for analysis and management of such
complex datasets has emerged as a challenge which is the subject of this
thesis.

Using bioinformatics approaches, we proposed a pipeline for data analysis
and management on two different platforms: High-performance comput-
ing and online workflow management system. For High-performance com-
puting, we used a computer cluster from C3SE, a centre for scientific and technical
computing at Chalmers University of Technology. On this platform, we developed a
pipeline by scripting using perl programming language. The first step in the pipeline
is error removal and quality control. Next is to find overlaps between the short
fragments of genome sequence and then merging them into continuous, longer se-
quences. This called de novo genome assembly. The final step is genome annotation,
the process of transferring biological information from experimentally characterized
datasets or reference genomes to newly sequenced genomes. For each step in the
pipeline, we used benchmarking techniques to find the best programs that are de-
veloped in the bioinformatics community and the case of a missing application we
implemented it. The result of the pipeline is well characterised, biologically anno-
tated datasets that are ready for analysis by biologists. For workflow management
system, we chose a widely used bioinformatics workflow management system, the
Galaxy project. Galaxy provides infrastructure for creating workflows and upload-
ing datasets via a user interface. With Galaxy, we managed to implement a pipeline
including quality control and de novo genome assembly.

Using the first method, we succeeded to analyse 52 datasets, and this
project is the first study that on a significant scale, explores H. pylori
and its association with gastric cancer.

Keywords: Workflow management system, Pipeline development, Bioinformatics,
High-Performance Computing.
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1
Introduction

Helicobacter pylori is a bacterium associated with a variety of diseases and is a major
risk factor for gastric cancer [1]. There can be differences in the genomes of H. pylori
bacteria that are isolated from different patient groups and this project is motivated
by the desire of biologists to investigate how these differences correlate with differ-
ences in disease. Such analysis has only recently become possible, thanks to the
development of “next generation sequencing” (NGS) technologies that now enable
generating genome sequence data quickly at relatively low-cost [2]. NGS technolo-
gies generate large text-based files, which store short fragments of the whole genome
sequence data of an organism. The development of high-throughput technologies in
biological science has lead to big data phenomena. The complexity of biological sys-
tems makes each study a novel problem of its own which needs a unique combination
of tools incorporated into various biological databases and repositories. Achiev-
ing methods for analysis and management of such complex datasets has
emerged as a challenge which is the subject of this thesis.
The analysis workflow is dynamic by its nature. There could be changes in the
properties of existing samples (datasets); extra samples might become available,
etc. [3]. Therefore, a streamlined bioinformatics pipeline is crucial to facilitate and
automate re-analyzing and reproducing results. Although there are some pipelines
developed in the bioinformatics community, in most cases it is not possible to adopt
the existing pipelines. The reason is the complicated set of dependencies, operating
systems incompatibility, hardware incompatibility, etc. [4].
The genome of H. pylori is 1.6 megabases long. Using bioinformatics approaches, we
proposed a software pipeline for data analysis and management on two
different platforms: High-performance computing and online workflow
management system.
For High-performance computing, we used a computer cluster from C3SE, a centre
for scientific and technical computing at Chalmers University of Technology. On this
platform, we developed a pipeline by scripting using perl programming language.
The first part of the pipeline is error removal and quality control. Next is to find
overlaps between the short fragments of genome sequence and then merging them
into continuous, longer sequences. This is called de novo genome assembly. The final
step is genome annotation, the process of transferring biological information from
experimentally characterized datasets or reference genomes —that are available in
public databases— to newly sequenced genomes. For each step in the pipeline, we
used benchmarking techniques to find the best programs that are developed in the
bioinformatics community and in the case of a missing application we implemented
it. The result of the pipeline is well characterised, biologically annotated datasets

1



1. Introduction

that are ready for biological analysis by the biologist.

For workflow management system, we chose Galaxy, a widely used bioinformatics
workflow management system. Galaxy provides infrastructure for creating work-
flows. It is possible to state the starting point of analysis, introduce/choose the
tool(s) and actions to be performed on datasets via a user interface. With Galaxy,
we managed to implement a pipeline including quality control and de novo genome
assembly.

Using the first method, we succeeded to analyse 52 datasets and this
project is the first study that on a significant scale, explores H. pylori
and its association with gastric cancer.
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Background

2.1 Biological datasets
Understanding magnitude and complexity of the data are a necessity for a software
development project. The following are three important consideration factors for
analyzing biological datasets.

2.1.1 Complexity of biological process and methods and
their effect on generated datasets

There are different biological processes and methods from which data are generated.
Variations in methods are reflected on the produced datasets. Genome sequenc-
ing is the process of obtaining the order of nucleotides in a DNA fragment. Next
Generation Sequencing (NGS), a new sequencing technology, provides the means
for sequencing large numbers of genomes in parallel [2]. NGS technologies generate
datasets in FASTQ [5] format which consist of millions of reads or small short se-
quences and. Each FASTQ file stores a read and its corresponding quality scores.
Figure 2.1 shows a record of a FASTQ file.

Figure 2.1. Example of a record in FASTQ format. The first line contains an identifier of the record
and it always starts with @ character. The second line contains the DNA sequence,
in this example, the length is 50. The third line begins with a + character and is
optionally followed by the same record identifier. The fourth line contains the quality
values in ASCII. This line is always the same length as the sequence line.

2.1.2 Reference databases and data formats
There are large numbers of biological databases that are publicly available. Such
databases are classified into different categories. Relevant to this study is Entrez
a biological data search tool maintained by the National Center for Biotechnology
Information (NCBI), which provides an interface to more than 20 interconnected
biological data sources of different kinds [6]. The Entrez Programming Utilities (E-
utilities) are a collection of back-end programs that provide an interface into the

3



2. Background

(a) Gene sequence.

(b) Protein sequence.

Figure 2.2. Example of a sequence in FASTA format. The first line contains an identifier of the
record and it always starts with > character. The second line contains the sequence.

Entrez query and database system NCBI [7]. Formerly sequenced genomics data
of Helicobacter pylori are available in these online databases. GenBank [8] is a
sequence database that stores gene and protein sequence of all publicly available
species, including H. pylori, in a flat file. Appendix B shows a sample Genbank
file. FASTA is another form of a text-based file in bioinformatics, which is used
for storing either gene or protein sequences of a species. Figure 2.2 shows a gene
and protein sequence from a FASTA file from NCBI. The first line of FASTA file
contains an identifier of the record and it always starts with > character and the
second line contains the gene or protein sequence.

2.2 Data analysis workflow
NGS applications generate large files that must go through multiple rounds of pro-
cessing and be managed throughout. There are comprehensive sets of stand-alone
software packages and tools developed in bioinformatics community [4], which are
used through different steps of the analysis workflow. Pre-process, de novo assembly,
and downstream analysis are fundamental parts of the workflow.

2.2.1 Pre-process
Biological experiments and instruments can generate incorrect data in their output
files. NGS technologies are no exception in that sense. Depending on the sequencing
machine they can introduce false information into a dataset [9]. This sequencing
error can affect the downstream analysis. Therefore, error detection and quality
control are crucial steps.

2.2.2 De novo Genome assembly
De novo genome assembly is the process of aligning short reads of DNA from genome
sequences to find overlaps and then merging overlapping reads into continuous se-
quence or contigs. Assembly algorithms rely on graph structure built upon the
sequencing reads, and traversal algorithms to reduce overlapping sequences [10].
There are different methods of genome assembly:
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2. Background

2.2.2.1 Overlap-consensus-layout method

In this method, an assembler program distinguishes overlaps between short se-
quences. For each identified overlaps, it merges the short sequences into longer
sequences. Figure 2.3 is a simple illustration of a genome. Green segments are
almost identical and overlap-consensus-layout assembler may make the mistake of
connecting the blue and orange segments, and skip the red segment in between.

Figure 2.3. Error in generating assembly by Overlap-consensus-layout method because of repetition
in genome.

2.2.2.2 De Bruijn graph

De Bruijn graph-based assemblers are used to solve the issue of repetitive segments
in a genome which Overlap-consensus-layout method was not able to recognize. In
de Bruijn graph-based method, the short reads are split into even shorter units of
uniform size (k-mers) and a de Bruijn graph is constructed from those short piece.
Next, the de Bruijn graph is traversed to determine its underlying genome sequence.
The vertices in the graph denote k-mers, and the edges show that the neighboring
k-mers overlap by exactly k-1 letters (for example, the 4-mers ACTG and CTGC
share exactly three letters). Figure 2.4 is an illustration of De Bruijn graph for a
short sequence.

Figure 2.4. De Bruijn graph structure for a short sequence.
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2. Background

2.2.3 Downstream analysis
The main purpose of this step is to annotate datasets. Annotation is the process
of attaching biological information to a gene or protein sequence. The idea is to
transfer biological information from experimentally characterized datasets that are
available in public databases to new, unknown datasets. It is only after this step
that biological interpretation and data analysis are achievable. One form of data
analysis is Comparative genomics which is a filed in biological research that
employs computational algorithms and compares the structure of different variants
of the same species to find similarities and differences. The goal of comparative
genomics is to find conserved regions among the species or variations of the same
species and to find which components make that species different from the others
[11]. Mathematical modeling has shown probability of discovery of new genes even
after sequencing hundreds of genomes of the same species [12]. To find the conserved
regions, Pan genome, which is the union of all the genes of all different genetic
variant of the species must be constructed with the aid of algorithms. The next
step is to find core genome which are the genes that are present in all the genetic
variants of the species. Pan and core genome provide the means for the biologist to
study the evolution of the species.

2.3 Platform for pipeline by scripting

2.3.1 Cluster Computing and biological data management
and analysis

Genome sequencing data analysis demands intensive computational resources. Each
tool in different steps of analysis workflow requires data to be in particular formats
or require diverse types of data to be linked together [13]. Therefore, a considerable
amount of time and space is dedicated to the data reformatting and reanalyzing.
Also, rigorous downstream analysis of datasets results in an incredible amount of
data. Computer clusters and clustered storage systems can address this needs.
Cluster computing is a form of HPC or high-performance computing. In cluster
computing, multiple computers (nodes) connected, through a fast local area network
and function as a single computer. Each node is configured to perform the same
task, controlled by the scheduler software. Distributing tasks across these nodes is
a solution for the analysis of data-intensive biological datasets.

Glenn cluster We used glenn cluster from C3SE, a center for scientific and tech-
nical computing, at the Chalmers University for this project. The operating system
of this cluster is CentOS. Glenn has 379 compute nodes (total of 6080 cores) in total
and 18.1 TB of RAM. Users do not have root access to the cluster. However, all the
compilers and libraries are installed.

Environment module package This package provides dynamic modifications
of user's environment variables. With this module system, it is possible to install
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2. Background

different tools needed for the pipeline and also different versions of the same tool
and just switch between versions by specifying the tool/version.

2.3.2 Choice of programming language, Perl
We used perl programming language for the implementation of the pipeline. Perl
has automatic memory management and extensive library collection, named CPAN,
which is freely accessible. Also BioPerl [14], from Open Bioinformatics Foundation,
provides libraries for biological objects and sequences. Given a very considerable
part of this project was string manipulation; Perl regular expressions were a great
advantage.

2.4 Pipeline by workflow management system
A workflow is a sequence of activities and tasks. Workflow management systems
provide infrastructure to define and automate the execution of a workflow. A bioin-
formatics workflow management system is a subset of a scientific workflow man-
agement system that is designed to facilitate execution of multi-step computational
data analysis in the form of tools, programs, and algorithms on biological data via
a graphical user interface. Such systems are very important because they provide
the ability to interconnect tools from multiple disciplines and platforms [15]. Also,
workflows create detailed logs of every activity carried by the users. The central
goal of creating workflows is to keep the data analysis consistent. Workflows can
be used as a template for future analysis for the same types of data. Galaxy [16],
Taverna [17], Chipster [18] and Yabi [19] are examples of such systems.
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3
Methods

3.1 Datasets used in this project
Datasets of this project were genome sequence of Helicobacter pylori, generated by
NGS technologies. In total, there were 52 datasets in FASTQ format with sizes
varying from 278 MB to 1,6 GB. As listed in Table 3.1. From 52 datasets, we used
12 datasets as pilot data for designing the pipeline. Among the 12 patients median
age was 46.5 year, range 18-60 years, and all but one of the patients were female.
All the datasets were generated from patients who were recruited from Nicaragua.

3.2 Collection of 54 reference datasets from pub-
lic repositories

With our reference genome collector program, we managed to download 36 com-
pleted and 18 incomplete genomes of H. pylori from Genbank. See section 3.4.2.1
for the details of implementation. See Table A.1 in appendix A for the list of collected
genomes. We used the collected genomes for the comparative genomic analysis.

Table 3.1. Pilot H. pylori datasets used for designing the pipeline.

ID File Size Age of the
patient

Sex of the
patient

A 531 MB 26 F
B 778 MB 55 F
C 1003 MB 56 F
D 484 MB 58 M
E 968 MB 29 F
F 828 MB 58 F
G 588 MB 40 F
H 841 MB 18 F
2A 1.1 GB 60 F
2B 1.1 GB 53 F
2C 1.2 GB 30 F
2D 793 MB 24 F
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3. Methods

3.3 Steps needed to realize the pipeline
Biologists of this project required studying the correlation between H.pylori genomes
–isolated from Nicaraguan patients– and gastric cancer. This was only possible by
comparing the genomics structure and characterization of each H. pylori. First we
needed to build up the draft genome of each H. pylori from the “raw data” stored
in FASTQ files. There were two main methods to achieve this. First, to align the
reads to a pre-existing reference genome. Second, to perform de novo assembly
on the reads. Since H. pylori has a very variable genome arrangement, alignment
against any reference genome could lead to incorrect biased structure, and, therefore,
we decided to proceed with de novo assembly. Based on previous studies on de novo
assembly evaluation to get an accurate draft genome, we needed to provide good
quality reads for assembly programs. Therefore, quality control of the reads prior to
the assembly was the first required step of the pipeline. After assembly, we needed
to evaluate the quality of the generated draft genome with the help of reference
genomes. The draft genome generated by assembly programs are a set of contiguous
sequences that do not have biologically sensible name. Therefore, the last main step
was to annotate the draft genomes. As described earlier, because of the structure
of H. pylori genome one reference genome is not sufficient to be used as a template
for transferring gene name. So we needed to use all available reference genomes for
annotation.

3.4 Pipeline by scripting
To implement the pipeline, first, we had to select the programs that were suitable to
perform the tasks according to the data analysis workflow explained in the previous
section and background chapter. In the case of a missing program, we had to
implement it. Once we had all the programs, we developed a pipeline using perl
programming language which is adopted to work on HPC. The pipeline acts as a
wrapper around the programs, both the existing ones and the newly implemented
ones. It coordinates the connection of all the programs and tools and also controls
the flow of the information. Unlike piping in Linux, we needed to keep the files that
are generated by each program in each intermediate step.
Figure 3.1 illustrates an overall view of the pipeline. More details of each step are
explained in the following sections.

3.4.1 Selecting existing programs to perform steps in the
pipeline

Quality control The quality scores in FASTQ format datasets indicates the prob-
ability of having an error in reads. Score 10 means that the probability of having
incorrect data is 1/10 and score 20 corresponds to 1/100 and score 30 to 1 /1000.
Therefore, we needed a program to 1)trim the reads with quality score cut-off of 30
and 2) filter out and remove reads shorter than 25 base length. Very short length
reads can lead to an unspecific result in downstream analysis. SolexaQA v2.1 Dy-
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3. Methods

Figure 3.1. Overview of the pipeline.

namic Trim [20] is a program that is designed specifically for quality control of
datasets generated by Illumina Sequencing machines, the very same one that was
used to create our datasets. Therefore, for biological point of view, it was a reason-
able candidate. We used time command to analyze the CPU time and elapsed time
spent for pre-processing and quality control of 12 pilot datasets using SolexaQA
software. We performed the tests on glenn cluster. The output of time command
indicates 3 factors: Real is the total elapsed time including I/O; User is CPU time
spent in the user-mode code, and Sys is CPU time spent in the kernel. Figure 3.2
shows realtime usage is approximately 30 minutes for our biggest test dataset (2C).
This was a reasonable elapsed time. So we chose SolexaQA for the final pipeline.

Assembly benchmarking We chose VelvetOptimiser [21], Ray [22] and ABYSS
[23] as candidate program for genome assembly since they all use de Bruijn graphs
and also suitable for bacterium genome assembly. To characterize the best assembly
program, we studied the draft genomes generated by all of these programs and looked
into the generated contigs and also the distribution of contigs for 12 pilot datasets.
We also compared the contigs with all available reference genomes to find which
contigs were present in all reference genomes and which set of contigs belonged to
that specific draft genome.

11



3. Methods

Figure 3.2. CPU time and elapsed time spent for pre-processing and quality control of dataset
using SolexaQA software. Real is total elapsed time including I/O; User is CPU time
spent in the user-mode code and Sys is CPU time spent in the kernel. Label on the
bars shows the size of datasets.

3.4.2 Implementation of missing programs

3.4.2.1 Program for data collection from reference database

To perform an evaluation of the results of selected programs, we needed a set of
reference datasets of H. pylori. We developed a program with perl, for automating
the process of downloading all available datasets (genomes) of H. pylori. The pro-
gram first parses the genome annotation report web page of H. pylori from NCBI
database and looks for an identifier that is called RefSeq accession. RefSeq struc-
ture includes distinct prefix format of 2 characters (NC) followed by an underscore
character (’_’). Therefore the regular expression (NC_\d{6}\. \d) can match the
RefSeq identifiers. Next, the Genbank flat file for each RefSeq is downloaded and
processed further by its primary tags to extract all the genes and all the proteins
sequences. These sequences are then saved in DNA.fasta and Protein.fasta file re-
spectively. (Algorithm 1)

3.4.2.2 Program for annotation

Annotation of the datasets and how to name the genes by their biologically logical
name was a difficult task. H. pylori has around 1500 genes but only around 900
are available in all reference genomes. We implemented the annotation program
by a holistic approach. First we made a global H. pylori reference dataset by con-
catenating all the reference genomes that were previously collected. Then for each
dataset, we identified the genes. Then each gene was queried against the global
dataset using blastp [24] software to find cross reference database identifiers of the
top 20 significant matches. Then the associated biological information from these
identifiers were downloaded. Furthermore, an algorithm was developed to cluster

12



3. Methods

Algorithm 1 Reference genome collection
RefSeq= Accession number: distinct prefix format of 2 characters (NC) followed by
an underscore character (’_’).
GB= Genbank Flat File Format,
GN=Genome Name,
OD=ObjectDescription,
CDS=Coding Region Sequence,
SF=SeqFeature
Input: Annotation report web page of H. pylori. Output: All reference datasets
of H. pylori and a Log file that contains download date and time.
1: procedure Reference dataset collection
2: Pars annotation report web page of H. pylori from NCBI.
3: Find match with regx (NC_\d{6}\. \d)
4: for each RefSeq do
5: Download associated GB
6: for each GB do
7: Extract OD
8: if OD eq “chromosome” then
9: Extract genome name, use regx s/chromosome(.*?)genome.//;

10: Create Directory GN1.
11: get SF
12: if (SF.primary_tag eq "CDS") then
13: Extract protein_id and protein_sequence.
14: Create file GN1.Protein.fasta(">protein_id \n pro-

tein_sequence\n”) in GN1 directory;
15: Extract gene_ id and sequence_string.
16: Create file GN1.DNA.fasta(">gene_id \n gene_sequence\n"

in GN1 directory);

and rank this biological information. The ranking is done using result repetition.
Finally, the top rated biological information were transferred to the genes. (Algo-
rithm 2) Each dataset D is a collection of hundreds of thousands of reads R=(X,
Y) where X is an identifier and Y is associated gene. The goal here is to add gene
metadata to X.

3.4.3 Pan and core genome

OrthoMCL is a software for clustering proteins based on sequence similarity infor-
mation [25] using the Markov cluster (MCL) algorithm. We used OrthoMCL to
find protein families across all H. pylori reference genomes. Then we implemented
a program to analyze the result from OrthoMCL output. The clusters that were
present in all genomes were considered as the core genome while the total number
of clusters represented the pan genome. Then we performed the same analyses for
our Nicaraguan annotated sequences.
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Algorithm 2 Algorithm for genome annotation
1: procedure Annotation
2: for each R in D do
3: Query Y against reference genome database
4: From result set, chose top 20 significant candidates (each candidate is a

reference to an external database)
5: for each Reference ID in result set do
6: Download associated flat file format from external database
7: Extract gene name + gene meta data
8: Record number of observations of each gene
9: Rank each gene. Gene with higher number of observation gets higher

rank
10: Choose the gene with top rank
11: Transfer gene meta data of associated selected gene to X

3.4.4 Two proteins and their association with gastric cancer
cagA and babA are two proteins which are associated with increased gastric cancer
risk. We downloaded the sequences of these two proteins from NCBI database and
searched each Nicaraguan genome for the presence of them using blastp software.

3.4.5 Computer cluster configuration
For enabling easy software environment management on glenn cluster, environment
modules package was used. First, we installed each program and then we created
a modulefile that contained the information needed to configure the shell for the
program (Listing 3.1).
This way we could also define if a program was dependent on any other program.
Modules were useful in managing different versions of a program. Figure 3.3 shows
a directory structure of sample installed programs.

path/to
installed_programs_directory/

ProgramX/
version 1/
version 2/

module_directory/
ProgramX/

version 1
version 2

Figure 3.3. Directory listing for installed program and modulefiles

Listing 3.1. Modulefile for ProgramX

14



3. Methods

#%Module1 .0
proc ModulesHelp { } {
puts stderr "Environment␣for␣ProgramX␣version␣1.0"
}

module -whatis "ProgramX␣version␣1.0"
prereq ProgramY CompilerZ
append -path PATH /path/to/installed_programs/ProgramX/

version

To enable a program, the associated module file needs to be loaded. But first MOD-
ULEPATH environmental variable should be set to the path of directories containing
modulefiles. Listing 3.2 and 3.3 shows how to Set Module path environmental vari-
able and how to load and unload a module respectively.

Listing 3.2. Setting MODULEPATH

export MODULEPATH=$MODULEPATH:/path/to/module_directory

Listing 3.3. How to load and unload modules

$ module load ProgramY
$ module load CompilerZ
$ module load ProgramX/version1
$ module unload ProgramX/version1
$ module load ProgramX/version2

3.5 Pipeline by workflow management system, the
Galaxy project

Given there are large number of bioinformatics workflow management systems, it
was very hard to choose one. There has been little work performed on evaluating
and comparing the features of each system, built-in functions, support for different
data types, etc. Also to our knowledge, there was no workflow management system
available for academic users in Sweden. Therefore to move forward, we looked at
Galaxy, Taverna, Chipster and Yabi workflow usage worldwide. Figure 3.4 shows
the number of scientific citations for each platform. The numbers are extracted from
http://www.scopus.com.
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Figure 3.4. Bioinformatics workflow management system usage based on scientific citation. Galaxy
is the most used framework.

3.5.1 Why Galaxy?

The Galaxy project is a free, web-based platform used for bioinformatics analysis
[16] and is the most popular. Galaxy has 70 public servers from which 26 are
located in Europe. (https://wiki.galaxyproject.org/PublicGalaxyServers). Galaxy
has an active support system and very significant community of users and developers.
Therefore, we chose Galaxy as our platform for workflow management system.

3.5.1.1 Galaxy distributions

Galaxy provides a graphical web interface so that users without advanced compu-
tational training can use this platform for data analysis. Galaxy is available in 3
primary distributions; the first form is publicly accessible servers that host Galaxy
and users can freely run their analysis on these servers. However, there are some is-
sues with these servers, such as data privacy, and also, these servers are not suitable
for data-intensive analysis. The second form of Galaxy is a cloud-based privately
hosted server. The cloud-based Galaxy is costly and still does not guarantee data
privacy. In its third form, Galaxy offers local installation on UNIX-based computers.

3.5.1.2 Galaxy Architecture

The Galaxy framework is implemented in python programming language. A Galaxy
instance includes a web server and an embedded SQLite database. Galaxy works well
with the default database and web server, however, it is possible to use other types of
web servers or relational databases to customize Galaxy to scale up. Galaxy comes
with an install script and by running the script, first all the prerequisite Python
libraries called eggs will be downloaded and installed, and then web server will be
run, and the instance is accessible via a web-browser on localhost with port 8080.
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3.5.1.3 A Galaxy Instance

We installed Galaxy with Python 2.6 on a Mac computer with 2 GHz processor and
8GB memory. Galaxy has an interface for authentication and authorization. An
admin user can have access to these resources. Our fresh Galaxy had a default set
of tools for text manipulation and visualization. Also a set of tools for converting to
and from many common bioinformatics file formats. However, we needed to install
more tools for the pipeline. There are two ways to add tools to Galaxy.

1. From Tool-Shed
Galaxy has a repository of programs supported by bioinformatics community
that is called Tool Shed. Installing the programs from Tool Shed is straight-
forward. Choosing a program will list the dependencies, and one can install
all by one click. However, not all the versions of a program are available in
the repository.

2. Adding custom tools
Incorporating and installing a program that is not available in the Tool Shed
is possible but needs more work. First, the tool should be copied to tools
directory and then a Tool Definition File, which is an XML file, must be
defined to specify all the command line parameters and input-output file of
the tool. The final step is to Make Galaxy aware of the new tool by
updating a config file with the tool name.

Installation of required tools to construct the workflow on local instance
From Tool-Shed, we installed FastQC for quality control of the datasets and Trim
Galore for trimming the reads. We installed VelvetOptimiser for de novo assembly.
We did not manage to install Abyss the other tool for de novo assembly due to
technical problems.

3.5.1.4 The workflow

To create a Galaxy workflow, the user can use a graphical interface that makes it
possible to chain together a series of programs/tools. The user should specify how
the programs should be connected and also defines the input/output file format of
each program. Once the workflow is created, the user can assign the dataset(s) to
be analyzed by the workflow. Uploading datasets to Galaxy instance is possible by
the user interface and also via file transfer protocol (FTP).

Data analysis workflow on local instance We created a workflow of two main
steps: quality control and de novo assembly. In the Quality control step, FastQC
program is executed on datasets for quality control of the reads. Then using Trim
Galore, each read with a low quality score(<30) or short reads (length<30) will be
discarded. We run FastQC on datasets again to visualize the effect of read trimming.
High-quality datasets from the previous step are sent to VelvetOptimiser de novo
for assembly.
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Results

4.1 Pipeline by scripting

4.1.1 Pre-process analysis
Figure 4.1 shows the effect of trimming on the number of reads. The difference in
the number of reads before and after trimming is not significant which shows most of
the reads were of good quality and had not been affected by the trimming program.

Figure 4.1. Number of reads (million) before and after trimming of low-quality reads.

4.1.2 Assembly benchmarking results
Figure 4.2 shows the difference between assembly programs regarding the number
of contigs. A large number of contigs usually indicates a mis-assembled genome.
The assembly program which generates the lowest number of contigs is Abyss. Ray
creates too many contigs for C and G dataset.
Figure 4.3 illustrates distribution of contigs of different size for each dataset by
different assembly programs. Most of contigs generated by Ray are small contigs of
size 20 kilo base pair (KBP) and again Abyss shows the better result of generating
not so many small size contigs and also generating most of the big contigs of size
80 to 100 (KBP). We eventually decided to use both VelvetOptimiser and Abyss for
assembling the genomes.

19



4. Results

Figure 4.2. Number of contigs generated by each assembly program.

4.1.2.1 Characterizations of 52 H. pylori draft genomes from Nicaraguan
patients

With the pipeline by scripting, we managed to characterize the 12 pilot datasets
(H. pylori genomes of 12 Nicaraguan patients) successfully. Therefore, we used the
pipeline for the rest of the datasets and in total, we succeeded to characterize 52 H.
pylori genomes of Nicaraguan patients.

4.1.3 Pan genome and core genome analysis
We constructed the pan genome or the union of all the genes for our pilot datasets
(the H. pylori genomes of 12 Nicaraguan patients). The pan genome consisted of
1787 clusters and out of these 1240 clusters were present in all 12 genomes, i.e. 69.4
percent of the pan genome (Figure 4.4). We also constructed the pan genome of all
H. pylori genomes which we have collected from Genbank. See Table A.1 in Ap-
pendix A for the list. The core genome is the number of genes that are present in all
the genomes, the shell genome is the number of genes that are shared among at least
75 percent of the genomes, and the pan genome is the total number of genes within
all the analyzed genomes. The total pan genome of (36 completed, 18 incomplete
and 12 Nicaraguan genomes) consisted of 3035 clusters. Within the pan genome,
we identified a core of 346 clusters, 11.4 percent of the total clusters (Figure 4.5
). Thirty-four of the clusters were unique for the Nicaraguan collection, while 1249
clusters that were present in other genomes were absent in the 12 Nicaraguans.

20



4. Results

0−20 41−60 81−100

0

50

100

150

200

250

2A

Contig sizes(KBP)

Velvet Ray Abyss

0−20 41−60 81−100

0

50

2B

Contig sizes(KBP)

Velvet Ray Abyss

0−20 41−60 81−100

0

50

100

2C

Contig sizes(KBP)

Velvet Ray Abyss

0−20 41−60 81−100

0

50

100

2D

Contig sizes(KBP)

Velvet Ray Abyss

0−20 41−60 81−100

0

50

100

A

Contig sizes(KBP)

Velvet Ray Abyss

0−20 41−60 81−100

0

50

100

B

Contig sizes(KBP)

Velvet Ray Abyss

0−20 41−60 81−100

0

50

100

150

200

250

300

350

400

C

Contig sizes(KBP)

Velvet Ray Abyss

0−20 41−60 81−100

0

50

D

Contig sizes(KBP)

Velvet Ray Abyss

0−20 41−60 81−100

0

50

100

E

Contig sizes(KBP)

Velvet Ray Abyss

0−20 41−60 81−100

0

50

100

F

Contig sizes(KBP)

Velvet Ray Abyss

0−20 41−60 81−100

0

50

100

150

200

250

G

Contig sizes(KBP)

Velvet Ray Abyss

0−20 41−60 81−100

0

50

H

Contig sizes(KBP)

Velvet Ray Abyss

Figure 4.3. Contig length distribution by each assembly program. The x-axis shows contig size in
KBP and the y-axis shows the number of contigs.
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Figure 4.4. Pan genome and core genome comparisons within the 12 Nicaraguan H. pylori genomes.
The pan genome consisted of 1787 clusters and out of these 1240 clusters were present
in all 12 genomes, i.e. 69.4 percent of the pan genome.

Figure 4.5. Pan genome and core genome comparisons within the 12 Nicaraguan genomes and
within the publicly available H. pylori sequences from Genbank. Within the pan
genome, we identified a core of 346 clusters, 11.4 percent of the total clusters.

4.1.4 Two proteins and their association with gastric cancer

Proteins cagA and babA are associated with increased gastric cancer risk. Our anal-
ysis showed that 37 patients out of the 52 in the study carry both cagA and babA, 3
carry only cagA, 10 carry only babA, and two carry neither.
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4.2 Pipeline by workflow management system
Figure 4.6 shows the workflow which we constructed on our Galaxy instance.

Figure 4.6. A Galaxy workflow for data analysis
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5
Conclusion

Computer science has influenced biological science and cutting-edge research. Big
biological data produced by high-throughput technologies have volume and variety
from the three V’s of big data, volume, velocity and variety. Analysis of such
datasets requires robust algorithms. Piecing together and managing these steps is a
prominent challenge. Choosing a platform to withhold the data and is in harmony
with the analysis pipeline is another challenge.
To construct the fundamental elements of the pipeline we relied on the tools that
are already developed in the bioinformatics community. We did not want to invent
the wheel in each and every step. Bioinformatics has a very active and dynamic
community. There could exist a handful of programs that are designed to perform
the very same task. Based on what we experienced through this project, the most
challenging task is to find the best program that firstly supports the data of your
interest and secondly uses reasonable computational resources and time to perform
and finally produces biologically meaningful result. Since each program was devel-
oped independently of the language we used for developing the pipeline, configuring
each program and making it work with the pipeline was the other issue. This in-
cluded contacting authors for reporting issues and waiting for the new versions of
the tools and in case of no reply, changing the source code of the tool if there was
enough documentation.

Scripting on computer cluster vs. workflow management system Since we
did not have access to an instance of Galaxy on a computer cluster, any comparison
in performance with the pipeline on computer cluster was not possible.

Pipeline on computer cluster In developer’s point of view, the advantage of
scripting method is the flexibility in design. With scripting, it is possible to perform
sophisticated analysis, use APIs of databases to fetch data and to incorporate them
into the pipeline, dynamically add tools and to implement the missing elements.
In end user perspective, once the pipeline is implemented, performing the analysis
is possible by providing the input files and cluster's scheduler for job submission.
However, clusters often do not have a graphical user interface (GUI) but rather use
a text-based command line interface (CLI). The majority of the life scientists who
work with high-throughput data have limited or no knowledge of computer science.
Therefore, working with command line interface could be a disadvantage from their
point of view.
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Workflow on workflow management system, Galaxy Administrator of such
system is dependent on Galaxy team when it comes to incompatibility issues, up-
dates problems, new releases, etc. Installing tools from Toolshed can be problematic
as well. There are many versions of the same tool and is not trivial which version
to use. For the tools that cannot be installed easily, there are Galaxy wrappers.
However not every tool has a wrapper. From end user perspective, once all the de-
sired tools are installed, it is possible to create workflows without prior knowledge in
programming. Once the workflow is created, it is rather easy to upload files and run
the analysis. Galaxy as a web-based platform provides the means for reproducibility
of the research. Scientists can share the whole analysis workflow and datasets.

Research outcome driven by pipeline With the aim of the implemented pipeline
by scripting and on the computer cluster, we managed to present and characterize
the first whole-genome sequence of H. pylori from Nicaragua. By analyzing the draft
genomes, we found most of the patients in this study carry two proteins which are
known to have a role in gastric cancer. These results are a rather small part of the
scientific research result driven from our pipeline. This proves how such pipelines
can help biological scientist manage and analysis big biological datasets.

Potential ethical consequences of the performed project Approximately
half of the world’s population have an infection with H. pylori. Most people remain
without any symptoms and within those 10-15 percent of the carriers develop gastric
ulcers, and a few percent develops gastric cancer [1]. The automated pipelines in
this project are used by scientists for analysing patients who carry H. pylori and
is hopefully a contribution to human health by accelerating analysis cycle. We
assured the security of data and analysis process by not using the public servers and
performing the analysis on the computer cluster with restricted access. Also, the
pipeline facilitates reproducibility of the result which addresses the reliability issues
on research outcome.

5.1 Future work
Virtualization can be a way forward for this projects. For instance, the Docker
software is a platform that can be used to run, execute, and distribute virtualized
environments in the form of system images and containers [26]. Docker is available
for different platforms. Windows and OSX operating systems. When Docker is
installed, the user can download a pre-configured image or container. This container
can be a galaxy server or any other server with a bioinformatics pipeline. Docker
can be used as a safe way to allow multiple users access to a shared resource. While
it is fair to say users can access the same computer cluster, it can also be a problem
from an administrative point of view, to manage user permissions or give access to
users.
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A. Appendix 1 List of reference genomes of H. pylori

Table A.1. Table 2 H. pylori, 36 complete 18 incomplete genomes.

Organism Accession number Number of contigsc

H. pylori Cuz20 NC_017358.1 c
H. pylori 908 NC_017357.1 c
H. pylori 83 NC_017375.1 c
H. pylori Shi169 NC_017740.1 c
H. pylori Shi417 NC_017739.1 c
H. pylori XZ274 NC_017926.1 c
H. pylori G27 NC_011333.1 c
H. pylori HPAG1 NC_008086.1 c
H. pylori B38 NC_012973.1 c
H. pylori F30 NC_017365.1 c
H. pylori Shi112 NC_017741.1 c
H. pylori Shi470 NC_010698.2 c
H. pylori PeCan18 NC_017742.1 c
H. pylori Sat464 NC_017359.1 c
H. pylori v225d NC_017355.1 c
H. pylori HUP B14 NC_017733.1 c
H. pylori India7 NC_017372.1 c
H. pylori J99 NC_000921.1 c
H. pylori P12 NC_011498.1 c
H. pylori Puno135 NC_017379.1 c
H. pylori 26695 NC_000915.1 c
H. pylori PeCan4 NC_014555.1 c
H. pylori SJM180 NC_014560.1 c
H. pylori SouthAfrica7 NC_017361.1 c
H. pylori Puno120 NC_017378.1 c
H. pylori ELS37 NC_017063.1 c
H. pylori SNT49 NC_017376.1 c
H. pylori 2017 NC_017374.1 c
H. pylori F32 NC_017366.1 c
H. pylori Gambia94 24 NC_017371.1 c
H. pylori F16 NC_017368.1 c
H. pylori 2018 NC_017381.1 c
H. pylori Lithuania75 NC_017362.1 c
H. pylori F57 NC_017367.1 c
H. pylori 51 NC_017382.1 c
H. pylori B8 NC_014256.1 c
H. pylori 9810 ABSX00000000.1 51
H. pylori B128 ABSY00000000.1 73
H. pylori B45 AFAO00000000.1 63
H. pylori NAB47 AJFA00000000.2 385
H. pylori NAD1 AJGJ00000000.2 400
H. pylori NCTC 11637 = CCUG 17874 AIHX00000000.1 163
H. pylori NQ4044 NQ4044 AKNW00000000.1 17
H. pylori NQ4053 NQ4053 AKNV00000000.1 6
H. pylori NQ4076 NQ4076 AKNX00000000.1 4
H. pylori NQ4099 NQ4099 AKNU00000000.1 6
H. pylori NQ4110 NQ4110 AKNZ00000000.1 3
H. pylori NQ4161 NQ4161 AKNY00000000.1 9
H. pylori NQ4200 NQ4200 AKNS00000000.1 14
H. pylori NQ4216 NQ4216 AKNR00000000.1 13
H. pylori NQ4228 NQ4228 AKNT00000000.1 6
H. pylori P79 AIHW00000000.1 215
H. pylori HPKX_438_AG0C1 ABJO00000000.1 2602
H. pylori HPKX_438_CA4C1 ABJP00000000.1 3766

c indicates complete genome.
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