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Abstract

Background: Integration testing of vehicle software in the automotive industry
relies heavily on simulation models. As they replicate actual vehicle functions
in the testing process, they increase in size and amount of interconnectivity as
rapidly as the actual functions. Valid simulation models are a precondition for
valid integration testing. Hence, assessment of the models is of high importance
in industry. At the same time, assessment approaches for model-based software
validated in industry are scarce.
Objective: The goal of this thesis is to assess current integration testing in the
automotive industry and extend the validation of simulation models. Accord-
ingly, we aim to collect insights from the practitioners in the field, including
elicitation of actual challenges in the industry, state-of-the-practice processes,
and assessments of applicability for validation approaches.
Method: To achieve the objectives we combine quantitative and qualitative
research methods including interviews, workshops, surveys, literature reviews,
software measurements, correlation analysis, and statistical tests. In five studies
attached with this thesis we combine multiple research methods to achieve high
validity and to ensure all presented approaches are applicable in industry.
Results: We elicited and categorized challenges from practitioners in practice,
particularly in the field of integration testing for automotive software and
analyze the current software development process. We present measurement
results from complexity and size metrics, as a first assessment of the models.
In addition to single measurements, we show how to evaluate software measure-
ment results collected over time and how they can be related to model quality.
We show that outlier analysis can help detecting impactful observations in the
model development process. Furthermore, we found five approaches for the
prediction of software model growth data and elaborate on their strengths and
weaknesses, in practice. Next to providing actual approaches, we present prac-
titioners expectations towards maintainability measurements and measurement
predictions.
Conclusion: In this work we contribute to the understanding of concrete
challenges in industry, we describe current processes, and provide approaches
applicable in industry to address elicited challenges. With our work we improve
the current assessment of validity of simulation models in integration testing
in the automotive industry.
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Chapter 1

Introduction

In modern vehicles tremendous amounts of software fulfill multiple roles and
control various vehicle features. Those features are ranging from engine man-
agement, to safety features like emergency braking and airbag control, to
entertainment and user interaction. Software in vehicles today is embedded
in so-called ECUs (electronic control units). ECUs comprise hardware and
software parts and modern vehicles contain over 100 of these control units. The
amount of software in cars is growing steadily. According to Broy [1], already
in 2006, cars ran on up to ten millions lines of code. Today’s vehicles contain
already more than 100 million lines of code, which is about five times as much
as in modern airplanes and twice as much as in current Windows operating
systems (cf. [2] and [3]).

In cars, the amount of interconnections between the systems increases
together with the size of the software systems. The anonymized graph to the
left in Figure 1.1 is extracted from the actual architecture in a modern vehicle
at a German premium car manufacturer and shows the amount of existing
ECUs as black nodes and the connections between them. Some functionalities
require the creation of big interconnected clusters of ECUs working together.
Another example for high interconnectivity among functions in vehicles at a
Swedish premium vehicle manufacturer is shown on the right side of the figure.

Figure 1.1: Examples for interconnectivity in practice. Signals shared between
ECUs at a German automotive OEM are shown to the left and connected
functionality at a Swedish automotive OEM to the right (cf. [4]).

1



2 CHAPTER 1. INTRODUCTION

A concrete example highlighting how interconnected and complex car soft-
ware became is a case from 2008 where customers experienced in rare cases
the engine control causing the engine to unexpectedly increase the engine
rotation speed as soon as the air conditioning was turned on (cf. [5]). The
case of Toyotas unintended acceleration as outlined by Koopman [6] highlights
importance and difficulty of proper validation of complex embedded systems.
A small error in the code caused the vehicles to accelerate unintentionally,
causing numerous fatalities. Mössinger [7] lists more challenges particularly
apparent for automotive software: reliability, functional safety, real-time be-
havior, resource constraints, playing key roles in the field. Hence, there is a
need for high software quality in automotive software.

This increasing amount of interconnected functions and the need for high
quality make extensive testing in the automotive field essential. Tests of ECU
software and hardware are to a large extent conducted in so-called in-the-
loop environments. In-the-loop refers to the test environment which reads
the outputs of the system under test and feeds a respective reaction of the
environment back into the system. Figure 1.2 shows the in-the-loop testing in
detail.

Model-in-the-
Loop	 (MIL)

In-the-Loop	 Testing	 Process

Software-in-the-
Loop	 (SIL)

Hardware-in-the-
Loop	 (HIL)

Plant	Model

Function	Model

Plant	Model

Function	 Code

Plant	Model

Complete	 ECU

Figure 1.2: In-the-loop processes, adapted from Brückner and Weitl [8].

Testing steps iteratively build on each other. Model-in-the-loop (MIL) and
software-in-the-loop (SIL) first address only the software part of the ECU.
Hardware-in-the-loop (HIL) tests address the combination of ECU software
integrated in the ECU hardware. All phases of this process rely on plant models.
Plant models are used to simulate physical behavior. They replicate a real
environment for the ECUs to be tested in. As ECUs are also interconnected with
each other, an integration test follows as soon as the single ECUs are successfully
tested in the above process. This additional test is performed in connected
HIL tests. Figure 1.3 shows a typical hardware-in-the-loop environment for
integration testing at a German premium car manufacturer.

In these connected HIL tests, vehicle ECUs are connected with each other
and placed on frames with real vehicle hardware. A plant model simulates
the complete vehicle environment so that all vehicle function can be tested in
a realistic environment before it is used in a real vehicle. Next to the plant
models, at connected HILs another kind of models are used. Models simulating
real ECUs to enable fast replacement in case of failure or unavailability and
easy debugging. Hence, next to plan models, simulation models also play a
significant role in testing automotive software.
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Figure 1.3: Example of a hardware-in-the-loop environment for integration
testing.

Accordingly, in integration testing in the automotive industry, models are
required to successfully test the real functionality. As they grow in size and
complexity together with the real ECUs, ensuring their validity is an important
step towards compliance with functional and qualitative requirements. In this
thesis we investigate validity of simulation models used for integration testing
in practice.

1.1 Background

In this section we first explain software validation and related it to the concepts
of software quality and technical debt. As a means to conduct validation,
software measurement is introduced, because it is used particularly throughout
the thesis. Lastly, the specifics of software engineering in the automotive
industry are presented, as the research presented in this thesis is conducted in
this field.

1.1.1 Software Validation, Quality, and Technical Debt

According to the IEEE Standard Glossary of Software Engineering Terminol-
ogy [9], validation is “The process of evaluating a system or component during
or at the end of the development process to determine whether it satisfies
specified requirements.” Boehm [10] extended this definition by adding “the
fitness or worth of a software product for its operational mission”. In the same
study, Boehm also phrased the two informal distinctions between

• Verification - “Am I building the product right?”

• Validation - “Am I building the right product?”

Hence, during software validation the software engineer tries to ensure the
functionality of a system as a whole in a realistic environment before it is
released to the customer. This is in contrast with verification, where single or
few encapsulated features are tested in environments adjusted to the respective
functions.
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As mentioned in the definition above, validation is usually conducted by
comparing software with its requirement specification. Requirements may refer
to functionality but also to quality attributes, or constraints (cf. [11]). Next to
testing functionality, ensuring software quality is an important part of validation.
Validating software quality is not seldom failed to address and misinterpreted in
practice. In 2005, Glinz [12] found terminological and conceptual discrepancies
among the existing definitions used for software quality. Eckhardt et al. [13]
have recently shown that in practice qualities are still misunderstood and that
quantification is rare. Hence, software quality requires clear definitions and
approaches for quantification.

Multiple guidelines for classification of software quality exist. In their
literature review, Giraldo et al. [14] focus on quality in model-driven engineering
and answer the question how quality for models is addressed. They found a
general lack of studies with clear definitions for quality characteristics. They
further show that the guidelines provided with the OMG MDA framework [15]
and the ISO 9126 standard [16] as the two most used.

We conclude that definition, interpretation, and application of software
quality differ. There is no universal model. We decided to have one consistent
quality definition for all work conducted in this thesis and chose the one
established by ISO/IEC. In the standard ISO/IEC 25010 [17], which replaced
the ISO 9126 standard in 2011, two quality models are defined and many
quality terms are explained. The standard defines the following characteristics
of product quality, used throughout the thesis:

• Functional suitability

• Performance efficiency

• Compatibility

• Usability

• Reliability

• Security

• Maintainability

• Portability

The standard does not come without critique. In 2005 Al-Kilidar et al. [18]
particularly mention problems with the ISO 9126 standard regarding ambigui-
ties, incompleteness, overlapping definitions, and its applicability in practice.
Still, it proposes a uniform taxonomy to describe and categorize software quality.
Additionally, the standard also provides a framework for quality measurement
in ISO/IEC 25020.

In their literature survey, Mohagheghi et al. [19] present an alternative
list of classes for quality, specifically for model-based software. They list the
following six classes:

• Correctness

• Completeness

• Consistency

• Comprehensibility

• Confinement

• Changeability

The classes mostly overlap with the ISO 25010 standard but addresses
challenges in modeling more specifically.
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Table 1.1: Technical debt categories according to three recent literature studies.

2013: Tom et al. [24] 2015: Li et al. [21] 2016: Alves et al. [25]

Knowledge Distribution
Documentation Debt Documentation Debt

and Documentation Debt

Defect Defect Defect

Infrastructure Debt Infrastructure Debt Infrastructure Debt

Requirements Debt Requirements Debt Requirements Debt

Test Debt Test Debt Test Debt

Code Debt Code Debt Code Debt

Architecture and Architectural Debt Architecture Debt

Design Debt Design Debt Design Debt

Build Debt Build Debt

Versioning Debt Versioning Debt

People Debt

Test Automation Debt

Process Debt

Service Debt

Usability Debt

In this thesis, maintainability has a special focus. In Schroeder et al. [20],
we found that maintainability is important for practitioners and underrepre-
sented by current validation approaches in the domain of integration testing.
Additionally, maintainability has another interesting aspect. Li et al. [21] found
that in current research, technical debt is strongly related to maintainability.
By definition of Cunningham [22], technical debt denotes not quite right code
that is accepted for the sake of reaching a deadline, for example. This causes
an interest in terms of working effort, every time it has to be maintained or
evolved. Finally, a principal might have to be paid as the developers repair the
flawed code.

Technical debt is a research topic which finds high resonance with industry
practitioners. In our study Schroeder et al. [23], we observed an overlap in the
practitioners understanding of maintainability and technical debt. Therefore,
this concept is carried on in the course of this thesis.

The concept of technical debt can be transferred to other software artifacts
apart from plain code, for example debt in software architecture or tests.
Different types of technical debt have been identified throughout the last
twenty years. Table 1.1 shows what different kinds of debt have been identified
by the three most recent comprehensive literature studies on the topic.

In the course of this thesis, we understand technical debt purely in regard
to the piece of software under development, the simulation models. This
includes architecture debt, design debt, and code debt. Debt related to pro-
cesses, infrastructure, requirements, or people is not considered. Li et al. [21]
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also list different activities involved in technical debt management. They are:
identification, measurement, prioritization, monitoring, repayment, representa-
tion/documentation, communication, and prevention. In this thesis, we focus
on the first activities, including identification, measurement, prioritization, and
monitoring in the context of automotive software engineering.

1.1.2 Software Measurement

In the previous section, we introduced validation as testing a software product
against its specification. Manual testing becomes infeasible when amounts of
functionality, specifications, and complexity increase. Furthermore, manual
testing becomes insufficient if specifications are not complete, accessible, or
understandable. Accordingly, an alternative validation approach like software
measurement can improve the validation process and complement testing.
Additionally, software measurement provides a means of quantification, to
make concepts like software quality and technical debt comparable.

Fenton and Bieman [26] describe measurement as the evaluation of software
artifacts and the act of making attributes of software quantifiable by assigning
numbers or symbols to them. This quantification happens according to a
predefined set of rules, like the scale the measurement can be used in. The five
scale types currently used are nominal, ordinal, interval, ratio, and absolute
(cf. [27]). Scales describe the set of values they contain and the relations possible
within the set. That means, not all operations are meaningful in on certain
scale. For example, it is not meaningful to perform additions on nominal data
or calculate the mean on interval data. Hence, scales contribute to correct
handling of the quantitative data. Quantifying qualitative attributes enables
the comparison of those attributes and the underlying artifacts. As attributes
are comparable, statistical evidence can be collected on the performance of
artifacts and their attributes, respectively.

The intention behind performing software measurements is to explain pre-
viously unclear concepts, increase their understandability, and controllability
(cf. [26]). For qualities like performance, often simple evaluations of measure-
ments are sufficient, for example, by measuring execution time. For software
quality characteristics like usability, reliability, maintainability and related
technical debt might not be derived by measuring single software attributes but
by combining multiple attributes mathematically. A metric or measure for the
size of a software artifact can be expressed by using “number of lines of code”
but it can also be expressed by dividing the “number of lines of code” by the
“number of components”. Hence, plain measurements are combined or adjusted
to improve the model of the behavior in the real world. To ensure a measure’s
applicability, evidence is needed on how strong a collected measurement result
is correlated with the software attribute intended to be assessed.

Four specific code and architecture metrics used in this thesis are assessing
size and complexity. They are listed in the following and detailed descriptions
can be found in Section 5.2.1.

• Size: Lines of Code
This metric is created by counting lines of code of the source files generated
by Simulink. The code in the source files resembles an XML-like structure
and contains all information also contained in the model.
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• Size: Block Count
For the block count metric we use a function provided by Matlab, called
sldiagnostics. The function counts all blocks contained in a Simulink
model, including all blocks nested in others (cf. [28]).

• Complexity: Structural Complexity
This metric is a combination of the count of the amount of blocks each
block is connected to (fanout) and the total amount of blocks in the
model.

• Complexity: Data Complexity
This metric uses the same attributes as the Structural Complexity metric
but additionally considers the number of inputs and outputs of each
block.

To improve the performance of the metrics used in this thesis, we adjust them
to fit the field. Each metric used in this thesis is assessed for its performance
in practice, using stakeholder interviews, workshops, and surveys. Not only
the performance is of interest, but also the stakeholder needs are elicited to
ensure that metrics applied in practice are needed and useful.

Software metrics can target different aspects of software like development,
testing, or management and can be applied in all steps of the software de-
velopment process to monitor products or their artifacts. In this thesis we
focus on code and architecture assessment. Other activities within the software
development process are not investigated.

1.1.3 Integration Testing and Model-based Software

Current software development processes in the automotive industry follow
the V-model, as shown in Figure 1.4. As the process depends on hardware
development, a development process with consecutive steps like the V-model
proves useful and is still widely used in this domain. Nevertheless, single process
steps, like independent software function development might be conducted in
a more iterative and incremental way following agile methodologies. Testing
activities are depicted on the right side of the figure, with the integration
testing phase highlighted with dashed lines.

Integration testing in the automotive domain is performed using connected
hardware-in-the-loop (HIL) platforms. At connected HIL platforms the ECUs
part of the vehicle are coupled while the physical environment is simulated
using real-time simulation models. In this environment interconnected ECU
functions can be tested before the ECUs are brought into the actual vehicle.
To ensure a realistic testing environment, the coupling is performed using the
actual vehicle buses and real vehicle parts are included as feasible.

During integration testing, simulation models play a major role. They
have two responsibilities: They serve as plant models, simulating the physical
behavior of the vehicle and as ECU models, simulating actual ECU behavior to
replace missing or faulty ECUs. Software models are an abstraction (cf. [29]),
either of plain code or even of other models. Thereby, information that is cur-
rently not needed or not available are hidden to achieve simplification. Models
for simulation is different from static models mostly used for visualization and
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Figure 1.4: General V-Model as it is used in automotive software development

design. Static models usually do not require a time dimension, while time is
the key aspect of simulation models (cf. Zeigler [30]). Either on a continuous
or discrete time scale, the output of simulation models is calculated using a
function of the input to the models.

At the case company, all simulation models are created in Simulink. They
are constructed from blocks and connectors, using a layered architecture as
shown in Figure 1.5. In the figure, the simulation model to the left contains two
blocks, one being an ECU model and one a plant model. Within those models,
functions are again visualized as blocks and are implemented in different ways.
They can be combinations of logical operators, state machines, or written
in programming or scripting languages. All three implementations have in
common that they operate on the input signals and generate an output signal.

Simulation	Model ECU_Model

Figure 1.5: Example of a model created in Simulink.

The models are designed to be executable. At compile time they are
translated into executable C code, which is mainly hidden to the developer.
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This way of realizing model-driven development should be separated from other
realizations like the usage of models as a means of visualization. This distinction
is also mentioned in the model-driven development spectrum, presented in
Staron [31]. Where one end of the spectrum covers the models solely used
to visualize the code, Simulink and the related model-driven development is
located on the other side of the spectrum where models are used as the main
development artifact. This distinction is important, as existing assessment
approaches created for plain code might not be directly applicable to generated
code from simulation models. Particularly, code maintainability and usability
metrics are not meaningful as engineers work directly on the models. Literature
on model-based software has to be assessed using the same criteria, to avoid
misconceptions.

1.2 Motivation and Problem Domain

We highlighted earlier, that automotive software is complex, constantly growing,
and that contained functionalities are highly interconnected. Accordingly,
approaches for identification, monitoring, removal, and prevention of complexity
are needed. At the same time, there is a lack of research for the assessment
of model-based software in the automotive domain. Hence, there is a need for
assessment approaches applicable in this domain.

Integration testing in the domain depends on valid simulation models. As
size and complexity of simulation models grow along with the real functions,
manual validation is infeasible. Furthermore, validating these models solely
by tests against written specifications might suffer from a lack of complete-
ness, accessibility, or understandability of these specifications. Using indirect
assessment of model properties with measurements provides additional means
of model validity assessment and thereby contributes to increasing software
quality in the automotive domain.

Software measurement is used widely in software engineering to assess
software projects and products [26]. Evidence on the applicability of metrics
in the domain of integration testing in automotive software engineering is
still scarce. Furthermore, even though simulation models are widely used in
industry and an important part of the integration testing process, there is only
few literature on actual metrics for model-based software, particularly Simulink
models.

1.3 Research Goal and Questions

In this thesis we are addressing current challenges in the field of integration
testing in the automotive industry and investigate how simulation models can
be assessed for validity. Quantitative assessment using software metrics and
statistics is combined with qualitative approaches like interviews and surveys
to ensure applicable improvements of current model validation. From this main
goal, we derive sub-goals expressed as research questions which are going to be
addressed in this thesis.

RQ1 What are challenges and processes currently existing in integration testing
in the automotive domain?
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RQ2 How can software quality assessment be customized to simulation models
in the automotive domain?

RQ2.1 How can metrics of model complexity and size be applied to assess
maintainability of simulation models in the domain?

RQ2.2 How can existing measurements be extended by outlier assessment
to provide insights on correlations with quality characteristics?

RQ2.3 How can model growth be predicted reliably in the automotive
domain?

1.4 Methodology

The research methods used in this study are shown in Figure 1.6. In the figure,
the methods are also related to the previously presented goals and research
questions. It can be seen that a strong focus is put on combining qualitative
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Figure 1.6: Overview of the research methods used in this thesis.

and quantitative research methods. Malhotra [32] describe quantitative studies
as based on mathematical and statistical methods, while qualitative focuses
on human aspects. In the appended papers, insights from literature and
quantitative results from software measurements are always compared with
practitioners’ assessments, either in interviews, workshops, or surveys. By
combining multiple research methods and sources of information we achieve
method and data triangulation in all our studies. All studies contain more than
one method of data collection. Except for study A, concerning the prominent
challenges in the field, we always rely on more than one source of information.
While triangulation increased research validity, the continuous involvement of
practitioners ensured a benefit for industry, as well.
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In the studies presented in this thesis we perform empirical research. Fol-
lowing Malhotra’s [32] definition, empirical research analyzes real-life data to
compare theories and observations. Different research methods are used within
empirical research. Using five examples, Stol and Fitzgerald [33] show that
the levels of detail of the research method definitions differ. All studies in
this thesis project can be described as case studies, as they all address the
case of integration testing of automotive software engineering. According to
Malhotra [32] case studies are solely qualitative and commonly use observations,
interviews, and group discussion for data collection. Other authors are less
restrictive in their definitions. Runeson et al. [34], for example, argue that
data collection in case studies should be based on triangulation of multiple
data sources, including quantitative data as well. Hence, clear definitions of
the research methods used is important.

We refer to the literature, to clearly define the research methods used in
this thesis. The findings are summarized in Figure 1.7 and explained in the
following.

Paper	
A

Paper	
B

Paper	
C

Paper	
D

Paper	
E

Research	Purpose
Runeson et	al.	[34]

Exploratory

Descriptive

Explanatory

Research	Type
McDonough	and	
McDonough	 [35]

Watching

Measuring

Research	Categories
Stol and	Fitzgerald	[33]

Unobtrusive

Particular	 Context

Natural	 Setting

Context/Environment	 Focus

Figure 1.7: Research Categories from literature.

McDonough and McDonough [35] differentiate four types of research: con-
trolling, asking/doing, watching, and measuring. In their categorization, case
studies are placed in the “watching” category, exhibiting low amount of inter-
vention and low selectivity. Study A and B fit this description. Studies C, D,
and E also employ a degree of “measuring”, which makes them more selective
in nature and labels them as systematic observation rather than as case study,
according to McDonough and McDonough.

Stol and Fitzgerald [33] collected multiple scales to categorize research
methods:

• from obtrusive to unobtrusive

• from universal context to particular context

• natural setting, contrived setting, setting independent, and not empirical

• actor focus, behavior focus, or context focus
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While conducting the studies presented in this thesis, we always tried to be
unobtrusive. Following the case study definition of Zelkowitz et al. [36], we
always avoided researcher intervention with the case. The context of our
studies is always integration testing in the automotive domain. Respectively,
our setting is natural and not contrived. The research focus is strongest on
the context dimension. That means that the studies achieve a high amount
of realism at the cost of control as it would be achieved in experiments. At
the same time, the general high incorporation of practitioners and the use of
surveys increase the actor focus and generalizability (cf. [33]).

Runeson et al. [34] distinguish different purposes of research:

• Exploratory

• Descriptive

• Explanatory

• Improving

All five studies are to some extent exploratory, as they explore phenomena
and seek to create new research questions (cf. [37]). Particularly the first
two studies fit this category, where we explore the field of integration testing
in automotive software engineering by investigating challenges and processes.
Although, casual relationships cannot be proven in case studies (cf. [38]), the
later three studies have to some extent a descriptive and explanatory purpose.
In those studies, we start with a theory of existing association of size/complexity
measure with complexity/maintainability attributes of the software. Thereby,
we try to describe existing phenomena and to find causal relationships between
model attributes and quality attributes. The notion of study purpose can be
linked to the distinction between inductive and deductive empirical research
(cf. [34]). Inductive research creates theory from observations, while deductive
research confirms a theory using observations.

As mentioned above, all studies in this thesis are conducted as case studies.
Hence, we followed the concrete guideline on planning and conducting case
studies by Runeson and Höst [38]:

• Objective
Every study performed in this thesis has a clear goal.

• Definition of the Case
We ensured a clear definition of what is studied in all attached papers.

• Theoretical Background
Part of every study is a rigorous investigation of similar studies and
necessary background.

• Research Questions
We always defined explicit and relevant research questions to be answered
in the course of our studies.

• Methodology
Data collection and analysis in our studies is always clearly described.

• Selection Strategy
The selecting of case and subjects was systematic and is clearly outline
in each study.
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Additionally, Runeson and Höst provide recommendation on the style for
reporting case studies. We always followed their guidelines as close as possible,
to provide clear and concise descriptions to enable replicability.

1.4.1 Interviews and Workshops

Interviews are an important means for data collection in case studies (cf. [38]).
In interviews data is collected in a dialog between the researcher and one
or more interviewees. Usually, the dialog is guided by the researcher using
interview questions addressing previously defined research questions. Runeson
and Höst [38] distinguish open and closed interview questions, formulated in a
unstructured, a semi-structured, and a fully-structured manner. Unstructured
interviews are mostly exploratory, containing open questions, and focus on
qualitative data. Structured interviews on the other hand are more descriptive
and explanatory, contain closed questions, and focus on quantitative data
(cf. [38] and [39]). Semi-structured interviews are less restrictive and can
contain attributes of both other categories. Hence, even though interviews
are usually categorized as qualitative research method (cf. [32] and [39]), their
usefulness to elicit quantitative data is mentioned, as well (cf. [38] and [39]). In
this thesis, we define workshops as group-interviews, meaning an interview with
at least two interviewees, guided by the researcher and interview questions.

We used interviews and workshops for different purposes. While interviews
are a main source for data collection from practitioners, workshops additionally
had a confirmatory purpose and served as additional source of input. In
workshops we presented ideas which might have been proposed by single
individuals in an interview to validate it, trigger discussions, and develop ideas
further.

As shown in Figure 1.6, all of the five studies in this theses contain either
interviews, workshops, or both. Hence, interviews are a major means of data
collection in this thesis. We used semi-structured interviews and extracted
both, qualitative and quantitative information. Open and closed questions
were used and the interviewer was free to adjust and create questions based on
the answers received (cf. [40]). We followed the guidelines from Seaman [39] on
how to structure interview questions and transcripts. The data collected in
transcripts was evaluated using qualitative methods like coding (cf. [39]) and
quantitative methods like grouping and counting the numbers of answers.

Interviews and workshops have the advantage of close interaction between
researcher and interviewee. Semi-structured interviews enabled flexibility to
extend on unclear topics and to verify collected insights. On the other hand,
interviews had the disadvantage of being limited in the amount of opinions
collected, compared to studies like surveys where more subjects can be reached
with less effort. Additionally, interviewees might be biased. For example,
they might answer in their favor in case questions address deficiencies. A save
environment was created in the beginning of the interviews to avoid this bias.
Interviews were always treated anonymously.
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1.4.2 Surveys

Surveys or questionnaires are often considered as a research method by itself,
separate from case studies (cf. [33] and [32]). According to Stol and Fitzger-
ald [33], they are more universal than case studies, as they address a broader
spectrum of subjects. They are also more focused on the subjects’ opinions
than on the context. Surveys are usually considered as a quantitative method
(cf. [32]) but using open questions, they can elicit qualitative data as well
(cf. [39]). Singer et al. [40] mention surveys as the most commonly used field
study technique, due to the low amount of time and resources they require.
They further consider interviews and surveys to be related, as the goal of both
is the collection of information on processes, products, or personal knowledge.

The two studies in the Chapters 2 and 6 use surveys as data collection
technique. We chose surveys if large numbers of subjects had to be addressed,
if questions were mostly closed, and intended to be evaluated quantitatively.
Surveys have the advantage of being time and cost effective while being asyn-
chronous in a way that the researcher doesn’t have to be present when they
are answered. However, surveys have a risk of achieving only low response
rates which weakens the strengths of the achieved evidence. They also have
the disadvantage of possible misunderstandings when questions are ambiguous.
We could mitigate the disadvantages by not only relying on surveys, but com-
plementing them with interviews and workshops. As shown in Figure 1.6, we
always used at least one additional research method together with surveys.

1.4.3 Quantitative Analysis

In literature quantitative research methods address hypotheses and collect
generalizable results (cf. [32]). Quantitative analysis in this thesis refers to data
collection and analysis approaches relying on numerical data and mathematical
functions. Next to statistical tests and correlation analysis we also mention
software measurements as quantitative approach. We thereby follow Runeson
and Höst [38], who include the usage of correlation analysis and hypothesis
testing to collected data in their definition of quantitative data analysis.

Software measurements are solely used for data collection and have been
described previously in Section 1.1.2. Statistical tests and correlation analysis
are used to analyze collected data and to confirm theories. In the Chapters 4
and 5 quantitative analysis is used to collect evidence to answer the research
questions. In Chapter 6 we additionally provide a concrete hypothesis to
be tested. The strong emphasis on quantitative research in the Chapters 4,
5, and 6 also requires rigorous methods. The area of software engineering
experimentation provides required guidelines, for example provided by Basili
et al. [41] or Wohlin et al. [42]. As it is near to impossible to control all
variables in a real world case, we never perform a controlled experiment. Still,
the guidelines enabled a structured research process. From their extensive
descriptions we adopted the following guidelines for our quantitative analyses:
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[A] Research Questions
Establishing clear goals and research questions before planning the data
collection avoids researcher bias during execution. As applicable, we ad-
ditionally defined independent/dependent variables and used hypotheses
describing the research questions.

[B] Empirical data collection
We collected data from a large amount of data sources to increase validity.
Additionally, to avoid bias, we used randomization of collected data sets,
for example, when splitting data into groups for comparison. Automated
data collection increased efficiency and replicability.

[C] Empirical Analysis
Careful selection of appropriate analysis methods ensured validity of the
analysis. The analysis has to fit the collected data and the established
research questions. In our studies, this included decisions between para-
metric or non-parametric analysis depending on the data. Furthermore, it
included decisions for appropriate statistical tests and correlation analysis,
fitting the data and its behavior.

In general, quantitative data collection and analysis has the advantage of
providing generalizable and unbias results (cf. [32]). Additionally, results are
replicable as they originate from numerical and mathematical functions. Still,
quantitative results usually require further interpretation. An outcome of a
statistical test is often limited to showing a difference in the performance of
two or more compared approaches. The combination of quantitative research
with qualitative research, as presented in this thesis, enables interpretation
of quantitative results to receive further insights into the results and the
applicability in practice.

1.5 Study Summaries

In this section the content of all included studies is summarized. We describe
the goal, methodology, results, and contributions of each of the studies, to
provide an overview over the work performed in the course of this thesis project.

1.5.1 Chapter 2: Challenges from Integration Testing us-
ing Interconnected Hardware-in-the-Loop Test Rigs
at an Automotive OEM

In the first study, we elicited prominent challenges and their root-causes, in
the real-world environment of integration testing at an automotive OEM. The
elicitation is done using semi-structured interviews with 13 practitioners in the
field. The interviews were based on a structured questionnaire but open for
discussions. By coding the transcripts, challenges were extracted and grouped
into eight different categories. Additionally, root-causes like time and work force
constraint and suggested measures for improvement were obtained from the
codes. Furthermore, technical debt items were extracted from the challenges.
Next to the typical code, test, and architectural debt items, also requirements
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and documentation debt were mentioned by the practitioners. Accordingly,
this study contributes to the thesis by outlining the field of integration testing.
Major challenges are identified and compared to those found in similar studies.

1.5.2 Chapter 3: Simulation and Validation of a Safety-
Critical Electronic Control Unit for Integration Test-
ing in Connected Hardware-in-the-Loop Environ-
ments

The goal of the second study was the assessment of the current modeling and
simulation process at the case company. We analyzed how existing knowl-
edge from practice and literature can be combined to improve the current
development process. Therefore, we performed interviews with seven stake-
holders involved in the current development process to extract the current
state-of-the-practice. Complementary literature studies provided the current
state-of-the-art. Using knowledge from literature, we provide recommendations
on how to improve the current development process. A systematic development
process for the creation of simulation models for integration testing is proposed.
The process is split in three steps performed in iterative cycles; requirements
elicitation, development, and verification and validation. Detailed information
supported with current literature are provided for each step. Hence, this study
contributes with insights into the current development process. This provides
a clear understanding of the activities involved in developing simulation mod-
els for integration testing. Additionally, we propose its extension in form of
recommendations on improvements for each step.

1.5.3 Chapter 4: Comparing the Applicability of Com-
plexity Measurements for Simulink Models during
Integration Testing – An Industrial Case Study

In order to reveal specific quality deficiencies among the simulation models, we
introduced software measurements in the third study. The research objective
was to assess the applicability of size and complexity measurements to deter-
mine software maintainability and complexity in practice. We applied two size
and two complexity metrics to 65 simulation models. These quantitative mea-
surement results are then enriched with qualitative data elicited in interviews
and a workshop with practitioners. Findings show that the metrics are not
strongly correlated and that they assess different properties. The assessment of
the qualitative data revealed a preference among the practitioners towards size
metrics for the assessment of model complexity and maintainability. Hence, this
study contributes with the evidence that the used size metrics are applicable to
assess maintainability in the field. Furthermore, from the interview, we elicited
requirements practitioners have towards maintainability metrics.
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1.5.4 Chapter 5: Unveiling Anomalies and their Impact
on Software Quality in Model-Based Automotive
Software Revisions with Software Metrics and Do-
main Experts

In this study we aimed to extend the previous model validation using software
metrics by extending it with measurements over four years of past software
revision data. The goal was an efficient approach to highlight revisions with
high impact on model quality by investigating outlying observations among the
measurements. Four metrics were applied to the past revisions of 71 simulation
models. Two different approaches revealed outliers among the measurement
data. These qualitative information were then used to distinguish between
meaningful observations (anomalies) and random outliers. This was done by
interviewing eight engineers, each responsible for a subset of the 71 models. The
findings were validated in consecutive workshops. Results show that outliers
within the measurements actually correlate with the impact assessment of the
practitioners for four quality characteristics. We showed that the quantitative
approach using outlier detection is applicable in practice to reveal revisions
with high impact. The approach can be used to assess the present development
of the simulation models and highlight problematic revisions.

1.5.5 Chapter 6: Prediction of Software Model Growth
in Practice

The goal of the most recent study was to predict previously received mea-
surement data to assess their future development. Thereby, we aimed for
predicting which of the simulation models grow beyond acceptable thresholds
and evaluated the applicability of five prediction approaches in practice. Hence,
we measured model size for 4,668 revisions of 48 simulation models and ran
five different prediction approaches on the resulting time series. To make an
informed decision on the applicability in practice, we collected practitioners
expectations towards predictions in a survey. The prediction results are then
assessed for how well they fulfill those expectations. We found that accuracy of
long term predictions (≥ 30 days) is most important to the stakeholders in the
field. We show that there are significant differences between five approaches re-
garding prediction accuracy. Furthermore, we found that statistical approaches
perform equally well as machine learning approaches while requiring less run
time. Regarding machine learning approaches, we show that simple artificial
neural networks perform best on the tested data. We contribute with applicable
prediction approaches in practice and an assessment of their strengths and
weaknesses.

1.6 Discussion

This section will present a synthesis of the results and contributions from the
individual papers and discuss how they connect to each other.
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1.6.1 Contributions

In this thesis we have identified challenges and assessment approaches for quality
characteristics of model-based software in practice. In detail, we provided the
following contributions to the software engineering body of knowledge.

C1: Assessment of the field: challenges, root causes, development
process
In Chapter 2 and 3 we contribute with insights into the real world case

of integration testing within the automotive industry. First, in Chapter 2,
we identify eight different categories of challenges in the field. Thereby we
highlight that code, process, and communication challenges as recurring.
Additionally to these challenges, in Chapter 3, we contribute with a
description of a typical development process and recommendations for its
improvements. These challenges and the assessment of existing processes
contribute to establishing the state-of-the-practice of integration testing
of automotive software engineering. It increases the understanding of the
domain before we conducted more specific investigations and it provides
other researchers with insights collected in a real environment.

C2: Practitioners expectations towards maintainability measurements
in practice
Using the interviews presented in Chapter 4 we provided insights on the

practitioners understanding of maintainability and its assessment. We
showed that the interviewed practitioners from the field of integration
testing in the automotive industry associate three major factors with
maintainability of simulation models: communication between blocks,
block size, and the structure of the model. As these findings are based on
a single interview study, we validated them in the later studies described
in the next contribution C3.

C3: Comparison of applicability of size and complexity measure-
ments in the field
Based on the three attributes received in contribution C2, in Chapter 4,

we showed how results from metrics based on attributes actually correlate
with practitioners understanding of maintainability and model quality in
general. Findings showed that correlations are only significant for one
size metric. Concerning maintainability assessment, we revealed that the
attributes mentioned by practitioners in interviews do not overlap with
ratings received from measuring these attributes. We concluded that
size measurements express maintainability best in the studied domain
integration testing in the automotive industry.

C4: How to use outlier detection to highlight quality deficiencies in
practice
In Chapter 5 we propose an automated approach to analyze anomalous

behavior among time series of measurement data. We show that it is
applicable in the domain of integration testing in automotive software
engineering. Thereby, we establish an approach for automatic evaluation
of measurement data based on historic values. Accordingly, we highlighted
anomalous development of model quality which correlates with the size
and complexity metrics used.
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C5: Using outliers to detect correlations between measurements and
model quality
Next to the applicability of the anomaly detection, in Chapter 5, we also

showed which qualities correlate with detected anomalies. We contributed
by showing that anomalous behavior in size and complexity measurements
correlates with functionality, usability, efficiency, and maintainability.
Hence, we provide an approach for automated assessment of these qualities,
in practice.

C6: Comparison of prediction approaches for time series in practice
In our most recent study presented in Chapter 6, we show how to predict

software model growth, which is one of the most suitable metrics for
maintainability estimation in the domain, according to the interviewed
practitioners. We found statistical significant differences between the of
accuracy of the different prediction approaches. Thereby, we show that
support vector regression performs worse than other machine learning
and statistical approaches.

C7: Elicitation of practitioners expectations towards predictions
In the course of Chapter 6 we also show that practitioners in the field of

integration testing in automotive software development expect predictions
to be particular accurate for up to one month ahead. High short term
predictions are not as important, as is maintenance and run time of the
prediction.

1.6.2 Threats to Validity

Regarding the threats to the validity of the research presented in this thesis,
we followed the largely overlapping guidelines of Runeson and Höst [38], Feldt
and Magazinius [43], and Wohlin et al. [42]. The following threat assessment is
based on the classifications presented in those studies.

• Conclusion and Internal Validity
According to Feldt and Magazinius [43], conclusion validity concerns
the significance of the conclusions drawn and internal validity concerns
ensuring that the treatment actually caused the outcome and not possible
confounding factors. Compared to experiments, in industrial case studies
confounding factors can always influence the results as we cannot control
all variables. Still, we ensured the statistical significance in all analyzes we
conducted. Additionally, we mitigated threats to internal validity by not
relying on one single data set but applied data and method triangulation
and do not rely on single data sets or methods.

• Construct Validity
Construct validity refers to the connection between study goal and the
observations (cf. [43]). In the course of this thesis construct validity
ensures that what we measure and assess actually fit our intentions. For
example, does measuring model maintainability relate to model validity?
We addressed this threat by constant involvement of industry practitioners
when planning and conducting the studies as well as for evaluating the
results.
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• External Validity
Generalizability is one of the major threats of all five studies part of this
thesis. As mentioned in Section 1.4, the studies are always based on the
single case of integration testing in the automotive domain. Hence, we
cannot claim that findings hold for other domains, as well. We mitigated
this threat by using large data sets and varieties of approaches. Addition-
ally, within the limits of non-disclosure agreements, we describe our case,
contained models, tools, and processes as detailed as possible. Thereby,
we increase generalizability to domains with similar environments.

• Credibility and Dependability
Credibility and Dependability are concerned with the correctness, con-
sistency and repeatability of the results. Result credibility in this thesis
is often threatened by the comparably small sample sizes available for
the studies. Next to generalizability this can be seen a major threat of
the studies conducted in this thesis. We mitigated this threat by involv-
ing participants with different roles and ensure correctness by applying
rigorous methods based on current literature.

• Confirmability
Ensuring that received findings are determined only by the respondents
and not by the researcher (cf. [43]) is particularly important in the two
qualitative studies in the Chapters 2 and 3. To ensure confirmability, we
followed established guidelines on conducting interviews and extracting
knowledge. Additionally, we always involved more than one researcher in
the planning, decision, and evaluation processes.

1.7 Conclusions and Future Research

The goal of this thesis was to assess current challenges and development pro-
cesses, and provide applicable assessment approaches for validity evaluation of
simulation models for integration testing in automotive software engineering.
Hence, in this thesis we covered two major topics. First, we outlined the
field by analyzing challenges and state-of-the-practice processes. Second, we
investigated the approaches software measurement, outlier analysis, and pre-
dictions for applicability in the field and their ability to support the validation
of simulation models.

To address the first topic, we performed extensive literature research and
conducted qualitative research methods like interviews, workshops, and surveys.
We concluded that there are two prominent challenges in integration testing in
the automotive industry. Challenges related to code and process and communi-
cation were found to be recurring. Additionally, we found that technical debt
items are also challenging the integration testing process. This includes code,
test, and architectural debt, as well as requirements and documentation debt.
During our investigations we also found that the process of creating simulation
models requires special attention to validation and verification. Hence, we
showed that the field of integration testing in the automotive industry is facing
multiple challenges. We decided to focus on challenges related to model quality.
Particularly, maintainability and the related model size and complexity.
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During our investigations of measurements, outlier analysis, and predictions
for model validation we found that all used approaches are applicable in the
field of integration testing in the automotive industry. We showed that size and
complexity measurements results are not strongly correlated and therefore assess
different aspects of the models. We showed that the engineers’ understandings
of what makes a model complex differ from their complexity assessment using
anonymized models and measurements. Interviewed engineers significantly
preferred a size metric counting blocks in Simulink models for assessment of
complexity over more sophisticated metrics which combine structural and data
attributes of the models.

By applying outlier analysis to measurement values retrieved over time we
demonstrate an automated approach for model assessment. We found that
outliers in the measurements are related to software quality characteristics and
showed that our approach can differentiate revisions with low and high impact
on the quality characteristics.

Lastly, we predicted model growth using the previously mentioned mea-
surements collected over time. As a first step, we elicited requirements of
practitioners towards predictions and found that prediction accuracy over long
time periods are prioritized over short term accuracy, run time, and mainte-
nance effort. We then showed that five different prediction approaches fulfill
the requirements obtained from the practitioners. Regarding prediction accu-
racy, we could unveil significant statistical differences among the approaches.
The statistical approach ARIMA showed best accuracy results and short run
times, whereas the machine learning approach support vector regression re-
quired longer run times while achieving worse accuracy results. Furthermore,
we showed that among the machine learning approaches simple feed-forward
networks provides highest accuracy given our data.

Hence, we provide a set of quantitative measurement and analysis approaches
applicable in the field of integration testing in the automotive industry.

The work conducted in this thesis provides multiple opportunities for future
work. For example, the three presented approaches can be combined in an
integrated assessment framework for simulation models. Software measurements
and assessment could be integrated with the existing development process. The
framework should then enable the incorporation of additional software metrics
addressing further quality characteristics. The framework should also provide a
means for visualization. It shall be possible to present the findings received in
the studies in an efficient way to the practitioners, to make decisions on which
models require further attention or refactoring.

Furthermore, generalizability, one of the biggest threats to this work could
be addressed in future research. The applicability of the work in this thesis was
validated using one single case. Although, we mitigated the threat regarding
generalizability in our studies, part of the future work will include the validation
of the used approaches in other domains using similar processes and models.
Hence, another requirement towards a possible framework is the portability.

Lastly, further work will include a way to address deficiencies our approaches
find in the models. We will conduct further literature work to discover ways
to correct and prevent problems in the models, while continuing the close
interactions with industry practitioners to ensure applicability.
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Abstract

Developing automotive functions involves complex software to a growing extent
while still following a consecutive waterfall-like development process: Integrating
and testing software with other software and with hardware components is
conducted towards the final phases during the development. For example,
ambiguous requirements or unclear semantics in system interfaces show up very
late and mostly not before integration testing. In this article, we are reporting
about results from conducting interviews with integration and test engineers at
a large automotive OEM about today’s most resource-intense challenges when
dealing with software integration testing tasks at interconnected hardware-in-
the-loop test rig environments. Challenges in processes, communication, and
implementation were mentioned most often as emerging topics to be tackled
over and over again during this phase in a vehicle series development project.
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2.1 Introduction

Most of the software in modern cars is located on electronic control units
(ECUs). Amongst others, they house safety features in the airbag control unit,
driving-related features in engine and transmission control units, or driver
assisting features like in the adaptive cruise control unit. This widespread use
of ECUs makes testing an important and extensive task. Figure 2.1 shows a
reduced V-model representing the stages of the ECU development process in
the automotive industry. As ECUs contain a hardware and a software part,
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Figure 2.1: V-model for the ECU development process. The elements sur-
rounded by dashed lines represent the integration testing stage and the related
artifacts thereof, representing the context of this study.

integration testing plays a major role. At the studied company, integration
testing is performed using different hardware-in-the-loop test rigs (HILs). In
a first step the ECUs are tested in single HIL systems to test the logic and
functionality, while in interconnected HIL systems multiple ECUs are tested
together. Simulations are used in interconnected HILs to replace missing or
not yet finished ECUs.

2.1.1 Problem Domain & Motivation

Integration testing is a resource-intense and complex task. Multiple different
parties like testers, developers, HIL-platform specialists, and tooling experts
are involved, who are often employed by different suppliers. They provide
various artifacts like requirements, test specifications, tests, test-environments,
and test-tools. This study investigates the challenges emerging from this
constellation.

In a previous study we found high complexities and low maintainability
among the ECU simulations [23]. According to Li et al. [21], maintainability
is the quality requirement which is affected most by technical debt. Hence,
in the course of eliciting challenges we additionally investigate which types of
technical debt can be identified and are related to them.
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2.1.2 Goal & Research Questions

From the previous observations, the following two research questions are ex-
tracted:

RQ-1: What are today’s challenges when integrating and testing deliverables
at interconnected hardware-in-the-loop test rigs?

RQ-2: What are potential root causes for these challenges and how do they
relate to technical debt?

2.1.3 Contributions

This study provides insights in the challenges currently present during inte-
gration testing at a large OEM in the automotive industry. The challenges
that were mentioned most often by engineers are highlighted. This is intended
to help other researchers and industrial practitioners to find important issues
in their own context. The identified root causes and potential solutions help
to better understand present challenges with a future goal to support their
mitigation. Identified technical debt is listed and indicates correlations between
current challenges and technical debt in the context.

2.1.4 Structure of the Article

The rest of the article is structured as follows: In Sec. 2.2, we are discussing
related work to this study. The design of the study is described in Sec. 2.3;
its results are reported in Sec. 2.4 and discussed in Sec. 2.5. The article is
concluded in Sec. 2.6.

2.2 Related Work

Multiple studies investigate challenges in the software development process
considering different contexts and granularity. The studies from Broy [1] and
Grimm [44], for example, investigate challenges in the entire field of automotive
software. These studies represent a more general scope, covering all areas of
the software development process. In this study we focus on the very specific
part of challenges during integration testing in the automotive field.

Furthermore, in the last 20 years numerous papers investigated technical
debt in the software development process. Ninety-four relevant studies on
technical debt have been analyzed by Li et al. [21], covering the years from
1992 to 2013. Martini et al. [45] specifically assess technical debt in industrial
companies containing automotive industries as well. They, however, focus
specifically on the architecture kind of technical debt. This study does not
restrict the focus area for technical debt in our context of study.

2.3 Design of the Study

We based this study on a survey by using the interview technique as reported
by Shull et al. [46]. Its design and structure are described in the following.
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2.3.1 Design of the Survey

We reached out to 13 participants from the integration and testing team
managed by a subsidiary of a large German premium OEM. These engineers
are both working as resident collaborators on-site but also conduct testing
services on their own premises. We selected three integration engineers, three
test engineers, three developers for ECU simulations, the team leaders for
each division respectively, and the leader of the whole department. All of
them are involved in integration testing for current vehicle series development
projects. Their responsibilities are even overlapping as the studied company
expects the developers to have knowledge of the testing and integration steps
as well. Additionally, the test automation tools are realized using a model-
based approach. Including their team leaders, the engineers have working
experience between one and ten years with an average of 5.42 years and a
standard deviation of 3.06 with integration testing in the automotive context.

We conducted semi-structured interviews using the questionnaire as shown in
Sec. 2.3.2 and recorded the responses by taking notes. Afterwards, we presented
our notes to the interviewees for clarification purposes. The interviews took
between 30 and 60 minutes and approximately 40 minutes on average.

The interview notes were then coded based on the guidelines provided by
Seaman [47]. Firstly, the notes were scanned for actual challenges. By assigning
tags, the challenges were subsequently categorized. The categories have been
created by two researchers individually, were compared, and discussed in order
to find a common base. The following rules were applied during coding:

• One challenge can have multiple categories.

• If a challenge is caused by another challenge in the same category, they
are considered as one.

• If a challenge is split up by the experts in sub-challenges of the same
category, they are considered as one.

• If the experts’ perception of a challenge differ, both perceptions are
considered.

Additionally, challenges related to technical debt were highlighted. The evalua-
tion if a challenge represents a kind of technical debt is based on the definitions
given in Cunningham [22], relating it to “not-quite-right code” and Brown et
al. [48] extending the definition to other artifacts of the software development
life cycle as well. Hence, in this study technical debt is defined as an action
performed in order to meet short-term goals while accepting quality issues and
delaying long term goals. Categories for debt are taken from Li et al. [21].

2.3.2 Questionnaire

We used the following questions in our survey to collect the data:

[A] What is your role?

[B] What are your responsibilities fulfilling this role?
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[C] What are the most resource-intense challenges that you have to deal with
during integration testing?

[D] What were the measures or counter-measures decided to be conducted to
overcome these challenges?

[E] What was the root cause of the respective challenges?

2.4 Results

From the interviews, challenges, causes, and solutions as well as technical debt
could be identified.

2.4.1 Challenges

After evaluating the results from the interviewees, we identified the following
categories about challenges during system integration and validation:

Process and Communication: During the work, distributed responsibilities
as well as long communication channels are considered as challenging to meet
planning deadlines. This concerns the communication between OEM, suppliers
for platform hardware, suppliers providing software and testing services, and
suppliers responsible for the tooling involved. Interviewees mentioned challenges
when information or deliveries are not received by the required parties or if
they are incomplete.

Requirements: Challenges with requirements are mentioned twofold: Firstly,
existing requirements specifications are partially considered being incomplete so
that the implementation can be achieved properly; secondly, the corresponding
behavioral models, for which the department has to develop corresponding
plant models, are continuously evolving. Applying a common requirement
format across all participating parties was mentioned as challenging as well.

Documentation: Incomplete or partially outdated documentation and code
commenting was mentioned as a challenge particularly by newly involved
engineers who are still familiarizing themselves with the system environment.
In addition, scripts were created to automate tedious or potentially error-prone
development and testing tasks; however, the documentation for such scripts is
insufficient in some cases to understand scripts that are sometimes complex.

Architecture: The interviewees stated that the models, with which they
have to deal, only have a prescribed structure on the higher levels. While this
structuring was reported to be helpful for simplifying the overall modeling,
some models tend to be very complex on deeper levels. Another major challenge
was reported in the overall modularity of the entire software. It was mentioned
as challenging to manage all the different ECU software libraries and their
variants. If libraries depend on others, updates can have influencing effects on
other parts of the system as well.

Code: The aforementioned incomplete requirements cause implementation
models that may be based on assumptions; hence, such models need to continu-
ously evolve to correspond to the changed and further elaborated requirements
later. In addition, however, such models growing in size and complexity also
cause further challenges as they need to be continuously updated and main-
tained. In some case, “dead code” was reported being present in simulation
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models that is actually not needed but its removal is considered to be too time
consuming.

Tool: Regarding the tools in use, developers report mainly two major
challenges: Firstly, the proprietary development environment is lacking sufficient
support to address all the code and platform challenges faced by the engineers.
In addition, upgrading to a newer version is experienced as challenging which
partly leads to the use of older tool versions if the migration to the new version
consumes to much time. Furthermore, tools are partly not flexible enough
to handle large scale models where engineers are often experiencing lengthy
loading and build times. Secondly, the commercial tools in use are extended by
own scripts to automate tasks; here, developers face complex and dependent
scripts that are in addition challenged by non-typical models or tasks during
the development and thus, continuously require manual adaption.

Platform: As the implementation and plant models are used on specific HIL-
hardware environments; the update to newer hardware environments as well as
using different versions at the same time is challenging the model development
and maintenance. Defects in the hardware environment are reported to be
difficult to spot and being identified actually as a hardware problem.

Third Party Software The engineers are facing challenges regarding incon-
sistent type information among third party software and even when reusing
software among the same company. They also report about them being faulty
and outdated. Additionally, the need for a specialist for a specific part of the
software was mentioned as a challenge.

2.4.1.1 Suggested Measures for Improvement

We additionally asked the engineers to outline potential solutions to the stated
challenges; regarding process challenges, the engineers suggest to better align
the individual tasks and to improve the communication of operational and
management levels. Considering tool challenges, engineers suggest to better test
new versions of proprietary and own tools before deploying them to the entire
process; in addition, an appropriate visualization for the scripts is suggested. To
address architectural challenges, developers propose the greater modularization
and a decrease of internal dependencies. According to the engineers code
challenges can be mitigated by automation. Regarding requirement challenges,
the engineers wish mostly for improvements in traceability.

2.4.1.2 Identified Root Causes

Most of the collected challenges cause subsequent and dependent challenges
themselves. For example, a lack in communication between parties can result
in unclear requirements, nonspecific tests, and faulty code. General root causes,
however, were mentioned lacking time and work force, and the inevitable
distribution of responsibilities in the integration and integration testing process
among different participating parties.

2.4.2 Technical Debt

According to the very broad specifications given on the categories of technical
debt in Li et al. [21] or Alves et al. [49], in the integration and integration
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testing process alone, all possible technical debts could be identified. As, this
does not provide a statement on how much effort it would take to repay the
respective debt, neither about if it has an effect on the business value of the
company, this is not considered as a severe problem. Next to the typical code,
test, and architectural debt created by focusing on short-term goals over long
term quality, the interviews revealed two apparent debts in the context:

Requirements Debt: According to Li et al. [21], this is one of the least
studied kinds of technical debt but appearing repeatedly in the challenges
mentioned by the engineers. Following the definition from Ernst [50], we
interpret requirements debt as distance between the optimal specification and
the actual one.

Documentation Debt: Taken from the interview results, documentation
debt seems to be relevant in the automotive context as well. Li et al. [21] sum-
marize it as “insufficient, incomplete, or outdated documentation”. Together
with the constant requirement change and a possible lack in communication,
documentation debt might hinder awareness about who made which kind of
change in code, tests, platform or tooling.

2.5 Analysis & Discussion

The coding resulted in two categories that stick out. Challenges related to pro-
cess and communication were most frequently mentioned, followed by challenges
regarding code. Even when grouping the engineers by their responsibilities
as test engineers, integration engineers, developers and leaders, the same two
categories appear most often in all four groups. The mentioned code challenges
are not surprising as many of them are well known in any kind of software
development. Still, some of them seem to be particularly prominent in the
automotive field. The management of multiple interconnected ECU variants or
the presence of several different hardware platforms at the same time might be
an example. Those challenges are grounded in daily work on modeling tests or
simulations, where requirements are changing continuously.

An indication for the high amount of process and communication challenges
can be derived by grouping the engineers by experience. Process and commu-
nication challenges are mentioned less often by engineers with less than two
years experience at the studied company. Two years ago, a major change in the
collaboration model has been introduced to better reflect the company’s com-
pliance guidelines. This change seems to have a strong effect on the engineers
work who are still adopting it. Still process and communication challenges do
not come completely unexpected either, as integrating software and hardware
in the given context comprises multiple parties and artifacts, which have to be
synchronized.

When relating the challenges identified to existing research on technical
debt and their causes in similar contexts we also found similarities. We
compared causes for technical debt mentioned in Martini [45] with challenges
identified in this study. They mention business factors, design and architecture
documentation, reuse, parallel development, effects uncertainty, non-complete
refactoring, technology evolution, and human factors. In their paper, they
relate those causes to architectural technical debt. As these causes strongly
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overlap with the results received in this experience report, we see an indication
that they are applicable to other kinds of debt as well.

There is a noticeable threat to the external validity of the study. Because
the study was performed at one company and with 13 participants, the gener-
alizability of the results is limited. We mitigated this threat by diversifying the
selection of participants as much as possible by including developers, testers,
integration engineers, and project leaders and expect to observe similar results
in comparable contexts in the same domain.

2.6 Summary & Conclusions

Integrating different software deliveries both, with other software components
and with hardware is a growing complexity challenge in the final phases of a
vehicle development project. In this article, we are reporting about experiences
from a department working with interconnected hardware-in-the-loop test rigs.
Therefore, we conducted semi-structured interviews with integration and test
engineers to capture today’s most resource-intense challenges and the probable
root causes. Prevalent challenges in the automotive domain could be identified
and backed up with contemporary data from industry elicited in the context
of integration testing. After clustering the different responses, we identified
challenges related to code and process and communication as reoccurring
patterns challenging today’s engineers.

Future work needs to further investigate the process changes in the company
that led to the high number of process and communication challenges, by
conducting an in-depth case study to unveil contributing factors. Furthermore,
analyzing code and design of tests and simulations next to requirements and
documentation is suggested in order to tackle potential cumulating technical
debt.
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Abstract

Model-based software using Matlab & Simulink is indispensable in the automo-
tive sector. Hence, the approaches for requirements engineering, development,
verification, and validation in this area are deeply studied. This study focuses
on their specific application for simulation models of safety-critical software and
hardware components in the domain. A methodology for the above-mentioned
software development steps is proposed. Each step is explained and consid-
erations regarding safety are outlined. The study concludes with showing
the feasibility of combining stakeholder knowledge with current literature on
model-based development.
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Figure 3.1: V-model for the ECU development process following the solid
lines. The dashed lines show the approach for ECU testing using simulation
investigated in this study. The hardware development step highlighted is not
split up any further as it is out of the scope of this study.

3.1 Introduction

Electronic control units (ECUs) responsible for safety-critical functionality
in vehicles become more and more common. As they undergo continuous
evolution, permanent verification and validation are required in order to ensure
their functionality and quality.

3.1.1 Problem Domain & Motivation

In industry, verification and validation of ECUs is done using highly specialized
Hardware-in-the-loop (HIL) test systems during integration and testing phases.
Additionally, to ensure correct operation of the ECUs in an interconnected
system like a complete vehicle, connected HILs are used. To ensure an efficient
utilization of the connected HIL as a resource, real ECUs are complemented
with simulations realized in Simulink. Simulations enable testing of single
or multiple ECUs in a real-car environment even if not all ECUs are fully
developed.

The general development process for an ECU involves the steps depicted
in Figure 3.1. After the design has been created from the requirements, the
development process is split up into a hardware and a software part. For an ECU
to be used on a HIL, the software part has to be integrated with the hardware
after both parts have been tested separately. This dependency bears the risk
of delays if either the hardware or the software development is not finished
in time. Hence, a different approach for the connected HILs was introduced
depicted by the dashed lines in Figure 3.1. Simulations of the ECU software
and its physical surroundings called plant models are created and connected
to real ECUs or other simulations at the connected HILs. These simulations
enable testing functionality at connected HILs without the ECU?s hardware.
The approach depends on existing interfaces for the bus communication. Hence,
the design, containing clearly defined specifications of the communication from
and to the ECU is required to apply this approach.
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3.1.2 Goal and Research Question

The goal of this work is to analyze the process of realizing a simulation model
for the safety-critical ECU, like the Airbag control. Experience from existing
projects showed that lack of maintainability can lead to severe problems in
later development phases. If a model is difficult to maintain, small flaws in
code and structure can accumulate and high effort is required if solving the
issues becomes inevitable. This kind of problems is also called Technical Debt
(cf. [51]).

From the statements above, the following research question emerges.

RQ: How can best practice from literature and from stakeholders famil-
iar with existing preconditions in industry be combined to a methodology for
simulation and validation of a simulation model?

Hence, it is analyzed which approach for the simulation of model-based
software results from an investigation in the given context. The methodology
shall include a structured approach for requirements engineering, requirements
prioritization, software development, verification, and validation. As the ECU
to be created is a safety-critical component in the car, considerations in this
regard are part of the study as well simulating safety-critical ECUs.

3.1.3 Contribution

This study focuses on a problem in industry. Hence, it contributes with a
process ready to be applied to projects creating simulation models in industry.
Additionally, each step in the process is examined attentively, to provide
additional background on limitations and delimitations of a method. Those
limitations and delimitations might be generalizable to other projects outside
the domain as well.

3.1.4 Scope

This study covers simulation models of ECUs in the context of automotive
software engineering. The models simulate software and also hardware parts of
the ECUs, like sensors and actors. Still, the hardware and software development
of the real ECUs are not in the scope of this work.

3.1.5 Structure of the Article

This article is structured as follows. In Section 3.2, the design and methodology
of the study is outlined. Section 3.3 describes the results received from applying
the methodology in the context described in Section 3.1. In Section 3.4, the
results are analyzed and the study is concluded. The study is summarized in
Section 3.5.

3.2 Design of the Study

To understand the process of the creation of simulation models, the relevant
data-flows and its required behavioral models need to be identified, iteratively
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realized, and validated in the HIL environment. This includes requirements
engineering, software development using Simulink, verification, and validation.

Continuous integration and incremental development are necessary as fea-
tures are realized iteratively and evolve over time. This and the multiple
different variants require the software to be maintainable. Hence, these consid-
erations shall be part of the study as well.

The process of mapping the safety-critical ECU to a simulation model for
the connected HIL is studied with a strong focus on incremental realization
and continuous validation. Therefore, relevant stakeholders are involved and
complemented by findings from similar safety-critical systems found in literature.
In addition, the influence of the safety standard ISO-26262 on the simulation
model is investigated. Each step is validated in stakeholder workshops and by
a second researcher, to increase its applicability in the context of the study
and to ensure method and data triangulation. Existing development processes
mentioned in the literature are mostly meant for creating ECU software and
not their accompanying simulations (cf. [52] and [53]). In this study, those
processes will provide considerable input, as a gap was identified in literature
for processes specifically designed for the creation of ECU simulations.

A stakeholder workshop in this case means a meeting in which at least one
but mostly multiple engineers come together and discuss intermediate results
with one of the researchers.

Next to other less frequently involved stakeholders, seven participated re-
peatedly in the workshops. They are three software developers, three software
testers, and one department manager. On average they have a work experi-
ence of 4.5 years in the context of model-based software engineering for the
automotive industry.

3.3 Results

The result of this study is a systematic process for creating a simulation
model. It has to fulfill properties relevant for a safety-critical ECU used in
connected HIL environments. All relevant stakeholders and current literature
are considered. The investigations resulted in the following list of activities
part of the process. The process is also summarized in Figure 3.2.

[A] Requirement Prioritization
The correct features have to be selected for implementation in the simu-
lation. How to prioritize which feature to implement first will be decided
based on:

• How relevant is a feature for the ECU in general and for the ECU
in an interconnected environment?

• How urgent is the feature to be tested?

The following methodology is used in this step:

• Stakeholder interviews on best practices for feature selection and
prioritization

• Stakeholder workshops to verify the lists of prioritized requirements
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Figure 3.2: Summary of the process resulting from the analysis.

• System in operation analysis, in order to compare which of the
requirements other simulations realize

The outcome expected from this step are:

• Validated and prioritized requirements

[B] Development of the simulation
The development process shall follow these principles:

• The process has to be continuous and incremental

• The created simulation has to follow guidelines for maintainable
software, elicited from the industry’s best practices and from litera-
ture

The following methodology is used in this step:

• Stakeholder interviews on best practices for the creation of simulation
models and to which extend they address maintainability.

• Literature review on designing and developing model-based software
for maintainability

• Validation of the applicability of the elicited approaches from indus-
try and literature using comparison in an experiment

The outcome expected from this step are:

• An incrementally growing simulation of the ECU developed while
having focus on maintainability

[C] Verification and Validation
The validation has to ensure that the implemented simulation is a plausible
representation of the original ECU and thus, functional and quality
requirements have to be verified. This step consists of:

• Validation and verification of both, the simulated ECU alone and in
combination with other modules on a connected HIL.
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• Assessment of the simulation’s maintainability

• Automation of the validation process

• Visualization of results received

The following methodology is used in this step:

• Stakeholder interviews on best practices for the model validation in
industry

• Literature review on software engineering approaches for the valida-
tion of simulation models and model-based software in general

• Validation of the elicited approaches in an experiment comparing
expert opinion and literature

• Validation of the resulting approaches for applicability in industry
in stakeholder workshops

The outcome expected from this step are:

• A verified and validated simulation model for relevant properties of
the Airbag ECU.

3.3.1 Requirements Elicitation and Prioritization

For requirements elicitation and prioritization, techniques are used that have
proven as being useful in the automotive industry, as outlined by ( [54]). The
elicitation is based on triangulation of data gathered from existing requirements,
documentation, systems in operation, and from stakeholder interviews. In this
case existing requirements play a major role as the real ECUs are usually
specified already. These existing specifications facilitate the elicitation process.
Still, as the simulations are reduced versions of them, the other sources are
used as well. Additionally, the prioritization becomes important. The set of
requirements the final simulation has to fulfill will be ordered by urgency and
relevancy.

3.3.2 Development of Simulation Models

The vastly observed approach for developing simulations at the studied company
comes with the nature of its structure. The department for testing ECUs in
connection receives test assignments from the departments responsible for the
actual ECU development.

That means, that functionality is added to the simulations as needed. Either
caused by software evolution or because of extension of the test requirements.
Therefore, some simulations might not be changed for months, while the ones
that are part of the current test assignment might experience multiple changes.
Hence, in reality the development parts of the results vary.

As in this case, the ECU simulation is not an extension of an existing one
but a new development, the respective development steps have to be described
as well.
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3.3.3 Verification

Software verification can be defined as “The process of evaluating a system or
component to determine whether the products of a given development phase
satisfy the conditions imposed at the start of that phase.” [55]

If not done manually, testing and verification of model-based software
systems is naturally based on model-based testing approaches. There is a wide
range on literature regarding general approaches testing for different coverage
criteria of the models. When it comes to testing of safety-relevant software,
this is realized using formal methods and model checking. For example, there
are methods applied in software for railway stations (cf. [56]) or systems in
the healthcare, nuclear, and military industry (cf. [57]). They can be used to
formally proof that the system works correctly.

Formal methods do not come without drawbacks, though. Amongst others,
the literature mentions a lack of scalability, understandability and proper tools
(cf. [58–60]). Earlier research has started to look into these problems. In their
paper, [61] analyze the integration of formal methods into the industrial context.
Additionally, for simulations as mentioned in this study, which are usually
realizing only parts of the functionality and proportionally smaller compared
to the real ECUs, scalability issues might only apply for simulations of high
complexity.

3.3.4 Validation

Software validation can be defined as “The process of evaluating a system
or component during or at the end of the development process to determine
whether it satisfies specified requirements.” [55].

The issue that the simulations implement only a subset of requirements
distinguish the validation approaches from them applied to the real ECUs.
It might actually occur, that next to different functional requirements also
different quality are required in the simulation. Hence, the question arises, how
can it be ensured, that the simulation actually reflects the reality?

In their literature study, [19] found six quality requirements, which current
literature presents assessment strategies for. They are correctness, completeness,
consistency, comprehensibility, confinement, and changeability. As mentioned
earlier, maintainability is an important attribute of the simulations studied.
In a previous study it was shown that maintainability can be assessed by
measuring complexity [23]. Hence, literature provides existing approaches to
support validation of model. In most cases, their applicability in industry still
has to be shown.

3.3.5 Safety

The simulations are not going to be used in a real car. Still, to ensure that the
final vehicle software fulfills the safety requirements and to increase amount of
recognized safety-related issues as early as possible, it seems reasonable to apply
methods common in the ECU development for the simulations, as well. [62] use
fault injection and mutation testing for validation and verification early in the
software development life cycle. They follow the recommendation of the ISO-
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26262 standard. Their approach could be applied to simulations in integration
testing. A mutated simulation could reveal faults in the interconnected system.

3.4 Analysis and Conclusions

This study presents one possible approach for development of simulations for
safety-critical ECUs in the context of integration testing using hardware-in-the-
loop test rigs. Analyzing the process showed that special attention has to be
paid to validation and verification of simulation models as required functionality
and quality might differ from the real ECU. Regarding safety, approaches from
the regular ECU software development seem to be applicable for most of the
verification and validation steps.

Regarding threats to validity, using findings from stakeholder workshops
from a single company can bias the methodology, as those stakeholders are the
ones using the current process that is thought to be improved. The workshops
were necessary though, in order to ensure that the new process fits the context
and the needs of the respective stakeholders. This threat of bias is mitigated
by including a second independent researcher to discuss each finding received.

Generalizability is limited as stakeholder workshops have been performed
in one company. According to [63], it could be achieved by repeating the
study using different cases in similar contexts. As no similar studies could be
identified, this threat is not negligible.

3.5 Summary and Future Work

In this study we combined stakeholder knowledge in the automotive domain
with current literature to create an approach of developing simulation models
of ECUs. In order to ensure the applicability of the process, it will be validated
by simulating a real ECU in the same field as part of future work.
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Abstract

Context: Simulink models are used during software integration testing in the
automotive domain on hardware in the loop (HIL) rigs. As the amount of
software in cars is increasing continuously, the number of Simulink models for
control logic and plant models is growing at the same time.
Objective: The study aims for investigating the applicability of three approaches
for evaluating model complexity in an industrial setting. Additionally, insights
on the understanding of maintainability in industry are gathered.
Method: Simulink models from two vehicle projects at a German premium
car manufacturer are evaluated by applying the following three approaches:
Assessing a model’s (a) size, (b) structure, and (c) signal routing. Afterwards,
an interview study is conducted followed by an on-site workshop in order to
validate the findings.
Results: The measurements of 65 models resulted in comparable data for the
three measurement approaches. Together with the interview studies, conclu-
sions were drawn on how well each approach reflects the experts’ opinions.
Additionally, it was possible to get insights on maintainability in an industrial
setting.
Conclusion: By analyzing the results, differences between the three measure-
ment approaches were revealed. The interviews showed that the expert opinion
tends to favor the results of the simple size measurements over the measurement
including the signal routing.
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4.1 Introduction

Software takes over more and more responsibilities in current vehicles. The
amount of software, realized as control units responsible for different functional-
ities like gear shifting, airbag control, or cruise control is increasing. In order to
test the control units, the industry applies hardware-in-the-loop (HIL) testing.
That means to connect a control unit to virtual versions of other units. In
one further step, all virtual control units are connected with each other using
virtual bus systems. In these compositions, real control units can be tested
while the software simulates the rest of the complete car. In order to achieve
the best results, the simulation has to represent the real vehicle as good as
possible or at least as close as the test requires it to be.
The department where the study was conducted is responsible for creating
plausible software models representing the complete vehicle on multiple HIL
platforms. Simulation models for all control units used in the car and the
respective physical plant models are created using Matlab and Simulink. The
validation of the increasingly complex vehicle models is a more and more urgent
challenge, as it has to be ensured that complete HIL simulations actually
simulate the car properly.

4.1.1 Problem Statement

As control unit and plant model software are growing, integration and test
engineers are continuously challenged to master the growing complexity as well.
For example, the case of Toyota’s unintended acceleration case outlined by
Koopman [6] shows how important testing of control units in real or simulated
environments is. Hence, in this domain, assessing the complexity of models is
just as important as assessing code complexity.
Code complexity is well understood and there are many established measure-
ments and metrics for example designed for object-oriented software (cf. Tegar-
den et al. [64] and Chidamber and Kemerer [65]). Models are created to get
an abstraction from the code level, therefore code complexity metrics cannot
be applied without a modification. Finding measurements designed for model-
based software like Simulink is still a challenge. Additionally, it is not clear
how applicable the measurements are in industry and if existing measurements
are accepted among software engineers in the automotive field.

4.1.2 Research objectives

The assessment of model complexity measurements is chosen as a means to
address this challenge. Complexity measurements are of interest as they assess
amongst other things complexity, maintainability, understandability, and the
probability of errors in the models (cf. Plaska [66]). The measurement results
shall improve the integration testing phases. Hence, the study investigates to
which extent existing metrics for complexity of Simulink models are applicable
in the field of automotive software.
Complexity of software is correlated to software maintainability. For example,
Kemerer [67] combined the existing evidence until 1995 about their relationship.
Banker et al. [68] and Plaska [66] also describe a connection between them.
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Consequently, maintainability investigations of software models provide a
promising related research objective and shall be part of the study, too.

4.1.3 Context

The study takes place at an electrical development department of a large
German premium car manufacturer producing more than 1.5 million vehicles
per year. The department is responsible for about 80 Simulink models of
control units for different car variants. In 2013, the department performed tests
on almost 190 HIL systems of which around 15 are interconnected systems.

4.1.4 Document Structure

The structure of this study accords to the guidelines to case studies from
Runeson and Höst [38]. Section 4.2 describes the related work to this study.
In Section 4.3 the design of this study is outlined while Section 4.4 shows its
results. Lastly, Section 4.5 summarizes the study, shows its impact, and lists
possible follow-up studies.

4.2 Related Work

The complexity evaluation approach used in this study was first mentioned in
1988 by Card and Agresti [69]. Their approach aims for assessing the design
of software. The measurement is defined as a combination of the complexity
inside a block and the complexity of the relations between blocks referred to
as local and structural complexity. The local complexity measure represents
a value for the cohesion and the structural complexity for the coupling of a
system. Additionally, the authors evaluate their metric in real projects and
analyze ways to minimize complexity by adjusting design characteristics.
Plaska and Waldén [70] port the approach mentioned above to the Simulink
setting in order to evaluate hydraulic control systems. One of the authors
described the metric more thoroughly together with other Simulink-specific
measurements by Plaska [66]. Boström et al. [71] created a tooling which
enables automatic measurement of Simulink models using the metric defined
in the two previous papers. In this study, their metrics are used to realize the
measurement defined by Card and Agresti [69].
Apart from the mentioned work, the literature provides few studies applying
rigorous research methods to investigate the complexity of model-based soft-
ware. Dajsuren et al. [72] apply similar structural metrics to assess modularity
of Simulink models. Feldmann [73] applies Cyclomatic Complexity metrics
and counts lines of code to measure complexity. The company this study is
conducted at uses the same two approaches. Antonio and Ferrari [74] use the
metric based on the work of Card and Agresti [69] to relate complexity to the
comprehensibility of models. None of the studies assesses the applicability of
the complexity metrics in the respective fields.
In the field of object oriented software engineering comparable studies can be
found. For example, as part of their study, Anda et al. [75] assess software
maintainability using code size measurements and compare them to the judg-
ment of experienced experts. Their results show, that the expert opinions agree
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with size measurements. In this paper a similar approach is applied to reveal
which of the three measurements is preferred by the experts in the context
described in Section 4.1.3.
It can be concluded, that only few reported complexity measurements specific to
model-based software exist. Furthermore, evidence to what extent the existing
measurements are applicable in industry is missing in the existing literature,
especially addressing the integration phase of software models.

4.3 Case Study Design

The goal of this research is to analyze how applicable complexity measurements
are in the mentioned industrial context. This includes applying complexity
measurements to the vehicle models. The results received from the complexity
measurement mentioned by Card and Agresti [69] are going to be compared
with two software size measurements. This enables a comparison of the three
different approaches which are expected to have correlating results. Additionally,
an interview study is performed to assess the expert opinion from software
developers in the field and therefore to check if the model-complexity metrics
are aligned with the designers’ perception of complexity. The results received
in the interviews are then validated in consecutive workshops.

4.3.1 Research questions

From the goal of the study, the following research questions were derived.

[A] How do the results from one composite complexity metric and two different
size metrics correlate with each other in the industrial setting?

[B] To which extent are the complexity measurements used in this research
applicable to support the integration testing of Simulink models in the
context of HIL simulation for automotive software?

[C] What are further indicators on how to measure/evaluate maintainability of
Simulink models extracted from the expert opinions of software engineers
at the studied company?

4.3.2 Case and subjects selection

As mentioned before, the study takes place at a HIL testing department. The
models created at the department represent a small collection, compared to the
models created for the real control units of the cars. But as they simulate the
whole connected vehicle and its environment they are a valid representation to
the population of all models at the studied company.
The modeling is performed in multiple sub divisions of the department. The
interviewees were chosen as they are the group of engineers responsible for
performing a part of the development and the whole integration testing of the
mentioned models. They are software developers with different engineering
backgrounds.
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4.3.3 Data collection procedure

The data in this study is collected in two ways. First, measurements are
performed on the models of the vehicle control units. According to Card and
Agresti [69] and Plaska and Waldén [70] the first complexity metric is defined as
the sum of structural and local complexity. Whereas the structural complexity
is a relation of the number of calls a block makes to other blocks (fan-out) and
the whole number of blocks in the system. The local complexity is represented
by the number of input and output variables of a block in relation to the fan-out
and the number of blocks. In the following, the sum of structural and local
complexity summed for all blocks in the model will be mentioned as IO/Fanout
(IOF). The metric is performed on the Simulink mdl-files. In an mdl-file, the
content of the model is represented in a structured text-based format. The
first size measurement Block Count (BC) uses a function included in Simulink
to count the number of blocks in a system. The sldiagnostics command can be
called from the Matlab console with the parameter BlockCount. Through all
the layers of the model the existing blocks on each of them are counted and
summed up. For the second size measurement, the lines of code of the Simulink
mdl-files are counted. This metric is considered relevant as the mdl-file contains
all information on the structure of the model.
The second step in the data collection procedure is an interview capturing the
expert assessment of the results. The following questions were used during all
interviews:

[A] In your opinion, when is a Simulink model maintainable? What makes it
maintainable?

[B] How should maintainability be evaluated in practice?

[C] (a) On a scale from 1 to 6, how well suited is metric A for evaluating
the maintainability of a model?

(b) On a scale from 1 to 6, how well suited is metric B for evaluating
the maintainability of a model?

(c) On a scale from 1 to 6, how well suited is metric C for evaluating
the maintainability of a model?

[D] (a) From the list of control units, which of them do you know well
enough in order to make a statement about its maintainability?

(b) On a scale from 1 to 6 how maintainable is each of the control units
known to you?

[E] (a) Based on the measurement results, order the three approaches
according to how close they come to your personal complexity
assessment of the models.

(b) In your opinion, which of the measurement results was created using
which approach?

The two open ended questions in the beginning are considered to introduce
the topic and elicit major aspects of maintainability important for each of the
engineers. During the whole interview, answers for these open ended questions
are elicited and noted. After introducing the topic, in 3 the engineers were
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asked to rate the measurements using three questions in a Likert-format. At
this point no measurement result has been shown to the interviewees yet. The
scale ranges from very easy to maintain (1) to very difficult to maintain (6).
A scale from 1 to 6 was chosen in order to avoid completely neutral answers.
The questions 4a and 4b assess the expert opinion on the complexity of the
models which are among their responsibility. Question 5a aims for the engineers’
opinion on the measurements after showing them the results. The names of the
measurements were not visible, so the participants did not know which result
belongs to which measurement. The scales for evaluating the metrics before
and after showing the results are different. This was intended, to avoid that
the interviewees give the same answer as before.

4.3.4 Analysis procedure

The analysis is supposed to show relations between the two data collections –
the measurements and the expert opinions. Regarding the measurements as the
first step, the control units are analyzed one by one and all three measurements
described in Section 4.3.3 are applied to each of them. The results are listed and
normalized in order to compare them and make statements about similarities,
differences, and correlations.
The interviews are analyzed in two ways. The two open ended questions in
the beginning are supposed to deliver qualitative results on complexity and
maintainability. They shall be used to validate the quantitative results received
by the questions following in the interview. For example, to support the
resulting constellation of votes for the measurements with the qualitative data
or to oppose them.
In order to gather data from the qualitative results, a procedure described by
Seaman [47] is used. The interview notes are coded, meaning that tags are
assigned to each of the statements made on complexity and maintainability.
The tagged notes are then grouped together in order to make them quantifiable
and to locate accumulations of tags. The coded results of the expert opinions on
complexity and maintainability shall show if they overlap with the quantitative
results received from the subsequent interview questions.
The quantitative data received from the questions 4a and 4b is directly compared
with the measured data in order to determine if the measurements correlate
with the expert opinion.

4.3.5 Validity procedure

The three measurements have their background either in the literature or are
practically used in industry. The background for IOF is explained in Section
4.2. The measurement of LOC is widely used in literature and industry and BC
is a measure existing in the Simulink development environment. Although their
correlation is not fully agreed (cf. Landman et al. [76]), the McCabe complexity
metric was left out in this study as it is meant to have a close relationship to
the measure of lines of code (cf. Jay et al. [77]).
In order to receive consistent results among all the interviews, the questions
asked were always identical. The semi-structured design of the interviews,
including the two open ended questions resulted in discussions that were
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different from interview to interview. That was intended to elicit as much
qualitative data as possible. In order to assess the qualitative data in a
structured way and to retrieve valid results, it was coded and analyzed according
to Seaman [47]. This provides an established approach to evaluate qualitative
data. The workshops to evaluate collected answers and conclusions drawn
from them together with the engineers provided additional validation to the
interview results.

4.4 Results

The results are divided in those for comparing the measurements and those
received from combining measurements and interviews.

4.4.1 Measurement Results

The tables attached as supplementary material in [78] show the results of the
measurements in the first four columns. In the columns five to seven, the results
were normalized using the formula Xi = Xi−Xmin/Xmax−Xmin, in order
to restrict the range of the results and to simplify the pairwise comparison for
the interviewees. For confidentiality reasons, the names of the control units are
anonymized. The table does not represent a complete list of all control units
used in the vehicle and at the HILs. Control units for which the interviewees
could not provide a statement are not listed.
The three measurements were compared for correlation using the Pearson
correlation coefficient. The results for the correlation analysis are shown
in Figure 4.1. The captions contain information on the correlation of the
measurements. They show that IOF has a weak correlation to both, BC and
LOC; BC and LOC correlate moderately. The weak correlation between the
size and complexity measurements was expected as the approaches differ greatly.
Since no two measurements results show strong correlation, a clear distinction
of the experts favorite should be possible when comparing the measurements
with the interview data.
In the Figures 4.1b and 4.1c the same outlying models stand out. They
contain comparably much functionality and signal routing within few blocks.
Hence, those outliers can be traced back to the differences in the model designs
and cannot be dropped. They actually might indicate models for further
investigation when the company decides to reduce complexity in their models.
The outliers in Figure 4.1a indicate two different groups of models as some
of the BC values grow with increasing IOF and others do not. Again this
behavior can be related to differences in the modeling approaches, as some
models contain more functionality and signal routing in only few blocks than
other models.

4.4.2 Results from the interview study

The results for interview question 4b representing a posteriori answers are
shown in the last eight columns of the tables supplemented in [78]. Combining
interviews and previous results shows how the expert opinion fits the measure-
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Figure 4.1: Scatter plots with regression lines indicating the correlations
between the measurements.

ments. The correlations of each expert’s results to the measurement results
are summed up in Table 4.1.

Table 4.1: The correlation of interview and measurement results using the
Pearson coefficient.

Interviewees number of CUs IOF BC LOC

I1 8 -0.02 0.28 0.00

I2 23 0.40 0.60 0.42

I3 24 0.16 0.73 0.44

I4 63 -0.01 0.03 -0.10

I5 4 -0.98 0.60 -0.39

I6 6 0.98 0.99 0.46

I7 5 -0.94 0.80 0.28

I8 5 -0.94 0.80 0.28

The table also includes the number of control units each interviewee is
responsible for. This indicates the weight each of them has. It can be seen,
that the correlation between expert opinion and the LOC/BC measurements is
higher than the correlation with the IOF metric.
In addition to the correlation observations, three One-Way ANOVA tests
were performed post-hoc to investigate the relationships between the experts’
opinions and the measurement results. While expecting to observe large effects
(effect size = 0.4), a high power (1 − β > 0.8), and assuming a type-1 error
probability of 0.05, the tests resulted in values collected in Table 4.2. In order
to achieve this high power, the six possible expert ratings were combined in
three groups of two ratings each. The tests found no significant relationship
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Table 4.2: The results of the three One-Way ANOVA tests comparing experts’
opinions and metrics. The critical f is 3.11.

Metric F -value p-value

IOF 1.83 0.163

BC 7.40 0.0009

LOC 0.89 0.4136

between any of the metrics and the experts’ opinions. The null-hypotheses
of equal means were rejected either because of p > 0.05 or F > f . However,
the additionally performed Tukey-test showed that the group of CUs which
received the best maintainability ratings by the experts, are also associated
with significantly lower BC values. Gathering a larger sample might uncover a
stronger relationship between the BC metric and the experts’ opinions.

In the interview, question 3 asked for an a priori and question 5a for an a
posteriori evaluation of the measurement approaches. The results from both
questions are shown in Figure 4.2. The order of metrics favored by the experts
changes from the first to the second assessment. The IOF metric is highly
accepted, based on the experts’ opinion of the underlying approaches, as shown
in Figure 4.2a. When assessing the actual measurement outcomes in Figure 4.2b,
the metric looses greatly in agreement. While the LOC metric stays average,
the Block Count measurement improves in its agreement with the experts
opinion in the second assessment and is the one highly accepted according to
the experts evaluation of the measurement results. This change in the experts’
opinion could be verified applying Wilcoxon Signed Rank test, which detected
a significant difference in between the a priori and the a posteriori evaluation
for the BC metric.
Finally, the coding of the interview notes of the open ended questions resulted

in a list of tags:

• Documentation – Issues related to bad or good documentation

• Communication – Issues related to inputs, outputs, and signals inside a
block and between them

• Size – Issues related to the good or bad influence of model size

• Structure – Issues related to structural attributes of the models

• Task – Issues related to the logic specific to the task a model or single
blocks perform

• Third Party Development – Issues related to blocks or parts of them,
developed by another company or department

• Tooling – Issues related to scripts and tools used for development

• Visualization – Issues related to good or bad visualization of the models

• Other – All issues which did not fit in the previous categories
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Figure 4.2: Likert-scales showing the interview results for the measurement
approach assessment. A higher number stands for a better rating in both
evaluations. The scales unveil a change in the expert opinions from favoring
the IOF approach before and the BC approach after showing measurement
results.

Of this list, the following tags were mentioned most: First, the communication in
between blocks, mostly mentioned as strong coupling decreases maintainability.
Second, the size of the block. Whereas size was mentioned as having a strong
influence as well as having no influence. Third, the structure of the model,
mentioning cohesion in blocks as having a positive influence on maintainability.
The three tags were mentioned as positive and negative contributions to
maintainability and complexity. This shows that the expert opinions gathered
from the open ended questions fit their a priori assessment of the measurements
shown in 4.2a, which favored the complexity metric IOF. According to the
interviewees, structure and IO-Signals should be part of a complexity metrics
as well. The tag for model size, representing the LOC and BC measurement,
was mentioned in almost all interviews but mostly assigning size a low priority
in complexity and maintainability evaluation. The interviewees mention size as
a problem that can be overcome with a proper structure. The results received
a posteriori draw a different picture, where the LOC and BC measurements
came closer to the expert opinion.

4.4.3 Evaluation of validity

The interviews were held by one researcher only. Recording was not possible
due to confidentiality reasons. This might have resulted in possible data missed
out while writing the protocol. The threat was mitigated by performing on-site
workshops validating the answers given by the interviews.
The correlation evaluation and statistical tests for the measurements and the
ranking that the experts assigned in interview question 4b bears a threat to
validity as only eight interviewees could be taken into account. Additionally,
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the number of models the interviewees are responsible for varies greatly. Five of
the interviewees are working on less then ten models. This threat was mitigated
by analyzing qualitative data from the two open ended questions to validate
the results.

4.5 Conclusion and Future Work

This study used three complexity measurements to assess Simulink models of
control units. Additionally to comparing the measurements with each other, an
interview study showed how applicable and how well accepted the complexity
measurements are in the field of HIL integration testing for vehicle simulation.
The analysis of the data showed that the three measurements are not strongly
correlated. The experts seem to trust size measurements over the complex-
ity one to assess complexity and maintainability. Although, when asking for
relevant indicators of complexity and maintainability internal structure and
coupling were mentioned most next to the size of a model. Hence, there was a
discrepancy in the engineers’ opinion what a complexity metric should contain
and the measurement they actually preferred.
This study created evidence towards the applicability of complexity measure-
ments in its context and tried to fill the corresponding gap mentioned in
Section 4.2. In future studies further validations of the metrics are planned.
For example an approach for the validation of metrics from Basili et al. [79].
Additionally, maintainability and other qualities of the available models will
be assessed further.
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Abstract

The validation of simulation models (e.g., of electronic control units for vehicles)
in industry is becoming increasingly challenging due to their growing complexity.
To systematically assess the quality of such models, software metrics seem
to be promising. In this paper we explore the use of software metrics and
outlier analysis as a means to assess the quality of model-based software. More
specifically, we investigate how results from regression analysis applied to
measurement data received from size and complexity metrics can be mapped
to software quality. Using the moving averages approach, models were fit to
data received from over 65,000 software revisions for 71 simulation models that
represent different electronic control units of real premium vehicles. Consecutive
investigations using studentized deleted residuals and Cook’s Distance revealed
outliers among the measurements. From these outliers we identified a subset,
which provides meaningful information (anomalies) by comparing outlier scores
with expert opinions. Eight engineers were interviewed separately for outlier
impact on software quality. Findings were validated in consecutive workshops.
The results show correlations between outliers and their impact on four of the
considered quality characteristics. They also demonstrate the applicability of
this approach in industry.
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5.1 Introduction

In the automotive industry, software models are used to simulate vehicle
functionality of electronic control units (ECUs). In modern cars, ECUs comprise
software and hardware for actual vehicle functionality (e.g., engine control,
driver assistance functionality, and safety features). Simulations of ECUs are
key elements for validation and verification of the real software and hardware
during integration testing phases.

5.1.1 Problem Statement

Simulation models are extensive and complex software. At the studied company,
their size ranges from 4k to 400k lines of code measured on the model files.
They are also highly interconnected. For example, the simulation for the elec-
tronic stabilization control (ESC) is strongly connected to engine and braking
functionality, distributed over up to nine different simulation models. In their
study [20], Schroeder et al. highlighted complexity and issues among creating
and using simulation models during integration testing in the same domain as
prevailing challenges. This growing complexity and the interconnected nature
of the models ask for rigorous assessment strategies in order to control current
quality levels and to allocate test resources.

Furthermore, functional and non-functional requirements are clearly speci-
fied only for the real ECUs. In contrast thereto, simulation models are typically
less extensively specified and focus rather on the expected core functional
behavior. Simulation specifications are continuously evolved when new features
emerge during integration testing. Reliably validating a model’s functional
and non-functional attributes in this volatile and growlingly complex envi-
ronment is a challenge. Validation using software metrics, complementing
pure specification-based approaches, is a promising alternative in the domain.
However, existing approaches for quality assessment based on software metrics
are mostly covering only reliability and maintainability (cf. [80] and [81]).
Additionally, solutions are usually designed for object oriented code and not
directly applicable to model-based software.

5.1.2 Research Objectives

The goal of this study is to extend current model validation approaches using
software metrics. On measurement data received from historic model revisions
(software versions based on commits), statistical outlier detection shall reveal
anomalous observation. By adding qualitative data received by domain experts,
we aim for showing that these calculated outlying observations highlight revi-
sions with high impact on model quality. Additionally, we intend to show the
applicability of such an approach in the automotive domain. These objectives
are addressed in the following research questions:

[A] How can existing linear regression / model fitting and respective outlier
analysis be applied to revision data from an industrial context?

[B] Which anomalies and patterns can be detected applying the above ap-
proaches to measurement data in form of software revision time series?
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[C] Which correlations between outlying values in the measurements and the
domain expert opinions can be found?

[D] Which combination of measurements and outlier detection produces
meaningful observations about software quality?

5.1.3 Context

We perform an exploratory case study at the integration testing department
at a major German premium car manufacturer, producing around two million
vehicles per year. The department manages the development of simulation
models and performs integration tests for all interconnected ECUs in their
product lines. Currently, the department is responsible for 71 ECU simula-
tion models. Each simulation model covers multiple vehicle variants and is
implemented as model based software in Simulink. Simulink is a software tool
commonly used in the investigated domain to model physical behavior, process
signals, and apply control theory.

We investigate our research questions in this context by applying traditional
regression analysis. First, software metrics which are selected based on previous
experience in the domain, are applied to the models. Following, regression
models are created to fit the measurement data using an autoregressive in-
tegrated moving average approach (ARIMA), as we can show its suitability
in the context. Thereafter, the well established residual analysis techniques
studentized deleted residuals and Cook’s distance are used to detect outliers.
Finally, we assess the impact of the outliers on software quality through semi-
structured interviews with the engineers at the studied company and validate
our findings in consecutive workshops.

5.1.4 Contributions

This study demonstrates the applicability of regression based outlier analysis
in industry. Additionally, knowledge on outlier data and their correlation
to software quality is gathered. We show that correlations between outlier
values and four quality criteria can be detected. Furthermore, we provide
findings on types and reasons of detected outlying revisions. Altogether, the
presented approach complements current validation approaches in the domain
as it accounts for information on past, current, and future model quality.

5.1.5 Structure of this Study

In this study we followed Runeson and Höst’s recommendation on structuring
case studies (cf. [38]). Hence, the paper is outlined as follows: In Section 5.2,
we describe the necessary background on all approaches applied in this study
and discuss related work. The study design in Section 5.3 outlines the concept
applied to investigate the study’s research objectives. Results are presented in
Section 5.4, analyzed in Section 5.5, and assessed for validity in Section 5.6.
We conclude our study in Section 5.7 and comment on possible future work.
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5.2 Background and Related Work

The investigations in this study focus on ECU simulation models replacing
real ECU behavior. These simulations exhibit varying complexity and usage
patterns on hardware-in-the-loop (HIL) test rigs. More functionality is added
to these simulation models on request and hence, continuously extending them.
Even if a vehicle development project ends, new models usually build upon
existing ones and inherit features to a large extent. The Simulink models allow
for a graphical representation of physical behavior using blocks and connectors.
In layers, blocks can contain further functionality, enabling the creation of
interconnected subsystems.

5.2.1 Measurement

For this study, two complexity and two size metrics are used to assess the simu-
lation models. As one objective of this study is the assessment of applicability
of the approach in the domain, metrics were chosen that have been proven
applicable in the domain before (cf. [23]).

5.2.1.1 Size

We applied two size metrics: Firstly, we count lines of code (LOC) in the model
files. The model files are generated by Simulink and store the graphical model
in an XML-like format. Every line is evaluated as equally important. The
files do not contain empty lines or comments. The second metric is counting
blocks contained in the models. It is based on a Simulink internal function
called “sldiagnostics”. We are using Matlab and Simulink in version 8.4. This
block count metric (BC) counts each block in the model, even those that are
inside subsystems, including the lowest layers of the model [28]. Both size
measurements are performed offline on the model files.

5.2.1.2 Complexity

By today it is widely understood that no single-valued measurement can satisfy
all ideas of software complexity. Briand et al. [82] emphasized the difficulty of
defining complexity metrics. Fenton & Bieman ( [26], pp. 425) refer to Zuse’s
paper [83], proving that the list of properties for complexity measurements
established by Weyuker [84] cannot be satisfied by a single-value measure.

In this study we interpret complexity measurements as assessing models
in a structural and a local way. We use two measurements first introduced
by Card & Agresti [69] in 1988. Plaska & Waldén [70] applied the metrics,
which were originally intended for software design, to model-based software. In
Schroeder et al. [23], they were used in the automotive domain in an industrial
context. The two metrics measure the structural complexity (SC) and the data
complexity (DC) of a model.

Structural complexity (SC) aims for assessing the interactions between
blocks in a model. Therefore, the fanout value (f) of each block i in a model is
measured. Fanout is determined by counting the blocks that are connected to
the output of block i. The final metric is the sum of all squared fanouts of a
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4 OUTLIER ANALYSIS

INCREASING OUTLIERNESS SCORE FROM LEFT TO RIGHT

NORMAL DATA NOISE ANOMALIES

WEAK OR STRONG OUTLIERS

Figure 1.2. The spectrum from normal data to outliers

clusters. In the case of Figure 1.1(a), a single data point (marked by
‘A’) seems to be very different from the remaining data, and is therefore
very obviously an anomaly. The situation in Figure 1.1(b) is much more
subjective. While the corresponding data point ‘A’ in Figure 1.1(b) is
also in a sparse region of the data, it is much harder to state confidently
that it represents a true deviation from the remaining data set. It is quite
likely that this data point represents randomly distributed noise in the
data. This is because the point ‘A’ seems to fit a pattern represented by
other randomly distributed points. Therefore, throughout this book the
term “outlier” refers to a data point, which could either be considered
an abnormality or noise, whereas an “anomaly” refers to a special kind
of outlier, which is of interest to an analyst.

In the unsupervised scenario, where previous examples of interesting
anomalies are not available, the noise represents the semantic boundary
between normal data and true anomalies– noise is often modeled as a
weak form of outliers, which does not always meet the strong criteria
necessary for a data point to be considered interesting or anomalous
enough. For example, data points at the boundaries of clusters may
often be considered noise. Typically, most outlier detection algorithms
use some quantified measure of the outlierness of a data point, such as
the sparsity of the underlying region, nearest neighbor based distance,
or the fit to the underlying data distribution. Every data point lies on a
continuous spectrum from normal data to noise, and finally to anomalies,
as illustrated in Figure 1.2. The separation of the different regions of this
spectrum is often not precisely defined, and is chosen on an ad-hoc basis
according to application-specific criteria. Furthermore, the separation
between noise and anomalies is not pure, and many data points created
by a noisy generative process may be deviant enough to be interpreted

Figure 5.1: Graphic from [87] showing difference between outliers and anomalies.

model, divided by the number of blocks (n), as shown in Equation 5.1.

SC =

∑
f2i
n

(5.1)

Data complexity (DC) evaluates the workload each block inside a model
performs, individually. Additionally to the fanout value (f), it counts input
and output variables of a model’s blocks. For each block i, the number of
inputs and outputs (v) is divided by its fanout value. The sum off all divisions
is again divided by the number of blocks in the model (n). Equation 5.2 shows
the definition of this metric.

DC =

∑ vi
fi+1

n
(5.2)

Both equations conform to their definition according to Card & Agresti [69].
Similar to the size metrics, the complexity metrics can be performed offline by
parsing the model files.

5.2.2 Anomaly Detection

Outlier detection in general is well studied. Surveys by Chandola et al. [85]
and specifically for time series data by Gupta et al. [86] collect research
and establish taxonomies for outlier detection. For defining anomalies among
outliers, we follow Aggarwal [87]. When assessing measurement data for outliers,
the observations can be divided into three classes. Figure 5.1 shows that most
of the data indicates normal behavior. Next to the normal data, there is
data that behaves differently. These observations are called outliers. In our
case, those are measurement values, which are in some way different from the
others. Among those outliers is stochastic noise. The noise is naturally present
in all measurements and is uninteresting for follow-up investigations. Other
observations, which are interesting to the observer are called anomalies; if an
observation is interesting or not, does depend on the context. The topic to
unveil those interesting outliers among the measurement data in the study’s
context is addressed in our research questions.

Outlier analysis is well studied and applied in multiple fields. Hartmann
et al. [88] investigated already in 1980 the specific field of outliers time series,
discussed characteristics of analyzing them, and recommended models to use.
In this study, we fit models to the measured observations and perform analysis
on resulting residual, to detect outliers in the time series of measurement data.
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Figure 5.2: Visualization of a moving average model. The model is created
building the average of three previous observations: MA(3).

5.2.2.1 Model Fitting

Model fitting and linear regression are common approaches to detect outliers
in many kinds of data. For time series data, Hartmann et al. [88] discuss the
use of autoregressive integrated moving average (ARIMA) models, which are
used in this study as well. Box & Jenkins are known to be the first to apply
ARIMA approaches to time series data [89]. Today it is a common approach in
general and used in statistics, economics, and electrical engineering, but also
areas of computer science, like artificial intelligence.

ARIMA is a combination of three methods; auto regression (AR), moving
averages (MA), and integration/differentiation (I). In this study, the MA
method is applied to create models fitting the measured time series. A model
based on MA is created building the mean value of a set of previous values,
as shown in Figure 5.2. In the figure, three values are used for the average
resulting in a MA(3) model.

5.2.2.2 Residual Analysis

Once a model is fitted to the data, outliers are detected by analyzing the
differences between data and model (the residuals). The two methods used
in this study are studentized deleted residuals (SDR) and Cook’s distance
measure. Both are commonly used methods in practice (cf. [90]).

A regular residual is the difference between an observation in the measured
data and a corresponding value predicted by the model. A deleted residual
is created by subtracting a predicted value based on an estimate using all
observations but the current one. This reduces influence, caused by single
data points of the measurements. To create a studentized deleted residual, the
standard error of the current residual is subtracted therefrom to create more
precise results. Cook’s distance measure is an approach combining residuals
and leverage values, which can in our case be described as extreme changes in
the measurement data.

Both residual calculations can be computed using common statistical pack-
ages like R or SPSS. The thresholds, for when one of the residual values should
be marked as outlying, are taken from Bowerman et al. [90] and are explained
below for replicability reasons.

For SDR, we calculate the t distribution point t0.025 with n−k−2 degrees of
freedom. A residual greater than that value is marked as outlier. The number
of observations n in our collected data is always between 100 and 150 and
the number of independent variables k is always one. Hence, our calculated
minimum value for SDR outliers is between 1.985 and 1.976, depending on n.

The threshold for Cook’s distance is calculated similarly. The 50th percentile
of a F distribution based on k + 1 and n − (k + 1) degrees of freedom is
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calculated. A Cook’s distance for an observation greater than this value is
marked as outlying. Using the same values as above, the threshold for Cook’s
distance values is always between 0.696 and 0.698.

5.2.3 Similar Studies

Outlier detection is used in fraud and intrusion detection in signal analysis
as well as network and system security. In the software engineering domain
we found that outliers are used for fault prediction. Alan and Catal [91]
detect outliers in results of software metrics applied on different class files.
They do not use statistical approaches but their own outlier definition, based
on measurement thresholds. Detected outliers are used to improve the fault
prediction algorithms. In Hangal and Lam’s study, anomaly detection is used
for tracking bugs [92]. Their anomaly detection is not based on measurement
data but on extracting and refining invariants from running programs. Both
studies do not look into the artifacts’ development over time or look into other
software quality characteristics.

Other studies investigate how well metrics can assess software quality. Many
use metrics and apply regression analysis for assessing reliability and predicting
faults. Khoshgoftaar and Szabo’s study [80] is close to ours as they develop
regression models based on complexity measurements. Using neural networks,
they predict reliability and faults of software. They are not using outliers for
their predictions, though. Herzig et al. [93] analyze software version histories
and combine related revisions for a prediction of software defects. They apply
software metrics and regression analysis but do use outliers either. Garcia
and Shihab [94] use software metrics together with decision trees to detect
particularly severe bugs among their data set. They present their prediction
model and important factors to determine blocking bugs in software.

Instead of reliability, some studies focus on metrics predicting maintainabil-
ity. Schroeder et al. [23] assess complexity and size metrics and test them for
correlation with stakeholder understandings of maintainability. They showed a
preference for size metrics for predicting maintainability in their domain. Based
on object oriented metrics, Dagpinar and Jahnke [81] use regression analysis
and history data to predict maintainability. Using quantitative maintenance
data, they reveal metrics that are able to predict maintainability. Similarly, Gil
et al. [95] validate metrics and their assumptions using past software versions.
All three studies do not look into outliers among the measurement data.

Software project risk is also investigated and predicted. Choetkiertikul
et al. [96] analyze historic data with regression models to detect risks in
software projects. Their model detects risk impact and likelihood with certain
precision. Pika et al. [97] apply outlier analysis to risk event logs to improve
risks indicators for process delays. They do not employ software metrics but
improve predictions using statistical outlier detection.

We found that if regression analysis on metrics is used, models are usually
based on the measurement data and not on outliers. On the other hand, papers
on outlier detection mostly do not assess software quality and sometimes
do not apply statistical approaches but own interpretations of outliers. We
could not identify studies combining statistical outlier detection based on
measurement data for assessing model quality. Additionally, studies mostly
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assess object-oriented software and hesitate to involve stakeholder opinions.

5.3 Study Design

In order to cope with our research goal in the context of automotive model-
based software, the research is performed using an exploratory case study.
Thereby, we intend to achieve insights into phenomena observable in the field
while avoiding researcher intervention and bias at the same time. Still, we keep
the approach as general and clear as possible in order to enable generalizability
to similar model-based software as well as replicability in other fields. This
is achieved by applying established methods as outlined in Section 5.2, and
reporting on all steps of our study. The general approach chosen for the
case study is outlined in six steps. Explanations for these steps follow in the
remainder of this Section.

[A] We measure all available model revisions, using two software complexity
and two size metrics, and get quantitative data in form of four time series;

[B] We employ outlier detection approaches thereto and get four lists of
outlying revisions for each simulation model;

[C] We split the measurement results equally in two sets, a test set and a
validation set;

[D] Using the test set, we conduct interviews on the impact of the outlying
observations and receive qualitative data of impact estimations in form
of Likert-scaled stakeholder assessments;

[E] We compare the impact of outliers based on measurements and the
evaluation of engineers. Based on the observations, we draw conclusions
about the meaningfulness of the detected outliers and their ability to
indicate changes in software quality; and

[F] Using the validation set, stakeholder workshops are conducted to validate
results.

The purpose of these steps is to collect evidence on the research questions
and to address the first study objective of detecting and evaluating anomalous
observations with impact on software quality. An analysis of the approach
combined with stakeholder discussions from the last step, address the second
objective of assessing the applicability in an industrial context. In this study,
we follow the ideas from Eisenhardt [98], to derive general knowledge from this
case study. Therefore, we analyze the data received from the field before any
hypotheses are shaped, according to her model.

In summary, we apply existing approaches from measurement theory and
statistics in industry, observe outcomes, and draw conclusions about their
meaningfulness and applicability by including qualitative data from domain
experts. Finally, we report about derived explanations and experiences to unveil
findings on the goal of exploring possible validation approaches for model-based
software in the automotive industry.
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5.3.1 Case and Subject Selection

The first step in the study design regards measurement of the simulation models.
We use all 71 Simulink models available at the department of the company
described in Section 5.1.3. Each model represents one real ECU in the vehicle.
All historic versions of these models covering a period of four years are stored in
over 65,000 revisions, from which about 5,000 revisions concern direct changes
to the models.

For the interviews, engineers were selected who are able to substantially
assess the models. Therefore, the engineers were selected using department
managers as proxies to help identifying them. All engineers responsible for
software development and testing of one or more of the models were interviewed.
The selected engineers hold different responsibilities among the models. An
engineer can either be in the role of a developer or a model lead for a given
model. A developer is an engineer who has made functional adjustments to
the model at least once; a model lead on the other hand has an overview over
all activities among the model and decides for strategic development activities.
All model leads perform development tasks as well. The responsibilities were
extracted using a management overview sheet. The developers were extracted
from the actual commit logs where each commit contains a unique identifier
for the respective committer.

Four model leads and four model developers were identified. They were
selected from eleven developers altogether. Three developers had less than
one year of development experience and were excluded. The limit of one year
experience was set because it takes time for new engineers to get confident
with the models. In addition, recently employed engineers themselves were not
comfortable enough to make substantiated statements about the models. It
would also have been difficult for them to compare changes, which occurred
lately in the model, to changes that happened in the past. The interviewees’
modeling experience ranges from two to seven years, with an average of a little
less than five years.

5.3.2 Data Collection Procedure

Following our study design, the data collection starts with measuring size and
complexity.

5.3.2.1 Measurement

Two size and two complexity measurements as explained in Section 5.2 were
performed on all revisions of the 71 simulation models.

Firstly, a script retrieved a revision from the central repository followed by
selecting the Simulink model. All four measurements were performed offline
directly on the Simulink model files, which contain the model information in
a structured format. Figure 5.3 shows the graph for the collected data of all
revisions and all measurements for one exemplified simulation model. The
figure shows four time series with the revisions numbers on the shared x-axis
and measurement results on the four y-axes covering a duration of almost four
years.
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Figure 5.3: Example of measurement result for one anonymized model. It
is illustrating a possible data set for the subsequent outlier detection. With
revision numbers on the x-axis and measurement values on the y-axes covering
a duration of almost four years.

We consider the size metrics that we used as reliable as they base on just
counting lines or blocks; the complexity metrics on the other hand require
the model to be parsed and interpreted. Thus, these metrics are susceptible
to bugs in the models: For example, links in Simulink models without a
source or destination block lead to parsing errors. Simple parsing errors could
be fixed easily by adjusting in the model, but this is not possible for all
revisions in general. Therefore, some measurements resulted in missing values
for complexity and lead to a reduced sample size by 12% compared to the size
measurements. We do not expect a big influence, because of the availability
of the size measurements for respective revisions and the large sample size in
general. The result of this step is a list of revisions and four measurements
for each revision. Hence, we receive a data set represented by four time series
of measurement results as previously seen in Figure 5.3, for all 71 simulation
models.

5.3.2.2 Outlier Detection

From the resulting 71 data sets, a test and a validation set is manually created
by random. The 35 data sets received as test set are used for all the following
analyses and the remaining validation set is used at the very end of our study.
During the preliminary analysis, nine simulation models are discovered to be
legacy. These models were not updated in the last two years and are removed
from the test set before starting outlier detection, as insights gained from
outliers in these models might skew the results. Additionally, it is more difficult
for engineers to assess models updated more than two years ago. Furthermore,
we excluded one model that did not contain any functionality as it is considered
as a future extension and thus, not implemented yet. In total, we performed
outlier analysis on the test set containing 25 simulation models.
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Figure 5.4: Common models fitted to example LOC measurement data.

We also excluded revisions where the actual model files were not changed.
In many revisions, tooling, parameters, or similar adjustments where made,
which do not affect the model itself. These revisions were excluded from the
evaluation, leaving 2,188 revisions for the further analysis.

The outlier detection in this study is conducted in two steps. First, a model
is fitted to each time series in the measurement data set. Second, the differences
between original data and fitted model are compared. For the first step we
began to fit common models, like linear, quadratic, cubic, and logarithmic
models. We found that all of them have a common problem fitting our data.
For example, if there is a strong increase in lines of code from one revision to
the next one, shaping an edge, followed by a series of minor changes, we would
be mostly interested in the largely rising edge in the beginning, as there must
have happened something influential. Figure 5.4 shows that common models
fail in this case. The measured time series represents LOC observations of one
exemplified model and is highlighted as scattered circles. When comparing the
fitted model and data values, it can be seen that many values following the peak
at revision 32000 would count as outliers as well, although the measurement
values change only little after the peak.

We decided to use ARIMA models instead and found that a model generated
by an average from two prior values MA(2) detects the rising or falling edges of
interest in the data robustly. Figure 5.5 shows a MA(2) model fitted to the same
data set as used before. Comparing the MA(2) model with the measurement
data of all models in the test set results in a list of values representing the
differences of the fitted model and data values for our four measurements.
Using the same model fitting approach on all simulation models might result
in models that do not fit all data perfectly and would in this case lead to
detecting more outliers. This reduction of the precision of the outlier detection
is acceptable in this study, as the MA(2) model generally adjusted quickly to
our data and more outliers for the analysis are not a drawback. We had to
limit the MA value to a low number, as we are mainly interested in rising or
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Figure 5.5: MA(2) model fitted to example LOC measurement data
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Figure 5.6: SDR and Cook’s D for the example model fit in Figure 5.5

falling edges. High MA values would produce more noise among the calculated
outliers.

Statistics provide multiple different approaches comparing a fitted model
with real data. Typical approaches are for example, Cook’s distance value,
leverage values, and different kinds of residual values. We decided to use two
different approaches, studentized deleted residuals (SDR) and Cook’s Distance
(Cook’s D) as they are both common approaches to analyze residuals. Figure
5.6 shows residuals as they are received during the analysis for the MA(2)
model fit to the example data shown in Figure 5.5. Blue circles represent SDR



5.3. STUDY DESIGN 63

and green squares Cook’s D. Outlier thresholds are calculated as described in
Section 5.2.2.2 and visualized as blue lines for SDR and a green dashed line
for Cook’s D. It can be seen, that Cook’s D is more rigorous than SDR and
results in less outliers. When using SDR, more outliers are produced, which
in turn result in more noise. For example, SDR produces high outlier values,
even for small changes if there are only few changes within the model. As, our
first intention was to use Cook’s D only, we also included SDR to extend the
set of outliers to be discussed with the engineers in our qualitative analysis.

Outliers received from Cook’s D were directly usable. For results received
from SDR, absolute values had to be calculated, as negative outliers result in
negative values. This would lead to wrong correlations, as outlier impact was
evaluated only positively by the engineers. Eventually, these two approaches
result in two severity assessments of the outlying revisions in each of the four
measurements. Thus, we could determine for every revision how outlying it is
in respect to each of the four measurements. Hence, it is possible to rank the
revision by severity on a interval scale. As there are SDR values and Cook’s
D values for each of the four measurements, we get eight lists of calculated
outliers. This statistical approach is intended as a tool to provide ranked
outlying observations automatically, based on the raw data.

5.3.2.3 Interviews

The ranked list of outliers provided quantitative data. In the next step we
complemented it with qualitative data by conducting expert interviews. In
interviews, engineers were asked to assess the impact of each revision on six soft-
ware quality categories. The categories were taken from the ISO/IEC standard
9126 [16]. The interviews were conducted in a semi-structured manner, follow-
ing the guidelines from Shull et al. [46]. Semi-structured interviews were chosen
to not limit the stakeholders in starting discussions or providing additional
insights. The interviews were performed individually by one researcher on-site
and took 60 to 90 minutes. To avoid bias through communication between the
engineers, interviews on the same models are conducted consecutively. To assess
each revision, the engineers were allowed to use all information they required,
including commit logs, personal notes, and source files. Hand-written notes
were taken as audio recordings were not allowed on the company’s premises.
The questions used for all engineers were identical. For each outlying revision,
we asked:

[A] What happened?

[B] What was the reason for the changes in that revision?

[C] On a scale from 1 to 5 (1 - no impact, 2 - low impact, 3 - average impact,
4 - higher impact, 5 - strong impact), how severe do you estimate the
impact the revision had on:

(a) Functionality

(b) Reliability

(c) Usability

(d) Efficiency
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(e) Maintainability

(f) Portability

[D] Are there revisions related to this one; in this or other simulation models?

[E] Did we miss a revision, which you think had a strong influence?

Asking for the impact on the software quality in that way forces estimations
relative to the respective simulation model. It is not possible to compare impact
between two models. This is not a restriction as the outlier measurements are
calculated relative to each respective model as well.

We asked each engineer for which models they felt comfortable to make an
assessment of impact. It became obvious in the interviews that investigating
revisions from more than two years ago involved mainly guessing. Thus,
revisions older than two year were not discussed if the engineer did not feel
comfortably enough with providing reliable information.

For each model, we aimed for at least two engineers to be interviewed.
In about 50% of the cases it turned out being not possible as, for example,
developers have left the department.

The answers for the first two questions were grouped into similar keywords
in order to make them comparable. After this grouping, the answers from
the first three questions on each revision were directly comparable to the
quantitative results received from the measurements. Thus, for each detected
outlier we have a quantitative impact from the measurements and a qualitative
assessment of description, reason, and impact on software quality.

Additionally, the interviews are used to determine the performance of the
outlier detection. We calculated precision and recall based on the interview
results. An outlier in a measurement is not valid, if one or more engineers
evaluated them with none or only marginal impact in all quality categories.
Additionally, recall is calculated using the fifth question, which asks for missed
revisions that might also have a strong influence as well.

5.3.3 Analysis Procedure

We receive eight lists of calculated outliers from the measurements and six Likert-
based quality impact assessments and descriptive information (description and
reason) from the interviews. Both, measurement data and interview data
is relative to each model. Table 5.1 visualizes how the collected results are
compared. Each outlying revision has eight calculated outlier values (Rloc

to Csc) and at least six impacts on quality (IF to IP ) assessed by one ore
more engineers. Additionally, there are descriptions and reasons for each
outlier. Comparing the measured outliers, which are assessed to be on an
interval scale with ordinal scale, Likert-based impact assessments requires
non-parametric correlation analysis; therefore, we calculated the Spearman
correlation coefficient. All calculations were conducted in SPSS and R.

With both data sets being comparable, we are able to perform multiple
analyses on:

[A] correlation between raw outlier data and impacts;

[B] correlation between combinations of outlier data and impact;
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[C] correlations between principal components among the outlier data and
impact;

[D] dependencies between outliers and descriptions and reasons for the revi-
sion provided by the engineers; and

[E] similarities between results received from size and complexity measure-
ments.

Consecutive workshops were conducted with the four lead engineers. The
intention of the workshops was to confirm and validate the unveiled evidence
and evaluate the methods. This step shall ensure that feedback captured from
stakeholders remained consistent and that conclusions were drawn correctly.
To achieve that, results and theories received from the analysis are discussed.
Furthermore, results received from measurements and interviews are combined
in a prediction model, which is applied to the validation set. Thus, the most
likely outliers in the validation set and their most likely impact are presented
to the engineers for confirmation.

5.3.4 Validity Procedure

This study is susceptible to bias as we intended to not restrict the study to one
single focus and instead accept the possibility of multiple outcomes. Hence, it
is important to follow rigorous approaches in all steps and to employ a strict
validity procedure. A key aspect for the study’s validity is using triangulation,
achieved by:

• Multiple measurements and outlier detection methods;

• Combination of stakeholder feedback and measurement values;

• Combination of interviews and workshops; and

• Multiple engineers per model and revision, if possible.

Two researchers were working on-site to avoid researcher bias and to ensure
validity by continuous discussions on intermediate results. Two researchers
worked remotely and preserved an outside view on the methodology and the
conclusions drawn from the results. By reporting results back to the industrial
partners in the workshops, bias was reduced and findings could be verified.

5.4 Results

Based on the four measurements, we found 221 outliers in 2,188 revisions from
25 simulation models. That means, on average, we analyzed 88 revisions per
simulation model, with the minimum at 23 and the maximum at 338. Among
them, on average, we found 9 outliers per model; at least 2 and not more than
30 altogether. For the 221 outlying revisions, the engineers could substantially
evaluate 139 thereof as early revisions were excluded as pointed out in Section
5.3.2.2. On these 139 data sets, correlation observations were performed. Table
5.2 shows correlation results using Spearman’s correlation coefficient. For
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Table 5.3: Component matrix showing PCA results. The abbreviations are
explained in Table 5.2.

Component

1 2

LOC COOK 0.872 -0.166

DC COOK 0.852 0.038

LOC SDR 0.845 -0.151

BC SDR 0.806 -0.286

DC SDR 0.781 0.164

BC COOK 0.728 -0.348

SC COOK 0.249 0.785

SC SDR 0.542 0.701

Table 5.4: Descriptions and Reasons for anomalies.

Description % Reason %

Logic/Functional 50.8% Requirement 83.1%

Architectural 15.3% Maintenance 5.9%

Interfaces 11.9% Bug Fixes 1.7%

Combinations 13.5% Combinations 5.9%

No Description 8.5% No Reason 3.4%

visibility reasons, the p-values are not displayed but significant values at 0.01
level are marked with two asterisks and values at 0.05 level with one.

A factor analysis revealed that two principal components extracted from
the eight outlier calculations explain 73% of the variance among them. The
analysis in Table 5.3 shows that the first component explains outliers from
both size and data complexity measurements. The second component explains
outliers received from the measurement of structural complexity. Finally, we
evaluated the dependencies between outliers and descriptions and reasons.
Results are summarized in Table 5.4. This evaluation provides insights on
what types of anomalies our approach is able to unveil. The descriptions on
outlying revisions collected from the engineers were summarized to “changes
in the model logic”, “changes in the model architecture”, “changes in model
interfaces”, and combinations thereof. Architecture changes refer to changing
the model structure, for example splitting up a block in two. Interface changes
relate to input and output signals, like adding signals to a bus. The majority of
changes were modifications to the model logic, with 50.8% of the descriptions.
Architecture and interface changes were mentioned 15.3% and 11.9% of the time,
respectively. No description was given for 8.5% of the revisions. Combinations
of descriptions cover the remaining 13.5%.

Reasons for abnormal changes in the software as provided by the engineers
were “requirement”, “maintenance”, “bug fixing”, as well as combinations
thereof. With 83.1%, requirements were the most common reason for a change.
Maintenance was mentioned in 5.9% of the cases. Bug fixing was a reason
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for change only in 1.7% of the cases. It occurred more often in combination
with requirements (3.4%). No reason was given in 3.4% of the cases and the
remaining 2.5% were combinations thereof.

5.5 Analysis of Results

In order to answer the research questions, we analyzed the received results.
Research questions 2 and 3, on which kind of outliers are detected and how
they correlate with domain expert assessments can directly be answered by the
results

First, to address research question 2, we analyzed the dependencies between
impact, reasons, and descriptions. The results show that anomalies from size
and complexity measurements reveal mostly changes in the model logic based
on requirements. 50.8% of the anomalies could be related to logic adjustments.
83.1% of the anomalies are due to requirements. Hence, the presented approach
is able to detect abnormal events based on requirements, which mostly result
in functional changes in the simulation models. Activities like architectural
changes and interface adjustments cause only few anomalies in our study.
Respectively, maintenance and bug-fixing activities are not related to the
abnormal events detected. Multinomial logistic regressions were performed,
to reveal dependencies between the different anomalies, their reasons, and
descriptions. No significant dependencies could be determined. That means,
that no single outlier value has the ability to predict what kind of change has
occurred or the reason of it.

Second, addressing research question 3, the analysis of the correlations in
Table 5.2 showed:

• We did not encounter unexpected behavior among the correlations, as
there are no negative correlations between measured outliers and the
engineers impact assessment.

• The strongest correlation was observed between BC SDR and functionality.
Also Cook’s D for BC shows weak correlations, supporting the finding that
outliers from the block count measurement overlap with the engineers
feedback on functional changes. Also LOC SDR shows weak correlation.
Both observations were expected, as size measurements are often used to
assess software functionality.

• The engineers feedback on efficiency matches with three outlier values,
DC, LOC, and BC. This is the only quality characteristic, showing
correlations with data complexity outliers.

• The only outlier values that correlate with maintainability are the SDR
values for the BC metric.

• For usability both BC outlier values correlate.

• SC outliers do not correlate and thus, it might not be a good metric to
measure software quality.

• None of the outliers showed the ability to detect reliability or portability.
SC has a weak tendency to explain reliability, however.



70 CHAPTER 5. PAPER D

• None of the correlations is strong.

All mentioned correlations are significant with a p-value below 0.01. Based on
the correlation results, we can relate anomalies found with our approach to
different quality attributes of the simulation models. We can therefor detect
noticeable changes in functionality, usability, efficiency, and maintainability as
they occur. Furthermore, it is possible to investigate past events with high
impact on those attributes.

The principal component analysis results in Table 5.3 show that two of
eight components explain most of the variance. This behavior was expected, as
size and complexity measurements have been found to correlate before (cf. [77]).
The first component comprises both size and the data complexity measurements.
It correlates with the same qualities as the single measurements it is created
from, which suggests combining of those measurements into one component.
The second component comprises the SC outliers and correlates with none of
the qualities but there is an indication for correlation with reliability, again.
That means that outliers from the structural complexity metric differ from the
rest. Additional analysis could reveal it as indicator for reliability.

To address research question 1 and 4, on the applicability of the approach
and meaningfulness of the results, we investigated the capabilities of the outlier
detection approach. In general, if the approach is once determined, most of the
steps can be automated. For example, the data extraction from version control,
the measurement, the outlier detection and the correlation analysis were fully or
partly automated. Hence, the effort required to perform repeated assessments of
the models is moderate. By utilizing the interview data, as described in Section
5.3.2.3, we could calculate precision and recall to investigate the quality of the
outlier detection. Twelve of the 139 revisions were evaluated with no impact
and 18 more with only minor impact. That means, based on the interviews, the
precision of our outlier detection is between 91.36%. and 78.42%. During the
interviews, seven revisions having a high impact were mentioned to be missed
by our approach. Considering 109 true positives from 139 revisions, we achieve
a recall of 93.97 percent, based on engineer opinions.

Additionally, to show the applicability of the approach we interpreted the
results of the consecutive stakeholder workshops. The weak correlations and
the anomaly detection approach was discussed. We concluded together with
the stakeholders that in industry more supervised approaches could lead to
better results. The scientific thinking of collecting all possible revisions on all
possible models yields observations on general model behavior in the domain.
According to the engineers, the following two steps might improve results for
more specific contexts:

• Considering only models, which are constantly maintained and extended,
as less frequently used models skew the prediction capabilities of the
results.

• Consulting only lead engineers with the evaluation of detected outliers.
Less experienced stakeholders might misinterpret impact among the
complex model environment.

These insights indicate, that data received in this industry domain would
benefit from a supervised approach, but results are then limited to certain
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domain contexts.

Summarized, the data analysis showed that our approach can detect abnor-
mal events in software measurement results. Applying it to software size and
complexity metrics in industry unveils abnormal strong increasing or decreasing
changes, mostly functional in nature and based on requirements. Those events
were found to have a high impact on different software quality attributes. This
enables early detection and past analysis of events with strong impact on
functionality, maintainability, efficiency, and usability.

5.6 Threats to Validity

We split threats to validity according to categories from Feldt & Magazinius [43].
Regarding external validity and generalizability, the results and analysis
are limited to model-based software in the automotive domain. Results are
extracted from this domain and are therefore only transferable to a similar
one. Nevertheless, as the measurements and statistical approaches are common
and used in other domains as well, we see no reason why similar results should
not be received from Simulink models in other domains. The sample of eight
engineers limits the generalizability as well. A larger sample would have
increased generalizability even in the same domain. Still, the selected engineers
are strongly familiar with the models and experienced in the field. Their
assessments is expected to represent experienced software developers in the
domain.

Concerning construct and internal validity, there are also threats to
be considered. The interviews have a high impact on the outcomes. At the
same time, engineers’ recall is not perfect and they might have biased opinions
on revisions, their impact, and reasons therefor. Additionally, not all engineers
were still available at the studied company. We mitigate the threat of human
bias with triangulation, by complementing the interviews with consecutive
workshops and asking as many engineers as possible for the same analyzed
revision. Still, the bias cannot be eliminated completely, as the same lead
engineers were participating in the workshops.

There is also the threat that engineers evaluate differently among each other
or perceive quality differently. This threat is mitigated by clear and consistent
explanation of scales and quality. Thanks to the discussions throughout the
interviews, additional misunderstandings could be resolved. Strictly structured
interviews would not have allowed for that; on the other hand, discussions in the
interviews might have biased interviewees. While avoiding biasing comments in
the interviews, we accepted this to happen as discussions ensure that the topic
was understood and revealed insights not covered by the questions otherwise.

As mentioned before, the complexity metrics resulted in missing values for
some revisions, as bugs prevented proper parsing and measurement. If larger
changes happened in these missing revisions, we cannot be sure if outliers
measured afterwards happened during or after the missing values. This reduces
the reliability of the two complexity measurements.

Creating correlation coefficients bases on different engineers feedback can
lead to skewness in the results and affect the study’s conclusion validity. The
ratings on the Likert scale and the meaning of the software quality categories
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have to be clear to them. As mentioned before, to mitigate this threat a detailed
introduction about software quality and also about the scale was provided in
the beginning of the interview. Misunderstandings throughout the interviews
were clarified. The limited amount of stakeholders interviewed could skew
the received findings and the conclusions drawn therefrom and therefor affect
the conclusions as well. More studies in the similar domains are necessary to
mitigate this threat.

5.7 Conclusions and Future Work

The main goal of this study was to improve model validation and to investigate
model quality by applying statistical outlier detection methods to model revi-
sions quantified by software metrics and evaluate them using expert knowledge.

Our results show that unveiling outliers using quantitative instruments is in
general leading to reliable discoveries. Considering stakeholder assessments, we
found meaningful outliers with a high precision and related them to the software
quality characteristics used in this study. Additionally, we can differentiate
well between important and unimportant revisions. That in turn supports
model validation by assessing and predicting current, past, and future model
quality. We further found which activities and reasons cause respective outlying
revisions. Together with the previous findings and the fact that most parts of
the approach can be automated, we conclude that the general approach is very
well applicable in the studied domain.

The study provides further opportunities for future work:

• The possibility to adjusting outlier thresholds together with already col-
lected impact evaluations enables the potential for optimizing thresholds
to fit the data better.

• Further metrics and adjusted models could reveal further details on
measurable qualities. For example, efficiency metrics could additionally
be integrated with the existing approach.

• Analyzing only specific time frames instead of the whole data set might
help reducing noise created by time frames not interesting in specific
contexts. For example, disregarding the beginning of a project or specific
maintenance phases might result in different observations.
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Abstract

The size of a software artifact naturally has an influence on software quality and
its development process. For example, an unforeseen demand for refactoring of
an artifact that exceeds a certain size threshold can significantly slow down
a project in practice. Predicting the time when the size grows to the level
where maintenance is needed can avoid unexpected efforts and help to highlight
problematic artifacts earlier.

The amount of prediction approaches in literature is vast. However, it is
unclear how well they fit with prerequisites and demands common in practice.
We investigate this problem by performing an industrial case study in the
automotive industry. In a first step, we elicit requirements towards predictions
in practice using a survey and stakeholder workshops. We then measure
software size of 48 software artifacts throughout four years of revision history
resulting in 4,668 data points. In the last step, this data is used to assess
the applicability of state-of-the-art prediction approaches found in literature
including methods based on machine learning by systematically analyzing how
well they fulfill the requirements elicited in step one.

This quantitative and qualitative empirical analysis revealed strengths
and weaknesses of the different approaches in practice. We found, that the
approaches provide significantly different results.
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6.1 Introduction

Software development in the automotive industry is facing steadily growing
size and complexity among its artifacts. For example at Volvo Cars in Sweden,
the amount of software in cars has increased exponentially in the last twenty
years: In 2006, vehicles contained 10.9MB of code, in 2011 around 117.5MB,
and in 2014 already 917MB [99]. Other car companies have seen similar
developments and according to Wyman [100], the entire sector is facing an
increase in technological complexity. Concerning the amount of software and
tests being introduced with autonomous vehicles, this upwards trend is not
going to slow down any time soon.

In practice, software exceeding size limits set by hardware or software
requirements causes long loading, build, and deployment times. Hence, while
software grows in size and complexity, situations arise where refactoring becomes
necessary. When these refactorings occur unexpectedly and become inevitable,
they can slow down or block whole development cycles causing delay and result
in increased development costs. Reliable predictions of software status and
quality can prevent such issues by foreseeing problematic projects or artifacts
to improve release planning, for example. Extensive research on predictions in
other fields like software fault prediction shows the need for knowledge about
the future development of software artifacts. For example, Catal and Diri [101]
report on the increasing trend in the amount of prediction papers in this field.

Predicting software size can be done by assessing software growth informa-
tion collected from past software development. By measuring size of an artifact
over multiple past software revisions, time series data can be created, which
shows the artifacts’ quality development throughout the whole software life
cycle. For predicting time series data, many approaches exist and already in
1970, Box and Jenkins [89] presented approaches to analyze and predict time
series that are used by stock market or meteorology time series analysis, for
example. More recently, also machine learning approaches found their way to
prediction of time series data [102]. They have been found to outperform classi-
cal approaches regarding prediction accuracy in some application domains [103].
However, it is still unclear how well such approaches perform in a real world,
industrial setting where additional factors affecting their practicability need to
be considered like time needed for training predictors or their maintainability.
Empirical evidence is needed to show which approaches are applicable to data
actually gathered from realistic scenarios in practice.

6.1.1 Research Goal and Research Questions

In this study, we investigate the applicability of prediction approaches in
practice. We perform an industrial case study on model-based software in the
automotive domain. The following research questions contribute to the goal
for our study.

RQ1 To what extent are prediction approaches applicable in prac-
tice?

RQ1.1 Which expectations do practitioners have on prediction of software
size in practice?
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RQ1.2 What are most important prediction approaches for time series data
that are mentioned in the literature?

RQ1.3 How do different prediction approaches perform regarding the criteria
elicited in RQ1.1?

6.1.2 Contributions

This paper contributes by comparing the performance of multiple prediction
approaches in an industrial context in the domain of automotive software
engineering. Our comparison includes traditional statistical approaches next
to modern machine learning approaches to provide empirical evidence about
their respective performance. We also extract lessons learned on strengths
and weaknesses of the used approaches to provide practitioners with evidence
on which approach is suitable in similar contexts. We found that the results
received from applying the approaches in practice vary. We highlight strengths
and weaknesses among the approaches and give guidance on which ones to use
in practice.

6.1.3 Paper Structure

The rest of the paper is structured as follows: We introduce background knowl-
edge for the domain where we conducted our study in Section 6.2; additionally,
we cover related work and show similarities and differences to our findings.
In Section 6.3, we outline our systematic approach to address the research
questions. Following the methodology, we present our results, analyze, and
discuss them in Section 6.4. Section 6.5 concludes the research and presents
future work.

6.2 Background and Related Work

6.2.1 Measurements

The increasing size and complexity of software can cause severe problems
especially in systems that are limited by the underlying hardware, for example,
in embedded systems. We assess these factors in this study by measuring lines
of code (LOC) and block count (BC) as our previous study showed that they
are related to maintainability issues and software complexity [23]. Furthermore,
they turned out to outperform cohesion and coupling measurements in their
ability to assess model complexity in practice. Both measurements can be
considered as static code analysis as they do not require the models to run to
provide results. Hence, they work even if syntax errors exist in the model. This
kept data preprocessing to a minimum and avoided unnecessary transformations
or interpolation of missing values, which could skew the data unintentionally.

To calculate the LOC metric in this study, the .mdl files of Simulink
models are assessed by counting each line in the XML-like representation of
the respective model. They do not contain comments or similar non-code
related entities. The BC metric is counting blocks using the Matlab/Simulink
environment. The built-in function sldiagnostics is used that counts all blocks
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Figure 6.1: Example for a time series decomposition done in R using the
command stl on example data showing manufacturing numbers per month.

contained in a model. The function considers all blocks in the model, even
masked blocks on the lowest layers.

6.2.2 Time Series Data and Analysis

All approaches presented in this paper are applied to time series data. Time
series are sequences of observations collected over time, usually in equidistant
time intervals. Time series can have different properties such as trend, seasonal-
ity, and random behavior. In Figure 6.1, time series properties are shown using
example data. In this example data, trend, monthly seasonality, and remaining
random aspects can be clearly extracted. In measurement data received from
our case not all aspects are as easily visible as in the example data. Tools
like autocorrelation functions (e.g., acf and pacf in the statistics environment
R) can reveal seasonality and trends can be made visible using exponential
smoothing (ses in R) for example.

6.2.3 Prediction and Evaluation

Prediction can be categorized into classification and regression. In classification,
the goal is to assign and learn classes to a set of input values and predict these
classes for each new input value. Regression on the other hand aims for learning
the values of some input data and predicting a new value for new or unknown
input data. An example for classification is predicting nominal categories like
(requirement, feature, bug) for a set of natural language-based issue tracker
data. A set of issues would be learned by the algorithm and a new issue
would be predicted to be in one of the three categories. Predicting regressions
usually regards an interval or ratio scale like the development of sales over
time. Learning sales data of the past enables a prediction of the sales in the
future. In this study, we aim for predicting future values of a time series based
on previous values of the same time series.
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Respectively, the approaches for evaluating the performance of predictions
differ in classification and regression problems. Measures like F1-measure,
Precision, Recall, etc. work well in classification. Contrary to classification
problems, the performance of regressions problems is assessed how close they
approximate a real value. Hence, the data is usually split in one learning and
one test set. Predictions are then made based on the learning set and compared
with the test set. An error measurement is applied to evaluate accuracy of the
predictions.

6.2.4 Context

This case study is conducted at a testing department of a German premium
automobile manufacturer. The company produces approximately two million
vehicles per year. In the automotive domain multiple software projects are
combined to create the software of a vehicle. Resulting artifacts from these
projects are usually electronic control units (ECUs) to be installed into a
vehicle. Simulations of ECUs are used during testing to replace unfinished real
ECUs. This enables the emulation of a real car environment for ECUs under
test. The simulations usually run on several real-time computers to meet the
computational requirements.

At the department where this study is conducted all simulation models
needed to simulate a complete vehicle were made accessible to the researchers
for analysis. The models are realized with Matlab/Simulink and multiple
development teams are responsible for separate groups of ECUs with similar
functionality. Detailed information about the simulation models can not be
disclosed, but in order to understand the distribution of size and attributes
among them, an overview is provided in Figure 6.2. The figure shows the
different groups of simulation models, namely driver assistance (DA), vehicle
control (VC), vehicle dynamics (VD), and others. They are communicating
using five different bus systems. Figure 6.2a lists the current model sizes within
the groups and the whole data set, calculated with the block count metric
(BC).

The sizes of the majority of the models range between 331 and 18,376 blocks,
with seven positive outlying models. The strongest outlier with 107,857 blocks
within the others-group is not shown in the figure due to visibility reasons.
The status in Figure 6.2b visualizes how often the models are extended. A
model is evaluated as being in software maintenance if the amount of work on
this models is decreasing over its lifetime. Currently, these models experience
only little evolution, mostly restricted to adding or removing signals from a
vehicle bus to meet updated specifications. Emerging models experience many
updates in recent time and are in the focus of the developers at the moment.

6.2.5 Similar Studies

In this study, we combine research from three established fields. The field of
data mining and prediction, the field of mining software repositories, and the
field of measurements.

Many existing studies assess different data mining approaches. Malho-
tra [103] studied 64 publications regarding application of machine learning
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Figure 6.2: Overview over amount, size (BC), and status of the models used
in this study. The groups are driver assistance models (DA), vehicle control
models (VC), vehicle dynamics models (VD), and other models

techniques for software fault prediction. Malhotra found that 19 out of 64
studies involved a comparison element between statistical and machine learn-
ing methods. The results demonstrate that the machine learning approaches
mostly outperform statistical linear approaches. The author identified three
frequently used machine learning approaches for software fault prediction: 1)
decision trees, 2) neural networks, and 3) support vector machines. Malhotra’s
results are primarily limited to software fault prediction. Fu [102] performed
a literature review on prediction approaches as well. The author provides a
comprehensive overview of existing techniques and classifies them according
to their application. We use the two literature reviews as a main source of
information to answer RQ1.2. Nevertheless, they are lacking concrete, in-depth
evaluations of the applicability of the approaches in practice.

Lastly, Mart́ınez-Álvarez et al. [104] also review recent work on time series
prediction. They split results in linear statistical and non-linear machine
learning approaches. We follow their notation in this study. They list multiple
prediction approaches and error measurements currently used in literature.
Their study however is specifically designed for electricity-related time series.

Our study is related to the field of mining software repositories. Hence, the
work published within the MSR community is relevant. Software repositories
are used to extract different kinds of information. Robillard et al. provide
an overview of distinct recommendation systems using software repository
data [105]. Many studies focus on predicting defects, like in Zimmermann [106].
Other studies have used software repositories to investigate refactoring practices
(cf. [107]). However, we know of no other study combining the aspects of
software repository mining and measurements with prediction approaches, in
practice.

Size measurement is well studied. Studies investigating software size have
shown that size can be used to assess productivity [108] and defects [109] in
practice. Schröder et al. [23] have previously shown how valuable simple metrics
like lines of code can be, to assess software complexity and maintainability in
practice.

6.3 Methodology

We perform a case study, in which we observe and investigate a specific
case in a real world context [34] while avoiding interventions of researchers
with the case [36]. We follow Runeson and Höst’s guidelines on designing,
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Figure 6.3: The study design consisting of a qualitative and a quantitative part.
Tasks are presented in gray squared boxes, while the outcomes are depicted in
blue boxes with bent corners. They are attributed to our research questions.

planning, conducting, and reporting the case study [38]. Our study comprises a
quantitative and a qualitative part, which both consist of multiple tasks outlined
in Figure 6.3. First, the case and the context are investigated qualitatively.
By conducting a survey and regular industry workshops, the expectations of
practitioners towards prediction of software size are elicited. They are the
basis for the quantitative applicability investigations afterwards. Results of
this step answer RQ1.1. The second part investigates quantitative aspects.
We identify prediction approaches, apply them to measurement data, and
evaluate their applicability in our context. This step results in a classified set of
prediction approaches and their evaluation regarding applicability in practice,
which answers RQ1.2 and RQ1.3. The steps are outlined in greater detail in
the following sections.

6.3.1 Case and Subject Selection

The artifacts being assessed in this study are Simulink models simulating
electronic control unit (ECU) functionality. All 70 models available at the
department are considered for the data collection. Most models are still
frequently updated with functionality or quality improvements; other models
are only maintained on their interfaces to keep them usable in combination
with the rest; a third group are legacy models which are not used anymore,
and a last group is formed by newly created models with little past data.
Legacy models could skew the results as they might not represent the current
development practices. Models that are too new do not provide sufficient data
for our analysis. For this study, only the first two groups were considered
resulting in 48 models that provide a representative view on the development
conducted for integration testing at the company. For the 48 models 4,668
revisions were assessed in total. This includes only revisions where one of the
models’ code was changed.

Six engineers participated in the industry workshops and the survey. The
engineers have 3.8 years experience on average (1-7 years) and contribute
as developers, testers, or team leaders. Hence, all existing roles present at
the department are considered for the survey. All engineers are working on
the shared set of models while having different development focus including
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driver assistance, vehicle dynamics, and general vehicle control. The subjects
were picked by convenience from the group of engineers responsible for the
models. All lead developers for the previously mentioned function groups were
interviewed, as well as the respective team leader.

6.3.2 Data Collection and Analysis Procedure

Our study is comprised of several tasks (T) resulting in outputs (O), which are
depicted in Figure 6.3 and outlined in detail below.

T1) Survey and T2) Workshops

The goal of the survey and workshops in this study is to complement the
quantitative analysis with practical information from practitioners and to
provide a qualitative view on software size prediction. The survey in particular
has the purpose to collect the practitioners’ expectations on predictions. After
introducing the topic and emphasizing the focus towards predictions of software
size, the following questions were asked.

[A] How long should a prediction take?

[B] How accurate should a prediction be?

[C] How many models should be predicted accurately?

[D] How far ahead should the prediction be accurate?

[E] How much maintenance effort is acceptable?

[F] What are additional important properties of a prediction?

[G] Rank the prediction properties by their importance: maintenance, run
time, accuracy, distance of predictions, additional properties

The questions aim to assess the importance of prediction properties, but
also on possible quantification of these properties by asking for thresholds.
Quantification is achieved by assigning values to the ranks assigned in the last
question, ranging from one to the number of properties discovered. Those
values are counted and compared to determine the importance of the properties.

The industry workshops serve the two purposes of discussion and verification
of the gathered results. Findings extracted from the anonymous survey were
discussed and verified. The workshops were conducted without a prescribed
structure to allow for discussions about the intermediate results and to find
additional input like prediction properties of interest. This provides input
for RQ1.1 as well as it validates the applicability of prediction approaches in
practice.

T3) Literature Review and T4) Classification

We conducted a literature review to investigate the most important prediction
approaches. We examined existing literature that focuses on algorithms and
approaches used in the context of predicting time series data, as well as
their implementation in software development. Hence, the search string was
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constructed by combining synonyms of the three keywords prediction, time
series, and data mining. We focused on research applying prediction approaches.
Optimization or in-depth performance analysis of existing approaches was out
of scope of the review. The literature studies of Fu [102], Malhotra [103], and
Mart́ınez-Álvarez et al. [104] were used as main source for approaches, as they
provide existing investigations and comparison.

In various domains both, linear and non-linear approaches are implemented
for predicting. In the review, we identified the methods (linear or non-linear)
used for predicting. For each of the identified methods, we investigated which
approaches exactly were used in the selected articles. Based on this information,
we identified the most common approaches that are implemented in the context
of time series prediction. The results of the literature review are published in
Preenja and Ali [110]

T5) Measurements and T6) Data Analysis

After the literature review the data set for the predictions under investigation
has to be created. The two size metrics described in Section 6.2.1 are applied to
all 4,668 revisions of the 48 software models. The collection of the measurement
data was automated. A script went through each revision of a model and
fetched the main model file to be measured from the model repository. This
resulted in two measurement values, one for LOC and one for BC, for each
revision and therefore two lists for each model, depicting the development of
the metrics over time. On the resulting data set manual data interpretation
and time series analysis are performed to understand how the data behaves
in order to fit appropriate prediction approaches. This includes analysis of
trend, seasonality, and outlying/random data. Trends in the data are estimated
by plotting linear or polynomial regression lines. Seasonal dependencies are
visualized using the auto-covariance an auto-correlation functions ACF and
ACF in the statistics environment R. The analysis of the time series showed
that they are mostly determined by their trend. All models grow in size.
Seasonality in the growth of software size could not be detected coherently for
the assessed series.

T7) Data Preprocessing

In order to evaluate the prediction accuracy using ground truth data, the data
set consisting of measured models throughout revision history had to be split
up. The received measurement data was divided into three sets: a training
set, a validation set, and a test set. The training set was determined by our
previous study [111], where we collected model data until the end of 2015. As
this study continues the previous work, we use the data from the previous
study as training set and started a second data collection in 2016 to gather the
test and validation sets. The remaining data from 2016 was split equally in
a test and a validation set. The resulting data set used in this case study is
summarized in the Table 6.1.

Altogether, we collected data from 4,668 revisions in the times between
2013 and mid 2016. In this set, we found at least seven revisions and at most
440 per model. Additionally, Figure 6.4 shows the distribution of all revisions
throughout the groups of functionality.
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Table 6.1: Summary of the collected revision data.

No. of Min Max Avg. Period

revisions rev. rev.

All Revisions 4,668 7 440 88 1/2013-6/2016

Learning set 3,882 6 351 73 1/2013-12/2015

Validation set 376 1 44 7 1/2016-3/2016

Test set 410 0 44 7 4/2016-6/2016
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Figure 6.4: Amounts of model revisions available in this case study, grouped
by functionality.

To perform a correct time series analysis according to [89] on this data
set, time intervals between data points have to be equidistant. However, in
the context of revisions and commits, this is not the case as commits, and
consequently measurements are conducted whenever a developer decides to
make changes to the project. There are multiple ways to address this problem.
Eckner [112] presents an approach directly applicable to non-equidistant data
and Rehfeld et al. present a resampling approach [113]. Both approaches
are not widely applied yet. Analyzing time series without constant intervals,
also called unevenly spaced time series or irregularly sampled time series, still
requires further research.

A more intuitive and straight-forward approach in the case of measurement
samples is data interpolation: a fixed time interval is chosen, for example daily
intervals, and missing values are estimated. Data interpolation is applied widely
but is not without critique as it can skew the data set as it cannot be ensured
that in between two measured data points a significant change of values has
occurred. This value will inevitably be missed by interpolation, as it is an
estimate of previous or following values. In our case, it is save to assume that
data values actually do not change in between time samples, as we measure
every time a change to the models was made. The software does not change in
between commits and any missing measurement value can be interpolated from
the last data point. Hence, we can take the smallest time interval between
measurements and interpolate the rest of the measurements. This has another
advantage as we can provide some insights into the discussion if re-sampling
affects the correctness of the results as we can statistically test if the results of
re-sampled data are similar to the original data and thus, we can determine
if the extra effort of re-sampling is necessary in practice. We interpolated to
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daily intervals by using latest measurement at a specific day. This interval
might introduce bias as it could hide interesting observations during a day but
it provides a more realistic data set for practical observations.

Additional steps like differentiation and normalizing of the time series might
be necessary. Differentiation removes the trend of a time series and enables
separate investigations of trend and seasonality. Normalization of the data
might be necessary, particularly for the use with neural networks as they are
often adjusted to work with inputs ranging from 0 to 1.

T8) Application of the Predictions

The selection of prediction approaches is based on the outcome of the literature
review. The criteria for the selection is how often an approach is mentioned in
literature. The approaches have to be mentioned handling similarly structured
data sets as in our case. For our study, both, statistical and machine learning
approaches are considered. In our earlier study, the autoregressive integrated
moving average (ARIMA) approach was applied [111]. As ARIMA is an
established and proven approach to predict time series, we consider it as an
appropriate approach for benchmarking purposes.

The application of the prediction approaches also has to consider their
respective parameterization. Much time and effort is spent on optimizing
parameters of predicting approaches to the data at hand. Research is conducted
on how to fit prediction approaches best to a specific data set. Furthermore, for
the majority of the approaches there are parameter estimation algorithms. As it
is not the aim of this study to investigate perfect parameterizations but instead
to provide a practical overview over existing approaches and their applicability
in practice, we decided to use existing parameter estimation algorithms. The
libraries providing the approaches usually also provide optimization algorithms
for parameter estimation. The selected and configured approaches are then
applied to the two lists containing the measurement data for the LOC and BC
metrics created for all models and revisions in task T5. Therefore, we created
the predictions for each metric and each model, respectively.

6.3.3 Analysis Procedure

In this section, we describe how the data collected in the survey and workshops
(T1,T2) and the data from literature (T3,T4) was evaluated to answer RQ1.1
and RQ1.2. Furthermore, the analysis to determine the performance of the
prediction approaches in step T9 answering RQ1.3 is outlined.

T1),T2) Analysis of Survey/Workshop Results and T3),T4) Classi-
fication of Literature

For the assessment of survey results we are not using statistical tests due to the
limited sample size. We combine the answers in a table and visualize results to
make informed decisions on their implications. The approaches found in the
literature review are compared and selected by how often they are mentioned
to be used on data with a similar structure.



84 CHAPTER 6. PAPER EStudy Design

1318/4/2016

Approach 1 Approach 2 …
LOC BC LOC BC …

RMSE MAE RMSE MAE RMSE MAE RMSE MAE …
Model 1 r1 m1 r1 m1 

m
r1 m1 r1 m1 

m
…

Model 2 r2 m2 r2 m2 r2 m2 r2 m2 …
… … … … … … … … … …

Model n rn mn rn mn rn mn rn mn …

Approach 1 

for predicting x revisions, 
with y revisions used for learning

…Approach 2 Approach 3 

Figure 6.5: Evaluation of the calculated error measurements. For each approach,
the measurement results for all models are compared regarding their prediction
error.

T9) Evaluation of Prediction Results

To compare the prediction results regarding their accuracy, the prediction error
has to be defined. For predicting regression-based, we determine how close
predictions are to the ground truth data. There are multiple possible predic-
tion error measurements mentioned in literature having different strengths,
weaknesses, and biases. Additionally, many approaches are very closely related.
Based on Adhikari and Agrawal [114] and Hyndman and Athanasopoulos [115],
we selected the root mean squared error (RMSE), and the mean absolute error

(MAE); RMSE is calculated by
√∑

( (Prediction−GroundTruth)2

n ) and MAE is

calculated by (n ∗
∑
|Prediction−GroundTruth|)−1. While the RMSE has

advantages of making errors comparable across models, the MAE provides
more conclusive information about the error for each model respectively. Hence,
the RMSE will be used for comparing predictions, while the MAE is used to
fulfill engineers’ expectations of accuracy.

In order to systematically compare the results, we followed guidelines from
Basili et al. [41] and Wohlin et al. [42]. We created a hypothesis, determined
independent variables, and ran statistical tests to find statistical significant
observations. The comparison of the prediction results is visualized in Figure 6.5.
Using the data presented in this form, the analysis starts with determining
the distribution of the data to decide if parametric or non-parametric tests
should be used. The next step is comparing the prediction approaches by their
prediction errors. We want to find out if there is a statistically significant
difference among the error measurements grouped by the different approaches.
Hence, the following hypothesis is created:

H0 The samples of error measurements for the different approaches originate
from identical populations.

Ha The samples come from different populations.

Parametric or non-parametric statistical tests are used to reveal significant
differences within the results. Using tests, we can find out if there is one
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approach performing significantly better or worse than the others regarding
prediction accuracy on short and long prediction ranges and regarding the used
metric. Additionally, we also investigate maintenance effort and run time that
the practitioners were asked about in the workshops.

6.3.4 Validity Procedure

To ensure validity while conducting the study, we focus on employing multiple
combinations of approaches and methods in order to avoid bias. We use
five different prediction approaches with different underlying algorithms, two
different size metrics, and 48 independent models with and without data
interpolation. We are performing rigorous statistical analysis using established
statistical tests.

6.4 Results

In the results, we consecutively answer the research questions by presenting
the outcomes of the associated tasks. Practitioners expectations are followed
by important prediction approaches from literature. Lastly, we present and
analyze the prediction results.

6.4.1 Expectations of Practitioners towards Predictions

Findings from the survey are summarized in Table 6.2. The table shows that
predicting over long intervals is most important to the stakeholders. The
respective answer received 22 out of 24 points. The importance of the other
three answers is close. Short time accuracy received 14, maintenance time 13,
and run time 11 points. The answers for how much time a prediction may take
are varying. Two practitioners expect it to take less than 1 hour, two find 24
hours and more acceptable. The other two are in between these values. The
answers for accuracy are more clear: Engineers accept a high error rate of 10%
but expect it to hold for the majority of the models, with 75%. Both, the
results for the error rates and for how far to predict confirm the results of the
importance rating. High error rates are acceptable as long as predictions stay
accurate even for long distances. The acceptable maintenance times mentioned
by the participants highlight automation. Engineers expect the predictions to
be run in an automated way and accept associated initial effort. Engineers
expect less than three hours of maintenance work on the predictions per week.
We could not identify a study investigating practitioners expectations in a
similar context to compare the received data to.

6.4.2 Predictions approaches Identified in Literature and
Previous Studies

The results of the conducted literature review reveal two statements regarding
the comparison between linear and non-linear approaches and the comparison
within machine learning approaches. Firstly, linear approaches are usually
outperformed by non-linear ones, especially in cases when the data exhibits
lots of random noise (cf. [103], [116]). Secondly, a majority of identified studies
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highlight the implementation of support vector machines (SVM) and artificial
neural networks (ANN) implemented in a variety of domains.

Notably, both linear and non-linear approaches have their strengths and
weaknesses. The linear approaches exhibit good prediction performance when
time series are stationary, non-trending data (cf. [117]). This is because linear
approaches predict values based on the previous data in the time series. To
circumvent this weakness, approaches exist to make input data for linear
approaches stationary. Non-linear approaches such as ANN or SVM have their
strengths in the robustness of the prediction if the data is limited, or from a
short-term period. However, their weakness is a lengthy training process as
mentioned by Sapankevych and Sankar [118], Vanajakshi and Rilett [119], and
Meyfroidt et al. [120].

From literature, we extracted the approaches as listed in Table 6.3 that
are briefly outlined in the following. With this list of approaches and their
descriptions, we answer RQ1.2 on the most important prediction approaches
currently used in literature.

Holt’s linear trend method (HOLT)

This approach is serving as reference for comparison. As shown in Section
6.3.2 in task T6, the time series are characterized by their upwards trend.
Smoothing approaches like Holt’s are designed for forecasting trends (cf. [115])
as it provides a more accurate prediction than a simple linear regression. As it
is provided with R using the “holt” function contained in the forecast package
and does not require configuration, it was chosen as the prediction benchmark
approach to which the more complex approaches are compared. The only input
required is the time series itself.

Autoregressive integrated moving average (ARIMA) model

ARIMA is an advanced regression approach and commonly used with time series
data. The approach combines an autoregressive function (AR), differentiation
(I), and a moving averages function (MA). These functions build the three main
configuration parameters for model creation with ARIMA. ARIMA was used
in a previous study with similar data to create models for outlier detection
(cf. [111]). The R package “forecast” provides an “auto-arima” function,
which compares multiple ARIMA configurations and selects the configuration
according to the model quality. The only input required is the time series itself.

Feed-Forward Artificial Neural Network (ANN)

Feed-forward artificial neural networks are widely used for time series analysis
already. As neural networks are based on learning from past data, it has
to be determined which input the network should be provided and how. To
receive comparable results, we taught the ANN with the same data as all other
approaches: one time series of measurement data to create a prediction for the
same data. For training and prediction, we provided the network with a set of
past data points, called lagged data points, instead of feeding one data point
at a time. Hence, the network can learn to predict a point in the future from
multiple past revisions. We used the “AVNNET” implementation provided
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by the “caret” package in R as it provides automatic parameter estimation
functions. The only configuration parameter was the size of the input.As ANN
base on so-called activation functions, typically ranging from 0 to 1, we adjusted
our data to this range by normalization.

Long Short Term Memory (LSTM)

Long short term memories are recurrent neural networks, which have drawn
attention in the field of forecasting time series in the recent years due to their
performance (cf. [121], [122], and [123]). An LSTM enhances a plain feed-
forward neural network by a memory layer to store information from a learning
step and reuse it to influence a current learning step. The “Keras” package
provides LSTM algorithms for Python. It also provides a grid search algorithm
for parameter estimation. The grid search tries all provided combinations of
configuration parameters and supplies the network with the least error in a
given test data. As for the ANN, LSTM is provided with lagged, normalized
input. The following parameters are tried during the grid search: Number of
hidden neurons, length of lagged input, number of epochs to train, and the
optimizer to be used.

Both neural networks use random weights of the neurons in the beginning
of learning. Hence, the results created are not deterministic every time the
networks are trained. To address the non-determinism and receive similar
results for each teaching of the networks, we averaged the results of multiple
runs as an established means in the field (cf. [124]).

Support Vector Regression (SVR)

Support Vector Regression is based on the Support Vector Machine. We
implemented it using the “scikit-learn” package in Python. The configuration
parameters are the error metric to be used for predictions, the kernel, the
penalty parameter C, and the coefficient for the kernel gamma. The scikit-learn
package provides a grid search algorithm to find the best set of configuration
parameters.

6.4.3 Prediction Results

In this section we present results from applying the previous approaches to data
received in industry. We analyze the results to conclude about the applicability
of the approaches regarding the priorities elicited in the survey and workshops.

6.4.3.1 Prediction Accuracy

The results of the accuracy investigations are summarized in Figure 6.6. The
figure shows how the errors computed by RMSE for all five approaches are
distributed among the data. In general, most errors are low while some outlying
spikes are visible. If there are spikes, the approaches mostly increase altogether
like for model 5 and 28. Furthermore, sometimes only the machine learning
approaches are outlying, like in model 16 and 21. Additionally, as the models
are ordered by size in each diagram, it can be seen that the prediction error
increases with size in each function group.
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Figure 6.6: Comparison of the approaches’ prediction errors (RMSE), arranged
by four groups of functionality using the LOC metric.

Table 6.4: Results of the accuracy investigations considering practitioners’
requirements of 10% using all 48 models.

HOLT ARIMA SVR ANN LSTM

# of models above 10% 5 5 18 11 13

% of models above 10% 10.4 10.4 37.5 22.9 27.1

We investigated the prediction accuracy using the engineers expectations.
According to Table 6.2 in Section 6.4.1, practitioners found a deviation of 10%
from the ground truth acceptable on average, if it is achieved for 60% to 80%
of the models. To calculate the percentage, we used the mean absolute error
(MAE), as it represents the absolute error for each and should in this case not
be bigger than 10% of the average ground truth data. Table 6.4 shows the
results of this analysis.

This data shows the robustness of the approaches by counting how many
models did not achieve required accuracy. The table shows that the approaches
are generally able to fulfill the accuracy requirements. All approaches achieved
the required accuracy for more than 60% of the models. The two statistical
approaches achieve it for almost 90% of the models.

As these results are specific to the studied case, we address the hypothesis
on a difference within the approaches by performing statistical tests on the
error data as previously shown in Figure 6.5 in Section 6.3.2 to evaluate a
generalization. The resulting 48 values of RMSE for all approaches are not
normally distributed. Hence, we use the KruskalWallis analysis of variance for
comparison and we test for short and long term prediction accuracy. Whereas
for long term the whole set is used, we use four revisions into the future for
the short term, which is the smallest amount of prediction length achieved by
all approaches. Additionally, LOC and BC metrics are compared for validity
reasons in both cases. Hence, we have four cases to compare the five approaches.
Table 6.5 shows the results of the tests. The test compares group medians and
from the table we conclude that not all group medians are equal. Regarding the
short term predictions, we can reject the null hypothesis of equal populations.
We have evidence that at least one approach is significantly different. For long
term predictions we can reject the null hypothesis in case of the BC metric.
Both considering a significance level α of 0.05. The ranks provided by the test
give an idea on the effect size. ARIMA has the lowest medians within RMSE
of all approaches, while SVR has the highest. Additionally, the results suggest
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Table 6.5: Accuracy comparison using the Kruskal-Wallis test.

short term prediction long term prediction

LOC BC LOC BC

HOLT 110.25 112.23 114.02 113.27

Kruskal- ARIMA 87.67 100.60 98.00 105.67

Wallis SVR 144.96 151.35 137.54 146.17

Ranks ANN 126.38 110.54 125.02 113.75

LSTM 133.25 127.77 127.92 123.65

p-values 0.001 0.004 0.059 .043

that the approaches converge towards long term predictions. As long term
predictions were by far the most important property to the practitioners, this
is a major finding.

6.4.3.2 Prediction Maintenance Effort

The implementations of the approaches in the different languages using different
libraries strongly depend on expertise with the respective language. Mainte-
nance effort based on code size or complexity cannot be used as it is hard
to compare the metrics among different languages. Nevertheless, as we used
parameter estimation algorithms which automatically estimate the optimal
set of parameters, the maintenance effort for future predictions is small for
all approaches. As data changes the algorithms will find matching sets of
parameters. In this regard, we evaluate all approaches as performing similarly
well.

6.4.3.3 Prediction Run Time

Similarly to the maintenance effort, run time depends on the implementation
and the underlying computer system used. Run time differences can still be
compared, as machine learning approaches require a learning period while
statistical approaches do not require this step. It depends on the accuracy
required how long learning periods have to be and how often they are performed.
If run time is an important aspect, statistical approaches are preferable. As in
practice predictions could run during night time, run time is not an issue in
the context of predicting time series of measurement data.

6.4.4 Threats to Validity

As this case study focuses on one specific case in industry, we assess generaliz-
ability to other domains as the biggest threat to the validity of the results. We
mitigated this threat by designing the study in a way to cover multiple different
models, metrics, data formats, and error measures, to reduce the chance that
results are just received by chance in the context.

Using machine learning and particularly deep learning approaches, there
is always the possibility of further optimization. While the results obtained
from these approaches can be further optimized, we mitigated this threat to
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construct validity by using automatic parameter estimators to ensure a fair
treatment of all approaches.

Furthermore, the approaches might perform differently using other pro-
gramming languages or libraries. Even though the approaches should be
implemented as specified by formulas in publications, it could happen that the
same approach is implemented differently in different libraries/tools. Hence,
there is a threat that results can differ when replicating the research with
different libraries or tools. We mitigated that threat by implementing our
approaches in widely used tools using common libraries.

Due to the small sample size in the survey, it does not represent all practi-
tioners in industry. We tried to mitigate this threat by considering practitioners
in all different existing roles at the department. Additionally, the lead de-
velopers of all function groups were surveyed. Still, in other domains the
expectations towards similar predictions might differ.

6.5 Conclusion and Future Work

All investigated approaches are applicable to perform time series predictions
in the studied context. They all fulfill the basic requirements requested by
practitioners in our qualitative study. Particularly, long term predictions were
important to them; where the approaches showed less deviation among their
results. Nevertheless, we found evidence that there are actual differences in
accuracy of the approaches for three of the four statistical tests performed. In
the context of our case, ARIMA showed best accuracy results and short run
times; Support Vector Regression on the other hand requires longer run time
due to training and achieved worse accuracy results. When considering only
machine learning approaches simple feed-forward provide the highest accuracy
in the given context.

As machine learning approaches are designed to take multiple parallel
inputs, an future investigation of additional inputs might result in improved
prediction accuracy of those approaches. Generating a big data set from all
models to enable prediction for a specific model based on learning data from
all other models might be a first step to increase the amount of inputs.
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[38] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineering,
vol. 14, no. 2, pp. 131–164, 2009.

http://www.mathworks.com/help/simulink/slref/sldiagnostics.html
http://dx.doi.org/10.1109/2.675630


96 BIBLIOGRAPHY

[39] C. B. Seaman, Qualitative Methods. London: Springer London, 2008,
pp. 35–62.

[40] J. Singer, S. E. Sim, and T. C. Lethbridge, Software Engineering Data
Collection for Field Studies. London: Springer London, 2008, pp. 9–34.

[41] V. R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation in
software engineering,” IEEE Trans. Softw. Eng., vol. 12, no. 7, pp.
733–743, Jul. 1986. [Online]. Available: http://dl.acm.org/citation.cfm?
id=9775.9777
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