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The theme of this book is convergence. For many philosophical representa-
tions of the evolution of theories, as well as representations of the meaning
of the language used to express these theories, it has been essential that
there exists some kind of convergence. This thesis introduces and collects
four papers in philosophical logic pertaining to two different aspects of this
basic tenet. On one hand, we have theories, their axioms and their rules
of inference. We often have reason to revise a theory over time, to delete
some axioms, add some new ones, or perhaps even revise our modes of rea-
soning. A simple model of such activity, providing a definition of what
it may mean that something is provable in the long run in such a dynamic
setting, is here investigated, and its relevance for the philosophical discus-
sion about mechanism and knowable self-consistency is evaluated. On the
other hand, the notion of a convergent concept, a term which, for whatever
reason, has a certain tendency to its application over time, gets a precise ex-
plication in terms of trial-and-error classifiers. Formal languages, based on
these classifiers, are introduced with semantics and proof systems, and are
explored using standard logical methods.
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No this is how it works
You peer inside yourself

You take the things you like
Then try to love the things you took

Regina Spektor



1 Introduction

Wherein we get some general guidelines on how to approach this thesis;
what it is, what it is not, how it is supposed to be read.

1.1 Methodology

As sentient beings, we are presented with a world of objects—a vast and
complicated abundance of them—and try collectively to make some sense
of our surroundings. We do this partly by putting and (temporarily) stor-
ing the things in virtual conceptual boxes or categories, i.e., we classify.
I am convinced that valuable classification, meaning classification that is
useful for systematization, prediction and explanation, is possible due to a
complex interplay of many different aspects: of regularities in the world,
our conceptual powers, the sophistication of our instruments, and also
such things as our communicative abilities and intersubjective conceptual
schemes. The metaphysical structure of the world does not on its own con-
stitute a sufficient ground for this possibility.¹

I arguably belong to some kind of instrumentalist and pragmatist philo-
sophical camp, and I confess to a deeply felt skepticism towards the notion
that reality presents us with natural kinds, to which we can rigidly point
using terms in our (scientific) language.² This skepticism notwithstanding,
it is hard to deny that some kind of convergence over time in the extension
of the terms of our language (and our body of beliefs) is of utmost im-
portance, when it comes to scientific theorizing, and also for language as a
communicative device in general. From my position, it is obviously not a
viable option to just say that “gold” rigidly refers to the substance gold, and

¹See (Kaså, 2015).
²Cognoscenti will recognize this statement as opposed to the main point of (Putnam,

1975)—a very well-written and inspiring work, which will be briefly reviewed in Sec-
tion 2.2.2, and returned to in Section 3.2.1.
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therefore even has a constant extension over time whether we realize it or
not. My preferred understanding of convergence must be, in some sense,
pragmatically determined.³

The position I am starting from could perhaps be quickly summed up by
saying: (i) the extension of a term may vary over time, (ii) whether there will
be convergence, whether the term will turn out to be useful for predictions,
inductive generalizations, etc., is not, or at least not solely, determined by
metaphysical features of the world, but may be largely “accidental” and
dependent on a whole interconnected web of other terms (scientific and
otherwise), which are also evolving, and (iii) even if there is convergence,
there may never be an actual point in time when a given term reaches a
final, unchanging extension.

Now, obviously, a lot more will be said about this, and at another level
of precision, in Chapters 2 and 3, but there it is; this is the basic idea, my
philosophical point of departure. This is a book about convergence.

Where to go from there? Let me be upfront with what I have not done
in this thesis. I have not done much classical “conceptual analysis”, not
really analytically explored this shard of a philosophical position. Neither
have I engaged in earnest with the vast literature on natural kinds (in and
out of philosophy of science), nor with the more linguistically oriented lit-
erature about lexical change. Moreover, I have not tried to directly apply
my particular convergence concept to philosophical problems concerning
the use of scientific terms over time. All these things are certainly inter-
esting and worthwhile, but, instead, the attitude of this thesis is, I guess,
fairly typical for a philosophical logician working in what could be called
an “exploratory” mode. Cautiously and meticulously, I have just wanted
to know exactly what I am talking about, to make the concepts involved
as formally precise as I can, and in particular investigate what inferential
properties these concepts have.

³On an autobiographical note, there can be little doubt that the origins of my thoughts
on many of the philosophical issues touched upon in this book can be causally traced
to the presentation of F. P. Ramsey’s pragmatism in (Sahlin, 1990). In Facts and propo-
sitions—a paper which is still today a delight to read—Ramsey says that “The essence of
pragmatism I take to be this, that the meaning of a sentence is to be defined by refer-
ence to the actions to which asserting it would lead, or, more vaguely still, by its possible
causes and effects.” (Ramsey, 1927, p. 57)
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Starting from a rough idea about convergence of a rather weak variety (to
be presented in Section 3.2.1) of terms’ extensions over time, my method-
ology is, I think, heavily inspired by Carnap’s notion of explication.

The task of explication consists in transforming a given more
or less inexact concept into an exact one or, rather, in replac-
ing the first by the second. We call the given concept (or the
term used for it) the explicandum, and the exact concept pro-
posed to take the place of the first (or the term proposed for
it) the explicatum. The explicandum may belong to everyday
language or to a previous stage in the development of scien-
tific language. The explicatum must be given by explicit rules
for its use, for example, by a definition which incorporates it
into a well-constructed system of scientific either logicomath-
ematical or empirical concepts. (Carnap, 1950, p. 3)

So the, perhaps half-baked, idea about “convergent concepts” from my
informal semantics is in my technical work replaced by what will be called
“trial-and-error classifiers” in this thesis. The “well constructed system” is
simply a formal language with syntax and semantics given in standard, and
rather elementary, logical terms. Now, as soon as we have a formal seman-
tics, and (thereby) a logic, there are a host of natural questions which need
to be addressed.⁴ Is reasoning in the logic mechanizable? Is it always fini-
tary? Is there an algorithm for finding interpretations of satisfiable formu-
las? How does this logic compare to standard logics? Are there interesting
fragments or extensions? Pursuing this kind of questions mostly takes the
shape of open-minded investigation. The result of the explication, what
Carnap calls the explicatum, is an exactly defined concept, and we want
to know more about it. As it happens, the concept is logical, and hence
there is a very useful set of tools to equip ourselves with for the exploratory
journey.⁵

⁴“Natural” and “need to” are in this case basically instinctive logician’s judgements. But
the general sentiment extends to all branches of philosophy. A mere definition is not
enough to really get to know a concept; we also want to investigate the consequences
(and presuppositions) of the chosen definition.

⁵Admittedly, the tools have to be non-trivially adjusted to the particular problem at hand.
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If trial-and-error classifiers are thought of as the result of a process of
explication, is the explicatum any good? Carnap (1950, p. 7) says:

1. The explicatum is to be similar to the explicandum in such
a way that, in most cases in which the explicandum has so
far been used, the explicatum can be used; however, close
similarity is not required, and considerable differences are
permitted.

2. The characterization of the explicatum, that is, the rules
of its use (for instance, in the form of a definition), is to be
given in an exact form, so as to introduce the explication
into a well-connected system of scientific concepts.

3. The explicatum is to be a fruitful concept, that is, useful
for the formulation of many universal statements (em-
pirical laws in the case of a nonlogical concept, logical
theorems in the case of a logical concept).

4. The explicatum should be as simple as possible; this means
as simple as the more important requirements (1), (2),
and (3) permit.

I submit that it remains to be seen whether (3) is true in the present case.
The situation seems promising, but without doubt, much honest philo-
sophical toil will be required to get, even nearly, conclusive evidence for
this.⁶

The way of applying logical methods to problems in philosophy de-
scribed above can, somewhat vaguely, be characterized as being positive in
spirit; a creation of new formal systems to represent informal, philosoph-
ically interesting, concepts. Not all instances of philosophical logic are of
this variety, and the present thesis also exemplifies another brand. From the
very outset the two papers (Putnam, 1965) and (Jeroslow, 1975), though
they ostensibly address quite different problems than the problem of dy-
namic meaning (viz., generalization into the trial-and-error dimension of

⁶And there may be the worry that, though I am certainly otherwise convinced, we have a
case here where the explicatum will eventually fail to be fruitful, since the explicandum
itself is misguided.
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computability and provability, respectively), have constituted perhaps the
most important inspiration for my work. They are also very interesting
in their own right and, along the way, I stumbled over an attempt to use
(Jeroslow, 1975) in devising a counter-argument against a certain type of
arguments aimed at demonstrating the (mathematical) impossibility of rep-
resenting mind as a machine.⁷ I found the suggestion in several ways inter-
esting, sharpened it a bit with some technical work, but in the end found
the line of reasoning unconvincing.⁸

While this latter work of mine could be considered a detour with re-
spect to the main investigation, it was, I think, fruitful to engage with the
concept of convergence from a different angle; to directly address theories
rather than languages. And while largely “negative”, there is also here a
strong sense of exploration. Jeroslow’s systems have not, in my opinion,
been sufficiently investigated by philosophically minded logicians. There
are plenty more possible questions in connection with these concepts which
I, for one, would like to see both formulated and answered.⁹

1.2 Layout

After the short general introduction in this chapter, the body text of the the-
sis is structured in two separate main parts. First, there is the background
Chapter 2, aimed at giving the research presented in the four papers (Kaså,
2012, 2015, 2016, 2017) some proper context. Typically, I have tried to
give the issues a somewhat fuller (and wordier) presentation than is possible
within the stylistic and spatial confines of a journal article. And this is not
just to better set the philosophical stage, but also to give some technical ma-
terial from mostly (Jeroslow, 1975), necessary for a proper understanding
of some of my work, but perhaps not all that well known.

⁷The standard reference for the start of this debate is the oft-cited (and overwhelmingly
critically so) (Lucas, 1961). The above-mentioned attempt to use Jeroslow which I first
came across was in (Hazen, 2006a), though others seem to have been on a similar track.

⁸See Section 3.1 and (Kaså, 2012). This is not to say that I accept Lucas’s anti-mechanist
arguments. On the contrary, I am convinced that they are erroneous, but this is based
on other considerations than the attempt to use (Jeroslow, 1975).

⁹Some pointers to recent literature are given in Section 2.1.3.
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The background is further thematically divided into two sections, cover-
ing two different, but interconnected, aspects of convergence. On the one
hand, we look at convergence in theories. As preparatory work for read-
ing Section 3.1 and my paper (Kaså, 2012), the most important thing in
this Section 2.1 is the technical description of the so-called experimental
logics of (Jeroslow, 1975), which are simple models for dynamic axiomatic
theories, where the axioms, or rules of inference, may change over time.
These systems give a meaning, albeit a rather simplistic one, to the concept
“provable in the long run”, somewhat like the semantics alluded to below
gives a meaning to “true in the long run”. In my thinking, these experi-
mental logics have become inextricably linked with discussions about some
philosophical arguments about the (im)possibility of a true mechanist ac-
count of (some of the faculties of ) the human mind, and different ways of
interpreting what it means for a set to be “computably produced”. And, as
it turns out, more people think this way, so there will also be some back-
ground from sources such as (Boolos, 1995), (Lucas, 1961), (McCarthy
and Shapiro, 1987), (Shapiro, 1998), and others.

On the other hand, we have our focus on the phenomenon (or, rather,
phenomena) of convergence in the languages that theories are couched in.
That is, we investigate how terms may function over time and perhaps mean
(or denote) different things at different times, but have a potential to sta-
bilize in meaning. Issues like this are perhaps of special significance when
it comes to scientific theorizing, and the most important reference here
is (Putnam, 1975), but there will also be some background from (Peirce,
1877) and (Peirce, 1878). Thus Section 2.2 will set the stage for a reading
of my work on trial-and-error logics, presented in Section 3.2, and origi-
nally in the three papers (Kaså, 2015, 2016, 2017). One may say that this
second theme is, by and large, semantic in nature.

After the background and context is given, there is the aptly named
Chapter 3: Contributions. Herein the actual new results and discussions
from my papers are presented thematically. Full proofs of technical results
are, in general, not given in this chapter; for that, the reader is referred to
the original papers.
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First, in Section 3.1, it is argued that, while interesting and valuable in
many ways, Jeroslow’s experimental logics cannot in any definitive way be
used as the final word in the discussion on (anti-)mechanism. Which is
not to say that thinking along lines like these cannot shed new light on the
debate. Some results from Jeroslow are made clearer, and also extended.¹⁰

Then, there is Section 3.2, where my own formal take on convergence in
dynamic meaning is given a technical presentation. This includes a brand
new semantics for a syntactically familiar language, and proofs of proper-
ties such as axiomatizability and compactness. A natural fragment of this
language is also distinguished, and for this we give two proof systems, nat-
ural deduction and analytic tableaux, respectively, which are proven to be
sound and complete. Along the way we get the (expected) result that the
fragment is decidable, while the full language is not.

The main parts are followed by the short Chapter 4, basically listing
some open problems, mostly of a technical character, which seem to point
towards reasonable, and hopefully fruitful, directions of further research in
this area. While this could alternatively have been included in Chapter 3,
this mode of presentation has the added value of making the problems
more salient, and everyone is cordially invited to partake in the quest for
definitive solutions, as well as the formulation of even harder questions.

For the convenience of casual readers, the thesis ends with brief sum-
maries of the four research papers. Though it is of course preferred that
the papers themselves be read—since that is where the research contribu-
tions really take place—this Chapter 5 at least gives an indication of how
the research thematically presented in Chapter 3 in fact has been, and will
be, published. What the reader will find there are essentially extended ab-
stracts.

The original papers are, as customary, attached to the introductory text
of the thesis, in published or manuscript form.

¹⁰As will become clear in this chapter, and in the paper (Kaså, 2012) itself, I owe a lot to
Allen Hazen for even starting to think about these matters. See (Hazen, 2006a,b).
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2 Logico-philosophical strands

The present chapter gives an historical background (or rather backgrounds
in the plural) to the logical investigations in the papers of this thesis. When
presenting a compilation of papers, one can always worry about the degree
of cohesion; what is it that makes this one project rather than several dis-
parate ones? But it should be clear by now that there really is one over-
arching theme here: convergence. This will be reinforced by the following
review.

2.1 Semi-Euclidean theories, ∆0
2 and consistency

This section is devoted to introducing the mainly technical background
for the part of the thesis which is about convergence in theories, and the
connection between a formal representation of this phenomenon and some
philosophical questions regarding mechanical models of thinking.

2.1.1 Jeroslow’s experimental logics

The mission statement of Jeroslow’s Experimental logics and ∆0
2-theories is

this:

In this paper, we explore the concept of a logic which pro-
ceeds by trial-and-error, and deduce consequences which fol-
low from relatively weak assumptions about these experimental
logics.
(Jeroslow, 1975, p. 253)

Just reading this, one could perhaps expect something like the semanti-
cally motivated trial-and-error logics of the present thesis (Section 3.2), but
though Jeroslow’s work may definitely be related in spirit (and pedigree) to
such considerations, it is in fact very different. I start this section with a

9
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résumé of the technicalities of Jeroslow’s article, which underlie the work
presented in Section 3.1.¹¹

When Jeroslow talks about an “experimental logic” he technically just
means a recursive, or decidable, ternary relation H(t, p, φ) on the set of
natural numbers. What motivates the terminology is the intended inter-
pretation, which is:

“At time t, the construction p is recognized as a proof of φ.”¹²

How is this a “logic which proceeds by trial-and-error”? The answer lies
in the definition of what it means to be provable in an experimental logic.
The set of theorems of H , denoted by Th(H), is taken to be the set RecH
of recurring formulas, defined by:

RecH(φ) ⇔ ∀s∃t>s∃pH(t, p, φ)

So we get a picture of a dynamic, or evolving theory: whether it is because
we change axioms or rules of inference, and whatever reasons we have for
doing so, different formulas may be provable at different points in time.
And the “real” theorems are the recurrent ones, the ones we never perma-
nently throw away. Complexity-wise, this is a Π0

2-set. Remember that H
is recursive, so this model would not fit a situation where we, e.g., arrive
at axioms from non-computable sources, as divine inspiration and the like.
To quote the originator again:

The experimental logics we study here are the most conserva-
tive extension of formal systems into the trial-and-error di-
mension, since we hypothesize that the events which may
cause changes in axioms and rules of reasoning are mechani-
cal, and the reformulation of the theory following these events
is also mechanically determined. (Jeroslow, 1975, p. 254)

¹¹Meta-mathematical terminology and tools used here are standard, and the reader is re-
ferred to, e.g., (Lindström, 1997) for details.

¹²Here, and in other applicable cases, no distinction is made between syntactic objects,
their Gödel numbers, and the corresponding numerals.

10
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Jeroslow is not particularly interested in Π0
2-sets in general, but limits

himself to what he calls convergent experimental logics. Some formulas
may be not only infinitely recurring, but in fact stabilize as being always
provable from some point in time. The Σ0

2-set StblH of stable formulas is
defined by

StblH(φ) ⇔ ∃p∃s∀t>sH(t, p, φ)

An experimental logic is defined to be convergent if, for all φ, we have
that RecH(φ)→StblH(φ), if every theorem is “decided in the limit”, as it
were. So, by definition, the set of theorems of a convergent experimental
logic is actually a ∆0

2-set.
In his paper (1965), Putnam definedX to be a one-place trial and error

predicate if there exists a recursive function f such that for all n ∈ ω:{
n ∈ X ⇔ limm→∞ f(n,m) = 1

n /∈ X ⇔ limm→∞ f(n,m) = 0

His first characterization theorem then states that X is a trial and error
predicate iff X ∈ ∆0

2. (Putnam, 1965, p. 51) So given any such X (and
f ), we can define H by e.g., H(t, p, φ) ⇔ (f(φ, t) = 1 ∧ p = 0). This
evidently makes H a convergent experimental logic, and Th(H) = X .
From this observation we get the following characterization:

Theorem 1 (Jeroslow/Putnam). The sets of theorems of convergent experimen-
tal logics are precisely the ∆0

2-sets.

Next, extending Gödel’s first incompleteness theorem, Jeroslow provides
a short proof of the basic incompleteness theorem for experimental logics:

Theorem 2 (Jeroslow). If H is a consistent, convergent, experimental logic
which contains first-order Peano arithmetic, and is closed under deduction,
then Th(H) is incomplete, even at the Π0

1-level.

Proof. From the fixed-point lemma, we know that there is a sentence φ
such that PA ⊢ φ↔ ¬StblH(φ). Consider the two cases:

1. φ ∈ Th(H). SinceH is convergent, StblH(φ) is true, but can, given
the fixed point, not be a theorem of H on pain of contradiction.

11



truth and proof in the long run

2. φ /∈ Th(H). Use the fact that ⊢ StblH(φ) → RecH(φ). Then
¬RecH(φ), which is true, cannot be a theorem, since ¬StblH(φ)
would be, and hence also φ, contradicting the case assumption.

In any case, there would be a true, “unprovable” formula equivalent to a
Σ0

2-sentence ∃xψ(x). But then there exists a number n for which ψ(n) is
a true, unprovable Π0

1-sentence.¹³

The upshot is that even though the concept of a theorem is more com-
plex for experimental logics than for ordinary formal theories (∆0

2 rather
thanΣ0

1) the incompleteness phenomenon still occurs at the lowest possible
level, viz., Π0

1, so there are still “real” (in Hilbert’s sense) true mathemat-
ical propositions which cannot be reached even through such an infinite,
mechanistic, trial-and-error process which can be represented as an exper-
imental logic.¹⁴ Note, though, that we have not explicitly given an actual
Π0

1-sentence, and this is not by accident.
When it comes to Gödel’s second theorem, the incompleteness phe-

nomenon is relativized. For an ordinary formal theory, such as first-order
Peano arithmetic, it is easy to mechanically find a true, unprovable Π0

1-
sentence; just take ConPA. In contrast, observe the following theorem.

Theorem 3 (Feferman/Jeroslow). Some experimental logics prove their own
consistency.

Proof. Let T be an adequate, sound arithmetical theory (e.g., first-order
PA) and let PrfT (x, y) be the usual proof predicate representing (in T ) that
y is a proof of x.¹⁵ Furthermore, let ConT be the canonical consistency
statement ¬∃yPrfT (⊥, y).

Define the experimental logic H as the following decidable predicate:

H(t, p, φ) ⇔
{

PrfT+ConT (φ, p) and ∀x≤ t¬PrfT+ConT (⊥, x)) ; or
PrfT (φ, p) and ∃x≤ tPrfT+ConT (⊥, x))

¹³This particular version of the proof is from (Bennet, 1989).
¹⁴The distinction between real and ideal mathematical propositions is spelled out in

(Hilbert, 1925).
¹⁵It suffices that PrfT (x, y) is standard in the sense of (Feferman, 1960).

12
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Note that the set T + ConT is consistent, so in fact we have that, for all t,
∃pH(t, p, φ) ⇔ T + ConT ⊢ φ.

The following argument takes place inside T + ConT :

a) If T + ConT ⊢ ⊥, then Th(H) = Th(T ). But we have ConT , and
hence H is consistent.

b) If, on the other hand, T + ConT ⊬ ⊥, then Th(H) = Th(T +

ConT ), and, by the assumption, H is consistent.

This shows that T +ConT ⊢ ‘‘H is consistent”, and we can conclude that
the consistency of H is a theorem of H itself.

This is my rendering of Jeroslow’s proof, which in turn is just an adap-
tion of Feferman’s proof of Theorem 5.9 in (Feferman, 1960), from which
Jeroslow states that he “abstracted the concept of an experimental logic”.¹⁶
Note two features of this which will become important in the later discus-
sion:

• The canonical consistency statement of an experimental logic is not
in general equivalent to a Π0

1-sentence. If η(t, p, φ) is a formula
which serves as definition of the arithmetical relation H , then, us-
ing the definition of Recη(φ), we get a canonical Σ0

2 consistency
statement Con(η) defined by ¬∀s∃t>s∃p η(t, p,⊥).¹⁷

• The set Th(H) of the proof is actually Σ0
1.

In fact, Jeroslow proved that we cannot in general effectively construct
a true Π0

1-sentence π such that π /∈ Th(H), though we know that they
exist. This is the content of Theorem 5 of his paper (the exact statement
and proof is omitted here, since it is not essential for what is to come).

Finally, there is still a kind of “second incompleteness theorem”, indicat-
ing that a class of experimental logics (satisfying some, rather reasonable,
extra assumptions) cannot prove their own 2-consistency, and hence cannot
prove their own soundness for certain trial-and-error statements.¹⁸

¹⁶Feferman used a (non-standard) “provability predicate”, intensionally expressing prov-
ability in the largest consistent sub-theory of the original theory.

¹⁷Or, in case we assume convergence: the Π0
2-formula ∀t∀p∃s>t¬η(s, p,⊥).

¹⁸(Jeroslow, 1975, p. 264)

13
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Theorem 4 (Jeroslow). Suppose Th(H) ⊇ PA is closed under deduction and
1-consistent, and furthermore:

• Ifφ is equivalent to aΣ0
2-formula in PA then⊢ RecH(φ)→StblH(φ).

• If PA ⊢ α→ β, then ⊢ StblH(α) → StblH(β).

• If ρ ∈ Σ0
1, then ⊢ ρ→ StblH(ρ)

Then H cannot prove that it is 2-consistent.

The proof can be found in (Jeroslow, 1975, pp. 264f ).

2.1.2 Semi-Euclidean theories

Though the connection to Jeroslow has not always been explicitly noted,
others have evidently been entertaining similar thoughts about generaliz-
ing the concept of a formal system. While assessing the alleged relevance
of “limitative theorems”, such as versions of Gödel’s incompleteness theo-
rems, for the philosophical debate on whether mind is (or can be, or can be
represented as being) mechanical, Stewart Shapiro has this to say on a kind
of idealization according to which the “product” of mathematics is just like
a set of theorems of a formal system:

The normative idealization is consonant with a longstanding
epistemology for mathematics. The idea is that for mathemat-
ics at least, real humans are capable of proceeding, and should
proceed, by applying infallible methods. In practice (or per-
formance) we invariably fall short of this, due to slips of the
pen and faulty memory, but in some sense we are capable of
error-free mathematics. We start with self-evident axioms and
proceed by gap free deduction. Call this the Euclidean model
of mathematics. (Shapiro, 1998, p. 293)

This is of course but one of the possible “normative idealizations”. What
are we modelling, anyway? What kind of enterprise is it that should be
represented (in some way) by some variety of formal system? The activity
should be recognizable as human mathematical activity (albeit idealized),
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and as such it must be fallible. And not only now, but forever fallible; it
seems too much of a stretch to postulate that there will ever be an actual
point in time where inconsistencies and other errors are just gone forever.
It seems less far-fetched to idealize and say that each individual error will
be spotted and corrected over time. Here is a picturesque description of a
momentarily fallible, but dynamic and (in a sense) “eventually infallible”
mathematical researcher:

Consider an ideal mathematician engaged in developing an axiomatic
theory. She may perhaps start with some base theory which she does not
question, and then she wants to extend it by adding new concepts and new
pieces of information. Adding new concepts, in a formal setting, amounts
to introducing new symbols to the language and adding axioms which char-
acterize (as precisely as possible within the logical confines of the language)
the intuitive mathematical ideas. Then, there is the business of deduction.
Theorems pile up, and unwanted consequences may surface: contradic-
tions, as well as formal theorems which, while perhaps consistent, show that
the axiomatization fails to capture the intended informal concept. Luck-
ily, our careful mathematician has kept track of which axioms were used in
which proofs, and therefore she is in a position to backtrack, delete what-
ever axioms she holds responsible (as well as dependent theorems) and start
anew. And thus the next step in the theory development is taken.

In a more fortunate case, she may be happy with the results so far, but
she still wants to go on developing her theory by adding new axioms (con-
cerning new or old non-logical symbols). Ideally, this process continues
without limitations of space, time, etc. Not caring too much about what
happens at each step, nor about why and how new axioms are chosen, we
get a simple but reasonable picture of a discrete theory development over
time. And the theory as a whole, the dynamic theory, is this entire sequence.

Something like this must be what Shapiro has in mind when he writes:

[O]nce we leave the Euclidean model, even the ideal agents
change their minds from time to time and so the model of a
Turing machine printing out truth after truth is not appro-
priate. […] Suppose that whenever a human asserts a con-
tradiction, or some other arithmetic falsehood, she has the
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ability in principle to realize the error and withdraw it. This
assumption is a minimal retreat […] Call it the semi-Euclidean
assumption. (Shapiro, 1998, pp. 296f )

Let us call the set of sentences which are “eventually accepted” by such an
idealized mathematician a semi-Euclidean set. There is nothing in the model
in and of itself which precludes this set from being computably enumerable,
and thus equivalent to the set of theorems of a formal system. But, and
importantly, there seems to be no strong prima facie reason to believe that
it should be. So a formal, mechanistic, model of this kind of mathematical
activity has to cater for the possibility that the “product” of the system may
be a set of (potentially) higher arithmetical complexity than the Σ0

1 of a
proper formal theory.

My presentation (and Shapiro’s) has been in terms of mathematical theo-
ries, in order to provide an interface to Jeroslow’s work and the later discus-
sion in Section 3.1. But a similar story could arguably be told about other
human scientific endeavours, and one could inquire into suitable represen-
tations of these. This is not far from Peirce’s cautious optimism regarding
convergence in the sciences, cf. the discussions in Section 2.2.1.

2.1.3 Related concepts and studies

In the preceding presentation, the studies by Putnam and Jeroslow were
used as a point of departure. While not arbitrary, it should be admitted that
this is at least to some degree coincidental. Other logicians have, sometimes
independently, been working with very similar concepts, and the point of
this short section is to summarily present at least a small sample from the
literature, both contemporary with Putnam and Jeroslow, respectively, and
a few more recent papers. Though this will not play any important part
in what follows, it is included in the hope that it will be found useful to a
reader who considers this area intriguing, and may want pointers to where
to continue.

First off, published back-to-back in the very same volume with (Putnam,
1965) is an article by E. M. Gold, where he introduces essentially the same
concept, under the label limiting recursive sets.
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A set, S, is called recursive if the questions “is x ∈ S” are
decidable. S will be defined to be limiting recursive if these
questions are decidable in the limit, i.e., if there is a guessing
function g(x, n), which is total recursive and such that, for
all x, the sequence g(x, 0), g(x, 1), . . . is ultimately 1 or 0,
according to whether x ∈ S or x /∈ S […] [I]t is shown that
[…] Limiting recursive is equivalent to 2-recursive (EA and
AE). (Gold, 1965, p. 28)

In slightly more modern times, we have e.g., (McCarthy and Shapiro,
1987) where, again, the same idea is given the name Turing projectable
sets. Here, a generalized “extended Turing machine”, a model of non-
terminating, but effective, computational processes is described. This is
a deterministic machine with two tapes: the projection tape and the com-
putation tape. A computation is a finite sequence of configurations of this
machine, and the output of a computation is (the number described by)
the contents of the projection tape, but unlike ordinary Turing machines,
it is not necessary for the last configuration to be one in which the machine
has halted. A computation is stable if extending it does not change the out-
put, and a machine M is said to project a number-theoretic function f if,
for each n, there is a computation ofM which has the stable output f(n).
The fundamental result is:

Theorem […] A number-theoretic function is Turing pro-
jectable if and only if it is recursive relative to the halting prob-
lem for ordinary Turing machines. (McCarthy and Shapiro,
1987, p. 523)

Putnam’s theorem on trial and error predicates and ∆0
2 sets then follows

as an easy corollary. The rest of the paper is devoted to applications to
problems concerning learning strategies and so-called inductive logic.

Moving on to Jeroslow’s work, he too had contemporaries with very sim-
ilar ideas. At roughly the same time, R. Magari and C. Bernardi were work-
ing on what they called dialectic systems (and associated dialectic sets), pub-
lished in (Magari, 1974). and there was also some collaboration between
these projects. Magari’s presentation is rather more technically involved
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than Jeroslow’s, but, roughly, a dialectic system is a triple (h, f, c) where
h, f are total recursive, f is a permutation of ω, and c ∈ ω. Furthermore
there are requirements on h that the image of a set including c is the whole
of ω, and that the image of any set is non-empty. If we consider the nat-
ural numbers as representing formulas in a logical language via a recursive
coding, we may think of h as representing a deductive formal system, f as
representing a mechanical method of generating (non-logical) axioms, and
c as an arbitrary contradiction. Magari then defines the set of theorems of
a system (h, f, c) as the limit of a revisionary process where, basically, the
“axioms” f(n) are provisionally added, but subject to later removal should
it turn out that c becomes “derivable”. A set is dialectic if it is the set of
theorems of such a system.¹⁹

Recently, a project has been initiated to build upon and refine Magari’s
work, presented in the paper (Amidei et al, 2016a).²⁰ Here the authors
generalize the dialectic systems to “quasidialectical systems”, with the philo-
sophical aim of having a formalism more in tune with a serious empiricist
position in the philosophy of mathematics. To the systems of Magari are
added a c−, encoding other reasons for revising a theory, than flat out con-
tradiction, and a function f−, with the task of replacing an abandoned ax-
iom in some computable manner. This gives more descriptive power, i.e.,
there are quasidialectical sets which are not dialectic sets in Magari’s sense,
but not the other way round, and on the philosophical side, we may get
a possibility to formally represent a revisionary dynamics in mathematical
theory building in accordance with mathematical practices.²¹

Ending this section, I would like to draw attention to two recent papers,
with very different perspectives and methods, but both of considerable in-
terest to anyone working in this general area.

¹⁹The dialectic sets form, unlike the experimental logics, a proper subclass of the ∆0
2-sets.

²⁰A second, more technical, part of the paper has recently been published as (Amidei et al,
2016b).

²¹A suggestion pointing in this general direction can be found in (Jeroslow, 1975, p. 255):
“To proceed in that direction, more would have to be added to experimental logics.
In addition to the body of knowledge currently asserted, which is represented by the
current theorems […] one would wish to make explicit experimentation with other
assertions currently being viewed as being of various degrees of likelihood. I.e., one
would wish to spell out the trial-and-error activity with non-axioms which are being
screened for potential axiomhood.”
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M. Mostowski has published several articles on FM-representability, e.g.,
(Mostowski, 2008). This concept captures the property of an arithmetical
relation being such that there is a formula representing each finite part of
its characteristic function in all sufficiently large finite initial fragments of a
standard model of the natural numbers. A beautiful chain of representabil-
ity results are proved, from which we learn that to the previously known
equivalences—being ∆0

2, being a trial and error relation, being of Turing
degree ≤ 0′, etc.— we can add being FM-representable, and others more
besides, among them being statistically representable, and being decidable by
a Zeno machine.

With a clear cognitive science outlook, the survey paper (Isaac et al,
2014) starts from a methodological assumption referred to as a psycholog-
ical Church-Turing thesis: “The human mind can only solve computable
problems.” The paper goes through a variety of applications of logic in gen-
eral, and concepts from computational complexity theory in particular, to
cognitive and experimental psychology. Due to the task-oriented nature of
the latter, and the tendency to think of the basic activity of cognitive agents
as information processing, this computational perspective promises to be
of great utility:

The value of the computational perspective is in its fruitful-
ness as a research program: formal analysis of an information
processing task generates empirical predictions, and break-
downs in these predictions motivate revisions in the formal
theory. […] [A]ll logical models of cognitive behavior (tem-
poral reasoning, learning, mathematical problem solving, etc.)
can strengthen their relevance for empirical methods by em-
bracing complexity analysis […] (Isaac et al, 2014, pp. 818f )

Many diverse, but related, applications are presented, such as typical
tasks from (cognitive) experimental psychology, non-monotonic reason-
ing, neural network implementations, semantic automata and even some
comments on social cognition.²²

²²A book written with the same general perspective on the interplay between formal logic
and empirical science about reasoning is (Stenning and van Lambalgen, 2012).

19



truth and proof in the long run

2.2 Convergence in science and its language

As indicated already in Section 1.1, the semantic part of the thesis was
not created ex nihilo, but rather came into existence by letting pragmatist
ideas on convergence interact with ideas on the meaning of terms which
are applied differently over time. This section spends a few more words on
spelling out the background, with the aim of setting a philosophical stage
for the results to come. There are no technicalities whatsoever here, in stark
contrast with Section 3.2, for which the following is a preparation.

2.2.1 Peirce and the origins of pragmaticism

The idea of scientific convergence, and its connection to theories of mean-
ing, of course goes way back in the history of (modern) philosophy. One
locus classicus is certainly C. S. Peirce’sHow toMake Our Ideas Clear (1878),
which I here will use to introduce some tenets of pragmaticism.

In the context of making critical comments about older conceptions (es-
pecially Descartes’) of “clearness” of ideas, Peirce introduces his three grades
of clearness of apprehension. The first one is, roughly, mere familiarity with
an idea, while the second is the access to a suitable definition. Now, these
conceptions are present in older philosophy, but what he finds lacking is a
third grade, which he associates with what has become dubbed the “prag-
matic maxim”.

Peirce seems to present a distinctly operational concept when he explains
how we are to understand the term “belief ”.

[A belief ] has just three properties: First, it is something that
we are aware of; second, it appeases the irritation of doubt;
and third, it involves the establishment in our nature of a rule
of action, or say for short, a habit. (Peirce, 1878, p. 129)

He later adds that:

[W]hat a thing means is simply what habits it involves. Now,
the identity of a habit depends on how it might lead us to act,
not merely under such circumstances as are likely to arise, but
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under such as might possibly occur, no matter how improba-
ble they may be. […] [T]here is no distinction in meaning so
fine as to consist in anything but a possible difference of prac-
tice. […] It appears, then, that the rule for attaining the third
grade of clearness of apprehension is as follows: Consider what
effects, which might conceivably have practical bearings, we
conceive the object of our conception to have. Then, our con-
ception of these effects is the whole of our conception of the
object. (Peirce, 1878, pp. 131f )

In the final section of his paper, Peirce applies his “rule” to the funda-
mental concept of reality. Taking familiarity as unproblematic, the sec-
ond degree can still be puzzling to most, says Peirce, but also suggests that
philosophical analysis has come up with a workable definition by contrast-
ing reality and fiction, so we may “define the real as that whose characters
are independent of what anybody may think them to be” (Peirce, 1878,
p. 137). But, importantly, this is still not perfectly clear; in fact Peirce com-
ments that it would be a “great mistake” to suppose it is.

In accordance with the pragmatic maxim, the correct way of analyzing
reality is to see to the sensible effects it involves, and, says Peirce, this means
looking at beliefs, because that is what is relevant here: reality’s power to
cause beliefs. So the real philosophical problem is to distinguish true be-
lief, i.e., belief in real things, from false belief, i.e., belief in the fictitious.
The year before, Peirce had in his (1877) scrutinized four different methods
of belief fixation and had come to the conclusion that only the scientific
method could in the long run be successful. And when he uses the word
“true” here, it is in his opinion a predicate only properly applied in a sci-
entific context. So when is a belief true, then?

[A]ll the followers of science are fully persuaded that the pro-
cesses of investigation, if only pushed far enough, will give
one certain solution to every question to which they can be
applied. […] They may at first obtain different results, but,
as each perfects his method and his processes, the results will
move steadily together toward a destined centre. […]
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No modification of the point of view taken, no selection of
other facts for study, no natural bent of mind even, can en-
able a man to escape the predestinate opinion. […] This great
law is embodied in the conception of truth and reality. The
opinion which is fated to be ultimately agreed to by all who
investigate, is what we mean by the truth, and the object rep-
resented in this opinion is the real. (Peirce, 1878, pp. 138f )

Peirce seems to be quite convinced that we are really bound to end up at a
particular place, and that this is independent of our particular interests and
other mental faculties. Reality is that thing which keeps us in check; we do
not construct the world, as it were. On the other hand, this convergence
may not happen any time soon, and there is some kind of dependence on
“mind”.

[R]eality is independent, not necessarily of thought in general,
but only of what you or I or any finite number of men may
think about it […] Our perversity and that of others may in-
definitely postpone the settlement of opinion; it might even
conceivably cause an arbitrary proposition to be universally
accepted as long as the human race should last. (Peirce, 1878,
p. 139)

This is, in a nutshell, Peirce’s early pragmaticism. One thing conspicu-
ously lacking from this account is any real discussion of language. Perhaps
one could add a rather important property of beliefs to Peirce’s list of three;
a belief can typically be shared, or communicated using a declarative sen-
tence. A pair of questions which almost force themselves upon us is then
to what extent linguistic meaning is dependent on “what we think”, and
how to handle the fact that not only our belief sets, but the very meaning
of the terms we use to express beliefs, seem to vary over time. This leads
naturally over to the next section.

2.2.2 Putnam on the meaning of ‘meaning’

In his highly influential (1975) paper, Putnam is making a case for treating
natural-kind words as “indexical”, or rigid designators in Kripke’s parlance.
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He states that traditional theories of meaning rested on two, mostly unchal-
lenged, assumptions.

1. Knowing the meaning of a term is just a matter of being in a certain
psychological state.

2. The meaning of a term (in the sense of “intension”) determines its
extension (in the sense that sameness of intension entails sameness
of extension).

Putnam sets out to show that “these two assumptions are not jointly sat-
isfied by any notion, let alone any notion of meaning.” (Putnam, 1975,
p. 136) So, according to (1) and (2), if two terms differ in extension, they
differ in meaning, and since knowing the meaning of the terms consists in
being in (two different) psychological states, these states actually determine
the extensions (by determining the intensions).

The rest of Putnam’s paper is mostly devoted to detailing a host of exam-
ples and thought experiments, which have become well-known denizens
of the philosophical landscape, using Twin Earths, water-like substance
which is “XYZ” rather than H2O, Martian tigers, machine-lemons, pencil-
organisms and whatnot. Their main function is to drive the point home
that:

[…] it is possible for two speakers to be in exactly the same
psychological state (in the narrow sense), even though the ex-
tension of the term A in the idiolect of the one is different
from the extension of the term A in the idiolect of the other.
Extension is not determined by the psychological state. (Put-
nam, 1975, p. 139)

A central idea of Putnam’s, and an, at least partial, explanation of failures
of assumptions (1) and (2), is the principle of division of linguistic labour.
When I, a non-expert in metallurgy, acquire a term like “molybdenum”,
I do not (in general) acquire any “concept” that fixes the extension. In
particular, I do not have to be in possession of a method for discriminat-
ing between examples and non-examples (of molybdenum). To the extent
that such methods exist, they are present in the linguistic community as a
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whole—not in an individual mind.²³ When I, as an average speaker, use
the word “molybdenum”, the community sees to it that I manage to speak
of something determinate. And the community does not do this by itself,
it needs help from reality; this is not a theory of social constructivism. The
very existence of the natural kind which is rigidly picked out by the term,
seems to be a necessary condition.

After his first few, science fiction flavoured, examples, Putnam proceeds
to discuss meaning of scientific (natural kind) terms over time, explicitly
arguing against a certain kind of anti-realist position. He urges us not to
conflate the meaning of a term and the criteria (methods, observations,
theories) we, at some point in time, happen to be using to demarcate the
term’s extension. In this example, we are to imagine that there are pieces of
metal which could not have been determined not to be gold by the methods
available to Archimedes in his time, but which, by the operational criteria
we have at our disposal today are seen not to be gold. Putnam’s claim is
that:

[…] “gold” has not changed its extension (or not changed it
significantly) in two thousand years. Our methods of identify-
ing gold has grown incredibly sophisticated. […] Archimedes
would have said that our hypothetical piece of metal X was
gold, but he would have beenwrong. Butwho’s to say he would
have been wrong? The obvious answer is: we are (using the
best theory available today). (Putnam, 1975, p. 153)

With respect to the theme of this thesis, the central part of the meaning
theory presented by Putnam is that there are these two aspects working in
conjunction: (i) meanings are social; and (ii) meanings are indexical. An
important difference between, say, proper names, and terms like “gold” is
that we can know and use a proper name to refer to an individual with-
out knowing anything about said individual. When it comes to “natural
kind terms”, on the other hand, we are required to know something about
stereotypical representatives of the kind, we have to have some individual,
mental, conception.²⁴

²³Non-linguistic parts of the community can also be important, of course.
²⁴Not reference fixing in itself, of course.
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We have now seen that the extension of a term is not fixed by
a concept that the individual speaker has in his head, and this
is true both because extension is, in general, determined so-
cially—there is division of linguistic labor as much as of “real”
labor—and because extension is, in part, determined indexi-
cally. The extension of our terms depends upon the actual
nature of the particular things that serve as paradigms […]
(Putnam, 1975, p. 164)

The technical work presented in Section 3.2 is based on an outlook in
philosophical semantics (and metaphysics) which, in a sense, accepts the
social aspect, but denies, or at least does not want to rely on, the indexical
aspect.
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3 Contributions

Wherein the main points of the original research of the author’s attached
papers (Kaså, 2012, 2015, 2016, 2017) are presented.

3.1 Anti-anti-mechanism and experimental logics

In this section it is investigated whether Jeroslow’s experimental logics, and
their ∆0

2-sets of theorems, can help us cut through the thorny discussions
about the (ir)relevance of the so-called “limitative” theorems in metamath-
ematics to questions about mechanistic models in the philosophy of mind.

3.1.1 Limitative theorems and anti-mechanism

There is a rather large set of papers and books in the logico-philosophical lit-
erature which address the question whether the human mind is—or could
be—mechanical, and in particular whether even the arithmetical faculties
can be represented as a Turing machine, or equivalent abstract device. The
usual starting point for this discussion is (Lucas, 1961), where he famously
puts forward his anti-mechanistic thesis, arguing that:

Gödel’s theorem states that in any consistent system which is
strong enough to produce simple arithmetic there are formu-
lae which cannot be proved-in-the-system, but which we can
see to be true. (Lucas, 1961, p. 121)

And he goes on to say:

Gödel’s theorem must apply to cybernetical machines, because
it is of the essence of being a machine, that it should be a
concrete instantiation of a formal system.

Gödel’s theorem seems to me to prove that Mechanism is false,
that is, that minds cannot be explained as machines.
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The standard objection to Lucas’s reasoning is that all we know for cer-
tain about such a system S is that if the system is in fact consistent then
(e.g.) S ⊬ Con(S). But, of course, (i) there is no stopping that claim
from being a theorem of S, and (ii) there is, in general, no reason to as-
sume that “we” know that S is consistent, even though it is. As said above,
a huge debate followed, and continues to this day, and it took some new
turns when Penrose published his Shadows of the Mind (1994). We will not
wade through the material here; to do justice to the whole debate would be
to write another and quite different dissertation altogether. But for anyone
interested in digging in, there is a selection of important works in the ref-
erences of (Kaså, 2012).²⁵ Before I describe my own contribution, we will
look at some additional background.

Lucas was definitely not the first wanting to draw, roughly, this kind
of conclusions from the limitative theorems of Gödel and others. Gödel
himself, in his “Gibbs lecture” in 1951, said that:

[I]f the human mind were equivalent to a finite machine, then
objective mathematics not only would be incompletable in the
sense of not being contained in any well-defined axiomatic sys-
tem, but moreover there would exist absolutely unsolvable dio-
phantine problems […] where the epithet “absolutely” means
that they would be undecidable, not just within some particu-
lar axiomatic system, but by anymathematical proof the human
mind can conceive. So the following disjunctive conclusion is
inevitable: Either […] the human mind (even within the realm
of pure mathematics) infinitely surpasses the powers of any finite
machine, or else there exist absolutely unsolvable diophantine prob-
lems […] It is this mathematically established fact which seems
to me of great philosophical interest. (Gödel, 1951, p. 310)

Even this more careful disjunctive claim has received its fair share of criti-
cism over the years. For one thing, it may not be so obvious that there even

²⁵Some of this philosophical discussion is very enlightening, and some not so much. Here I
would just like to mention two particularly worthwhile contributions: (Franzén, 2005)
and (Lindström, 2006).
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exists a well-defined set of “humanly solvable problems” (if one doesn’t
mean the presumably finite set of problems the human species will actually
manage to solve before it goes extinct). But more than this, the “repre-
sentational relation” between the human mind on the one hand and finite
machines on the other is certainly not crystal clear.

In the introductory note to the published Gibbs lecture, Boolos shows
sound philosophical sensitivity towards this issue, and writes:

What may be found problematic in Gödel’s judgement that
his conclusion is of philosophical interest is that it is certainly
not obvious what it means to say that the human mind, or
even the mind of some one human being, is a finite machine,
e.g., a Turing machine. And to say that the mind (at least in
its theorem-proving aspect) or a mind, may be represented by
a Turing machine is to leave it entirely open just how it is so
represented.²⁶ (Boolos, 1995, p. 293)

3.1.2 The Hazen intervention

Hazen’s take on this discussion appeared as two thought-provoking post-
ings to the Foundations of Mathematics mailing-list, (Hazen, 2006a,b). He
certainly chimed in with the majority, being unconvinced by the anti-
mechanistic arguments of Lucas (and Penrose), but he wanted to present a
new kind of counter-argument—a “positive” argument.²⁷

Noting that there are many different “Lucas-Penrose theses” and “Lucas-
Penrose arguments”, he sets out what he calls his “favorite version” of Lucas’s
position.²⁸

²⁶Boolos also adds: “[T]he following statement about minds, replete with vagueness though
it may be, would indeed seem to be a consequence of the second theorem: If there is a
Turing machine whose output is the set of sentences expressing just those propositions
that can be proved by a mind capable of understanding all propositions expressed by a
sentence in class A, then there is a true proposition expressed by a sentence in class A
that cannot be proved by that mind”. Not nearly as exciting, but more reasonable than
what Gödel says.

²⁷From where I am standing, what Hazen does is elaborating Boolos’s point about the
representational relation.

²⁸The wording has been changed in minor ways.
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1. If the mind is mechanical, human mathematics is the product of a
machine.

2. The product of a machine is a computably enumerable set, i.e., the
set of theorems of some formal theory.

3. No arithmetically adequate, consistent, formal theory has a theorem
asserting the consistency of that selfsame theory (Gödel’s second in-
completeness theorem).

4. But human mathematicians can know that their mathematics is (or
will be) consistent.

5. Hence: The mind is not mechanical.

By giving an alternative account of what it can mean to be “the product of a
machine”, Hazen’s plan is to undermine (2) in such a way that (4) is appli-
cable to such a machine to the same extent as to the human mathematical
mind. Then Gödel’s incompleteness theorems would not be relevant, and
the conclusion (5) would not follow.²⁹

Looking at all mathematical statements that have been made over time,
this set is blatantly inconsistent, so there is no way in which we can “know
it to be consistent”. So if (4) is to have any credibility, we have to take
the parenthetical “or will be” remark seriously. One of the powers of the
general human intellectual enterprise is our capacity to proceed by trial-and-
error; this is our way to weed out mistakes and inconsistencies. The set of
“humanly provable mathematics” cannot be everything we at some time
proved using some system of axioms and rules, but which set is it?

Neither Hazen nor I have to invent a model for this. It is already there
in the literature, and we have only to flip a few pages back to Section 2.1.
Let us say that the real mathematical theorems, in the limit of our research,
constitute a semi-Euclidean set. If, moreover, the evolution of our theories
can in some sense be represented as being mechanical, then this set can be

²⁹This is, of course, not to say that there couldn’t be other convincing anti-mechanistic
arguments.
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identified with a set of theorems of a convergent experimental logic.³⁰
If so, premise (2) of Hazen’s version of Lucas’s argument is definitely

out, since we moved from Σ0
1 to ∆0

2, and we just need to make it probable
that (4) can be applicable to such a machine. But this, as the reader surely
already guessed, is just Jeroslow’s Theorem 3 in 2.1.1.

So this is Hazen’s case. There seems to be a quite legitimate view accord-
ing to which a ∆0

2-set is “the product of a machine”, and Jeroslow’s experi-
mental logics adhere to (a mechanical version of ) a semi-Euclidean picture
of human mathematical activity. Furthermore, Gödel’s second incomplete-
ness theorem only survives in a relativized form, and self-consistency can
be provable, in the new sense of provable, i.e., being a recurrent (and also
stable) formula. All well? Not really.

3.1.3 A proper experimental logic

First: Boolos, Shapiro and Hazen have me convinced that the relation be-
tween the representation and the represented is not as straightforward as
that between a Turing machine and a formal system. And I do think that
Jeroslow’s model has great merit, and that something like this helps us bet-
ter understand what is going on in the discussion. But there are reasons to
feel somewhat unsatisfied by the reasoning as presented.

Consider the proof that there are experimental logics proving their own
consistency. This is not new; as we know, it is just an adaptation of a
proof of Feferman about ordinary theories, but with non-standard proof
predicates. So one gut reaction could be that “we don’t usually say that
Feferman (contra the usual formulation of the second incompleteness the-
orem) has proved that PA can prove its own consistency, after all, so why
would we say so in this Hazen/Jeroslow case?” Such an immediate reac-
tion would be misguided, though, since the consistency statement, viz.
¬∀s∃t > s∃p η(t, p,⊥), is indeed intensionally correct; it expresses the

³⁰This is, of course, a highly contentious assumption. Jeroslow has a discussion about this,
and says, inter alia, that it is at least “consistent with a certain positivist view, that of a
mechanistic creature in a mechanistic universe. […] The completely mechanical nature
of the experimental logics is not objectionable in this setting, since it is hard to see what
physical events could influence views on the proper axioms for mathematical objects,
beyond the results of computations, which are mechanical.” (Jeroslow, 1975, pp. 254f )
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right property. But there is still something amiss. Look at the set Th(H)

in the proof. It is anything but dynamic. In fact, it is just the deductive clo-
sure of T +ConT at every point in time. So this is a Σ0

1 set, and therefore
arguably not a particularly suitable example for Hazen to use.

What one would like to see is a proper experimental logic, i.e., a defini-
tion of an H such that Th(H) ∈ ∆0

2 \ (Σ0
1 ∪ Π0

1). And moreover, one
would like to see an example of such anH which is self-supporting, in the
sense of having its own canonical consistency statement in Th(H). This is
what was done in the technical part of (Kaså, 2012).

A recursive Lindenbaum completion of the decidable set of axioms PA, is
defined over a computable enumeration φ0, φ1, φ2, . . . of all closed formu-
las in the arithmetical language, like this.


S0 = PA
Sn+1 = Sn + φn, if this is consistent, otherwise Sn + ¬φn

S = ∪Sn : n ∈ ω

We immediately observe that:

• S /∈ Σ0
1 by Gödel-Rosser-Craig since it is a consistent, negation

complete extension of PA;

• S /∈ Π0
1 since it is consistent and being a deductively closed exten-

sion of PA it is complete for true Σ0
1-sentences.

More graphically, what we are doing when we are “completing”, is to
take a path down the infinite binary tree:

PA

¬φ0

¬φ1

……

φ1

……

φ0

¬φ1

……

φ1

……
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In general it is of course not a decidable problem to “check for incon-
sistency” at a node in the tree, but it is actually easy to slightly tweak the
process, and get a convergent experimental logicH such that Th(H) = S,
i.e., to present S in a semi-Euclidean manner. The basic trick is to only
consider small proofs of inconsistency (bounded in size by which step we
are at in the construction) at each point, whose existence is decidable. This
will lead to a revisionary process, so that sentences that were added at a pre-
vious stage may be later removed, put back in again and so forth, and we
get an inductively defined sequence of sets (T0, T1, T2, . . .). To get some
“stabilization” over time, it turns out to be sufficient to prioritize early for-
mulas over later ones when choosing what to get rid of, and in the end, the
experimental logic can be defined by H(t, p, φ) ⇔ (φ ∈ Tt ∧ p = φ).
For details, see (Kaså, 2012, pp. 220f ).

The next step is to tweak this construction to get a proper experimental
logic, which is also self-supporting. We use a fixed-point argument, and
briefly, the proof is this.³¹

1. An experimental logic of the type considered above, i.e., a recursive
Lindenbaum completion, is determined by the effective enumera-
tion.

2. Given a binary formula ξ(x, y) (which might binumerate such an
enumerating function) we define Con(ξ) as the canonical consis-
tency statement for the corresponding experimental logic.

3. Take any computable enumeration m(n) of all closed formulas in
the arithmetical language, and consider:

F (n, x) =

{
Con(x) and n = 0 ; or
m(n− 1) and n > 0.

4. The Recursion theorem gives a fixed point {ξ}(n) = F (n, ξ).

³¹See (Kaså, 2012, pp. 221f ). Note, however, that the paper uses the Fixed-point lemma
for arithmetical theories, while here the Recursion theorem does the job. The basic idea
is obviously the same in both cases.
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5. This ξ gives a computable enumeration, and thereby an experimental
logic of the kind discussed.

6. Con(ξ) is true, so it is certainly consistent with PA, and being first in
the enumeration it is immediately added in the revisionary process
of defining the set, and thus stays in.

So we have a strengthening of Jeroslow’s result:

Theorem 5. There are proper experimental logics which have their own canon-
ical consistency statements as theorems.

3.1.4 Final remarks on knowable consistency

So far, my contributions have been helpful to Hazen. But I still wish to
express some doubts about the alleged impact of experimental logics on
the question of knowable self-consistency.

Basically, I am just not sure that the perspective is right. What, if in-
deed anything, could it possibly mean to say that “a system (of the semi-
Euclidean kind) knows that it is consistent”? Let us for simplicity say that
knows just means contains as a recurrent formula, and suppose that “H is
consistent” is in Th(H) in the form Con(η).³² It is natural for us “on the
outside” to say that Con(η) expresses the consistency of the experimental
logic in question, and that it does so in an intensionally correct way, but
our vantage point does not seem to be the relevant one. How does it look
from “within”? Well, if only the system knew which system it is then it
would certainly have knowledge of self-consistency. But, alas, this does not
seem to be the case. Th(H) would have to contain an arithmetical state-
ment expressing something along the lines of “I am H” (or rather “I am
η”), and no such formula is forthcoming.

Furthermore, to be fair to Lucas, we have to take the relativized incom-
pleteness results into account. As Jeroslow remarks in (Jeroslow, 1975, p.
264) this means that it “cannot prove its soundness for certain trial-and-
error statements”. In a similar vein, Theorem 5 in (Bennet, 1989) shows

³²For some formula η defining H .
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that we can effectively find an undecidable Π0
2-sentence.³³ These relativiza-

tions of the incompleteness phenomena to the experimental case seem to
give Lucas some room to maneuver. He can claim that we have exposed a
deficiency in the machines that we humans do not suffer from, much as he
did before. And even if the undecidable sentence mentioned above does
not belong to “real mathematics” (being of too high complexity) it must
“be accepted as meaningful if the concepts of experimental logics are so
accepted.” (Jeroslow, 1975, p. 264)

Note also that we in any case have the incompleteness issue.

Under the mechanist view, the least non-trivial goal that can be
set for human knowledge, must be that of obtaining as many
true predictions (∀x)R(x) as possible […] Our extension of
the First Incompleteness Theorem […] shows that the simulta-
neous requirements on an experimental logic, of consistency,
convergence, and closure under reasoning, is inconsistent with
the goal of obtaining all true predictions (∀x)R(x).
(Jeroslow, 1975, p. 257)

But, on the other hand, as Boolos remarks while commenting on Gödel’s
“disjunctive result”:

[A] further problem for Gödel’s view is that the supposition
that the second alternative holds does not seem particularly
surprising or remarkable at present. […] Why, we may won-
der, should there not be mathematical truths that cannot be
given any proof that human minds can comprehend?
(Boolos, 1995, pp. 293f )

I have to say that I wholeheartedly agree with this sentiment.

3.2 Logic sub specie aeternitatis

We now turn to the semantic part of my contributions, and a presentation
of the sought-after formal explications of the terms convergent concept and

³³A sentence φ such that PA ⊢ ∀t(H(t, p, φ) → ∃s> tH(s, p,¬φ)). With some extra
assumptions we can get it as ∆0

2, provably in H .

35



truth and proof in the long run

true-in-the-long-run. The philosophical point of departure will be a “se-
lective fusion” of ideas from Peirce and Putnam, tempered by Waismann
(1945), to ground the explicatory work. The goal is an explicatum which
represents the point of view of eternity, as it were. As for the technical re-
sults (and this section is mostly technical) the principle is the same as in the
previous section; with few exceptions, the reader is referred to the papers
for full proofs of lemmas and theorems.

3.2.1 Philosophical motivation

In Section 2.2.2, we saw that Putnam seems to have compelling arguments
to the effect that we should not identify the meaning of a term in (empir-
ical) science with its corresponding contemporary classificatory criteria, or
methods for identification. Neither should we identify it with any kind
of psychological concept. Instead the meaning-relation between a term
and that which it signifies is upheld by a complex social structure, with
sometimes sharply divided linguistic (and other) labour, and it is also un-
derpinned by an ontology of natural kinds, which we manage to point to
rigidly. Now, I have earlier in this text expressed sympathy towards some
kind of Peircean (or Ramseyan) pragmaticism, as well as skepticism when
it comes to natural kind metaphysics. One may then wonder what to take
home from Putnam, and what to abandon. I suggest that the key concept,
to be used to extract a “still social and convergent, but pragmatist” theory
of meaning from Putnam’s paper, is open texture.³⁴

Waismann, in (1945), argues that “most of our empirical concepts are
not delimited in all possible directions”, and this goes also for concepts in
the sciences.

The notion of gold seems to be defined with absolute preci-
sion, say by the spectrum of gold with its characteristic lines.
Now what would you say if a substance was discovered that
looked like gold, satisfied all the chemical tests for gold, whilst
it emitted a new sort of radiation? “But such things do not
happen.” Quite so; but theymight happen, and that is enough

³⁴Or porosity, “Porosität der Begriffe”, as it was originally called in German.
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to show that we can never exclude altogether the possibility of
some unforeseen situation arising in which we shall have to
modify our definition. [...] In short, it is not possible to de-
fine a concept like gold with absolute precision, i.e. in such
a way that every nook and cranny is blocked against entry of
doubt. That is what is meant by the open texture of a concept.
(Waismann, 1945, pp. 122f )

This is not to say that the concept is vague, since “vagueness can be reme-
died by giving more accurate rules, open texture cannot […] definitions of
open terms are always corrigible or emendable”.³⁵ (p. 123) Admittedly,
this is not immediately a criticism of Putnam’s ideas. One possible take
on the matter is that this just further explains why we should never iden-
tify the meaning of a term with the “definition” we happen to be using at
the moment. But that would be to miss an important part of Waismann’s
message, in my opinion.³⁶

It is not just that we are in practice unable to pin down gold with a de-
scription that fixes the extension in every possible situation; the real point
is that, like it or not, our language—even our scientific language—in prin-
ciple works in such a way as to be open for more or less radical change over
time. Waismann calls this the “essential incompleteness of an empirical
description”:

Every description stretches, as it were, into a horizon of open
possibilities: how far I go, I shall always carry this horizon with
me. […] [W]e can never eliminate the possibility of some
unforeseen factor emerging […] the process of defining and

³⁵One might object, and have the objection sustained, that we certainly in principle are
at liberty to just stipulate a meaning for “gold” once and for all, and thus making it
non-open, much as we could eliminate vagueness. But one of Waismann’s points is that
empirical concepts typically don’t work that way.

³⁶Just to be scholarly clear here: Waismann’s paper was published 30 years before Put-
nam’s, so he is not in any way commenting on a social-indexical meaning theory of a
Putnam-Kripke variety, but is instead discussing a possible criticism of verificationalist
empiricism. Nevertheless, his powerful notion of porosity is free to use for our present
purpose, of course. Whether Putnam ever considered Waismann’s ideas in connection
with his own theory of meaning, I don’t know.
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refining an idea will go on without ever reaching a final stage.
(Waismann, 1945, pp. 124f )

The way I read this, and the way to reconnect with pragmaticism, is
that our way of scientifically, and linguistically, organizing our experiential
material, may eternally be subject to change. It is not that I deny that reality
is there and constrains us, but it does not in and of itself force extensions
on our terms. Indeed, Waismann comments that:

[T]here is always the chance that something unforeseen may
occur […] (a) that I should get acquainted with some totally
new experience such as at present, I cannot even imagine; (b)
that some new discovery was made which would affect our
whole interpretation of certain facts […] the data of observa-
tion are connected in a new and unforeseen way, that, as it
were, new lines can now be traced through the field of expe-
rience. (Waismann, 1945, p. 127)

Does this mean that there is no convergence in (scientific) language?³⁷
Certainly not. Typical terms that stand the test of time and are useful
for classification, prediction, systematization, etc., may in fact generally be
convergent in some sense, but this is dependent on many factors, of which
regularities of our external world is but one. We have the whole web of other
concepts as well as our theories—both of which are evolving—and also
such things as the sophistication of our scientific equipment, limitations
in our mental capacity and what have you. All these things, working in
conjunction, will determine if, and how, there will be convergence when it
comes to the extensions of terms in our language. In a word: convergence
does not have to come from rigidly pointing to natural kinds.³⁸

Given these considerations, and the earlier discussion in the background
chapter, the following is a reasonable, if a bit rough, statement of my posi-
tion on how a pragmatist construal of concept convergence ought to look.

³⁷Which would go against Peirce, Putnam, Jeroslow, and general, often unarticulated, basic
metaphysical beliefs of scientific communities.

³⁸An illuminating real-life example of meaning litigation can be found in Chapter 2 of
P. Ludlow’s Living Words, where he gives a short, but instructive, account of the debate
over recent changes in application of the term “planet”. (Ludlow, 2014, pp. 41–51)
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• Conceptual convergence (probably) exists, but we cannot in general
know that the application of a certain term will stabilize over time,
let alone know that the contemporary classificatory criteria pick out
the “correct” extension, so that we have already stabilized.

• In fact, if there is convergence, it is in general point-wise (or better:
entity-wise) meaning that the “real” or “final” extension may be found
only in the limit of scientific development over time. It may well
be the case that there is never a finalized operational definition, even
though the subset of entities for which the classification is final grows
over time.

• Not all concept terms in scientific discourse need be convergent in
this sense, but perhaps only a subclass of core concepts.

So I don’t deny that there is, or at least can be, a proper extension (and
not just contemporary criteria) of a scientific term like “gold”, viz. the limit
extension, but this may not be attained after any finite amount of scien-
tific progress (and may not be recognized, even if attained). Furthermore,
while we give up the basis in natural kinds in favour of a more instrumental
view, we also need something new to be able to define true-in-the-long-run
in a way which respects ontological commitment of our scientific theoriz-
ing.³⁹ One can distinguish three aspects of meaning-as-extension of a con-
vergent scientific term, where Putnam acknowledges two: (i) the extension
determined by the contemporary criteria used at a particular point in time;
and (ii) the true limit extension. Our semantics also needs access to (iii)
the actual infinite sequence of contemporary extensions of the convergent
terms—not only the final, limit extension. Imagine a case where our best
theories over time always entail there being something satisfying a certain
concept term, while there is no particular thing which, in the long run,
needs to be thus classified. It seems reasonable to say that we as a scientific
community are then committed to the non-emptiness of this concept.⁴⁰
Note that it could even be the case that every individual entity in the long

³⁹This is “ontological commitment” somewhat in the sense of (Quine, 1948).
⁴⁰This is called sub specie aeternitatis meaning in Kaså (2015).
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run will be classified as not falling under this concept, so that the limit ex-
tension of the term is empty. In a short slogan, the logic presented below
is a semantics for this tripartite meaning of ‘meaning’.

Putnam’s trial and error predicates have been mentioned above, in con-
nection with Jeroslow’s experimental logics, and they indeed play a concep-
tual role here too. Recall that these constitute a generalization of the class
of decidable relations, and are the relationsR on natural numbers such that
there exists a computable function f satisfying, for all x1, . . . , xn:{

R(x1, . . . , xn) ⇔ limy→∞ f(x1, . . . , xn, y) = 1

¬R(x1, . . . , xn) ⇔ limy→∞ f(x1, . . . , xn, y) = 0

In Putnam’s own words, such relations are “decidable by ‘empirical’ means”
(Putnam, 1965, p. 49). In the context of the present discussion, com-
putability is not an issue—only entity-wise convergence over time, as men-
tioned above. So we can think of f , with a point in time plugged in for y,
as corresponding to a time-bound operational definition, the totality of re-
sources (instruments, theories, observations, etc.) used at a particular time
to classify objects with respect to the concept term R. If we have this kind
of convergence, we will (with some benign ambiguity) refer to R (or f ) as
a trial-and-error classifier.

3.2.2 Syntax and semantics

Syntactically, the language is just ordinary first-order logic, and the intuitive
semantic ideas are the following.⁴¹

• The basic predicates of the language will denote trial-and-error clas-
sifiers.

• At each point in time, this language will be interpreted in the stan-
dard classical way, over a relational model.

• Existential sentences will get a meaning which respects ontological
commitment (regardless of limit extension), while the truth of a uni-
versal sentence will depend on the limit extension.

⁴¹A first, undeveloped, sketch of this kind of semantics appeared in (Sahlin and Kaså Palmé,
2005, Sect. II).
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Formally, the models of this semantics will be ω-sequences of classical
models (M0,M1, . . .) such that:⁴²

• all models in the sequence have the same domain and the same sig-
nature;

• for every tuple (m1, . . . ,mn) of objects in the domain, and n-ary
predicateP in the signature, either ∃i∀j>i : (m1, . . .mn) ∈ PMj

or ∃i∀j>i : (m1, . . .mn) /∈ PMj ;

• for each constant c in the signature, ∃i∀j>i : cMj = cMi .

And the formal truth definition is:

Definition 1 (Trial-and-error truth). (M0,M1, . . .) ⊨te φ iff

(i) ∃i∀j>i : (cMj

1 = c
Mj

2 ), for φ = (c1 = c2);

(ii) ∃i∀j>i : (cMj

1 , . . . , c
Mj
n ) ∈ PMj , for φ = Pc1 . . . cn;

(iii) (M0,M1, . . .) ⊭te ψ, for φ = ¬ψ;

(iv) (M0,M1, . . .) ⊨te ψ and (M0,M1, . . .) ⊨te γ, for φ = (ψ ∧ γ);

(v) ∀m∈dom(M0) ∃i∀j>i (m ∈ ψMj ), for φ = ∀xψ;

(vi) ∃i∀j>i ∃m∈dom(M0) (m ∈ ψMj ), for φ = ∃xψ.

Note that we define trial-and-error truth rather than satisfaction, and
that the two quantifier clauses are not done with typical Tarski-style recur-
sion. The quantified sentences are interpreted by way of satisfaction for
their subformulas (with at most x occurring freely), which is handled by
the underlying classical semantics.

In accordance with the last bullet point above, from the intuitive basis
for the semantics, universal quantification (v) is taken to mean that each ob-
ject in the long run satisfies the concept in question (regardless of whether
there will ever be an actual point where they all do so), while existential
quantification (vi) tracks the ontological commitment in the long run.

⁴²The symbolism σM is used for the denotation of σ in M, as defined in the semantics
for ordinary classical logic.
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3.2.3 Some simple properties

It is immediate, by straightforward applications of the truth definition to
suitable countermodels, that some valid sequents from classical logic are no
longer so. Here are a few examples.⁴³

1. ∀x¬Px ⊭te ¬∃xPx and ∃x¬Px ⊭te ¬∀xPx.

2. There are formulas φ such that ¬∃xφ ⊭te ∀x¬φ and also φ such
that ¬∀xφ ⊭te ∃x¬φ.

3. Similarly, there are quantified φ such that ⊭te (∃xφ ∨ ∃x¬φ).

4. ∃x(Px ∨Qx) ⊭te (∃xPx ∨ ∃xQx)

5. There are universally quantified φ such that φ(c) ⊭te ∃xφ.

Examples such as these, in combination with the following results show
that the trial-and-error logic is strictly weaker than classical logic.⁴⁴

Lemma 1. M ⊨c φ if and only if (M,M, . . .) ⊨te φ.

So, a “static” trial-and-error model has the same complete theory as its clas-
sical base. (Here and below, ⊨c is used to denote classical satisfaction.)

Corollary 1. Γ ⊨te φ⇒ Γ ⊨c φ.

That is, trial-and-error logic is included in classical logic.
Looking at the semantics, we see that adding a “vacuous” quantifier (∃v,

say) in front of a formula which is already closed forces it to be almost
everywhere true in the model sequence. This leads to this next result, again
connecting the trial-and-error logic to ordinary logic.

Lemma 2. Γ ⊨c φ if and only if {∃vγ | γ ∈ Γ} ⊨te ∃vφ

A difference between classical logic and this trial-and-error variant is that
we do not have general compactness, that is, a set of formulas may have
consequences that finitary methods will not bring forth. But this result only
holds for large vocabularies, as in seen in the final result of this subsection.

⁴³See (Kaså, 2016, p. 7).
⁴⁴(Kaså, 2016, p. 8)
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Theorem 6. There is a theory of cardinality> 2ℵ0 which is finitely satisfiable,
but not satisfiable.

This is proved by taking an index set I of cardinality> 2ℵ0 , and considering
{¬∃xPαx |α ∈ I} ∪ {∃y(∃xPαx ∨ ∃xPβx) |α, β ∈ I, α ̸= β}, which
can be used as a counterexample to compactness.⁴⁵

While this theorem is technically interesting, the intended application of
the semantics makes most sense for countable (or even finite) vocabularies,
for which we will see in the next two sections that finitary reasoning is,
indeed, sufficient.

3.2.4 Getting standard models

Before moving on to the proper theorems, we make a liberalizing definition,
and then state a key lemma to the effect that this liberalization is innocent,
at least in the countable case.

Definition 2 (General models). Call a model sequence satisfying the con-
vergence constraints (in Section 3.2.2) but of any linear order type without
a right endpoint a general model sequence, and define trial-and-error truth
over such sequences in exactly the same way as in Definition 1.

Given any countable general model, we form its “trial-and-error dia-
gram”, and then work through this theory in an systematic manner to ex-
tract (i.e., inductively define) an ω-sequence which trial-and-error satisfies
the same theory. This proves the technically important result:

Lemma 3 (Omega lemma). For each general model (M)I with countable
domain and countable signature L, there is a proper trial-and-error model
(N )ω where the same L-sentences are trial-and-error true.

So, the natural thought that the series of events which are relevant for
conceptual evolution form an ω-sequence is in a sense not particularly re-
strictive.

⁴⁵(Kaså, 2016, pp. 8f )
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3.2.5 Translation and fundamental theorems

To prove that this trial-and-error logic enjoys some standard properties such
as countable compactness and axiomatizability, we use “transfer” from clas-
sical first-order logic. A translation from trial-and-error logic into classical
logic which tracks the truth conditions from the semantics is provided.
This translation will capture trial-and-error logic over the general models
mentioned in the previous section, which means that the omega lemma is
exactly what is needed to get proofs of the sought-after theorems.

Essentially, starting with a set of sentences Γ in trial-and-error logic, the
translation is effectuated by:

• introducing two new unary predicates for “times” and “objects in the
trial-and-error domain”;

• expressing, with a sentence Ord, that the “times” are linearly ordered
without right endpoint;

• providing each non-logical symbol with an extra slot (to “plug in an
argument for time”);

• translating each formula γ ∈ Γ, to a γ∗, tracking truth conditions;

• stating, with a set ConvΓ, the appropriate convergence constraint for
each non-logical symbol occurring in Γ.

Then one can move between classical models of a set and a trial-and-error
model of its translation, using the omega lemma when needed, to get the
following result.

Lemma 4 (Translation). Γ ⊨te φ if and only if Ord + ConvΓ + Γ∗ ⊨c φ
∗

This lemma paves the way for the above-mentioned transfer, and the
fundamental theorems basically fall out as corollaries.

Theorem 7 (Compactness). Trial-and-error logic is compact for countable
vocabularies.

Theorem 8 (Downward Löwenheim-Skolem). If Γ is countable and trial-
and-error satisfiable, then Γ has a model with countable domain.
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Theorem 9 (Undecidability). Trial-and-error logic is undecidable.

Theorem 10 (Axiomatizability). The set of trial-and-error validities over a
countable vocabulary is effectively enumerable.

Proofs are in (Kaså, 2016).

3.2.6 The basic fragment and natural deduction

There is a natural fragment of the trial-and-error logic of the preceding
sections, given by a restriction in the syntax to quantifier depth ≤ 1, but
leaving the models and the truth definition intact. This is the way the
logic was first published in (Kaså, 2015), where it also got independent
motivation as a “logic for trial-and-error classifiers”.

From the human experimenters’ point of view, ‘x is aP ’ is con-
sidered true (now) if the classifier corresponding to P replies
‘yes’ when applied to the object x, a statement like ‘all things
are P ’ is true if all objects are thus potentially classified, and so
on, and so forth. But this is not the perspective that concerns
us in the present paper. What we want to do is to have a se-
mantics suitable for “timeless descriptions”. To use a perhaps
overly picturesque language, we may say that the semantics
ought to be suitable for a supreme, omniscient being, looking
at our toil from a vantage point outside of time, but comment-
ing on the expressions in our trial and error language. This
being will have a good birds-eye view on our de facto commit-
ments in the long run, but it seems reasonable to hypothesize
that it will not care much about the details of what happens
at each step in our intellectual development. […] The syn-
tactical restriction of the language to depth ≤ 1 is motivated
by the objective described above […] this paper treats only the
tendentious concepts, and the external, timeless language is de-
signed so that all quantification is over formulas corresponding
to (finitary combinations of ) trial and error classifiers. (Kaså,
2015, pp. 310ff)
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With the depth restriction in place, the logic moves closer to classical
logic (correspondingly restricted, of course). Familiar sequents such as
¬∃xβ ⇒ ∀x¬β and ¬∀xβ ⇒ ∃x¬β now come out as generally valid,
and existential introduction is now sound. It is still a sub-classical logic,
though, since many of the non-sequiturs persist, but it turns out that we
can use a perfectly ordinary natural deduction system if we just add a new
side condition for existential elimination.

∃xβ

[β(c/x)]

D
γ

(te∃E)γ

(i) c does not occur in γ, β or in any undischarged as-
sumption of D except for β(c/x). (Just like for ∃E
in classical logic.)

(ii) Both γ and the undischarged assumptions in D are
either quantifier-free or existential sentences.

Only slightly misleading, this can be put in words like this: Existential
reasoning is “internal” in that it takes place inside a context which is itself
existential (or Boolean).

This proof system is sound and complete with respect to the semantics
(applied to the fragment), using roughly a Henkin-style proof, and falling
back to the completeness of classical logic. The details are in the paper, but
the most interesting parts are probably the following two lemmas. First,
the argument for soundness of the revised existential elimination rule.

Lemma 5. te∃E is sound with respect to trial-and-error consequence.

Proof. Consider the subderivation D . It is also a sound derivation in classi-
cal logic, so we have {δ1, . . . , δn, β(c/x)} ⊨c γ, where the δi are the undis-
charged assumptions, and since c is “arbitrary”, {δ1, . . . , δn,∃xβ} ⊨c γ.
Now, if (M0,M1, . . .) ⊨te {δ1, . . . , δn,∃xβ}, the restriction in the te∃E
rule on δi gives that ∃i∀j > i : Mj ⊨c {δ1, . . . , δn,∃xβ}, and therefore
Mj ⊨c γ. By the restriction on γ, we have (M0,M1, . . .) ⊨te γ.
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Note how the special restriction is used. If, e.g., δi were universally quan-
tified, it could well be trial-and-error true without being classically true in
any model. And conversely, if the conclusion is γ = (∃xP (x)∨∃xQ(x)),
it could be classically true everywhere in the sequence without being trial-
and-error true.

The next result allows us to pick classical models for certain trial-and-
error consistent sets of sentences, which is used to take care of cofinally
false existential statements in the final model construction in the proof of
the completeness theorem.

Lemma 6. If ∃xα1, . . . , ∃xαn ⊨c ∃xβ then ∃xα1, . . . , ∃xαn ⊢ ∃xβ.

Proof. Assume {∃xα1, . . . , ∃xαn,¬∃xβ} is not classically satisfiable. This
holds iff {α1(c1/x), . . . , αn(cn/x)} ∪ {¬β(d/x) | d ∈ D} is not clas-
sically satisfiable, where all ci are new, and D is the set of all constants
occurring in the formulas α1(c1/x), . . . , αn(cn/x), β.⁴⁶

By the completeness of classical logic, there exists a formal derivation
α1(c1/x), . . . αn(cn/x) ⊢c

∨
d∈D β(d/x). Normalizing, we get a deriva-

tion using only propositional rules, which is therefore also a derivation in
trial-and-error logic, from only quantifier-free assumptions.

Each disjunct β(d/x) gives ∃xβ by ∃I, so after a suitable number of
applications of ∨E, the result is a derivation, still in trial-and-error logic,
α1(c1/x), . . . αn(cn/x) ⊢ ∃xβ. This means that we can apply te∃E n

times, to sub-proofs with only quantifier-free and existential assumptions,
to get a proof of ∃xα1, . . . , ∃xαn ⊢ ∃xβ.

Summing up what we learned from this (soundness and) completeness
result, we may say that if we restrict ourselves to quantification over con-
cepts which are guaranteed to be convergent, i.e., the trial-and-error classi-
fiers, the difference between internal reasoning “inside the time-line” and
reasoning from the external, and eternal, perspective comes down to re-
stricted rules for existentials in the latter.

⁴⁶We get this from a special case of Herbrand’s theorem.
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3.2.7 Analytic tableaux and decidability

In the last section we saw that the basic, depth-restricted, fragment of trial-
and-error logic has a concrete natural deduction proof system. Unlike the
full logic, which was easily seen to be undecidable, one would intuitively ex-
pect this fragment to be decidable, but it is obviously not possible to point
to a “finite model property” in the ordinary sense, since it is quite easy to
force models of even very simple sentences to have infinite domains. But
there is a way of getting a decidability theorem, and, as a bonus, also a
concrete algorithm for generating models for consistent sentences. This is
through the introduction of a tableau proof system for the fragment logic,
and also an alternative semantics, which has an effective finite model prop-
erty, and can be proved to be, in the appropriate sense, equivalent to the
standard semantics.⁴⁷

We introduce something that is very much like an ordinary tableau sys-
tem, but as was the case with natural deduction, we have to handle the
peculiarities of existential reasoning. In this case this shows up in the in-
troduction of indices for false existential statements (intuitively, to indicate
at which points they are cofinally false in the model), and special virtual
parameters to instantiate true existentials (intuitively, to be non-convergent
witnessing functions).⁴⁸ The rules for the quantifiers are as follows:

Constant universal rules⁴⁹

t∀vB

tB(a/v)

a is any
constant

[i]f∃vB

fB(a/v)

a is any
constant

⁴⁷There is no room here for introducing tableau systems in general. Any reader unfamiliar
with such systems is urged to rectify that situation by consulting the excellent (Smullyan,
1995).

⁴⁸Example tableaux can be found written out in full in (Kaså, 2017).
⁴⁹I.e., “instantiated with constants”.
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Constant existential rule

f∀vB

fB(a/v)

new constant a

Rules for virtual parameters

[i]f∃vB

fB(d(i)/v)

d(i) is any virtual
parameter with
matching index

t∃vB

tB(d(i)/v)

d is new
i arbitrary

Next, we can give an alternative, and finitary, semantics based on the
intuition that, while a trial-and-error model may be an infinite sequence
of models with an infinite domain, the depth restriction for the fragment
language means that we can describe the model sequence (for a finite set of
sentences) in a finite manner.⁵⁰

Definition 3. A finitary trial-and-error model, or simply fte-model, M is
a finite sequence of classical first-order models (M0, . . . ,Mn) of the ex-
tended tableau language with a common finite domain and common inter-
pretation of constants and virtual parameters. There is to be a designated
non-empty subset of the domain, the constant domain, which, inter alia,
interprets the constants, and these objects (and tuples of them) satisfy the
same basic predicates in the whole sequence.

Definition 4 (fte-truth). Here we define the relation ⊨fte, i.e., what it
means for a signed (and possibly indexed) formula in the tableau language
to be true in an fte-model.
⁵⁰This semantics interprets not only the original language, but also the signed and indexed

formulas in the tableaux.
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i) M ⊨fte fφ iff M ⊭fte tφ

ii) M ⊨fte tB iff Mi ⊨c B for all 0 ≤ i ≤ n, if B is quantifier-free
without virtual parameters.

iii) M ⊨fte tB(d(i)) iff Mi ⊨c B(d(i)).

iv) M ⊨fte t∀vA iff Mi ⊨c A[m] for all m in the constant domain and
all 0 ≤ i ≤ n.

v) M ⊨fte t∃vA iff Mi ⊨c ∃vA for all 0 ≤ i ≤ n.

vi) M ⊨fte [i]f∃vA iff Mi ⊨c ¬∃vA.

Setting things up like this, a proof of soundness and completeness for
the tableau system with respect to this new semantics is not all that hard to
come by.

Theorem 11. The tableau system is sound and complete with respect to the
fte-semantics.

To show that the two semantics (te and fte) are equivalent, we need, in
one direction, to pick out finitely many appropriate models and identify
the constant domain, and in the other direction duplicate both the models
and their domains to infinity. It turns out that there are simple algorithms
for this, so the next result says that:

Theorem 12. A depth-restricted set has an ordinary trial-and-error model if
and only if it has an fte-model.

As a direct consequence of the foregoing, and wrapping up this treatment
of the≤1-depth fragment of trial-and-error logic, we get this final theorem.

Theorem 13. Satisfiability (and validity) for the depth-restricted logic is de-
cidable, e.g., by using the proposed tableau system.

Precise statements, and proofs, of the above results are found in (Kaså,
2017).
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3.3 In conclusion

This work started with a conviction; that what sorts of things there are, or
eventually turn out to be, is dependent not only on properties of the ex-
ternal world, but is as much a feature of us. What turns out to be useful
classifications, in science and other rational endeavours, is at least partly
determined by our human technical, cognitive and societal evolution. The
world is there to keep us in check, to be sure, I am not a full-blown relativist
(if such creatures exist) but rather some kind of a pragmatic instrumentalist.

I have not really argued for this position in the present book (though
some arguments crept into Section 3.2.1); the mission has been of a differ-
ent sort. Taking such an outlook as given, i.e., skepticism towards natural
kinds, but belief in the prospect of some stability over time for our con-
ceptual apparatus, the task has been to explicate the convergent concepts,
introducing the trial-and-error classifiers, technically inspired by (Putnam,
1965), and building on philosophical ideas in (Peirce, 1877, 1878), (Put-
nam, 1975) and (Waismann, 1945).

While not in any sense completed (see the list of open problems be-
low) the study so far has been rather rewarding, with insights into possible
formal semantics for these classifiers and several important pieces of knowl-
edge about which basic logical properties hold, and do not hold, for these
trial-and-error logics. In the simple case where quantification is only over
combinations of classifiers, we have seen that the differences in comparison
to classical logic all come down to how reasoning with existential statements
works (and I am particularly happy with the analytic tableau system). The
general case is of course more intricate, but I have made some non-trivial
headway there too. So I dare say that the explicatum has, without doubt,
proved to be formally tractable (and quite interesting, even), but I do not
pretend to have a definitive answer to whether it fulfills Carnap’s criterion
(3) on fruitfulness.

Being introduced to (Jeroslow, 1975) early in the process was surely a
stroke of luck. Even though only obliquely connected to the semantic con-
cerns, it proved to be inspirational indeed, outside its perhaps intended area
of application. And what more is, the proposal in (Hazen, 2006a) intrigued
me, and forced me to read up on the anti-mechanism debate, which was

51



truth and proof in the long run

in many ways enlightening. It definitely seems reasonable to problematize
what it should mean that the mind can, or cannot, be represented by a ma-
chine (or by a formal system), and what the proper relation is between the
“output” of the mind and the theorems of a system. Though not the last
word on the subject, Jeroslow’s experimental logics constitute, at the very
least, a valuable entry point. In the process, I have gained some budding
insight as to the possibility of representing trial-and-error processes in very
general and abstract terms, and the role of complexity classes such as ∆0

2

in that context. An answer to what it really is that makes certain formal
consistency statements “natural” still eludes me, though.

But for the time being, my exploration is over, and it is time to sign off.
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4 Some open problems

While this thesis work has now come to its inevitable end, the study of
trial-and-error aspects of logic and semantics offers so many more inter-
esting prospects. The ideas I have expounded can be further developed
and extended, and there are surely related problems that I have not even
thought of yet. By way of conclusion, I will just list what I find to be the
most obvious, and promising, ideas for building upon what has been done
so far. Anyone who would like to address these issues has my unconditional
blessing.

1. It would be interesting to try to comprehensively describe the philo-
sophical significance of∆0

2 (and subclasses thereof, and perhaps other
complexity classes). Starting from literature mentioned above in Sec-
tion 2.1.3, perhaps the most pressing point is to look into a realistic
model of dynamic systems where propositions are vetted for accep-
tance as new axioms, and the system is expanded by trial-and-error.
One should probably also connect this with work in the belief revi-
sion tradition.

2. A minor technical point, but one which I would like to look into
myself, is devising further ways to tweak the simple construction of
proper experimental logics (as in Section 3.1.3) to get sets of theo-
rems with desired properties.

3. A question that almost asks itself, but to which I have so far not de-
voted much energy, is whether there are any technically useful con-
nections between the theory-oriented Section 3.1 and the semantic
Section 3.2 of this thesis.

4. There is a very natural sense in which trial-and-error logic can be
seen as a proper part of a much more expressive quantified modal

53



truth and proof in the long run

language. If we have, e.g., axiom schemata for linear frames and add
axioms like (□♢Px→ ♢□Px) for atomic formulas, we have some-
thing very much like a trial-and-error model. Then universal quan-
tification becomes ∀x♢□φ and existential quantification ♢□∃xφ.
This connection should be explored.

5. One thing conspicuously missing from (Kaså, 2016) is a concrete
proof system for the trial-and-error logic of that paper. It is shown
to be axiomatizable (and compact for countable vocabularies), so it
would be nice to provide a system which could deliver some insight
into how trial-and-error reasoning really works, once the depth re-
striction is removed from the syntax.

6. Continuing from the previous item, one would also like to see some
proper model theory, which could then provide more results than
we get just from transfer from first-order logic. The first thing to
look into is how to define equivalence between models in terms of a
trial-and-error version of Ehrenfeucht-Fraïssé games.

7. There is a very natural, and prima facie much more powerful, ex-
tension of my trial-and-error logics, which may be dubbed “fully
expressive”. The idea is to change the syntax to allow formulas like
Q1x1 . . . Qnxn | φ with an arbitrary quantifier prefix and arbitrary
classical first-orderφ and then have basically the same kind of seman-
tics, but with the trial-and-error prefixQ1x1 . . . Qnxn now “picking
objects from the domain” before the ∃i∀j>i part of the truth defi-
nition.

8. On the more non-technical side, I believe that it would be a worth-
while project to map out a comprehensive, philosophically coherent,
pragmatist dynamic meaning theory, something really deserving the
epithet “a real fusion of Peirce-Ramsey-Putnam-Waismann”.
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5 Brief summaries of the papers

5.1 Experimental Logics, Mechanism and Knowable
Consistency

The point of departure of this paper is a suggestion by A. Hazen regarding
a possible way to counter a certain kind of anti-mechanist arguments, viz.,
arguments, based on Gödel’s incompleteness theorems, to the effect that
the mind cannot possibly be equated with a machine. Hazen’s strategy is
to abandon the preconception that if the human mind is a machine (ex-
plicated in Turing’s sense), then the “output” of such a mind must be a
computably enumerable set, and therefore equivalent to a set of theorems
of a formal theory. These discussions are typically framed in the context
of the mathematical (or even just arithmetical) faculties of the mind, and
Hazen observes that an important part of mathematical activity is theoreti-
cal revision. The fact that we at some point “prove” something doesn’t mean
that it should count as a real theorem; we may well retract it later because
our axiomatic base is open to revision. As a simple representation of such
dynamic theories, Hazen employs the experimental logics of R. Jeroslow.

These systems are generalizations of ordinary formal theories, for which
the concept of theoremhood is a ∆0

2 property rather than Σ0
1, and there are

some basic theorems both extending and relativizing the incompleteness
results.

In the paper these systems are presented, and a few results are some-
what sharpened, to try to substantiate Hazen’s claims, which are also philo-
sophically evaluated. Some semi-technical doubts are raised concerning
the alleged impact of experimental logics on the question of knowable self-
consistency.
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5.2 A Logic for Trial and Error Classifiers

In the second paper we are introduced to the concept of a trial-and-error
classifier, which is a formal explication of concepts (or terms in a language)
which have an extension that changes over time, but exhibit at least a weak
kind of convergence. The philosophical point of this is to capture the idea
to be found in, e.g., classical pragmatism, that it is necessary for science, and
arguably for rational communication in general, that while our concepts
and our classifications may change, and perhaps change indefinitely, there
is some kind of long term agreement.

A syntactical fragment of the language of classical first-order logic is given
a new semantics, using ω-sequences of classical models, subject to some
convergence constraints, so that the basic predicates can be interpreted as
representing classifiers of this kind. This gives a formal meaning to claims
of “being committed to a classification in the long run”, and the corre-
sponding logic makes it possible to ask questions of the type “If we are
committed to all sentences in the set Γ, are we then also committed to φ?”

This logic is decidedly different from classical logic, but it turns out that
we can use a natural deduction proof system which is almost standard,
differing only when it comes to conditions for application of existential
elimination. The paper contains a somewhat novel completeness proof for
this formal system.

5.3 Formally Modelling Convergent Dynamic Meaning.
Results on Compactness and Axiomatizability

This paper continues the study of classifiers. The syntactic restriction is
now removed, and the trial-and-error semantics is applied to all formulas
in the ordinary syntax of first-order logic.

After looking at examples illustrating some typical validities and non-
validities for this semantics, and proving that the logic is non-compact for
large vocabularies, the main part of the paper is spent on relating trial-and-
error logic to classical logic via translation. This translation is designed
so that it tracks the truth conditions from the semantics, and it can be
shown that the translation of a set of formulas has a classical model if and
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only if the set has a trial-and-error model in a generalized sense, where an
arbitrary linear order is used instead of an ω-sequence. Then it is proved
that, for countable vocabularies, it is always possible to extract a proper
trial-and-error model from this generalized one, keeping the truth values
of all formulas.

From these lemmas we get a transfer of desirable properties from classical
logic to trial-and-error logic: downward Löwenheim-Skolem, countable
compactness, and axiomatizability. It is also easy to see that the logic is
undecidable.

5.4 Analytic Tableaux for Trial-and-Error Reasoning

Unlike the undecidable logic of Paper III, one would intuitively expect
there to be an algorithm deciding satisfiability for the syntactic fragment
presented in Paper II. At the same time, it is easy to see that the logic does
not have a finite model property in the ordinary sense. The last paper in-
troduces a new, finitary, semantics for this logic, which is proved to be, in
the appropriate sense, equivalent to the semantics based on ω-sequences.
This gives the expected decidability result.

There is also introduced an analytic proof system for the logic, i.e., a
system where every step of the process just introduces subformulas of the
preceding steps, in the form of so-called (semantic) tableaux. This tableau
system is proved to be sound and complete with respect to the finitary
semantics, and therefore, in the light of the equivalence, for the logic of
Paper II. The syntactic restriction then implies that these tableaux can be
used not only to prove validity, but also to prove satisfiability, in that the
construction of a tableau gives a finite recipe for defining a model of any
satisfiable set.
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