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Abstract

Automotive collision avoidance systems help the driver to avoid or mitigate a collision. The main
objective of this project is to find a methodology to improve the performance of Volvo’s automotive
collision avoidance system by optimizing its configurable parameters. It is important that the pa-
rameter setting is chosen in such a way that the automotive collision avoidance system is not too
sensitive to uncertainties. However, finding an optimal parameter setting is an overwhelmingly com-
plex problem. Therefore, our approach is to make the problem tractable, by choosing specific and
realistic uncertainties, defining performance, and choosing a fundamental algorithm that describes
and mimics Volvo’s automotive collision avoidance system. This approach preserves the foundation
of the problem.

The idea behind the methodology that solves this tractable problem is to find, and exclude,
all the parameter values that can cause undesired assistance intervention and, out of the remain-
ing parameter values, find the ones that prevent collision in the best way. This is done under the
condition that the chosen realistic uncertainties can occur. To evaluate a parameter setting, data
simulation is used. Due to the complexity of the simulation, efficient optimization tools are not
available. Therefore, we have created a surrogate model that mimics the behaviour of the simula-
tion as closely as possible by using a response surface, in this case accomplished by a radial basis
function interpolation. Through this surrogate model we have found a satisfying parameter setting
to the tractable problem. The methodology has laid a promising foundation of finding the optimal
parameter setting to Volvo’s automotive collision avoidance system.

Keywords: Simulation-based optimization, response surface methodology, radial basis func-
tions, multi-objective optimization, Pareto optimal solutions, trigger edge, tunable parameters, false
intervention, robustness, positive and negative performance scenarios.
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Chapter 1

Introduction

1.1 Background

Volvo Car Corporation is a leading company in developing collision avoidance systems for passenger
cars. Each new car model is equipped with high-tech devices combined with state-of-the-art au-
tomotive collision avoidance algorithms. The car itself provides safety by continuously monitoring
the surroundings and using that information to avoid dangerous situations. The car automatically
triggers an avoidance maneuver if a certain threat metric exceeds some predefined threshold values.
However, it is important that the car does not take action when the driver has full control over the
situation, because that can lead to dire consequences. The threshold values have during a long period
of time been developed and tuned by experts and through extensive field collection. The aim of this
project is to investigate a more mathematical approach of finding the threshold values. Moreover,
the collected information from the surroundings contains noise and therefore the threshold values
need to be such that the automotive collision avoidance system is not too sensitive to this noise.

1.2 Limitations

Volvo’s automotive collision avoidance system is very extensive, mainly since it has to deal with a
large number of different situations with potential threat that can occur in traffic. This makes the
system difficult to process and analyze. Therefore we make the problem more tractable by replacing
the automotive collision avoidance algorithm with an analytical counterpart. Moreover, a number
of traffic scenarios are carefully chosen to reflect the fundamental behavior of a driver. Realistic
uncertainties that can occur are included as well. From the tractable problem we are able to gain
analytical results and a deeper understanding of the real problem. In this thesis we process and solve
only the tractable problem. However, we develop some generalizations of the solution methodology
to make it more applicable to Volvo’s automotive collision avoidance system.



1 Introduction 1.3 Outline

1.3 Outline

In Chapter 2 we describe how to make the problem more tractable; this is done in three parts. In
the first part we describe a fundamental algorithm including all its tunable parameters, developed
by Volvo, that mimics well Volvo’s automotive collision avoidance system. In the second part we
define a performance measure for the evaluation of parameter settings. In the third part we define all
dominant uncertainties that are assumed to occur. In Chapter 3 we present the essential optimization
theory that is needed to understand the methodology developed. Three areas are concerned: global,
multi-objective and simulation-based optimization. Global optimization is about finding an optimal
solution, multi-objective optimization is used if more than one optimization goal is considered, and
simulation-based optimization is about optimizing results modeled by a simulation. In Chapter 4
we introduce the deeper but necessary theory of radial basis functions. In Chapter 5 we present
our robust methodology, discuss our definition of a robust solution, and present the algorithms
developed. In Chapter 6 we discuss the methodology and present conclusions about what new doors
this work has opened and what future work may involve.



Chapter 2

The problem description

2.1 The original problem description

For about ten years Volvo Car Corporation have developed cars that actively help to reduce and
prevent collisions by utilizing an automotive collision avoidance system. The concept is that the car
constantly monitors various factors, such as distance and speed, of the objects in its surroundings
and by using that information the car can help in averting potential threats if the driver does not
seem to handle the situation appropriately. Figure 2.1 illustrates how the car collects information
through the use of a sensor. There are several options for the car to avoid the danger, such as full
braking or steering in the appropriate direction and, of course, a combination of these. In this thesis
we only focus on full braking. The decision on whether the car should take action or not depends
on whether certain threshold values, determined by tunable parameters, are exceeded. Moreover,
these thresholds can be exceeded also when braking assistance is not desirable, then called false
intervention. There is always some degree of noise from the sensors; since Volvo Car Corporation
want reliable performance of their cars it is important that the automotive collision avoidance system
is not too sensitive to these uncertainties. We can hence state the problem to tackle:

Definition 2.1.1 (Original problem). Find a parameter setting in the automotive collision avoidance
system which results in low collision speed and, at the same time, minimizes the risk for false
intervention. The parameter setting has to be chosen in such a way that the automotive collision
avoidance system is not too sensitive to uncertainties

The stated problem is a so-called robust optimization problem ([1]).

2.2 The approach of making the problem tractable

It is hard to get a grip on the problem described in Definition 2.1.1, since it seems overwhelmingly
complex, due to endless variations of scenarios and countless numbers of rows of data code in
the automotive collision avoidance system. Our approach is to make the problem tractable by
concretizing it into a smaller problem but still preserve its foundation. If we can find a satisfying
approach to solve the smaller problem the general idea of that approach is likely to be applicable to
the original problem as well.



2 The problem description 2.3 The approach of making the problem tractable

Figure 2.1: An illustration of how the car is collecting information such as distance and speed.
Source [2].

To get a graspable overview of the problem we will use a fundamental algorithm of Volvo’s
automotive collision avoidance system. The fundamental algorithm, which is developed by Volvo,
is a lot less complex—it includes fewer parameters and fewer expressions. However, the concept is
still the same and it mimics well Volvo’s automotive collision avoidance system, which means that
it constitutes a good foundation. The fundamental algorithm is presented in Section 2.3.

We define performance (to be detailed in Section 2.4) through the selection of representative
scenarios. Both positive and negative performance scenarios are selected. In the positive ones the
car should prevent collision as well as possible, and in the negative ones the risk for false intervention
should be as low as possible. To evaluate different parameter settings, the fundamental algorithm
will be used to simulate the car’s reaction for each parameter setting and scenario.

The final step to make the problem tractable is choosing the uncertainties considered to be the
most dominant, as well as their range (detailed in Section 2.5). These uncertainties are the only
ones that can arise in the performance scenarios.

We can now state the tractable problem:

Definition 2.2.1 (Tractable problem). Find a parameter setting in the fundamental algorithm which
results in low collision speed in the positive performance scenarios, and at the same time, minimizes
the risk for false intervention in the negative performance scenarios. The parameter setting has to
be chosen in such a way that the fundamental algorithm is not sensitive to uncertainties within the
defined range.
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2.3 The fundamental algorithm

Volvo provided a MATLAB-script where the fundamental algorithm is compiled. From this script
we have derived all relevant equations in the fundamental algorithm; this gave an insight into their
meaning as well as possible modifications of them. Our findings are presented below.

The sensors of the car that collect information from the surroundings can filter information with
a frequency of 0.02 seconds. Therefore, it is convenient to use this frequency in the simulations.

The car that is our reference point, i.e., the car equipped with an automotive collision avoidance
system, we call the host car and the car that is in view of the sensor of the host car we call the target
car.

In each time step in a simulation the amount of longitudinal acceleration, denoted ai%gg, required
by the host car in order to avoid a crash is computed. Since there are unpredictable factors in
real life, such as the road condition and the temperature of the tires, it is necessary to have some
longitudinal precaution margins to compensate for the uncertainties. Moreover, it takes some time
to build up the pressure in the break system of the car to enable full braking. This time depends
on the longitudinal acceleration of the host car. Together with the relative longitudinal velocity of
the host and the target cars, this needed time determines the required increase of the longitudinal
margins. This modified longitudinal distance, denoted x,04, between the host car and the target
car is defined as

lon lon,
Tmod = Trel — Tmargin + tpressure(ah g) *Usel g’ (21)

where x.¢] 1= Ttar—oy is the relative longitudinal distance between the target and the host car, Tmargin

is the precaution margin, tpressure is the time needed to build up the pressure to enable breaking,

long . . 1 1 long . . s .
a}? "8 is the acceleration of the host car, and vr(;?g = Vo — vhong is the relative longitudinal velocity

between the target and the host car. If the following inequality holds for all times ¢ > 0, then no
crash will occur:

1 1
a;;l;g 42 long ar%gg 12 long
T + Vgar * t 4+ Tmod = —5 tu -t, Vt>0, (2.2)

where agrlg is the longitudinal acceleration of the target car, vi‘,ﬁg is the longitudinal velocity of the

target car, and v is the longitudinal velocity of the host car. If ayeq® = a2 and the inequality

(2.2) is satisfied, then it implies that vior® > 1", However, if we assume that amoe® # aor, then

tar
we can conclude that ajo"® > )2 whenever the inequality (2.2) is fulfilled. In that case inequality

(2.2) can be rewritten as
long long
v —v 2-xm
t2+2<tarh>-t+$°d>o vt > 0. (2.3)

long long long long — 77

tar req tar req

Now we search for the roots for the polynomial of the second degree in the left-hand side of the
inequality (2.3) by completing the square, which yields the equation

long long 2 long long 2
t+ Utar — Uy | Vtar — Uy . 2 Tmod (2 4)
long long - long long long long * :

Qtar — Oreq Qgar — Oreq Qgar — Oreq
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If the right-hand side of equation (2.4) is less than or equal to zero we have that inequality (2.2) is

fulfilled, ie.,
lon, lon, 2
(vt‘;rg _Uho g) . 2 Tmod <0<

long long long long —
Qtar — Greq Qtar — Oreq
long long\ 2
1 (vtar — Y )
— 2 ZTyoa | <0.
long long long long
Qar — Oreq tar ~ “Teq

>0

Assuming that x,,,q > 0, which reflects the relevant situations, it follows that

(vlong _ vlong) 2
long tar h

long
a <a
— tar 2 . [Emod

req

We want a}féﬁg to be as high as possible, which reflects how a]lfégg is computed in the fundamental

algorithm, and which is a sufficiently good way for all the scenarios in this thesis, i.e.,

. 2
ong
long . _ ,long (¢5") (2.5)
Apog® 1= Qyp” — ~————. .
4 ar 2 Tmod
. . 1 1
The relation (2.5) is used for any real values on a2, v ¢ and Zyq. However, for the case when
y tar rel ’
Tmod = 0 we use the following natural limits:
1 .
1. If Urglg # 0 and Zyoq = 0, we set areq := —00. We handle —oo as in the extended real number
system; see [3].
1 1 1
2. If v,0)® = Tmoq = 0, We set areq” := Ggay-

Now we present the first tunable parameter, the mazimum available longitudinal acceleration,
denoted alaovlﬁ(:nrel), which is dependent on the relative longitudinal distance, i.e, x.¢, between the
target car and the host car. The boundaries on this tunable parameter, derived from realistic usage,
are —10 < aﬁfﬁl < —1. Before stating the first threshold we need to define the braking threat number,
denoted TpTN, as

TN = o0

A avail (l'rel)

In each time step, TN is computed and if Ty > 1 a threshold value is exceeded and we say that
the BTN-condition is true. Once the BTN-condition is true it remains true until the host car has
passed the target car.

In each time step the required amount of lateral acceleration, denoted a3,
to steer aside, is computed. To be able to compute afgg in each time step we need a prediction of
the time until the relative longitudinal distance is equal to zero. We call it time-to-collision, denoted
titc. The computation of the time-to-collision depends on the relative longitudinal acceleration,
a8 = a8 — ¢ and the relative longitudinal velocity, v!°'¢; we distinguish this between three

different cases:

lat “to avoid a crash, i.e.

10
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1. If ]aﬁ?g] > 0, proceed from (2.2) with some minor changes: change p0q to 2y and change

the inequality to an equality. Once again we want to find the roots and we find them to be

long long 2
v v 2.z
. rel rel - rel
t= long + ( long> long * (26)
Grel Are) Gl

The time-to-collision is defined as the smallest positive root. However, if none of the roots are
positive then no collision will occur and we have that ti. := 400.

2. If @' = 0 and v'°"® < 0, the host car has a higher longitudinal velocity than the target car,

rel rel

in which it holds that

Lrel
tttc = - lorelg' (27)

rel

3. Otherwise titc := +00.

We can use ty. to make a prediction on the relative lateral position of the cars when the relative

longitudinal distance is zero. This is denoted yf’;ed and is calculated as:

d 1 agdy - 1
pred __ at ar c
Yrel = Yrel + Urel * tite +

5 (2.8)

where Yrel := Yar — Yn is the relative lateral distance, v/at := vt — 412t is the relative lateral velocity
lat i the lateral acceleration of the target car. Note that g, and y;, are the lateral positions
of the target car and host car, respectively, and vgﬁ and ’U%ft are the corresponding respective lateral
velocities. Note that the lateral acceleration of the host car is not included in (2.8), since we
want to compute the total required lateral acceleration of the host, regardless of the current lateral
acceleration.

Now we introduce the second tunable parameter, called safety zone, denoted ysafe(viong), which
is the lateral margin depending on the velocity of the host car. However, safety zone may be a
misleading name, since the boundaries of ygate is given by —1 < ygare < 0. The reason why the safety
zone can take negative values is that it may be favorable to ”shrink” the width of the target car in
order to avoid false intervention while compensating for sensor noise. Figure 2.2 shows an overview
of the orientation of the coordinate system and the safety zone representation.

Now we present the last components, the accelerations of steering right or left, needed to compute
We have the following relations:

and a

lat
rog-

pred
left __ 2yrel — Wiar — Wh — 2Ysafe

req ~ t2 ) (29)
ttc
d
right __ nyéle + Wear + wp + 2ysafe (2 10)
o e | -

where wy,, and wy, are the widths of the target car and the host car, respectively. There are two
possible outcomes:

11
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Precaution
Margin

Figure 2.2: An overview of the coordinate orientation and the tunable parameter safety zone.

1. If sign(aﬁ%) = sign(ag%ht), then the target car is not in the path of the host car, so it holds
that a}%ﬁl = 0.

2. Otherwise

aleft

req | 2

lat __ _ .
Upeq = MIN {

ag%ht)} . (2.11)

Now we present the last tunable parameter called mazimum available lateral acceleration, de-

noted a;‘?faﬂ(vilong), which depends on the velocity of the host car. The boundaries on this tunable

parameter, derived from realistic usage are given by the inequalities 1 < aﬁ,taﬂ < 10. The steering
threat number, denoted Tgry, is then defined as
lat

Qreq

1
alaavtan(vhong)

TsTN =

In each time step Tsrn is computed, and if Tgry > 1 then a threshold value is exceeded and we say
that the STN-condition is true. Automatic full braking is applied whenever both the STN- and the
BTN-conditions are true. Table 2.1 summarizes the tunable parameters.

Table 2.1: A compilation of the tunable parameters.

Tunable parameters Notation

Maximum available longitudinal acceleration ai,r;%(xrel)
Maximum available lateral acceleration alt  (v;°"8)
Safety zone ysafe(viong)

The fundamental algorithm also includes computations, such as filtering of sensor information.
Since none of these computations concern any of the tunable parameters, there is no need to describe
them in detail.

12
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2.4 Defining performance scenarios

Volvo has a number of cars around the world that constantly collect data from situations on the
road. The variation of scenarios that can occur is almost endless, but we have identified five fun-
damental scenarios—see Figure 2.3—which capture the trade-off between minimizing the risk for
false intervention and avoiding collisions as well as possible. We categorize these five scenarios into
two groups, positive performance scenarios, and negative performance scenarios. In the negative
performance scenarios no breaking is desired. In the positive performance scenarios the host car is
going to collide unless it breaks sufficiently, so an as high velocity reduction as possible is desired.
We define the term offset which describes how the target car is positioned relative to the host car
when the relative longitudinal distance is zero. If the offset is 0% then the target car is not in the
path of the host car; if the offset is 100% the target car is completely in the front of the host car.

1- The first negative performance scenario is defined by the host car driving straight with a certain
velocity with 0% offset and the target car being stationary.

2- The second negative performance scenario is defined by the host car driving with a certain
velocity and turning tightly past the stationary target car. In this scenario the car steers with
a certain lateral acceleration, which is dependent on the velocity of the host car.

14+ The first positive performance scenario is defined by the host car driving straight with a certain
velocity with 100% offset and the target car being stationary.

2+ The second positive performance scenario is defined by the host car driving straight with a
certain velocity with 50% offset and the target car being stationary.

3+ The third positive performance scenario is defined by the host car and the target are driving
straight with same velocity, with 100% offset, and the target car immediately starts to fully
break.

In all the positive scenarios the host car is able to turn either right or left in order to avoid a
collision.

2.5 Uncertainties

The dominant uncertainties assumed to occur are uncertainties from the sensor, since there is almost
always some degree of noise. Table 2.2 lists the errors considered. Furthermore, we assume that the
range of each error is given and all errors are independent. We make this assumption because the
distribution of sensor errors are out of the scope of this thesis. However, Volvo have good knowledge
of the spread of the errors.

We collect all the errors in Table 2.2 in a vector £ = (gxrel’Evl‘:{g’fai‘;’;g’gyrel’gvi‘gg’éagzgv§wm)T

We let b; be the assumed range for error & for i =1,...,7, so —bz-r <& <.

13
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Neg Performance #1

lon
e U, L GRS

long
* Vg =0m/s

o (0% offset

Neg Performance #2

long _

e v, 7 =km/s
long _

° Vear = 0 m/S

b a;aat = kZ 771/52

e 0% offset

Pos Performance #1

long __

e v, " =kim/s >
long

s vrar =0 m/S

e 100% offset

Pos Performance #2

lon
o v, =k m/s

long __
e v, =0m/s

o 50% offset

Pos Performance #3

long _
v, © =kym/s

long __
e v 7 =0m/s

long _ >
e a, = —10m/s

e 100% offset

Figure 2.3: An overview of the negative and the positive performance scenarios.

14
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Table 2.2: All assumed errors from the sensor.

Sensor uncertainties Notation of Error
Relative longitudinal distance Ereal
Relative longitudinal velocity fv:?g
Longitudinal acceleration of the target car £altir;g
Relative lateral distance el
Relative lateral velocity plat
Lateral acceleration of the target car alat
Width of the target car Whar

15



Chapter 3

Optimization background

In this chapter we present an introduction of the scientific areas concerned in this thesis. We start
with essential theory and terminology in global optimization—see Section 3.1—which lays the the-
oretical foundation for this thesis. After that we present multi-objective optimization, the theory
concerning more than one objective function—see Section 3.2. We conclude this chapter with a
description of simulation-based optimization—see Section 3.3.

3.1 Global optimization

All the definitions and theorems in this section are taken from [1].
Consider the problem to

minimize f(x), (3.1)
subject to x € {2,

where @ is the decision variable, 2 C R? is a nonempty set and f : R — R is a given function.

Definition 3.1.1 (Global minimum). Consider the optimization problem (3.1) and let * € 2. We
say that «* is a global minimum of f over (2 if f attains its lowest value over (2 at x*.
In other words * € {2 is a global minimum of f over (2 if

f@®) < f(x), =€,
holds. O

The goal of the optimization problem (3.1) is to find an optimal solution, i.e., a global minimum,
x* € (2, of the objective function f over the feasible set 2. The field regarding the search for a
global minimum is called global optimization; see [5] for a more comprehensive introduction. Note
that if the function is to be maximized it is equivalent to minimize — f.

However, there is another type of minimum that we also present, namely the local minimum.
Let B.(z*) := {y € R?: ||y — z*|| < £} be the Euclidean ball centered at x* with radius ¢.

16
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Definition 3.1.2 (Local minimum). Consider the problem (3.1) and let * € 2.

a) We say that * is a local minimum of f over (2 if there exists a small enough Euclidean ball
intersected with {2 around x* such that * is a global optimal solution in that smaller set.

In other words, * € 2 is a local minimum of f over 2 if

Je > 0 such that f(x*) < f(x), x € 2nNB(x"), (3.2)

b) We say that * € (2 is a strict local minimum of f over (2 if the inequality in (3.2) holds
strictly for ® # x*. O

Now we define some desirable properties of the feasible set {2 and the objective function f.

Definition 3.1.3 (Convex set). Let £2 C RY. The set {2 is convex if

x1, X9 € 2

= Ax1+(1—A e
/\6(0,1)} o1+ (1= Az

holds. O

Definition 3.1.4 (Convex function). Assume that 2 C R A function f : R? — R is convex at
xc 2if
e
Ae(0,1) p = fAz+ (1 —Nx) <Af(x)+ (1 —-N)f(x).
A+ (1 —Nx € 12
The function f is convex on {2 if it is convex at every & € f2. O

Assuming that the objective function f and the set {2 are both convex, the following property
regarding local and global minimum can be established.

Theorem 3.1.5 (Fundamental Theorem of global optimality). Consider the problem (3.1), where
2 is a convex set and f is convexr on §2. Then every local minimum of f over §2 is also a global
minimum.

Proof. Assume that x* is a local minimum but not a global one. Then consider a point & € {2 with
property that f(&) < f(x*). Let A € (0,1). By the convexity of the set 2 and the function f,
A+ (1-N)z* € 2,and fAz+ (1—-N)x*) < Af(Z)+ (1—X)f(x*). By choosing A > 0 small enough
it leads to contradiction to the local optimality of x*. O

This means that if an optimization problem fulfills the convexity conditions it is sufficient to
apply a local optimization algorithm to find the global minimum. This is desirable since, in general,
local optimization algorithms have a low computational complexity.

If the objective function f and the set {2 are both convex, then the following theorem provides
a tool to verify if a point « € §2 is a global minimum of f over (2.

Theorem 3.1.6. Assume that 2 C R% is nonempty and convex. Let f : R* — R be conver and C*
on §2. Then,

Vix) (x —x*) >0 = x* is a global minimum of f over £2. (3.3)

17
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Proof. Take *,x € £2 and X\ € (0,1). Then,

M(@)+ (1 =Nf(@") > fAz + (1 - Nz") =
f@) = f(@®) =2 A/N[f (e + (1 = N)z®) — f(z")]. (3-4)

Let A — 0. Then, the right-hand side of the inequality (3.4) tends to the directional derivative of f
at * in the direction of (x — x*), so that in the limit it becomes

flx) = f(a") 2 Vi) (z —z*) =
flx) > f(a) + V(") (@ —z") > f(z").
O

Typically the feasible set (2 is determined by inequality and/or equality constraints. If that is
the case, the optimization problem (3.1) can be expressed as

minimize f(x), (3.5)
subject to g;(x) <0, i € Z, (inequality constraints)

gi(x) =0, i € £, (equality constraints)

x € RY,

where g;(x) : R? — R define the constraint functions, and Z and £ are finite index sets. If, in
addition, the functions f and g; are continuous the problem (3.5) is called a continuous optimization
problem.

Proposition 3.1.7 (Convex intersection). Assume that 2k, k € K, is any collection of conver sets.
Then the intersection
2:= () %

kel

1S a conver set.

Proof. Let both @ and @2 belong to 2. (If two such points cannot be found then the results holds
vacuously). Then, 1 € 2 and x2 € 2 for all k € K. Take X € (0,1). Then, Ay + (1 — N)x2 €
2, k € K, by the convexity of the sets {2;. So, Ax; + (1 — N)xy € ﬂkelc 2, = (. ]

If the objective function f is convex, the functions g;, ¢ € Z, are convex and g;, ¢ € £, are
affine, then the problem (3.5) is called a convez problem. From Proposition 3.1.7 it follows that the
constraints in a convex problem form a convex set and thereby Theorem 3.1.5 can be applied.

In nonconvex optimization problems we have to expect multiple local minima, and the objective
function value in some local minima can be far from the minimum value. These problems can
be extremely difficult to solve. For a general nonconvex global optimization problem, where the
evaluation of the objective function is sufficiently time efficient, we can apply algorithms that vary
between a local and a global phase. During the global phase the idea of the algorithm is to explore
roughly the whole feasible set while during the local phase it is restricted to explore in a local portion
of the feasible set. The intention with the local phase is to refine the currently best solution found.
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3 Optimization background 3.2 Multi-objective optimization

3.2 Multi-objective optimization

Often more than one optimization goal is desired, for instance in product and process design. A good
design usually involves multiple criteria such as capital investment, profit, quality and/or lifespan,
efficiency, process safety, operation time, and so on. We want to optimize all these multiple criteria
and this section describes the mathematics needed to analyze such problem settings. All the theory
in this section is taken from [0].

Consider the problem to

minimize {f1(x), f2(x),..., fa(@)}, (3.6)
subject to x € (2,

with n (> 2) objective functions f; : R* - R, i = 1,...,n, and 2 C R? denoting the feasible set.
The problem (3.6) is a so-called multi-objective optimization problem. The objective functions f;
are likely to be in conflict, which means that there does not exist a single solution & € {2 that is
optimal for all n objective functions. However, if the objective functions f; are in conflict in the
problem (3.6) then the problem is actually not well-defined, because there is no hierarchy between the
functions. We have to present a definition of optimality for multi-objective optimization problems.
Let Z :={z € R": z; = fi(x), foralli =1,...,nand & € 2}. We say that a point = € {2 is a
decision point and that a point z € Z is an objective point.

Definition 3.2.1 (Pareto optimality). A decision point * € {2 is Pareto optimal if there does not
exist another decision point & € {2 such that f;(x) < fi(x*) for all i =1,...,n and fj(x) < fj(x*)
for at least one index j.

An objective point z* € Z is Pareto optimal if there does not exist another objective point z € Z
such that z; < 27 for all 7 = 1,...,n and z; < z;-‘ for at least one index j; or equivalently, z* is

Pareto optimal if the decision point corresponding to it is Pareto optimal. O

Note that there may be an infinite number of Pareto optimal points. The set of Pareto optimal
objective points Z* C Z is called the Pareto optimal set. Figure 3.1 illustrates the variable space
and the objective space.

From a mathematical point of view every Pareto optimal point is an equally acceptable solution
to the multi-objective optimization problem (3.6). However, in general only one point is desired as
a solution. Therefore, we need a so-called decision maker to select one solution out of the set of
Pareto optimal solutions, since the information that is needed to make the selection is not contained
in the objective functions. The decision maker is a person, or a group of persons, who has better
insight into the problem and who can formulate preferences among the Pareto optimal points.

Similarly to the case with one objective function, we can define some desirable properties.

Definition 3.2.2 (Convex problem). The multi-objective optimization problem (3.6) is convez if
all the objective functions f; and the feasible set {2 are convex. O

The methods used in multi-objective optimization are typically divided into four classes based
on whether a decision maker is available or not (e.g., [0, 7]).

e If no decision maker is available then no-preference methods are used, where a neutral com-
promise Pareto optimal solution has to be selected.
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Figure 3.1: An illustration of the Pareto optimal set for a bi-objective optimization problem with
the feasible set £2 C R3. Left: the variable space. Right: the objective space.

e Another class of methods is used if the decision maker formulates hopes. Then the closest
solution to those hopes is found. Those methods are denoted a priori methods. However, it
may be difficult to express preferences without deep knowledge about the problem.

e In a posteriori methods a representation of the Pareto optimal set is found before the decision
maker chooses one solution.

e The final class of methods are the interactive methods, which iteratively search through the
Pareto optimal set in guidance of the decision maker.

To exemplify one no-preference method we first have to define the ideal objective point.

Definition 3.2.3 (Ideal objective point). The components z; of the ideal objective point z* € R™
are obtained by minimizing each of the objective functions individually subject to the constraints,
that is, by solving the problem to

minimize f;(x),

subject to x € {2,
fori=1,...,n. ]

Now we consider a so-called L,-problem, which is the optimization problem to

n 1/p

minimize (Z |fi(x) — zﬂp> , (3.7)
i=1

subject to x € (2,

where 2} are the components of the ideal objective point z* and 1 < p < oc.
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3 Optimization background 3.3 Simulation-based optimization

Theorem 3.2.4. The solution to the L,-problem (3.7) is Pareto optimal in (3.6).

Proof. Let * € {2 be a solution to problem (3.7) with 1 < p < co. Assume that x* is not Pareto
optimal to (3.6). Then, there exists a point & € {2 such that f;(x) < fi(x*) for all i = 1,...,n and
fi(x) < fj(x*) for at least one j. Now, the inequality (f;(x) — 27)? < (fi(x*) — z7)P holds for all
i=1,...,n, and the strict inequality (f;(x) — 27)? < (f;j(x*) — z})P holds. We have

n

n
D film) = z0)P <> (fila*) =2 )P
i=1 i=1

Raising both sides of the inequality to the power 1/p yields reach a contradiction to the assumption
that «* is optimal in (3.7). O

Another possible approach to solving multi-objective optimization problems is to weigh all the
objective functions into one objective function and then apply suitable single objective global op-
timization methods. However, there may not always exist information to base the weight decision
on.

We conclude this section with an a posteriori method, called the weighting method, which is
based on the weighting idea. Consider the weighted problem, which is the optimization problem to

n

minimize sz‘fi(iﬂ), (3.8)
i=1

subject to « € (2,

where it holds that w; >0 foralli=1,...,n and > " ; w; = 1.

Theorem 3.2.5. The solution to the weighted problem (3.8) is Pareto optimal if all the weighting
coefficients are positive, that is w; > 0 for all i =1,...,n.

Proof. Let x* € (2 be an optimal solution to (3.8) with positive weighting coefficients. Assume that

x* is not Pareto optimal. This means that there exists a solution x € (2 such that f;(x) < fi(x*)

foralli=1,...,n and fj(x) < fj(x*) for at least one j. Since w; > 0 for all i = 1,...,n we have
that the inequality Y ", w;fi(x) < Y i, w;fi(x*) holds. This contradicts the assumption that x*
is an optimal solution to the weighted problem (3.8). O

3.3 Simulation-based optimization

A frequently used tool to evaluate outputs from models of real systems is computer simulation.
Its applications appear in many different areas, such as portfolio selection ([%]), manufacturing
([9]), engineering design ([10]), and bio medicine ([11]). By choosing optimal parameter settings
for the simulation an extensively improved results can be achieved. However, finding the optimal
parameter values is a challenging problem and this is where the field of simulation-based optimization
has emerged. In simulation-based optimization the assumption is that the objective function, the
simulation-based function, is not directly available due to the complexity of the simulation. Thereby,
many mathematical tools, e.g., derivatives, are not available.
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3 Optimization background 3.3 Simulation-based optimization

To avoid confusion we need to clarify that we want to find the optimal set of parameters for
a computer simulation (see Section 2.3) which means that the parameters will act as variables in
the optimization problem. Precisely as [12], we are treating the computer simulations as black-box
functions.

There exist many continuous simulation-based optimization methods, but none of them can
guarantee finding an optimal solution in finitely many steps. This is due to the fact that the
objective function is not directly available, and thereby no strong convergence analysis can be made.
The methods can be categorized into various groups, for instance gradient based search methods,
metaheuristics and response surface methodology ([13, 11]).

Gradient based search methods estimate the gradient of the black-box function and employ
deterministic mathematical programming techniques.

Metaheuristics are methods that interact between local improvement procedures and effective
strategies of escaping from local optima and performing an efficient search in the solution space.
Three of the most popular are tabu search, simulated annealing and genetic algorithms ([15, 16]).
Usually the metaheruistics include strategies to handle multiple objective functions; see [17] for a
tutorial of multi-objective optimization using genetic algorithms.

The idea of the response surface methodology is to construct a surrogate model, also known
as a response surface, that mimics the behavior of the black-box function as closely as possible.
Then global optimization algorithms are applied to the surrogate model. The advantage is that
more efficient algorithms can be applied to the surrogate problem, as it is typically explicitly stated.
Typically, response surface methods are used when the evaluation of the simulation-based function
is very time consuming. The general procedure (see [7]) for a response surface method is detailed in
Algorithm 1.

In this thesis we present one response surface method, namely radial basis function interpolation
(RBF); see [18]. The RBF interpolation is independent of the dimension of the variable space, which
is a desirable property for the problem studied in this project.

Algorithm 1 General response surface method

Step 0:
Create an initial set of sample points and evaluate them through a simulation.

Step 1:
Construct a surrogate model of the simulation-based function by using the evaluated points
and their corresponding function values.

Step 2:
Select and evaluate a new sample point, and balance local and global search, to refine
the surrogate model.

Step 3:
Return to Step 1 unless a termination criterion is fulfilled.

Step 4:
Solve the simulation-based optimization problem where the objective function is replaced by
the constructed surrogate model.
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Chapter 4

Radial basis functions

The theory presented in Sections 4.1 and 4.2 is mainly taken from [18] and complemented with
theory from [7] and [12]. In Section 4.1 we present the inspiration and background of radial basis
functions. In Section 4.2 we present theory of radial basis functions, and we conclude in Section 4.3
with error estimation, which presents convergence properties of radial basis functions. We state and
prove Theorem 4.2.5, inspired from theorems and proofs in [15].

4.1 Background of radial basis functions

Interpolation is the task of determining a continuous function s : R — R such that each point in a
given finite set X := {x1,...,x,} C R? as well as the unknown function f : R% — R satisfy

s(x;) = f(xi), i=1,...,n. (4.1)

If the dimension d is equal to 1 and s € CY, i.e., s is from the space of continuous functions, then
the problem (4.1) has multiple solutions. However, if we consider a specific finite dimensional linear
subspace then the problem (4.1) has a unique solution. An intuitive choice of space for n points
in one dimension is the space of polynomials of degree at most n — 1, denoted m,_1(R). Then,
the existence of a unique solution to the system of equations (4.1) is guaranteed, but the utility of
polynomials is limited, because the required degree of the polynomials increases with the number
of evaluated points. The result of using higher degree polynomials is often strongly oscillating
interpolating functions (see Figure 4.1), which is an undesired effect. However, this can be avoided
by partitioning the one-dimensional space into intervals between the data points, and then utilizing
a polynomial interpolation of lower degree m, such as cubic, where m = 3, in each interval. The
function values and the values of the first m — 1 derivatives of these polynomials have to agree at the
points where they join. These piecewise polynomials are called splines. We summarize this problem
in the following way: Let the data points be ordered according to

a<x <...<x,<b.
Define x¢ := a, xp+1 := b, and the function space of cubic splines by

S3(X) = {S S Cz([a, b]) : Sl[xi@Hl] S 7T3(R), 1= O,...,n} .
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4 Radial basis functions 4.2 Background of radial basis functions

The task is to find s € S3 such that the equations (4.1) are fulfilled. Figure 4.1 shows a comparison
between spline and polynomial interpolation.

» Data Points (2,7 (2:))

Folynomail Interpolation

—— —B3pline Interpolation

0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.a 0s 1

Figure 4.1: An illustration of the differences between the spline and polynomial interpolations.

There is no guarantee that there is a unique interpolation s € S3 that fulfills (4.1), but it is
possible to enforce uniqueness through the concept of natural cubic splines according to

NSg(X) = {8 S Sg(X) 1S

taz1)s Sliznp) € T1(R)} .

Unfortunately, interpolating multivariate functions is much more complicated. Therefore, we
introduce Haar spaces to understand the complication.

Definition 4.1.1 (Haar space). Assume that £2 C R? contains at least n points. Let V C C(£2) be
an n-dimensional linear space. Then V is called a Haar space of dimension n on (2 if for arbitrary
distinct points ®1,...,x, € 2 and arbitrary fi,..., f, € R there exists exactly one function v € V'
with v(x;) = fi, 1 <7 <n. O

For instance, V' = m,_1(R) is a n-dimensional Haar space for any set {2 C R that contains at
least n points, as we noted above. We now present a theorem which provides the insight into the
problem of interpolation when the dimension of the domain is higher than 1. Its proof is found in
[18, Thm. 2.3].

Theorem 4.1.2 (Mairhuber-Curtis). Assume that 2 C R%, d > 2, contains an interior point. Then
there exists no Haar space on §2 of dimension n > 2. L]

Fortunately, there exists a field with multi-variable settings which takes its inspiration from the
one-dimensional natural cubic splines. We introduce radial basis functions.
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4.2 Radial basis functions

If we still want to interpolate some data values fi,...,f, € R at some given data points X :=
{z1,...,2} C R?, for any positive integer d, despite Theorem 4.1.2 one simple way is to choose a
fixed function @ : R — R and form the interpolant as

spx(@) =) d(x — @), (4.2)
=1

where the values of the coefficients «; are determined by the interpolation conditions

sf,X(a:Z-):fi, iE{l,...,n}. (43)

The desirable property would be that the function @ could be chosen for all kinds of data point sets,
i.e., for any number n € N and any possible combination X := {x1,...,2,} C R An equivalent
formulation of the interpolant (4.2) and interpolation conditions (4.3) is asking for an invertible
interpolation matrix

Ag x = (P(x; — xj))1<ij<n,

We know that any real symmetric matrix that is positive definite is also invertible; see Appendix B.
This makes it natural to introduce the following definition.

Definition 4.2.1 (Positive definite function). A continuous function @ : R? — C is called positive
definite if, for all n € N, all sets of pairwise distinct points X = {z,,...,z,} C RY and all
a € C"\{0"} it holds that

n n
Z Z Ozi@j@(wi — acj) > 0, (4.4)
i=1 j=1

where @ is complex conjugation of a. The function @ is called positive semi-definite if the left-hand-
side of (4.4) is nonnegative for all a € C". O

As can be seen in Definition 4.2.1 a more general definition for complex-valued functions have
been used; the reason is that it allows more natural for techniques such as Fourier transforms. Next
we introduce the term radial basis function which is the foundation of the interpolation theory to
be presented.

Definition 4.2.2 (Radial basis function, RBF). A function @ : R? — R is called a radial basis
function if there exists a univariate function ¢ : [0, 00) — R such that

o(z) = ¢(|lz]), =R,
where || - || denotes the Euclidean norm. O

We link radial basis functions and positive definite functions by the following definition.
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4 Radial basis functions 4.2 Radial basis functions

Definition 4.2.3. A univariate function ¢ : [0,00) — R is said to be positive definite on R? if the
corresponding multivariate function @(x) := ¢(||z|),x € R?, is positive definite. O

However, using an interpolant of the form described in (4.2) is not the only approach possible.
A more general is to start with a function @ : RY x R? — C and form the interpolant as

n

spx() =) o0z, ;).

=1

Furthermore, if we are only interested in some points x1,...,x, that belong to a certain subset
2 C R? then we only need a function @ : 2 x 2 — C. This kind of function ¢ will be called a
kernel, to mark the difference from functions defined on R? x R,

Definition 4.2.4 (Positive definite kernel). A continuous kernel @ : 2 x 2 — C is called positive
definite on a non-empty set 2 C R? if for all n € N, all sets of pairwise distinct points X :=
{z1,...,x,} C 2, and all a € C"\{0"} it holds that

O]

This definition is not precise due to the fact that the set {2 is not specified, so the set might be
finite. If this is the case it would be impossible to find for all n € N pairwise distinct points in 2.
However, if the set is finite the only values of n € N that would have to be considered are those that
allow the choice of n pairwise distinct points.

The radial basis function ¢ : [0,00) — R fits into this generalization of introducing the kernel by
defining &(x, y) := ¢(||& — y||). The univariate function ¢ is called positive definite on 2 C R? if
the kernel @(x,y) is positive definite on (2.

The restriction to real coefficients for a positive definite kernel, i.e., a € R" instead of a € C",
in Definition 4.2.4, is explained in the following theorem.

Theorem 4.2.5. Assume that @ : 2 x {2 — R is continuous. Then @ is positive definite on
Q2 C R if and only if & is symmetric and, for all n € N, all sets of pairwise distinct points
X ={x1,...,xn} C 2, for all o € R™"\{0"} it holds that

n

>3 ajad(mj, ) > 0. (4.5)

j=1k=1

Proof. [=>|: Assume that @ is positive definite on 2. First we prove that @(x,x) > 0, for all
x € (2. Choose n = 1 and a7 = 1 in Definition 4.2.4 and let &1 = x, where x € (2 and the
desired result is obtained. Further we prove that @ is symmetric, i.e., ?(x,y) = @(y,x) for all
x,y € 2. Assume there are at least two distinct points in 2 (otherwise the result is trivial). Choose
n=2a =1,a=c,x1 = x, and &2 = y, where x,y € (2. If we let ¢ = 1 and ¢ = i, respectively,
we have that the inequalities

b(x,x) +P(y,y) + D(x,y) + P(y,x) > 0,
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and
P(z, ) + D(y,y) +i(P(y,z) — P(z,y)) >0

holds. Since ¢(x, ) > 0 and ®(y,y) > 0, both ¢(x,y) + P(y,x) and i(P(y, x) — P(x,y)) must be
real. This is only possible if &(x,y) = @(y,x). Since @ is positive definite on (2 the inequality (4.5)
is obviously satisfied.

[<=]: Now assume that @ satisfies the given conditions. Let a; = a; + ib;, where a;,b; € R. Then
it holds that

n n

S ajard(my, k) =Y > (ajak + bib)S(xg, k) +iY > <akqu5(mj, @) — a;jbP (@, xj))'

j=1 k=1 7=1 k=1 j=1k=1

The second sum on the right-hand side, resulting from the symmetry of @, is equal to zero. The first
sum on the right-hand side is nonnegative because of the assumption and vanishes only if a; = b; = 0,
j=1,...,n. O

Next we present a theorem to verify when a function is positive definite, but first we need to
introduce the following definition.

Definition 4.2.6 (Completely monotone). A function ¢ is called completely monotone on (0, c0) if
¢ € C*(0,00) and

(~1)'¢"(r) = 0,

for all I € NU {0} and all » > 0. The function ¢ is called completely monotone on [0, 00) if it is in
addition in C|0, c0). O

The proof of Theorem 4.2.7 is found in [1&, Thm. 7.14].

Theorem 4.2.7. The function ¢ : [0,00) — R is positive definite on every Re if and only if ¢(;/7)
is completely monotone on [0,00) and not constant. O

We now present two radial basis functions, and verify that they are positive definite. The first
radial basis function that we present is the Guassian radial basis function defined by

2

b(x) = o(r) == e,

where r = ||| and « > 0. By Theorem 4.2.7 the Gaussian function is positive definite on every R?
due to the following: Set f(r) := ¢(y/r); then f is completely monotone, since

(-1 f0) = (~1*a'e 2 0,

Since f is not constant, ¢ must be positive definite.
The second radial basis function that we present is the inverse multiquadrics radial basis function,

defined as

D(z) = ¢(r) = ( +1%)77,
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where r = |||/, # > 0 and ¢ > 0. Again by Theorem 4.2.7 the inverse multiquadrics function is
positive definite on every R? according to the following: Set f(r) := ¢( /r); then f is completely
monotone since

(1) fO(r) = (~1)2B(B+1) - (B+1—1)(r+ )P >0.

Since f is not constant, ¢ must be positive definite.
Next we will relax the condition of positive definiteness to allow a wider range of radial basis
functions.

Definition 4.2.8 (Conditionally positive definite function). A continuous function @ : R¢ — C is
said to be conditionally positive definite of order m if, for all n € N, all sets of pairwise distinct
points X := {xy,...,z,} CR? and all a € V;,,\{0"} it holds that

n
Zajakdi(xj - ka) > 0,
j=1

where

Vim=qaecC": Zosz(a:j) =0, pe€mu_1(RY)
j=1

If instead Z}Ll ajoP(x; — ) > 0 the function is said to be conditionally positive semidefinite of
order m in R?. ]

Note that if m > [, then a conditionally positive definite function of order [ is also conditionally
positive definite of order m since V,,, C V;. Furthermore, note that if the order m = 0 the function
is positive definite.

Definition 4.2.9. A univariate function ¢ : [0,00) — R is called conditionally positive definite of
order m on R?, if &(x) := ¢(||z||) is conditionally positive definite of order m. O

We now present a theorem that verifies when a function is conditionally positive definite. The
proof can be found in [18, Thm. 8.19].

Theorem 4.2.10. Suppose that ¢ € C[0,00) N C>°(0,00) is given. Then the function ® = ¢(|| - ||?)

|
is conditionally positive semi-definite of order m € NU {0} on every R? if and only if (—1)™¢(™) is
completely monotone on (0, 00). O

Corollary 4.2.11. Assume that ¢ € C[0,00) N C*(0,00), and that it is not a polynomial of degree
at most m. Then ¢(|| - ||) is conditionally positive definite of order m on every R® if (—1)™¢(™) is
completely monotone on (0, 00). O

Now we present three additional radial basis functions, and verify that they are conditionally
positive definite. The third radial basis function that we present in this thesis is the multiquadrics
radial basis function defined by

D) i= ¢(r) = () +12)"
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where ||| = 7, ¢, > 0, 8 ¢ N, and [-] denotes the ceiling function. The multiquadrics is
conditionally positive definite of order m = [] on every R?, which can be verified by using Corollary
4.2.11: Tf we let f5(r) := (—1)!1(c? +r)? then we have that

(P @) = (12188 = 1) -+ (8- 8] + 1)( + 1) 17,

which is completely monotone, and m = [[3] is the smallest possible choice that makes (—1)™ fé,m)
completely monotone. Thus, ¢ is conditionally positive definite of order m = [3] on every R?, since

¢ ¢ mm(R).

The fourth radial basis function that we present is the powers radial basis function, defined as
D) i= o(r) 1= (~1)¥210,

where ||| = r, and 8 > 0, 8 ¢ 2N. The powers is conditionally positive definite of order m = [3/2]
on every R? which can be verified by using Corollary 4.2.11: If we define f5(r) := (—1)[8/2178/2 then
we get,

()PP ) = (<1292 3 /2(8/2 = 1) - - (8/2 = [B/2] + 1)r®/>7 1971,

which is completely monotone, and m = [/3/2] is the smallest possible choice that makes (—1)™ fém)

completely monotone. Hence ¢ is conditionally positive definite of order m = [3/2] on every RY,
since ¢ ¢ m,(R).

The fifth and final radial basis function that we present is the thin-plate or surface splines radial
basis function defined by

O(x) := 6(r) := (=1)"r* log(r),

where ||x|| = r, and k¥ € N. The thin-plate spline is positive definite of order m = k + 1 on
every R which can be verified by Corollary 4.2.11. Since 24(r) = (—1)¥*1r2log(r?), we define
fe(r) := (=1)k*1r*log(r), and achieve

) = (UM (k= 1) (k= 1+ 1D)rFog(r) +pi(r), 1<1<Fk,

where p; is a polynomial of degree k — [. This means that flgk) (r) = (=1)F* 1kl log(r) + ¢, where c is

a constant. Finally we have that (—1)*+! f,ng)(T) = klr~!, so f is clearly completely monotone on
(0,00). Hence, ¢ is conditionally positive definite of order m = k + 1 on every RY, since ¢ ¢ m,,(R).

Note that the thin-plate spline is not defined at r = 0 since log(r) is not defined there. A radial ba-
sis should be defined on [0, c0) so we need to extend it. Since it holds that lim,_,o+ (—1)*2* log(r) =
0, for all k € N it follows naturally that

o (—1)kr2k log(r), if r >0,
¢wy_{a if r = 0.

All the presented radial basis functions, for this thesis, are compiled in Table 4.1.
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Table 4.1: A compilation of the radial basis functions presented in this thesis with their correspond-
ing order of conditionally positive definiteness.

Name O(x) = o(r), r=|z Conditionally positive definite of order
Guassians e*O”Q, a>0 0

Multiquadrics (—D)IBN(2 +72)P, B>0,8¢ N 0

Inverse multiquadrics (A+r2)P, B<0 (5]

Thin-plate splines (~D)k+1r2klogr, keN (/2]

Powers (=D)IB21r8 3 >0,8 ¢ 2N k+1

Now we have all the necessary tools to define the interpolation problem and how to solve it. Let
7m(R?) denote the space of all polynomials of degree at most m in R%. The points X := {x1,...,x,}
with corresponding function values fi,..., fn, the task is to find a € R” and 8 € R such that:

n Q
spx(@) = ;oo —z;|) + > Brpr(), (4.6)
j=1 k=1
Sfyx<wi):fi, izl,...,n, (4.7)
> ajp(e;) =0, k=1,...,Q, (4.8)
j=1

where Q = dim(7,,_1(R%)) and {pk}gzl is a basis of 7,,,_1(R%). Therefore a satisfying the equations
(4.8) is equivalent to a € V};, (from Definition 4.2.8). Solving this interpolation problem is equivalent

to solving the linear system
A P lo'% f
(7 wa) (5)= (a0 ). “

Aij = ol —xjl)), i,j=1,...,n,
Py, := pr(x;), i=1,...,n, k=1,...,Q.

where

For convenience we use the notation

- A P
Assuming suitable condition on the points in the set X, we can establish the existence and

uniqueness of a solution to the system (4.9).

Definition 4.2.12. The points X := {x1,...,2,} € R? with n > dim(,,(R%)), are called 7, (R?)-
unisolvent if the zero polynomial is the only polynomial from m,,(R?) that vanishes at all of the
points in X. ]
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4 Radial basis functions 4.3 Error estimation for radial basis functions

To provide an example from Definition 4.2.12, we assume that we are given some points X that
are 71 (R%)-unisolvent. This means that not all points in X belong to a common hyperplane. We
can now present following theorem.

Theorem 4.2.13. Assume that the radial function ¢ is conditionally positive definite of order m
and the points X := {x1,...,x,} are Ty,_1(RY)-unisolvent. Then the linear system (4.9) is uniquely
solvable.

Proof. Assume that (a”,87)T lies in the null space of the matrix A. Then we have that

Aa+ PB=0", (4.11)
PTa =09, (4.12)

The equation (4.12) means that a € V},, (see Definition 4.2.8). By multiplying equation (4.11) by
o from the left, it follows that 0 = a” Aa + (PTa)”B = a” Aa.. Since ¢ is conditionally positive
definite of order m, we have that a = 0 and hence P@ = 0" holds. Since X is 7,,_1(R%)-unisolvent
and the Vec‘cors{pk}g:1 are linearly independent we can conclude that 8 = 09. Thus, the only
vector in the null space of A is the null vector, which implies that A is invertible. ]

4.3 Error estimation for radial basis functions

In this section we discuss error estimation of radial basis functions. We begin by introducing repro-
ducing kernels and the spaces generated by them, and in time we will see that a positive definite
kernel can be identified as a reproducing kernel. Relevant definitions and theorems needed for the
theory in this section can be found in Appendix B.

Definition 4.3.1 (Reproducing kernel). Let F be a real Hilbert space of functions f : 2 — R. A
function @ : 2 x 2 — R is called a reproducing kernel for F if it fulfills the following two properties:

(1) &(-,y) € F for all y € 2, and
(2) f(y) = (f,D(-,y))r forall f e Fandall y € £,

where (-, ) 7 denotes the inner product of the Hilbert space F. ]

Note that the reproducing kernel of a Hilbert space is uniquely determined. Assume that there
exist two reproducing kernels ¢; and ®3. From property (2) in Definition 4.3.1 we have that

([, 21 y))r = (f;D2(9))F = (f,21(,y) — P2(1,9))F = f(y) — f(y) = 0 for all f € F and
all y € 2. By letting f = &1(-,y) — P2(+,y) for a fixed y, it follows from the definition of a norm
that @1 and &5 are identical.

Definition 4.3.2 (Point evaluation functional). Let F be Hilbert space of functions f : 2 — R.
A linear functional d, : 7 — R is called the point evaluation functional for a fixed y € 2 on F if

dy(f) = f(y) for all f e F. O

Now we present a connection between the reproducing kernel and the point evaluation functional.
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Theorem 4.3.3. Assume that F is a Hilbert space of functions f : 2 — R. Then the following
statements are equivalent:
(1) all the point evaluation functionals are continuous, i.e., 6y € F* for all y € £2,

(2) F has a reproducing kernel,

where F* denotes the dual space of F.

Proof. (1) = (2): Assume that the point evaluation functionals are continuous. By the Riesz
Representation Theorem, see Theorem B.17 in Appendix B, we have that for every y € {2 there
exists a unique element ¢, € F such that d,(f) = (f, Py) for all y € 2. Hence, D(x,y) := Py(x) is
the reproducing kernel of F.

(2) = (1): Assume that F has a reproducing kernel ¢. This means that d,(f) = f(y) = (f,2(-,y))F
for y € §2 and for all f € F. Since the inner product is continuous, so is . O

A reproducing-kernel Hilbert space posses several special properties; a few of them are presented
in Theorem 4.3.4.

Theorem 4.3.4. Assume that F is a Hilbert space of functions f : 2 — R with reproducing kernel
®. Then, the following hold:

(1) D(z,y) = (P(-,x), P(,y))r = (0a, 6y) 7+ for ,y € £2.
(2) b(x,y) = P(y,x) for x,y € (2.

Proof. From the Riesz Representation Theorem we have that F' : F* — F, which reduces for point
evaluations to F'(6y) = @(-,y) due to the definition of a reproducing kernel. This means that

(O, 0y) e = (F(0a), F(0y)) F = (2( 2), (-, y)) F
hold. Furthermore, it holds that
P(x,y) = 02(P( y)) = (2(-,y), P(-, @) r = (2(-, %), (-, y)) F

Hence, property (1) is proven; property (2) follows immediately from property (1), since the inner
product is symmetric. O

We can now disclose the connection between positive definite kernels and reproducing-kernel
Hilbert spaces.

Theorem 4.3.5. Assume that F is a reproducing-kernel Hilbert function space with reproducing
kernel @ : 2 x £2 — R. Then @ is positive semi-definite. Moreover, @ is positive definite if and only
if the point evaluation functionals are linearly independent in F*.

Proof. Since the kernel @ is symmetric and real-valued it follows from Theorem 4.2.5 that we can
restrict ourselves to real coeflicients in the quadratic form. For pairwise distinct points x1,...,x, €
2 CR? and ¢ € R™\{0} we have that

n n n n
>3 et ) = | Vet 3t
j=1 k=1

]:1 =1

2

= ch5wj > 0.
j=1

f* f*
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The last expression can and will only be zero if the point evaluation functionals are linearly depen-
dent. O

We have now established that a positive definite kernel appears naturally as the reproducing
kernel of a Hilbert space. However, normally we don’t start with a function space but rather with a
positive definite kernel. In other words, we are facing the problem of finding the associated function
space having a a positive definite kernel as its reproducing kernel. Suppose that @ : 2 x 2 — R is
a symmetric positive definite kernel. We define the following space:

F3(02) := span{®(-,y) : y € 2}

and equip it with the bilinear form

n m

(Z%@('@j)»Zﬁk@(wyk > =3 ) aB®(xj, yk). (4.13)
Jj=1 k=1 &

j=1k=1

Theorem 4.3.6. If & : {2 x {2 — R is a symmetric positive definite kernel, then the bilinear form

(-,-)¢ defines an inner product on Fg({2). Moreover, Fg(§2) is a pre-Hilbert space with reproducing
kernel .

Proof. Obv1ously (+,-)o is symmetric since @ is symmetric. Furthermore, if we choose an arbitrary
function f = Z _ 1 a;P(,x;) #0 from Fp(£2) we find that

n n

(£, Pe=>>_ ajapd(mj, zi) > 0,

j=1k=1

because @ is positive definite. At last, for this f we obtain

n

(£, 2(,9)e =Y a;(@;,y) = f(y),

j=1
which establishes the reproducing kernel. O

The completion, Fg(f2), of the pre-Hilbert space Fy(f2) with respect to the norm || - ||¢ is a
candidate for a Hilbert function space with reproducing kernel ¢. However, the elements of Fg((2)
are abstract elements which need to be interpreted as functions. As a result of the point-evaluation
functionals being continuous on Fg({2), their extension to the completion remain continuous, and
this idea can is used for defining function values for the elements in Fg(f2). Hence we define the
linear mapping

R:Fe(£2) = C(02), R(f)(z):=(f,2(,@))e, Vfe Fa(2),Va e 2.
The resulting functions are continuous since it holds that

[Rf(z) — Rf(y)| = [(f, 2(, ) — 2(,9))a| < [|fllal2(, 2) — 2(, )l
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and

12(, ) — 2(,y) |3 = (@, @) + Ly, y) - 20(x, y).

The desired result is obtained since @ is continuous.
We need to conclude with a minor result, Lemma 4.3.7, to be able to define the native Hilbert
space of the positive definite kernel @. Its proof can be found in [18, Lemma 10.8].

Lemma 4.3.7. The linear mapping R : Fp(£2) — C(£2) is injective.

Definition 4.3.8. The native Hilbert function space corresponding to the symmetric positive definite
kernel @ : (2 x {2 — R is defined by

Ns(02) .= R(Fs(02)).
The inner product is defined as

(f7 g)Nq}(Q) = (Rilfa RilQ)@-
O

The space is a Hilbert space of continuous functions on {2 with reproducing kernel @. Since
(-, x) is an element of F(£2) for x € £2 it is unchanged under R, and therefore it holds that

f(x)=(R'f,8(-,x))e = (f, (-, ) Ny (2), for all f € Ng(£2) and all = € £2.

Hence, positive (semi-)definite kernels and reproducing kernels of Hilbert function spaces are the
same. The following theorem shows the uniqueness of the native space. Its proof can be found in
[18, Thm. 10.11].

Theorem 4.3.9. Assume that @ is a symmetric positive definite kernel and assume further that G
is a Hilbert space of functions f : {2 — R with reproducing kernel ®. Then G is the native space and
the inner products are the same. ]

We generalize the notion of conditionally positive definite function to a conditionally positive
definite kernel.

Definition 4.3.10 (Conditionally positive definite kernel). Assume that P is a finite-dimensional
subspace of C'(£2), 2 C R%. A continuous symmetric kernel @ : £2 x 2 — R is said to be conditionally
positive definite on {2 with respect to P if, for any n € N, all sets of pairwise distinct points
X :={z1,...,x,} € 2 and all a € Vp\{0"} it holds that

n

n
Z Z ajozk¢(:z:j, :Bk) > 0,

j=1k=1

where

Vp = aER”:Zajp(:Bj)ZO, peP
j=1

34



4 Radial basis functions 4.3 Error estimation for radial basis functions

The domain {2 can be quite arbitrary. It should, however, contain at least one P-unisolvent
subset. Note that we use a more general space, P. To establish the native space of a conditionally
positive kernel, in the same manner as in the case of a positive definite kernel, we start by defining
the linear space

Fp(2) = {Zai@(.,mj) ineN,a€R" xy,..., @, € 2, with Y a;p(m;) =0, p € 73} . (4.14)
=1 =1

The bilienear form presented in equation (4.13) can be used as an inner product. Note that the
additional constraint on the coefficients in (4.14) ensures the definiteness of the inner product.

Again we can form the Hilbert-space completion Fg(f2) of Fg(f2) with respect to (-,-)s. Un-
fortunately, we cannot construct an operator R : Fg(£2) — C(f2) in the same manner as before,
because @(-, ) is in general not included in Fg((2). However, the construction of the operator R is
still possible, while rather technical (see [18, Chapter 10.3]). The operator R is defined as

R:Fs(02) = C(£2), R(f)(x):=(f,G(,x))e, VfeFs(2),Vae 2,

where the function G is defined as
Q
G( @) :=B(,x) — Y _pj(x)D(-&), =€,
j=1

and where the points = = {&1,...,{qg} defines a P-unisolvent subset of {2 with @) = dim(P) and
pj, 1 < j < Q, define a Lagrange basis of P with respect to Z. At last, a native space can be
defined.

Definition 4.3.11. The native space corresponding to a symmetric kernel @ that is conditionally
positive definite on {2 with respect to P is defined by

Ng(02) .= R(Fe(92)) + P.
The space is equipped with a semi-inner product

(f,9)Nw() = (RS = Ipf), R~ (g — IIpg))e, (4.15)
where IIp is a projection operator, defined as

Q
Ip:C(2) » P, Hp(f):=Y_ f(&p;.

j=1
O

Note that the conditionally positive definite kernel @ is not a reproducing kernel for the native
space N (£2). Now, we are to find an error estimation of interpolating a function f, given the set of
discrete points X. We need the following two definitions.

35



4 Radial basis functions 4.3 Error estimation for radial basis functions

Definition 4.3.12 (Power function). Assume that @ is a conditionally positive definite kernel on
an open set {2 with respect to P C C(£2). If X :={x1,...,x,} C {2 is P-unisolvent, then for every
x € (2 the power function is defined by

Py x(x)” = P(m,z) — 2> uwi(@)d(z, ) + »_ ui(x)uf(®)P(w;, ),
j=1

,j=1

where the function u*(x) is a part of the solution to the system

A P u*(x) \ _ [ R(x)
[ oea) (i) ) = (500 )
where A = (&(x;,x;)), P = (pj(x;)), and p1,...,pg form a basis of P. Furthermore R(x) =
(®(z,1),...,P(x,x,))T and S(z) = (p1(x),...,po(x))T. O

Definition 4.3.13 (Fill distance). The fill distance of a set of points X = {x1,...,z,} C {2 for a
bounded domain 2 C R? is defined as

h = i — x|
i‘g?z@%”‘” ;|

O]

An intuitive picture of Definition 4.3.13 is that for any point @ € {2 there exists a data point
x; within a distance at most h. Another picture is that the fill distance h denotes the radius of
the largest ball which is completely contained in {2 and which does not contain any data points x;,
so in some sense h describes the largest data points-free "hole” in 2. Now we can state an error
estimation, which gives a bound for the interpolation error; the proof can be found in [I8, Thm.
11.4].

Theorem 4.3.14 (Error estimation). Let 2 C R? be open. Assume that @ is a conditionally
positive definite kernel on §2 with respect to P C C(£2). Assume further that X := {x1,...,x,} C 12
is P-unisolvent. Denote the interpolant of f € Ny(§2) by sy x. Then, for every x € §2 it holds that

|f(x) — syx(®)] < Pox ()| flng )
L]

It is possible to find a bound for the power function. For every radial basis function there is a
function B dependent on the fill distance h such that

P; x(z) <CB(h), @€

where C' > 0 is a constant independent of X := {x1,...,x,}. The radial basis functions presented
in Section 4.2 and their corresponding functions B are listed in Table 4.2.

Table 4.2 shows that the Gaussian RBFs have the best asymptotic convergence while the linear
RBF show a rather poor asymptotic behavior. This would be a motive for using a Guassian RBF
but the error estimates are asymptotic and do not necessarily imply a better interpolation with a
finite number of points.
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Table 4.2: A bound for the power function, where ¢ > 0 and ¢ > 0 are constants.

Name &(x) =o(r), r=|=x| B(h)
Guassians e_O””Q, a>0 e—clloghl/h
Multiquadrics (-)IBl( 412, B>0,¢N | e /h
Inverse multiquadrics (c2+r2)P, B<0 e~¢/h
Thin-plate splines (—=1)F1p2klogr, keN h2k
Powers (=1)IB21p8 3 >0,8¢ 2N | B?

Linear (special case of powers RBF) —r h

Cubic (special case of powers RBF) r3 h3
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Chapter 5

Robust design methodology

In Chapter 2 the tractable problem was stated—find a parameter setting in the fundamental algo-
rithm which results in low collision speed in the positive performance scenarios, and at the same
time, minimizes the risk for false intervention in the negative performance scenarios. The parameter
setting has to be chosen in such a way that the fundamental algorithm is not sensitive to uncer-
tainties within the defined range. In this chapter we present a robust design methodology which
describes the procedure for finding a parameter setting described in the tractable problem.

5.1 Introduction

Whenever there are uncertainties in a problem, robust solutions are generally desired, since they
are by definition not very sensitive to uncertainties. When a company produces a product it is
important to make that product as insensitive to uncertainties as possible, because then the company
can guarantee a certain level of performance of its product. In the tractable problem, see Definition
2.2.1, we want to find a parameter setting such that the fundamental algorithm, see Section 2.3,
is not sensitive to uncertainties in the defined range, i.e., a robust parameter setting. However, we
need to explicitly define what a robust parameter setting is for this problem. First, we say a robust
parameter setting has to fulfill two types of robustness—robustness of negative performance and
robustness of positive performance. This separation is necessary, because the two types of robustness
serve different purposes and it is also convenient in the solution process. When a parameter setting
fulfills both types of robustness it will be a sensible solution to the tractable problem.

Definition 5.1.1 (Robustness of negative performance). We say that a parameter setting fulfills
robustness of negative performance if it will not cause false intervention, even with the worst com-
bination of errors, in any of the negative performance scenarios. O

A car that might fully break even though the driver has full control over the situation is not an
attractive car on the market and for this reason we have zero tolerance for false intervention. Note
that if a parameter setting fulfills robustness of negative performance then no false intervention
will occur as long as the errors are within the assumed range, as defined in Section 2.5. In other
words: the boundaries of the errors are crucial for the degree of robustness. It is important that
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5 Robust design methodology 5.2 Robustness of negative performance

the boundaries capture the errors effectively. Too pessimistic boundaries result in bad positive
performance and too optimistic boundaries result in higher risk for false intervention.

Definition 5.1.2 (Robustness of positive performance). We say that a parameter setting fulfills
robustness of positive performance if it fulfills robustness of negative performance and also guarantees
as low collision speed as possible, in all the positive performance scenarios with the worst combination
of errors, respectively. Moreover, the parameter setting should guarantee as small spread as possible
of the collision speed in all the positive performance scenarios. ]

5.2 Robustness of negative performance

In this section we will describe how to find the parameter settings that fulfill robustness of negative
performance. First we introduce all the defined errors from Table 2.2 into all the relevant relations
in the fundamental algorithm; see Section 2.3. After that, Section 5.2.1 describes the method for
finding the worst combination of errors. We conclude with Section 5.2.2, which describes how to
find the parameter settings that will not cause false intervention, even with the worst combination
of errors in either of the two negative performance scenarios.

The tunable parameter a;%r;%l’ see Section 2.3, cannot affect the avoidance of false intervention in
the negative performance scenarios. This is due to the fact that the relative longitudinal distance
decreases to zero in both scenarios, so the required longitudinal acceleration to avoid collision goes

to infinity; see (2.5). Since the highest value of aﬁfr;% is 10, the BTN-condition will always be true

g;%l. This implies that the only tunable parameters that can affect avoidance of false

f{fai la?f;i has a different dependency
than the others; see Table 2.1. As a result of all these factors we will analyze aﬁfﬁl in a unique way
and develop a concept which coincides well with our view of robustness; see Section 5.3.
Both the tunable parameters alaavtaﬂ and Ysafe depend on the velocity of the host car, see Table
2.1. We choose different values on the velocity of the host car and then construct an optimization
problem for each fixed velocity. When we have found the optimal values on ag“aﬂ for each fixed
velocity we will interpolate these to construct a function that describes the value on afvtaﬂ for a
certain velocity. Similarly, we will interpolate the optimal values of ygate. We will present the result
only for the fixed velocity of 60 km/h, since it is rather the methodology to achieve an optimal
solution that is important.

We introduce the errors defined in Table 2.2 into all the relations from Section 2.3. Combine

(2.1) and (2.5), together with the corresponding errors, yields the equivalence

regardless of a

intervention are ay. ., and Ysafe. Moreover, the tunable parameter a

2
long )
v +& 1
long __ < rel g”ri?g

long
req atar +§ long —

a
Qg lon, lon,
" 2 (xrel =+ fmrel — Tmargin + tpressure(ah g) : (vrel £+ gvlo?g))
re.

(5.1)

Note that we assume that we measure the longitudinal acceleration of the host with insignificant
measurement errors. The longitudinal errors also affect the relations (2.6) and (2.7), which yields
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the equivalences

long long 2
_ Ve & vior® Vel &, ot 2(@rel + &ayar)
;= *ﬁ + —Torg — Jong (5.2)
Qg T 5 10"3 Orel +£ lor‘g Qe Tt 5 long’
and
Zrel + &,
tite = _kailegi:“ (5:3)
Urel + 5 long
respectively.

The lateral errors affect (2.8), so including the errors yields the equivalence

pred lat ( {32 + f lat) ) t%tc
Yrel = Yrel T gyrel + (vrel + gvigf) e + B (5.4)
Finally, (2.9) and (2.10) result in the equivalences
d
left __ 2y11r)erle B (wtar + gwtar) — Wh — 2ysafe 55
req — 2 ( . )
ttc
and
d
right 2yrperle + (wtar + gwtar) + wh + 2ysafe
Areq = 2 (5'6)
ttc

5.2.1 Finding the worst combination of errors

We start by analyzing the errors in the first negative performance scenario, because in that scenario

it is straight-forward what the worst combination of errors are in each time step. In the longitudinal

direction all the errors, &z, ), & 1ong and § long that cause the target car to appear closer to the host
rel

car are the errors that cause a hlgher I"ISk “to trigger a full break, because the required longitudinal
acceleration appears to be higher. This means that the worst-case values of the longitudinal errors
are &, = —b1, f long = —by, and 5 long = —b3. The host car drives past the target car on the right
side, i.e., in the p081tlve y- direction. We conclude that the worst lateral errors, &y 1x &, Jat and &, lat
are those that make the target car appear to the right of its true position, i.e., in the path of the
host car. This means that the worst-case values are £, , = b4, fvﬁf = bs, and & alat = bg. Finally, the
wider the target car appears to be the more likely a false intervention will be, so we have &,,,. = br.

In the second negative performance scenario we can make a similar analysis of the errors in
the longitudinal direction and regarding the width of the target car. In the lateral direction it
is not equally straight-forward. However, we know that the higher values on the required lateral
acceleration the more likely the car is to trigger a full break. The lateral errors can only affect (5.4),

which in turn affects the required lateral acceleration for steering either left or right. From (2.11)

left

h . . . .
req and arlcq result in high required lateral acceleration, unless

follows that high magnitudes of a
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left
Qreq

value the lateral prediction y,
of the host car.
The closer yf;ed is to zero, the higher the risk is to trigger a full break. Therefore, we want to

and aié% have equal sign, as discussed in Section 2.3. This implies that the most problematic

by ed can take is zero, i.e., when the target car is completely in the way

find the lateral errors that cause y 1 4 o be as close to zero as possible. In each time step of the

simulation of negative performance scenario 2 we are given the values of the parameters e, v

d .
al® and ty. and we want to find the values on &, §otar and Eorae such that yb ¢ is as close to zero
re ar

plat
rel )
as possible. This results in the optimization problem is to

(a};ii + galt‘;i) : t%tc
2

minimize

d
Urel ‘ = |Yrel + &y + (030 + Eotat) - the + (5.7)

s.t. —by <&y, < by,
— by < gvlaf < bs,

—bg < gaiat < bg.

We can formulate the problem (5.7) in a more general setting, which is beneficial if more errors

affecting y, "ed would be introduced. The general optimization problem is to
minimize f(¢) := |co + 181 + ... 4 ¢nCal = |co + €T¢| (5.8a)
s.t. —Bi<G<pB fori=1,...,n, (5.8b)
¢ e R, (5.8¢)
where cg,...,c, and Bi,... ,Bn are given constants. With the notation in (5.8), (5.7) can be refor-

mulated Wlth o = Yrel + vrel tite + atar t%tC/Q c1 =1, cg = tye, €3 = fttC/Q B1 = by, B2 = bs, and
B3 = bg. The function f(¢) is convex on R", due to the triangle inequality, and the constraints (5.8b)
are affine. Hence, (5.8) defines convex optimization problem. From Theorem 3.1.5 we know that
every local minimum of a convex function f over a convex feasible set is also a global minimum. In
other words, local search methods are applicable to (5.8). In fact, it can even be solved to optimum
by a greedy algorithm® that we have developed; see Algorithm 2.

If ¢y < 0 make the replacement specified in Algorithm 2. We explain the convergence of Algorithm
2 if ¢p > 0 (similar analysis for ¢y < 0). The idea is to first set ¢ := 0™ and then check if ¢ is equal
to zero. If this is the case, ¢ = 0™ is an optimal solution, since f(0) = 0 and f is a nonnegative
function. If ¢y > 0 we construct a vector p which is axis parallel to the (;-axis where ¢ corresponds
to the index of the ¢; with the highest magnitude. We let p := —sign(¢;) - sign(co) - 53; - e;, where
e; is i-th standard vector in the standard basis for R”. In other words, if we add p to ¢ we move
as far as we can in the (;-axis direction such that we still stay feasible. Now we check whether
co +cT(¢ +p) <0 or not. If it is not less than or equal to 0 we update ¢ to be ¢ + p and go back
to reconstruct p, but in another axis parallel direction that not have been chosen earlier, if there
are any, otherwise the algorithm will terminate. However, if co + ¢’ (¢ + p) < 0 we update ¢ to be

¢+ 760 < C p and the algorithm will terminate. This means that there are two possible outcomes

! An algorithm that is generally very simple in its structure. The general idea is to find what is ”locally” best in
each iteration ([19]).
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Algorithm 2 Find worst errors, i.e, to solve the optimization problem (5.8)
Step 0:
Let Z :={1,...,n} be the index set, where n > 0
Let {ey,...,e,} be the standard basis for R”

Let ¢g,...,cn and By,..., By be given constants
Let ¢ :=0"
Step 1:
ifcg=0
Proceed to Step 5
else
Proceed to Step 2
end if
Step 2:
Choose one ¢ € argmax |cg|
kel
Let p := —sign(¢;) - sign(cg) - 5; - €;
Step 3:

ifco+cf'(¢C+p) <0 (replace 7 <” with ”>" if ¢ < 0)
Proceed to Step 4
else
Update ( < ¢+ p
Update Z « Z\{i}
if |Z| >0
Return to Step 2
else
Proceed to Step 5
end if
end if

Step 4:
cl'¢

Update ¢ < ¢ + _60%19
c’'p

Step 5:
Let ¢* := ¢. The vector ¢* is an optimal solution to problem (5.8)

from Algorithm 2. The first one is that co + ¢’ (¢ + p) never gets less than or equal to zero in all
the n iterations, i.e., we update ¢ in all the axis parallel directions. This means that the outcome
vector is

¢* = (—sign(ey) - sign(ep) - B1), - - ., —sign(cy) - sign(cg) - ﬁn)T (5.9)

From Theorem 3.1.6 it follows that ¢* described in (5.9) is an optimal solution to the optimization
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5 Robust design methodology 5.2 Robustness of negative performance

problem (5.8), since
c, if co+¢e''¢ >0,

—c, otherwise,
and ¢y + c’'¢* > 0, so Vf(¢*) = . Furthermore,
VA (C=C) =D crlG+ sign(er) - Br) = Y ekl (sign(er) - G + Bi) > 0
k=1 k=1 >0

VCEQz{CER”—&ﬁQﬁﬁ“ Z:L,?’L}

The second possible outcome is that co+c’ (¢+p) < 0 at a certain iteration. This means co+c’'¢ > 0,
otherwise ¢y + ¢’ (¢ +p) < 0 at the previous iteration. Therefore, by choosing an appropriate factor,

namely —%7~ —c0-€"¢ 45 p it follows that f(¢+ r:oigc ) = Jeo + (¢ + =25 C p)| = 0, which is an

optimal solutlon to the optimization problem (5.8) since f is nonnegatwe

5.2.2 Finding the trigger edge

We have developed a procedure to find the worst combination of errors in each time step of the
negative performance scenario simulations. Now we wish to find all combinations of ys,te and alaffaﬂ
that don not cause a false intervention given these errors. The approach is to find a relation between
Ysafe and al® . such that, for a given value of ysure We compute what value a't | needs to have to
avoid false intervention.

If no trigger should occur in the negative performance scenarios then the maximum available

lateral acceleration, aavaﬂ, has to be higher than or equal to the required lateral acceleration, aieq, at
each time steps. This implies that the lowest value that a'® . can take is a'®. = a!®* . From (2.11
avail avail = “Y'req
follows that the equivalence
lat lat . lat lat
aaa\L/ail = ariq = nun (‘algft ar?ght‘)
d d
— min ny(:le - (wtar + gwtar) — Wwp — 2ysafe ny(:le + (wtar + fwm) + wyp + stafe
t%tc ’ t%tc
= (1) =(2)
(5.10)
hold as long as sign(al?f,) # sign(ai?éht). So, in turn,
2ypred - (wt +£ ar) — Wh _2
(1) = = ?f; = + tT “Ysafe| = ‘ml + k1 - ysafe|7 (5'11)
ttc ttc
=m =k
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and

2yper + (Whar + ) + w0 | 2
(2) = el ;; o + 2 “Ysafe| = ‘mQ + k2 - Ysafel- (5.12)
ttc ttc
= m2 = ko

We are clearly only interested in situations when ¢y, < oo, since otherwise there is no threat. Note
that k1 = —ks. We can conclude that the inequalities k1 < 0 and k2 > 0 hold. It must hold that

k i S o

—mi — * 1 =

|’I7’Ll + k1 - ysafe| = ! 1 Yaer . Ysale = kq b
my + kl * Ysafe, if Ysafe < t1,

and
. —ma
mo + ko - Ysafe, if Ysate = Ky =: tg,

—mg — k2 - Ysate, if Ysate < L2

’m2 + ko - ysafe‘ =

In each time step we are given mi,ms, k1 and ko. So depending on the values of t; and t2 we get
different affine functions. However, we need to remember that if the inequalities

d
2yferle i (wtar 4 iwtar) — Wh — 2Ysafe <0 (513)
tttc
d
22+ (wiar + gwm) + Wy + 2Ysafe <0 (5.14)
tttc
hold or the inequalities
d
2yferle B (wtar 4 iwtar) — Wh — 2Ysafe >0 (515)
tttc
d
2P | (wiay +t§2wm) + Wy + 2Ysafe <0 (5.16)
ttc

hold, then alriﬁl is not computed as in (5.10), and it will be equal to zero by definition and therefore
lat

any value on a2 . is considered valid to avoid false intervention. As long as

d Wy ‘|‘§ ar T Wh d Wiar + & o wn
o € By = (" - et ety e £

the inequalities (5.13) and (5.14) hold. Note that if " > 0, then B; = (). Furthermore, as long as

rel

red  Wtar T Swear T Wh  pred  Wtar T Swiay T Wh
Ysafe € [3’2 = (_yl?ele _ a ;}c 7y1}r)ele . a ;}c
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the inequalities (5.15) and (5.16). Note that if yf;ed < 0, then By = (. Thus, we can conclude that
(5.10) is valid as long as

Ysafe € B = [—1,0]\(81 U BQ) (5.17)

In Algorithm 3, see Appendix A, we generate all the affine constraints that describe the relation
between af‘”,taﬂ and ysafe which do not cause a false intervention for a certain time step. Note that we
only use Algorithm 3 when the BTN-condition is true. If the BTN-condition is not true, the host
car will not fully break since not both conditions can be true, wherefore the algorithm is not needed.
Algorithm 3 is based on case analysis; the different cases that can occur from (5.11) and (5.12) for
different values on ygafe.

Figures 5.1 and 5.2 show the generated constraints from all time steps in the negative performance

scenarios 1 and 2 having the worst combination of errors. All redundant constraints from each
scenario have been removed. By collecting all the constraints from both negative performance
scenarios we can conclude that all the constraints in the first negative performance scenario are
redundant, because the constraints from the second negative performance scenario possess a higher
restriction on the tunable parameters yg.s and a!ﬁfail. Figure 5.2 show that the constraints form
an edge, such that every parameter setting that lies on or above the edge will not cause a false
intervention in any of the negative performance scenarios. We call this the trigger edge. Furthermore,
all constraints that are not defined on the whole interval [-1,0] intersect with the ygsafe-axis, i.e.,
aﬁaﬂ = 0, on the interval [-1,0]. This means that we can extend these constraints to the whole
interval [-1,0], since they are affine and will not cause any more restrictions. Actually, this will
always be the case, since in each time step—regardless of the values on yg.re—it is always better or
equally good to steer either in the right or the left direction.
We know that the lower the value on ai}aﬂ is, and the higher the value on ygafe is, the earlier the
car breaks. We can therefore conclude that the best solutions to the positive performance scenarios
will lie on the trigger edge, since we want the car to break as early as possible. The trigger edge can
easily be described as a function, dependent on yg,t, of the constraints that contribute to the edge;
we denote this function by feqge- In Algorithm 4 (see Appendix A) we locate all the constraints
that contribute to the trigger edge and then construct the function feqge(Ysate). The idea behind this
algorithm is to start in ygte = —1 and find the constraint that restricts alifaﬂ the most. Then we
follow this affine constraint until we reach an intersection point with another constraint, whence we
follow that constraint and so on. Eventually, it holds that a?}aﬂ > 10 or ygafe > 0, which means that
all the relevant constraints are found. Note that all the constraints from the negative performance
scenario 1 and 2 are used to create the trigger edge. Figure 5.3 illustrates the function feqge created
from Algorithm 4.

By creating the function feqge the variable space is reduced by one dimension, since there is a
one-to-one correspondence between ai}aﬂ and Ygare- For a certain value on ygafe it is known what
value as:faﬂ should take to be as good as possible. Figure 5.3 shows that yg.fe needs to be lower than
a certain value in order to avoid a false intervention. That certain value can be obtained by solving

the equation fedge(ysafe) = 10.
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lat
avail

1 .08 08 07 06 05 04 .02 02 01 0
Ysafe

Figure 5.1: The constraints for negative performance scenario 1 generated from Algorithm 3.

5.3 Analysis of maximum available longitudinal acceleration

In Section 5.2 we found that ag;% could not affect whether false intervention occurred or not.
Therefore it is more interesting to view it from a positive performance perspective. In other words
we will now work with positive performance scenarios 1, 2, and 3.

Under ideal conditions, when there are no uncertainties from the sensors, we would set ag;% =
—10 + ¢ for all z,., where € is a small positive number. This is because the acceleration when the
car fully breaks is —10 m/s?. However, we cannot set ala‘z,g% := —10, because then the Tgrn would
not be strictly higher than 1 if aon® = —10, and therefore the car would not fully break, see Section
2.3. The small positive number ¢ compensate that problem and makes sure that the car fully breaks
if a}r%gg = —10. So, the host car avoids collision by breaking. Unfortunately, in reality conditions
are rarely ideal. Therefore we introduce all the longitudinal errors from Table 2.2. Our definition of
robustness in this case is that collision should be avoided when the measurements from the sensor
are uncertain.

We let aren® = —10. From (2.5) and (2.1) we have that

1
(e )

lon long\ ’
2 (xrel — Tmargin + tpressure(ah ) *Vsel g)

_ long
=10 = ay,,” —
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lat
A vail

0 L { | I I ! I |
-1 -09 -08 07 086 05 -04 -0.3 02 -0.1 0

Ysafe

Figure 5.2: The constraints for negative performance scenario 2 generated from Algorithm 3.

which can be rewritten as

lon, lon, lon, lon, lon, lon,
Vrel & = ( targ + 10) pressure ah g + \/ targ + 10 pressure(ah g) + Q(Qtarg + 10) (xrel - xmargin)~

The expression under the square root will always be nonnegative because we are only interested in
finding optimal values for al° avaﬂ for xye > 1. The reason for not considering cases where x.e < 1 is
that it only concerns low velocity cases, which include factors that are not to be analyzed in this
thesis. We are interested in the case when viz?g is the most negative because that means that the
host car drives faster than the target car (or that the target car is reversing towards the host car),

as in the positive performance scenarios. Thus, we can conclude that

lon lon lon lon, lon lon
Ut = (@ar” + 10)tpressure (@), ®) — \/(at(;rg + 10)?tpressure(ay, )% + 2(aar” + 10)(rel — Tmargin)-

(5.18)

Replacing vi % in (5.1) by vlong from (5.18) it yields that

2
< long \/th long 21 9BC +¢& long>

Urel

long __ long
areq - atar + é.a};ing —

<C+§m 1+t( long) ( long \/B2t long +2BC’—|—§ izi]g)>
(5.19)
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feclge (ysa.fe)

0 I I I I ! I I ! I |
-1 -09 -08 07 086 05 -04 -0.3 02 -0.1 0

Ysafe
Figure 5.3: The function feqge, the trigger edge, established by Algorithm 4.

long

tar. T 10 and C = Zre] — Tmargin. We have now found an expres-

where ¢ denotes tpressure; B = a
sion to describe the required longitudinal acceleration dependent on ai‘;ﬁg and z,. In the positive
performance scenarios the longitudinal acceleration of the target car, agrlg, is either —10 or 0. Let
1218 ¢ [~10,0]. Then the value on a{>"® that causes ayoq? to be as high as possible is when a2 =
for each fixed value on x, > 1, which can be verified by the derivative of (5.19). The most un-
favorable errors are those that make the target car appear further away from the host car, which
correspond to the parameter values &, , = b1, é’vg}g = by, and falt(;.g = b3. We can therefore define

1
Qogait(Tret) 85

2
1 (10 - t(ay ") — \/102t(alg’ng)2 +20C + b2>
Gt (Tre1) = b3 —

+e,  (5.20)

2 (C’ + b1 + t(a)"®) - (10t(ay ™) — \/ 102¢(a)™®)2 + 20C + b2)>

where ¢ denotes tpressure; C = Trel — Tmargin and € is a small positive number. The expression (5.20)
describes the required value of a;(f;% to avoid collision, given a certain relative distance, x,¢. These
values are illustrated in Figure 5.4. From a robustness point of view this solution is considered to
be the optimal solution, since it allows for handling unfavorable errors such that the host car avoids

collision.

48



5 Robust design methodology 5.4 Robustness of positive performance

avail
o
T

long

Lrel

Figure 5.4: The optimal values on the tunable parameter aﬁfl as a function of ;.

5.4 Robustness of positive performance

In Section 5.2 we computed the trigger edge where no false intervention occur in either of negative
performance scenario one or two. In this section we describe how to find the solutions that fulfill
robustness of positive performance.

The objective functions are created through response surfaces. This means that for each of the
three positive performance scenarios we simulate them a certain number of times n;, j € {1,2,3},
with a different parameter settings from the trigger edge. From each simulation is then collected
the collision speed with the most unfavorable errors and the spread of the collision speed. With
these data points six linear systems of equations are solved, where a linear system is described in
(4.9), and six response surfaces are constructed. In other words, choose n; distinct points X; :=
{(Ysate)15 - - - » (Usafe)n; } and the other parameter ag‘i,tail is automatically given for each point, since the
parameter settings should lie on the trigger edge, i.e, (a2 ); = fedge((Ysate)i). Then a scenario of
the positive performance scenarios is simulated, for instance positive performance scenario one, with
all chosen parameter settings, i.e., (Ysate)i € X1, ¢ € {1,...,n1}. For each parameter setting the
collision speed is achieved, fil, with the worst combination of errors and the spread of the collision

speed, fZ-Q. From this two linear systems of equations can be solved, in (4.9), and 8}1 X and 5302 X
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are obtained, where the exponents 1 and 2 are indices. So, we have the following response surfaces:

3}1 x,» the collision speed for positive performance scenario 1 with the most unfavorable errors.
3?2 x,» the spread of the collision speed for positive performance scenario 1 due to errors.
5?3 X, the collision speed for positive performance scenario 2 with the most unfavorable errors.
81}4 X, the spread of the collision speed for positive performance scenario 2 due to errors.
3?5 X the collision speed for positive performance scenario 3 with the most unfavorable errors.

35’@67 X the spread of the collision speed for positive performance scenario 3 due to errors.

We can now present the multi-objective surrogate optimization problem:

minimize {5}1,X1 (Ysate) 5?27)(1 (Ysate)» 5?37)(2 (Ysafe)» 5§4,X2 (Ysate)» 5?57)(3 (Ysate)» 5?6’)(3 (Ysate)} (5.21a)
subject to — 1 < Ysafe < u, (5.21b)

where v € {a € [-1,0] : feqge(a) = 10}. Note that the problem (5.21) has been reduced to a
1-dimensional six-objective optimization problem by utilizing the function fegge.

In Section 4.3 we established that given only finite number of points it cannot be determined
which radial basis function that is the most efficient. Therefore, we experimented with obtaining
response surfaces from the RBFs listed in Table 5.1. In particular the linear RBF resulted in
good results, in the sense that the graphs describing the response surfaces look as to the expected
behavior of the real problem. All results presented in this thesis are obtained by the linear RBF.
One important note is that some choices of RBFs can cause the matrix A in (4.10) to become ill-
conditioned. This may, in turn cause small changes in the input data to yield very large changes in
the output data; see [20]. This is undesirable property should be kept in mind when choosing the
basis as well. For the interested reader, a stability analysis can be found in [15].

Table 5.1: The RBFs tested.

RBF o(r)
Linear -7
Thin-plate splines r2logr
Multiquadrics (-Dvr2+1
Guassians e’
Inverse multiquadrics | 1/v/1 + r?
Cubic r3

The choice of sample points is an interesting problem. We chose to use a fine uniform mesh
of points which is of great importance when aiming for finding well distributed Pareto optimal
solutions. This approach is possible since a simulation with the fundamental algorithm is not time
consuming and therefore there is no problem in having a fine mesh of points. However, when
considering problem instances with time consuming function evaluations then the choice of points
are important. A typical approach is to create an initial set of points for the surrogate model and
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then use methods to find new points for refinement of the surrogate model, as stated in Algorithm
1. Example of initializations of this type of approach are the so called Latin Hypercube Design
([21]), and the strategy for selecting new points to evaluate presented by Gutmann ([22]). These
two methods might be relevant and appropriate for Volvo’s automotive collision avoidance system.

It is rather easy to realize what the most favorable and the most unfavorable errors are for the
positive performance scenarios, because in all the positive performance scenarios the host car drives
straight ahead with a 100% offset. The most favorable longitudinal errors occur when the target car
appears closer to the host car. This means that the values of the longitudinal errors are &, , = —b1,
évlz,g = —bo, and §a19x,g = —bs, respectively. The most favorable lateral errors occur when the target

car appears to be dit;éctly in line with the host car. This means that the values of the lateral errors
are &, =0, Svﬁf =0, and & alat = 0, respectively. Finally, if the target car appears to be wider than
it is, then the host car breaks earlier, so &,,,. = b7. The most unfavorable longitudinal errors occur
when the target car appears to be further away from the host car than it really is. This means that
the values of the longitudinal errors are &, , = by, fvg,g = by, and §a§;g = b3, respectively. The most

unfavorable lateral errors are those that make the target car appears on the right or left side of the
host car. This means that the values of the lateral errors are, for instance, &, , = b4, §v:f = bs, and
£ alat = bg. Finally, if the target car appears to be narrower than it is, then the host car will break
later, so &, = —b7.

Figure 5.5 shows the response surface of the collision speed dependent on ygate, Wwith the most
favorable and the most unfavorable errors for positive performance scenario one.

A posteriori methods, for example by solving (3.8), yields a representation of the Pareto optimal
set which ease the choice of the Pareto optimal solution, since the trade-off between the objective
functions is then visible.

One optimization solver used by Volvo is modeFRONTIER (see [23]), and which is used in this
thesis. The software modeFRONTIER includes a variety of algorithms, mainly metaheuristics, that
utilize a posteriori methods. Figure 5.6 shows a visualization of some of the Pareto optimal solutions,
where the response surfaces was constructed by 1000 points, respectively. The leftmost axis shows the
values of the variable yg.r.. The other six axes illustrate the values of the six objective functions. The
panel meter can be altered to specify requirements on the values of each of the objective functions.
It also shows the resulting trade-off between the objective functions.

5.5 Generalization

We have found an excellent way to solve the tractable problem, see Definition (2.2.1). However, some
of the steps in our methodology requires good knowledge of the fundamental algorithm. Especially
when finding the trigger edge, because the development of Algorithm 3 required some manipulation
of the relations in the fundamental algorithm. In Volvo’s automotive collision avoidance system the
corresponding relations might be more difficult to identify. For this reason it would be convenient
to present a more general approach to finding the trigger edge or describing the function feqge.

lat

We start by defining a new term, namely lateral acceleration margin, defined as amargin := a5 —

The idea is to choose a set of points X = {z1,...,@,}, where &; = ((Ysase)i, (@), i =

lat
req*

1,...,n, as a uniform mesh over the feasible set given by 1 < aﬁi}aﬂ < 10 and —1 < ygafe < 0. For

a
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Figure 5.5: The relation between the collision speed, with most unfavorable errors, and yg.f.. For
this example we used a 30 point uniform mesh.

each point ; € X both the negative performance scenarios are simulated and in each time step in
each simulation the value of amargin is computed, if the BTN-condition is true. The minimum value
of amargin computed, over all time steps in both scenarios, is stored in the variable (aﬁnal )i. If

margin
(afinrgilgin)i < —10 then it is set to (afnnaarlgin)i := —10. A response surface, Sqfinal (), is constructed
with input points «; and output (a?nn;lgin)i foralli =1,...,n. Figure 5.7 shows an example of such

a response surface.
We are interested in those parameter settings, , that yield s a1y () = 0. The following sim-

ple method is used to find the roots for s ma  y(x): Select a number of points Y = {y1,...,ym} C

[—1,0], which is the interval for ysf, as a gﬁme uniform mesh. For each point y; € Y we search
for a value a; € [1,10] which satisfies |sa$};1 m»X((yj’ a;)T)| < e, where € is a small positive chosen
number. The search for a; is done by bisectigng the interval successively until the termination crite-
rion is met or a maximum number of iterations is reached. If a maximum number of iterations has

been reached we say that there is no a; € [1,10] such that |s ena ((yj,a;)7)| < e. When all a;,
margin’

j € {1,...,m} have been found, we construct a spline interpolation of the existing points a; and
the corresponding y;; see Section 4.1 for spline interpolation. We construct a function f:fgox(ysafe)
such that f:fgox(yj) =a; forall j € {1,...,m}.

Figure 5.8 shows the differences between feqge and :(fgirox, and which depend on the choice of
the radial basis function and on the resolution of points. In general, the finer the mesh the smaller

n
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Figure 5.6: A representation of some of the Pareto optimal solutions in modeFRONTIER.

the differences.

5.6 Summary of the methodology of finding robust solutions

Figure 5.9 shows an overview of the methodology for finding a parameter setting that fulfills robust-
ness of both negative and positive performance. Remember that first the tunable parameter a;‘ir;%l
is optimized, then the steps in the flowchart are taken for certain different velocities. There are
two possible ways to find the edge, either by the analytical approach or by the approximate one. A
description of each block in the flowchart is presented bellow.

la. Compute the worst combination of errors and generate the constraints

Simulate negative scenarios one and two. In each time step of each simulation, find the worst
combination of errors by using Algorithm 2. In each time step, generate also the constraints, which
describe the lowest bound on the two tunable parameters yg.fe and aﬁi}aﬂ which do not cause false
intervention. This is done by using Algorithm 3.

2a. Find the trigger edge from the generated constraints

Combine all the constraints from step la to form the trigger edge. No point on or above the
trigger edge will cause any false intervention. Knowing that the optimal parameter setting for the
positive performance scenarios will lie on the edge, we compute a function feqge, by using Algorithm
4, which describes the combination of yg.5 and alﬂfaﬂ that lie on the edge.
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Figure 5.7: The response surface s fnai 5. For this example we used an 85 x 85 points uniform

margin’

mesh.

1b. Compute the worst combination of errors and the lateral acceleration margin

For each parameter setting, simulate negative scenarios one and two; in each time step of each
simulation, find the worst combination of errors using Algorithm 2 and compute amargin; see Section
5.5. Then afngilgm is computed using the minimum value of amargin from each simulation.

2b. Find the trigger edge from the response surface of the lowest lateral acceleration
margin by finding its roots

Construct a response surface s anal v () of the aﬁlﬁlgm and the parameter settings. Then search
margin’

for parameter settings, @, such that Safinal | X () = 0, which forms the trigger edge.

3. Construct response surfaces that reflect robust positive performance

Construct six response surfaces by selecting sets of points which lie on the trigger edge, and
simulate the collision speed and its spread from the three positive performance scenarios.

4. Search for Pareto optimal solutions

To find the parameter settings that fulfill robustness of positive performance, we use the software
modeFRONTIER to search for Pareto optimal solutions to the optimization problem (5.21).
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Figure 5.8: The different representation of the trigger edge from approximate and the analytical
approach. We used the same settings as in Figure 5.7.
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Figure 5.9: A flowchart of the methodology to find parameter settings that fulfill robustness of both
negative and positive performance.



Chapter 6

Discussion and conclusions

In this chapter we discuss and analyze the robust design methodology. We start, in Section 6.1,
to evaluate the robust design methodology in terms of result, what general tools it has provided,
and what weakness it has. Next it is discussed if the approach of handling the worst combination
of errors is a valid approach; see Section 6.2. In Section 6.3 it is analyzed how the choice of the
objective functions affect the positive performance. Thereafter, we analyze the tunable parameter
safety zone and its impact on the fundamental algorithm; see Section 6.4. In Section 6.5 pros and
cons of the two different approaches of finding the trigger edge is discussed. At last, a discussion of
what the future work may involve concludes this chapter; see Section 6.6.

6.1 Evaluation of the robust design methodology

The methodology finds parameter settings that fulfill robustness of negative and positive perfor-
mance. The fulfillment of robustness of negative performance scenarios reflects the high priority of
avoiding false intervention in case of uncertain measurements. False intervention is highly unde-
sirable since automotive collision avoidance systems are meant to assist and help the driver. The
fulfillment of robustness of positive performance entails that the car assists the driver in preventing
a collision as well as possible, and guarantees a certain level of performance even though errors
from the sensor may occur. A parameter setting found by the robust design methodology solves the
tractable problem; see Definition 2.2.1. The tractable problem reflects the real problem of finding a
robust parameter setting for Volvo’s automotive collision avoidance system.

The methodology describes several general concepts that are likely to be applicable within Volvo’s
automotive collision avoidance system; examples are the general idea of robustness, methods for
finding the trigger edge, and the methodology of using response surfaces. As mentioned in Section
4.2 radial basis functions are independent of the dimension of the variable space. This property
has been of great use in this thesis: it is used to create the six objective univariate functions
that reflect positive performance (see Section 5.4), as well as the bivariate Safinal | X surface (see
Section 5.5). Furthermore, this property also make it possible for response surfaces to be applicable
for Volvo’s automotive collision avoidance system which contains even more tunable parameters.
Another important property of response surfaces is that they are computational efficient tools for
handling time consuming simulations, as Volvo’s automotive collision avoidance system. However,
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6 Discussion and conclusions 6.4 Analysis of worst case scenario

we always need to have in mind that there is no guarantee that the response surface mimics the
simulation in a satisfying way. If that is the case, the optimal parameter setting found, can be far
from optimum. This is the problem with simulation-based optimization in general, as mentioned in
Section 3.3. However, the risk of finding a parameter setting far from optimum is extremely small
when solving the tractable problem as we did, since a really fine mesh of points is used (see Section
5.4) to a low dimensional problem; see problem (5.21). Furthermore, linear RBFs together with a
very fine mesh of points probably mimics the simulation in a satisfying way, since small changes of
the parameter setting results in small changes of when the host car starts to fully brake, which has
a linear relation with the collision speed. Lastly, Volvo have verified that the results are good.

6.2 Analysis of worst case scenario

The approach of ascertaining, that even the worst combination of errors should not cause a false
intervention, was made to guarantee a certain level of performance. Moreover, this was a natural
approach when considering bounds on the errors but not on their distributions. However, the worst
combination of errors might be very unlikely to occur, making this approach very pessimistic. A
more comprehensive analysis could be made by introducing statistical data for the error distributions.
With that said—since false intervention is very undesirable—if the boundaries of the errors capture
the spread of the errors satisfactory, a zero tolerance for false intervention within the bounds is
probably the way to go anyway.

We have disregarded the possibility of errors depending on, for example, distance. The measure-
ments might be more accurate at closer range. If such data are introduced, less pessimistic bounds
could be used, which would result in a better performance in the positive performance.

6.3 Analysis of positive performance

Defining what the objective functions should represent was an interesting problem. It is important
that the objective functions are chosen such that the performance is kept above a certain level. When
Volvo Car Corporation wants to launch a new car model it has to undergo multiple performance
tests and therefore it is important that the system can guarantee a high lowest performance, so the
cars always pass the tests. This means that we want to minimize the collision speed, subject to the
most unfavorable errors. By minimizing the spread of the collision speed we strengthen the approach
of consistency. However, this requires that the boundaries of the errors capture the spread of the
errors satisfactory.

By using statistical data, that enables insights into the importance of the different scenarios, it is
possible to weight the objective functions into one function. This eliminates the necessity to search
for Pareto optimal solutions.

6.4 Analysis of the safety zone

In Section 5.2 we established that a certain size of the safety zone is needed to avoid false intervention.
We conclude from Figures 5.1 and 5.2 that the only negative performance scenario that generates
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Figure 6.1: The relative distance where constraints are generated.

relevant, i.e., not redundant, constraints is the second scenario. It is interesting to investigate in
which time step a certain constraint is generated in the second negative performance scenario, to get
an understanding of the relation between the two tunable parameters ygas and alaa:faﬂ. In Figure 6.1
each constraint is represented by a specific color for each specific relative distance to the target car.
The figure reveals that a certain size of the safety zone is needed to avoid a false intervention when
the host car is close to the target car. We conclude that the only way to avoid a false intervention
is to compensate for the errors that cause the target car to appear as being in the way of the host

car, by making the target car appear to be narrower.

6.5 Pros and cons of the analytical and approximate approach for
finding the trigger edge

As mentioned in Section 5.5, the reason for an approximate approach is that good knowledge of
the fundamental algorithm is needed to develop an analytical approach, as Algorithm 3. In Volvo’s
automotive collision avoidance system the corresponding relations might be more difficult to find and
identify, whence it might be impossible to develop an analogous algorithm to Algorithm 3. However,
an analytical algorithm would of course be more desirable, since the analytical approach yields an
exact representation of the trigger edge and requires only one simulation. Figure 5.8 reveals the
differences between the results from the analytical and the approximate approaches; since these are
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6 Discussion and conclusions 6.6 Future work

rather small, the approximate method may be useful. Note also, in general, the more points used
for constructing the response surface of aﬁlnailgin (see Section 5.5), the more accurate the approximate
approach will be.

6.6 Future work

In Section 5.5 we generalized the approach of finding the trigger edge by utilizing a response surface.
Perhaps even more steps in the methodology need to be generalized. For instance, introducing more
performance scenarios would ensure an even better quality, but in some of those scenarios it could
be hard to identify the worst possible combination of errors. An interesting approach would be to
search for the trigger edge and the worst combination of errors simultaneously.

Another interesting problem is the choice of the radial basis function. It was out of the scope
of this project to test more than the most popular RBFs. There are strategies of measuring the
errors of radial basis functions such as cross-validation; see [24]. This is especially important if more
variables are introduced, which is the case of Volvo’s automotive collision avoidance system; in such
cases, the problem and its solutions will no longer be as easy to visualize.

The main objective of the future work is, of course, trying to optimize the tunable parameters
in Volvo’s automotive collision avoidance system.
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Appendix A

Technical description of algorithms
developed in the thesis

In this appendix we present two algorithms that we have developed to solve the tractable problem,
see Definition (2.2.1).

lat

Algorithm 3 Find all constraints for the tunable parameters ysate and a2 5

Step 0:
Let Z := {1, 2} be the index set
Let N := () be the set of constraints
Let B defined as in (5.17)
Let mq,ma, k1, and ko defined as in (5.11) and (5.12)
Let t1 := =™ and t9 := 22

/4:1 k?2
Step 1:
if t1 >0 & to >0
Let fl (ysafe) =mq + kl * Ysafe and f2 (ysafe) = —my — k2 * Ysafe
o 1
Let Ymid ‘= —3
Let i € argmin f;(Ymia)
€L

JE
Update N — N U {fi(ysafe) * Ysafe € [_17 0] N B}
Proceed to Step 2
else if t] < -1 &ty < —1
Let fl (ysafe) =—-my — k1 - Ysafe and f2(ysafe) i=ma + ko - Ysafe
Let Ymid ‘= _%
Let ¢ € argmin f;(Ymid)
=

J
Update N« NU {fi(ysafe) D Ysafe € [_17 0] N B}
Proceed to Step 2

Continued on next page
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else if t1 > t9
ift; >20& -1 <t <0

Let fl (ysafe) =my+ k1 - Ysafe and fQ(ysafe) =ma + ko - Ysafe

Intersection point ¥inter = TZ;:Z?

if to < Yinter < 0
Let Ymid ‘= %
Let i € argmin f;(Ymid)

JET

Update N —NU {fz’(ysafe) ! Ysafe € [yintera 0] N B}
Let ymiq == t2+1,2/1ntcr
Let i € argnzlin [ (Ymid)

je
Update N < N U {fi(Ysafe) : Ysafe € [t2, Yinter) N B}
else

_ t2

Let ymiq := 51
Let ¢ € argmin fj (ymid)
ez

VIS
Update N < N U {fi(ysafe) D Ysafe € [t2a 0] N B}
end if

Let fl (ysafe) =my+ k1 - Ysafe and f2(ysafe) = —ma — k2 * Ysafe
Let Ymid 1= t22—1

Let ¢ € argmin f;(Ymid)
jeT

je
Update N—NU {fi(ysafe) P Ysafe € [_1’t2] N B}
Proceed to Step 2
else ift1 >0 &ty < —1
Let fl (ysafe) =mq + kq - Ysafe and fQ(ysafe) i=ma + kg - Ysafe
Intersection point yinter = "7
if —1 < Yinter < 0
Let Ymid ‘= %
Let i e argrgin [ (Ymia)
je
Update N — N U {fi(ysafe) P Ysafe € [yintera 0] N B}
Let Ymid ‘= %r_l
Let i € argmin f;(Ymid)
1

VIS
Update N — N U {fi(ysafe) P Ysafe € [_17 yinter} N B}
else
Let Ymid = _%
Let ¢ € argmin f;(Ymid)
jeT
Update ./\[ < NU {fi(ysafe) ! Ysafe € [_L 0] N B}
end if
Proceed to Step 2
else if -1 <t <0&ty < -1
Let fl(ysafe) = —my —ky - Ysafe and fQ(ysafe) = mg + kg - Ysafe
Let Ymid = %

Continued on next page




Let ¢ € argmin f;(Ymid)
€T

J
Update N — NU {fi(ysafe) ! Ysafe € [tl,O] N B}
Let fl(ysafe) =m1+ k- Ysafe and f2(ysafe) =ma + ko - Ysafe
Intersection point Yinter = L=y 2
if —1< Yinter < ty
Let Ymid = yintezr"!‘tl
Let ¢ € argmin fj (ymid)
JET
Update N« NU {fi(ysafe) P Ysafe € [yinteru tl] N B}
Let ymia = Lig="
Let ¢ € argmin f;(Ymid)
=

J
Update N —NU {fi(ysafe) D Ysafe € [—1, yinter] N B}
else
Let ymiqa =
Let i € argmm [ (Ymia)
jc€T

J
Update N < N U {fi(Ysate) : Ysate € [—1,%1] N B}
end if
Proceed to Step 2
else
Let fl(ysafe) = —my — kg - Ysafe and fQ(ysafe) =mg + ko - Ysafe
Let Ymid * tl
Let i € argmln [ (Ymia)
el

je
Update N < N U {fi(Ysate) : Ysate € [t1,0] N B}
Let f1 (ysafe) :=mq + k1 - Ysate and fQ(ysafe) =mg + ko - Ysafe
Intersection point Yinter = k; Zi?
if t2 < Yinter < tl

Let ymia := 73’”’“62?“1

Let i € argmin f;(Ymid)
JjeT
Update N+~ NU {fi(ysafe) * Ysafe € [yinter; tl] N B}

Let ymiq := Yng2
Let i € argmin f;(Ymid)
€T

J
Update N — N U {fi(ysafc) D Ysafe € [t27 yinter] N B}
else

Let ymiq :=
Let i € argmm [ (Ymid)

Update N +~— NU {fz(ysafe) Ysafe € [tQatl] N B}
end if
Let fl(ysafe) = m1 + k1 - Ysafe and fQ(ysafe) (= —mg — k2 - Ysafe
Let ymiq = ﬂ
Let i € argmln [ (Ymia)

Update N < N U {fz(ysafe) Ysafe € [_17 tQ] N B}
Proceed to Step 2
end if

;1

t1+t2

Continued on next page




else
ifto>0& -1<t1 <0
Let fl (ysafe) =-my — k- Ysafe and fQ(ysafe) = —mg — kg - Ysafe
Intersection point Yinter = L=y 2
if th < Yinter < 0
Let ymld — yil121:er
Let ¢ € argmin fj (ymid)
JET
pdate N —NU {fz’(ysafe) ! Ysafe € [yintera 0] N B}

Let Ymid = m
Let ¢ € argmin f] (Ymid)
€T

J
Update N < N U {fi(Ysafe) : Ysafe € [t1, Yinter) N B}
else
Let Ymid = %
Let i € argmin f;(Ymid)
€T

J€
Update N —NU {fi(ysafe) P Ysafe € [tla 0] N B}

end if
Let fl (ysafe) =my+ k1 - Ysafe and f2(ysafe) = —ma — k2 * Ysafe
Let Ymid = _1+t1

Let i € argmln fi(Ymia)
jeT

J
Update N—NU {fi(ysafe) P Ysafe € [_1’t1] N B}
Proceed to Step 2
else ifto >0 &t < -1
Let fl(ysafe) = —my — k- Ysafe and fQ(ysafe) = —mg — ko - Ysafe
Intersection point yinter = =7
if —1 < Yinter < 0
Let Ymid = %
Let ¢ € argmin f;(Ymid)
jeT
Update N+~ NU {fz(ysafe) P Ysafe € [yintera 0] N B}
Let Ymid - M

Let ¢ € argmin fJ (Ymid)
JET
Update N« NU {fi(ysafe) ! Ysafe € [_17 yinter] N B}

else

Let Ymid = _%
Choose one i € argmin f;(Ymid)
jeT

Update ./\[ < NU {fi(ysafe) ! Ysafe € [_L 0] N B}
end if
Proceed to Step 2
elseif -1 <t <0&t; <1
Let fl(ysafe) = —my —ky - Ysafe and fQ(ysafe) = mg + kg - Ysafe
Let ymia = L
Let i € argmm [ (Ymia)

Update N +~ NU {fz(ysafe) Ysafe € [t27 0] N B}
Let fl (ybafe) = —my — kp - Ysafe and fQ(ysafe) = —mg — ko - Ysafe

Intersection point Yinter = =7

Continued on next page




if -1 < Yinter < t2 .
Let g = Lot
Let i € argmin f;(Ymid)
T

VIS
Update N —NU {fi(ysafe) P Ysafe € [yintera tQ] N B}
Let ypiq = Lnte=l

Let i € argmin f;(Ymid)
jeT
Update N < N U {fi(ysafe) ! Ysafe € [_L yinter] N B}
else
Let Ymid = t22_1
Let i € argmin f;(Ymid)
€T

je
Update N —NU {fi(ysafe) P Ysafe € [_L tQ] N B}
end if
Proceed to Step 2
else
Let f1 (ysafe) = —m1 — k1 - Ysate and fQ(ysafe) = mg + k2 - Ysafe
Let Ymia = 2
Let i € argnzlin [ (Ymid)

je
Update N < NU {fi(ysafe) ! Ysafe € [t2>0] N B}
Let fl(ysafe) =-my — k- Ysafe and fQ(ysafe) = —mg — kg - Ysafe
Intersection point ¥inter = "];;:ZIIQ
if ty < Yinter < to

Let Ymid 1= yint62r+t2

Let ¢ € argmin fj (ymid)
ieT

VIS
Update N — N U {fi(ysafe) * Ysafe S [yintera tQ] N B}
Let ymiq = Lngth
Let i € argmin fi(Ymid)

€L
Update N < N U { fi(ysase), Where Ysase € [t1, Yinter] 0 B}

Let i € argmin f;(Ymid)
T

je
Update N <~ NU {fi(ysafe) ! Ysafe € [tlat2] N B}
end if
Let fl (ysafe) =m1 + k- Ysafe and fQ(ysafe) = —mg — kg - Ysafe
Let Ymid := #
Let ¢ € argmin f;(Ymid)
jE€T
Update N < N U {f;(Vsate) : Ysate € [—1,t1] N B}
Proceed to Step 2
end if
end if

Step 2: The set N contains all constraints.




Algorithm 4 Construct the function feqge from the constraints generated of Algorithm 3

Step 0:
Let N be the set of constraints from Algorithm 3, where all definition sets
are extended to the interval [-1,0]
Let NV := ) be the set of relevant constraints
Let Z :={1,...,|N|} be the index set
Let yiefe 1= —1

Step 1:
Let S := argmax f;(yieft), where f; € N
i€l

if [S]>1

Choose i € S such that k; > k; for all [ € S, where k; is the slope of function f; € N
else

Choose 7 € S
end if

Step 2:
Update Z < Z\{i}
Let S := argmin
j€{l€Is%>yleﬁ}
if |5 > 1
Choose j € S such that k; > k; for all | € S where k; is the slope of function f; € N/
else
Choose j € S
end if
Let yright 1= flgﬂ%kl
Step 3:
if fi(Yrignt) > 10
Update N — N ) {fi(ysafe) ! Ysafe € [ylefta 0]}
Proceed to Step 4
else B B
Update N — N U {fi(ysafe) * Ysafe S [ylefta yright)}
Leti:=3
Return to Step 2
Step 4:
The set N contains all constraints that defines the edge

where k; is the slope of function f; € N




Appendix B

Supplementary theory for Chapter 4

All theory in this appendix is taken from [25], except for the first definition and theorem which are
taken from [20].

Definition B.1. A symmetric n x n real matriz A is said to be positive definite if 7 Ax > 0 for all
x e R™#£0".
Theorem B.2. A positive definite matriz A is invertible.

Proof. Assume that the matrix A is not invertible. Then there exists a non-zero vector & such that
Ax = 0. This implies that &7 Az = 0 which contradicts the assumptions. O

Definition B.3 (Vector space). By a vector space we mean a non-empty set E with two operations:

a mapping (z,y) — = +y from E x E onto E, called addition,
a mapping (\,x) — Az from F x E onto E, called multiplication by scalars,

such that the following conditions are satisfied:

(a) t+y=y+uz.

b) (z+y) +z=z+(y+2).

(c¢) For every x,y € E there exists z € E such that x + z = y.
(d) a(Bz) = (af)x.

(e) (o + B)x = ax + PBz.

(f) a(z+y) = ax + ay.

(9) 1z = .

Elements of E& are called vectors. If F =R, then E is called a real vector space, and if F = C, E s
called a complex vector space.

Example 1. The scalar fields R and C are the simplest non-trivial vector spaces. Further, R" and
C™ are vector spaces. O
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Example 2 (Function spaces). Let X be an arbitrary non-empty set and let E be a vector space.
Denote by F' the space of all functions from X into E. Then F becomes a vector space if the addition
and multiplication by scalars are defined in the following way:

(f +9)(x) = f(z) + 9(),
(AN)(z) = Af(x).

The zero vector in F' is the function which assigns the zero vector of E to every element of X. [

Definition B.4 (Norm). A function x — ||z||g from a vector space E into R is called a norm if it
satisfies the following conditions:

(a) ||z||g = 0 if and only if z = 0.
(b) | Ax||g = |M||z]|g for every x € E and A € F.
(¢) lz+ylle < llzle +[lylle for every z,y € E.

It is called a semi-norm if all conditions are satisfied except (a).
Definition B.5 (Normed space). A vector space with a norm is called a normed space.

Definition B.6 (Cauchy sequence). A sequence of vectors (z,) in a normed space is called a Cauchy
sequence if for every e > 0 there exists a number M such that ||z, — x,|| < € for all m,n > M.

Definition B.7 (Banach space). A normed space E is called complete if every Cauchy sequence in
E converges to an element of E. A complete normed space is called a Banach space.

Definition B.8 (Linear mappings). A mapping L : E1 — Es is called a linear mapping if L(ax +
By) = aL(x) + BL(y) for all z,y € Ey and all scalars o, (3.

Definition B.9 (Continuous mappings). Let E1 and Es be normed spaces. A mapping F from F;
into Ey is called continuous at xo € Ey if for any sequence (x,) of elements of E1 convergent to
xo, the sequence (F(x,)) converges to F(xg), i.e., F' is continuous at xg if ||z, — xol| — 0 implies
|F(zn) — F(x0)| — 0. If F' is continuous at every x € Ey, then we simply sat that F is continuous.

Definition B.10 (Bounded linear mappings). Let E1 and E2 be normed spaces. A linear mapping
L : Ey — Ej is called bounded if there exists a number K such that ||L(x)|| < K||z|| for all x € E;.

Theorem B.11. A linear mapping is continuous if and only if it is bounded.

Example 3. The space of all linear mappings from a vector space Ep into a vector space Ey becomes
a vector space if the addition and multiplication by scalars are defined as follows:

(L1 + L2)(x) = Li(x) + La(z) and (AL)(z) = A(L(z)).

If £1 and E5 are normed spaces, then the set of all bounded linear mappings from FE; into FEo,
denoted by Z(E1, E2) is a vector subspace of the space defined above. O



Elements of spaces, Z(E,F), of bounded linear mappings from a normed space E into a scalar
field F are called functionals. The space B(E,F) is sometimes denoted E* and called the dual space
of E.

Theorem B.12. If E; is a normed space and Es is a Banach space, then B(E1, E2) is a Banach
space.

Definition B.13 (Bilinear form). By a bilinear form ¢ on a real vector space E, we mean a mapping
¢: E x E — C satisfying the following two conditions:

(a) p(axy + B2, y) = ad(x1,y) + Bo(r2,y),
(b) ¢(x, 1 + By2) = ad(x, y1) + Bo(x, y2),

for any o, 8 € C and any x,x1,2,y,y1,y2 € E. Note that the bar over a and B denotes complex
conjugation.

Definition B.14 (Inner product space). Let E be a complex vector space. A mapping (-,-) : EXE —
C is called an inner product in E if for any z,y,z € E and o, 5 € C the following conditions are
satisfied:

(a) (x,y) = (y, ).
(b) (ax + By, z) = alx, z) + By, 2).
(c) (x,z) >0, and (xr,z) =0< z =0.

A wvector space with an inner product is called an inner product space or a pre-Hilbert space.
If all conditions are satisfied except the last part in (c) namely (x,z) = 0 < x = 0 it is called a
semi-inner product.

Proposition B.15. FEvery inner product space is also a mormed space with the norm defined by
2] = \/{z,z).

Definition B.16 (Hilbert space). A complete inner product space is called a Hilbert Space.
Example 4. The spaces R, R"™, C and C" are Hilbert spaces. O

Theorem B.17 (Riesz representation Theorem). Let f be a bounded linear functional on a Hilbert
space H. There exists exactly one xo € H such that f(x) = (x,x0) for all x € H. Moreover, we
have || fllz+ = llzoll - O

The space H* of all bounded linear functionals on a Hilbert space H is a Banach space, see
Theorem B.12. The Riesz representation Theorem states that H* = H, or more precisely, H* and
H are isomorphic. Thereby the dual space H* has an inner product.
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