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ABSTRACT 
 

The thesis entitled “computer-aided drug design approaches in developing anti-cancer drug” 

is divided into a total of six chapters. In the first chapter, an overview of drug discovery and 

development are introduced. Nowadays, drug discovery and development has clearly changed 

the course of the disease treatment, numerous of therapeutic agents have been designed to 

treat cancers, cardiovascular diseases, infections etc. However, the whole process of drug 

discovery and development is lengthy and complicated, which require huge input of time, 

money, and resources. The whole process can be divided into five main stages, including 

target identification, lead discovery and optimization, preclinical tests and clinical trials. 

Acknowledging that drug discovery is complicated in general, oncology has one of the 

poorest records for developing into clinical trial phases, however, we have moved into a new 

“golden era” for cancer drug development through molecular targeting recently. In the second 

chapter, computer-aided drug design (CADD), which is effective methods for facilitating and 

expediting drug discovery and development process, are introduced. Some approved drugs 

that credited their discovery in large part to the tools of CADD were reported, and the 

application of CADD has extended to two directions in drug discovery and development: 

upstream for target identification and validation, and downstream for preclinical study, 

mostly ADME/T prediction. Though CADD holds a great promise for future progress in drug 

discovery and development, it is still an evolving technology and has number of limitations 

that should be resolved. In the third chapter, a detailed introduction of the anti-cancer targets 

in this thesis is given. The targets include tyrosine kinase RET, kinesin Eg5 and KIF18B, 

histone transferase Tip60 and the GTPase K-Ras. The involving signalling pathway, the 

cancer induced mechanism and the current available inhibitors for the targets are discussed. 

In the fourth chapter, the methodologies applied for different projects will be discussed, 

including homology modelling, docking, molecular dynamics simulations, structure-based 

pharmacophore, ligand-based pharmacophore and 3D-QSAR, and density functional theory. 

The detailed theoretical background and the main steps involve in the use of these methods 

are outlined. In the fifth chapter, I provide a summary of seven papers or manuscripts, which 

are related to this thesis. Based on the RET target, we have studied the interaction and 

pharmacophore of four DFG-out inhibitors, mutations in the cadherin like domain, and 

prediction and calculation of a photo-switchable inhibitor. An inhibitor was designed and 

validated for Tip60. Biphenyl-type inhibitors targeting Eg5 were fully investigated from 
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different perspectives. Inhibitors were designed to target the α4/α6 allosteric pocket of 

KIF18B, in order to investigate the specific molecular functional roles of KIF18. Mutations 

on the binding interface of K-Ras and GAP were looked into and the continuous active 

oncogenic signalling caused by specific mutations was explained. In the final chapter, 

conclusions and future perspective is given, CADD is indeed a very useful tool for 

pharmaceutical companies and academic research groups to search for potential drug 

candidates, meanwhile, it is also necessary to improve the current CADD methods. The 

different projects included in this thesis have the potential for further development.  
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Chapter 1.  An overview of drug discovery and development 

 

In this chapter, I will briefly introduce some advances in drug discovery area, focusing on 

progress in cancer and cardiovascular therapeutic agents; following on with the drug 

discovery process and the current status of developing anticancer agents. 

1.1 Drug discovery advances 

Our body is made up of various types of cells, which carry out complicated molecular 

reactions to perform different functions, such as digesting, moving or thinking. In the cells, 

one type of molecule (gene or protein) interacts with another which, in turn, affects another, 

and so on in order to initiate or regulate the expression of specific proteins. These cascades of 

molecular interactions/reactions are called signalling pathways. However, if mistakes 

occurred in a signalling pathway, i.e. mutation, it can lead to that production of an important 

protein is halted, or overexpression. For example, these molecular disorders result in extra 

cells to grow in cancer, or cause our body to not produce enough insulin in diabetes. Drug 

molecules are able to affect the disordered pathways by interacting with certain molecules 

involved in the pathway, and either restoring normal activity or hindering e.g. tumor cell 

growth, in order to achieve the purpose of treatment. 

Over the course of the last two centuries, diseases and conditions that were once considered 

as incurable or fatal have been conquered with therapeutic medicines designed to extend and 

improve quality of life. Modern drug discovery and development has clearly changed the 

course of disease treatment. For example, a significant portion of the improved clinical 

outcomes in cancer can be attributed to the discovery and development of novel therapeutic 

agents. The discovery of natural products and natural pro10duct analogues of antitumor 

activity such as Paclitaxel1, Vinblastine2, Doxorubicin3, and Topotecan4, together with the 

development of small molecule kinase inhibitors such as Imatinib5, Nilotiniband6 and 

Erlotinib7 provide apparent evidence of the power of modern drug discovery in the cancer 

treatment. Meanwhile, the discovery and development of novel therapeutic agents have 

dramatically make survival rates better for many types of cancer. In the United States, from 

1950 to 2009, the overall cancer death rates have declined 11.4%, and progress against some 

specific cancer types has been considerable. During the same period, the 5-year survival rates 

for breast cancer, prostate cancer, and melanoma have been significantly improved: breast 
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cancer increased from 60% to 91%, prostate cancer increased from 43% to over 99%, and 

melanoma increased from 49% to 93%8. 

Numerous therapeutic agents have also been designed to mitigate symptoms or prevent the 

underlying causes of the cardiovascular disease. For example, Amiloride9, Indapamide10, 

Atenolol11, Propranolol12, and Captopril13 are just a few types of compounds currently 

available to lower blood pressure and improve in both the quality of life and life expectancy 

of patients.  Further, the HMG-CoA reductase inhibitors, also known as statins14, such as 

Atorvastatin15, Simvastatin15 and a number of related agents have shown remarkable capacity 

to lower cholesterol levels, which is a major risk factor associated with cardiovascular 

disease16. Similar improvements in the treatment of infectious disease, pain management, 

respiratory disease, and many other conditions has been described as well, due to profound 

and positive impact brought by the identification of novel therapeutic agents. In general, there 

is no doubt that drug discovery and development brings about longer and increased quality of 

life for individual and has positive impact on society.  

1.2 Drug discovery process 

Drug discovery and development is very lengthy and complicated, the whole process is time 

and resource consuming, and requires collaborations from a wide array of expertise in many 

fields, such as medicinal chemistry, drug metabolism, animal pharmacology, process 

chemistry, clinical research, etc. Further, high throughput screening, combinatorial chemistry 

and molecular modelling also play important roles in modern drug research. At present the 

cost invested in the drug discovery and development of a new drug ranges from $800 million 

to $1.8 billion, and the time of bringing a new drug to market, normally takes about 7–12 

years17. Furthermore, it has been indicated that to identify a single marketed drug, it needs an 

initial screening of over 100,000 candidate compounds, hundreds of preclinical animal testing, 

and various clinical trials involving thousands of volunteers and patients. A recent report of 

clinical trial success rates has shown that only 1 out of every 10 compounds of clinical 

candidates will successfully pass through clinical trials and reach the market. This represents 

a success rate of less than 0.001% if measured by the number of compounds tested at the 

beginning of the process18. The above data is just a estimation, but illustrates the average time, 

money, human and other resources involved in developing a new drug.  

The process by which a new drug from identified to marketed is referred as the development 

chain or “pipeline” and consists of a number of distinct stages (Figure 1.1). It can be divided 
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into two major stages: drug discovery and drug development. The first stage, drug discovery, 

can be further divided into three different steps: target discovery, lead discovery, and lead 

optimization. In this stage, a series of experiments and studies are designed to carry out initial 

identification of a biological target, as well as search for a single compound to control the 

activity thereof. Once a single compound has been identified, it goes to the second stage, 

which is drug development. The compound is then progressed through numerous studies 

designed to validate its safety and efficacy and support its approval for sale by the 

appropriate regulatory bodies.  

The first step, target identification, is to identify the biological target within the body (the 

protein) and design a model to mimic human disease state. This step is typically fulfilled 

through the use of molecular probes, which can identify multiple series of compounds that 

have the ability to regulate the activity of the biological target of interest. The second step, 

lead discovery, is to identify a lead compound (molecule), which will exhibit drug‐like 

properties. The third step, lead optimization, is to optimize the lead compound with respect to 

target protein of interest so that it may enter into the drug development phase. Subsequently, 

the drug goes through the preclinical phase of animal pharmacology and toxicology studies, 

as well as formulation, stability studies, and quality control measures. Finally, if the drug 

passed all the steps above, the drug enters to many phases of clinical trials in humans. In the 

clinical trials, the drug is administered to human volunteers,  

 Around 20-80 healthy participants, the purpose of Phase I is to determine the 

maximum tolerated dose of the drug, to look at how the body handles the drug and to 

check for adverse effects 

 Around 100-300 participants, the purpose of Phase II is to ascertain that the drug 

candidate actually has the desired effect on the illness, to identify optimal dose for 

drug use in humans and to identify ineffective medicines at an early stage 

 Around 1000-3000 participants, the purpose of Phase III is to insure that proposed 

drug is safe, i.e. does not have frequent or severe side-effects, and to make sure it is 

effective and has advantages over existing drugs targeting the same illness 

 

Only if the above criteria have been accomplished, approval for general use and marketing as 

a drug might be obtained from the appropriate national regulatory agencies (FDA, the Food 

and Drug Administration, in the US and the EMA, European Medicines Agency, in the EU). 
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Figure 1.1: The drug discovery and development process 

 

1.3 Cancer drug discovery 

Nowadays, it is estimated that there are over 200 different types of cancer, depending on 

which part of body where they first are recognized. Cancer can happen at any age, but it is 

much more common in people over 65 years old. Therefore, in the next 20 years, it is likely 

that we will see a large increase in the incidence of cancer due to the aging of the world’s 

population. The most common human cancers occur in lung, bowel, prostate and breast, and 

the less common cancers occur in blood and lymphatic systems, as well as the brain19.  

Normal cell growth is very highly ordered and carefully regulated by signals that dictate 

whether the cell should divide and grow into two cells or not, so the cells only grow when 

they are required. Cancer cells, however, are a group of abnormal cells, which grow 

uncontrollably by ignoring the normal rules of cell division. In this way, cancer cells develop 

a degree of independency from these signals, leading to uncontrolled growth and 

development into a mass or tumor. If this kind of proliferation is allowed to continue and 

spread to other parts of the body, which is a process called metastasis, it can be fatal. In fact, 

almost 90% of cancer-related deaths are due to metastasis20. 

Surgery, radiotherapy and drug therapy are the three basic ways to treat cancer, and can be 

used alone or in combination to eliminate discrete tumours locally. Drugs, as opposed to 

surgery and radiotherapy, have the ability to reach practically every part of the body and act 

systemically. The advantage of cancer drugs is that they can be used to eliminate the tumors 

locally, meanwhile, they are also possible to kill any individual cancer cells that are detached 

from the main tumor and tried to spread to other parts of the body, even when the spread is 

difficult for radiological or laboratory tests to notice yet. Furthermore, cancer drugs, may, on 

the one hand be used as main form of treatment to reduce the tumor size and alleviating 

symptoms. On the other hand, they can also be used before surgery to reduce the tumor size 
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and make it easier to remove, or after surgery and radiotherapy to reduce the chance of 

reoccurrence. 

There are four broad classes of cancer drugs as follows:  

1, Cytotoxic drugs. These drugs predominantly kill growing and dividing cells by influencing 

a cell’s ability to divide. Since they do not specifically target cancer cells, they give rise to a 

high incidence of side effects. The most notable examples include infection, fatigue, hair loss, 

and severe nausea and vomiting, as the cells of the immune system, the blood, the hair 

follicles and the gut are also affected by the drugs. Furthermore, cytotoxic drugs have little 

effect on other aspects of tumor progression such as tissue invasion and metastasis.  

2, Endocrine therapy. The drugs that belong to endocrine therapy are sex hormones, or 

hormone-like drugs, so they are basically used to change the action or production of 

hormones in the body. Some tumours have been found to grow in response to natural 

hormones. For example, certain breast cancers are stimulated by normal female hormone 

oestrogen, and prostate cancer is initially provoked by the male hormone testosterone for its 

growth. Endocrine therapy acts to make the cancer cells unable to utilize the hormones 

needed for growth, or prevent the body from producing such hormones.  

3, Targeted therapies. The aim of targeted therapies is to specifically act on a well-defined 

target or biologic signalling pathway. Cancer cells and normal cells are differentiated in terms 

of their genes or the proteins in the cells. Targeted therapies make use of these differences by 

targeting the specific factors that are different in the cancer cell. Thereby targeted therapy can 

in principle eliminate cancer cells without disturbing the functions of normal cells and tissues, 

by inhibiting the cancer progression driven by the molecular pathways that transmit the 

pathological signals. Targeted drugs can be categorized into two classes, namely small 

molecule drugs and large proteins. Small-molecule drugs usually have the ability to enter the 

cell to block specific pathways, thereby preventing cell proliferation and resulting in cell 

dysfunction and death. They normally inhibit certain enzymes in cancer cells, such as the 

tyrosine kinase receptor. Large proteins, such as monoclonal antibodies, are able to attach 

themselves to receptors on the surface of the cancer cells and prevent signals being 

transmitted into the cell. In this thesis, we will focus exclusively on small molecule targeting.  

4, Vaccines. Therapeutic vaccines are developed to treat cancers. These are given to people 

with cancer to strengthen the body’s own immune system and stimulate it to recognize and 

attack the cancer cells. These types of vaccines may thus inhibit the further growth of existing 

cancers, prevent recurrence of treated cancers or kill cancer cells that already exist. Vaccines 
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are being tested in different cancers, such a breast, colorectal, lung and renal cancers and in 

B-cell non-Hodgkin’s lymphoma, however, no vaccines have as yet reached the market. 

Acknowledging that drug discovery is difficult and complicated in general, oncology has one 

of the poorest records for drugs to reach into clinical trial phases, with success rates e.g. three 

times lower compared to cardiovascular disease21, 22. The overall success rate for anticancer 

agents in clinical development is about 10%, and the approval rate of new compounds for 

cancer treatment has declined steadily over the past decade. To this end, situation of anti-

cancer drug discovery and development is currently less optimistic and progressive. Up until 

the 1990s, anticancer drug development was focused on the identification of cytotoxic 

compounds, which demonstrated apparent cytostatic or cytotoxic activity on tumor cell lines 

and leading to tumor regression. Since then, the developments in molecular biology and 

increased understanding of cancer at a molecular level, have been driving anti-cancer drug 

development move into the ‘‘molecular target’’ era 23, 24. Molecular targeting in the treatment 

of cancer is based on the precondition that the cancer cells contain molecular marker 

(normally enzyme) considered to be important in cancer prognosis, growth, and/or metastasis. 

This molecular marker in cancer cells is normally caused by genetic abnormalities, resulting 

in increased and/or decreased production or activation. By determining the structure of the 

target enzyme, it allows for the design of selective and effective inhibitors targeting that 

specific enzyme. This enables selective inhibition of the characteristic molecular signalling 

pathway in cancer cells, with low effect on normal cells and, therefore, low toxicity. Some 

successes have emerged as a result of this strategy in recent years, such as imtatinib, which is 

a small molecule that inhibits a specific tyrosine kinase enzyme of the Bcr-Abl oncoprotein, 

and has been used for gastrointestinal stromal tumor and chronic myeloid leukemia. Gefitinib, 

another small molecule inhibitor for the tyrosine kinase enzyme - epidermal growth factor 

receptor (EGFR), has been used for non-small-cell lung cancer (NSCLC). Therefore, the 

molecular target strategy has led to the expectation of a new ‘‘golden era’’ in cancer drug 

development25. However, there are also some problems associated with this strategy. For 

example, inhibiting a few targets might not be sufficient, as progression of a normal cell to 

cancer cell has been shown to involve dozens of genetic mutations or signalling pathways. 

Furthermore, inhibition of a single molecule target with high selectivity can lead to resistance 

development to the cancer drug22.  Although there are problems with molecular targeting, the 

underlying principles of this strategy are clearly sound, and we should use it as one part of a 

broad approach to the treatment of cancer and use it in conjunction with other treatments. In 
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this thesis, based on the molecular targeting strategy, we aim to develop anticancer drugs by 

designing or searching for inhibitors for varies types of enzymes or receptors. 
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Chapter 2． Computer aided drug design (CADD) 

Drug discovery and development is a lengthy process which includes searching for promising 

hits, translating hits to leads, and final validating leads to drug candidates in clinical trials. 

Over the past decades, the investment in new drug development has increased considerably. 

However, despite considerable efforts the output is hampered by the low efficiency and high 

failure in the drug discovery and development process. Computer aided drug design (CADD) 

is one of the most effective new methods for facilitating and expediting this process, and 

therefore save time, money and resources26.  

 

2.1 History progress of CADD 

The start of intense interest in CADD dates back to 1981, when Fortune magazine entitled a 

cover article as “Next Industrial Revolution: Designing Drugs by Computer at Merck”27, 28. 

Back to 1970s, CADD had already been established to regulate the biological activity of 

insulin and to guide the synthesis of human haemoglobin ligands based on the existed 

available knowledge of structural biology. Over the years, with high-throughput screening 

(HTS) technologies emerging, the drug discovery and development process was expedited 

and facilitated by enabling a great amount of compounds to be screened in much shorter 

period of time. HTS is a method especially used in drug discovery to quickly conduct 

millions of assays relying on automation, in order to search for compounds that evoke the 

desired biologic response. However, the hit rates are often extremely low, which limits the 

usage of high-throughput screening (HTS) techniques. Further, even though the hit is 

identified, it is still possible to fail in the following stage, such as optimization to lead or 

preclinical/clinical test, and the late stage failure was around 40–60% due to absorption, 

distribution, metabolism, excretion and toxicity (ADME/T) shortage. Therefore, all these 

issues underline the need to develop alternative strategies that can help in promoting the 

success rates and reducing the cost and time in the whole drug discovery and development 

process. These, together with advances in X-ray crystallography, HTS techniques and 

computational power in 1990s, have rapidly improved the progress of CADD application in 

pharmaceutical industry. Numerous of approved drugs that credited their discovery in large 

part to the tools of CADD were reported, such as carbonic anhydrase inhibitor Dorzolamide 

for the treatment of cystoid macular edema29; the angiotensin-converting enzyme (ACE) 

inhibitor Captopril for the treatment of hypertensive30, human immunodeficiency virus (HIV) 
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protease inhibitors Saquinavir, Ritonavir, and Indinavir for the treatment of HIV27; and renin 

inhibitor Aliskiren, which is used for essential hypertension31. 

Nowadays, CADD is playing an increasingly larger and more important role in drug 

discovery and development and helps improving efficiency for the industry. One of the most 

frequently used tool in CADD is the screening of virtual compound libraries, also termed 

virtual screening. Compared to traditional HTS, which requires extensive preparation and 

lacks the primary understanding of the molecular mechanism behind the activity of identified 

hits, virtual screening requires significantly less workload and uses a much more targeted 

search based on known ligand or target structures. In 2003, a group at Biogen Idec used 

virtual screening to search for inhibitor to target transforming growth factor β1 receptor 

kinase32, and another group in Eli Lilly used a traditional HTS for the same target33. The 

group in Biogen Idec identified 87 hits of which one shared identical structure to the lead 

discovered in Eli Lilly by traditional HTS. This example demonstrated that virtual screening 

in CADD is able to produce the same compounds as a full HTS procedure, however, with 

significant less cost and workload. Over the years, a large fraction of hits has been found for 

kinases and G-protein-coupled receptors (GPCRs) by virtual screening34. It was concluded 

that “The future is bright. The future is virtual”.35  

 

2.2 CADD applications in drug discovery and development 

CADD tools have been applied in almost every stage, greatly changing the strategy and 

pipeline for drug discovery (Figure 2.1). Although the traditional application of CADD is in 

lead discovery and optimization, today the application extends in the direction of target 

identification and validation, and forwards preclinical studies, mostly through ADME/T 

prediction. In the drug discovery and development process, CADD is usually used for three 

major purposes: (1) screen large compound libraries into smaller sets of compounds, in order 

to experimentally test only the compounds with highest predicted activities; (2) instruct the 

optimization of lead compounds, in order to increase the binding affinity or optimize drug 

metabolism and pharmacokinetic (DMPK) properties including ADME/T; (3) design novel 

compounds, either by "adding/modifying" functional groups in starting molecule or by 

linking together fragments into novel compounds17, 28, 36.  

An example of applying CADD in different stages of the drug discovery process is illustrated 

in Figure 2.2. We start from applying homology modelling to generate a target structure, 

followed by molecular dynamics (MD) simulations to optimize the target structure. Then the 

protein structure is ready for docking of compound libraries to identify potential binders. 
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Once the possible binders are identified, combinatorial chemistry can be used to generate a 

series of derivatives. However, if there is no target structure available, a QSAR 

pharmacophore can be generated based on ligand structure and activity information, where 

key pharmacophore features can be achieved for searching the same classes of binders to the 

target. Further, the DMPK properties of the binders, such as ADME/T can also be predicted 

by CADD tools and used to compare with bio-assay data. If a compound can pass all the 

steps above, then it becomes a drug candidate for the following clinical trials.  

 

 

 

 

 

 

 

Figure 2.1: Multiple computational drug discovery approaches have been applied in various 

stages of the drug discovery and development pipeline, including target identification, lead 

discovery and optimization, and preclinical tests. 

 

2.3 Classification of CADD 

CADD can be categorized into structure-based and ligand-based37. Structure-based drug 

design (SBDD) relies on the availability of a 3D structure of the biological target obtained 

through methods such as X-ray crystallography or NMR spectroscopy.  If no experimental 

CADD 
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structure of a target exists, it may be possible to generate a homology model thereof based on 

known 3D structures of related proteins. Based on the structure of the biological target, 

docking can be applied to place each ligand, typically a molecule or molecular fragment, into 

the binding site of the target, and predict its most favourable binding mode by ranking the 

predicted activity of each compound in terms of the estimated binding affinity. Moreover, the 

essential interactions between the ligand and the binding site of the receptor can be translated 

into a structure-based pharmacophore model which can be used to screen a large database for 

possible active ligands. Both docking and structure-based pharmacophore model screening is 

about finding ligands for a given receptor; in both cases, large libraries of compounds are 

screened to find those fitting the binding pocket of the receptor. Another method, de novo 

design, involves directly building ligands within the constraints of the binding pocket by 

adding small pieces, either individual atoms or molecular fragments, in a stepwise manner. In 

addition to the above techniques, MD simulation also requires a comprehensive 

understanding of the target structure, and is therefore also included in SBDD category.  

If the 3D structure of the target, the binding site or even the target itself are not accurately 

known, then Ligand-based drug design (LBDD) is an appropriate method to apply if there are 

experimentally active compounds that bind to the biological target of interest. These 

compounds may be used to derive a ligand-based pharmacophore model, in which the 

minimum necessary structural features a molecule must contain in order to bind to the target 

are defined. In addition, a model of the biological target may be generated based on the 

known compounds that interact with it, and this model may in turn be used to search for new 

molecular entities with the same features that can then be expected to bind to the target, This 

is termed ligand-based virtual screening. Furthermore, quantitative structure-activity 

relationship (QSAR) can be used to derive a correlation between theoretically calculated 

properties of molecules and their experimentally obtained biological activity. The resulting 

correlation derived from QSAR can in turn be further used to predict the activity of new 

analogues. 

 

2.4 Limitations of CADD and future outlook 

CADD has already provided significant benefits, and holds a great promise for future 

progress in drug discovery and development. However, it is still an evolving technology and 

has a number of limitations38-40.  
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Figure 2.2: An example of workflow by using CADD in drug discovery and development 

process 

 

 

Figure 2.3: CADD is classified into two groups based on the availability of target structure 

information. 

 

In pharmacophore modelling, for example, due to the induced fit effect, a receptor may adapt 

to different ligands. Therefore, it is possible to have multiple pharmacophores for a single site. 
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Obviously, generating a common pharmacophore from a set of ligands containing different 

scaffold is not an optimal choice41. Docking also has its limitation42, 43, for example, when 

increasing the molecular mass and number of rotatable bonds of the compounds, the number 

of possible conformations also increase, which presents intense demands on computational 

hardware and software; binding be coupled with an induced fit effect that leads to protein 

adaptability; however, these additional conformational changes are normally not considered; 

the importance of the crystallization process and how representative a single crystal structure 

is, is often neglected44; the role of solvent molecules is difficult to verify, although in many 

cases, solvent molecules are important by providing bridging hydrogen bonds for the ligand 

to interact with binding site. It is reported that docking programs currently are able to dock 

70–80% of ligands correctly into the binding site45. One recent study proposed that the 

significant issue in structure-based virtual screening is mostly due to the current docking and 

scoring algorithms are unable to identify key interactions and treat them appropriately43. 

In the future, the primary task is to increase the accuracy and effectiveness of existing 

technologies in CADD46. In addition, it is also important to integrate computational chemistry 

and biology together with cheminformatics and bioinformatics in CADD, in order to exploit 

or apply all the available knowledge from different subjects. The completion of the human 

genome and numerous pathogen genomes could be of great help for discovering new drug 

targets, hence more focus will undoubtedly come on computational methods involving target 

identification. Tailored small molecules will also be extensively applied as probes for 

functional research. 
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Chapter 3． Anti-cancer target in this thesis 

In this chapter, several protein targets will be described, which have been shown to relate in 

cancer development. The signalling pathway, the mechanism behind the induced cancers and 

the current available inhibitors for the targets will be introduced in detail, from which we will 

understand the significance of investigating these targets. 

 

3.1 The tyrosine kinase RET 

RET (rearranged during transfection) encodes a transmembrane receptor tyrosine kinase 

(RTK) and is essential for development of the peripheral nervous system, kidney 

morphogenesis and spermatogenesis47. RET protein is composed of three domains, an 

extracellular domain, which contains the cadherin-like domain (CLD) and cysteine-rich 

domain (CRD), a transmembrane domain (TD), and an intracellular portion containing the 

tyrosine kinase domain (TKD). RET is activated through binding to a soluble, bivalent 

GDNF family of ligand (GFL), which is comprised of glial cell-derived neurotrophic factor 

(GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), in complex with a 

preferred GPI-linked RET co-receptor (GFRα1-GFRα4)48. The formation of the 

RET/GFL/GFRα complex results in RET homodimerization and triggers 

autophosphorylation of intracellular tyrosine residues. Phosphorylated residues including 

tyrosine 687 (Y687), serine 696 (S696), Y752, Y791, Y806, Y809, Y826, Y864, Y900, Y905, 

Y928, Y952, Y981, Y1015, Y1029, Y1062, Y1090, and Y1096 constitute docking sites for 

numerous downstream signalling effectors, which then activate the signalling pathways, 

including the mitogen-activated protein kinase pathway (Ras/RAF/ERK)49, the 

phosphatidylinositol 3-kinase/protein kinase B pathway (PI3K/AKT)50 , the c-Jun N-terminal 

kinase pathway (JNK)51, and the signal transducer and activator of transcription 3 (STAT3)52. 

More recently, it has also been shown that RET carrys out direct tyrosine phosphorylation of 

beta-catenin, which is associated with an induction of RET tumorigenic ability in vivo 53 

(Figure 3.1). Many of the above mentioned intracellular signalling pathways are activated not 

only by RET, but also by other RTKs. In general, the activated downstream signalling 

pathways contribute to the further regulation of cell survival, differentiation, proliferation 

and migration.  

Gain-of-function mutations of RET are related to multiple endocrine neoplasia type 2 

(MEN2), and papillary thyroid cancer (PTC)52. MEN2 is a hereditary cancer syndrome and it 

has three subtypes based on the clinical symptoms: MEN2A, MEN2B and familial medullary 
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Figure 3.1: Outline of RET signalling pathway 54. a, CLD; b, CRD; c, TD; d, TD. 

 

thyroid cancer (FMTC). The molecular mechanism of RET activation in human cancer varies, 

at the germline level, point mutations of RET are responsible for MEN2. Mutations of 

extracellular cysteines at codons 609, 611, 618, 620, 630, predominantly, 634, are found in 

a 

b 

d 

c 
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MEN2A patients, and mutation at codon 918 of Met918 to Thr918 is responsible for most 

MEN2B cases. FMTC mutations are similar to those causing MEN2A, but are more evenly 

distributed among cysteines 609, 618, and 620.  Moreover, in FMTC patients, mutations of 

residues 768, 790, 791, 804, 844, or 891 of the RET tyrosine kinase domain have also been 

found. At the somatic level, gene rearrangements cause the tyrosine kinase domain of RET 

juxtaposed to heterologous gene partners and lead to the formation of chimeric RET/PTC 

oncogenes, which are commonly found in PTC. Both MEN2 mutations and PTC gene 

rearrangements increase the likelihood of intrinsic tyrosine kinase activity of RET and RET 

downstream signalling events, with resulting cancer cell proliferation and metastasis.  

Currently there is no available therapeutic option for treating RET associated cancer, 

although numerous kinds of therapeutic approaches, such as small molecules acting as 

tyrosine kinase inhibitors, gene therapy with adenoviral vectors expressing dominant negative 

RET mutants, monoclonal antibodies capable of internalization of RET have been 

developed55. The application of these strategies in preclinical models has demonstrated that 

RET is indeed a prospective target for selective cancer therapy. Of all those therapeutic ways 

to block the tyrosine kinase function of RET, small organic compounds show their potential 

for the treatment of human cancers possessing oncogenic RET. Moreover, those compounds 

also offer the possibility of interventional therapy, when conventional pharmacologic and 

radiotherapeutic regimens have failed. Several tyrosine kinase inhibitors including STI571, 

genistein, allyl-geldanamycin, and arylidene, RPI-156-58 are able to selectively inhibit RET 

tyrosine kinase activity and tumor cell growth in vitro. A combination of STI571 and 

PD173074, which is a fibroblast growth factor receptor (FGFR) restrains MTC cell growth by 

inhibiting both RET and FGFR59. CEP-701 and CEP-751, which are indolocarbazole 

derivatives, can inhibit MEN2A tumor growth in MTC cell xenografts60. PP1, a pyrazolo-

pyrimidine derivative, blocks tumorigenesis induced by RET/PTC oncogenes, and induces 

degradation of activated membrane-bound RET receptors 61, 62. Another pyrazolo-pyrimidine, 

PP2, also inhibits oncogenic RET activity62. The 4-anilinoquinazoline ZD6474 shows dual 

antitumor activity with a strong inhibitory activity towards constitutively active oncogenic 

RET kinases and angiogenesis63.  

 

3.2 The Histone acetyltransferase Tip60 

Chromatin is a complex structure of DNA and proteins found in eukaryotic cells. The basic 

repeating structural unit of chromatin is the nucleosome, comprised of 146 base pairs of DNA 
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wound around a histone octamer. Histones are positively charged proteins that strongly attach 

to and compact negatively charged DNA, and the histone octamer is made up of two copies 

of each core histone H2A, H2B, H3 and H464. The nulceosomes, in turn, are arranged into 

several tiers of higher-order structures that allow for packaging the genome into the 

microscopic space of the eukaryotic nucleus.  

 

Figure 3.2: Chromosomes are composed of DNA tightly-wound around histones. 

Chromosomal DNA is packaged inside microscopic nuclei with the help of histones. These 

are positively-charged proteins that strongly adhere to negatively-charged DNA and form 

complexes called nucleosomes65. 

At the cellular level, various DNA-based nuclear processes such as DNA transcription, 

replication and damage repair are continuously on going, therefore, in addition to its 

compactness, chromatin must also be very flexible and dynamic to permit those nuclear 
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processes. For this purpose, the local chromatin structure is required to be modified in order 

to make it accessible to non-chromatin proteins. Chromatin remodellers and histone modifiers 

are the two major classes of enzymes involved in such activities to assist chromatin 

flexibility66. Tip60 (also named KAT5) is one of the histone modifiers and belongs to the 

MYST family of histone acetyltransferases (HAT). There are currently five human HATs in 

this family, namely Tip60, MOZ, MORF, HBO1 and MOF. The defining feature of those five 

members is that they all contain a highly conserved MYST domain, which is composed of an 

acetyl-CoA binding motif and a zinc finger67, 68. Tip60 acytelation involves the transfer of an 

acetyl group from acetyl-CoA to the N-terminal of a lysine residue, thus changing the surface 

charge distribution of the histone and the accessibility to DNA and/or to other proteins69.   

Besides histones, Tip60 can also acetylate some transcription factors, including the androgen 

receptor (AR), myelocytomatosis oncogene c (c-Myc), upstream binding transcription factor 

(UBF) and the kinase Ataxia Telangiectasia mutated (ATM)70. Tip60 acetylates histones on 

genes of these transcription factors, resulting in promotion of their activity. Some studies 

have demonstrated that acetylation by Tip60 activates androgen receptor (AR). AR is a 

hormone-dependent transcription factor, and its over production is strongly related to the 

onset of prostate cancer71. It was also shown that Tip60 is able to progress prostate cancer 

cells to hormone independence and resistance to chemotherapy, and that nuclear Tip60 acts 

as a co-activator of AR in the absence of ligand72. Thus, upregulation of Tip60 may permit 

advanced prostate cancer cells to survive in a hormone-independent fashion. Some other 

studies have also demonstrated that upregulation of Tip60 is linked to promotion of epithelial 

tumorigenesis. In addition, Tip60 may play a role in the induction of adult T-cell 

leukaemia/lymphoma and other cancers involving c-Myc oncogene, which is a potent 

promoter of cellular growth and proliferation, and is often deregulated in a variety of human 

cancers73. 

In response to DNA double-strand break (DSB), Tip60 plays different roles74, 75. On the one 

hand, it acetylates the lysine 120 residue of p53, which is a tumor suppressor well known for 

inducing either cell growth arrest or apoptosis after DNA damage, and leads to p53-induced 

cell apoptosis76. On the other hand, it acetylates histone H4 at the DSB sites to “open” the 

chromatin structure DNA to DNA repair proteins, such as the ATM kinase protein. Tip60 

also activates the ATM kinase directly by acetylating it in response to DNA damage, finally 

resulting in DSB repair77 (Figure 3.3).  
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Figure 3.3: Model for the role of Tip60 in DSB repair78. 

Thus, based on the evidence that links Tip60 to key processes implicated in DNA damage 

response (DDR), DNA repair, cellular growth control and apoptosis, as well as its 

involvement of acetylation of transcription factors, it is possible to speculate that Tip60 might 

paradoxically function either as a promoter or as a suppressor of tumorigenesis. However, 

Tip60 inhibitor anacardic acid was shown to inhibit Tip60 in vitro and block the Tip60-

dependent activation of the ATM protein kinase by DNA damage in vivo79. Further, it 

sensitizes human tumor cells to the cytotoxic effects of ioninzing radiation, which is a 

common treatment for more than half of human maglinancies, depending on its ability to 

damage DNA and kill tumor cells80. Therefore, Tip60 inhibitors could provide a novel 

therapeutic approach for increasing the sensitivity of tumors to radiation therapy. In addition, 

a small number of other HAT inhibitors have been reported today. Bisubstrate inhibitor, 

which is formed by coupling a histone H3 peptide to CoA, has been shown to decrease HAT 

activity; however, the compound has disadvantage of poor cell membrane permeability81. The 

natural product garcinol is HAT inhibitor that are cell permeable; and it sensitises cells to IR 

just like anacardic acid82. Isothiazolones, which are convalent binder interacting with the 
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HAT active site thiol, have been described as an effective starting point for further generation 

of more potent and specific inhibitors83, 84. Other HAT inhibitors include α-methylene 

butyrolactones, benzylidene acetones and alkylidene malonates85-87. 

 

3.3 Mitotic kinesins Eg5 and KIF18B 

Mitosis is part of the cell cycle and is a fundamental process for cell division, in which 

replicated chromosomes undergo separation into two new nuclei by the mitotic spindle88. 

However, if a functional mitotic spindle does not form, normal chromosomal separation will 

not occur and checkpoint proteins will start to inhibit cell division, resulting in mitotic 

arrest89. The mitotic spindle consists of microtubule fibers that emerge from the spindle poles 

and attach to the condensed chromosomes at the centromere via the kinetochore. 

Microtubules are dynamic polymers constructed from α/β tubulin dimers. Currently drugs 

that target tubulin or microtubules are among the most effective cancer therapeutics, such as 

Vinca alkaloids90, which inhibits tubulin polymerisation and thereby prevent mitotic spindle 

formation. Taxanes, on the other hand, stabilize GDP-bound tubulin in the microtubule and 

inhibit the spindle function by disrupting microtubule dynamics, which induces the mitotic 

arrest, followed by apotosis91. 

Though microtubules are essential for mitosis, they also participate in a number of other 

cellular functions, such as cell division, cell motility, intracellular transport and maintenance 

of organelles, synaptic vesicles and cell shape. Therefore, microtubule targeting drugs can 

lead to toxic side effects such as body weight loss, hair loss and neurotoxicity as seen with 

taxanes and vinca alkaloids92. Furthermore, carcinoma cells may become resistant to 

microtubule targeting drugs through various mechanisms, including mutations of tubulin, 

altered expression of tubulin subtypes, and overexpression of drug efflux pumps93. Therefore, 

there is a significant need to generate novel antimitotic drugs, with the aim to overcome the 

side effects and resistance seen with microtubule-targeting drugs. 

Kinesins are motor proteins that move along microtubule filaments, and are important for 

many key cellular functions such as mitotic spindle assembly, microtubules remodelling, and 

chromosome separation in dividing cells. The kinesins are mainly composed of three regions, 

the “head” region, the “stalk” region and a “tail” region (Figure 3.4)94. The “head” region is 

the motor domain that contains an ATP binding pocket and a microtubule binding interface. 

The “stalk” and “tail” regions are needed not only for dimerization or oligomerization but 

also interaction with cargo. Kinesins use ATP hydrolysis to generate force and movement 
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along microtubules, and thus to enable microtubules to form the mitotic spindle and drive 

chromosome separation in mitosis95.  

 

 

 
Figure 3.4: Kinesin domain structure96. The blue and red structure in the middle represents a 

dimeric kinesin heavy chain (KHC). Each heavy chain contains a motor domain (‘head’, α-

helices red, β-strands blue) that binds to ATP and microtubules, a neck linker (cyan) whose 

conformation changes during the ATPase cycle, an α-helical neck and a stalk (red) that 

causes dimerization by a coiled-coil interaction. The stalk is interrupted by several non-

helical hinges (only one shown here) that allow the heads to swivel and the stalk to bend over 

in a hairpin-like fashion, generating a ‘folded’ conformation that is inactive when kinesin is 

not moving. The tail binds to two light chains (KLC, ≈570 residues, yellow) 

 

Eg5 is one of the mitotic kinesin family members that assemble the mitotic spindle during 

cell division (Figure 3.5). Inhibition of Eg5 prevents the mitotic spindle formation and 

centrosomal separation, leading to mitotic arrest without disturbing the microtubules. 

Therefore, Eg5 is considered as promising target for cancer treatment98. Compared to other 
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antimitotic inhibitors, inhibitors of Eg5 have more advantages99. First, Eg5 is found to be 

overexpressed in numerous proliferative tissues including leukemia as well as some solid 

 

 

Figure 3.5: Schematic depicting Eg5 activity in the mitotic spindle97. Tetrameric Eg5 motors 

(red) help organize microtubules (green) to form the mitotic spindle. (A) At the onset of 

mitosis, the duplicated centrosomes (blue) separate and nucleate two microtubule asters. 

Processive Eg5 motors may translocate to the plus-ends of microtubules, located distal to the 

centrosomal organizing center and by crosslinking antiparallel microtubules, promoting 

bipolarity. (B) By metaphase, a stable bipolar spindle has formed. Eg5 motors likely provide 

structural integrity and also slide microtubules toward the centrosomes, contributing to the 

generation of poleward flux. (C) A close-up depiction of Eg5 motors walking to the plus ends 

of antiparallel microtubules, moving both poleward simultaneously. 

 

tumors, such as breast, lung, bladder, pancreatic and ovarian cancers, however almost no Eg5 

is detected in nonproliferative tissues100-103. Therefore, inhibitors of Eg5 arrest specifically 

cells in mitosis while not affecting any non-proliferating cells. Hence, inhibitors of Eg5 may 
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not have the severe side effects caused by traditional antimitotic inhibitors such as the 

Taxanes and Vinca alkaloids which target microtubules and affect both nonproliferating and 

proliferating cells. Second, Eg5 is not expressed in the peripheral nervous system of adults, 

and hence Eg5 inhibitors may not cause neuropathic side effects commonly found in 

inhibitors that primarily target tubulin. To date there have been seven Eg5 inhibitors 

introduced into Phase 1 or 2 clinical trials, and several more are in development104. The 

most known is SB-715992, which is the first Eg5 inhibitor introduced into human trials. 

Several other agents have since entered the clinic, including SB-743921, ARRY-520, MK-

0731, AZD4877, EMD 534085 and LY2523355105. All of these compounds are ATP 

noncompetitive, and bind to the α2/L5/α3 allosteric pocket. Mutations in this binding 

pocket have been shown to cause resistance to SB-743921, providing a possible mechanism 

for drug resistance. Recent identification of several series of ATP competitive inhibitors 

that appear to bind in a region distinct from α2/L5/α3 pocket may provide a way to 

overcome this obstacle. Some compounds from these series, such as biphenyl type 

inhibitors, have been shown to overcome resistance and induce significant anti-tumour 

effects in mutant-Eg5 models, however reduced efficacy was noted with wild-type tumours 

in comparison with ATP uncompetitive allosteric inhibitors. Further development of 

selective ATP-competitive inhibitors that can be used in clinic, in combination with 

allosteric inhibitors targeting α2/L5/α3, could provide benefits in overcoming resistance 

that might arise from target mutation99, 106. 

KIF18B also functions as a mitotic kinesin, and it belongs to kinesin 8 family. loss of 

Kif18B results in an increase in the number and length of astral microtubules, suggesting 

Kif18B is an important modulator of astral microtubules dynamics107, 108. Further, KIF18B 

has also been demonstrated to involve in multiple tumors due to its deregulation in cell 

cycle109, and by interacting with 53BP1, KIF18B is required for efficient double stand 

break repair110. Obviously, KIF18B function is important for mammalian organisms, 

however, how it exactly functions are still unclear as far as we know. 

 

3.5 GTPase K-Ras 

 

The Ras protein family members belong to low molecular weight GTPase (GTP-binding) 

proteins, involved in cellular signal transduction that transmit extracellular signals to 

intracellular effector pathways, and ultimately lead to cell differentiation, proliferation and 

survival111. H-Ras, N-Ras, and K-Ras are the three members of the Ras protein family, all of 
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which have been found to be related to cancer formation112. Mutations in Ras proto-

oncogenes are frequently found, which is estimated to be 20-30%, in all human tumors.  

Making Ras mutations one of the most prevalent drivers of cancer113, 114. K-Ras is the most 

frequently mutated Ras member, having been shown to be mutated in 90% of pancreatic 

cancers, 45% of colorectal cancers, and 35% of lung cancers. In addition, K-Ras mutations 

have been associated with increased tumorigenicity and poor prognosis. The inhibition of 

activated Ras help malignant cells revert to a non-malignant phenotype and cause tumor 

regression both in vitro and in vivo115. Hence, K-Ras has become an attractive therapeutic 

target for various kinds of cancers.  

K-Ras functions as a molecular switch that exchanges between GDP-bound and GTP-bound 

state (Figure 3.5). The GDP-bound form is generally considered switched off and inactive, 

while the GTP-bound form is switched on and active to stimulate the downstream pathways. 

The main conformational change of GTP- vs GDP-binding is located in the so-called switch I 

and II regions116. Generally Ras proteins bind to GDP proteins very tightly, and hydrolyse 

GTP at a very slow rate, so they need GTPase activating proteins (GAPs) to stimulate GTP 

hydrolysis and guanine nucleotide exchange factors (GEFs) to facilitate GDP dissociation.  In 

the cellular context, the activated upstream signal is transmitted to Ras proteins, thereby 

stimulate the recruitment of GEFs such as SOS, which catalyze the exchange of GDP to 

GTP and switch on Ras proteins to promote downstream normal signalling, and normal cell 

growth or differentiation117. In the GTP bound form, Ras interacts with GAPs such as 

p120GAP, which increase the intrinsic activity of Ras proteins to hydrolyze GTP to GDP117. 

However, single point mutations of the Ras residues, such as mutated G12 and G13, abolish 

GAP-induced GTP hydrolysis through steric hindrance, while mutations of residue Q61 

interfere with the coordination of a water molecule necessary for GTP hydrolysis118. These 

mutations lead to the constitutive active Ras proteins in active GTP bound form, thereby 

cause the constant activation of its downstream effector pathways, such as RAF-MEK-ERK, 

PI3K-AKT, and RALGDS-RAL-RLIP signalling pathway, which promotes oncogenic 

signalling and, ultimately cancer cell proliferation117. 

The K-Ras protein is considered a major target in anticancer drug discovery due to its high 

mutation rate in various cancers115. However, so far no clinically useful drugs directly 

interfering with K-Ras signalling have been found, because it is difficult and competitive to 

find inhibitors binding to K-Ras GTP binding pocket as the affinity of GTP for Ras is 

extremely high, which is in the picomolar range. Based on NMR fragment-based lead 

discovery and structure-based drug design, two groups recently managed to find novel small-
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molecule inhibitors of K-Ras targeting an allosteric binding site115, 119. The allosteric 

inhibitors bind to a hydrophobic pocket between the Switch II and core β sheet region of K-

Ras, with micromolar affinity. The allosteric site is different from but partially overlapping 

with the GEFs binding site such that GEFs are unable to activate K-Ras when the inhibitors 

bind.  

 

 

Figure 3.6: A, normal Ras signaling. B, oncogenic Ras signaling. When Ras is mutated, it is 

constitutively bound to GTP such that its GAP can not bind. The activated Ras signals 

through a multitude of effectors and downstream signaling pathways, a subset of which is 

shown here120. 

 

In addition, one group managed to develop irreversible inhibitors targeting K-Ras G12C, 

which is a common mutant found in K-Ras where the glycine at the twelfth position is 

mutated to cysteine. With submicromolar affinity, these inhibitors were shown to covalently 

bind K-Ras G12C and block GEFs binding, thus favoring the binding of GDP instead of GTP, 

and locking the K-Ras protein in its inactive state121, 122. More important, they exhibit 

antiproliferative effects and activate apoptosis in a K-Ras G12C–specific lung cancer cell line. 

Obviously, although these approaches are promising, more potent drugs that bind with even 
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higher affinity, say within nanomolar range, would be required for a clinically useful drug. In 

spite of that, these studies provide novel lead compounds for future optimization. 
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Chapter 4. Methodology 

 
CADD is an effective strategy for expediting and cost saving the drug discovery and 

development process. The significant gain in knowledge and structure information of both 

biological macromolecules and small molecules facilitate CADD to be extended and broadly 

applied to almost every stage in the drug discovery and development stage, from target 

identification and validation, to lead discovery and optimization, and preclinical tests. 

In this thesis, we have used different CADD approaches to investigate the detailed structural 

mechanisms of the target proteins and search for inhibitors. There are many approaches in the 

field of CADD, the theoretical background of the methods applied in my Ph.D projects will 

be described in this chapter.  

 

4.1 Homology model 

It is necessary to have three-dimensional (3D) protein structures for the rational design of 

various types of biological experiments, such as search for specific inhibitors based on SBDD 

or site-directed mutagenesis.  However, the number of available protein structures is not very 

large (~ 110000 in the protein data bank) in comparison to the number of known protein 

sequences, especially in case of transmembrane proteins. Therefore, when there is no 

available 3D structure for the target protein, various computational methods for generating 

3D structures of proteins have been developed to resolve this issue.  Based on a template with 

a similar sequence, homology modelling is able to generate the target structure. The idea 

behind this is that the number of possible folds in nature appears to be limited 123, thereby, the 

3D structure of proteins is much more conserved than their sequences. For a given protein 

sequence, it is often possible to identify a homologous protein with a known structure. 

Homology modelling has proven to be reliable to generate a 3D model of a protein from its 

amino acid sequence if there is available template structure sharing more than 25% sequence 

similarities124. Building a homology model mainly consist four steps: the first step is to 

identify and select qualified structural template(s); the second step is to align target and 

template sequences; the third step is to predict the secondary structure and build model based 

on the template structure and the final step is to refine the model and do quality evaluation. 

The above steps can be repeated until a satisfying 3D model of target structure is achieved 

(Figure 3.1).  
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Figure 4.1: Illustration of the homology modelling process. 

 

Generally speaking, the accuracy of the homology model depends on the sequence similarity 

between target protein and templates, as well as the quality of the template structures. A 

template protein is usually found through sequence comparison with proteins in the Protein 

Database Bank (PDB) using algorithms such as BLAST (Basic Local Alignment Search 

Tool)125
 or FASTA (FAST-AII)126

 followed by alignment corrections. The structure of the 

target protein is then built by first copying the coordinates of the template structure that was 

used in the alignment. For residues that are different between the two proteins, only the 

backbone coordinates are copied, the side-chain coordinates are copied directly from the 

template as well if the aligned residues are the same and the sequence identity is high. Side-

chains that are not identical to the template in the alignment are constructed using rotamer 

libraries and scored using energy functions. The next step, in most cases, is loop modelling, 

which is necessary if there are regions of the target sequence that are not aligned to or missed 

from the template. This step is most likely to generate modelling errors, especially if the loop 

is longer than 10 residues. The final generated homology model is optimized or energy 

minimized by force field methods, and validated for different purposes127.  

There are a number of software tools available for homology modelling, of which the mostly 

widely used are prime128, SWISS-MODEL129, MOE130, MODELLER131, and ROSETTA132, 

etc. All those programmes are able to produce reasonable models when sequence identities 
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are above 30%133.  In my studies, MOE and prime were mostly applied to generate homology 

models. 

 

4.2 Docking  

Molecular docking is a widely used method to predict the binding orientation of a molecule 

with respect to its specific target, typically protein or DNA in drug design. Mostly docking is 

performed either to study how a specific ligand interacts with a protein or to search a 

database of compounds for potential agents that can bind to a target protein. The increasing 

number of protein structures available in the PDB enables a large number of proteins to be 

considered as targets for therapeutic purpose. Docking can be divided into two main steps: 

initial posing of a ligand in an active site with the application of docking algorithms, followed 

by application of scoring function to assess the strength of the binding pose.  

There are a large number of docking algorithms for posing a ligand in an active site available. 

Docking algorithms in early days did not treat the ligand and protein as flexible objects, 

hence only the six translational and rotational degrees of freedom were included134. 

Nowadays, we apply more reliable methods which involve flexible docking that the protein is 

treated as fixed during the docking; however, the ligand is able to move in order to take into 

account of the ligand’s conformational degrees of freedom. In this case, the active site is not 

considered to undergo any significant conformational changes upon binding of a ligand. This 

type of docking is widely used with parallel computing resources to quickly and relatively 

accurately search databases for potential ligands to a target protein. The more accurate 

algorithms that consider flexibility of both the receptor and the ligand are extremely time 

consuming, thereby, have not been extensively developed135. The algorithms that treat ligand 

flexibility can be divided into three basic categories, including systematic methods, random 

or stochastic methods and simulation methods135.  

The docked poses are ranked and evaluated using scoring functions that approximate the 

binding free energy of a ligand to a receptor, which is a crucial step to differentiate correct 

poses from incorrect ones. The scoring functions make various assumptions and 

simplification in the evaluation of binding free energy for modelled complexes and do not 

fully consider some of the physical phenomena that are important for molecular recognition, 

i.e, entropic effects, as the scoring functions must be calculated rapidly during the docking 

run. Normally the scoring functions are expressed as a sum of separate terms that describe the 

various contributions to ligand binding. A large number of scoring functions are available, 
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4.1 

such as forcefiled-based, empirical and knowledge-based scoring functions, which differ in 

which terms that are included in the expression of the binding free energy. Terms expressing 

nonbonded interactions, including van der waals interactions and electrostatic interactions, 

and solvation effects are commonly included 135.  

 

4.3 Molecular dynamic simulation 

Molecular dynamics simulation is an N-body simulation method for studying the physical 

movements of atoms and molecules, based on Newton’s equations of motion to generate 

trajectories. This technique can be applied to material science, as well as biophysics and 

biochemistry to refine three-dimensional structures of proteins and other macromolecules. 

According to Newton’s equations of motion F = ma, which states that a body with mass m, 

on which a force F is acting, experiences acceleration a in the same direction as the force. 

The trajectory of an MD simulation is obtained by solving the differential equations in 

Newton’s equations of motion. In each step of the simulation, a potential function V(r) is 

used to evaluate the total force acting on each particle and is obtained from Equation 4.1, 

which is calculated using a molecular mechanics forcefield.  

 

𝑉(𝑟) = ∑
𝑘𝑏

2𝑏𝑜𝑛𝑑𝑠  (𝑙𝑖 − 𝑙𝑖,0)
2

+  ∑
𝑘𝜃
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2

+ ∑
𝑉𝑛

2𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠 [1 + cos(𝑛𝜔 − 𝛾)] +
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𝑁
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)
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− (
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𝑟𝑖𝑗
)

6

] + 
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
) 

 

As stated from the above equation, bond stretching, angle bending, bond rotation (torsion), 

and non-bonded interactions, including van der Waals interactions and electrostatic 

interactions, contribute to the total V(r). Bond stretching is expressed by a harmonic function 

about the reference bond length li,0, which represents the bond length when all other terms in 

the force field are set to zero. However, a harmonic Morse potential could be more 

appropriate to apply when the system is far away from equilibrium. Angle bending is also 

expressed by a harmonic function about the reference bond angle θi,0, and the expression of 

angle bending is defined for all combinations of three bonded atoms. The terms kb and kθ are 

force constants for bond stretch and angle bend, respectively. The torsional function describes 

the dihedral angle between four bonded atoms and is calculated using cosine functions. In the 

torsion expression above, Vn is the barrier height, n is the number of minima in the function 

when the bond is rotated 360°, ω is the torsion angle, and γ is the phase factor that determines 
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where the minima are located. The last expression in the above equation is non-bonded 

interaction, it sums the van der Waals interactions and electrostatic interactions of all the 

particle pairs. van der Waals interactions is commonly described using the Lennard Jones 12-

6 potential, which contains the following parameters; ε is the depth of the potential well, σ is 

the finite inter-particle distance at which the potential is zero, and r is the distance between 

particles. The electrostatic interactions are usually calculated as a sum of interactions 

between pairs of point charges q using Coulomb’s law. In periodic systems, it is common to 

sum the electrostatic interaction by using the Ewald summation method, which splits in two 

terms, one in real space and one in reciprocal space, which results in faster convergence. An 

extension of the Ewald summation is the particle mesh Ewald (PME) summation136, 137.  

The total force F is then calculated as a negative gradient of the potential energy function, 

and further used to calculate the acceleration of the particles according to Equation 4.2-4.3, 

 

𝐹𝑟𝑖   =  − 
𝑑𝑉𝑟

𝑑𝑟𝑖
 

 

𝑑2𝑟𝑖

𝑑𝑡2  = 
𝐹𝑟𝑖

𝑚𝑖
 

 

Together with the current positions and velocities, the acceleration is used to calculate the 

positions and velocities in the next step of the simulation. The initial position can be obtained 

from the simulated structures, and the initial velocities can be generated according to atom 

types and simulation temperature.  

Several algorithms for integration of the equations of motion exist, all which apply Taylor 

series expansions as approximations of the positions, velocities and accelerations. The two 

most widely used, the leapfrog algorithm138 and the Verlet algorithm139 are expressed in 

Equation 4.4 and 4.5 respectively,  

 

𝑅(𝑡 + ∆𝑡) = 𝑅(𝑡) + ∆𝑡 ∙ 𝑣 (𝑡 +
1

2
∆𝑡) 

 

𝑣 (𝑡 +
1

2 
∆𝑡) = 𝑣 (𝑡 −

1

2
∆𝑡) + ∆𝑡 ∙ 𝑎(𝑡) 
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𝑅(𝑡 + ∆𝑡) = 𝑅(𝑡) + ∆𝑡 ∙ 𝑣(𝑡) +
1

2
∆𝑡2 ∙ 𝑎(𝑡) 

 

𝑣(𝑡 + ∆𝑡) = 𝑣(𝑡) +
1

2
∆𝑡 ∙ [𝑎(𝑡) + 𝑎(𝑡 + ∆𝑡)] 

 

The length of the time step, ∆t, used in a simulation is required to be significantly less than 

the period of the fastest motion in the system, such as vibrations of bonds. The time step is 

normally set to be 1-2 femtoseconds. 

In order to better mimic experimental conditions of the system in MD simulations, keeping 

the temperature and pressure constant is important. Different statistical ensembles are 

common setups in MD simulations to control these physical properties. These statistical 

ensembles can be generated based on which state variables, such as the energy E, volume V, 

temperature T, pressure P, and number of particles N, are kept fixed.  NVE ensemble, also 

referred to as the microcanonical ensemble, keeps the energy E and volume V constant. Thus 

there is no temperature and pressure control in this ensemble, which is not recommended for 

equilibration. NVT ensemble, also known as canonical ensemble, keeps both temperature and 

volume constant throughout the run, in which the temperature is kept constant through direct 

temperature scaling and temperature bath coupling. NPT ensemble allows both the 

temperature and pressure constant, where the pressure is adjusted by volume adjustment.  The 

number of particles is conserved in all ensembles. Either NVT or NPT was carried out in the 

simulations of the work in this thesis. 

To be concluded, the whole MD workflow can be simplified as in Figure 4.2: in a classical 

MD simulation, initial positions R0 and velocities v0 as well as a time step ∆t (normally 1-2 fs) 

must be provided. R0 can be obtained from X-ray or NMR structures, and v0 value is usually 

generated according to atom types and simulation temperature. A potential function V(r) is 

further used to evaluate the force on each atom, in order to get accelerations a. New position 

Rn+1 can then be obtained from Rn repeatedly. When a sufficiently long trajectory is 

generated, various properties of the system can be analysed, such as root-mean-square 

deviation (RMSD), root-mean-square fluctuation (RMSF), hydrogen bonds, radius of 

gyration, distances, solvent accessible surface areas, vibrational motions, etc, which provides 

useful information about the protein-ligand interactions, protein structural fluctuations and so 

forth. 

 

 

4.5 
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Figure 4.2: MD steps 

 

4.4 MM-PB(GB)SA approach 

The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) and the Molecular 

Mechanics Generalized Born Surface Area (MM-GASA) methods are commonly used to 

evaluate the binding free energies between two molecules from MD simulations, normally 

sets of complex structures are collected from MD trajectories for the calculation. The binding 

free energies calculated by MM-PB(GB)SA methods are evaluated according to the 

Equations 4.6-4.7. 

∆∆𝐺𝑏𝑖𝑛𝑑 =  ∆𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑡 − (∆𝐺𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + ∆𝐺𝑙𝑖𝑔𝑛𝑑) 

Each term can be estimated in the following: 

∆𝐺 =  ∆𝐺𝑀𝑀 +  ∆𝐺𝑠𝑜𝑙 − 𝑇∆𝑆 

∆𝐺𝑀𝑀 =  ∆𝐺𝑒𝑙𝑒 +  ∆𝐺𝑣𝑑𝑤 

 ∆𝐺𝑠𝑜𝑙 =  ∆𝐺𝑃𝐵/𝐺𝐵 +  ∆𝐺𝑆𝐴 

Where ∆𝐺𝑀𝑀  represents the molecular mechanics free energy, which includes the 

electrostatic interactions ∆𝐺𝑒𝑙𝑒 and van der Waals interactions ∆𝐺𝑣𝑑𝑤. ∆𝐺𝑠𝑜𝑙 is the solvation 

free energy that consists of polar contributions of electrostatic solvation energy ∆𝐺𝑃𝐵/𝐺𝐵 , and 

non-polar contributions of the non-electrostatic solvation, ∆𝐺𝑆𝐴. The conformational change 

upon ligand binding,  𝑇∆𝑆, can be estimated with the normal mode analysis on a set of 

complex structures obtained from MD simulations.  

 

4.5 Structure based-pharmacophore  

Screening a 3D database against a pharmacophore hypothesis is generally more 

computationally efficient than structure-based docking, which involves many energy 

evaluations as part of the conformational searching and scoring process. Recently, methods 

Provide atoms initial position R0, Velocities v0, and short time step ∆t  

Use V(r) to calculate F and a 

Use R(t), v  and a to calculate R(t+∆t) 

Repeat as long as you need to generate MD trajectories 

4.6 

4.7 
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have emerged that attempt to take advantage of both the speed of pharmacophore screening 

and information of structure-based docking. In doing so, methods have been developed to 

generate pharmacophore hypotheses derived from protein-ligand complexes140-142. Study has 

shown to discover novel leads for 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) 

enzyme based on these methods143. In this thesis, I used a novel protocol for generating 

energy-optimized pharmacophores (e-pharmacophores) based on mapping of the energetic 

terms from the Glide XP scoring function onto atom centers of the ligand located in the 

binding pocket. The Glide XP scoring function is presented in the following Equation 4.8: 

XP GlideScore = Ecoul+EvdW+Ebind+Epenalty 

Ebind=Ehyd_enclosure+Ehb_nn_motif+Ehb_cc_motif+EPI+Ehb_pair+Ephoic_pair 

Epenalty=Edesolv+Eligand_strain 

The advantages of this scoring function is that it includes more complex energy terms than 

traditional molecular mechanics or empirical scoring functions, such as hydrophobic 

enclosure (Ehyd_enclosure), special neutral−neutral hydrogen-bond motifs (Ehb_nn_motif), 𝜋 

stacking and 𝜋-cation interactions (EPI), standard ChemScore-like hydrogen bond (Ehb_pair) 

lipophilic pair (Ephoic_pair) rapid docking of explicit waters (Edesolv), contact penalties 

(Elig_strain).These terms are described in detail in the original Glide XP work144. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Structure based pharmacophore steps 

 

The whole workflow for generating a structure-based pharmacophore begins with a 

ligand−receptor complex, refinement of the ligand pose, computing the Glide XP scoring 

terms, and mapping the energies onto atoms. Then, pharmacophore sites are generated, and 

4.8 

Map GlideXP descriptor on to pharmacophore site 

Structure preparation 

Ligand refinement 

Hypotheis generation 

Find mathes to hypothesis 
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the Glide XP energies from the atoms that comprise each pharmacophore site are summed. 

The sites are then ranked based on these energies, and the most favorable sites are selected 

for the pharmacophore hypothesis. Finally, these e-pharmacophores are used as queries for 

virtual screening (Figure 4.3)145. 

 

4.6 Ligand-based pharmacophore and 3D-QSAR modelling 

 

Pharmacophore modelling has been extensively used in drug discovery, due to its ability to 

both find and optimize active molecules146-148. Pharmacophore modelling is based on the 

general concept that molecules share similar arrangements of related chemical groups, such 

as hydrogen-bond donors or acceptors, or aromatic rings, in spatially and geometrically can 

make comparable interactions with a receptor, hence those compounds have similar chemical 

and biological activity. It may be possible to generate a common pharmacophore model when 

chemical knowledge of many active ligands is available. This model in principle represents 

the key molecular features necessary for activity, including lipophilic, aromatic, hydrogen 

bonding, and charged groups. Once the pharmacophore model is generated, it can then be 

used to screen compound databases for molecules that share the same features. 

Pharmacophore modelling is most commonly carried out when the target structure is not 

available. Some targets in drug discovery campaigns are very difficult to crystallize, such as 

ion channels, transporters, or G protein-coupled receptors (GPCRs), it is thus particular 

useful to generate pharmacophore models to search for potential hits149. Further, if the 

activity data of the ligands, such as IC50 values, are also known, then it can be applied to 

optimize the hypothesis and develop a 3D-QSAR model for further predicting the activity of 

the newly found compounds. 

In the following, I will briefly introduce how to build a pharmacophore and develop 3D-

QSAR model in the PHASE module150: The first step involves preparing the ligands, the 

ligands begin with a structure cleaning step by LigPrep, followed byconformational space 

search by torsion sampling or mixed MCMM/LMOD151, 152 method. The minimized 

structures that are ultimately obtained are then filtered through a user-defined relative 

energy window. The second step deals with creating pharmacophore sites: Six built-in types 

of pharmacophore features are available: hydrogen bond acceptor (A), hydrogen bond 

donor (D), hydrophobe (H), negative ionizable (N), positive ionizable (P), and aromatic 

ring (R). In addition, users may define up to three custom feature types (X, Y, Z) to account 
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for characteristics that don’t exist in the six built-in types. The third step is perceiving 

common pharmacophores, which can be done based on using a tree-based partitioning  

 

 

 

Figure 4.4: Workflow of generation of ligand-based pharmacophore and 3D-QSAR 

model150 

technique that puts similar pharmacophores into a group according to their intersite 

distances. As the fourth step pharmacophore hypothesis is scored. The pharmacophore 

model can be scored with respect to actives, and thus filter out inappropriate 

pharmacophores and elevate pharmacophore models with essential features for high 

binding affinity. The fifth step is about building 3D-QSAR model. In order to develop 3D-

QSAR model for each hypothesis, it requires sufficient number of molecules of various 

activity that can be used as training set structures and employed fitness. A QSAR model 

can be either atom-based or pharmacophore-based, in atom-based QSAR, all atoms of a 
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molecule are taken into account, while in pharmacophore-based QSAR, only the 

pharmacophore sites are considered. The QSAR models are generated by applying partial 

least squares (PLS) regression, with the maximum PLS factors no larger than 1/5 the 

number of training set molecules. 

4.7 Density functional theory  

Density functional theory (DFT) is presently the most successful quantum mechanical 

modeling method used in physics and chemistry to compute the electronic structure 

(principally the ground state) of many-body systems, in particular atoms, molecules, and the 

condensed phases. In chemistry, DFT is used to predict a variety of molecular properties, 

such as molecular structures, vibrational frequencies, atomization and ionization energies, 

electric and magnetic properties, reaction paths, etc. The modern DFT calculations are based 

on two Hohenberg and Kohn theorems, which proves that the electronic energy of a molecule 

in a ground state could be determined completely by electron density ρ(r)153. The electron 

density ρ(r) can be defined as in Equation 4.9, where r is spatial variable of electrons and s is 

the spin variable of electrons. 

 

𝜌(𝑟) = 𝑁 ∑ … ∑ ∫ 𝑑𝑟2

𝑠𝑁𝑠1

… ∫ 𝑟𝑁|Ψ(𝑟1, 𝑠1, 𝑟2, 𝑠 … 𝑟𝑁, 𝑠𝑁 ) |2 

∫ 𝜌(𝑟)𝑑𝑟 = 𝑁 

The Kohn-Sham (KS) theories are the most common implementation of DFT, making it 

widely used. The KS equations are analogous to the Hartree-Fock equations. In the KS model, 

non-interacting electrons moving in an effective potential is introduced to solve the problem 

of interacting electrons of many-body moving in a static external potential. The most popular 

DFT method is the Becke3-Lee-Yand-Parr(B3LYP) hybrid functional153, and was also used 

for the calculations in this thesis. Generally speaking, DFT is not a CADD method, however, 

it is involved in application in CADD to predict molecular properties.  

 

 

 

 

 

 

 

4.9 
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Chapter 5. Summary of papers 

  
In collaboration with different experimental groups, we have investigated various protein 

targets, which all have in common that they overexpressed in cancer cells. Therefore, CADD 

approaches were applied to either investigate the structural conformations or develop 

inhibitors to the targets. The targets studied includes RET, Eg5, KIF18B, Tip60 and K-Ras.  

 

5.1 Studying DFG-out inhibitors targeting RET (Paper I) 

 

In paper I, a range of different CADD approaches were employed. Homology modelling was 

used to predict the DFG-out conformation of RET tyrosine kinase domain, followed by 

docking to predict the binding mode of DFG-out inhibitors to the RET. Based on the complex 

structures, MD simulations were carried out to further optimize the structures and calculate 

the MM-PBSA interaction energies. Finally, the key features of a structure-based 

pharmacophore were determined based on the complex structures. 

RET is a transmembrane tyrosine kinase receptor, and overexpression of RET are related to 

several different thyroid cancers. In this study, the binding mode of four DFG-out tyrosine 

kinase inhibitors with different IC50 values, namely Abt-348, Birb-796, Motesanib and 

Sorafenib, to a homology model of the DFG-out conformation of RET were explored 

(Figure 5.1).  During MD simulations, Abt-348, Birb-796, Motesanib, Sorafenib, all form 

stable hydrogen bonds with Glu775 and Asp892 of the ATP binding pocket of RET. 

Furthermore. All four ligands form stable hydrogen bonds in the hinge region, Abt-348 

hydrogen bonds to the Glu805 and Ala807 backbone, the other three inhibitors formed 

stable hydrogen bonds to Ala807. The hydrogen bonds highlight that the important 

interactions between RET and the inhibitors. The MM/PB(GB)SA analyses of Abt-348, 

Birb-796, Motesanib, and Sorafenib interaction with RET were further conducted to 

highlight their detailed structural interactions. Through the analysis of the components in 

binding free energy, it suggests that the van der Waals energy and the nonpolar solvation 

energies, which are responsible for the burial of the inhibitors hydrophobic groups in the 

cavity, are the major contribution to the binding. However, the electrostatic contributions in 

vacuum and solvent (∆Gele + ∆Gele,sol) constitute the  unfavourable part to binding. The 

further residue free energy decomposition calculations showed that the major favorable 

energy contributions originate predominantly from residues Glu775, Ile788, Val804, 

Tyr806, Ala807, Leu881, Ile890, Ser891 and Asp892. In addition, we generated e-

pharmacophore models of the RET-inhibitor complexes, which all shared the common 
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features D–A–R–A, where R is aromatic ring, A is hydrogen acceptor and D is hydrogen 

donor. The RET-Abt-348 complex structure showed ten features, of which three were 

aromatic rings, three hydrogen acceptors and four hydrogen donors. Six features were 

identified for the RET-Birb-796 complex structure, including two ring aromatics, two 

hydrogen acceptors and two hydrogen donors. Another six features, of which three are ring 

aromatics, two are hydrogen acceptors and one is hydrogen donor, were obtained for the 

RET-Motesanib complex. Finally, eight features that contain three ring aromatics, two 

hydrogen acceptors and three hydrogen donors were shown for the RET-Sorafenib-I 

complex structure. Taken together, the results herein enlightened the protein–ligand 

interactions between RET and tyrosine kinase DFG-out inhibitors, which can be used as a 

basis for future rational design of novel potent inhibitors to RET. 

 

 

Figure 5.1: RET with Motesanib binding in its ATP binding pocket. Hinge region and DFG 

loop is labelled. Four inhibitors with different IC50 values are shown. 

 

5.2 Investigating cadherin like domain of RET. (Paper II) 

As it is well known that the calcium binding site could be an appropriate structural 

target in tumours with wildtype RET expression, the aim of paper II is to investigate 

the structural details of how calcium depletion or specific mutations around the 

calcium binding site, namely R231H, D264K, and D300K, influence the RET CLD1-4 
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conformation, and to present the design of inhibitors targeting this region. RET CLD 

was firstly constructed by homology modelling, followed by in silico mutagenesis, and 

300 ns molecular dynamics (MD) simulations of the RET CLD1-CLD4 wildtype 

structure, the calcium-depleted structure, and structures carrying with mutations 

commonly found in Hirschsprung's disease (HSCR), namely R231H, D264K, and 

D300K (Figure 5.2)4,11. We furthermore present a structure-based pharmacophore 

based on the most populated structure obtained from a cluster analysis of the MD 

simulations of the wildtype systems, to provide a first tool for designing inhibitors of 

the RET extracellular domain. 

 

 

Figure 5.2: RET CLD structure, with mutant residues labelled in magenta and calciums in 

green spheres. 

 

The structural details of the conformational changes of RET CLD1-4 upon calcium-depletion 

and mutations in the calcium-binding region were explored, using all-atom MD simulations 

to quantitatively analyse properties and explain the role of the mutants in HSCR pathology. 

Upon mutation or depletion of calcium in RET CLD1-4, several common features were noted, 
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such as large fluctuations in the RMSF, a decrease in radius of gyration, and an increase in 

distance between calcium ions. In addition, PCA revealed that the dynamic motion covers a 

larger region of phase space along the PC2 axis for wildtype, but a larger region of phase 

space along PC1 for the non-calcium-binding and the mutant RET CLD1-4. The PC1 

corresponds to motions of the CLD1-2 swinging out, CLD3 moving inwards, and CLD4 

elevating up; PC2 corresponds to the motion of the CLD1-2 swinging out, CLD3-4 extending 

down. The R231H and D264K mutant systems display more similarities to wildtype and 

result in smaller structural changes, whereas the calcium-depleted system and the D300K 

mutant demonstrate significant structural changes. The mechanism leading to protein 

degradation and non-ligand interaction hence most likely differs for these systems. We 

propose that the small structural changes in R231H and D264K mutants might propagate 

changes through allosteric mechanisms that finally destroys the protein conformation, 

whereas the significant structural changes in the calcium depleted or D300K mutant system 

result in destroyed protein conformation, leading to the malfunction of the RET CLD1-4. 

Furthermore, based on fragment docking and clustering we propose a pharmacophore for 

possible wildtype RET CLD1-4 inhibitors targeting the extracellular ligand contact site. 

Based on this pharmacophore we further screened an in house compound database, of which 

two compounds showed effective inhibitory targeting RET. However, the structures of the 

compounds will not be shown here for the potential future patenting. 

 

5.3 Understanding a photo-switchable inhibitor targeting RET (Paper III) 

A photoswitchable RET kinase inhibitor was developed based on azo-functionalized 

pyrazolopyrimidines to gain external control of the activity of RET (Figure 5.3). It displays 

excellent switching properties and stability with good inhibitory effect towards RET in cell-free as well 

as live-cell assays and a moderate difference in inhibitory activity between its two photoisomeric forms. 

To further investigate its photoswitchable properties in the RET binding pocket, docking, time 

dependent density functional theory (TDDFT) calculations, and MD simulations were applied 

to explain how the isomerization affects the structural changes in the RET tyrosine kinase 

that lead to the ligand affinity differences.   

In the TDDFT calculations, the absorption wavelength maxima of the inhibitor in its E 

isomer is 330 nm, and 296 nm in its Z isomer, close to the experimental value 349 nm and 

299 nm respectively. The E and Z isomer of the inhibitor was docked into the active site of 

RET, and was noticed that the Z isomer could barely fit into the pocket. However, the 

difference in binding affinity between E and Z isomers is only 3-4 folds, in favour of E4 
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binding. Therefore, the docking pose of the Z isomer should not be trusted. We thus carried 

out MD simulations of the E isomer binding to the pocket, and applied a torsional force to 

twist the dihedral C-N=N-C into the Z isomer, thereby achieving a proper binding pose of Z-

isomer. This was followed by two parallel MD simulations of 500 ns were performed on the 

RET-E isomer and RET-Z isomer complexes. After 15 ns, a stable Z isomer in the pocket 

was observed. Approximate interaction energy between RET and the E/Z isomers was 

calculated, which showed a 30 kJ/mol difference. The conclusion of this paper is that the 

TDDFT calculations can be further applied to predict the optical properties of similar 

photoswitchable compounds; the Z-4 isomer interferes the inhibitor-receptor interactions 

rather than unable to enter the active site; the favoured Z-4 binding mode generated from MD 

simulations in the active site lead to the interaction energy increases and lowers the 

differences between E and Z isomer on binding to RET.  

 

 

 

Figure 5.3: Structure and isomerization of photoswitchable compounds E4 and Z4154. 

 

5.4 Rational design a Tip60 inhibitor (Paper IV) 

In paper IV, we aimed to develop inhibitors for Tip60 histone acetyltransferase, which is a 

potential therapeutic target in cancer treatment. This paper consists of theorectical 

calculations, synthesis, and experimental tests. We initially designed the inhibitors based on 

the pentamindine (PNT) scaffold, which has been reported to inhibit Tip60 activity by 

decreasing its H2A acetylation, and further optimized the structure using a combinatorial 

builder to enhance the interactions between the target and the designed inhibitors. We also 

carried out MD simulations to observe the stability of different inhibitors in the binding 

pocket.  

Homology model of Tip60 indicated that one end of the binding pocket is mainly positive, 

which arises from side chains Arg326, Lys331 and Arg434, whereas the other end is negative, 
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which is from the side chain of Glu351 (Figure 5.4). We docked the PNT to the Tip60 active 

site and in silico generated series of derivatives within the pocket based on the possible 

surrounding interactions.  A novel Tip60 inhibitor, TH1834, was achieved to fit this specific 

pocket. Following synthesis of the compound, TH1834 was demonstrated to show significant 

inhibition activity towards Tip60 in vitro and treating cells with TH1834 results in apoptosis 

and increased unrepaired DNA damage in breast cancer but not control cell lines following 

ionization radiation treatment. Furthermore, TH1834 demonstrated its specificity to RET by 

not affecting the activity of related family member MOF, as MOF dependent post-

translational acetylation of histone H4 at lysine 16 (H4K16ac) was not affected by TH1834. 

It was further shown that by manipulating Tip60 activity through inhibition using TH1834, 

the effect of ionizing radiation against cancer cell lines (MCF7, PC-3 and DU-145) was 

increased, resulting in apoptosis. Our data also suggests that Tip60 dependent pathway is 

necessary for cancer cell line survival. In conclusion, the modelling, synthesis and validation 

of the small molecule Tip60 inhibitor TH1834 in this study indicates a first step towards 

developing additional specific, targeted histone acetyltransferase inhibitors, which may lead 

to further improvements in breast cancer treatment. Our findings demonstrate the potential 

therapeutic applications of Tip60 inhibitors, and the future work will be focused on using this 

model to produce compounds with increased potency. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: The electrostatic surface potential of the Tip60 binding pocket, the positive and 

negative region at each end of pocket is pointed out. Acetyl-CoA is located in the binding 

pocket. 
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5.5 Analysis Biphenyl Type Inhibitors Targeting Eg5 (Paper V) 

The kinesin protein Eg5 (also known as Kinesin-5 or KIF11) plays an essential part in the 

formation and maintenance of the bipolar spindle. It is considered to be an attractive target 

for cancer chemotherapy with reduced side effects. In our study we performed a detailed 

computational modelling study on 66 biphenyl type inhibitors binding to the α4/α6 allosteric 

pocket of Eg5, as this type of inhibitors show a unique activity profile compared to the 

known α2/L5/α3 allosteric inhibitors. Due to crystal packing effects, loop L11, which is 

located in the entrance of the binding pocket, is missing in the available crystal structure. In 

order to gain insight into the role of this flexible loop, homology modelling followed by MD 

simulations were carried out to sample L11 conformations starting from different state. It was 

shown that biphenyl type inhibitor binding to Eg5 brings about less fluctuations of L11 and 

stabilizes its conformation. Analysing L11 conformation, we note that residue Asn287 from 

L11 forms hydrogen bonding to the sulfone group of co-crystalized PVZB1194 and moves 

inward to the pocket (Figure 5.5), whereas in the unbound protein structure L11 moves away 

from the α4/α6 region. Free energy analysis supports the effect on L11 by inhibitor binding.  

 

 

 

 

 

 

 

 

 

Figure 5.5: A  Eg5 with bound AMMPNP , showing pockets α2/L5/α3 and α4/L11/α6. B 

PVZB1194 bound to homology model Eg5 with ordered L11 

We furthermore carried out pharmacophore, 3D-QSAR and pharmacokinetic modelling 

studies of a large set of biphenyl type inhibitors of Eg5. The best pharmacophore model 
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DDRRH.6 consists of two hydrogen bond donors (D), two aromatic rings (R) and one 

hydrophobic group (H). The pharmacophore DDRRH.6 has correlation coefficients, R2=0.81 

and Q2=0.64 in 3D-QSAR model, indicating this model can further utilised to predict the 

activity of new compounds sharing the same pharmacophore features. The ligands were 

further studied with docking into the α4/α6 allosteric pocket using structure obtained from the 

MD simulations. In addition, a structure based pharmacophore generated from fragment 

docking to the allosteric pocket shares good overlap for the DHRR features. Extra hydrogen 

bond acceptors and hydrophobic groups identified in the structure based pharmacophore can 

provide further possibilities in order to explore the new regions of the active site. The study 

here provides a basis for further optimization or development of allosteric inhibitors targeting 

the α4/α6 pocket of Eg5. 

5.6 Designing inhibitors targeting KIF18B (Paper VI) 

KIF18B is one of kinesin 8 family members, which walk directionally towards the plus end 

of microtubules and modulate microtubules dynamics in spindle assembly and organization. 

It has been found that deregulation of KIF18B leads to carcinogenesis, although detailed 

understanding of the specific role of KIF18B is still lacking. The aim of this study is to 

design inhibitors targeting KIF18B to prevent its activity, to enable studies of its specific 

roles in normal cells vs cancer cells. By applying the molecular modeling approaches of 

homology modeling, docking, and pharmacophore hypothesis generation and screening, we 

showed that the inhibitors targeting Eg5, which is also a kinesin protein, do not fit into the 

binding pocket of KIF18B, neither the conventional L5/α2/α3 pocket nor α4/α6 pocket. We 

furthermore investigate the KIF18A inhibitor BTB-1 and its derivatives, since KIF18A and 

KIF18B share 60% of sequence similarity in motor domain, the KIF18A inhibitors turn out 

promising on targeting the KIF18B as well. Thus, based on a pharmacophore hypothesis 

generated from six BTB-1 derivatives, BTB-1, 3, 5, 6, 7, 13, which show the highest 

inhibitory activity, we screened 3.6 million in stock lead-like compounds, and 29000 

compounds were achieved from this screening sharing the same pharmacophore key features 

to the active BTB-1 derivatives. In the next step, we performed docking of these obtained 

compounds to both KIF18A and KIF18B, and a final 10 compounds chosen for the further 

experimental validation. Fortunately, none of the final 10 binders were identical between 

KIF18A and KIF18B, thus providing promising selectivity of the proposed KIF18B 

inhibitors. The compounds showed promising inhibitory activity towards KIF18B, which is 

not included to be discussed here for the possible further patenting. 
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5.7 Impact of mutations on K-Ras-p120GAP interaction (Paper VII) 

The K-Ras protein plays an important role in the signal transduction cascade of cell 

proliferation and/or differentiation. K-Ras binds guanosine triphosphate (GTP) in its active 

state and triggers the downstream signalling pathway. By using GTPase activating protein 

(GAP) to facilitate hydrolysing GTP to guanosine diphosphate (GDP), the K-Ras inactivation 

occurs. However, Certain mutations in K-Ras lead to a permanent active state with GTP 

binding which leads to tumorigenesis due to failed interaction with GAP. In this paper, we 

examined the mutations E31N, D33N and D38N located in K-Ras Switch I region, and 

mutation K935N of GAP-334 (Figure 5.6). When bound with K-Ras, K935 is spatially 

located to Switch I region in complex structure. We aimed to investigate the potential 

mechanism by which these mutants affect the interaction between the two proteins.  

 

 

 

Figure 5.6: The complex between GAP-334 and K-Ras. GDP and the mutated residues in 

Switch I were indicated. 

  

In this paper, we have performed a range of MD simulations on wildtype K-Ras.GTP.GAP-

334 and the E31N-Ras.GTP.GAP-334, D33N-Ras.GTP.GAP-334, D38N-Ras.GTP.GAP-334 

and K-Ras.GTP.K935E-GAP-334 mutants, based on the MD trajectories we analysed 

structural conformation changes. We find that due to the mutations, the overall K-

GAP-334 

K-Ras 

Switch I 

Switch II 
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Ras.GTP.GAP interaction for the mutant complexes becomes weaker compared to the 

wildtype system, of which the K935E mutation causes a most significant reduction in 

interaction energy, compare to other mutations. Mutation of negatively charged residues 

located in the Switch I region, namely E31N, D33N, D38N, or positively charged residue 

K935E of GAP spatially close to the Switch I region, influence the electrostatic interaction of 

the two proteins and thereby reduce their affinity to each other. Thus the complementary 

attractive electrostatic interaction is a key factor for the protein-protein interaction and 

recognition between K-Ras and GAP. By observing he distance between the atoms of the side 

chain phenol ring of Tyr32 in K-Ras and the atoms in the guanidinium group of catalytically 

critical Arg789 in GAP from different MD simulations of complexes, it was seen that 

mutations cause unfavorable conformations of the Switch I region and leave an incompletely 

open Tyr32 gate, which in turn hinders the interaction of the residue Arg789 from GAP to 

interact with GTP for the further acceleration of the GTP hydrolysis. Overall, this study 

enables us to better comprehend the precise changes in the protein structures that are brought 

out by mutated residues, and how this results in failed protein-protein interaction between K-

Ras and GAP, and consequently leads to oncogenic effects.  
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Chapter 6. Concluding remarks and future perspectives 

 
CADD has become an essential part in the drug design process due to its powerful 

capability in the search of promising drug candidates. CADD makes use of the 

structural knowledge of either the target (structure-based) or known ligands with bioactivity 

(ligand-based) to facilitate every stage of the drug discovery and development process.  

In this thesis, I first outline the mechanism or signalling pathway of protein targets, namely 

tyrosine kinase RET, mitosis kinesin Eg5 and KIF18B, histone acetyltransferase Tip60 and 

GTPase K-Ras, and illustrate how those targets are involved in developing cancer. 

Following that, I applied different CADD approaches to investigate protein structures, and 

protein-ligand interactions. The most widely used approaches in this thesis are homology 

modelling, docking, MD simulations, ligand-based and structure-based pharmacophore 

generation, as well as 3D-QSAR modelling. For the tyrosine kinase RET, we have 1) 

investigated the interaction between RET and DFG-out inhibitors and generated the key 

pharmacophore features of DFG-out inhibitors targeting RET; 2) studied the extracellular 

membrane domain of RET, the CLD region, to see how different mutations induce 

conformational changes. In addition, we proposed a pharmacophore model for targeting this 

extracellular region and screening for new inhibitors; 3) examined the possible mechanism 

of a photoswichable inhibitor targeting RET kinase active site. For the mitosis kinesin Eg5, 

we mainly focused on developing pharmacophore and 3D-QSAR model for a series of 

biphenyl type inhibitors, which target a recently found allosteric binding pocket of Eg5. In 

the case of the histone acetyltransferase Tip60, we collaborated with different groups, 

enabling rational design of a potential inhibitor, followed by its synthesis and validation of 

its activity in breast cancer cell lines. The GTPase K-Ras has been found to be mutated in 

different cancer types, and we herein studied several of its mutations located in the Switch I 

region to investigate how those mutations hinder the GTPase activity.  

To be concluded, CADD is indeed a very useful tool for pharmaceutical companies and 

academic research groups to search for potential drug candidates with reduced cost and 

time. However, there is still room for further improvements in CADD, such as more 

accurate scoring functions, incorporating faster evaluation of target flexibility and solvent 

effects in the docking procedure, and increasing computational efficiency. To enhance 

current CADD, continuous improvements in the field of chemical and structural biology, 

bioinformatics, and computational technology is required. For the targets in this thesis there 
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is still room to continue developing inhibitors from different perspectives. For Ret, 

inhibitors e.g. can be developed to target the specific M918T mutant, which is mostly 

common in thyroid cancer; in addition, inhibitors targeting the extracellular domain of Ret 

are also promising to inhibit the oncogenic signalling. In the case of Eg5, inhibitors with 

new scaffolds and higher inhibitory activity targeting α4/α6 allosteric pocket could have 

significant impact. Finally, further optimization of the developed inhibitor TH1834 to 

increase its binding affinity for Tip60 is important in order to reach next stage of drug 

development. 
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