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Abstract 

Terrestrial soils are the major source of N2O, related to the soil N cycle and influenced by 

many factors. Forest soils have in general lower emission than soils in agricultural use. 

However higher emission than commonly found in agriculture can be found for some forest 

soils, as for the drained peat soil at the Skogaryd research site.  

To understand the N2O flux size and its controls two soil types existing in the Skogaryd area 

were investigated, drained peat and mineral soil, having high fertility and the same type of 

spruce forest. Thus we were able to keep weather conditions similar and only the soil types 

were different. Field measurements were conducted during three years, where soil emissions 

were sampled by manual closed chambers. To investigate soil gross N turnover processes at 

the organic site a 
15

N tracer field study was conducted for control plots and plots without 

either only roots or both roots and ectomycorrhizae.  

Over the years the average emission from the drained organic soil was six times higher than 

from the mineral soil (4.2 ± 0.1and 0.7 ± 0.1 kg N2O ha
-1

yr
-1

, respectively), despite slightly 

more fertile soil at the mineral site. The emissions varied over the year for both the organic 

and mineral soils where the large emissions were found during summer especially following 

precipitation after dry periods. Precipitation and temperature are thus influencing factors. The 

higher emission for the organic site was initially suggested connected to a larger soil organic 

matter (SOM) content of this soil, in percentage of top 0.30 m soil, however the SOM amount 

(kg/m
2
) was similar for both sites, thus other suggestions were sought for. For the mineral 

site, both above ground biomass and mycorrhizae growth were much higher than those for 

the organic site resulting in a higher nitrogen demand and less N available for nitrification 

and denitrification. The importance of mycorrhizae was also shown in the trenching 

experiment at the organic site. Here the presence of roots and mycorrhizae stimulated 

microbial NH4
+
 immobilization more than NH4

+
oxidation to NO3

-
, explaining a lower N2O 

emission. 

In summary, the findings of this thesis showed that N2O emission differed between drained 

organic and mineral soil with higher emissions from the former in same climate conditions. It 

also suggest that tree roots and mycorrhizae affect soil N cycle through uptake of mineralized 

N and by stimulating microbial N immobilization thereby keep the N2O emission down. 

 

Keywords: N2O emissions, organic soil, mineral soil, spruce forest, soil organic matter, 
15

N 

tracer, roots and mycorrhizae, mineralization, immobilization, nitrification, denitrification 

. 
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Populärvetenskaplig sammanfattning 

Den största källan för tredje viktigaste växthusgasen lustgas (N2O) är från marken, vilket är 

naturligt men påverkas av markanvändning. Lustgasen bildas främst i nitrifikation och 

denitrifikation och påverkas av många faktorer. Skogsmark har vanligtvis lägre emission än 

jordbruksmark, men även skogsmark kan ha höga emissioner. Till exempel så har dränerad 

torvmark vid Skogaryd forskningsstation visats ha hög avgång av lustgas.  

För att förstå varför så mycket N2O avgår och vad som påverkar flödet undersöktes två 

närliggande områden i Skogaryd vilka har olika typ av mark, dränerad torv och en 

mineraljord, med liknande bördighet och samma typ av granskog. Mätningar i fält gjordes 

under tre år, där gaser som avges från marken samlades upp manuellt med hjälp av kammare. 

Dessutom undersöktes med spårämnesanalys (
15

N) de processer som omsätter kväve (N) i 

den organogena jordens kontrollyta, och ytor där antingen bara rötter exkluderats eller både 

rötter och mykorrhizasvampar.  

Emission av lustgas var sex gånger högre från den dränerade torvjorden jämfört med 

mineraljorden, i medeltal 4.2 ± 0.1 respektive 0.7 ± 0.1 kg N2O ha
-1

 år
-1

, trots en något högre 

bördighet för mineraljorden. Emissionerna varierade också med årstiden på båda ytorna, där 

de största emissionerna ägde rum under sommaren och särskilt då i samband med regn efter 

en torr period. Nederbörd och temperatur visade sig vara viktiga faktorer som påverkar 

emissionen. Till en början förklarades den högre emissionen på den organogena ytan med att 

marken har en högre halt organiskt material i ytjorden, men den totala mängden av organiskt 

material i ytjorden var lika så en annan förklaring söktes efter. Något som skiljde sig åt 

mellan ytorna vara skogens tillväxt ovan jord samt tillväxt av mykorrhizasvampar i jorden, 

vilka båda var mycket högre på mineraljorden. Eftersom dessa efterfrågar mer kväve blir 

mindre kväve tillgängligt för nitrifikation och denitrifikation. Betydelsen av mykorrhiza 

visades också genom ett experiment där rötter eller både rötter och mykorrhizasvampar hållits 

undan från experimentjorden. Närvaro av både rötter och mykorrhizasvampar ökar på 

mikroorganismernas upptag av kväve och mindre blir då över för nitrifikation, vilket kan 

förklara en lägre N2O emission. 

Sammanfattningsvis, resultat i denna avhandling visar att under samma väderförhållanden 

skiljer sig N2O-emission mellan dränerad torvmark och mineralmark, där torvmarken hade 

högre emission. Resultaten pekar också på att trädens rötter och dess mykorrhiza påverkar 

kväve-cykeln genom att själva ta upp kväve och stimulera markmikroorganismers 

kväveupptag, och därigenom hålla nere N2O emissionen. 
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Introduction 

The earth’s surface temperature has increased by 0.85 [0.65 to 1.06] °C, over the period 

1880–2012, due to increased emissions of greenhouse Gases (GHGs) to the atmosphere 

(Hartmann et al., 2013). Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are 

the most important anthropogenic GHGs and the atmospheric concentration of these gases 

has increased significantly since the preindustrial time. Among these anthropogenic GHGs, 

the emission of N2O is of particular concern because of its high global warming potential 

which is 265 times that of CO2 in a 100 year perspective (Myhre et al., 2013). In addition to 

the global warming potential, the N2O gas is projected as the largest stratospheric ozone-

depleting substance for the remainder of this century (Ravishankara et al., 2009). 

Nitrous oxide emissions from terrestrial soils are assumed to be the major source of 

atmospheric N2O (IPCC, 2007). And the emissions from terrestrial soils are found to be 

largely influenced by anthropogenic activities including land use and land use change 

(Leppelt et al., 2014), e.g. agricultural soils are the largest source of N2O emission but forest 

soils have in general low emission. Also, natural undrained peatlands are known as a minor 

source for N2O emission (Martikainen et al., 1993; Von Arnold et al., 2005). However when 

peatlands are drained for agriculture and forestry, the decomposition rate of the organic 

matter of peat increases releasing both carbon (C) and nitrogen (N) and thus leading to 

enhanced N2O emission (Kasimir-Klemedtsson et al., 1997; Martikainen et al., 1993). 

Globally around 60 Mha of peatland have already been drained for agriculture or forestry 

which is 0.3 percent of world’s land cover (FAO, 2012). In Sweden, 1.5 Mha of forested 

drained peatland exists which is 6 % of total of the total 23 Mha productive forestry area and 

N2O emission from these forests on drained peat were found to be of the size 15% of the total 

anthropogenic N2O emission from Sweden (Ernfors et al., 2008).  

High emissions of N2O have been recorded from forested drained peat soils in temperate and 

boreal region (Klemedtsson et al., 2005; Maljanen et al., 2012). A review study compiling 

data on emission measurement of N2O in forested soils showed emission from mineral soils 

to be low compared to drained organic soils (Maljanen et al., 2010). However, our knowledge 

on flux difference between soil types is primarily based on individual studies which focused 

on either the drained peat or mineral soils. Diverse environmental conditions make it difficult 

to compare N2O emissions from different studies since in diverse conditions other factors 

than soil type could be important for emission. Therefore, to compare N2O emissions 

between different types of soil, it is important to try to keep other conditions such as weather 

and vegetation as similar as possible. 

In this thesis the N2O emissions from two different types of forested soils: a drained organic 

soil (Histosol) and a drained mineral soil (Umbrisol) were investigated (Paper I). The sites 

were closely located (within 1 km) and both of them were afforested with Norway spruce 

after abandonment of agricultural activities, thus exposed to the same land use history, 

climate conditions and vegetation composition. The work hypothesis was N2O emission from 

forested drained organic soil are higher compared to mineral soil in same climatic conditions 



Nitrous oxide emissions from drained Organic and mineral soil: a study on hemi boreal Spruce forests 

since drained organic soil have higher soil organic matter (SOM) content (in percentage) 

compared to the mineral soil.  

The emission of N2O from terrestrial ecosystems is directly related to the soil N cycle, which 

is complex in nature as it includes several simultaneously occurring processes (Hart et al., 

1994; Myrold and Tiedje, 1986; Nason and Myrold, 1991). Briefly, the soil N cycle is 

described here. The soil N cycle includes mineralization, immobilization, nitrification and 

denitrification processes. The major terrestrial reservoir of N is SOM. In the mineralization 

process the organic N compound of SOM is transformed into ammonium (NH4
+
) which is 

then either taken up by plants or immobilized by microbes (Booth et al., 2005), or used by 

nitrifiers for nitrification. In nitrification, oxidation of NH4
+
 (autotrophic nitrification) or 

organic N compound (heterotrophic nitrification) produce nitrate (NO3
-
) via nitrite (NO2

-
) and 

N2O is produced as a byproduct of the reactions (Wrage et al., 2001). Denitrification is the 

reduction of NO3
-
 to molecular N2 via N2O and is a heterotrophic process which takes place 

under anaerobic conditions as heterotrophic denitrifiers use NO3
-
 as a terminal electron 

acceptor only when O2 is unavailable. The microbial nitrification and denitrification are the 

major N transformation processes involved in N2O production in soil (Firestone and 

Davidson, 1989). In addition, nitrifier denitrification and chemodenitrification are known 

N2O producing processes in soils (Wrage et al., 2001). These processes of the N cycle are 

influenced by the environment, such as ecosystem type, soil type, land management, weather 

and climate, and living communities of plants and heterotrophs (Canary et al., 2000; 

Chapman et al., 2006; Gödde and Conrad, 2000; Mary et al., 1996).  

Plants affect soil N cycling through several mechanisms; uptake of N, retain in tissues which 

are then slowly released via roots turnover in rhizosphere. Roots turn over and associated 

mineralization are known to be a major component of soil available N in rhizosphere (Frank 

and Groffman, 2009). Also, plants host a variety of microbial communities in their 

rhizosphere and enhance the growth and activity of microorganisms through exudation of 

labile carbon (C) via roots (Frank and Groffman, 2009; Hütsch et al., 2002). Additionally, the 

exudation of labile C via plant roots stimulate production of microbial enzymes for 

degradation of complex soil organic N compound which in turn facilitated nutrient 

availability for plant uptake (Frank and Groffman, 2009). Plant and microbes interaction, 

thereby, influence soil N dynamics and higher gross N mineralization in the rhizosphere 

compared to bulk soil, has already been observed in previous studies conducted in laboratory 

condition (Herman et al., 2006; Landi et al., 2006).  

Most of the plant roots in temperate and boreal forests host ectomycorrhizae fungi  (ECM) 

(Taylor et al., 2000) which play a key role in uptake of nutrients through enhancing the 

availability N to plant (Powell and Klironomos, 2007). A few studies have investigated the 

effect of roots/ECM on gross N transformation rates in situ (Holub et al., 2005; Ross et al., 

2001), however the effect of ECM on gross N transformation is not clear. In a previous study 

by Ernfors et al. (2011), using trenching experiment on organic soils at Skogaryd, noticed 

two times higher N2O emissions after exclusion of roots and mycorrhizal mycelia. This 

higher emission was explained by increased N availability for N2O producing 
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microorganisms due to reduced plant uptake of N from soil through the mycorrhizal fungi. In 

the paper II of this study, the gross rates of N transformation on the same site was 

investigated using in situ 
15

N tracer study  to elucidate how internal N transformation rates 

changed as a consequence of exclusion of roots and roots plus ECM which resulted in 

enhanced N2O emissions. The understanding of the influence of soil-plant’s roots and ECM 

interaction on soil N turnover could improve our understanding of plants control on N2O 

emissions. This understanding is included into some models. One example is the process 

based CoupModel which recently been calibrated on the Skogaryd organic site and used to 

simulate N2O emission (He et al., 2016a; He et al., 2016b). Here the ground water levels 

together with nutrient uptake by roots were the most influential factors. However, here the 

ECM interaction was not yet included which may have improved the result. Modelling N2O 

emission is always difficult due the many influential factors, processes and thresholds needed 

to pass for high emissions to occur.  

In contrast to this study gross soil N dynamics in soil are traditionally determined by 
15

N pool 

dilution experiments in the laboratory, where soils are often mixed and /or sieved which may 

alter factors that influence soil N transformations, such as N pool sizes and mobility and, root 

biomass and the microbial community structure, especially ectomycorrhizal hyphae (Frank 

and Groffman, 2009). For instance, Booth et al. (2006) noticed that soil mixing promotes 

gross mineralization and NH4
+
 consumption. Therefore, the virtual core approach proposed 

by Rütting et al. (2011) was used in the study of paper II which allowed us investigating 

gross N dynamics under field conditions in minimum disturbed soils. 

 

In this study process-related gross N transformation rates were quantified by a numerical data 

analysis based on a 
15

N tracing model where parameters are optimized using the Markov 

chain Monte Carlo (MCMC) parameter optimization technique (Müller et al., 2007). The 

advantage of the 
15

N tracing model with numerical data analysis is that numerical 
15

N tracing 

model provides the advantage to estimate gross nitrogen transformation rates from several 

simultaneously occurring gross nitrogen transformation processes, while analytical equations 

quantify only total gross production and consumption rates of the labelled N pools 

(Barraclough and Puri, 1995; Schimel, 1996). Moreover, this approach allows longer study 

periods (1–2 weeks) than commonly used isotope dilution experiments with analytical data 

analysis (usually 1–2 days)(Rütting et al., 2011). Combining this calculating method and the 

virtual core approach allowed us to reveal the interaction between soil, plant roots and their 

associated microbial communities including mycorrhizae and N transformation rates in field 

condition. As root exudates stimulate microbial activity, here the hypothesis was that 

trenching reduces both gross mineralization and NH4 
+ 

immobilization rates; and due to 

decreased NH4
+ 

immobilization the relative importance of nitrification for NH4
+
 consumption 

increases which results in higher soil N2O emissions after exclusion of roots and ECM. 
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Aims 

The aims of this thesis were to: 

 Quantify and compare N2O fluxes from afforested drained organic and mineral soils (Paper 

I) 

 Elucidate how plants and their mycorrhizal symbionts control soil N cycling and affect N2O 

emissions from forest soils (Paper II) 

 

.
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Materials and Method  

Site descriptions  

 

 

 

 

 

 

 

 

 

Fig. 1: Organic and mineral site at Skogaryd Research Catchment 

 

For the work described in paper I, field measurement were conducted at two closely located 

sub sites at the Skogaryd catchment, a part of the SITES station network (www.fieldsites.se ), 

located in southwest Sweden (58°23′N, 12°09′E) (Fig. 1). The subsites were on two different 

types of soil; Histosol and Umbrisol (FAO 2015) referred to as organic site and mineral site, 

respectively in this thesis. . Both are similarly drained (described in paper I). Experiments for 

paper II were performed on the organic subsite only. The sub sites were drained in the 1870s 

and used for agriculture until afforested with Norway spruce in the 1950s. At both sites 

Norway spruce (Picea abies) dominates the forest, with some Birch trees (Betula verrucosa) 

and a sparse field and bottom layer. Important characteristics of the sites are given in table 

(Table 1). The long term (1961–1990) mean annual temperature was 6.4°C and mean annual 

precipitation 709 mm, recorded at a nearby weather station in Vänersborg, situated 12 km 

from the study area (Alexandersson and Eggertsson Karlström, 2001). 

 

At each sub site the N2O fluxes were measured from three measurement stations: O1, O2, and 

O6 at the organic site, established in a previous trenching experiment (Ernfors et al., 2011), 

and M1, M2, and M3 at the mineral site, established during this study. The distances between 

stations were 11-28 m at the organic site and 8- 29 m at the mineral site. Each station was 

comprised of two flux measurement plots and there were three collars installed with a 

maximum distance of 1.5-5 m apart in each plot. Thus, a total of 18 collars were present at 

each site (Fig. 1, paper I) for N2O measurement. In the trenching experiment by Ernfors et 

al. (2011), the three collars of each plot at the organic site were randomly assigned to one of 

Organic Site

Mineral Site
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the three treatments: (a) control (ctrl), (b) roots excluded (exclR) and (c) roots and ECM 

excluded (exclRM). Detailed description of the trenching can be found in Ernfors et al. 

(2011). For comparability with the mineral site, N2O emissions data only from the control 

chambers of organic site were used in paper I. 

 

Table1. Some important characteristics of organic and mineral site 

 Organic Site   Mineral Site  

SOM content (%)† 74(± 8)  17(± 3) 

SOM amount  (kg/m2 ) † 50 ± (6)  55± (12) 

Bulk Density  (g/cm3) † 0.2(± 0.0)   1.1(± 0.1) 

Tree age in 2010 60 years  60 years 

Above-ground biomass  

(ton dry weight ha−1) 
180±0.9 

 
300±1 

Note:  †, mean over 0.05-0.30 m depth 

 

N2O Flux Measurements 

The flux measurements were conducted using dark stainless steel chamber as described in 

Ernfors et al. (2011). During August 2010 to July 2013, I conducted N2O flux measurement 

from all plots at both organic and mineral site and flux data from control chambers were used 

in the work described in paper I. For the work of the paper II, flux data from all control and 

trenched chambers measured during 2010-2013 at the organic site and the flux data measured 

by Ernfors et al. (2011) for the period of July 2006 to Dec 2009 were used. Fluxes of N2O at 

the soil surface were generally measured biweekly during the morning or early afternoon. A 

detailed description of the chamber and the procedure of gas sampling is given in paper II 

and Ernfors et al. (2011). The collected gas samples were analyzed by gas chromatography 

(Agilent 7890A, Agilent Technologies, Santa Clara, CA, USA) equipped with an auto-

sampler (7697A). The N2O fluxes were calculated from the slope of the linear regression of 

gas concentrations plotted against time. 

Measurement of abiotic variable and Soil properties  

Air temperature data were collected with Campbell 107 Temperature Probes (Campbell 

Scientific Inc) at a level of 2 m above the ground at the organic site. Soil temperatures were 

manually measured at two depths (0.1 and 0.2 m) at both sites, concurrently with the gas 

sampling (paper I, II). Groundwater level (GWL) was only measured at the organic site 

since the mineral site had a compact hard soil layers at a depth of around 0.4 m which made 

its difficult to install the tubes. The measurements were performed manually using a plumb 
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line lowered into perforated tubes inserted to a soil depth of 1.5 m next to each chamber. Soil 

samples were collected close to the chambers for determination of soil SOM, pH (KCl), total 

carbon (C), total nitrogen (N) content and C/N ratio. The SOM content was determined by 

loss-on-ignition where the soil samples were dried at 65°C for 48 hours and then burned at 

550° for 6 hours. The SOM content was calculated from the weight loss of the soil samples. 

To determine the total N and C, the oven dried soil samples were milled in order to 

homogenize and the samples were then analyzed with an elemental analyzer couple to isotope 

ratio mass spectrometer (IRMS) (20-20, Sercon Ltd, Crewe, Cheshire, UK).  

15
N labelling, soil sampling and Analysis of 

15
N 

In paper II, for investigating the gross soil N dynamic under field conditions the soil at 

organic site was labelled with 
15

N using the virtual soil core approach (Rütting et al., 2011; 

Staelens et al., 2012) in May 2013. The 
15

N labelling was conducted by injecting either 
15

NH4NO3 or NH4 
15

NO3 (99%) into the soils and the detail description of 
15

 N labelling and 

soil sampling is available in paper II. Gross N mineralization and nitrification was calculated 

using the 
15

N tracing model Ntrace. Detailed description of this process is given in the paper 

II.  
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Result and discussion 

N2O emission from forested drained organic and mineral soils  

Both, drained organic and mineral soils were overall net sources for N2O emission with the 

median value of flux rates 38 and 6 µg m
−2

 h
−1

 at the organic and mineral site  respectively, 

although at a few occasions both soils also act as a sink . A pronounced seasonal pattern in 

N2O emissions was observed at both sites with occasions of high fluxes to occur in summer 

(Fig. 4 in paper I). The annual emissions for all years were higher at the organic site (Fig. 2)  

and over the three years period this site showed in average six times higher N2O flux than the 

mineral site (Table 2 in paper I), which agrees with the result reported by Maljanen et al. 

(2010) showing higher N2O emission from drained organic soils compared to the mineral 

soils in a review study on N2O emissions. 

Year
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Fig 2: Annual nitrous oxide (N2O) emission from organic and mineral soil in Skogaryd catchment in 

south-western Sweden and error bars show standard errors of the mean 

 

The annual N2O fluxes from the organic site ranged between 4.0 and 4.4 kg N2O ha
-1

 during 

the period 2010 to 2013, which is within the range of the reported values for drained organic 

soils (0.4–8.1 kg N2O ha
−1

 yr
−1

:(Alm et al., 2007; Maljanen et al., 2003; Von Arnold et al., 

2005; Yamulki et al., 2013). However, the emissions were smaller and with a lower 

variability between years (year to year) compared to the earlier period measured by Ernfors et 

al. (2011), where the annual emissions were between 5.4 and 11.2 kg N2O ha
-1

 in the period 

2006 to 2009 for exactly the same plots. Between years, the variation in emissions can be 
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explained by summer months which in the earlier studies were found to be both drier and 

warmer compared to the years of the present study. This is also supported by the relatively 

higher N2O fluxes in the latest study year (2013) which experienced warmer and drier 

summer and compared to the preceding two years. Drawdown of ground water table as a 

consequence of drought increases the thickness of aerobic surface peat layer (Alm et al., 

1999) which can undergo faster decomposition and subsequent mineralization leading to 

increase availability of mineral N. This could be the cause of higher emission at the organic 

site during the warmer years as we can see in the paper II that increase availability of 

mineral N resulted in higher N2O emission. However, the high variability in N2O emissions 

between years underpins the need to compare sites when conditions are similar, since even 

for the same site the annual emissions vary. 

The annual N2O emissions from the mineral site ranged between 0.6 to 0.7 kg N2O ha
-1

 yr
-1

. 

To my knowledge, no data on N2O emissions from Umbrisol is available. Nevertheless, the 

emissions were in the range (0- 1.0 kg N2O ha
-1

 yr
-1

) to what Gundersen et al. (2012) found 

when summarizing on N2O emissions from temperate forest located on a range of mineral 

soils including Podzol, Cambisol, Gleysol and Arenosol. 

Factors influencing soil N2O emissions  

The pattern of N2O emission was similar at both sites i.e. increases/decreases of N2O 

emission occurred simultaneously most of the time (Fig. 4 in paper I). Most of the high flux 

occasions of N2O were observed in summer between late May and early September at both 

sites and these high fluxes often occurred following rainfall after a dry period. High N2O 

fluxes were also observed in March and April at the organic site and these high fluxes were 

related to thawing of frozen soils when the air temperature raised to above 0
◦
C (Fig. 4 in 

paper I). In contrast to the organic site the N2O emission from mineral site was not found to 

increase during thawing.  

Within site the SOM was the most important factor influencing the overall size of N2O 

emissions from forested drained organic and mineral soil. Table 2 gives an overview of the 

station specific SOM and emissions data. The greatest N2O emission was found from the 

station having highest SOM content (%) at both sites. This finding was also confirmed by the 

observed correlation between the N2O emissions and SOM content (%) within both organic 

(=0.99, p<0.01) and mineral site (=0.55, p<0.05) (Table 3 in paper I). 

Since weather conditions as well as forest age and vegetation were similar, the difference in 

emission between two sites; organic and mineral site, could be related to their soil properties. 

The 4-fold higher SOM content (%) of the organic site compared to the mineral site could be 

taken as an explanation for the higher emissions. However, because of higher bulk density of 

mineral soils the total SOM amount (kg per volume of soil) in the upper 0.30 m soil was 

found to be similar (Table 2) to that of the organic sites even though the soil had lower SOM 

content (%). Thus it could be asked why the mineral site had lower emissions than the 

organic site. One possible explanations could be that the mineral soil SOM is protected 

against microbial decomposition by association with minerals establishing physical barriers 
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between SOM and microbes or enzymes (Six et al., 2004), or intermolecular interactions 

between organic and inorganic substances which decrease the availability of the organic 

substrate for decomposition (Guggenberger and Kaiser, 2003). On the other hand, in peat 

little inorganic substances exists (Päivänen, 1995) why this inhibition is less and the SOM in 

peat is highly decomposable when water-level is lowered (Clymo, 1984) following drainage 

for forestry. The forests are not fertilized, thus, N-deposition and the mineralization of SOM 

are the sources of inorganic N delivering to the trees as well as for microbial nitrification and 

denitrification. Therefore, it can be argued that the lower emissions for our mineral soil might 

result from lower mineralization of mineral soil SOM. However, the higher tree growth as 

indicated by its higher above ground biomass at this site (Table 1) does not support low 

mineralization of SOM at this site. 

 

Table 2: N2O fluxes and abiotic factors at the stations of organic (O1, O2, O6) and mineral site (M1, 

M2, M3)  

 

Site Station 

Organic site O1 O2 O6 

N2O (kg ha-1 yr-1) 
3.7 (± 0.5) b 6.20 (± 0.7) a  3.3 (± 0.9) b 

SOM content (%) 66 (± 1) 89 (± 5) 65 (± 6.0) 

SOM amount (Kg/m-2 ) 40 (± 3.0) b 60 (± 3.0) 45 (± 5.0) b 

C/N ratio  28 (± 4.0) 24 (± 1.0)  25 (± 0.3) 

pH 3.9 (± 0.1) a     3.2 (± 0.0) b 3.7 ± (0.1) a    

Mineral site M1 M2 M3 

N2O (kg ha-1 yr-1) 1.6 (± 0.0) a 0.3 (± 0.0) b 0.3 (± 0.0) b 

SOM content (%)  22 (± 3) a 18 (± 2) a 10 (± 6.0) b 

SOM amount (Kg/m-2 ) 75 (± 9.0) a 60 (± 6.0) a 35 (± 2.0) b 

C/N ratio 16 (± 0.5) 19 (± 0.4) 20 (± 0.3) 

pH  3.8 (± 0.1)     3.8 (± 0.0)     3.8 (± 0.0)     

Note: Parameters that were significantly different between stations within each site are followed by 

different letters within a row of the site.  

Numbers in parentheses are the standard errors of the mean 

 

The availability of mineral N in forest ecosystems were found to be controlled by the 

competition between plants and soil microorganisms and it is recognized that plants can 

successfully compete with microorganisms for N (Schimel and Bennett, 2004). Plants are 

growing more vigorously at the mineral site, as seen in its higher above ground biomass 
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(300±1 ton dry weight ha
−1

) compared to the organic sites (180±0.9 ton dry weight ha
−1

), 

despite the age of the forests in two sub sites are similar. Thus, it is likely that the forest on 

the mineral site had a larger N uptake compared to the organic site. As for the above ground 

biomass, root associated ectomycorrhizal mycelia growth (43.3 and 7.5 g/m
2
 at the mineral 

and organic site, respectively, measured in 2009 to 2010) was also found to be higher at the 

mineral site. The nutrient absorbing surface area for a plant can be increased (Chapman et al., 

2006) by increasing the production of its roots associated mycorrhizal hyphal surface area 

(Simard et al., 2002) which even can lead to a decreased N availability in soil (Högberg et al., 

2006). Thus, the higher root associated ECM production at the mineral site probably resulted 

in lower N availability in soil and thereby lower N2O emissions. This suggestion is supported 

by the findings of the trenching experiment of paper II where N2O emissions were found to 

be higher in the plots where roots and ECM were excluded. Also, He et al. (2016a) showed 

that plants uptake of N has significant influence on soil N availability and thereby on N2O 

emission in a recent study investigating the factors affecting N2O emission at our organic site 

using a process-based model, CoupModel.  

Over the entire 6 years period in paper II, the mean N2O emission rate, was higher by 62% 

in the exclR treatment (mean: 9.5 kg N2O ha
-1

 yr
-1

) compared to the control (mean: 5.9 kg 

N2O ha
-1

 yr
-1

) and the exclRM treatment showed almost tripled (mean: 17.1 kg N2O ha
-1

 yr
-1

) 

N2O emissions compared to control. However, the rate of the gross mineralization was higher 

in control and the value was almost triple of that found in the exclRM treatment (4.49 and 

1.34 µg N g
-1

 d
-1

 for the control and exclRM plot, respectively (Table 3). The gross 

mineralization rate did not differ between control and exclR treatment. Thus this finding 

indicates that the mineralization itself is not controlling the N2O emissions at our organic site. 

The gross mineralization rate found in control chambers was similar to the gross 

mineralization rates, 3.5 to 5.9 µg N g
-1

 d
-1

 observed for organic soils forested with birch and 

poplar (Münchmeyer, 2001; Willison et al., 1998). 

As stated above, the SOM mineralization is the main source for mineralized N at the organic 

site. Consequently, one obvious mechanism by which N2O emission was decreased despite 

higher gross mineralization in control plots could be plant uptake of mineralized N leading to 

decreased N availability for the microbes to produce N2O. Also, the microbial NH4
+ 

immobilization (INH4) rate was highest at the control and after trenching the rate was 

decreased by 20% and 64 % in the exclR and exclRM treatment, respectively (Table 3). The 

decreased microbial INH4 after trenching probably resulted from the declined microbial 

activity because of reduced input of labile C via roots (Kaiser et al., 2011).Thus, the 

combined N uptake by plants and microbes reduced concentration of mineral N as the 

substrate for N2O emission in the control plots. 

Besides immobilization of NH4
+
 (INH4), Oxidation of NH4 

+
 to NO3

-
 by nitrifier (autotrophic 

nitrification notes as ONH4) is another the process that competes for ammonium produced 

from mineralization. The relative dominance of the processes competing for NH4
+
 , 

immobilization (INH4) and autotrophic nitrification (ONH4), can be expressed in the ratio N/I. 

Using all treatments, including control and trenched, strong correlation between N2O 
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emissions (averages over 6 years) and the N/I ratio was found (Fig. 5 in paper II). We cannot 

tell in which process the N2O was produced, where nitrification is one suggestion. However, 

NO3
-
 produced by nitrification is needed for denitrification which could be the main pathway 

of N2O production in our investigated organic site (Björk et al., 2010; He et al., 2016a), the 

N/I ratio could then be a proxy for predicting N2O emissions. 

 

Table 3: Gross N transformation rates (mean ± standard deviation) for an organic forest soil in south-

western Sweden, for control soil and soil with exclusion of roots (ExclR) or exclusion of roots and 

ectomycorrhiza (ExclRM).  

 

N transformation Kinetic Transformation rate (µg N g-1 d-1) 

   Control ExclR ExclRM 

MSON Mineralization of SON 0 4.49 (0.55) a 4.46 (0.78) a 1.34 (0.32) b 

INH4 Immobilization of NH4
+ 1 2.21 (0.44) a 1.77 (0.33) b 0.80 (0.21) c 

OSON Oxidation of SON to NO3
- 0 5.67 (0.54) a 3.91 (0.51) c 4.59 (0.38) b 

INO3  Immobilization of NO3
- 1 0.95 (0.29)  n.d. n.d. 

ONH4  Oxidation of NH4
+ to NO3

- 1 1.68 (0.36) a 2.75 (0.37) b 1.72 (0.47) a 

DNO3  Dissimilatory NO3
- reduction to NH4

+ 1 1.42 (0.18) b 2.04 (0.39) a 0.85 (0.23) c 

LNH4 Losses of NH4
+ 1 1.34 (0.30) b 2.63 (0.30) a n.d. 

LNO3 Losses of NO3
-  1 4.48 (0.39) a 2.63 (0.31) c 3.99 (0.29) b 

Note: Gross rates that were significant different between treatments are followed by different 

letters within a row. Kinetics were either zero order or first order; n.d. = not detected. 

 

Similar to gross mineralization rate, the total gross nitrification was highest in the control plot 

which was followed by the exclR and exclRM treatment. These findings are consistent with 

the observed positive relation between these two processes by Booth et al. (2005). However, 

this result is different from the findings of Ross et al. (2001) and Kaiser et al. (2011), who 

found increased gross nitrification despite decreased gross mineralization after trenching 

(Ross et al., 2001) or tree girdling (Kaiser et al., 2011). In controls we observed a total gross 

nitrification, production of NO3
-
 from soil organic N (OSON) and  NH4

+
 pool (ONH4), rate of 

6.3–7.4 µg N g
-1

 d
-1

 at Skogaryd (paper II) that were similar or within the range of values, 0–

10 µg N g
-1

 d
-1

, reported in the literature for temperate forests (Booth et al., 2005). 

Heterotrophic nitrification (OSON) had the largest contribution, 77% of the total nitrification. 

Such dominance of OSON for NO3
-
 production in forest soils has also been demonstrated by 

others (Hart et al., 1997; Rütting et al., 2008; Staelens et al., 2012; Zhu et al., 2011). Even 
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though the total nitrification rate was lower in exclR treatment, the rate of autotrophic 

nitrification was found to be higher by 41% compared to the control (Table 3). Thus, the 

relative importance of autotrophic nitrification to the total nitrification was increased in this 

in exclR treatment. The increase in autotrophic nitrification rate in the exclR treatment was 

probably dependent to some extent on the decrease production of root derived (or released) 

nitrification inhibitors (Paavolainen et al., 1998; White, 1986). It could also be that in absence 

roots competition, more NH4
+
 is available for microbes for autotrophic nitrification. 

However, the rate of ONH4 did not differed significantly between the exclRM and control 

treatment. 

Nitrate immobilization (INO3) was only detectable in the control plots but not in the trenched 

treatments. Nitrate immobilization generally increases with increasing C availability (Booth 

et al., 2005; Hart et al., 1994) due to increased microbial activity and, hence, increased 

microbial N demand. The absence of INO3 in the trenched plots (Table 3) thus, indicates 

reduced C availability.  

Overall the findings of the study in paper II indicate roots and ECM have large influence on 

soil N turnover rates and that gross rates of N transformation, gross mineralization and 

nitrification in forested drained organic soil is enhanced in presence of plant roots and ECM. 

These enhanced rates of gross mineralization are however balanced by the high rates of N 

immobilization in presence of roots and ECM resulting in relatively low N availability for 

nitrification and denitrification. Hence soil N2O emissions decreased in presence of plants 

roots and ECM.  
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Conclusions 

From the studies presented in this thesis I conclude that, 

 Nitrous oxide emission differs between forested drained Histosol and Umbrisol soil. 

Drained Histosol is a stronger source for N2O emissions than Umbrisol. 

 Plant roots and their mycorrhizal symbionts influence N transformation rates in 

forested soil. Gross mineralization–ammonium (NH4
+
) immobilization turnover 

increase in presence of roots and mycorrhizae probably due to high inputs of labile C 

stimulating microbial activity. 

  The N2O emission is positively related to the ratio of NH4
+
 oxidation (autotrophic 

nitrification) to NH4
+
 immobilization in forest soils. 

 Plants uptake of mineral N as well as the stimulated microbial NH4
+ 

immobilization in 

presence of roots and ECM reduce the importance of nitrification for NH4
+ 

consumption and thereby decrease N2O emissions from forested soils.  
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