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ABSTRACT 

G-protein-coupled receptors (GPCRs), which are the largest class of cell-surface 

receptors, are involved in a range of physiologic processes and pathologies, mak-

ing this a highly interesting group of proteins as targets for drug development. 

Studies of these receptors have uncovered novel receptor biology concepts, in-

cluding biased signaling, functional selectivity, and allosteric modulation. “Tai-

lor-made” lipopeptides (pepducins and lipopeptoids) represent novel and 

promising classes of receptor-specific allosteric modulators. In this thesis, im-

munomodulating lipopeptides that interact with a group of pattern recognition 

receptors, formyl peptide receptors (FPRs), which play key roles in host defense 

against microbial infections, tissue homeostasis, and the initiation and resolution 

of inflammation, are generated and functionally characterized. The FPRs are ex-

pressed in both human and murine white blood cells, and novel allosteric 

lipopeptide modulators that selectively interact with human and murine recep-

tors are described. We show that the targeted receptor is not always the one that 

might be expected. This receptor hijacking process raises questions about the 

precise mechanisms of action of these lipopeptides and of these types of mole-

cules acting as a molecular pattern that is recognized by the receptor group stud-

ied. Fundamental differences are also revealed by the receptor-ligand recognition 

profiles, between mice and men. This represents important knowledge needed 

for the development and use of animal models for human diseases. 

In summary, the results presented in this thesis not only highlight the value of 

the different lipopeptides as tools for modulating receptor activities in human 

and murine immune cells, but also provide new insights into the allosteric mod-

ulation concept.  

 

Keywords: Human, mouse, neutrophil, reactive oxygen species, formyl peptide 

receptor, pepducin, G-protein-coupled receptor, lipopeptoid, pattern recogni-

tion receptor 
  



POPULÄRVETENSKAPLIG 

SAMMANFATTNING 

Receptorer som för sin signalering är beroende av ett s.k. G-protein utgör den 

största gruppen av igenkänningsstukturer som uttryck på våra cellers yta. Dessa 

receptorer är av stor betydelse för styrningen av många fysiologiska processer 

och ett fel i signalsystemet (för stark eller för svag signal, eller signalering vid fel 

tillfälle) riskerar att leda till sjukdom. Detta gör att kunskaper om denna grupp 

av receptorer har kunnat (och kommer att kunna) användas för att utveckla lä-

kemedel mot många typer av sjukdomar, och forskningen inom området är både 

omfattande och expanderande. När den här gruppen av receptor beskrevs var 

uppfattningen att det fanns två aktivitetslägen, antingen på eller av, men senare 

forskning visar att styrsystemen är mycket mer komplexa och begrepp som 

funktionell selektivitet, ”biased” signalering, full/partiell/invers agonism, och al-

losterisk modulering, används idag för att beskriva komplexiteten. Den grupp av 

lipopeptider som kallas pepduciner och som flera av delarbetena i denna avhand-

ling beskriver, är en grupp av modulatorer. Normalt aktiveras en receptor genom 

att en informationsbärare binder till delar av receptorn som är tillgängliga från 

cellens utsida, och denna bindning ändrar receptors funktion så att information 

förs vidare till det signalerande G-proteinet på insidan av cellens membran. 

Pepduciner, som består av en kort kedja av aminosyror (peptid) ihopkopplade 

med en så kalla fettsyra, har förmåga att ta sig in i celler och binda till delar av 

receptorer som är tillgängliga från insidan och de kan antingen aktivera samma 

signaler som en informationsbärare som kommer utifrån (positiv allosterisk mo-

dulering), eller hindra signalen att gå fram trots att informationsbäraren bundit 

till receptorn (negativ allosterisk modulering). En pepducin påverkar inte funkt-

ionen av vilken receptor som helst, utan bara de receptorer som någonstans på 

insidan av cellens membran själv har en peptidkedja som innehåller samma ami-

nosyror som pepducinen och de skall dessutom finnas i samma inbördes ord-

ning. Detta avhandlingsarbete visar att det inte alltid fungerar så; flera pepduciner 

och andra lipopeptider känner igen en speciell receptor (formyl peptide receptor 

2; FPR2) trots att den kedja av aminosyror som förmodats vara avgörande för 

funktion, saknas i denna receptor.  



 

I arbete I i avhandlingen undersöks effekter av pepduciner med en palmitinsyra 

(fettsyra) kopplad till en kedja aminosyror som är identisk eller nästan identisk 

med en bit (den tredje intracellulära loopen) som finns på en av de delar av re-

ceptorn FPR2 som exponeras på insidan av vita blodkroppars membran. I detta 

arbete (och i ett av forskargruppen tidigare publicerat arbete) visas att det finns 

en klar koppling mellan pepducinens aminosyrasekvens och den som finns i den 

receptor som aktiveras, men dessutom kan dessa pepduciner döda bakterier. 

Även denna funktion var helt beroende av att både fettsyra och peptidkedja, men 

basen för de två olika funktionerna (aktivering av vita blodkroppar - avdödning 

av bakterier) skiljer sig åt. De resultat som presenteras väcker frågan om det 

skulle vara möjligt att i framtiden kombinera de bakteriedödande och de immu-

nomodulerande egenskaperna i en klass av nya antibakteriella läkemedel. 

I arbete II i avhandlingen undersöks effekter av en pepducin med samma fettsyra 

som i de tidigare undersökta pepducinerna men med en kedja aminosyror som 

hämtats från en annan receptor, den med FPR2 närbesläktade FPR1. Aminosy-

rasekvensen är identisk med det tredje intracellulära loop i FPR1. I motsats till 

den tidigare beskrivna pepducinen som aktiverade vita blodkroppar, så hämmade 

FPR1-pepducinen cellernas funktion, men det var inte FPR1 funktionen som 

hämmades, utan den här pepducinen "kidnappade" FPR2. Dessa resultat väcker 

frågor om själva pepducinkonceptet och dessa frågor får ytterligare näring av att 

den här pepducinen påverkar extracellulära signalmolekylers förmåga att binda 

till receptorn på cellernas utsida.  

I arbete III studeras vita blodkroppar från försöksdjur, allt i avsikt att undersöka 

funktionslikheter/skillnader mellan mus och människa som båda är utrustade 

med de receptorer som beskrivits i arbete I och II, FPR1 (som i mus fått heta 

Fpr1) och FPR2 (som i mus fått heta Fpr2). Ett relativt stort antal agonister (ak-

tiverare) och antagonister (hämmare) har beskrivits och dessa påverkar selektivt 

FPR1 respektive FPR2, eller båda receptorerna. Mycket hur fungerar dessa re-

ceptor ligander i relation till motsvarande musreceptorer? Genom att använda 

vita blodkroppar som isolerats från benmärg tagen från normal friska möss och 

från djur som saknar arvsanlaget för Fpr2, identifierades ett par specifika agonis-

ter för Fpr1 respektive Fpr2, och tillgången till en dess specifika agonister gjorde 

det möjligt att identifiera receptorspecifika antagonister för dessa musrecepto-

rerna. De absolut bästa FPR1 och FPR2 antagonisterna hade inga hämmande 

effekter på motsvarande musreceptorer, men en mindre potent FPR1 antagonist 

visas fungera också för att hämma funktionen av Fpr1. En ny potent och selektiv 

Fpr2 hämmare (Lau-(Lys-βNSpe)6-NH2 introduceras. Denna hämmare tillhör en 

grupp av molekyler som brukar kallas lipopeptoider, och har en fettsyra kopplat 

till en kedja som är uppbyggd av kemiskt modifierade, "onormala", aminosyror.  



I arbetet IV studerades effekter på Fpr1/Fpr2 (musreceptorerna) av pepduciner 

med peptiddelarna hämtade från motsvarande humana receptorer, och det om-

vända. De två "humana pepducinerna" (beskrivna i arbetena I och II) är struk-

turellt väldigt lika (olika aminosyror på två ställen i peptiderna) men skiljer i 

funktion; den ena hämmar och den andra aktiverar, men båda är selektiva för 

FPR2. Båda dessa pepduciner modulerar också selektivt Fpr2 men båda aktiverar 

musreceptorn. Mus Fpr1 pepducinen har en peptidkedja som är mycket lik mot-

svarande humana variant (skiljer i en aminosyra) och de har också samma effek-

ter; aktiverar funktionen av Fpr2 och hämmar den av FPR2. Den pepducin som 

är hämtad från Fpr2 hämmar funktionen av denna receptor med den hämmar 

också funktionen av FPR2 trots att det är ganska stora skillnader mellan dessa 

receptorer i delar av respektive receptor som finns på insidan av de vita blod-

kropparnas membran. Sammanfattningsvis fungerar pepduciner som bra verktyg 

som kan användas för att modulera receptorfunktion, men det är uppenbart att 

det inte bara finns en mekanism för hur de fungerar.  
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INTRODUCTION TO  
RECEPTOR BIOLOGY 

All living cells must be able to sense the environment and respond to changes that 

affect survival, reproduction, and cell-to-cell communication. Proteins whose main 

function is to sense and transmit signals that lead to regulation of cellular responses 

to chemical/physical changes in the environment are referred to as receptors (the 

unit that receives a signal/message). Such proteins are carried by all living cells and 

are expressed either inside the cell or on the cell surface. Cells have an elaborate 

repertoire of receptors, with collective specificities for a multitude of stimuli, includ-

ing nutrients, growth factors, hormones, and toxins. Stimulation of these receptors 

activates signal transduction mechanisms, which produce chemical signals to mediate 

a wide range of cellular responses. These responses regulate many different cellular 

activities, such as cytoskeletal alterations, metabolism, and gene expression. Intracel-

lular receptors are located in the cytoplasm, nucleus or vacuoles of the cell and are 

activated by signaling molecules that are generated intracellularly or molecules that 

can pass through cell membranes. 

While receptors that are expressed on the surface of a cell can be connected to the 

membrane in different ways (e.g., membrane associated/anchored or integral to the 

membrane), they have in common that they all recognize external signals and transfer 

the information about the presence/absence of a particular signal to an intracellular 

signal, which is transferred to second messengers and ultimately, to effector functions 

related to the receptor involved and the precise signal received. The cell-surface re-

ceptors that are involved in the signaling processes that occur in multicellular organ-

isms can be divided into three general categories: receptors with ion channel activities; 

receptors with enzymatic activities; and receptors that rely on a G-protein for signal 

transduction, the so-called G-protein-coupled receptors (GPCRs). The last category 

is the largest receptor family, encoding approximately 950 GPCR members in the 

human genome, and will be the focus of this thesis.   

 



INTRODUCTION TO  

RECEPTOR BIOLOGY 

2 

  



 

G-PROTEIN-COUPLED 

RECEPTORS 

3 

G-PROTEIN-COUPLED 
RECEPTORS  

Knowledge about the family of receptors now known as GPCRs was initially ob-

tained from studies of the light-sensitive receptor rhodopsin, which was the first 

GPCR to be studied in detail. The possibility to obtain large quantities of a highly 

enriched and stable protein from the bovine retina supported these studies, which 

resulted in the publication of the primary sequence of rhodopsin in 1983 [1]. Around 

10 years later, the two-dimensional crystal structure of bovine rhodopsin was ob-

tained, and the three-dimensional crystal structure was obtained in Year 2000 [2, 3]. 

GPCRs have in common that they are membrane-spanning proteins that traverse 

seven times the membrane in which they are expressed, placing the N- and C-termini 

on different sides of the membrane [1, 4]. The importance for signaling of 

GTP/GDP-binding heterotrimeric proteins (large G-proteins) was known before 

this group of proteins was proposed to act as intermediate transducers of the second 

messenger signals generated by GPCRs [5, 6]. The β-adrenergic receptor was the first 

receptor in the family to be cloned, and the basic functions of this receptor has since 

then been used as the prototypic GPCR [7]. We now know that even if the family 

members in the GPCR superfamily share common structural features, e.g., seven α-

helical transmembrane domains and alternating cytoplasmic and extracellular loops, 

there is significant diversity among these receptors. GPCRs regulate a vast number 

of basic biological functions, as well as physiological processes, ranging from vision 

and smell to neurologic, cardiovascular, and reproductive functions. GPCRs cur-

rently constitute major targets for drug development and indeed, more than 40% of 

drugs that are currently on the market target GPCRs [8-10]. The importance of 

GPCRs is evidenced by the Nobel Prizes awarded to researchers describing the role 

of G-proteins in signal transduction (Gilman and Rodbell, 1994), the biological ac-

tivities of GPCR-binding neurotransmitters (Kandel, Carlsson and, Greenard, 2000), 

the description of olfactory GPCRs (Axel and Buck, 2004), and the GPCR structure-

function relationships (Lefkowitz and Kobilka, 2012).  

Several classification systems have been used to categorize this superfamily of recep-

tors. The first and most frequently used classification system is based on sequence 
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homology, dividing the GPCRs into the following six classes: A, rhodopsin-like; B, 

secretin receptor family); C, metabotropic glutamate; D, fungal mating pheromone 

receptors: E. cyclic AMP receptors; and F, frizzled. Of these, none of the receptors 

that belong to the D and E classes has been found in vertebrates. An alternative 

classification system is the GRAFS system introduced by Fredriksson et al in 2003, 

which is based on the GPCR phylogenetic tree. This system divides vertebrate 

GPCRs into five subgroups, overlapping the A–F nomenclature: glutamate; rhodop-

sin; adhesion; frizzled/taste; and secretin (Figure 1) [11-14]. The GPCRs are known 

to recognize and respond to many different types of ligand, from photons, neuro-

transmitters, and hormones to inflammatory mediators belonging to different chem-

ical groups [15, 16]. Despite the diverse range of GPCR ligands, many receptors  

Figure 1. Phylogenetic tree of the human GPCR superfamily constructed using sequence similarities within 

the seven-transmembrane regions. The GPCRs are listed according to the gene name used in the UniProt 

database. Family members with known structure are indicated by the blue circles within the tree. The 

turquoise circle highlights the three FPR family members (FPR1, FPR2, FPR3). Adapted from [17]. 
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share structural similarities (e.g., seven transmembrane domains) and use simi-

lar/identical G-protein-dependent intracellular signaling pathways to regulate differ-

ent cell functions [14, 16]. 

Basic concepts underlying orthosteric ligand  

regulation of GPCR activity 

In the classic two-state model that describes the interaction between a ligand and its 

receptor, the conformation of a receptor can vary between two different states that 

are in equilibrium [18]. In one conformational state, the signaling is turned off, 

whereas in the other state the signaling is on. Depending on the direction of the 

equilibrium (towards ‘on’ or ‘off’), the basic activities of receptors may vary. Ligand 

binding will then change the conformation of the receptor and thereby alter its acti-

vation state. GPCR ligands that bind to sites for natural ligands, so called orthosteric 

sites that are situated on parts of the receptor that are exposed on the extracellular 

side of the membrane, are accordingly termed orthosteric ligands. Based on the phys-

iologic effect that is induced, this type of ligand stabilizes the receptor in a confor-

mational state whereby the signaling is switched off (inverse agonist), partially on (a  

Figure 2. Hypothetical dose-response curves induced by different types of receptor-targeting ligands. A 

full agonist elicits the maximal response following receptor occupation and activation, whereas a partial 

agonist is unable to elicit the maximal response through the same receptor and inverse agonist binds to the 

same receptor-binding site as the agonist but reverses the constitutive activity of the receptor, thereby 

exerting pharmacologic effects opposite to those of the agonist. A neutral antagonist is a drug that binds to 

the same site as the agonist and blocks the effect of an agonist. Adapted from https://en.wikipe-

dia.org/wiki/Inverse_agonist#/media/File:Inverse_agonist_3.svg under the Creative Commons licence CC 

BY-SA 4.0. 
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partial agonist), fully on (full agonist) or has no effect on the conformation but blocks 

the binding of other ligands (antagonist) (Figure 2) [19-22]. 

It is clear from more recent work conducted on GPCRs, that the classical two-state 

model for how signaling is turned on and off is inadequate for describing the dynamic 

systems that regulate receptor function. This is clearly illustrated by the effects ob-

served for allosteric and biased ligands. The ternary complex model for GPCR acti-

vation, which describes a receptor that moves laterally in the cell membrane to couple 

physically with a trimeric G-protein after activation by an agonist, only accounts for 

part of the complexity of GPCR signaling system. Recent theories have revised the 

ternary complex model to reflect that a receptor may exist in many active confor-

mation states [23, 24]. A criticism of this revisionism is that not all of these potential 

conformations may be physiologically relevant. 

Allosteric modulators of GPCR 

GPCRs are protein structures that transmit chemical signals across the cell mem-

brane. Accordingly, agonist binding to the extracellular domains of a receptor induces 

a conformational change in those parts of the receptor that are located on the cyto-

solic side of the membrane, which leads to activation of the G-protein. In addition 

to endogenous (natural) ligand binding to the orthosteric binding site, GPCRs may 

expose allosteric (Greek for “other site”) binding sites that are topographically dis-

tinct from the orthosteric site [25]. Ligands that interact with an allosteric binding site 

are called allosteric modulators, and while they may functionally resemble agonists, 

antagonists or inverse agonists, they may also modulate basic functions induced by 

ligands that interact with the orthosteric binding site of the receptor [20, 26]. De-

pending on its effects on an orthosteric agonist (increasing or decreasing activity), an 

allosteric modulator can be classified as a positive allosteric modulator (PAM) or a 

negative allosteric modulator (NAM) [27-30]. Allosteric ligands modulate the recep-

tor in two ways: 1) affinity modulation with conformational change to the receptor; 

and 2) modulation of efficacy by changing the intracellular signaling capacity (Figure 

3).  
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Figure 3. Signaling directed by a G-protein and/or β-arrestin. A conventional/orthosteric/natural GPCR 

agonist triggers activation of the G-protein- and β-arrestin-mediated signaling pathways (left panel). A biased 

GPCR agonist triggers selectively or primarily activation of the G-protein-mediated signaling pathway (mid-

dle panel) or the β-arrestin-mediated signaling pathway (right panel). 

 
In GPCR-based drug discovery, the recent identification of allosteric modulators for 

certain GPCRs represents a major breakthrough. Traditionally, GPCR-based drug 

screening programs have identified drug candidates that target the orthosteric bind-

ing sites, making it difficult to achieve high selectivity for specific GPCR subtypes, 

given that these sites are often highly conserved across members of the single GPCR 

subfamily. Furthermore, ligands that bind at orthosteric sites for some GPCRs, such 

as peptide or protein receptors, have other physicochemical and pharmacokinetic 

properties that are incompatible with scaffolds, which are useful for small molecule 

drug discovery. Thus, the development of selective allosteric modulators for a spe-

cific receptor serves as an alternative approach. In vivo, these agents can also have the 

specific advantage of modulating exclusively receptor activity when the orthosteric 

agonist is present to occupy the receptor, thereby maintaining spatial and temporal 

control of receptor signaling [20, 30-32]. A classic example of a PAM is the benzodi-

azepines used for modulating GABA receptors, providing an effective and safe ap-

proach to the treatment of anxiety and sleep disorders [33]. 

G-protein-dependent signalling  

downstream GPCRs 

GPCRs generally signal through coupling to heterotrimeric guanine nucleotide-bind-

ing proteins (G-proteins) that are composed of an α-subunit and a heteromeric βγ-

complex. However, there are exceptions to this (see discussion of biased signaling 

below). There are four main α-subunits (Gα S, Gα 12, Gα q and Gα i/0) and they can be 

combined with at least 5 different β-subunits and 12 different γ-subunits. The activity 
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of a G-protein is regulated by GDP/GTP exchange in the α-subunit, which is inac-

tive in its GDP-bound form and active when it is separated from the βγ-complex in 

the GTP-bound form. Upon ligand binding, the conformational change of the ago-

nist-occupied receptor initiates the GDP/GTP exchange, which results in dissocia-

tion of the βγ-complex from the α-subunit [34-36]. It is now well established that not 

only the α-subunit, but also the βγ -complex is active in signaling. Activation of phos-

pholipase C (PLC) is an early signal initiated by the activated α and βγ complexes that 

secondarily generates further downstream messengers produced during hydrolysis of 

the lipid phosphatidyl inositol bisphosphate (PIP2), giving rise to diacylglycerol 

(DAG) and Inositol 1,4,5-triphosphate (IP3). IP3 triggers the release of Ca2+ from 

intracellular storage organelles and DAG activates protein kinase C (PKC), which is 

a kinase that is associated, for example, with activation of the superoxide-generating 

NADPH-oxidase in neutrophils. The phosphoinositide 3-kinase (PI3K) is activated 

together with other kinases, such as the extracellular signal-regulating kinase 

(ERK1/2), p38 MAP kinase, and the guanine-nucleotide exchange factors (GEFs). 

GEFs regulate small G-proteins of the Rho family (Rho, Rac, Cdc42), which are key 

regulators of several cellular functions [37-40] (for more information see review [41]).  

Figure 4. Schematic of the main G-protein-mediated signaling pathways downstream of FPR. Agonist bind-

ing to FPR results in dissociation of the heterotrimeric G-protein complex into Gα-GTP and the Gβγ-

subunits, leading to activation of downstream signaling cascades and effector functions, including ROS pro-

duction, degranulation, and transcriptional responses 
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Biased signalling and β-arrestin binding  

downstream of activated GPCRs 

The classic two-state model for receptor activation was challenged when the concept 

of biased signaling was introduced around 10 years ago [42-44]. Recent research has 

demonstrated that the binding of different agonists to the same receptor induces 

conformational changes in the cytoplasmic signaling domains of the occupied recep-

tor, which triggers signals cascades with or without the direct involvement of a G-

protein (Figure 3) [45]. The recruitment and binding of β-arrestins to an activated 

GPCR blocks G-protein binding; this was initially described as the mechanism for 

the termination of signaling, but we now know that β-arrestin is an endocytic adaptor 

protein with its own signaling properties that are independent of any G-protein [46, 

47]. To date, only a few receptors have been shown to possess this β-arrestin-medi-

ated biased signaling characteristic, and the precise mechanisms and biological con-

sequences of biased signaling have not yet been clarified, even though this is currently 

one of the most intensively studied topics in the field of GPCR signaling [48-51].  
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PEPDUCINS – A NOVEL CONCEPT 

FOR THE REGULATION OF  
GPCR FUNCTION  

The findings that GPCRs constitute a large protein family of interest for drug devel-

opment (approximately 40% of drugs currently on the market are GPCR-based) and 

that allosteric modulators are promising drug candidates inspired Covic and col-

leagues to introduce a novel concept for GPCR modulation. They showed that a 

group of membrane-penetrating lipopeptides, named pepducins, could be used to 

modulate allosterically GPCR signaling [17, 52]. The N-terminal lipid part (usually 

palmitate) of a pepducin makes the molecule membrane-permeable, while the peptide 

portion, with sequence identical to that of one of the intracellular loops or the tail of 

a GPCR, determines receptor preference and selectivity. It has been suggested that 

the lipid group anchors the pepducin to the membrane, a process that is rapidly and 

efficiently followed by flipping of the peptide part, such that the peptide sequence 

becomes exposed on the inner side of the plasma membrane. A direct modulatory 

effect is then achieved through allosteric modulation of receptor signaling, with the  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Proposed mechanism for pepducin activities. A 

pepducin is a fatty acid-conjugated peptide with a peptide se-

quence identical to one of the intracellular domains of a 

GPCR (see 1). The fatty acid anchors the pepducin to the cell 

membrane and the peptide part flips and translocates across 

the membrane (see 2-3). Once inside the membrane, the pep-

tide part of the pepducin interferes with the signaling domains 

of the receptor and either activates or inhibits receptor func-

tion (see 4). 
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outcome of either inhibition or direct activation of the cognate GPCRs from which 

the peptide sequence is derived (Figure 5) [17, 52-54].  

The conceptual difference between pepducins and orthosteric ligands is that the 

functions of the targeted receptor are regulated from the outside of the cell by or-

thosteric ligands and from the inside of the cell by pepducins. For orthosteric ligands, 

receptor selectivity is achieved through precise fitting of the ligand to a defined and 

unique three-dimensional binding pocket that is available in the targeted receptor, 

whereas the pepducin relies on amino acid sequence identity between the pepducin 

and the targeted receptor. Several criteria must be fulfilled for the pepducin concept 

to be valid. One of these criteria is that there should be a difference in activity be-

tween the fatty acid-linked peptide and the non-lipidated peptide. In this respect, it is 

clear that in order for pepducins to be active, the presence of the hydrophobic fatty 

acid is essential (this applies to all pepducins described), and the fatty acid possibly 

facilitates plasma membrane passage [53, 55-58]. However, this does not conclusively 

prove that pepducins initiate signaling through interactions with domains that are 

facing the cytosol, and it is a much more challenging task to prove rather than merely 

show that the peptide can pass through the membrane. Another criterion is that the 

pepducin should be able to trigger a response in cells that express the targeted recep-

tor only. However, this is also the case for orthosteric extracellular receptor agonists 

and it is by no means a unique property of pepducins. Moreover, according to the 

pepducin concept, the functional activities of pepducins should not be affected by 

conventional antagonists, and their binding should not be affected by conventional 

receptor agonists or antagonists. 

Activating and inhibiting pepducins  

The pepducin concept has prompted the design of different palmitoylated peptide 

sequences derived from a number of GPCRs, among which the pepducins derived 

from the protease-activated receptor (PAR1) are the most studied. A 19-amino acid 

pepducin (P1pal-19) derived from the third intracellular loop of PAR1 selectively 

induced a Ca2+ response in PAR1-expressing cells, and the response was identical to 

that induced by a conventional PAR1 agonist [52]. More importantly, that previous 

study shows that a PAR1 antagonist that inhibits the conventional PAR1 agonist has 

no effect on the P1pal-19-induced Ca2+ response and that a mutant PAR1 receptor 

with deletion of the entire C-terminal tail responds to a conventional agonist but does 

not respond to the pepducin. This suggested that the C-tail of PAR1 was required 

for pepducin binding, and the data obtained represented a proof of principle for re-

ceptor-modulating pepducins [52]. Pepducins with amino acid sequences identical to 

other intracellular domains of PAR1 or those of other members of the PAR family 
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(PAR1, PAR2, and PAR4) have been identified and shown to exert either receptor-

activating or receptor-inhibiting functions [53, 57, 59-61]. The precise mechanism of 

action has been studied using a PAR1 pepducin and a FRET-based assay to deter-

mine binding, and the results indicate that the pepducin is located close to the inner 

leaflet of the plasma membrane [58].  

A library screen using pepducins derived from the intracellular domains of chemo-

kine receptor type 4 (CXCR4) identified several activating pepducins with amino acid 

sequences identical to those in the first intracellular loop of the receptor. One of 

these pepducins, ATI2341, has been shown to induce a CXCR4-dependent Ca2+ in-

crease, chemotactic migration, and mobilization of white blood cells from the bone 

marrow [62]. A bioluminescence resonance energy transfer (BRET) assay system has 

been used to determine pepducin-induced recruitment to CXCR4 of different G-

proteins (Gαi, Gα13) and β-arrestin, respectively, and it has been shown that this 

CXCR4 pepducin is a biased CXCR4 agonist, promoting the engagement and activa-

tion of Gαi but not of Gα13 or β-arrestin [56]. In addition, a pepducin derived from 

the second intracellular loop of the sphingosine-1-phosphate receptor (S1P3 or 

EGD3) has been shown to induce cellular responses similar to those induced by the 

conventional agonist [63].  

Receptor-specific pepducins have also been identified for the adrenergic receptor and 

the formyl peptide receptor 2 (FPR2) [64, 65]. Pharmacokinetic, pharmacodynamic, 

and bio-distribution studies have shown that pepducins are widely distributed 

throughout the body, with the exception of the brain, and possess drug-like proper-

ties that make them appropriate for use in vivo [66]. The beneficial effects of 

pepducins have been observed in several mice disease models [58, 59, 67-69]. Overall, 

the pepducin concept has been shown to be valid as a means to activate or inhibit 

functional responses mediated by a wide range of receptors (Table 1), which suggests 

that this type of allosterically modulating lipopeptide may be a valuable tool for basic 

GPCR research and for de-orphanizing receptors for which no agonists have yet been 

identified. 

 

 

 

 

 

 



PEPDUCINS – A NOVEL CONCEPT FOR THE REGULATION OF  

GPCR FUNCTION 

14 

Table 1. List of selected pepducins.1 

Ligand Loop2 Derived3 Effect Reference 

P1pal12 i3 PAR1 Antagonist [52, 53, 67, 70] 

P1pal19 i3 PAR1 Agonist [52, 61] 

P2pal8S i3 PAR2 Antagonist [71] 

P4pal10 i3 PAR4 Antagonist [72, 73] 

P4pal-i1 i1 PAR4 Antagonist [60, 74] 

F2pal10 i3 FPR2 Agonist [75] 

x1/2pal-i3 i3 CXCR1/CXCR2 Antagonist [59] [76] 

x4pal-i1 i1 CXCR4 Antagonist [59] 

ATI-2341 i3 CXCR4 Agonist [59] [62] 

KRX-725 i2 S1P3 Agonist [63] 

SMOi2-1 i2 SMO Antagonist [77] 
1Adapted from [59].  
2The intracellular (i) loops are numbered from the N-terminal domain 
3The receptor from which the sequence is derived 

Receptor-independent effects mediated by pepducins   

Pepducins were introduced as a novel type of GPCR modulator with high selectivity 

for their receptors. However, receptor-independent effects have also been observed 

for pepducins. Using a screening approach to search for β2AR pepducins, Carr et al 

[64, 78] identified a number of receptor-dependent pepducins, as well as pepducins 

that activated the cells independent of the receptor, and the mechanism was shown 

to involve direct activation of the downstream Gs-protein. When the effects of this 

Gs-activating pepducin were subsequently studied in neutrophils, the earlier-de-

scribed functional effects induced by Gs-activation were not induced by these 

pepducins in neutrophils, suggesting differences related to the cell type in which the 

Gs-protein is expressed [64, 78]. Another receptor-independent effect of pepducins 

is a direct bactericidal activity (Paper I). Based on similarities in the physico-chemical 

properties between pepducins and a group of naturally occurring antibiotic lipopep-

tides, we hypothesized that pepducins also kill bacteria. We found that pepducins 

exert direct killing of both Gram-positive and Gram-negative bacteria, as well as clin-

ical isolates of pathogenic bacterial species (Paper I). In an era increasing microbial 

resistance to classical antibiotics, there is a need for new antimicrobial drugs. Since 

the first approval of a lipopeptide as an antimicrobial drug back in 2003, this group 

of molecules has received much attention and represents one of the fastest growing 

areas of research in antimicrobial drug discovery [79-81].  
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INNATE IMMUNITY AND THE  
ROLE OF NEUTROPHILS  

While our immune system is vitally important in protection against invading micro-

organisms, it also contributes to tissue injury and disease, as well as to the resolution 

of inflammation and damage repair. The inflammatory reaction is a process that is 

designed to kill, clean, heal, and repair. The immediate local reaction is swelling, red-

ness, pain, heat, and possibly dysfunction of the inflamed tissues. These local reac-

tions depend on an increased blood flow, relaxation effects on blood vessels, the 

release of pro-inflammatory mediators, the extravasation of fluids from the circula-

tion into the infected/inflamed tissue, and the influx of pro-inflammatory cells, which 

are predominantly neutrophil granulocytes, the primary cells in the first line of host 

defense [82]. Dysregulation of the inflammatory response may lead to chronic in-

flammation, as well as auto-inflammatory disorders. Innate immune reactivity is very 

rapid and is constituted by three fundamental steps: i) the recognition of ‘danger’ 

molecules from pathogens or damaged tissue cells; ii) the ability to kill microbial 

pathogens and clean up cell debris; and iii) the ability to minimize host tissue-destruc-

tive activities thereby maintaining self-tolerance.  

The innate immune apparatus is composed of cellular and humoral components, and 

these two parts are linked to recognition and/or effector functions that interact 

within a complex network. The humoral parts consist of many different soluble mol-

ecules that are present in extracellular compartments, including liver-produced acute-

phase proteins, such as LBP (the lipopolysaccharide-binding protein), SAA (serum 

amyloid A), the C-reactive protein, and complement components [83, 84]. The major 

cellular apparatus in inflammatory reactions is the professional phagocyte of myeloid 

origin. Phagocytes differentiate and mature in the bone marrow, and when recruited 

to the bloodstream their commission is to seek and sense invading microbes in the 

tissue and thereafter engulf (phagocytose) and kill these invaders. The neutrophil 

granulocyte is one of the specialized killer cells, the so-called ‘professional phago-

cytes’, being endowed with a broad array of weapons and being of prime importance 

in innate immunity and inflammation [85-87]. 
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The neutrophil granulocyte  

Neutrophils are produced in the bone marrow; in a human adult, 1–2×1011 neutro-

phils are produced every day [88]. The neutrophil differentiation/maturation process 

takes approximately 14 days [89]. Mature neutrophils recruited from the bone mar-

row to the bloodstream will circulate in a naive/resting state, waiting to be recruited 

in response to danger signals emanating from a microbial infection or tissue injury. 

In humans, neutrophils are the most common white blood cell type, and they account 

for 50%–70% of all leukocytes in the peripheral blood. Together with eosinophils 

and basophils, they comprise the subgroup of polymorphonuclear leukocytes (PMN; 

named after the appearance of their multi-lobulated nuclei). These cells are also 

known as granulocytes, a name that reflects the high number of granules in their 

cytoplasm. In neutrophils, these granules (small membrane-enclosed organelles) act 

as storage organelles, containing numerous antimicrobial compounds, proteolytic en-

zymes, and membrane-localized receptors. Neutrophils have at least four different 

types of granules/vesicles, described in more detail below [90-93].  

Two pools of neutrophils are found in peripheral human blood. One is the circulating 

pool (around 50% of the cells), and the other pool comprises neutrophils that are 

loosely attached to the vascular endothelium (known as the ‘marginating pool´) [94]. 

In response to a local infection/inflammation, blood neutrophils are recruited to and 

accumulate at the affected site [94]. This recruitment is a dynamic process that in-

volves several neutrophil functions, all of which are of vital importance for a success-

fully operating immune system. Using an aseptic inflammation skin chamber model, 

in vivo studies have revealed that during the recruitment process substantial amounts 

of various inflammatory mediators and neutrophil granule constituents are pro-

duced/released [95]. These factors are involved in the killing of microbes and in the 

resolution of the inflammatory reaction. The recruited neutrophils are also function-

ally adapted to the conditions at the inflammatory site. Compared to peripheral blood 

neutrophils, the tissue-recruited neutrophils produce higher levels of superoxide 

upon stimulation with certain chemoattractants that are generated by the electron-

transporting NADPH-oxidase within these cells [96]. Functional analysis, as well as 

analysis of cell surface-exposed granule markers reveal that the granule mobilization 

that occurs during tissue recruitment of neutrophils is accompanied by the exposure 

of new receptors for specific chemoattractants, with these receptors being potentially 

mobilized from storage pools through the fusion of granule membranes with the 

plasma membrane [95-102]. Other chemoattractant receptors are downregulated/de-

sensitized, possibly through a hierarchal receptor cross-talk mechanism that is of im-

portance for the recruitment process. In order to be able to exit rapidly from the 

bloodstream and transmigrate through the endothelium and the extravascular tissue, 
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neutrophils are equipped with receptors that recognize PAMPs (pathogen-associated 

molecular patterns, from microbes) or DAMPs (danger-associated molecular pat-

terns, from damaged tissues). Many PAMPs and DAMPs recognize receptors that 

belong to the GPCR superfamily [88, 103]. 
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FUNCTIONS OF NEUTROPHILS 

EXPRESSING GPCRS  

Neutrophils express a number of G-protein-coupled chemoattractant receptors, in-

cluding those that recognize the platelet-activating factor (PAFR), leukotriene B4 

(BLT1/2), and complement fragment 5a (C5aR) [104]. Of the 18 human chemokine 

GPCRs that have been identified, neutrophils are known to express CXCR4, CXCR1, 

and CXCR2 [105]. Most neutrophil GPCRs are coupled to pertussis toxin-sensitive 

G-proteins of the Gαi subgroup, and activation of the chemoattractant/chemokine 

receptors in neutrophils induces not only cellular directional migration, but also the 

release of reactive oxygen species (ROS) generated by the phagocyte NADPH-

oxidase [106]. This oxidase is a multicomponent enzyme made up of a membrane-

bound heterodimeric b-type cytochrome (p22phox and gp91phox/Nox2), the soluble 

cytosolic components of p40phox, p47phox, and p67phox, and the small GTPase Rac. 

Upon chemoattractant stimulation, the soluble components translocate to the b cy-

tochrome, thereby forming an active enzyme that transfers electrons from NADPH 

in the cytosol across the membrane to reduce the oxygen to superoxide anions (O2
-) 

(Figure 6) [107-110]. 

In addition to their abilities to activate the NADPH-oxidase, GPCR agonists may 

trigger a secretion process that leads to the mobilization of receptors and adhesion 

molecules from the intracellular storage granules in neutrophils. As mentioned above, 

neutrophils contain at least four different types of granules/vesicles, which are 

formed at different stages of neutrophil maturation in the bone marrow [90]. The 

first granules to be formed are the azurophilic (or primary) granules, followed by the 

specific (or secondary) granules. These granules contain numerous antimicrobial and 

potentially tissue-destructive components and they fuse primarily with phagocytic 

vacuoles. They are rather difficult to mobilize through fusion with the plasma mem-

brane. The gelatinase (or tertiary) granules, which are formed at a later time-point in 

the maturation process, are easily mobilized, and their content of receptors is moved 

to the cell surface. The most easily mobilized and receptor-rich secretory vesicles are 

the last to be formed, from the plasma membrane through an endocytic process [91, 

92]. Receptors that are mobilized to the cell surface from granules/vesicles include 
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the recently identified and partially characterized pattern recognition receptor FFA2R 

(a short-chain free fatty acid receptor, also called GPR43), which recognizes products 

derived from gut bacteria during the fermentation of dietary fibers, and the formyl 

peptide receptors (FPRs) that recognize formyl peptide, a hallmark of bacterial 

protein synthesis (described in more detail below) [111, 112]. 

Figure 6. The neutrophil NADPH-oxidase. The NADPH-oxidase comprises a membrane-localized b-type 

cytochrome (also referred to as the heterodimer of p22phox and gp91phox) and the cytosolic components 

p40phox, p47phox, and p67phox, as well as the cofactor Rac. Upon activation, cytosolic components trans-

locate to the b-type cytochrome-containing membranes to form a functional NADPH-oxidase, which is 

capable of producing reactive oxygen species (ROS). ROS production can occur either on the plasma mem-

brane, resulting in the release of extracellular ROS, or on the phagosomal (or granule) membrane during 

phagocytosis. The b-type cytochrome in the phagosome originates from the plasma membrane and from 

the fusion of specific granules. Another type of granule (azurophilic) that contains myeloperoxidase (MPO) 

is also recruited and participates together with the formed hydrogen peroxide to generate hypochlorous 

acid (HOCl-). 
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FORMYL PEPTIDE RECEPTORS 

In the mid-1970’s, Shiffmann et al. showed that synthetic peptides that contained an 

N–terminal formylated methionine (fMet) could act as chemoattractants for macro-

phages and neutrophils [113]. They postulated that peptides that contained N-fMet 

should be produced by prokaryotes and possibly constitute the chemotactic activity 

observed for the supernatant fluids obtained from bacterial cultures. Indeed, highly 

potent chemotactic fMet-containing peptides have since then been isolated from cul-

ture filtrates of a number of bacteria, including E. coli [114], S. aureus [115-118], M. 

avium [119], and L. monocytogenes [117, 120, 121]. It is important to note that not only 

bacteria, but also mitochondria initiate protein synthesis with an N-formylated me-

thionine, which means that damaged mitochondria also release danger signals in the 

form of formyl peptides that possess chemotactic activity for neutrophils [120, 122, 

123].  

The work of Shiffmann et al was soon followed by other studies that identified the 

formylated tripeptide fMLF (in the older literature, this is known as fMLP) as the 

most potent agonist of many different tested peptides. In 1990, the human receptor 

(originally FPR, now FPR1) for this peptide was cloned by screening a cDNA ex-

pression library that was constructed with mRNA species from differentiated HL-60 

cells [124-126]. Shortly thereafter, using low-stringency DNA hybridization screening 

(under conditions of reduced temperature and/or increased salt concentration), with 

the cDNA of human FPR1 as the probe, two additional FPR-like receptors were 

cloned and named FPRL1 (now FPR2) and FPRL2 (now FPR3), and the genes for 

all three are clustered together on chromosome 19 q13.3 in the human genome [127-

130]. Polymorphisms of the FPR1 gene have been described in patients who are suf-

fering from localized juvenile periodontitis, resulting in defects in Gi-protein coupling 

and reduced cell function [131, 132]. In addition, the FPR1 allele that contains an 

amino acid substitution in the C-terminal tail (abolishing its function) was associated 

with poor survival outcomes following chemotherapeutic treatment in patients who 

were suffering from breast and colorectal cancer [133, 134]. No polymorphisms in 

the coding regions of FPR2 or FPR3 have been described.  
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Although FPRs are mainly expressed by cells of myeloid origin, indicating a key role 

in innate immune reactions, they are also found in many other organs and tissues, 

including epithelial cells, liver hepatocytes, and Kuppfer cells, smooth muscle, and 

endothelial cells, as well as in neurons of the motor, sensory, and cerebellar systems 

[135]. The wide expression pattern of FPRs in non-immune cells suggests that they 

are also participating in other activities. Since this thesis deals mainly with neutrophils 

that express only FPR1 and FPR2, these two FPRs will be the focus hereafter.  

 

       

Figure 7. Sequence alignments of the human FPR1, FPR2, and FPR3 proteins. The UniProt alignments of 

FPR1 (UniProt ID: P21462), FPR2 (P25090) and FPR3 (P25089) are shown. Highlighted in pink are the trans-

membrane domains of the proteins. Under the sequences, the colons (:) indicate conservation. of residues 

between proteins with strongly similar properties, the asterisks (*) indicate fully conserved residues, and the 

periods (.) indicate conservation of residues between proteins with weakly similar properties. 

FPR signaling and regulation in neutrophils  

Human neutrophils express FPR1 and FPR2, whereas monocytes express all three 

members of the FPR family [136]. At the primary sequence level, FPR2 shares 69% 

identity with FPR1 and a higher level of homology (83%) with FPR3 (Figure 7) [127, 

130]. The two neutrophil FPRs share the highest levels of sequence similarities in 

their cytoplasmic signaling domains, which suggests that they transduce very similar 

signals through similar pathways and indeed, they trigger almost indistinguishable 
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cellular responses in neutrophils (Figure 7). The signaling pathways located down-

stream of FPR1 have been extensively studied, and details about the signal transduc-

tion pathways that participate in the induction of discrete neutrophil functions can 

be found in several recent reviews [137-139]. Agonist binding to FPRs leads primarily 

to signaling through the Gαiβγ-regulated signaling route, and once activated, the dis-

sociated Gαi-protein subunits activate multiple downstream second messengers, in-

cluding various phospholipases and protein kinases [140]. Based on the results 

obtained using a simple and straightforward system to measure β-arrestin binding, 

both FPR1 and FPR2 trigger translocation of β-arrestin, although the roles of this 

binding in signaling and functional responses have not been clearly defined. It is im-

portant to mention that unlike other GPCRs that rely on β-arrestin as the structural 

entity that is responsible for termination of G-protein signaling, desensitization of 

the FPRs relies in large part on binding to the actin cytoskeleton [141, 142]. That 

desensitized FPRs can be reactivated to produce superoxide by the addition of cyto-

skeleton-disrupting agents, such as cytochalasin B and latruculin A, strongly supports 

the idea that the cytoskeleton plays an important role. In addition, recent research 

has revealed that FPR reactivation can be induced by a novel receptor cross-talk 

mechanism, as illustrated by the reactivation of desensitized FPRs induced by ATP 

and PAF upon binding to their respective receptor [143]. This cross-talk signal gen-

erates a biased FPR response, as the reactivated receptor triggers assembly/activation 

of the NADPH-oxidase but no transient rise in the level of intracellular calcium [143].  

Conventional FPR agonists  

FPR1 was originally identified as a high-affinity receptor for formyl peptides. How-

ever, it has subsequently been discovered that one of the most prominent features of 

the FPRs is their ability to recognize many and diverse ligands, ranging from the 

formylated peptides, through non-formylated microbial/synthetic peptides and small 

molecules, to allosteric modulators, which include peptidomimetics and lipopeptides 

(see next section and Papers I–IV). Compared to FPR1, FPR2 displays a much more 

diverse ligand profile, and this receptor recognizes a broad range of molecules, in-

cluding the GP-41 envelope protein of the human immunodeficiency virus type 1 

(HIV-1), a peptide derived from glycoprotein G of herpes simplex virus type 2, Hp2-

20 from Helicobacter pylori, and the synthetic peptides WKYMVM/m. The reader is 

directed to other recent reviews for a full description of FPR -specific/-selective lig-

ands [140, 144-147]. FPR2 was for a long time regarded as an orphan, even though 

fMLF was known to be a low-affinity agonist. Soon after proper deorphanization, 

this receptor was shown to recognize a number of non-formylated agonists. How-

ever, formylated, phenol-soluble modulin (PSM) peptides, which are secreted by 
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methicillin-resistant Staphylococcus aureus (CA-MRSA), were recently identified as se-

lective and potent agonists of FPR2 [121]. In addition, several mitochondrion-de-

rived formyl peptides, such as mitocryptide, are preferentially recognized by FPR2 

but not by FPR1 [113, 120, 121, 148].  

 

When one compares the receptor preferences for formyl peptides of the two neutro-

phil FPRs, it appears that size is of importance, in that longer peptides prefer FPR2 

whereas shorter peptides (<10 amino acids) prefer FPR1, and the in-between peptide 

lengths are equally potent for FPR1 and FPR2 [120]. Moreover, host-derived mole-

cules have been suggested to act as FPR2 ligands, most notably the acute-phase pro-

tein SAA [166-168]. However, most (if not all) studies of the SAA-FPR2 complex 

have been performed with a recombinant protein that is a hybrid of two human SAA 

isoforms (SAA1 and SAA2) that do not exist in vivo [169]. It is debatable whether the 

idea of acute-phase SAA being a cytokine-like protein with pro-inflammatory prop-

erties really reflects the true biological activity of the endogenous SAA. Another host-

derived molecule that interacts with the FPRs belongs to the annexin family of cal-

cium-regulated, phospholipid-binding proteins that are involved in the regulation of 

Table 2. Overview of select FPR agonists, showing their origins and receptor specificities. 

Ligand(s) Origin Receptor preference Reference 
 

N-formylated 

    

fMLF E. coli FPR1 >> FPR2 [124, 149] 

fMIFL S. aureus FPR1 >> FPR2 [115, 150] 

fMIVIL L. monocytogenes FPR1 >> FPR2 [117, 120] 

PSMα2, PSMα3 CA-MRSA FPR2 >> FPR1 [121] 

Hp2-20 H. pylori FPR2 [151], 
 

Host-derived 
    

LL37 Cathelicidin FPR2 [152, 153] 

Annexin I Endogenous hu-

man protein 

FPR1, 2 [154-156] 

Aβ (1-42) Amyloid precur-

sor 

FPR2 [157] 

 

Peptide library 
    

WKYMVM Synthetic peptide FPR2 > FPR3 [158] 

WKYMVm Synthetic peptide FPR2 > FPR1 [158-160] 

MMK-1 Synthetic peptide FPR2 [161, 162] 
 

Small molecules 
    

Comp 43 High-throughput 

screening 

FPR1 > FPR2 [163, 164] 

 

Peptoidomimetic 
    

F2M2 Synthetic peptide FPR2 [165] 
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innate and adaptive immunity, although the receptor(s) involved in the different path-

ways have not been properly defined [148, 170-172]. 

As the FPRs have important regulatory functions in inflammation and in the patho-

genesis of various diseases, targeting FPRs with receptor-specific ligands (agonists, 

antagonists, and allosteric modulators) has great therapeutic potential for treating dis-

eases in which the inflammatory reaction is uncontrolled. Indeed, many FPR-

selective peptide/protein ligands, as well as stable and selective small-molecule lig-

ands have been identified over the last decades using high-throughput screening. It 

should be noted that it is of importance to determine the precise receptor specificity 

of “screening hits”, as illustrated by the case of the potent agonist compound 43, 

which although it was originally identified in a screening process with FPR2-

expressing cells, has been shown to interact preferentially with FPR1 [164]. The small 

molecules that are described as FPR agonists activate the preferred receptor also 

when expressed in naive human neutrophils, and the induced activities resemble 

those of pro-inflammatory peptides. 

Lipid inhibitors of innate immune cell function have recently been shown to be of 

physiological relevance for resolving inflammation, and it has been claimed that 

FPR2 is one of the receptors shared by mediators of the lipoxin and resolvin groups 

of lipid metabolites. When LXA4 (lipoxin A4) analogues from two commercial 

sources were used neither induced any translocation of β-arrestin, as measured in an 

enzyme fragment complementation assay [173]. Based on these results, it was con-

cluded that no signal is generated from FPR2 by LXA4 in neutrophils, and that the 

LXA4 effects on other cells are most likely mediated through an as yet unidentified 

receptor that is different from FPR2 [174]. In agreement with this conclusion, others 

have also failed to observe any FPR2-related effect of LXA4 [175]. 
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Conventional and allosteric FPR antagonists 

A recent search for new FPR antagonists, using a ligand-based virtual screening tech-

nique, identified 30 FPR antagonistic compounds, including the potent Quin-C7, be-

longing to different chemical families [176]. The same research group identified 

WKYMVM from a peptide library and subsequently, they discovered the FPR2 an-

tagonist WRWWWW (WRW4) [177]. With respect to FPR1 antagonists, the cyclic 

undecapeptide cyclosporine H (CysH) produced by fungi is the most potent and se-

lective. The mode of action is reduction of the basal activity of FPR1, which means 

that CysH is an inverse agonist [178, 179]. Replacing the formyl group of fMLF with 

a tertiary butyloxycarbonyl group (Boc-MLF, also known as Boc1) or replacement of 

the MLF sequence with FLFLF to yield Boc-FLFLF (also known as Boc2) generates 

FPR1 antagonists [149]. Boc1 and Boc2, when used at higher concentrations, partially 

inhibit FPR2 also [180].  

A rhodamine-conjugated, gelsolin-derived peptide (PBP10) has been identified as a 

potent inhibitor of FPR2. While it blocks FPR2-mediated responses without affect-

ing FPR1 signaling, the inhibitory effect is not entirely FPR2-specific, since some 

non-FPR2-mediated signaling is also inhibited [181-183]. The rhodamine group is 

required for the PBP10 peptide to pass through the plasma membrane and for the 

FPR2-specific inhibitory function of the peptide [181, 183, 184]. A core PBP peptide 

(RhoB-QRLFQVG) for FPR2 inhibition has been identified, and this shorter peptide 

partly inhibits also FPR1 [181], which suggests that a structure of importance for 

inhibition is present also in FPR1, although this is obviously not accessible for the 

longer peptide. It has been suggested that PBP10 modulates FPR2 from the cytosolic 

side, although it is difficult to prove conclusively that it interacts with its specific 

receptor from the inside of the plasma membrane. This is also the case for the FPR2 

pepducins (see below). The physicochemical properties (charge and hydrophobicity) 

that permit these membrane-permeable molecules to enter the cytoplasm are required 

for proper functionality, although that does not mean that they modulate receptor 

function from the cytosolic side of the membrane. The precise site of action of PBP10 

remains unresolved. It is worth noting, however, that PBP10 inhibits the cellular re-

sponse induced by allosteric FPR2-activating pepducins (see below). 
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Table 3. List of select FPR antagonists, showing their origins and receptor specificities. 

Ligands  Source  Receptor  Literature  
    

Conventional ligands 
    

CysH T. inflatum FPR1 [185] 

CHIPS S. aureus FPR1 [186]  

FLIPr S. aureus  FPR2 >> FPR1 [187] 

PBP10 Binding domain of gelsolin FPR2 >> FPR3 [181] 
    

Peptide library 
    

WRW4 Synthetic peptide  FPR2 >> FPR3 [177] 

Boc1 Synthetic peptide  FPR1 >> FPR2 [149] 

Boc2 Synthetic peptide  FPR1 >> FPR2 [149] 
    

Peptidomimetic 
    

Cmp. 1 Synthetic peptidomimetic FPR2 [188] 
    

 

FPR2-derived pepducins activate FPR2  

Given that they have the capacity to permeate cell membranes and allosterically mod-

ulate GPCR function, pepducins should also be able to interact with neutrophil 

GPCRs, thereby providing unique tools for the regulation of innate immune-related 

activities. Accordingly, neutrophil-activating pepducins were recently described as 

having in common, peptides with amino acid sequences identical to the whole or 

parts of the third intracellular loop of FPR2 linked to a fatty acid [75]. Interestingly, 

the most potent peptide is not the one that contains the entire loop (16 amino acids) 

but the F2Pal10 peptide, which contains 10 amino acids (Paper I). These FPR2-

activating pepducins are highly FPR2-selective, as it has been shown that they are 

inactive in FPR1-transfected cells and that their activities in neutrophils are insensi-

tive to the FPR1-specific antagonist CysH [75]. The pepducin concept proposes that 

receptor selectivity is manifested through the sequence identity between the pepducin 

and the intracellular loop of the targeted receptor, although it is difficult to under-

stand how these two sequences act together to modulate receptor intracellular signal-

ing. Studies using a chimeric FPR1-FPR2 receptor in which the third intracellular 

loop of FPR2 (from which the FPR2-activating pepducin is derived) was replaced 

with that of the FPR1 (pepducin-insensitive) showed that the chimeric receptor still 

recognizes the pepducin, suggesting that there is no direct linkage between the amino 

acid sequence in the activating pepducin and that in the third intracellular loop of the 

activated receptor [75]. F2Pal10 triggers a neutrophil activation pattern that is very 

similar to that induced by conventional FPR2 agonists, despite the fact that pepducins 

and conventional agonists initiate signaling through different mechanisms, with “in-
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side-in” signaling seen for pepducins and “outside-in” signaling observed for extra-

cellular agonists. It is known that FPR2 cross-talks with other GPCRs, such as PAFR 

and P2Y2R, through a unique but not yet understood signaling pathway that leads to 

FPR2 reactivation [143]. Both conventional and allosteric FPR2 modulators can in-

duce this cross-talk, although the F2Pal10 pepducin is more strongly biased toward 

this signaling than the conventional FPR2 agonist [189]. Thus, there may be some 

signaling differences between conventional and allosteric agonists. 

The process termed "insertion and inversion", which entails the pepducin incorpo-

rating its lipid tail into the phospholipid bilayer, thereby enabling the peptide part of 

the construct to flip over the membrane and become exposed on the cytosolic side 

of the membrane, is suggested as the basic mechanism through which pepducins 

mediate their activities (Figure 5). As a consequence of this process, the lipid part is 

a prerequisite for activity, and this is also true for the FPR2 pepducins, as no activity 

was obtained with non-lipidated peptides [54]. It is also clear that the FPR2 pepducins 

are highly selective for the receptor, possessing sequence identity with the pepducin 

peptide, which is in agreement with the concept. However, some of the reported 

results raise questions regarding the precise mechanism of action. For example, the 

FPR2 pepducin inhibits the binding of a conventional peptide agonist that is selective 

for FPR2, and this inhibition occurs also at temperatures (e.g., 4°C) at which it must 

be very difficult for the pepducins to pass through the plasma membrane (Paper II). 

We should perhaps not assume that all pepducins act on the intracellular region of 

the specifically targeted GPCR and induce their effects through so-called allosteric 

modulation of intracellular receptor domains that couple to G-proteins and other 

signaling/regulating proteins. Instead, we should consider the possibility that there 

are different, and possibly unique, modes of action related to each individual 

pepducin/receptor pair. 

Bacterial killing and immunomodulation 

It is well established that the allosteric modulatory activity of pepducins relies on both 

the lipid anchor and the peptide sequence, and this is also true for the bacterial killing 

activities of known antimicrobial lipopeptides. Thus, immunomodulatory pepducins, 

being lipopeptides, may also have direct killing effects on bacteria [153, 190]. Accord-

ingly, the direct antimicrobial activities of FPR2 pepducins were assayed, and the 

structural/physicochemical features of pepducins that link receptor activation and 

bacterial killing were exploited. The physicochemical properties of the lipopeptides 

are of importance both for their abilities to activate neutrophils and for killing bacte-

ria, although there are no direct linkages between the two functions (Paper I). Alt-

hough FPR2 pepducins have off-target effects that are independent of FPR2, this 
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functional dualism of pepducins could be explored as a novel class of antibacterial 

drugs with immunomodulatory properties. These results raise the possibility that 

other antimicrobial lipopeptides have immunomodulatory effects– an idea that war-

rants investigation.  

Peptidomimetics, which are partly composed of unnatural residues, are proteolytically 

stable against endogenous protease degradation and may be designed to mimic im-

munomodulatory host defense peptides [188], as well as to share structural similarities 

with lipopeptides, such as the pepducins. Accordingly, the recently discovered FPR2-

selective modulators belong to the class of lipidated α-peptide/β-peptoid hybrids. By 

screening a small array of a peptidomimetic library, using GPCR-dependent neutro-

phil production of superoxide as a read-out, both activating and inhibiting pep-

tidomimetics that target specifically FPR2 were recently identified [165, 188]. The 

most promising compound, Pam-(Lys-βNSpe)6-NH2, was shown to inhibit FPR2 ag-

onist-induced neutrophil granule mobilization and the release of ROS. The potency 

of Pam-(Lys-βNSpe)6-NH2 was comparable to that of PBP10, which is the most po-

tent FPR2-selective inhibitor known, and combining these two agents gave an addi-

tive effect [188]. The rhodamine group in the core PBP10 peptide cannot be 

exchanged for palmitic acid [181], suggesting that the mechanisms of action might 

differ between the lipopeptoid and PBP10. This notion is supported by the finding 

that PBP10 has no effect on the mouse receptor, whereas the lipopeptoid inhibits the 

function of this receptor (see below and Paper III). The immunomodulatory effects 

of structural analogs of Pam-(Lys-βNSpe)6-NH2 emphasize the importance of both 

the lipid and peptidomimetic parts [188]. In addition, we have identified Lau-((S)-

Aoc)-(Lys-βNphe)6-NH2 as a potent FPR2 activator [165]. Further analyses of a num-

ber of structural variants have revealed that the N-acyl 2-aminooctanoic acid residue 

and the peptidomimetic backbone of the molecule are both required for the agonistic 

activity. This novel class of FPR2-modulating peptidomimetic ligands may serve as 

valuable tools for further delineation of the ligand recognition and signaling mediated 

by FPR2, as well as for exploring the therapeutic potential of targeting FPR2 in dis-

ease.  

Receptor hijacking: FPR2-interacting pepducins with amino 

acid sequences derived from other GPCRs 

Pepducins can activate receptors, as shown for the FPR2 third intracellular loop 

pepducins that are highly specific for this receptor, and despite their extensive se-

quence similarity with FPR1 (69% amino acid identity), there is no cross-activation 

of this receptor. Pepducins can, however, have the opposite effect and inhibit the 
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function of the targeted receptor, and this is true for the pepducin derived from the 

third intracellular loop of FPR1-inhibited neutrophils, although the target in this case 

is not FPR1. The 16-amino acid pepducin derived from the third intracellular loop 

of FPR1 potently inhibited neutrophil functions, and unexpectedly, the identity of 

the targeted receptor was found to be FPR2. Thus, FPR1 pepducin hijacks the closely 

related FPR2 (Paper II). This type of cross-reactivity has been described earlier for 

other closely related receptors, such as the PAR and the β-adrenergic receptors [191]. 

The concept of inherent receptor selectivity for a given pepducin is obviously not 

always valid. In agreement with results obtained with FPR2-activating pepducins, 

FPR1 also competes for binding with FPR2-specific agonists (Paper II), once again 

suggesting that there is no single mechanism through which pepducins selectively 

activate/inhibit GPCRs. One possible explanation for the results obtained from the 

competitive binding experiments is that FPR2-specific pepducins, irrespective of 

origin, are also recognized by the cell surface-exposed agonist-binding domain of 

FPR2. Regardless of the precise mechanism of action, it is clear the neither of the 

two pepducin parts work on their own. As there is only a very small difference (ac-

tually, one amino acid) between the activating and inhibiting pepducins, it is reason-

able to hypothesize that this is the basis for the hijacking phenomenon. Results 

obtained with pepducins that have peptide sequences identical to the intracellular 

loops of CXCR4 (the CXCL12 receptor) and P2Y2R (the ATP receptor) are discrep-

ant with this hypothesis. The receptor-desensitization profiles and the inhibitory ef-

fects of receptor-selective agonists/inhibitors indicate that these pepducins also 

hijack FPR2 [78, 189]. It is also worth noting that the P2Y2R pepducin converts its 

natural agonist to an activator of the neutrophil NADPH-oxidase. The third intracel-

lular loop pepducin both activates and desensitizes FPR2, and when it comes to direct 

activation, the pepducin is a partial agonist [143]. However, the reactivation of deac-

tivated receptors is much more pronounced, and in this system, the pepducin should 

be classified as a full agonist. These results raise general questions not only about the 

precise mechanism by which pepducins specifically activate GPCRs, but also about 

ligand recognition of lipopeptides by FPR2. It is clear from earlier studies on the 

structure-function relationships of pepducins, as well as other peptides, that their 

activities as FPR agonists are not dictated solely by the amino acids that access the 

presumed ligand-binding pockets of the receptors [75, 150] (Paper II). The physico-

chemical properties of the regions of agonistic peptides that do not have direct access 

to the binding site are just as important for the interaction with FPR2, as are the 

amino acids that putatively fit into the binding pocket [150, 181]. This suggests that 

endogenous or microbe-derived, lipid-substituted peptides represent an additional 

molecular pattern that is recognized by FPR2. However, it is important to point out 

that there are stringent structural requirements for recognition. This is illustrated by 

the facts that a number of pepducins are not recognized by FPR2 and that the amino 
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acid sequence is of importance for recognition, as are the positions of the charged 

amino acids in the peptide chain, rather than the net charge, as well as the length of 

the peptide (Paper I) [189]. 
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MODULATION OF FPR FUNCTIONS 
 IN MICE NEUTROPHILS 

The innate immune system differs substantially between mouse and man. In the 

mouse, neutrophils constitute only around 10%–25% of the circulating leukocytes, 

whereas 50%–70% of the leukocytes in humans are neutrophils [192, 193]. Another 

prominent difference between these species is the appearance of the family of FPRs, 

which has undergone extensive expansion across species [145]. The receptors differ 

substantially in terms of their ligand recognition profiles, making it very challenging 

to translate experimental data obtained in mouse models to the human setting. How-

ever, to understand the basic biochemical mechanisms underlying cell function and 

to develop new strategies for therapeutic intervention and preclinical testing, mouse 

models of human disease are necessary.  

Fprs in mice neutrophils 

Functional FPR1 orthologs have been identified in several animal species, such as 

primates, rabbits, horses, rats, guinea pigs, and mice [194-199]. With respect to the 

mouse, there are at least eight Fpr family members (Fpr1 and Fpr-rs 1–7) encoded in 

the mouse genome, clustered on chromosome 17 in a region of conserved synteny 

with human chromosome 19, where the three FPR genes are located [200, 201]. All 

of the mice Fprs, with the exceptions of Fpr-rs5, which most probably is a pseudo-

gene, are expressed as functional receptors [200]. Fpr1, Fpr2, and Fpr-rs1 are ex-

pressed by mice leukocytes, and Fpr1 is the FPR1 mice ortholog with 72% sequence 

identity, whereas Fpr2 is suggested to be the FPR2 ortholog with 76% sequence iden-

tity [145]. The remaining Fpr members are expressed mainly by the vomeronasal or-

gan (an olfactory structure in the nasal septum that detects pheromones and other 

social cues) and skeletal muscle cells [202, 203].   

Studies using animals that are genetically knocked out for Fpr1 or/and Fpr2 reveal 

that these receptor-deficient animals are viable, fertile, and display normal anatomy 

and physiology. Both Fpr1-/- and Fpr2-/- mice have dysregulated immune responses 
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under stress conditions, such as bacterial infections and sterile inflammation [123, 

204-208]. Animals that were treated with the Fpr agonist WKYMVm were shown to 

be protected against disease in a severe sepsis mouse model [209], suggesting that the 

receptor(s) are important modulators of inflammation. 

Ligand recognition differences between the  

receptors in mouse and man  

Earlier work clearly demonstrated that FPRs and their mice counterparts differ sub-

stantially with respect to their ligand-binding profiles, as illustrated by the fact that 

the most potent and selective FPR1 and FPR2 antagonists, i.e., CysH and PBP10, 

respectively, have no effects on the mouse receptors (Paper III). Moreover, the pro-

totype and potent FPR1 agonist fMLF is a very poor agonist for the Fprs. Similarly, 

the potent FPR2 agonists WKYMVM and MMK-1 have low (WKYMVM) and no 

(MMK-1) activities in terms of activating mice neutrophils (Paper III and Table 5). 

Formyl peptides derived from L. monocytogenes (with the sequence fMIVIL) and S. 

aureus (with the sequence fMIFL) have been found to be much more potent than 

fMLF in stimulating mice neutrophils [117], and this phenomenon has been con-

firmed with both wild-type and Fpr2−/− cells (Paper III). Fpr1 has been identified as 

Table 4. Sequence identity (percentage) between the human and mice FPRs1. 

Size2 Name FPR1 FPR2 FPR3 
Fpr

1 

Fpr-

rs1 

Fpr

2 

Fpr-

rs3 

Fpr-

rs4 

Fpr-

rs6 

Frp-

rs7 

350 FPR1 100 69 58 72 60 64 56 52 51 50 

351 FPR2  100 72 64 74 76 65 62 59 58 

353 FPR3   100 52 61 63 54 52 50 51 

364 Fpr1    100 56 60 53 50 50 50 

347 Fpr-rs1     100 81 66 62 58 60 

351 Fpr2      100 66 64 59 60 

343 Fpr-rs3       100 78 74 73 

323 Fpr-rs4        100 70 70 

339 Fpr-rs6         100 94 

338 Fpr-rs7          100 

1Data listed were obtained from UniProt: FPR1 (UniProt ID: P21462); FPR2 (P25090); FPR3 (P25089); Fpr1 

(P33766); Fpr-rs1 (O08790); Fpr2 (O88536);  Fpr-rs3 (O88537); Fpr-rs4 (A4FUQ5); Fpr-rs6 (Q3SXG2); and 

Fpr-rs7 (Q71MR7) 
2Number of amino acids 
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the preferred receptor for a number of fMet-containing peptides that are also recog-

nized by the H2-M3 complex, which presents N-formylated peptides to cytotoxic T 

cells [210]. In this study, we show no direct correlation between the activities induced 

by the different peptides in human and mice neutrophils, respectively, although we 

found that some of the peptides were more potent activators of Fpr1 than of the 

human receptor. Moreover, the structural requirements differed between the H2-M3 

and FPR/Fpr, which suggests that these two recognition systems have followed dif-

ferent evolutionary paths.  

The S. aureus-derived, phenol-soluble modulin PSMα2, which was earlier shown to 

be a potent FPR2 agonist, proved to be a potent activator of neutrophils that origi-

nated from normal wild-type animals, whereas no activity was induced in Fpr2−/− 

cells, clearly identifying this peptide as an Fpr2-selective agonist (Paper III). Some 

dual FPR1/FPR2 agonists act as dual agonists also in the mouse, being recognized 

by both Fpr1 and Fpr2 [174, 211].  

Until very recently, there were very few molecular tools available in the form of well-

characterized Fpr-specific antagonists. The earlier-mentioned Boc1 and Boc2 pep-

tides have been suggested to inhibit primarily Fpr2, although Boc1 has no inhibitory 

effect and Boc2 is primarily an Fpr1 antagonist. The FPR2-selective peptide inhibitor 

WRW4 is active also against Fpr2, albeit with a potency that is lower than that of the 

newly identified and described peptidomimetic inhibitor (Paper III). Taken together, 

the observed similarities and difference between FPRs and Fprs in terms of ligand 

recognition profiles highlight how important it will be in future research studies to 

choose appropriate ligands when designing animal experiments.   

Table 5. Effects of selected human FPR agonists on human and mice neutrophils1. 

Agonist Activity in human 

neutrophils2 

Activity in mouse 

neutrophils2 

 FPR1 FPR2 Fpr1 Fpr2 

fMIFL +++ - +++ - 

fMLF +++ - + - 

fMIFL-PSMα25-16 +++ +++ ++ +++ 

Comp43 ++ + ++ + 

WKYMVm ++ +++ +++ +++ 

WKYMVM - +++ - + 

PSMα2 - +++ - +++ 

PSM α21-16 - ++ - ++ 

MMK-1 - ++ - - 
1 The figure is adapted from Paper III. 
2 +++ = very potent; ++ = potent; + = weak; – = inactive. 
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Table 6. Effects of selected human FPR antagonists on human and mice neutrophils. 

Antagonist Activity in human 

neutrophils2 

Activity in mouse 

neutrophils2 

 FPR1 FPR2 Fpr1 Fpr2 

CysH +++ - - - 

PBP10 - +++ - - 

WRW4 - ++ - ++ 

Boc1 + - + - 

Boc2 ++ - ++ - 

Lau-(Lys-βNSpe)6-NH2 - ++ - ++ 

Pam-(Lys-βNSpe)6-NH2 - +++ ++ +++ 

Ac-(Lys-βNSpe)6-NH2 - - - - 
1 The listed activities are taken from the results presented in Paper III.  
2 +++ = very potent; ++ = potent; + = weak; – = inactive. 

Allosteric modulators of Fpr function  

In similarity to FPR2, Fpr2 recognizes both pepducins and proteolytically stable pep-

tidomimetics, as illustrated by the finding that the recently described α-peptide/β-

peptoid (F2M2) stimulates superoxide production when it interacts with both mice 

and human neutrophils, and the targeted receptors are FPR2/Fpr2 [165]. When ex-

amining the FPR2-activating pepducins in relation to mice neutrophils, it became 

clear that mice neutrophils are also activated, and that basically this is achieved 

through the targeting of Fpr2 (Paper IV). It is worth mentioning that in contrast to 

its inhibitory effect on FPR2, the FPR1 pepducin (F1Pal16) positively modulates Fpr2 

and activates mice neutrophils. Future studies should aim at elucidating the modula-

tion mechanism that underlies the activation effect of F1Pal16 on Fpr2 and the inhib-

itory effect of F1Pal16 on FPR2. Pepducins that have inhibitory effects on Fpr2 have 

also been identified, with the most potent one having a peptide sequence that is iden-

tical to the third intracellular loop of Fpr2. In similarity to the FPR1-derived pepducin 

F1Pal16, the corresponding Fpr1-derived pepducin is an agonist for mice neutrophils 

but acts as an inhibitor for human neutrophils, and the effect is mediated through 

the hijacking of Fpr2 and FPR2, respectively, without affecting the closely related 

FPR1/Fpr1 (Paper IV). The identification of these Fpr-activating and -inhibiting 

pepducins provides not only valuable tools to study in greater detail FPR/Fpr allo-

steric modulation, but it also raises questions regarding the pepducin concept with 
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respect to the mechanism used to achieve receptor specificity. In addition, the pre-

sented data suggest that there may be an as yet unidentified molecular pattern for 

FPR2/Fpr2 recognition.  
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FUTURE PERSPECTIVES 

GPCRs are the largest and most important group of cell-surface receptors that par-

ticipate in the regulation of almost all aspects of cellular functioning. Recent research 

on GPCRs has led to a number of novel concepts with respect to receptor regulation, 

including biased signaling, allosteric modulation (both positive and negative), differ-

ent levels of receptor cross-talk, as well as functional selectivity. The pepducin prin-

ciple is an illustrative example of the selective allosteric modulation concept, in which 

a unique type of molecule acts from the cytosolic side of the receptor-expressing 

membrane and affects the signaling part of the targeted GPCR. Many GPCR-

modulating pepducins have been successfully generated, and it is clear that allosteric 

modulators have potential advantages over orthosteric agonists/antagonist as thera-

peutic agents. In line with this, some pepducins have already entered into clinical 

trials. Nonetheless, the precise mechanism of action of pepducins is currently unclear, 

and this is particularly evident when it comes to the FPR-interacting pepducins, as 

illustrated by the fact that some of the results presented in this thesis are discrepant 

with the current concept of how pepducins regulate GPCRs. Future studies should 

aim to elucidate the general mechanisms (if any) of action (positive as well as nega-

tive) of the pepducin group of allosteric modulators.  

There is strong evidence that FPRs are involved in several aspects of tissue homeo-

stasis, host defense reactivity, and regulation of immune reactions and inflammation, 

which serves to highlight these receptors as promising targets for the future design 

of anti-infective and anti-inflammatory agents. However, more knowledge is needed 

regarding the basic pharmacological characterization and fine-tuning of FPR activi-

ties before it will be possible to define the full therapeutic potential. In this thesis, the 

identification of cross-species ligand recognition provides useful tools to investigate 

the physiological function of FPR2, as well as the therapeutic potential of targeting 

Fpr2 in a mouse model of human disease. While the molecular pattern recognized by 

FPR1 is well-established, no such pattern has yet been defined for FPR2. The studies 

presented in this thesis reveal that both lipopeptides and lipopeptidomimetics specif-

ically bind to FPR2, suggesting a common feature that could be the basis for recog-

nition by FPR2. Nevertheless, future research should aim to understand the basis of 
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FPR2/Fpr2 as a pattern recognition receptor, as well as to identify such FPR2-

binding peptides in vivo. 

Finally, knowledge obtained from the studies using FPRs as a model GPCR should 

facilitate our understanding of receptor modulation in general, and more importantly, 

will be of importance in terms of our abilities to develop FPR2-based immunomod-

ulatory therapeutics in the future. 
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My dear mother – thank you for stepping in when I mostly need it, and for always 
being there for me, to encourage and support me. You are the best mother anyone 
could ever wish for.  

Lastly, to my little Gismo you are my little star.  
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