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Statistical analysis and modelling of gene count
data in metagenomics

Viktor Jonsson

Division of Applied Mathematics and Statistics
Department of Mathematical Sciences

Chalmers University of Technology and University of Gothenburg

Abstract

Microorganisms form complex communities that play an integral part of all
ecosystems on Earth. Metagenomics enables the study of microbial communi-
ties through sequencing of random DNA fragments from the collective genome
of all present organisms. Metagenomic data is discrete, high-dimensional and
contains excessive levels of both biological and technical variability, which
makes the statistical analysis challenging.

This thesis aims to improve the statistical analysis of metagenomic data in two
ways; by characterising the variance structure present in metagenomic data,
and by developing and evaluating methods for identification of differentially
abundant genes between experimental conditions. In Paper I we evaluate
and compare the statistical performance of 14 methods previously used for
metagenomic data. In Paper II we implement an overdispersed Poisson model
and use it to show that the biological variability varies considerably between
genes. The model is used to evaluate a range of assumptions for the variance
parameter, and we show that correct modelling of the variance is vital for
reducing the number of false positives. In Paper III we extend the model used
in Paper II to incorporate zero-inflation. Using the extended model, we show
that metagenomic data does indeed contain substantial levels of zero-inflation.
We demonstrate that the new model has a high power to detect differentially
abundant genes. In Paper IV we suggest improvements to the annotation and
quantification of gene content in metagenomic data. Our proposed method,
HirBin, uses a data-centric approach to identify effects at a finer resolution,
which in turn allows for more accurate biological conclusions.

This thesis highlights the importance of statistical modelling and the use of
appropriate assumptions in the analysis of metagenomic data. The presented
results may also guides researchers to select and further refine statistical tools
for reliable analysis of metagenomic data.

Keywords: metagenomics, statistical modelling, hierarchical statistical models,
gene ranking, overdispersion, zero-inflation, false discovery rate, receiver
operating characteristic curves.
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1 Background

1.1 Metagenomics

Microorganisms, such as bacteria, viruses and fungi, are ubiquitously present
everywhere around us (Pace, 1997; Whitman et al., 1998). Contrary to popular
belief, most microorganisms are not harmful to humans; rather, they consti-
tute an integral part of all living ecosystems. Microorganisms are typically
studied by isolating and cultivating single isolates. However, microorgan-
isms form complex communities that contain thousands of species (Roesch
et al., 2007). In addition, a vast proportion of microorganisms are difficult to
cultivate using standard protocols (Schloss and Handelsman, 2005), thus mak-
ing culture-dependent approaches unsuitable for capturing the intricacies of
most microorganisms. Metagenomics was introduced as a culture-independent
method for studying microbial communities at the genomic level (Handelsman
et al., 1998). In short, the DNA of all cells present within a sampled microbial
community is extracted. The DNA is then randomly sheared and sequenced,
resulting in a large set of short DNA fragments, called reads. These reads
represent a random sample from the metagenome, i.e. the collective genome of
all organisms present in the community (Rondon et al., 2000). Metagenomics,
the study of the metagenome, therefore provides a way to analyse both the
structure and functional capability of metagenomic communities.

Originally, metagenomics was performed using slow and expensive Sanger se-
quencing (Sanger and Coulson, 1975), with the first data sets consisting only of
thousands of reads (Healy et al., 1995). With the introduction of modern high-
throughput sequencing methods, which have the ability to sequence multiple
DNA fragments in parallel, the potential of metagenomics has considerably
increased (van Dijk et al., 2014; Scholz et al., 2012). Large sequencing efforts,
such as the Human Microbiome Project (Turnbaugh et al., 2007; Human Micro-
biome Project Consortium, 2012) and the Earth Microbiome Project (Gilbert
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2 1. Background

et al., 2014), have recently generated data sets consisting of billions of reads
corresponding to trillion of nucleotides (base pairs). In addition the number
of applications of metagenomics to fields in the life sciences is continuously
increasing. Within medicine, metagenomics has been used to link changes in
the microbial communities living inside and on our bodies to common dis-
eases, for example, type-II diabetes (Karlsson et al., 2013) and Crohn’s disease
(Manichanh et al., 2006). In ecology, metagenomics has been applied to study
the microbial communities in a wide range of ecosystems from prairie soil
(Howe et al., 2014), ocean water (Sunagawa et al., 2015; DeLong et al., 2006)
and the cow rumen (Ross et al., 2013). In ecotoxicology, it has been used to
understand the role of microbial ecosystems in biodegradation in waste wa-
ter treatment (Fang et al., 2013), and to characterize the spread of antibiotic
resistance genes in the environment (Kristiansson et al., 2011; Bengtsson-Palme
et al., 2014).

1.2 Quantification of genes

Gene-centric metagenomics is the study of the functional capability of a mi-
crobial community (Hugenholtz and Tyson, 2008). A gene is a short stretch
of DNA that encodes a protein which in turn performs a specific biological
function. The genome of a typical bacterial species contains thousands of genes,
which means that the number of genes in a microbial community is in the
order of millions. Genes may exist in several variants across multiple species
yet perform similar functions. To facilitate the biological interpretation, genes
are often grouped together in protein domains, gene families or orthologous
groups that correspond to a similar biological function in different species (e.g ,
eggNOG (Huerta-Cepas et al., 2015), KEGG (Kanehisa et al., 2008), TIGRFAM
(Haft et al., 2013) and SEED (Overbeek et al., 2005)). The choice of resolution
used, from single genes to wide groups of genes, depends on the biological
question. For consistency, the term gene will be used throughout this thesis to
refer to each of these different options.

Beyond the experimental steps of sample preparation, DNA extraction and
sequencing, several steps are necessary to quantify the gene content of a sample
(Wooley et al., 2010). The steps are summarized in Figure 1. The raw data from
the sequencing machine consist of a large number of short DNA fragments
called reads, which are typically 75-400 nucleotides in length depending on
the technology used (van Dijk et al., 2014; Scholz et al., 2012). However, DNA
sequencing is not exact and the raw reads often contain sequencing errors,
for example, misidentified nucleotides or insertion of extra nucleotides. De-
pending on the outcome of the sequencing and the sequence technology used,
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this error rate can be as high as 1% of the sequenced nucleotides (Quail et al.,
2012). Sequencers provide a quality score for each nucleotide that reflects the
probability of an error, and this score is used to identify and remove low-quality
reads (Schmieder and Edwards, 2011). Next, the aim is to determine the genetic
origin of the remaining high-quality reads. To facilitate this process, each read
is mapped to an annotated reference database. In the mapping step, reads are
aligned to the sequences within the reference database in order to identify the
possible matches (Scholz et al., 2012). A read may match to several positions
within the reference database, but only the best match is generally kept.

The reference database can be constructed in several different ways. For exam-
ple, the reference database can be a collection of previously characterized genes
or microbial genomes. Alternatively, the database can be constructed by directly
assembling the reads from the sequenced metagenome into longer stretches
of DNA (Mende et al., 2012). The sequences in the reference database are
typically annotated based on their biological function, which is often predicted
based on sequence similarity to previously studied genes. The annotation can
either be single genes or groups of genes predicted to have a similar structure
or function depending on the desired level of resolution (see Paper IV). The
reference database typically contains several variants of every gene, for exam-
ple, different bacterial species share core functionality (Human Microbiome
Project Consortium, 2012). Every read that maps to a specific gene, regardless
of location in the database, is counted as an occurrence of that gene. In this
way, all reads are "binned" together resulting in a list that contains the number
of occurrences of each gene. The final gene counts are thus measures of the
relative abundance of each gene in each sample.

1.3 Statistical challenges

An essential aspect of gene-centric metagenomics is detecting changes in rela-
tive gene abundance in relation to experimental parameters. Examples of such
parameters are the health status of the human host, the temperature along a
gradient and the presence or absence of an anti-microbial compound. Differen-
tially abundant genes are detected by statistically assessing whether specific
genes differ in relative abundance between communities. However, metage-
nomic gene count data i) is discrete and undersampled, ii) is high-dimensional,
iii) contains high levels of biological and technical variability and iv) is of-
ten represented by few biological replicates. These characteristics make the
statistical analysis of metagenomic data challenging on many levels.
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Figure 1: Overview of gene quantification in metagenomics. DNA is extracted and
randomly sequenced from a microbial community. The resulting reads are then mapped
to reference sequences that have been annotated according to their gene content. Each
read that matches a gene is counted as an occurrence of that gene. The end result is a
list of counts for each sample providing the relative abundance of each gene.

Because genes are quantified by counting the number of reads matching specific
genes, metagenomic data becomes discrete, asymmetric and has a dependency
between the expected value and the variance. This means that standard statis-
tical methods that rely on normality assumptions are not suitable and can lose
power to detect differences (Law et al., 2014). Metagenomes are also undersam-
pled, meaning that the sequencing depth is not sufficient to reliably capture the
full genetic diversity present in a community (Paulson et al., 2013; Unterseher
et al., 2011). This means that a large proportion of genes may be represented
with only a few reads, making the statistical analysis challenging. Rare genes
with low abundance can also fall below the detection limit while still being
present in the community, making it difficult to compare abundances between
samples.

Metagenomic gene count data is high-dimensional and often thousands of
genes are tested for differential abundance simultaneously. Each test may result
in a false positive making it difficult to distinguish the few truly differentially
abundant genes. Correction for multiple-testing is therefore needed to control
the type-I error rate, which reduces the power to detect the true differences
(Dudoit et al., 2003). Thus, methods with high power and low type-I error rate
are needed for accurate analysis of metagenomic data.

Metagenomic data is affected by high levels of biological and technical variabil-
ity. The biological variability reflects the variation in gene abundances between
microbial communities. The variation is induced by differences in uncontrolled
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environmental factors between samples, for example temperature, salinity,
nutrient availability, pH and host age (Fierer et al., 2012; Lozupone et al., 2012).
Because the composition and abundance of species change due to these fac-
tors the abundance of their genes also change. Furthermore, bacteria, which
constitute a major part of many bacterial communities, have plastic genomes,
and gene content can vary between individual strains of the same species
(Greenblum et al., 2015). For example, the genome of Escherichia coli contains
3188 genes within the core genome, while the plastic genome, which contains
approximately 1500 genes, can vary between strains and 90,000 possible genes
variants have been characterized to date (Land et al., 2015). Genes can also be
present on horizontal gene transfer elements, such as plasmids, where it is pos-
sible for a single bacterium to contain several copies of the same plasmid. The
horizontal gene transfer elements further increase the variation in gene abun-
dances between samples. Finally, microbial species are not omnipresent and
can be entirely missing in samples, causing observations represented by zero
reads (Sohn et al., 2015). These characteristics make the biological variability
substantial in most metagenomic data sets.

Technical variability is introduced due to differences in sample preparation
sample preparation (Morgan et al., 2010), sequencing errors (Quail et al., 2012),
differences in sequencing depth between samples (McMurdie and Holmes,
2014) and incorrectly mapped reads in the gene quantification step (Wooley
and Ye, 2009). The variability between technical replicates has been shown to
be smaller than the biological variability (Nayfach and Pollard, 2016). However,
an unknown factor of technical errors is the bias introduced from biological
databases. Metagenomics aims to study previously unknown microorganisms;
however, all databases are based on previously identified genes and species
(Rinke et al., 2013). In 2015, the number of completed bacterial genomes was
4000 (Land et al., 2015), which is only a small proportion of the total number of
bacterial species, estimated to be at least 10 million (Curtis et al., 2002; Pedrós-
Alió, 2006). The lack of accurate reference sequences can cause genes to be
incorrectly annotated or missed completely (Wooley and Ye, 2009).

Metagenomic data sets often represented by few biological replicates due to the
high sequencing costs (Knight et al., 2012; Prosser, 2010). The lack of replicates
worsens the problems induced by the other challenges. For example, correctly
estimating the variability of a gene is difficult when only a few samples are
available. The obvious solution is to encourage replicated experimental designs.
However, data sets with a low number of samples are still being produced and
statistical methods that can provide robust estimates even when few samples
are available are therefore vital.
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2 Aims

The aim of this thesis is to improve the statistical analysis of metagenomic
gene count data. The many challenges that are present in the analysis of
metagenomic data require special care to be taken in model development
to maintain high power to detect differences and a low proportion of false
positives. The papers included in this thesis cover the evaluation of previously
proposed methods, the investigation of the data itself and the development of
new methods. Specifically, the aims are as follows:

• Evaluate previously proposed statistical methods for detecting differen-
tially abundant genes in metagenomic gene count data (Paper I).

• Investigate and characterize the variance structures present in metage-
nomic gene count data (Papers II-III).

• Develop statistical models for improved detection of differentially abun-
dant genes (Papers II-III).

• Extend the binning process to increase the power to detect biologically
relevant effects in metagenomic gene count data (Paper IV).

7
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3 Statistical analysis of metage-
nomic data

The following sections outline the statistical analysis of metagenomic gene
count data and define the mathematical notation used throughout this thesis.
This section also provides an overview of previously suggested statistical meth-
ods. Note that this section does not include a discussion of the performance of
each method; for such a discussion, see papers I and III.

3.1 Identification of differentially abundant genes

In the typical gene-centric metagenomic experiment considered, the aim is
to identify differentially abundant genes associated to experimental factors.
Throughout this thesis we will focus on the comparison between two groups of
samples. Note that more complicated experimental designs are possible, such
as regression or comparisons between multiple conditions. For a comparison
between two groups, the data takes the form of a matrix of counts with n rows
corresponding to genes and m1 +m2 = m columns representing samples. Let
Yij be the counts of gene i in sample j, and let Nj denote the total sum of
counts within each sample j.

Before the genes in the data are tested for differential abundance, the data
is normalized to make the samples comparable and to reduce the variability
in the data (Nayfach and Pollard, 2016). Commonly, the total sum of counts
within each sample, Nj , is used for normalization to correct for differences in
sequencing depth between samples. Other normalization methods have been
proposed but evaluation of these are beyond the scope of this thesis, for more
information see McMurdie and Holmes (2014). Throughout this thesis, the
total sum, Nj , will be used for most methods, either to normalize the data or as

9



10 3. Statistical analysis of metagenomic data

an off-set specified within a model; the exception is software packages that by
default use other normalization methods.

Each gene (row), i, is tested independently against the null hypothesis of no
difference in relative abundance between groups, i.e.,

H0i : No difference in relative abundance for gene i between groups,
Hai : Difference in relative abundance for gene i between groups.

The exact formulation of the hypotheses varies depending on the underlying
distributional assumption used by the specific method. Here we consider two-
sided hypotheses for differential abundance but one-sided variants are also
possible. The null hypotheses can then be rejected or not based on the outcome
of the test statistic used. In most situations, a p-value is calculated for each gene
and used to rank genes based on the significance of their differential abundance.
For Bayesian methods (for example in paper II and III) other decision rules or
metrics are used to rank the genes, such as the posterior probability for the
relative abundance to differ between experimental conditions. The genes on
top of this ranking list are then considered likely candidates to be differentially
abundant and investigated further. Ideally, all of the truly differentially abun-
dant genes would end up in the top of the ranking list, but this is never the
case. These errors are often caused by small effect sizes, high variability in the
data and a lack of biological replicates.

3.2 Overview of statistical methods

3.2.1 Tests for comparing pairs of samples

A number of classical statistical methods have been proposed for and applied
to metagenomic data. In the early days of metagenomics, when sequencing
was expensive and replicated experimental designs were rare, methods for
comparing pairs of samples were used. Among the most prevalent is Fisher’s
exact test (Fisher, 1922, 1925). The test uses a 2 × 2 contingency table to test
independence and tests whether there is an association between the number
of matching fragments and the experimental conditions (Smith et al., 2012).
Fisher’s exact test has also been used to compare groups of metagenomes
when the samples in each group have been pooled per gene, i.e. summing the
counts per gene within each group (Parks and Beiko, 2010). Let ysumi1 and ysumi2

denote the sum of counts in the two groups for gene i, let ri1 and ri2 denote the
sum of counts for all genes excluding gene i, and let Nsum

1 and Nsum
2 denote
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the sum of the total counts in the two pooled groups (see Table 1).

Table 1: Contingency table for a pooled analysis with Fisher’s exact test.
ysumi1 and ysumi2 is the sum of counts in each group, ri1 and ri2 the sum of
counts in all genes excluding gene i and Nsum

1 and Nsum
2 are the sum of the

total counts in the two pooled groups.

Group 1 Group 2

Counts in gene i: ysumi1 ysumi2

Counts in other genes: ri1 ri2

Total counts: Nsum
1 Nsum

2

Assuming that the margins are fixed, the probability of observing a specific out-
come in the pooled case can be calculated via the hyper-geometric distribution
as,

P(Y sumi1 = ysumi1 ) =

(
ysum
i1 +ysum

i2
ysum
i1

)(
ri1+ri2
ri1

)(
Nsum

1 +Nsum
2

Nsum
1

) . (3.1)

The p-value for a two-sided Fisher’s exact test is then calculated as the sum of
the probabilities for all 2 x 2 tables with a lower probability than the observed
table.

Another commonly applied test used for pairwise comparisons between sam-
ples is the binomial test, which has also been applied to metagenomics (Kris-
tiansson et al., 2009; Mackelprang et al., 2011). This test compares the propor-
tion of gene i to the total counts in each group. Under the null hypothesis of an
equal proportion of gene i across both groups, the test statistic X follows the
binomial distribution:

X ∼ Binomial(ysumi1 + ysumi2 ,
Ntot1

Ntot1 +Ntot2
). (3.2)

The p-values are derived directly from the binomial distribution using a two-
sided alternative hypothesis. When the total number of fragments is large the
binomial test is approximately equal to Fisher’s exact test assuming that the
counts for different genes are independent.

Another early method specifically designed for the analysis of metagenomic
data was XIPE-TOTEC (Rodriguez-Brito et al., 2006), which is still being used
today (Jeffries et al., 2015). XIPE-TOTEC focuses on pairwise comparisons
between samples and assesses significance by bootstrapping the counts within
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each sample. In short, the algorithm works as follows. First, the counts in
each of the two samples are redrawn with replacement to generate a large
number of mock data sets. The difference between samples for each gene in
every mock data set is calculated, and then the median difference for every
gene is calculated. Next, a new set of mock data sets is created, but fragments
belonging to any gene in any of the two original data sets are selected and a
new set of gene-wise differences are calculated. This new set of differences
constitutes a reference distribution. To determine the significance of each gene,
the median difference of the original data set is compared with the reference
distribution. At the 90% confidence level, a gene is considered significant
if its median difference is smaller then the 5th percentile or larger than the
95th percentile. Note that XIPE-TOTEC was not included in the comparison
performed in Paper I of this thesis due to the lack of an easily accessible
implementation.

3.2.2 Methods based on normality assumptions

The t-tests are among the most commonly used statistical tests and have been
applied in various forms to metagenomic gene count data (Grzymski et al.,
2012; Turnbaugh et al., 2009; Ward et al., 2013). This includes both Student’s
t-test assuming equal variances in both groups and Welch’s t-test assuming
non-equal variances. However, t-tests rely on the assumption that the data
is normally distributed. Metagenomic count data is discrete, often skewed
and has a dependency between the mean and the variance. Thus, normality
assumptions do not hold. To make the data symmetric and remove the depen-
dency between the mean and the variance, the data is generally transformed
before testing (Anscombe, 1948). Often used examples of transformations are
the square root and log(Yij + ε) where ε is a number e.g. 1 or 0.1.

The method metaStats is also based on a t-statistic but derives p-values using
permutations (White et al., 2009). The raw counts are transformed using the
base-two logarithm, and Welch’s two sample t-statistics is computed for each
gene. A null distribution for the statistic is then computed by permuting
samples between groups and recalculating the t-statistic for each permutation.
The p-values are then derived as the proportion of permuted t-statistics greater
than the observed statistic as,

pi =
1

B

B∑
b=1

I{|t0bi | ≥ |ti|}, (3.3)

where B denotes the number of permutations, ti is the observed t-statistic of
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gene i and t0bi are the permuted t-statistics. At low sample sizes (≤ 8), where
there are too few permutations to accurately estimate the p-values, metaStats
pools the resampled t-statistics for all genes to form a reference distribution
and calculates the p-values according to

pi =
1

nB

n∑
j=1

B∑
b=1

I{|t0bj | ≥ |ti|}, (3.4)

where the first sum is taken over all genes. The authors argue that the above
tests are inaccurate for genes with very low abundance, i.e. less than 1 count
on average across all samples. For this case, they pool the counts within each
group and use Fishers’s exact test to derive the p-value (see above).

The method metagenomeSeq assumes that gene abundances in metagenomes
follow a log-normal distribution (Paulson et al., 2013). However, metagenomic
data is often sparse due to undersampling and contains excess zeros. Because
the log-normal distribution does not support zeros, the authors extend the
model to include zero-inflation. The distribution of the log-transformed counts,
xij = log2(1 + yij), is defined as a mixture distribution

fzig(xij ;Nj , µi, σi) = πj(Nj)I0(xij) + (1− πj(Nj))fcount(xij ;µi, σi), (3.5)

where πj(Nj) is a mixture parameter depending on the total counts (Nj),
I0(xij) is a point mass at zero, and fcount(xij ;µi, σi) is a log-count distribution
approximated by a normal distribution. The estimates of differential abun-
dance derived using the mixture distribution are tested using the moderated
t-statistic implemented in limma (Smyth, 2004). The limma package stabilizes
the variance estimates of each gene by sharing information between genes
using an empirical Bayes approach. The zero-inflation is modelled on a per
sample basis as a function of the sequencing depth within each sample with
the motivation to correct for undersampling. Note that metagenomeSeq was
primarily developed for analysis at the species level (i.e. operational taxonomic
units (OTUs)), but it has also seen use on gene count data (Noyes et al., 2016).
In addition to the statistical model metagenomeSeq also implements a new
normalization procedure, cumulative sum scaling; for details, see Paulson et al.
(2013).

RAIDA (Sohn et al., 2015) features a zero-inflated log-normal model for dif-
ferential abundance testing. Let ykj denote the sum of counts of the common
divisor in sample j. The ratio of the observed counts to the common divisor,
rij =

yij
ykj

, is then modelled using the zero-inflated log normal distribution as
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Rεij ∼

{
Uniform(0, ε) w.p. ηi

Log-normal (µi, σi) w.p. 1− ηi
(3.6)

where ε is used as an offset to account for the lack of support in the log-normal
distribution and ηi is the zero-inflation probability. In contrast to metagenome-
Seq, RAIDA uses a gene-specific zero-inflation parameter. The model is fitted
using the EM algorithm with p-values derived using the moderated t-statistic
of limma (Smyth, 2004). RAIDA also features a heuristic and robust approach
for selecting a set of genes to use as the common divisors. The assumption used
is that the proportion of differentially abundant genes between two conditions
should be small. Thus, genes are selected to be included in the common divisor
by iteratively testing which common divisor that yields the fewest significant
genes.

3.2.3 Non-parametric methods

Non-parametric methods are popular for inference because they avoid the
problem of making specific assumptions on the distribution of the gene count
data. The most commonly used non-parametric test is the Wilcoxon-Mann-
Whitney test (WMW) (Karlsson et al., 2013; Sanli et al., 2013). The WMW test
assumes that the data originates from distributions with the same shape and
scale and tests whether one sample is stochastically larger than the other by
comparing the ranks of observations (Mann and Whitney, 1947; Wilcoxon,
1946). The Kruskal-Wallis test which extends the WMW test to more than two
groups has also been applied to metagenomic data (Segata et al., 2011).

3.2.4 Generalized linear models

Another way to model count data is generalized linear models (GLM) (Mc-
Cullagh and Nelder, 1989). GLMs is a term used for a wide range of models
that extend ordinary linear models beyond the assumptions of normality of
residuals and permit other outcomes, e.g. counts or proportions that are often
used in metagenomics. The expected outcome of gene i, E[Yi], is modelled
using a linear predictor via a link function g, i.e.,

g(E[Yi]) = Xβi, (3.7)
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where X denotes a design matrix ans βi denotes a vector of predictors for gene i.
Several different GLMs have been applied to metagenomic data. These include
GLMs based on the Poisson distribution, which has the assumption that the
mean is equal to the variance (E[Y ] = var[Y ] = λ) and was previously used in
(Yatsunenko et al., 2012). Another is the quasi-Poisson, which includes a scaling
factor, θ, allowing for variability beyond the Poisson variability parameter, i.e.
E[Y ] = λ and var[Y ] = λθ (Kristiansson et al., 2009). Other examples include
the negative-binomial (Zhang et al., 2017) zero-inflated negative binomial (Fang
et al., 2016) and beta regression (Peng et al., 2016).

3.2.5 Methods from RNA sequencing

Much of the development of count-based statistical methods for large scale
biological data has taken place within the related field of RNA sequencing
(RNAseq) (Robles et al., 2012; Soneson and Delorenzi, 2013). Here, the counts
represent the expression levels of genes within a single organism, and while
the structure of the final data is similar to that in metagenomics, the underlying
biological process is very different. However, many of the techniques used,
such as overdispersed count models are applicable to metagenomic data. Nu-
merous methods have been proposed, and a subset of methods developed for
RNAseq that have been applied to metagenomic data is presented below.

DESeq2 (Love et al., 2014) and edgeR (Robinson et al., 2010) are two of the
most commonly used methods for RNAseq that have also been applied to
metagenomic data (Castro-Nallar et al., 2015). Both methods model the data as
overdispersed counts using the negative binomial distribution and stabilize
variance estimates using an empirical Bayes approach. However, the methods
use slightly different approaches for calculating the amount of variance infor-
mation to share between genes and determining which genes that should have
their variance estimates adjusted. In addition, the methods are implemented
in software packages that by default rely on different normalization methods;
trimmed mean of m-values (TMM) (Robinson and Oshlack, 2010) for edgeR
and meadian-of-ratios (Anders and Huber, 2010) for DESeq2. DESeq2 also
includes automatic filtering for outliers and genes with low expression.

Voom (Law et al., 2014) was developed to retain the simplicity and ease of
use of standard linear models while accounting for the count-based nature of
RNAseq data. Voom achieves this by modelling the expected value of the log
counts per million (log-cpm),

cij = log2

(
yij + 0.5

Nj + 1.0
× 106

)
(3.8)
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, as a standard linear model,

E[Cij ]) = xTj βi , (3.9)

with xj being a vector of co-variates and βi being a vector of coefficients. Using
the fit of this simple model, Voom identifies the mean-variance dependency
found in count data using a trend line between the mean log counts and the
square root of the standard deviations. This trend line is translated into a set of
precision weights wgi, which, together with the log-cpm counts, are fed into
the limma package to detect differential abundance.

3.3 Evaluation of statistical performance

The evaluation of statistical performance is a part of all papers included in this
thesis. This section describes how to generate suitable test data that is similar
to real metagenomic data. This section also explains several of the performance
measures used to evaluate statistical power and control of false positive rates.

3.3.1 Generating test data

To analyse the performance of statistical methods, suitable test data is needed,
both to ensure that the type-I error rate is controlled and to evaluate the power
to detect differences. However, many different forms of test data can be used,
e.g. data simulated from parametric distributions or real metagenomic data.
In this thesis we primarily use resampled data, which can be viewed as a mix
between real and simulated data.

Resampled data is generated by randomly drawing samples from a real metage-
nomic data set and then adding simulated effects (see figure 2). The algorithm
used in the papers proceeds as follows. Start with a large (>30 samples) metage-
nomic data set that is representative of some environment, for example, the
human gut or an environmental ecosystem. Next, randomly select the desired
number of samples without replacement and divide them into two groups.
This new data set will represent a null distribution where genes, on average,
will have no effect.

Next, effects are added to the resampled data. There are several possible
ways to add effects but we argue that downsampling (thinning) the counts
has a low impact on the structure of the data. First, the desired proportion



3.3. Evaluation of statistical performance 17

Figure 2: Generating resampled data to evaluate performance. First draw a subset of
samples from a large metagenomic data set and randomly assign them to two groups.
Add effects to the desired number of genes by randomly downsampling counts in
all samples belonging to one of the groups. Evaluate performance and repeat the
resampling procedure the desired number of times.

(e.g. 10%) of genes in the resampled data set are randomly selected to have a
difference in relative abundance of q (e.g. 5). All of the samples belonging to
one group (randomly selected) then have their observed counts yij replaced
with downsampled counts ỹij drawn from a binomial distribution according
to,

ỹij ∼ Binomial(yij ,
1

q
). (3.10)

This corresponds to randomly removing DNA fragments with a probability of
(1− 1

q ). Because effects are simulated by removing counts, only negative effects
can be added, but by dividing effects equally among both groups, both positive
and negative effects can be included. The proportion of affected genes can be
different between groups but balanced effects are the main focus of this thesis.
For a discussion of unbalanced effects, see the work by Sohn et al. (2015).

Data simulated directly from parametric distributions has the benefit of pro-
viding full control over all parameters. However, simulated data relies on
many assumptions that most likely are not true in real data. This can result
in a strong bias towards models that are based on similar assumptions. Con-
versely, resampled data provides a more realistic basis for the evaluation of



18 3. Statistical analysis of metagenomic data

statistical performance and it retains the within-sample variability present in
real data. Furthermore, downsampling provides a non-intrusive way to add
effects by preserving the variance structure of the affected gene. Note that
while resampling typically results in data that is more realistic compared to
simulations, it still presents an idealized case. In any real sampling situation,
such as comparing a set of control samples with a treatment group, the samples
are never a true subset of the population, and there can be several parameters,
such as pH, temperature, age of patient, and so forth, that may co-vary with
the groups and mask the effect of the treatment. On the other hand, resampled
data becomes truly randomized on average, and effects are added orthogonally
to all potential co-variates. In addition, effects are added independently and
with equal probability to all genes in the data set, disregarding the abundance,
variability and proportion of zeros present in the genes. In the current imple-
mentation, the added fold-change is equal for all gene with an effect and all
samples are are downsampled with the same parameter. In a real comparison,
genes would be expected to have different effects and the effect size between
samples is likely to vary for a single gene. Furthermore, differences in gene
abundances between microbial communities are likely to be strongly correlated.
For example, if an organism is favored in an environment, all genes specific to
that organism would increase their relative abundance. However, increasing
the complexity of the resampled data would make the results less transparent,
and we argue that resampling still provides a suitable approach to evaluate the
performance of statistical methods.

The benefit of using real metagenomic data for testing is that no distributional
assumptions are needed. Real data is often used as a proof of concept that
a new method works as intended. When reanalysing real data with a new
method, the result can be compared to those previously attained, as was done
in Paper IV. The downside is that the true differences, if any, are unknown
and the performance of the method can therefore not be correctly estimated.
For this reason, well-studied real data sets, such as the reference data sets
generated by the sequence quality consortium for RNAseq data (Seqc/Maqc-Iii
Consortium, 2014), can be used but no such initiative exists for metagenomic
data. Another approach is to create mock communities (Morgan et al., 2010),
but these will not capture the full complexity of real metagenomic communities
and should therefore be considered as idealized cases. Thus, it is not possible
to solely rely on real data for the evaluation of statistical performance within
metagenomics.



3.3. Evaluation of statistical performance 19

3.3.2 Measures of statistical performance

A large proportion of this thesis focuses on the evaluation of statistical perfor-
mance. Throughout these papers, three different aspects have been primarily
been considered: the ability to rank genes based on differential abundance
by generating receiver operating characteristic (ROC) curves and calculating
the area under the curve (AUC) (Fawcett, 2006) (Papers I-III), the ability to
control type I errors by investigating the distribution of p-values under the
null hypothesis (Paper I) and the ability to control errors in a multiple testing
situation through the false discovery rate (FDR) (Benjamini and Hochberg,
1995)(Papers I and IV). This section will outline these different performance
measures and their advantages and drawbacks.

Ranking genes based on differential abundance is a common way to analyse
metagenomic data. Ideally, the list of ranked genes generated by a statistical
test should contain the truly differentially abundant genes at the top and
non-differentially abundant genes at the bottom. However, ranking lists are
typically far from perfect due to the variability present in the data, lack of
replicated samples, small effect sizes and non-optimal model assumptions.
To evaluate ranking performance, we use ROC curves which are a common
method for visualising the statistical performance of a classifier, in this case
the test for differential abundance. In short, a ROC curve is created by going
through the ranking list and at each position calculating the true positive rate
(TPR) and the false positive rate (FPR). The TPR is defined as the number of
true positives above the threshold divided by the total number of true positives
in the data. The FPR is similarly defined as the proportion of false positives
above the threshold in relation to all the false positives present in the data. The
result is a curve for each ranking list, where each point is the FPR (x-value) and
TPR (y-value) at a specific position in the ranking list (see Figure 2). Every true
positive encountered in the list is a step upwards, and every false positive is
a step to the right. The area under the curve (AUC) summarizes the ranking
performance into a single value and is calculated as the area under the ROC
curve. A perfect ranking result corresponds to a ROC curve that immediately
achieves and FPR of 1 and would therefore achieve an AUC of 1. A test that
randomly selects between the hypotheses generates a ROC curve that is a
straight line with a slope of 1, resulting in an AUC of 0.5. It is most common
to use the full AUC, which measures the quality of the entire ranking list.
However, within metagenomics, the assumption is often that only a small
proportion of genes are truly differentially abundant. Thus, the quality of the
top of the ranking list, which hopefully contains the majority of true positives,
is more important than the bottom. To provide a more representative value,
we calculate the AUC up to some pre-specified FPR cut-off, e.g. the AUC up to
a FPR value of 0.1, which we denote as AUC0.1.
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Figure 3: Illustration of a receiver operating characteristic (ROC) curve. A ROC curve
measures the quality of a ranking list by measuring the true positive rate and false
positive rate along the list. The black line is an example ROC curve. The grey area
represents the area under the curve (AUC), which is a measure of the average quality of
the ranking list. The dashed line corresponds to the performance of a random classifier.

Gene ranking is often based on p-values, but only reporting ranking perfor-
mance provides no information regarding the accuracy of the p-values them-
selves. P-values depend on the validity of the model assumptions. Incorrect
model assumptions can lead to strongly biased p-values, resulting either in an
overly optimistic classification with too many false positives or a pessimistic
classification where true differences are missed. If the model assumptions are
correct, the distribution of p-values should be uniformly distributed under the
null-hypothesis. In paper I, we evaluated this property using resampled data
without added effects to simulate a null distribution. The uniformity of the
p-value distribution on the resampled data then provides a measure of how
well the assumptions behind each model fit the data and whether there is any
risk of excess false positives.

For a single statistical test, the probability of a type-I error, i.e. a false positive,
is controlled by specifying the significance level α. When several independent
statistical tests are performed simultaneously, e.g. one for each gene in a
metagenomic data set, each test can result in a false positive. For this reason,
several other measures of type-I error rates along with procedures to control
them were introduced that were suitable for multiple-testing situations (Dudoit
et al., 2003). One commonly used measure is the family wise error rate (FWER),
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defined as the probability of getting at least one false positive among all tests.
One method to control the FWER is the Bonferroni procedure, which instead
of α, uses the more strict significance cut-off αn , where n is the total number of
performed tests. However, controlling the FWER is often overly conservative
because a small proportion of false positives can be acceptable in order to
retain a larger number of true positives. Controlling the false discovery rate
(FDR), defined as the expected proportion of false positives, provides such
an alternative (Benjamini and Hochberg, 1995). Benjamini and Hochberg
introduced a method for estimating the FDR, which has become the most
common way to control type-I errors in multiple testing situation arising in the
analysis of high-dimensional data within the life-sciences. Given an ordered
list of p-values, the FDR at each position k can be estimated as

F̂DR(k) =
np(k)

k
. (3.11)

This creates a new list of values often referred to as q-values. A cut-off in the
q-values would on average guarantee that the FDR is controlled below that
cut-off given that the assumptions of the Benjamini and Hochberg method are
satisfied ( see Benjamini and Yekutieli (2001) for details).

The accuracy of the FDR estimation can then be investigated in several ways.
Of primary interest is the ability to control the FDR at the specified cut-off
which is a fundamental requirement for sound statistical analysis. Given test
data with known effects, the true FDR at position k in gene list can be calculated
as,

FDR(k) =
Number of false calls up until k

k
. (3.12)

The bias in the estimated FDR compared to the true FDR can give an indication
that a method is more or less conservative. Two methods that both are able to
control the FDR can still achieve a different number of true positives identified.
That is, the ratio of false positives to total called genes is the same but one
method has a higher number of called genes. Therefore it is also of interest
to measure how many true and false positives are identified by each method
at the given FDR cut-off to obtain a sense of the power to detect differentially
abundant genes.

The FDR is commonly used within metagenomics to control error rates and to
detect differentially abundant genes. Thus, investigating the accuracy of FDR
estimates provides important information about the reliability of a statistical
method. However, the accuracy of FDR estimates is not a transparent metric on
its own. Biases observed in the FDR estimates can depend on the accuracy of
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the underlying p-values, the quality of the ranking list and of the method used
for estimating the FDR. Thus while FDR bias is a useful metric for evaluating
the performance of a statistical method, other metrics are needed to show the
complete picture.



4 Summary of papers

This section outlines the aims and backgrounds and highlights the main results
of each of the four papers included in this thesis.

4.1 Paper I: Statistical evaluation of methods for iden-
tification of differentially abundant genes in com-
parative metagenomics

The aim of Paper I was to evaluate and compare statistical methods used for
detection of differentially abundant genes and provide a guide for the sound
statistical analysis of metagenomic data. In total, 14 different methods were
included, ranging from classical statistical tests to newly developed methods
for metagenomic and RNAseq data. The performance was measured with
respect to their ability to rank genes, the control of the type 1 error rate and
their ability to control the false discovery rate (FDR). To make the results as
realistic as possible, the comparison was based on resampled data generated
from two comprehensive metagenomes from the human gut (Qin et al., 2010;
Yatsunenko et al., 2012).

Ranking performance was evaluated for each method with regard to group
size, effect size and gene abundance. Group size had the largest impact on
performance both in terms of overall ranking accuracy and in the relative
differences between methods. The overdispersed Poisson GLM had a high
performance and was the best method at a group size of 5+5 (see figure 4).
DESeq2 and edgeR which use empirical Bayes to stabilize variance estimates
had high performance across all group sizes and had the largest advantage
at the lowest group size (3+3). Next in terms of performance were a large
number of methods that permit a gene-specific variance, such as the t-tests.

23
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These methods had a strong performance at higher group sizes with small
differences between methods but tended to have poor performance at lower
group sizes. The methods that do not account for between-sample variability,
i.e. Fisher’s exact test, the binomial-test and the Poisson GLM, had by far the
lowest performance across all three group sizes (see Paper I, Figure S1). For
details on the performance of specific methods see the full paper.

Figure 4: Gene ranking performance on the Qin 2010 data set. Average ROC curves
for each of the included methods. The group size was set to 6+6, and the effect size was
set to a fold-change of 5. OGLM is short for the overdispersed Poisson GLM and mSeq
is short for metagenomeSeq. The results are averaged over 100 sets of resampled data.
The plot corresponds to Figure 1 panel b of Paper I.

To investigate the type-I error rate, all methods were applied to resampled
data without added effects, i.e. under an empirical null distribution. Ideally,
the p-values should be uniformly distributed in this case. Almost all methods
satisfied this criterion and had only minor deviations from uniformity. The
method metagenomeSeq did show a clear sign of too optimistic p-values.
However, the most striking result was again that the methods that do not
account for between-sample variability, i.e. Fisher’s exact test, the binomial-test
and the Poisson GLM, which had very skewed p-value distributions towards
low values, leading to a risk of a high number of false positives (see Paper I,
Figure S6).

Finally, the ability to control the false discovery rate was investigated by com-
paring the true FDR at an estimated FDR of 5% for each method (see Figure
5). Most methods were indeed able to control the true FDR at the specified
level. However, metagenomeSeq was not able to control the FDR. Addition-
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ally, the methods that do not account for between-sample variability were
completely unable to control the FDR (see Paper I, Figure S8). Furthermore,
the methods that were able to control the FDR varied in the number of true
positives detected. The three most powerful methods were edgeR, DESeq2 and
the overdispersed Poisson GLM.

Figure 5: Investigation of FDR control. Box plots showing the true FDR at an estimated
FDR of 5% for each method. The group size was set to 6+6, and the effect size was set to
a fold change of 5. Each box corresponds to 100 resampled data sets from the Qin 2010
data set. The plot corresponds to Figure 5 panel c of Paper I.

This paper represents the first comprehensive evaluation of statistical methods
for metagenomic gene count data. The results showed that several methods
developed for RNAseq do indeed also perform well also on metagenomic data
and should be recommended in many cases. In addition, the overdispersed
Poisson GLM had a high performance and even outperformed the RNAseq
methods given that sufficient samples were available. More alarming was the
performance of the methods that do not handle the variability of metagenomic
data, i.e. Fisher’s exact test, the binomial-test and the Poisson GLM, which
cause a large number of false positives possibly leading to erroneous biological
conclusions. Thus, this paper serves as a guide both for selecting the appropri-
ate methods and for aiding the further development of statistical methods for
metagenomic data.
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4.2 Paper II: Variability in metagenomic count data
and its influence on the identification of differ-
entially abundant genes

The aim of Paper II was to investigate the extent of variability present in
metagenomic count data and evaluate different ways of modelling this vari-
ability. This work centers around a hierarchical Bayesian generalized linear
model based on a Poisson distribution with a gene-specific variance parameter,
σ2
i . Letting Yij denote the count of gene i in sample j, the model is formulated

for a comparison between two groups as

log(E[Yij |αi, βi, uij ]) = αi + βiIG(j) + uij + log(Nj),

where αi is the baseline, βi is the difference between groups determined by the
indicator function IG(j), uij are random effects, and Nj is a sample-specific
normalization factor. Conditioned on the parameters Yij is assumed to be
independent and Poisson distributed according to

Yij |αi, βi, uij ∼ Poisson(Njeαi+βiIG(j)+uij ).

The random effects, uij , are assumed to follow a normal distribution with the
variance parameter σ2

i , uij ∼ Normal(0, σ2
i ), making the distribution of Yij

conditioned on αi, βi and σ2
i a Poisson log-normal. This paper then focuses on

two main questions regarding σ2
i . First, what does the distribution of σ2

i look
like in metagenomic data, and second, how do modelling assumptions on σ2

i

impact the power to detect differentially abundant genes?

To answer the first question, three comprehensive metagenomic data sets were
included: two from the human gut (denoted Human Gut I (Qin et al., 2012) and
Human Gut II (Yatsunenko et al., 2012)), and one sampled from oceanic surface
water (Sunagawa et al., 2015) (denoted Marine). The model was fit to each of
these data sets, and the posterior mean of the overdispersion defined as φij =
eσ

2
i −1 was calculated (see Figure 6). As expected, the overdispersion parameter

varied widely between different genes within each data set. However, the
distributions showed large similarities between data sets. Furthermore, the
correlation of the gene-specific overdispersion between data sets was high,
indicating that overdispersion has a link to the properties of each gene. The
overdispersion was also shown to be linked to the biological properties of
each gene by mapping every gene to their corresponding gene ontology (GO)



4.2. Paper II 27

term (Consortium, 2015). GO terms related to basal cell functions showed a
significant enrichment of genes with low overdispersion and 60 significant
GO terms overlapped between all three data sets. This indicates that the
gene-specific variability is indeed linked to biological function.
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Figure 6: Histograms of the posterior mean of the overdispersion parameter φij for
each gene in each dataset. The dashed line shows the median overdispersion. Panel
a shows the results for the Human Gut I data set, panel b shows the results for the
Human Gut II dataset, and panel c shows the results for the Marine data set. The figure
corresponds to Figure 1 of Paper II.

The second part of this paper targeted modelling of the gene-specific variability
σ2
i and how this impacts the ability to detect differentially abundant genes

through ranking. First, the three models assumed 1) σ2
i = 0 (no between

sample variability beyond the Poisson variance), 2) σ2
i = σ2 (same variance

for all genes) and 3) σ2
i (gene-specific variance). The models were evaluated

on resampled data generated from the three data sets, and the ranking perfor-
mance was measured (see Figure 7). The model using gene-specific variability
outperformed the other models on all but the third data set, where the model
assuming a single variance parameter for all genes had a slightly higher perfor-
mance. Model 1, which did not account for between sample variability, had the
lowest performance in all data sets and had up to 80% false positives among
the top 10% of the ranking list. This shows the importance of modelling the
gene-specific variability in metagenomics.

Model 3 was extended with a prior on the gene-specific variance parameter that
was shared between genes to stabilize the variance estimates. Three different
shared priors for σ2

i were evaluated: a gamma distribution, an inverse-gamma
distribution, and a log-normal distribution. For comparison, the model with
a gene-specific flat prior was also included. The choice of prior did have a
large impact on the ranking performance, and all three prior distributions were
preferred to the gene-specific prior. However, none of the three priors were
clearly better than the others. The inverse-gamma had the best overall ranking
performance, but the gamma prior showed a better performance when only
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Figure 7: Evaluation of modelling assumptions on the gene-specific variability σ2
i .

Model 1 assumed no between sample variability, Model 2 assumed the same variance
for all genes, and Model 3 allowed for gene-specific variance. The group size was 10 +
10 and the effect size was set to 3. The results were averaged over 50 sets of resampled
data from each of the three data sets. Panel a shows the results for the Human Gut I
data set, panel b shows the results for the Human Gut II dataset, and panel c shows the
results for the Marine data set. The figure corresponds to Figure 3 of Paper II.

considering genes with a high overdispersion. This result showed that the
choice of prior is important and can in some cases have as large of an impact
as the gain from using a shared prior to begin with.

The results in Paper II highlight the importance of modelling the variability
present in metagenomic data. It showed that there is biological information
present in the overdispersion of a gene and that incorrect modelling of the
variance will increase the number of false positives.

4.3 Paper III: A zero-inflated model for improved
inference of metagenomic gene count data

The aim of Paper III was to improve the analysis of metagenomic data both
by investigating the presence of zero-inflation in the data and evaluating the
impact of modelling zero-inflation on the statistical analysis. In this context,
zero-inflation means that the data is expected to contain more zeros than
what would be predicted by a standard distribution, in this case the Poisson
distribution. There are many possible causes for the excess zeros found in
metagenomic data. In general, a zero occurs when the abundance of a gene is
below the detection limit. However in metagenomic data the diversity between
bacterial communities is so large that genes might be entirely absent from
samples while still present in other samples from that environment. For this
reason, we extended the model used in Paper II to incorporate zero-inflation.
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The new model was formulated as

Yij |αi, βi, uij ∼

{
0 w.p. pi,

Poisson
(
Nje

αi+βiIG(j)+uij
)

w.p. 1− pi,
(4.1)

where pi is a gene-specific zero-inflation parameter. The result is that the
observed count is modelled to originate from either the previously defined
Poisson-log-normal distribution or an independent zero-inflating processes
governed by pi. The overdispersion parameter σ2

i is modelled via a global
gamma prior (σ2

i ∼ Gamma(η, κ) to permit sharing of variance between genes.
For an overview of the model see Figure 8.

Figure 8: Illustration of model structure. The dashed boxes show which parameters
are defined per gene, i, and sample, j, where n is the total number of genes and m is the
total number of samples. η and κ are parameters for the global prior on the gene-specific
overdispersion σ2

i . uij are the random effects, αi denotes the baseline abundance, βi
denotes the difference in abundance, Nj is a sample-specific normalization factor, λij is
the raw gene abundance, and Yij is the sampled gene abundance. pi is the gene-specific
zero-inflation parameter controlling πij which indicates whether an observation is
zero-inflated. The figure corresponds to Figure 1 of Paper III.

When zero-inflation is included in the model, the excess variability in the data
is divided into two parts: zero-inflation for any extra zeros present in the data
and overdispersion to capture the between-sample variability. Without zero-
inflation both forms of variability have to be captured by the overdispersion
parameter which results in biased estimates. To examine this, we fitted the
model both with zero-inflation (denoted ZoP) and the model without zero-
inflation (denoted oP) to simulated data, with and without added zeros, and
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examined the posterior distributions of σ2
i for all genes (see Figure 9). When

no extra zeros were added to the data, both models were similar to the true
distribution. However, when zeros were added to the data, the non-zero
inflated model showed a large increase in overdispersion estimates with more
than a 300% increase at the highest level. The zero-inflated model generated
almost unbiased variance estimates regardless of the level of zero-inflation
added.

Figure 9: Effect of zero-inflation on overdispersion estimates in simulated data. Pos-
terior means of the overdispersion parameter σ2

i for the model with zero-inflation (ZoP,
solid line) and the model without zero-inflation (oP, dashed line). The levels of zero-
inflation added were a) expected pi = 0 (no zeros added), panel b) expected pi = 0.034
and panel c) expected pi = 0.11. The dotted line indicates the true distribution for σ2

i .
The figure corresponds to Figure 2 of Paper III.

The zero-inflated model was then fit to three real metagenomic data sets from
the human gut (Qin et al., 2010, 2012; Yatsunenko et al., 2012), and two of
them showed a large amount of excess zeros. The same pattern of increasing
overdispersion estimates was observed on these two data sets, where there
were large differences between the estimates of the ZoP and oP.

The ZoP model was then evaluated on resampled data together with five other
methods: RAIDA and metagenomeSeq, which both model excess zeros, and
edgeR, DESeq2 and voom, which were originally developed for RNAseq data
and do not incorporate zero-inflation. Incorporating zero-inflation did provide
a large increase in performance on resampled data, and the ZoP model and
RAIDA had an overall high performance (see figure 10). The impact of adding
zero-inflation was the largest at the higher group sizes. On resampled data
from the third data set, which had a lower amount of zero-inflation, the ZoP
model still performed on par with the best RNAseq methods. The two other
zero-inflated methods had a lower performance when no excess zeros were
present. Thus, the ZoP model had the highest performance overall.

The results in Paper III show that excess zeros are a natural part of metagenomic
data. If not accounted for, excess zeros in the data will lower the power to detect
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Figure 10: Ranking performance on resampled data from the Qin 2012 data set. The
group size was 10+10, and the effect size was 3. The results were averaged over 100
resampled data sets. The figure corresponds to Figure 6 panel e of Paper III.

differentially abundant genes. However, care should be taken that sufficient
samples are available to accurately identify zero-inflated observations. Taken
together, the model proposed in this paper further improved the ability to
identify differentially abundant genes and provides insights into the variance
structure of metagenomic data.

4.4 Paper IV: HirBin: High-resolution identification
of differentially abundant functions in metage-
nomes.

In Paper IV, we present a new method for quantifying the gene content in
metagenomic data (binning) with the aim of identify more specific biological
effects. The bins typically used in metagenomic data analysis are defined
as groups of genes of similar function or structure and defined in various
databases, e.g. TIGRFAM (Haft et al., 2013), eggNOG (Huerta-Cepas et al.,
2015) and KEGG (Kanehisa et al., 2008). However, the definitions of a bin inside
the databases are designed to cover many genes from multiple species and are
therefore not necessarily able to discern more specific functions. The main idea
behind this paper is that biological effects can act on several different levels,
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from single genes to whole bins. If an effect acts on only a subset of the genes
inside a bin, that effect will likely be diluted when viewed from the full bin.
For example, if a specific gene variant is beneficial for surviving in a polluted
environment, it would become more prevalent in that environments. However,
if that gene variant is binned together with other related genes that do not
confer this benefit, the effect on the gene will be reduced and its differential
abundance harder to identify. To solve this problem, we have developed
HirBin, which uses a two-stage procedure for binning reads to improve the
resolution of the analysis (see Figure 11). In the first supervised step, the data
is annotated using standard methods against a pre-existing database. In the
second unsupervised step, the sequences matching each bin are further divided
into sub-bins by clustering based on sequence similarity. The result is a new
set of sub-bins that represent more specific biological functions . The statistical
analysis can then be performed at the sub-bin level at a pre-specified sequence
similarity cut-off.

Figure 11: Overview of the HirBin method. The reference sequences are first annotated
according to gene content. For each gene, the sequences matching that gene are clustered,
forming sub-bins. Finally, the gene content is quantified according to the sequences
within each sub-bin. The figure corresponds to Figure 1 of Paper IV.

To show the benefit of this methodology, HirBin was applied to a metagenomic
data set from a study of type II diabetes (Qin et al., 2012) at both 50% and 75%
sequence similarity cut-offs. At the 50% cut-off, the total number of observed
sub-bins increased to 15,740 compared to 2,465 observed without sub-binning.
After bin-wise statistical testing between individuals with and without type-II
diabetes, 4,436 sub-bins at 50% sequeance similary were deemed significant
(FDR< 0.05) compared to 457 of the original bins. This corresponded to an
increase in the proportion of significant bins from 18.5% on the full bins to
28.2% at the 50% sequence similarity cut-off. Considering the full bins, 987
bins that were not significant had at least one significant sub-bin, while 112 of
the previously significant bins were lost at the 50% sequence similarly cut-off.
This means that the increase in the number of significant bins did indeed detect
previously undetected functions.
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To further explain the observed dilution of effects when analysing the full bins,
HirBin was applied to resampled data from the same data set. Effects were
added to 10% of the sub-bins at the 80% sequence similarity level. HirBin was
then applied to this data and the ability to detect these effects wes analysed
at 50% and 75% sequence similarity levels along with the analysis of the full-
bin level (see Figure 12). The results showed that both the power to detect
differences and the estimated fold-change substantially decreased at the less
precise binning levels as a consequence of the dilution effect. At the full-bin
level the effects were almost completely diluted but were still detectable at the
sub-bin levels.
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Figure 12: Analysis of achieved fold-change and power when effects are added at a
sub bin level. Both panels show the results on resampled data where an effect has
been added at the 80% sequence similarity level. Panel A shows the average estimated
fold-change at each sequence similarity cut-off. Panel B shows the average power
to detect the effect at FDR< 0.05 at different sequence-similarity cut-offs. The figure
corresponds to Figure 4 of Paper IV.

In conclusion, HirBin provides a novel data-centric approach to binning that
makes it possible to detect differences at finer resolution, effects which would
be missed using standard approaches to binning. This enables more accurate
biological interpretations, which will further our understanding of microbial
communities.
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5 Conclusion and outlook

This thesis targeted the statistical analysis and modelling of metagenomic gene
count data. The work was centered around four main aims. Paper I provided
the first broad evaluation of statistical methods for metagenomic data based
on resampled data. It also gave a first indication of which modelling aspects
are the most important to consider. Paper II presented a more detailed evalua-
tion of the variability present in metagenomic data from the perspective of an
overdispersed Poisson model. The paper also explicitly evaluated the impact of
modelling this variability and the consequences of not properly accounting for
the between-sample variability. During the work on the first two papers and
through the work of Paulson et al. (2013) and Sohn et al. (2015), it became ap-
parent that excess zeros and sparsity might be an integral part of metagenomic
data. In Paper III, zero-inflation was introduced as an extension to the model
used in Paper II. Using this zero-inflated model, it was shown that metage-
nomic data does indeed contain more zeros than predicted by most standard
models. Furthermore, the proposed model showed a considerable increase in
ranking performance both on simulated and resampled data. Finally, Paper
IV explored the impact of sub-clustering genes (bins) to identify differences
in biological functions at a more detailed level. It was shown that effects can
indeed be missed when bins are too broad in their definition. This hints at
the complexity of the underlying biological processes, and HirBin provides a
useful data-centric approach to identify effects at a more specific functional
level.

Throughout this work, it has been shown that statistical modelling have a large
impact on the analysis of metagenomic data. Using appropriate models can
substantially improve the power to detect differentially abundant genes, while
non-optimal models can cause an excess number of false positives. In summary,
four main aspects of modelling metagenomic data have been observed. The
first is the discrete nature of the data. Count-based methods, for example
the overdispersed Poisson GLM, were shown to have higher power to detect

35
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differences than e.g. the t-tests and non-parametric methods in Paper I. The
impact of modelling the counts is larger when the average observed count is
lower. As data becomes cheaper and easier to produce, the average sequencing
depth will increase, which will lower the impact of modelling the data as
counts. Still, when targeting less abundant genes or more specific functions,
for example, the sub-bins generated by HirBin in Paper IV, the average count
will be lower, and using count-based methods is therefore recommended.

The second aspect was modelling of the between-sample variability and per-
mitting a gene-specific variance. Not accounting for this variability was shown
to cause a large increase in false positives in both Paper I and Paper II. Most
standard methods do permit gene-specific variability, for example, t-tests and
the overdispersed Poisson GLM. Unfortunately, the lack of replicates in the
early metagenomic era invited the use of too simplistic methods, and many of
these are still in use. Thus, an essential step to improve the overall reliability of
metagenomic data analysis is to completely stop using methods that do not
account for between-sample variability.

The third aspect was extending the modelling of variance to permit sharing
of information between genes. This results in variance estimates shrinking
towards some common value. Shrinkage of the gene-specific variance estimates
has been an integral part in the analysis of high-dimensional genomic data
since the introduction in microarrays and was further developed for count-data
in RNAseq data. DESeq2 and edgeR, which do permit shrinkage were shown
to have a very high performance on metagenomic data in Paper I. Shrinkage
has the largest impact when the group size is small as very little information is
available for gene-specific estimates and outliers are more likely to occur.

Finally, metagenomic data has been observed to be sparse with an excess
number of zeros. Using the zero-inflated model of Paper III we confirmed that
metagenomic data does contain excess zeros compared to what is expected
from the underlying model assumptions used today. When not accounted for,
extra zeros cause the variance estimates of affected genes to be highly biased.
Thus, not incorporating for zero-inflation will reduce the power to detect
differences in abundance for affected genes. The gain in performance from
using zero-inflated methods is especially large when the number of samples is
high.

The analysis of metagenomic data is maturing to a point where standard proto-
cols and software packages are available. However, many parts are still under
constant development. Improvements in sequencing technologies will lead to
larger amounts of higher quality data and the potential to study even more
specific functions. Reference databases are continually and rapidly expanding



37

as new sequence data is added. Although care has to be taken in the curation
of these databases (Bengtsson-Palme et al., 2016), it will still lead to more gene
families being identified and correctly annotated. New algorithms are being
developed to process the ever expanding quantities of data. This thesis has
shown that the statistical analysis of metagenomic data also requires further
work. First, this thesis has highlighted that using flawed modelling assump-
tions will cause unreliable results. To stop using those models that do not
account for between-sample variability and to encourage replicated experi-
mental designs, is of vital importance to establish a basis for sound statistical
analysis. Second, the work presented in this thesis shows that statistical mod-
elling of metagenomic data can provide large benefits in increasing the power
to detect differentially abundant genes. However, further research is needed
to fully understand and utilize the complex variance structure exhibited by
metagenomic data.
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