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Systems of Systems Concepts for Cars

Eilert Johansson, Tony Larsson, Maytheewat Aramrattana, Patrizio
Pelliccione, Magnus Ågren, Göran Jonsson, Rogardt Heldal,

Next Generation Electrical Architecture (NGEA) project
VINNOVA Diarienummer 2014-05599

A System of Systems (SoS) is a collection of often pre-existing and/or inde-
pendently owned and managed systems that collectively offer a service that is
based on their collaboration [4, 3, 5]. Prominent examples of SoSs include intelli-
gent transport systems, integrated air defense networks, applications in health-
care and emergency services. The units that compose an SoS are systems them-
selves and are called constituents. SoSs may be formed and evolve as triggered by
changes in their operating environment and/or in the goals of the autonomous
constituent systems [3, 2]. The overall SoS evolution might affect the structure
and composition of the constituents, functionalities offered, and/or the function-
alities quality. Collaboration between SoSs enables new capabilities, but interde-
pendency implies sensitive to the correctness of the information given to other
systems, and that failures can cascade throughout the SoS, creating additional
system failures or development delays.

Future transportation systems will be a heterogeneous mix of items with
varying connectivity and interoperability. A mix of new technologies and legacy
systems will co-exist to realize a variety of scenarios involving not only connecting
cars but also road infrastructures, pedestrians, cyclists, etc. In other words,
future transportation systems can be seen as a system of systems, where each
constituent system can act as a standalone system, but the cooperations among
the constituent systems enable new emerging and promising scenarios. Compared
to a traditional integrated system, a constituent system within a System of
Systems (SoS) has a value in itself and can be used outside the SoS context [1].

When considering SoSs in the automotive domain two different points of view
might be considered:

– The viewpoint of the car as a constituent of the SoS, which aims at giving an
answer to this question: How to engineering a car so to be part of a system
of systems?

– The viewpoint of the SoS, which aims at giving an answer to this question:
How to engineer the SoS so that the collaboration among various constituent
systems will achieve the SoS goals? It is important to note that the SoS is
owned and evolved by different organizations and constituents of a SoS are
most often than not at different points in their life cycles.

This paper focuses on the first viewpoint and takes a bottom-up analysis of
technologies that may be needed in future systems of systems for cars. In the
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following, we report some essential building blocks necessary to enable future
transportation systems.

Distributed end-to-end functionality

A functionality can be distributed, not only between nodes in vehicles, but also
between nodes outside the vehicles such as cloud services, other vehicles and
infrastructures, etc. Connected vehicles can benefit a lot from having access to
cloud services like cloud computing or information from infrastructures and ve-
hicles aggregated in the cloud. A cloud service, or cloud functionality, refers to a
network centric service available via the Internet, which extends an existing func-
tion in a vehicle, or enable new functionality enabled by cloud data. Therefore,
a cloud function is a function that benefits a car and/or its driver by utilizing
cloud services mentioned above. For instance, utilizing external data from the
cloud to smoothen the speed profile of the vehicle, and consequently reduce the
fuel consumption.

Functional safety

Functional safety requirements are expected to apply for functions outside the
car, but to be able to handle severity issues in a satisfactory way, one can expect
that they not will include operational functions - mainly functions in strategi-
cal and tactical planning horizon. However it is important to understand the
implication on system design and functional distribution for functional safety.

Services

Services implemented as distributed end-to-end functions will benefit from the
possibility to dynamically load software to the on-board electrical architecture.
Dynamically loaded software may be executed in one or several physical nodes,
and virtual machines may be essential to ensure cyber-security, functional safety
and compatibility. Services may also be extended and made version specific with
use of data and software in the cloud.

Connectivity

Sufficiently dependable connectivity is essential to enable the expected service
level in different places in the System of systems. Making connectivity sufficiently
dependable may be possible through the use of many different channels such as
through vehicular communication network, Internet, the driver’s nomadic de-
vices, etc. However, there has still to be on-board functions that handle graceful
degradation of services when connectivity is limited, delayed, or not available at
all. Thus, regardless of the availability of the connectivity, the user shall experi-
ence a robust behaviour of the functions, especially safety-related functions.
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Interoperability

Interoperability is the ability of diverse systems to work together. This general
definition has been conjugated in many different ways based on the reference
application area and on the many different factors and aspects characterizing
them. Interoperability involves standards, protocols, and integration and adap-
tation of interfaces to enable the effective and efficient communication between
constituent systems. Interoperability is the ability of two or more constituent
systems that are part of SoS to exchange information and to use the information
that has been ex-changed. Unambiguous interpretation of shared data between
systems is necessary for interoperation, but it is not sufficient. Despite stan-
dards for shared data that provides specification with the objective to enhance
the functionality and interoperability, the data encoded using these standards
are not necessarily interoperable. For instance, concepts that have the same la-
bels, and somehow even the same meaning, can be used completely differently in
different applications. This is for instance the case of the label ”speed” within a
car that can have different meanings in different applications or contexts unless
the semantics is very clearly defined and acted on.

Final remarks

As shown by the concerns emerging from the concepts spanning the entire system
of systems, engineering efforts are not only needed on the different system levels,
but also on the level of the system of systems as a whole. With potentially each
constituent system being developed by a different organization, a separate set of
questions arise with respect to the coordination of engineering efforts:

– How shall system of system goals and requirements on these be defined?

– How shall creation of requirements on the system of systems as a whole be
coordinated?

– What processes are needed to handle development requests between separate
systems?

– How shall development of interoperability specifications be coordinated?

– How shall the SoS services be supervised, managed and maintained over the
different life cycles of the constituents?

Within the project we will try to give an answer to these questions.
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Abstract. Systems of systems (SoS) typically consist of complex and
heterogeneous systems, such as humans, machines, servers, etc., inter-
acting with each other in sometimes unpredictable ways. While this is
challenging from the functional perspective, it is even more so when it
comes to analyzing such emergent properties as safety. In this work, a
systems theoretic approach to safety analysis was evaluated on an ex-
ample SoS application, consisting of trucks driving in cooperation (pla-
toon). SoS-specific characteristics, as well as comparison with currently
employed standards, such as ISO 26262, were included into the evalua-
tion. One conclusion of this work is that systems theoretic approaches
are valuable, yet they might need some adjustments to SoS specifics.

1 Introduction

The term systems of systems (SoS) started to become relevant some 20 years
ago, and accelerated as a research area during the last decade. A distinguishing
feature of an SoS is that the elements, or constituent systems, exhibit an opera-
tional and managerial independence [1], meaning that they can operate outside
the SoS context, and have different owners. They choose to collaborate in order
to achieve a common goal, manifested as an emergent property of the SoS, i.e.
a property not existent in any of its parts in isolation.

With the decreasing cost of communication technology, bringing along a surg-
ing number of applications of connected devices, SoS is no longer a far-fetched
dream, but rather a reality within a wide variety of application domains. How-
ever, while technological development leads the current evolution of the SoS field,
non-functional properties, such as safety and security, seem to be lagging behind
[2]. This leads to the conclusion that there is a need for research on methods for
safety analysis of SoS.

Lately, different SoS ideas have been gaining popularity within the automo-
tive industry, ranging from route planning to intelligent intersection management
systems, etc. Vehicle platooning, where a lead truck is followed by a number of
other vehicles that are driven more or less autonomously at a very short distance
between each other, has already been tried out in a number of test applications.
The trucks typically communicate using short-range radio to synchronize their
movements and keep the right distance.

The motivator for platooning is primarily to improve fuel consumption by
reducing aerodynamic drag, which is good both for the economy of the truck
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operator and for the environment. However, due to the automation and the short
distances between the trucks, safety obviously becomes an issue. The whole point
of platooning is to move the trucks outside their normal safety envelop. Clearly,
the platoon is an SoS since each truck can also operate outside the platoon, and
the trucks have different producers and owners.

The automotive industry has a long tradition in improving safety, and the
best practices have recently been standardized as ISO 26262. In this standard,
hazards are classified at different safety integrity levels based on the associated
risk, and this classification is then used to derive requirements on components
and on the product life-cycle processes. The focus in applying the standard is
for a vehicle manufacturer to ensure that their product is safe to use.

However, when the product is to become a part of an SoS, carrying out the
safety analysis only on the product is not sufficient. As stated in [2], safety is
an emergent property that has to be dealt with on the level of the SoS. In the
case of the vehicle platoon, this means that an analysis has to be carried out
at the platoon level to identify principles for the safety of the SoS, and then
these principles have to be translated to safety goals and requirements on the
individual trucks.

In the following, specific challenges of SoS safety analysis are outlined, fol-
lowed by a presentation of a systems theoretic approach to safety analysis. The
method is shortly exemplified with excerpts from a case study on a platoon-
ing application, carried out by SICS in collaboration with Volvo Group Trucks
Technology (GTT).

2 Challenges

When it comes to analyzing safety of SoS, there are a number of important
challenges, stemming from SoS characteristics. They include the following list:

– Managerial and operational independence - since no one owns the platoon,
all safety requirements have to be agreed upon by potential participants, who
must then take measures to implement these requirements in their products
while making the best trade-offs with other requirements on the individual
vehicles not related to their use in the platooning SoS.

– Evolveability - the high-level design or constitution of the SoS, e.g. which
vehicles are involved and how they interact, is expected to change over time.
Thus, the safety analysis needs to be modular in its nature, providing for
flexible re-analysis when operating conditions of an SoS change.

– Partial design / Missing requirements - when designing individual systems,
it will not always be the case that the exact functional and architectural
design of an SoS will be present. Sometimes, it might exist only informally
or even not exist at all. Somehow, the safety analysis of SoS needs to take
missing requirements into consideration.
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– Complex interactions - this is a common safety risk in most complex systems.
However, it becomes even more pronounced in SoS, since the individual sys-
tems are expected to make trade-offs between their own gain and the goals
of the SoS. This will, in turn, affect safety aspects.

– Socio-technical systems - Since SoS typically belong to the class of socio-
technical systems, the safety analysis should include not only interactions
between systems (or machines), but also between humans (e.g. operators,
decision makers, etc.), organizations, as well as the actual software and hard-
ware systems.

– Emergent properties - the safety of SoS should be analyzed not only on
product level, but also on higher hierarchical levels, thus considering how the
emergent properties affect both the participating and surrounding systems.

In conclusion, it seems imperative to consider the SoS as a whole when per-
forming a safety analysis. This calls for a safety analysis method based in systems
thinking.

3 Systems Theoretic Safety Analysis

Systems theory was developed for complex systems with a certain degree of un-
derlying structure (i.e. non-randomness). In general, systems approach assumes
that some system properties can only be treated if the system is analyzed in
its entirety, taking into account both social and technical aspects [3]. Hierarchy,
emergence, communication, and control are key concepts in such analysis.

Systems-Theoretic Accident Model and Processes (STAMP) is a systems the-
oretic approach to safety analysis [4]. In contrast to traditional accident causality
models, such as Failure Mode and Effect Analysis (FMEA), the focus is shifted
from chains of failure events to a systemic view of possible undesired losses. In-
teractions between different (sub)systems are not only considered, but receive
special attention, with the focus being not on designing ”fail-free” components
in isolation, but rather on preventing losses in the entire system (or SoS) through
appropriate control mechanisms. Treating safety as a control problem between
interacting components on different hierarchical levels is at the heart of the
STAMP approach.

In STAMP, systems are treated as interrelated, dynamic processes that are
continuously adapting to changing internal and external (environmental) con-
ditions. Accidents are considered to be the result of flawed control processes,
involving interactions among people, societal and organizational structures, en-
gineering activities, and physical system components [4]. In this respect, STAMP
seems perfectly suitable for SoS applications.

The STAMP workflow starts with creating a control model of a system, con-
sisting of a number of processes and control algorithms, affecting each other
through sensors, actuators, and direct or indirect communication. Each con-
troller is assumed to have some sort of mental model of the process that it is
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supervising. In the case of SoS, the challenge of partial requirement definition
will be an important obstacle to model construction. However, some prelimi-
nary results addressing this issue have been proposed [5], based on the idea of
iterative model creation by extracting information from existing, but most of-
ten vague and undocumented, operation concept descriptions. The question of
applying these ideas to SoS setting, with different producers and owners of the
constituent systems, remains to be investigated. Once the model is constructed,
it is analyzed for possible safety threats, using a structured approach, supported
by a number of tools and checklists.

4 Discussion and Conclusions

The STAMP approach was applied to a simple platooning application, consisting
of two trucks, run at a short distance from each other. The SAE level of driving
automation [6] was assumed to be 2-3, i.e. partial or conditional automation,
with active drivers in both vehicles. While the first driver fully controlled its
truck, the second was only responsible for the steering, while the speed was
adjusted by an advanced cruise controller (CC). Besides the driver and CC, a
central route management system was assuming responsibility for the overall
functioning of the platoon.

The case started with a rather informal definition of the responsibilities of
the constituent systems, and a possible concept of operations was developed and
formalized into a control model, in cooperation with Volvo GTT. The model
was analyzed using the STAMP approach, resulting in a number of safety (and
even security) related requirements. The approach was also compared with the
current practice of ISO 26262.

In summary, STAMP seems to be a promising method for safety analysis of
SoS, with potential benefits increasing along with the complexity and hetero-
geneity of the constituent systems. However, in some areas, not least when it
comes to missing requirements, independence, and evolveability, more work on
method development might be needed.
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Abstract. The inherent nature of cyber-physical (CP) system-of-systems (SoS) 
in terms of open dynamic configuration and interoperation of heterogeneous 
uncorrelated agents, safety- and time-criticality, requires several radical engi-
neering paradigm shifts. A significant difference in comparison to contempo-
rary monolithic systems is related to how the development, execution and evo-
lution of SoS go across the boundaries of traditional technological and manage-
rial domains. This paper discusses a model-based approach to an integrated de-
velopment, execution, and evolution of dependable systems with knowledge-in-
the-loop. It aims to pave the way for a next generation ICT platform for quali-
fied CP SoS in general and intelligent transport systems in specific. Using 
EAST-ADL as one base technology, such an ICT platform addresses the syner-
gy of model-based system development (MBD), well-managed product lifecy-
cles and intelligent post-deployment services across the eco-systems and lifecy-
cle phases. The goal is also to support formal quality assurance in regard to a 
priori unknown operational situations as well as situations where a degree of 
uncertainty is intrinsic in the state description. 

Keywords: Systems-of-Systems (SoS), Cyber-Physical (CP), Model-Based 
Development (MBD), EAST-ADL, Knowledge-in-the-Loop.  

1 Introduction 

A System-of-Systems (SoS) is composed of independent systems that cooperate or 
collaborate adaptively for dealing with certain social and technological issues (Maier 
1998; Sage 2001; Nielsen 2015). These independent systems (i.e. the constituent sys-
tems) execute their tasks autonomously as intelligent agents in multi-agent system 
(Wooldridge 2002), while being functionally and technologically heterogeneous with 
different capabilities. The operation of SoS often relies on advanced information and 
communication technologies for the discovery, configuration and provision of ser-
vices. A SoS can become cyber-physical (CP) system by having both physical dynam-
ics or energy flows under control and the corresponding control and cognitive loops 



across its constituent systems. Motivated by various societal and economic benefits, 
Cyber-Physical (CP) System-of-Systems (SoS) is becoming increasing popular as the 
underlying technology for intelligent transport systems, automotive vehicles, manu-
facturing systems (i.e. Industry 4.0), etc. 

As an overall requirement, a SoS must be able to deal with uncertainties in its op-
eration and lifecycle and accordingly to adapt the planned missions, configuration and 
maintenance tasks to cope with changes of operational conditions. In particular, for an 
effective management of safety, security, and their complex interplay, a systematic 
treatment of emergent behaviors and related system anomalies due to the open dy-
namic configuration of heterogeneous agents becomes necessary. This calls for quali-
ty assurance by formal methods and tools as well as advanced run-time services. To 
this end, a significant difference of SoS in comparison to contemporary monolithic 
systems is related to how the development and operation of SoS should go across the 
boundaries of organizations, domains and disciplines. 

This paper discusses a model-based approach to an integrated development, execu-
tion, and evolution of dependable CP SoS, primarily in an automotive context. It aims 
to pave the way for a next generation ICT platform for qualified cyber-physical sys-
tem-of-systems in general. In regard to the uncertainties of SoS, such an ICT platform 
promotes effective quality assurance through a synergy of formal system specification 
and intelligent system services. The approach emphasizes a knowledge-in-the-loop 
quality assurance process that goes across multiple eco-system and lifecycle phases. 
In particular based on EAST-ADL, such a process combines formal methods and 
tools for development-time quality planning and control with intelligent services for 
post-deployment time knowledge inference, self-verification and validation.  

The rest of this chapter is structured into the following sections:  Section 2 elabo-
rates the challenges and research needs by related work. Section 3 introduces the en-
visioned ICT platform and its base technology. The paper concludes with Section 4. 

2 Related Work 

SoS exhibits emergent behaviors arising from complex interactions of constituent 
systems as well as from unmanaged system anomalies and security attacks. As many 
of such behaviors are a priori unknown, they may never be fully specified, analyzed 
or tested during system development. Anthony (2007) identifies two classes of SoS 
emergence. Emergent behavior is defined as first order emergence, and is considered 
to be the run-time characteristics of SoS, while the ability of related heterogeneous 
systems to evolve is described as second order emergence (e.g. a form of design-time 
change of functional or technical properties, over many iterations). This second order 
emergence implies specific challenges in system design and quality management, 
arising in the communication and collaboration across disciplines and organizations. 

For dealing with the partially unknown or inaccurate definition of open dynamic 
configuration and interoperation conditions in design-time, the specification of sys-
tems with abstract goals, control policies and contracts together with the provision of 
related intelligent services and platform support will be necessary. For example, Silva 



(2015) proposes a mission goal description based approach to the identification of 
required capabilities for the constituent system, operations, connections, emergent 
behavior, among other elements that characterize a SoS.  Bryans (2014) has proposed 
a contractual description of constituent systems interfaces, to address the imprecision 
and uncertainty inherent in the description of constituent systems. For quality assur-
ance and certification, such contractual support needs to be defined and managed 
seamlessly along with the lifecycles of system development, componentization and 
maintenance.   

In recent years, domain specific frameworks have been developed for model-based 
development (MBD) of cyber-physical systems in many industrial domains. There are 
many modeling frameworks that can be used to support the description and manage-
ment of SoS, such as SysML1, AADL2 and EAST-ADL3. For SoS, additional model-
ing constructs to support the expression of desired or prohibited emergent properties, 
which are normally not be able to be predicted accurately at system development 
time, become necessary. In regard to this, COMPASS4 represents an approach that 
extends SysML to support a model-based engineering for SoS requirements. The 
approach also provides a framework, consisting of a collection of viewpoints, for a 
systematic reasoning about faults in SoS. To cope with the evolutionary nature of SoS 
in terms of evolving, adaptive and iterative life-cycle, the DANSE5 project has con-
tributed with methodological support based on a formal semantics for SoS interopera-
tions. Nevertheless, there is still no consensus on common constructs for the descrip-
tion or characterization of SoS, in particular in regard to the software services for 
dynamic configuration and coordination control (Guessi 2015). The challenges are 
also related to the difficulties in industrial adoptions of the concepts and technologies.  

As a generic constraint, any operation-time reasoning must be not only fast and re-
source efficient, but also verifiable and validatable in the sense that for safety-critical 
scenarios the formal quality assurances of decisions have to be supported. This calls 
for run-time support for data management, architecture for deterministic execution, 
and services for quality of service guarantee. One base technology to be exploited 
here is Autonomic Computing (AC) which is essentially concerned with the deploy-
ment and management of run-time reasoning schemes (Eze 2012). This includes sup-
port mechanisms e.g. in the case of policy based systems there is a need for infrastruc-
ture to hold the policy repository and to load them into components. Adaptation deci-
sions at runtime require exact and actual information about the current system state 
(Pelc 2009; 2011), as well as data from the design models such as in regard to the 
software allocation and timing constraints, but being evolved along with the adapta-
tions (Bencomo 2014).  

A great many techniques have been developed and explored for advanced verifica-
tion and validation of complex systems, both statically at design-time and dynamical-
ly at run-time. As the exhaustive exploration of the complete state space, even from 
                                                           
1  http://www.omgsysml.org/ 
2  http://www.aadl.info/ 
3  http://www.east-adl.info/ 
4  http://www.compass-research.eu/ 
5  http://www.danse-ip.eu/ 



the view of one single agent in SoS, is not feasible in practice. One particularly prom-
ising type of model checking for SoS is the so-called on-line model checking, as ex-
plored in Althoff (2014). In this approach, the resulting combined state space is con-
tinuously monitored against critical safety properties, or used to compute safe trajec-
tories. Another approach that combines model-checking with dynamic model valida-
tion and creation based on machine-learning is learning-based testing (LBT) (Meinke, 
2014). A further approach is adaptation-based programming (ABL) (Groce, 2012; 
Bauer, 2013), which tries to take advantage of machine learning methods including 
reinforcement learning for the improvement of testing. New methodological ap-
proaches to operational risk assessment include statistical analysis of near-miss and 
incident data using Bayesian theory to estimate operational risk value and the dynam-
ic probabilities of accidents sequences having different severity levels (Meel, 2006); 
and the application of simulation models to analyze scenarios using dynamic fault 
trees (Xu, 2004). However, when dealing with complex CP SoS it is often impossible 
even to establish the probabilities of interest. In such cases approximations (one´s 
belief) of the probabilities of interest must be calculated instead. Useful techniques in 
this regard, include Dempster-Shafer Theory (SAFESPOT 2007) and Belief Propaga-
tion (Mooij 2008). 

3 Concepts and features of the ICT platform 

The envisioned ICT platform aims to act a framework consisting of models, meth-
ods, tools and services, and thereby provide the capability of enabling a qualified 
continuous development of CP SoS. It follows the knowledge-in-the-loop approach 
proposed by Chen (2015), where qualified ontological models are synthesized auto-
matically for effective model-predictive operation-time self-managed decision making 
and other knowledge inference tasks. See Fig. 1 for an overview of the concept. 

 
Fig. 1. Conceptual overview of the ICT platform for CP SoS. 
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As shown in the figure, the scope of support ranges from (1) Development-time 

knowledge and models for system design and implementation, risk assessment and 
quality assurance; to (2) Operation-time and post-deployment time data and services 
for orchestration, management and evolution; and to (3) A meta-modeling framework 
for knowledge modeling, inference, integration and management.  For the develop-
ment-time, the support is centered on a multi-viewed description of CP SoS require-
ments (e.g. goals) and compositions (e.g. agent services) with formal analysis and 
simulation for risk management and quality assurance. The operation-time and post-
deployment support is related to model-predictive system control and adaptation (e.g., 
for situation awareness, orchestration and risk assessment), as well as model-based 
operation data analysis and knowledge inference (e.g. for system validation and 
knowledge enrichment). One particular feature of this ICT platform is its support for 
automated synthesis of ontological models and necessary system services and con-
tracts for operation monitoring and control with underlying intelligent filters and net-
works (e.g. Kalman Filter, Artificial Neural Network). To this end, the meta-modeling 
framework is used to consolidate, connect, and transform the knowledge and models 
across development-time, operation-time and post-deployment. This allows an evolu-
tionary development of CP SoS with continuous flows of operation-time observations 
and other post-deployment knowledge back to the development and maintenance 
phases for anomaly treatment, system validation, maintenance and evolution. 

The modeling framework provides with necessary formalisms, methods and tools, 
operation‐time and post‐deployment data and services for CP SoS development, oper-
ation, management and evolution. One key base technology to be adopted for this ICT 
platform for CP SoS is the modeling framework EAST-ADL (Kolagari 2016; Chen 
2011), which represents one key European initiative towards a standardized multi-
viewed description of automotive electrical and electronics systems. It is a result of a 
series of consecutive projects: ITEA EAST-EEA, EU FP6 ATESST I and EU FP7 
ATESST II, and EU FP7 MAENAD. By integrating many generic system description 
frameworks (e.g. SysML) and automotive specific methodological and technological 
considerations (e.g. RIF/ReqIF), EAST-ADL, through its meta-model, constitutes a 
fundamental knowledge-model for the descriptions of cyber-physical systems in gen-
eral. For example, it allows a wide range of functional safety related concerns (e.g. 
hazards, faults/failures, safety requirements) to be declared and structured along with 
the lifecycle of nominal systems. Although constituting a very good basis for captur-
ing and formalizing various system aspects, current EAST-ADL does not provide any 
explicit support for the modeling and analysis of CP SoS with regard to emergent 
behaviors, dynamic risk assessment, uncertainties and related design verification and 
validation issues. Therefore, regarding the support for CP SoS, meta-model exten-
sions and specializations of EAST-ADL need to be developed.  These include addi-
tional modeling constructs to support the expression of run-time ontologies for effec-
tive reasoning for desired or prohibited emergent properties, which are normally not 
be able to be predicted accurately at system development time, as well as additional 



methods for automated transformation and traceability between design-time and run-
time models.  

4 Conclusion 

A SoS is a type of open system in stark contrast with conventional monolithic sys-
tem with well-defined boundary and isolated and interactions. This requires several 
radical engineering paradigm shifts. While the challenges are currently being tackled 
by different industry and research efforts, significant issues remain in the areas of 
quality assurance, uncertainty and risk treatment, change and evolution management, 
etc. This paper discusses a model-based approach to an integrated development, exe-
cution, and evolution of dependable systems, aiming to pave the way for a next gen-
eration ICT platform for CP SoS, primarily in an automotive context. The approach 
emphasizes a knowledge-in-the-loop decision-making that goes across multiple eco-
system and lifecycle phases. In particular based on EAST-ADL, it provides a model-
ing framework for integrating design-time formal analysis and simulation, with opera-
tion-time model-predictive system control and adaptation and other post-deployment 
time data analysis and knowledge inference capabilities. 
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Abstract. Today’s organizations are highly distributed and dynamic in nature. 
Similar to ‘Systems of Systems’ (SoS), they involve communication and 
coordination between its different parts and typically, they evolve over time as 
new organizational units, roles and people are introduced. From this 
perspective, the notion of business ecosystems has many common 
characteristics with what is referred to as ‘Systems of Systems’ (SoS). In this 
paper, we explore how innovation takes place in business ecosystems and we 
see that most innovation strategies involve a mix of internal, collaborative and 
external elements in which external partners collaborate. Due to the dichotomy 
in approaches however, companies often fail to select the optimal innovation 
strategy for the specific innovation challenge at hand. In this paper, we provide 
guidelines on the optimal selection of strategies. 

Keywords: Innovation strategies; collaborative innovation; strategy selection. 

1   Introduction 

Business success requires intentional management of ecosystem partners [1], [2]. This 
is true for both large keystone players as well as for smaller players in the network. 
Especially, and in order to accelerate innovation and value creation, companies need 
guidelines that help them identify innovation partners, select innovation strategies and 
successfully combine internal, collaborative and external innovation elements. In 
many ways, business ecosystems are similar to ‘Systems of Systems’ (SoS) as they 
involve distributed organizations that evolve over time, and in which communication 
and collaboration between different parties is critical.  

In this paper, we study innovation in business ecosystems and we conclude that 
often innovation initiatives include a mix of internal, collaborative and external 
strategies. As a result, the challenge for companies is not to select among a dichotomy 
of innovation approaches, but rather to identify the strategy with the optimal 



combination of the different innovation elements. In this paper, we address this 
challenge and we provide guidelines on how to select the optimal innovation strategy. 

2   Background 

Traditionally, innovation initiatives in software-intensive systems companies are 
viewed as either internal innovation, such as technology-driven innovation based on 
ideas generated within a company, external innovation in which companies adopt 
strategies to capture and expand on ideas created by other stakeholders, or 
collaborative innovation where a number of stakeholders openly share and benefit 
from results within the network [3], [4], [5]. First, internal innovation refers to a 
situation in which ideas are generated internally within a company, and in which these 
ideas are then validated and brought to the market either by the company itself or by a 
partner in the innovation ecosystem [3]. Second, external innovation refers to 
situations in which companies adopt strategies that help them capture value that is 
produced by other stakeholders. Vanhaverbeke et al [4], describe this innovation 
paradigm as an “option-creation process” that allows innovating companies to sense 
developments in a wide range of external initiatives in order to learn about new 
technologies with uncertain payoffs. Third, collaborative innovation is when 
companies create different forms of alliances and partnerships with external partners 
with whom they co-create value. In such partnerships, the intention is to establish 
close relationships to external innovation partners to have continuity in joint 
innovation activities and to over time involve them in development of differentiating 
functionality as part of the core product offering. 

3   Research methodology 

The findings reported in this paper are based on longitudinal multiple case study 
research in six software-intensive companies in the embedded systems domain. The 
research project was initiated in January 2014 and is on-going. During the time of our 
research, we have conducted a literature review, an interview study in each of the six 
companies, multiple cross-company workshops at which company representatives 
from all companies meet, focus group interviews and validation sessions and 
workshops.  

4   Findings 

In all case companies, the ideation, i.e. the creation of new ideas is often conducted 
internally. Facilitated by strategic investments, innovation incubators and reward 
systems, the case companies are successful in continuously identifying new business 
opportunities based on their in-house competence and skills. In concept creation and 
customer validation activities however, they are increasingly shifting towards more 



collaborative practices and all case companies report on the importance of having 
external partners, such as e.g. customers, involved as soon as there is a concept to test. 
Also, early customer validation helps the company to efficiently push innovative 
functionality to the core product offering in order to make it available for the larger 
customer base. However, and as can be seen in the case companies, they are 
increasingly moving towards collaborative innovation approaches in order to either 
benefit from skills similar to their own but inherent in other organizations, or to 
complement their in-house skills with competence they do not currently possess.  

For concept creation and customer validation, the case companies report on 
increasingly collaborative approaches. While there are many reasons for this, the 
primary reason is the attempt to “fail faster” and avoid investing resources in an 
innovation initiative with little customer value. In all case companies, there are 
several examples of innovation initiatives with very little market value and where 
significant R&D resources have been spent on new functionality that have no proven 
customer value. To avoid this, the companies are moving towards early proof of 
concept and prototyping techniques that allow fast customer feedback. Also, and in 
order to facilitate collaborations, several of the companies are creating separate 
organizational units for innovation, with its primary task to host innovations and 
stimulate cross-company collaborations.  

5   Discussion 

Internal strategies to ideation, concept creation and validation are typically selected 
when a company is the keystone player with a very strong position in the ecosystem 
and when technological know-how is superior. Our case companies select internal 
strategies for the different innovation activities when they know what the solution 
should look like before engaging in potential collaborative activities to validate the 
idea. Also, our findings show that internal ideation and concept creation activities are 
critical to foster creativity and to encourage a constant flow of new ideas. The 
challenge however, and as experienced in the companies, is to find a balance between 
a creative innovation culture where you let “thousands flowers bloom” while at the 
same time identify ways to efficiently kill unsuccessful innovations before they start 
consuming resources. Collaborative strategies to ideation, concept creation and 
validation are selected when there is some level of uncertainty, for example when 
entering new markets or when developing new service offerings that include 
stakeholders that were not part of the traditional ecosystem. In such situations, 
companies typically look to share costs and risks, and they seek additional knowledge 
that will help them assess a certain situation or need. Also, the collaborative elements 
are increasingly used to help companies validate whether an innovation adds customer 
value or not. Finally, external strategies to ideation and concept creation are selected 
when a company identifies a promising innovation that can be brought in-house “as 
is” or by some internal modification. The majority of the case companies 
continuously scan the market for promising innovations. In Table 1, we summarize 
our analysis and we provide guidelines on how to select the optimal innovation 
strategy. 



 
Innovation strategy Innovation activities 

Internal 

• Mature markets/technology 
• Keystone player 
• Superior know-how 

Collaborative 
• Emerging markets/technology 
• Sharing of risks and costs 
• Non-proven customer value 

External 
• Complement existing offerings 
• Minimize development investments 
• Proven customer value 

Table 1. Innovation strategy selection framework. 

6   Conclusion 

In this paper, we show that although innovation is traditionally viewed as internal, 
collaborative or external, most innovation initiatives involve a mix of these elements. 
Also, our research shows that the collaborative element is becoming increasingly 
important in order for companies to accelerate new product development and 
maximize the benefits of their ecosystem. 
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Abstract. Industry digitization has drastically changed the competitive
landscape by requiring a higher degree of specialization and shorter time
to delivery, which affect the design properties a software platform should
satisfy. The platform architecture must sustain continuous and rapid
change to the business architecture, which in turn is affected by external
forces: i.e., forces drive the velocity of change. In this paper we explore
the effects of digitization, characterizing internal and external forces that
impact on business strategies and trigger the continuos realignment of
the platform, and outline a research agenda to mitigate the effects.

1 Setting the context

The continuos increase in system complexity has become an invariant for software
engineers. Software systems are often business or mission critical subsystems, re-
sponsible for a vast part of the Sociotechnical system’s value. A Sociotechnical
system connects several technical systems and people who either interact with or
is part of the system itself [2]. Indeed, they are defined to explicitly include oper-
ational processes and people (e.g., the operators), which are considered inherent
parts of the system. Most sociotechnical systems are organizational systems that
provide support for an enterprise to achieve their business goals.

Due to their embeddedness in an enterprise, the procurement, development,
and deployment of these systems will be heavily influenced by an enterprise’s
structure and processes. Structures and processes are in-turn affected by changes
in the enterprise’s environment, e.g., the market or regulations. Enterprises need
to adapt quickly to these forces, in order to mitigate risks or take advantage of
opportunities they create: forces drive the velocity of change.

Osterwalder and Pigneur describe 4 groups of forces that affect a market and
indirectly an enterprise’s business models [8]. Three groups, industry, market
and trends are close to an enterprise, whereas the fourth, macro-economics, is
a health-monitor to balance strategic decisions. A sustainable enterprise is agile
and responsive to changes, continuously adapting its business strategies, mani-
fested in a business architecture. The main challenge, aligning the information
technology support with the organizational need, is discussed by Tallon and Pin-
sonneault [10]. They argue for the importance of agility and alignment for the
enterprise’s overall performance.

Engineering best practices suggest the exploitation of Enterprise Architec-
ture (EA), which enables enterprises to continually evolve in response to ever-
changing environment forces [9]. EA describes the structure of the enterprise in



terms of subsystems and the relationships between them, as well as the relation-
ships with the external environment. Further, EA defines the set of principles
guiding the design and evolution of the enterprise. Indeed, EA plays a key role
by tracking forces and providing insight into how they affect each area of the
enterprise. The platform architecture captures the technology facet of EA, that
is, the organization of information technology components within an enterprise.
These components provide business critical functions to the enterprise, includ-
ing its business functions. Thus, it is crucial that the platform architecture is
maintained and evolved in response to changes in the business architecture.

2 Co-evolution for Sustainability

It is well-known from systems theory that the health of the overall system de-
pends on the performance of its subystems. The forces discussed above represent
points of uncertainties, uncertainties that may lead to risks or opportunities for
the enterprise [6]. These causalities are becoming increasingly important for an
enterprise mange to maintain market sustainability. Business and platform ar-
chitecture co-evolution is critical for market sustainability. The key to unlock a
possible solution is to develop new organizational capability [7] that harnesses
speed and specialization, and addresses the co-evolution requirement. Developing
organizational capabilities require that the enterprise attains or develops knowl-
edge about how to develop platform architectures and products that match the
business architecture requirements. Below we discuss some capabilities that need
to be developed further, namely People & Processes, and Technology & Tools [7].

2.1 People & Processes

Extend the team – The alignment of business and platform architecture is
described as a prerequisite for market success [7]. It is however not guaranteed
that the best business architecture supported by the best platform architecture
will prevail on the market, which has been proven by numerous counter examples
over time. One way forward towards better alignment is to bring business archi-
tecture knowledge closer to the platform architects and platform development.

Open-up and out-source – The key market trends that cause uncertainty and
opportunity for enterprises are speed and specializations. The consequences are
increasingly higher demands on specialized organizational capability. Developing
and maintaining specialized capability to support market fragments or niches is
not sustainable for most enterprises. Abandoning a fragment or niche is not a
straightforward business decision, since the next dominant design always start
as a niche. Trading risks in these situations is difficult and out-sourcing for
specialized capabilities will be a more sustainable strategy than in-sourcing.



Tighten the loop – Within sociotechnical systems, several interactions occur
simultaneously at different levels of abstraction. This inherent complexity causes
uncertainty, which must be mitigated to achieve sustainable platform architec-
tures. One mitigation approach is to tighten the loop even more, preparing en-
terprises and there platform architectures for adaptability and evolvability [11].
Adaptability aims at mitigating uncertainty with respect to a system’s ability
to continuously satisfy a requirement, whereas evolvability accommodates risk
mitigation strategies that address uncertainty caused by new market forces.

Life-cycle blur – A consequence of tightening the innovation cycle is that the
clear separation of development and run time blurs when on-line and off-line
activities intertwine to promptly address forces that affect the business architec-
ture, while the system is running.

2.2 Technology & Tools

The people and process capabilities discussed above, can be enabled or inhibited
by the platform architecture. It is essential to make the platform architecture
compatible with the enterprise to enable its capabilities. “If the parts of an
organization (e.g. teams, departments, or subdivisions) do not closely reflect the
essential parts of the product, or if the relationship between organizations do
not reflect the relationships between product parts, then the project will be in
trouble” [4]. To this end, we discuss hereafter a set of key design principles that
allow architects to define business and platform architectures that are able to
co-evolve. It is worth noting that such design principles are not new, but they
have been discussed and taught since decades. Rather, the novelty here is tied
up with “why” and “how” we leverage on them to design business and platform
architectures centered around enterprise’s customers: i.e., developers, architects,
and stakeholders.

Isolation and Single Responsibility – Isolation is considered one of the most
important design principles, as its systematic application allows architects to
slice up the architecture, and organize the teams and responsibilities accordingly.
A responsibility is defined as “a reason for change” [5], which in turn is driven by
a force (see Section 1). Indeed, when a new force emerges in the market, it will
affect the system and make responsibilities of components within the platform
change. Hence, the more responsibilities a component assumes, the more forces
will affect it. On the long-term, this will lead to a fragile design, and both business
and platform architecture degradation.

Robustness, Redundancy and Diversity – Once having a set of autonomous
and isolated components, they must be composed together, and collaborate with
each other to solve problems. Indeed, it is in collaboration that opportunities and
challenges emerge. Components composition puts the system at hight risk, since



the overall behaviour can not be guaranteed in case interaction deviate from the
expectation – e.g., due to failures, system overloading, etc. To this extent, it is
important to take precautions and be robust with respect to communication [1].
Adhering to Robustness principle “be conservative in what you do, be liberal in
what you accept from others” improves interoperability among components and
facilitates their versioning and evolution.

Fluidity – Due to adaptability and evolvability, the platform architecture is
characterized by a highly dynamic structure where both the components and
their interconnections may change over time. To accommodate the required level
of adaptivity and evolvability, the platform architecture should be able to ac-
commodate continuous structural change without aversely affecting the platform.
Indeed, the platform architecture is required to be “fluid” and able to accommo-
date continuous architectural changes [3]. To this end, enabling properties are:
(i) loose coupling, components are deployed and executed independently of other
entities, (ii) flexibility, components can be added and removed into the running
application, (iii) dynamism, components of interests are discovered and bound
into the running application, and (iv) serendipity, unforeseen components are
accommodated into the running application.

3 Future work

We conjecture that the higher degree of specialization with a shorter time-to-
deliver of new products and services to the market impacts organizational capa-
bilities directly and platform architectures indirectly. Enterprises must become
more resilient to forces developing strategies for sustainable business, enterprise,
and platform architectures.

First, we must better understand how to bring business architecture closer to
platform architecture. This is the first step towards a tighter innovation-cycle.
Second, we develop knowledge for how to systematically open up platforms to
invite third-parties to develop products and services for market niches. The third
capability is concerned with an enterprise’s ability to remove the distinct border
in a platform’s or product’s life-cycles. Technologies supporting online and offline
evolution and adaptation will be combined to tighten the innovation cycle even
more. This poses several challenges to organizational capabilities that must be
better understood, including processes for development activities and design
principles for platform architectures.
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Abstract. With recent and rapid advances in areas such as online games, 
embedded systems and Internet of Things, the traditional notion of what 
constitutes a system is fundamentally changing. Similarly to Systems of 
Systems (SoS) these systems are heterogeneous, autonomous and allow 
dynamic and emergent configurations that evolve and adjust over time. Also, 
these systems allow automated optimization of system performance. Regarded 
as the new digital business paradigm, these types of systems offer 
fundamentally new ways for software development companies in their service- 
and value creation. At the same time, they present challenges in these 
organizations. In this paper, and based on multiple case study research in three 
different domains, we identify emergent system characteristics that pose new 
challenges on software development and we outline the transition towards new 
ways-of-working in software development. 

Keywords: Online games, embedded systems, Internet of Things, self-learning 
systems, self-actuation, decentralized control. 

1   Introduction 

With recent advances in software technology, we are experiencing a fundamental shift 
in how people interact with software-intense systems and what is expected from these 
systems. In different domains, new types of systems are emerging with characteristics 
that make them very different from the systems we are used to and that software 
development organizations have traditionally developed. As one example, Internet of 
Things systems offer fundamentally new opportunities for value creation, and are 
rapidly permeating our everyday lives by transforming the way we interact and 
perceive information technology [1]. Similar to Systems of Systems (SoS), these 
systems incorporate functions such as e.g. sensing, actuation and control, and they are 
heterogeneous, autonomous and often distributed. Moreover, they use advanced data 



collection and analysis mechanisms to initiate actions and to make decisions in a 
predictive or adaptive manner [2, 3], and they allow devices in the network to 
collaborate through dynamic configurations that evolve over time. As a result, these 
systems foster new user behaviors and allow new forms of interaction, they enable 
new service- and value creation and they allow innovative business models and 
opportunities. 

However, while new types of systems offer a wide range of opportunities, they also 
pose significant challenges to the organizations developing these. In this paper, and 
based on multiple case study research in three different domains, we identify 
emergent system characteristics that pose new challenges on software development 
and we outline the transition towards new ways-of-working in software development.  

2   Background: Emergent System Capabilities 

Due to rapid advances in technology, new types of systems are emerging with 
characteristics and capabilities that we didn’t experience up until now. As a 
consequence, the ways in which software systems are developed, and the ways in 
which development organizations and teams traditionally work, are being disrupted.  
These emergent systems characteristics are: (1) self-learning systems, (2) self-
actuation systems, and (3) decentralized control.   

First, self-learning systems refer to adaptive systems whose operation algorithm 
improves based on trial and error. This self-learning characteristic allows systems to 
experiment with different behaviors and learn from these experiments to more rapidly 
adjust their behaviors according to e.g. user preferences. Second, self-actuation 
systems refer to systems that actively initiate actions based on input from the 
environment in which they operate [4]. As a result, they require less user interaction 
the more they learn about the user. Finally, decentralized control refers to systems in 
which each master in the network has all data. This supports local decision-making 
and allows for rapid actions to be taken in the network.  

3   Research methodology 

The research presented in this paper builds on longitudinal multi case study research 
[5] and close collaboration with software development companies in the online 
gaming, the embedded systems and the Internet of Things domain. In all the 
companies we studied, new system capabilities are emerging, and as a result the 
companies face new and exciting ways for service- and value creation, at the same 
time as they face a number of challenges in relation to the development of these 
systems. In each company, we conducted interview studies, group interviews 
workshops, observations and validation sessions with people representing the 
software development teams, the release organization, project and product 
management and sales and marketing.  



4   Findings 

As a result of the advancements in technology, the case companies involved in our 
study experience a number of challenges. These challenges relate to their current 
software development practices, as these will need to change in order to cater for 
development of systems with new system characteristics. In Table 1, we summarize 
the challenges we identified in the case companies. We summarize the challenges in 
relation to (1) R&D process, (2) Data collection and use, and (3) Business and 
organization. 
 
Area of concern: Challenges: 
R&D process • The transition from early specification of requirements towards 

emerging system characteristics. 
• The transition standardized systems towards dynamic systems 

that continuously evolve. 
• The transition from long-term planning and pre-defined 

milestones towards continuous experimentation. 
• The design of architectures to manage control and access in 

decentralized systems consisting of interconnected objects and 
devices. 

Data collection and use • The collection, analysis and visualization of data from multiple 
devices. 

• The collection of real-time data for dynamic optimization of 
systems. 

• The collection of data revealing user behaviors not only in 
relation to one system, but in relation to a larger system of 
which an individual device is only one part. 

Business and organization • The alignment of data collection practices and decision-making 
and prioritization processes. 

• The interplay between human development teams and smart, 
automated systems. 

Table 1. Summary of the challenges we identified in the case companies. 
 

5   Towards New Ways-of-Working in Software Development 

In Table 2, we picture the transition from traditional towards continuous and 
experimental software development, with agile development and data-driven 
development being the intermediate steps. We define the main differences for each 
development approach in relation to (1) R&D process, (2) Data collection and use, 
and (3) Business and organization. 
 
Characteristics Traditional 

development 
Agile development Data-driven 

development 
Continuous and 
experimental 
development 

R&D process • Long cycles 
with defined 
milestones 

• Waterfall and 
sequential 

• Rapid cycles 
with short 
development 
sprints 

• Iterative and 

• Frequent 
and 
automated 
experimentat
ion. 

• Automatic 
experiment
ation by 
systems in 
the field 



incremental • Data 
analytics 

• Dynamic 
and 
evolutionary 

• Systems 
exploring 
and 
optimizing 
alternatives 

Data collection 
and use 

• Pre-study 
• Requirements 

specifications 

• Customer 
collaboration 

• Product owners 
and/or 
customer-
specific teams 
as proxy 

 

• Data 
collection 
from 
systems in 
the field 

• Continuous 
validation 
with 
customers 

• Automated 
experiment
ation. 

• Embedded 
analytics in 
systems in 
the field 

Business and 
organization 

• Discipline 
oriented 
organization 

• Technology-
driven 
innovation 

• Cross-functional 
R&D teams 

• Customer-
driven 
innovation 

• Integrated 
R&D, PdM 
and data 
analytics 
team 

• Data-driven 
innovation 

• R&D teams 
and smart 
systems 

• Synergy-
driven 
innovation 

Table 3. Towards continuous and experimental software development. 

6   Conclusion 

In this paper, and based on multiple case study research in three different domains, we 
identify emergent system characteristics that, in similar with Systems of Systems 
(SoS) allow distributed devices to communicate, collaborate and take proactive 
decisions. As new characteristics of online games, embedded systems and IoT 
systems, these characteristics pose new challenges on software development. We 
identify these challenges and we present the transition from traditional development 
towards continuous and experimental software development. 
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Abstract. Systems of Systems (SoS) and the Internet of Things (IoT)
have many common characteristics. For example, their constituents are
heterogeneous, autonomous and often distributed. Moreover, both IoT
and SoS achieve intended goals by means of the highly dynamic coop-
eration among their constituents. In this paper we study the relation
between IoT and SoS. We discuss the characteristics of both concepts
and highlight common aspects. Furthermore, we introduce the concept
System of Emergent Configurations (SoECs) to describe IoT-based SoS.

Keywords: System of Systems (SoS), Internet of Things (IoT), Emer-
gent Configurations (ECs), System of Emergent Configurations (SoECs)

1 Introduction

The Internet of Things (IoT) enables heterogeneous and distributed smart ob-
jects to connect, communicate and collaborate to achieve common goals [4]. Such
objects involve, e.g., sensors, actuators, computer-based systems, smart-phones
and other smart physical objects. The number of devices connecting to the In-
ternet is exponentially increasing and is expected to reach 24 billions by 2020
[6]. Thus, the IoT is expected to emerge in almost every aspect of the daily life.

The concept System of Systems (SoS) involves the dynamic collaboration of
distributed and heterogeneous systems to achieve common goals. The evolution
of integration and communication technologies enabled legacy, existing and new
systems to collaborate and realize the concept SoS. The (SoS) term is widely
used in the literature and several efforts have been done to define the concept.
However, due to the wide range of applicable definitions stemming from various
research backgrounds and perspectives, common characteristics are defined to
better describe the concept.

In this paper, in Section 2, we review the characteristics of IoT and SoS
domains and highlight the shared aspects between them. In addition, we analyze
the concept of Emergent Configurations in the context of SoS. Moreover, a case
study is presented to explain IoT-based SoS. Section 3 concludes the paper.
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2 The Internet of Things as System of Systems

This section illustrates the relationship between the Internet of Things and the
System of Systems concepts. The characteristics of both domains are identified
and compared in order to clarify the correlations between the two concepts.

2.1 A review of SoS and IoT Characteristics

IoT characteristics. This part presents several characteristics of the IoT [5]:
(i) Devices heterogeneity : IoT involves a variety of connected heterogeneous ob-
jects of which some are smart and can make decisions autonomously. (ii) Dis-
tributed components: huge number of smart objects join IoT -thus the IoT is
constantly evolving. (iii) Ubiquitous data exchange capabilities: smart objects
and computational units exchange tremendous amount of information. (iv) Lo-
calization and tracking capabilities: IoT objects are uniquely identified and trace-
able. (v) Self-organizing capabilities: IoT components may have self-adaptable
capabilities due to dynamic IoT environments. (vi) Semantic interoperability and
data management : intelligent data management techniques are required to anal-
yse exchanged data among IoT components. Semantic interoperability requires
designing well-defined and standard semantic models.

SoS characteristics. Maier defined five characteristics of SoS [7]: (i) Oper-
ational Independence: SoS constituents are autonomous and can keep achieving
their goals even if detached from the SoS. (ii) Managerial Independence: SoS
constituents are self-controlled and managed. (iii) Geographical Distribution: SoS
constituents might be distributed in several locations. (iv) Evolutionary Develop-
ment : SoS evolves as constituents evolve continuously. (v) Emergent Behaviour :
as dynamic and heterogeneous constituents interact, new behaviours are intro-
duced to the SoS level.

Maier considers systems which possess operational and managerial indepen-
dence to be SoS regardless of the complexity and geographical distribution of
relevant constituents [8]. Boardman and Sauser add three more characteristics
[1]: (i) Belonging : achieving overall goals is attributed to SoS and not to any in-
dividual constituent. (ii) Connectivity : constituents can exchange messages and
information. (iii) Diversity : constituents are heterogeneous, evolving and interop-
erable. Another important characteristic is interdependence [2]. Interdependent
constituents rely on each other to satisfy common goals.

2.2 Discussion

It is clear that IoT and SoS share some major characteristics. For instance,
like SoS, IoT components are heterogeneous, autonomous, able to communicate,
often distributed, operational and managerial independent. Both domains are
evolving and operate in dynamic situations leading to emergent behaviours. In
this context, the Internet of Things can be regarded as a System of IoT-based
systems.



IoT-based SoS III

In the context of IoT, we refer to the term Emergent Configurations (ECs)
of Connected Systems as “a set of things with their functionalities and services
that connect and cooperate temporarily to achieve a goal”[3].

Within SoS, the emergent behaviour concept has been defined as “the be-
haviours that arise as a result of the synergistic collaboration of constituents”[2].
Functional and non-functional emergent properties result from having hetero-
geneous and distributed constituents collaborating in dynamic environments.
Emergent behaviours are desirable in case they contribute positively to SoS
goals. On the contrary, they are undesirable in case they adversely affect achiev-
ing goals. Systems monitor, detect, analyze, and self-adapt to undesirable emer-
gent behaviours in order to provide consistent functionalities. Self-adaptation
mechanisms are out of the scope of this work.

Considering the EC concept, the IoT can be seen as a collection of ECs.
In other words, we see an IoT system as an EC. Since constituents of an IoT-
based SoS are IoT systems, an IoT-based SoS is referred as a System of Emergent
Configurations (SoECs). The section below introduces the smart street lamppost
case, and illustrates how this IoT-based System of Systems is considered as a
SoECs.

2.3 Smart Street Lamppost System

In this section, we take the case1 of the Smart Street Lamppost System (basic
system) described in [3] and extend it (scenario) to illustrate the concept of
SoECs discussed above.

Basic System. The main idea, in this case, is to adapt a smart lampposts
sphere of light for each road user. This means that the number of lampposts
that light up depends on the speed of vehicles, bikes or pedestrian. Yellow lights
are dimmed down, to save energy, when there is no traffic. Lampposts turn on
red lights when drivers go over speed limits -this contributes to increase safety
and traffic awareness. Each lamppost has the following capabilities: (i) Detects
the presence of vehicles, bikes or pedestrian through motion detection sensors.
(ii) Measures the speed of moving objects through a computation unit. (iii) De-
cides the brightness of its light, using either yellow or red lights through a pair of
actuators. (iv) Computes the number of neighbour lampposts that should light
up (yellow or red lights). (v) Exchanges messages with neighbour lampposts.
Lampposts are grouped into areas and an Area Reference Unit (ARU) man-
ages each lampposts group. ARUs have powerful computational capabilities and
storage capacities. The collaboration of the above components is an Emergent
Configuration. The main emergent behaviour of the case is to switch on red
lights when car B exceeds the speed limit. An emergent property is to warn car
A about the speed of car B.

Scenario. To extend the work done on the case above we introduce the
scenario below. (i) Lampposts collaborate with ARUs to detect accidents through

1 This case has been realized, including the hardware and software, in a collaboration
between Malmö University, Internet of Things and People (IoTaP) Research Center,
and Sigma Technology under the ECOS project [9]
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the GPS technology, see [10]. (ii) An ARU reports an accident to the relevant
Health Management System including the location and number of cars involved.
(iii) The driver of car B suffers from serious heart disorders, so she/he puts
on wearable health monitoring sensors regularly. These sensors report her/his
medical status to the HMS (emergent configuration). (iv) The HMS specifies
the number of ambulances needed and redirect the closest ones. Meanwhile,
a specialist in the operations room analyses the data being received from the
driver’s health monitoring sensors.

As illustrated in the above scenario, the two emergent configurations (sys-
tems) collaborated together composing a System of IoT-based Systems.

3 Conclusion

In this paper we analyzed the characteristics of the Internet of Things and Sys-
tem of Systems domains. It can be noted that the domains share the core char-
acteristics like operational and managerial independence, evolving systems and
emerging behaviors/properties. Moreover, we look at SoS from the perspective
of IoT emergent configurations (ECs). In this context IoT-based SoS can be
seen as a System of Emergent Configurations (SoECs). We presented the Smart
Street Light case, and extended it to illustrate temporal collaboration between
two emergent configurations composing an IoT-based System of Systems.
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emergence of systems of systems (SoS) for energy, defence and security 
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The paper concerns technology innovation and systems for energy, defence 

and security with a view and an outline of a theory for the emergence and the 

building of systems of systems (SoS).  

Attention is focussed on radical or disruptive innovations induced or influ-

enced by technology development and change. Innovations bring great values 

to society, for competitiveness and sustainable social wellbeing, and may con-

tribute to solving the great challenges of our time, as for example climate 

change, secure supply of energy and preservation of the environment. 

Disruptive innovation which encompasses transformative processes and tran-

sitions has two sides, one large or even immense but uncertain advancements. 

The other, negative side may exhibit extensive and brutal consequences. Dig-

itisation with associated net technologies is a prime example of technologies 

that simultaneously accomplish brand new services and competitiveness and 

disruptions of systems, industrial branches and individual firms, and even 

sectors of society. 

Innovations in the present view are considered as technological systems that 

emerge by integration of systems (establishing systems of systems, SoS) in 

evolutionary processes. As systems integration and emergence of SoS are key 

factors and pivotal for innovation a theory for systems integration and emer-

gence of SoS for innovation is elaborated and duly explicated. 

In the thesis, also referred in the paper there is a proposition for an innovation 

view aiming to suggest ways and means, and to provide guidance to promot-

ing technological innovations or value-adding new technologies, systems, 

services and products in the energy, defence and security areas. The innova-

tion view comprises an architectural framework and a rudimentary model to 

support governance of technological innovation.  



The innovation view and the architectural framework for innovation are pro-

posed on the basis of case studies of patterns of innovations in selected areas, 

reviewing the literature and theories of governance of innovations and innova-

tion processes supported with application of methodologies and tools from 

systems engineering and enterprise architectural frameworks.  

The innovation view has a main mission to provide strategic guidance to the 

governance of technological innovation as a complex and evolutionary pro-

cess which associates and integrates systems (into SoS). The evolutionary 

process and transformation is inherent with risks and has to rely on experi-

menting and learning. The view is perceived as complement rather than re-

placement of recognised enterprise architectural frameworks, systems engi-

neering standards, protocols and established procedures (e.g. ISO 15288, ISO 

42010, NISP). 

The innovation view is in the thesis and the paper compared and tested (a sort 

of dry test) with recognised architectural frameworks and configurations al-

leged with innovation or with strong evidences of innovative applications and 

outcome. It is a number of configurations, for example triple helix and plat-

form design that are compared and discussed from the perspective of the ar-

chitectural framework and innovation view which are proposed. 
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Abstract. The inherent nature of cyber-physical (CP) system-of-systems (SoS) in terms of open dynamic configuration and interoperation of heterogeneous uncorrelated agents, safety- and time-criticality, requires several radical engineering paradigm shifts. A significant difference in comparison to contemporary monolithic systems is related to how the development, execution and evolution of SoS go across the boundaries of traditional technological and managerial domains. This paper discusses a model-based approach to an integrated development, execution, and evolution of dependable systems with knowledge-in-the-loop. It aims to pave the way for a next generation ICT platform for qualified CP SoS in general and intelligent transport systems in specific. Using EAST-ADL as one base technology, such an ICT platform addresses the synergy of model-based system development (MBD), well-managed product lifecycles and intelligent post-deployment services across the eco-systems and lifecycle phases. The goal is also to support formal quality assurance in regard to a priori unknown operational situations as well as situations where a degree of uncertainty is intrinsic in the state description.

Keywords: Systems-of-Systems (SoS), Cyber-Physical (CP), Model-Based Development (MBD), EAST-ADL, Knowledge-in-the-Loop. 

Introduction

A System-of-Systems (SoS) is composed of independent systems that cooperate or collaborate adaptively for dealing with certain social and technological issues (Maier 1998; Sage 2001; Nielsen 2015). These independent systems (i.e. the constituent systems) execute their tasks autonomously as intelligent agents in multi-agent system (Wooldridge 2002), while being functionally and technologically heterogeneous with different capabilities. The operation of SoS often relies on advanced information and communication technologies for the discovery, configuration and provision of services. A SoS can become cyber-physical (CP) system by having both physical dynamics or energy flows under control and the corresponding control and cognitive loops across its constituent systems. Motivated by various societal and economic benefits, Cyber-Physical (CP) System-of-Systems (SoS) is becoming increasing popular as the underlying technology for intelligent transport systems, automotive vehicles, manufacturing systems (i.e. Industry 4.0), etc.

As an overall requirement, a SoS must be able to deal with uncertainties in its operation and lifecycle and accordingly to adapt the planned missions, configuration and maintenance tasks to cope with changes of operational conditions. In particular, for an effective management of safety, security, and their complex interplay, a systematic treatment of emergent behaviors and related system anomalies due to the open dynamic configuration of heterogeneous agents becomes necessary. This calls for quality assurance by formal methods and tools as well as advanced run-time services. To this end, a significant difference of SoS in comparison to contemporary monolithic systems is related to how the development and operation of SoS should go across the boundaries of organizations, domains and disciplines.

This paper discusses a model-based approach to an integrated development, execution, and evolution of dependable CP SoS, primarily in an automotive context. It aims to pave the way for a next generation ICT platform for qualified cyber-physical system-of-systems in general. In regard to the uncertainties of SoS, such an ICT platform promotes effective quality assurance through a synergy of formal system specification and intelligent system services. The approach emphasizes a knowledge-in-the-loop quality assurance process that goes across multiple eco-system and lifecycle phases. In particular based on EAST-ADL, such a process combines formal methods and tools for development-time quality planning and control with intelligent services for post-deployment time knowledge inference, self-verification and validation. 

The rest of this chapter is structured into the following sections:  Section 2 elaborates the challenges and research needs by related work. Section 3 introduces the envisioned ICT platform and its base technology. The paper concludes with Section 4.

Related Work

SoS exhibits emergent behaviors arising from complex interactions of constituent systems as well as from unmanaged system anomalies and security attacks. As many of such behaviors are a priori unknown, they may never be fully specified, analyzed or tested during system development. Anthony (2007) identifies two classes of SoS emergence. Emergent behavior is defined as first order emergence, and is considered to be the run-time characteristics of SoS, while the ability of related heterogeneous systems to evolve is described as second order emergence (e.g. a form of design-time change of functional or technical properties, over many iterations). This second order emergence implies specific challenges in system design and quality management, arising in the communication and collaboration across disciplines and organizations.

For dealing with the partially unknown or inaccurate definition of open dynamic configuration and interoperation conditions in design-time, the specification of systems with abstract goals, control policies and contracts together with the provision of related intelligent services and platform support will be necessary. For example, Silva (2015) proposes a mission goal description based approach to the identification of required capabilities for the constituent system, operations, connections, emergent behavior, among other elements that characterize a SoS.  Bryans (2014) has proposed a contractual description of constituent systems interfaces, to address the imprecision and uncertainty inherent in the description of constituent systems. For quality assurance and certification, such contractual support needs to be defined and managed seamlessly along with the lifecycles of system development, componentization and maintenance.  

In recent years, domain specific frameworks have been developed for model-based development (MBD) of cyber-physical systems in many industrial domains. There are many modeling frameworks that can be used to support the description and management of SoS, such as SysML[footnoteRef:1], AADL[footnoteRef:2] and EAST-ADL[footnoteRef:3]. For SoS, additional modeling constructs to support the expression of desired or prohibited emergent properties, which are normally not be able to be predicted accurately at system development time, become necessary. In regard to this, COMPASS[footnoteRef:4] represents an approach that extends SysML to support a model-based engineering for SoS requirements. The approach also provides a framework, consisting of a collection of viewpoints, for a systematic reasoning about faults in SoS. To cope with the evolutionary nature of SoS in terms of evolving, adaptive and iterative life-cycle, the DANSE[footnoteRef:5] project has contributed with methodological support based on a formal semantics for SoS interoperations. Nevertheless, there is still no consensus on common constructs for the description or characterization of SoS, in particular in regard to the software services for dynamic configuration and coordination control (Guessi 2015). The challenges are also related to the difficulties in industrial adoptions of the concepts and technologies.  [1:  	http://www.omgsysml.org/]  [2:  	http://www.aadl.info/]  [3:  	http://www.east-adl.info/]  [4:  	http://www.compass-research.eu/]  [5:  	http://www.danse-ip.eu/] 


As a generic constraint, any operation-time reasoning must be not only fast and resource efficient, but also verifiable and validatable in the sense that for safety-critical scenarios the formal quality assurances of decisions have to be supported. This calls for run-time support for data management, architecture for deterministic execution, and services for quality of service guarantee. One base technology to be exploited here is Autonomic Computing (AC) which is essentially concerned with the deployment and management of run-time reasoning schemes (Eze 2012). This includes support mechanisms e.g. in the case of policy based systems there is a need for infrastructure to hold the policy repository and to load them into components. Adaptation decisions at runtime require exact and actual information about the current system state (Pelc 2009; 2011), as well as data from the design models such as in regard to the software allocation and timing constraints, but being evolved along with the adaptations (Bencomo 2014). 

A great many techniques have been developed and explored for advanced verification and validation of complex systems, both statically at design-time and dynamically at run-time. As the exhaustive exploration of the complete state space, even from the view of one single agent in SoS, is not feasible in practice. One particularly promising type of model checking for SoS is the so-called on-line model checking, as explored in Althoff (2014). In this approach, the resulting combined state space is continuously monitored against critical safety properties, or used to compute safe trajectories. Another approach that combines model-checking with dynamic model validation and creation based on machine-learning is learning-based testing (LBT) (Meinke, 2014). A further approach is adaptation-based programming (ABL) (Groce, 2012; Bauer, 2013), which tries to take advantage of machine learning methods including reinforcement learning for the improvement of testing. New methodological approaches to operational risk assessment include statistical analysis of near-miss and incident data using Bayesian theory to estimate operational risk value and the dynamic probabilities of accidents sequences having different severity levels (Meel, 2006); and the application of simulation models to analyze scenarios using dynamic fault trees (Xu, 2004). However, when dealing with complex CP SoS it is often impossible even to establish the probabilities of interest. In such cases approximations (one´s belief) of the probabilities of interest must be calculated instead. Useful techniques in this regard, include Dempster-Shafer Theory (SAFESPOT 2007) and Belief Propagation (Mooij 2008).

Concepts and features of the ICT platform

The envisioned ICT platform aims to act a framework consisting of models, methods, tools and services, and thereby provide the capability of enabling a qualified continuous development of CP SoS. It follows the knowledge-in-the-loop approach proposed by Chen (2015), where qualified ontological models are synthesized automatically for effective model-predictive operation-time self-managed decision making and other knowledge inference tasks. See Fig. 1 for an overview of the concept.

[image: ]

[bookmark: _Ref454959084]Fig. 1. Conceptual overview of the ICT platform for CP SoS.





As shown in the figure, the scope of support ranges from (1) Development-time knowledge and models for system design and implementation, risk assessment and quality assurance; to (2) Operation-time and post-deployment time data and services for orchestration, management and evolution; and to (3) A meta-modeling framework for knowledge modeling, inference, integration and management.  For the development-time, the support is centered on a multi-viewed description of CP SoS requirements (e.g. goals) and compositions (e.g. agent services) with formal analysis and simulation for risk management and quality assurance. The operation-time and post-deployment support is related to model-predictive system control and adaptation (e.g., for situation awareness, orchestration and risk assessment), as well as model-based operation data analysis and knowledge inference (e.g. for system validation and knowledge enrichment). One particular feature of this ICT platform is its support for automated synthesis of ontological models and necessary system services and contracts for operation monitoring and control with underlying intelligent filters and networks (e.g. Kalman Filter, Artificial Neural Network). To this end, the meta-modeling framework is used to consolidate, connect, and transform the knowledge and models across development-time, operation-time and post-deployment. This allows an evolutionary development of CP SoS with continuous flows of operation-time observations and other post-deployment knowledge back to the development and maintenance phases for anomaly treatment, system validation, maintenance and evolution.

[bookmark: _GoBack]The modeling framework provides with necessary formalisms, methods and tools, operation‐time and post‐deployment data and services for CP SoS development, operation, management and evolution. One key base technology to be adopted for this ICT platform for CP SoS is the modeling framework EAST-ADL (Kolagari 2016; Chen 2011), which represents one key European initiative towards a standardized multi-viewed description of automotive electrical and electronics systems. It is a result of a series of consecutive projects: ITEA EAST-EEA, EU FP6 ATESST I and EU FP7 ATESST II, and EU FP7 MAENAD. By integrating many generic system description frameworks (e.g. SysML) and automotive specific methodological and technological considerations (e.g. RIF/ReqIF), EAST-ADL, through its meta-model, constitutes a fundamental knowledge-model for the descriptions of cyber-physical systems in general. For example, it allows a wide range of functional safety related concerns (e.g. hazards, faults/failures, safety requirements) to be declared and structured along with the lifecycle of nominal systems. Although constituting a very good basis for capturing and formalizing various system aspects, current EAST-ADL does not provide any explicit support for the modeling and analysis of CP SoS with regard to emergent behaviors, dynamic risk assessment, uncertainties and related design verification and validation issues. Therefore, regarding the support for CP SoS, meta-model extensions and specializations of EAST-ADL need to be developed.  These include additional modeling constructs to support the expression of run-time ontologies for effective reasoning for desired or prohibited emergent properties, which are normally not be able to be predicted accurately at system development time, as well as additional methods for automated transformation and traceability between design-time and run-time models. 

Conclusion

A SoS is a type of open system in stark contrast with conventional monolithic system with well-defined boundary and isolated and interactions. This requires several radical engineering paradigm shifts. While the challenges are currently being tackled by different industry and research efforts, significant issues remain in the areas of quality assurance, uncertainty and risk treatment, change and evolution management, etc. This paper discusses a model-based approach to an integrated development, execution, and evolution of dependable systems, aiming to pave the way for a next generation ICT platform for CP SoS, primarily in an automotive context. The approach emphasizes a knowledge-in-the-loop decision-making that goes across multiple eco-system and lifecycle phases. In particular based on EAST-ADL, it provides a modeling framework for integrating design-time formal analysis and simulation, with operation-time model-predictive system control and adaptation and other post-deployment time data analysis and knowledge inference capabilities.
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