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A Logical Relation for Dependent Type Theory Formalized in Agda
With Application to Canonicity and Pi-Injectivity
JOAKIM ÖHMAN
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Abstract

When writing proofs, it is desirable to show that one’s proof is correct. With
formalising a proof in dependent type theory, it is implied that the proof is correct
as long as the type theory is correct.

This thesis covers the formalisation of a fragment of Martin-Löf type theory with one
universe, for which its grammar and judgements are formalised. A logical relation
is then defined as well as validity judgements and proven valid with respect to the
type system. This is then used to prove canonicity and injectivity of the Π-type.
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1
Introduction

When writing proofs, it is often desirable to ensure that ones proof is correct. Usu-
ally, a proof has to be peer reviewed before it can be deemed correct, however
mistakes can still remain undiscovered. One way to verify the correctness of a proof
is to formalise it in a formal language which has a computer program to verify the
proof.

Some type theories functions well as formal languages to formalise proofs. In this
kind of theory we have terms of types instead of elements of sets. The difference is
that with these types we can represent logical concepts, for example function types
can represent an implication. The types of type theory are also similar to the types
of programming.

In Martin-Löf type theory we can represent predicate logic with the dependent
types, which are types that contain values. With the dependent product type Π we
can represent universal quantification, and with the dependent sum type Σ we can
represent existential quantification. This makes this type system ideal for proving
various properties of systems. There are also proof assistant languages such as Coq
and Agda, which are based on this type theory, where we can verify proofs by
computer.

This thesis aim to formalise a logical relation of a simplified Martin-Löf type theory
language in Agda. There is also other works on the topic of type theory in type
theory, such as Chapman [1] [2] and Altenkirch/Kaposi [3].

1.1 Goal

In this thesis the goal is to prove and formalize in Agda a logical relation for a
simple Martin-Löf type theory language, with a dependent product type, a single
universe of types a la Russel and natural numbers with natural recursion. This
logical relation can then be used to prove certain properties, such as Π injectivity
and canonicity. The approach for the proof will be mostly based on Abel/Scherer
[4] and the abstract by Abel/Coquand/Mannaa [5].
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1. Introduction

1.2 Thesis outline

In this introduction chapter, a general introduction to the topic of formalisation
and type theory is given as well as the goal of the thesis. In the second chapter,
we introduce more of the concept of formalisation, describe Martin-Löf type theory
and Agda. The proof and formalisation methods are also described.

In the third chapter, the formalisation of the grammar and judgements are presented
as well as their lemmas. In the fourth chapter, the logical relation and its lemmas
are introduced. Also, the validity judgements are presented with its lemmas and
finally the fundamental theorem is shown with its consequences.

In the fifth chapter, the formalisation is discussed along with possible future ap-
plications and extensions. In the last and sixth chapter are the conclusions of the
thesis.
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2
Background

This chapter will introduce and describe various prerequisites to understand this
thesis. First, the concept of formalisation is introduces with some formal languages
relevant to the thesis. Second, concepts of equality in type theory are introduced.
Third, the language used to formalise the proofs is introduced. Last, the proof
methods of this thesis are described.

2.1 Formalisation

Most often, proofs are described in a natural language. While natural languages
are the most natural way to convey ideas, it is infeasible to verify such a proof by
machine. As such, it is required that someone proof-reads the proofs to ensure its
soundness, however mistakes can be missed, especially if the proof is complex. This
is where the idea of formalisation comes in.

Formalisation is the act of writing a proof in a formal language. These languages
have procedures to verify the an instance of it, some of the procedures being ver-
ification by grammar and by rules. This can give us confidence that the proof is
correct.

There are also computer programs that can verify an instance of a formal language.
Programming languages are themselves formal languages, which are usually verified
by its interpreter, compiler or type checking program. For proofs, these programs
are referred to as proof assistants, which usually also assists with the writing of a
proof.

Formal proofs are however not guaranteed to be error free. While the proofs them-
selves may be verified, the definitions may still contain errors. The definition can
be too strong and allow anything to be proven when it is assumed, it could be too
weak and make it always provable, or anything in between that the author did not
have in mind. Hence, it is still important to be precise with the definitions.

3



2. Background

2.2 Lambda calculus

Lambda calculus is one of these formal languages, which is usually used to describe
computations. Lambda calculus was first introduced by Alonzo Church in 1936.

2.2.1 Untyped lambda calculus

The language of untyped lambda calculus is a variant of lambda calculus without a
notion of typing [6, chapter 5, p. 51]. It has the following grammar of lambda terms:

t, u ::= x |λx.t | t u

where x are variables, λx.t are lambda abstractions and t u are term applications.
Lambda abstractions can be seen as anonymous functions, which takes one argu-
ment. Applications are the application of an argument to one of these anonymous
functions.

Variables can either be free or bound. A variable is bound if it is introduces as a
function variable by a lambda abstraction. Any other variable is known as free. For
instance, in λx.(λy.x y z) the variable z is free while x and y are bound.

The computation of lambda terms can be described by the following reduction rules:

t⇒ t′

t u⇒ t′ u (λx.t)u⇒ t[u/x]

where t[u/x] is the substitution where each occurrence of x in t is substituted with u.

These rules tell us how a lambda term can be reduced, usually in multiple steps,
towards a normal form. Those are terms which cannot be reduced any further. Here,
these are free variables, lambda abstractions and applications with the function
being in normal form.

We presented here a weak head reduction, which has some subtle differences with full
reduction. For a fully reduced term, every part of a lambda term is fully reduced,
while for weak head reduction, reduction stops when the head can be no longer
reduced.

However, not all lambda terms in untyped lambda calculus reduce to a normal form,
and as such never terminate. This is something that is not desirable for a proving
system, as without guaranteed termination we can say that we arrive at a proof in
infinite steps, hence anything would be provable. However, that this fact holds for
untyped lambda calculus along with other things makes it Turing complete.

2.2.2 Simply typed lambda calculus

Simply typed lambda calculus (STLC) is an extension of untyped lambda calculus
with the concept of types [6, chapter 9, p. 99]. This means that every term needs

4



2. Background

to have a type, by satisfying the typing rules, to be valid. This also includes free
variable, which means that they needs to be valid in a context.

The grammar of types are as follows:

A,B ::= X |A→ B

where X is a type of a variable in the related context. The context has the following
grammar:

Γ ::= ε |Γ, x : A
where ε is the empty context and Γ, x : A extends context Γ with a variable x of
type A.

STLC has the following typing rules:
Γ ` t : A→ B Γ ` u : A

Γ ` t u : B
Γ, x : A ` t : B

Γ ` λ(x : A).t : A→ B

Note that in STLC the lambda abstractions have there variables type annotated.

A consequence of the typing rules is that terms that do not reduce to normal form
are not well typed, and as such all valid terms terminate. As a consequence this
system is not Turing complete. This makes this system more suitable for proofs,
however the typing rules are very limited for this.

2.3 Martin-Löf Type Theory

One of the formal languages one can write proofs in is Martin-Löf type theory
(MLTT). MLTT is a type theory, an alternative approach to the foundation math-
ematics, where the notion of types are used as logical constructs and sets. The
logical constructs are here part of the language, unlike classical mathematics where
set theory is disjoint with predicate logic. [7]

MLTT is built on top of STLC, inheriting most of its constructs. However, in MLTT,
both types and terms live in the same grammar. This means that types can depend
on terms and types can be denoted as a term of a type. As such, it is necessary to
have a type of types, also called universe.

The main feature introduced by MLTT is dependent types. These types are in-
troduced by taking two types A and B, where B can depend on an instance of A.
There are two kinds of these:

• Π-types, also known as dependent product types, are effectively function
types of STLC with dependency functionality; given types A and B then
Π (a : A)B[a]. This says that for all instances of a of A, if B[a] holds for all
these a, then Π (a : A)B[a] holds.

• Σ-types, also know dependent sum types. Similar to Π types, this takes two
types A and B such that Σ(a : A)B[a] is a Sigma-type. This says that if there
exists an a of A such that B[a] holds, then Σ(a : A)B[a] holds.

5



2. Background

Note that above we used B[a]. This is the same as a substitution in untyped lambda
calculus, only that here we have left out the specific variable to substitute with.

2.4 Concepts of equality

In this thesis we will work with a number of different notions of equality. Here we
will present and describe them.

2.4.1 Propositional equality

For MLTT, if one were to introduce natural number addition, it would not immedi-
ately follow that commutativity would hold, that is a+ b is equal to b+ a, however
if one were to substitute them with number, it would hold. This is since the two
terms reduced are equal, yet it is not immediate from arbitrary numbers.

With identity types, it is possible to introduce a proof of the above. If we let IdA
be an identity type for type A, then Π (a : A) IdA a a is the base case of reflexivity.
From this base case, the properties of symmetry (if IdA a b then IdA b a), transitivity
(if IdA a b and IdA b c then IdA a c) and congruence (if IdA a b then IdA (f a) (f b)) can
be derived. By this and recursion, it is possible to prove the commutativity property
of addition.

It is the identity types that create these propositional equalities. Note however that
the terms of the equality needs to be of the same type, which can create complexities
if they are of different types that are equal.

2.4.2 Heterogeneous equality

As mentioned in the propositional equality section, that equality cannot prove the
equality of term if they have different types. This is where heterogeneous equality
comes in.

Heterogeneous equality is an extension of propositional equality such that if the
types of the terms are propositionally equal, then the terms can be heterogeneously
equal. It is also possible to take a heterogeneous equality and transform it into a
propositional equality.

2.4.3 Conversion

Conversion is a defined equality in a system, such that convertible elements can be
substituted with each other while the relevant properties are still the same. Which
properties that are deemed relevant depends on the system. However, the equality

6



2. Background

properties of reflexivity, symmetry and transitivity must hold, as otherwise it would
not be a conversion relation.

In this thesis, conversion rules are defined for the language for which proofs are
formalised for.

2.5 Agda

In this thesis the proofs are formalised in Agda, which is a proof assistant and a
programming language.[8] How it functions as both is that any type works as a
proposition and any function of that type works as a proof of the proposition, as by
the Curry-Howard isomorphism.

Agda is also referred to as a dependently typed functional language. The dependent
types are inherited from MLTT.

The Agda language lets one define a function with a type and an instance of that
type. This function is then given a name, so that it can be called recursively.
However, this form of recursion lets one introduce non-terminating functions. To
solve this, Agda uses a termination checker.

The termination checker checks that recursive calls made are reduced. This means
that if we have a function f which accepts natural numbers, then f n is a smaller
call than f (n+ 1). As such, termination is ensured.

Agda also allows mutually dependent definitions. This allows us to define relation
a large amount of cross dependencies. It also allows us to prove properties that are
mutually dependent.

2.6 Methods

In this section, the different proof methods are described.

2.6.1 Logical relations

When making proofs for complex predicates, it is often desirable to show that certain
properties holds for certain parts of the predicate. As such, one can introduce a
new predicate which holds these desired properties in that certain part. This new
predicate is what we refer to as a logical relation.

Logical relations are inductively defined on the type of the predicate. This means
that certain properties can be linked to certain terms, strengthening the typing
relation.

The notion of a logical relation does not have precise definition, and as such may
differ between works. One early work using logical relations is by Plotkin [9].

7



2. Background

A proof by logical relation involves showing that one can from an original predicate
show that the logical relation holds and vice versa. By proving this relation, one can
extract the properties of logical relation and show that they hold from the original
predicate.

2.6.2 De Bruijn index

When formalising proofs with contexts, it is desirable to use a more simple variable
representation than names. This is basically what De Bruijn indices lets us do; it
uses natural numbers to represent variables along with changes to variable binders
[6, chapter 6, p. 75].

Consider the following typed context:

Γ, c : C, b : B, a : A

With De Bruijn indices, each name in the above context is replaced with a natural
number, starting with zero from the right. As such the above become this when
translated:

Γ, 2 : C, 1 : B, 0 : A

Usually the numbers are omitted as they can be implicitly derived.

For any construct that introduces a variable in scope, with De Bruijn indices, the
variable is removed, such that for λ-abstractions, they are denoted as λ t for term t.
These function such that the binder introduces a new variable as zero and shift the
rest by one. As such, for the followings:

Γ, 2 : C, 1 : B, 0 : A ` λ t : F → G

variables in t are in the order as follows:

Γ, 3 : C, 2 : B, 1 : A, 0 : F ` t : G

This can also nested, which can make it complicated to follow which variable cor-
responds to which binder, however this simplified the implementation of a proof
formulation.

2.6.3 Induction-recursion

Sometimes in type theory, it is necessary to define a type and a proposition using
that type at the same time. This means that the type and the proposition are
mutually dependent. This is a feature of Agda and was first investigated by Dybjer
[10].

In Agda, when introducing a data type, it must only contain strictly-positive induc-
tive instances. This means that the type may not have an instance where one of the

8



2. Background

premises is a function which domain is the inductive type. If this were the case, it
would be possible to introduce a proof which does not terminate.

To be able to define certain relations which requires a sense of negative occurence,
the induction-recursion method can be used. This method makes a part of a relation
inductive, with the rest recurse over it, and matching cases to the inductive relation
to form the desired relation.

9



2. Background
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3
Language

In this chapter we present the grammar of the language as well as its judgements.
We will introduce functions over the grammar and some of their properties. The
judgements of the language are being a type, term being of type, type and term
conversion, and type and term reduction. Additionally, we will also prove some
lemmas of these judgements.1

3.1 Grammar

Below we present the grammar of our language.2

A,B, t, u, n ::= U |N |ΠAB |x |λ t | t u | zero | sucn | natrecA t un

x ::= x0 | x1 | x2...

Here we have the lambda-calculus’ constructs variable x, lambda abstraction λ t
and application t u. Π A B is the dependent product type and U is the universe of
types. N is the type of natural numbers with zero and the successor construct suc.
To be able to do more interesting computations, we also have natural recursion as
natrecGs z n where G is the result type function, s is the successor case, z the zero
case and n is the natural number to recurse over.

De Bruijn indices will be used for the grammar. As such, variables are represented
with natural numbers. To make sure they are not confused with numbers as part of
a grammar, xn is used instead, where n is the index of the variable. The binders in
this grammar are t in λ t, B in ΠAB and G in natrecGs z n.

3.1.1 Weakening

Similarly to the transition between untyped and simply typed lambda calculus, the
judgements presented later will require a context of variable types. As such, it is

1 The formalization is available online at https://mr-ohman.github.io/logrel-mltt/ with
the complete definitions and proofs.

2 Available in the code as Term in module Definition.Untyped
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3. Language

desirable to show that for a valid term of a context, the term is also valid for an
extended context. To prepare for this, we introduce the concept of weakening of
terms.

Weakening essentially shifts the variable indices to accommodate for a new context.
With this, properties of minimal context can be shown to hold true also in for larger
contexts.3

We also introduce a composition operator ρ · ρ′ so that two weakenings can be
composed. The composition of certain weakening constructors is presented with the
constructors.

We have three constructors of weakening operations:

• id, the identity weakening. This has the property such that for any term t,
id t is propositionally the same as t. It is indeed the identity with regard to
composition, as when a weakening ρ is composed with id in any order, it is
propositionally equal to ρ.

• step ρ, which when applied to a term shifts all variables by one and then
applies the weakening ρ. It essentially adds one more element to a context.
For composition, it has the property that step ρ · ρ′ is equal to step (ρ · ρ′).

• lift ρ, which “lifts” the the top-most variable and then applies ρ for the rest of
the variables of the term. This has the composition properties:

– lift ρ · lift ρ′ is propositionally equal to lift (ρ · ρ′)

– lift ρ · step ρ′ is equal to step (ρ · ρ′).

– liftn id is equal to id, where n is an arbitrary number of lift applications.

We also introduce the shorthand wk1, which is a synonym of step id. Additionally,
with weakening, the non-dependent function type A→ B can be introduced, which
is a synonym to ΠA (wk1 B).

3.1.2 Substitution

Substitution is simply the act of substituting variables in a term with other terms.

We implement parallel substitution, which essentially means that all variables are
substituted in one application. The representation of substitutions we use are func-
tions from natural numbers to terms. Each free variable is then substituted using
this function.4

Substitutions can, like terms, be weakened. We also introduce the operation purge,
which applies a weakening to the indices of a substitution.

We define the substitution function t[u], which is a special case of parallel substi-
tution, which substitutes x0 in t with u and shifts the rest of the variable indices

3 Weakening is represented in the code as Wk in module Definition.Untyped
4 Substitution is represented in the code as Subst in module Definition.Untyped

12



3. Language

downwards by one. This is mostly used when we have a binder that has a term
applied, for instance with (λ t) u it will reduce to t[u].

We also define a variant t[u]↑, which as t[u] substitutes x0 in t with u, however
it does not shift the other variable indices. This is used when we want to apply
something to x0 with it still being the top-most variable, such as when we want to
apply a function to a variable.

3.1.3 Properties

As weakening and substitution are functions over the syntax and not a member of
the syntax, we do not need to provide equality rules for these. Instead, we need to
provide equality proofs using propositional equality. We will for instance need to
prove that a weakening is equal to its substitution counterpart when applied to a
term.5

Lemma 3.1.1. (ρ · ρ′) t is propositionally equal to ρ (ρ′ t).

Proof. By recursion over t using congruence. In the variable case by recursion over
the weakenings.

Lemma 3.1.2. Given weakening ρ it follows that wk1 · ρ is propositionally equal
to lift ρ · wk1.

Proof. By recursion over ρ.

Lemma 3.1.3. Given weakening ρ and substitution σ it holds that ρ (σ t) is propo-
sitionally equal to (ρ σ) t.

Proof. By recursion over t.

Lemma 3.1.4. For expression t, weakening ρ and substitution σ it follows that
σ (ρ t) is propositionally equal to (purge ρ σ) t.

Proof. By recursion over t.

Lemma 3.1.5. ρ (t[a]) is propositionally equal to ((lift ρ) t)[ρ a] and ρ (t[a]↑)
propositionally equal to ((lift ρ) t)[(lift ρ) a]↑.

Proof. By lemma 3.1.3 and 3.1.4 with recursion over t.

3.2 Judgements

In this section we present the judgements of our language. Each judgement takes
a context of terms as its first parameter, which is essentially a list of types with ε

5In the code, these properties are proved in module Definition.Untyped.Properties
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3. Language

being the empty context and Γ, A being a context Γ extended by term A.6

The different judgements tell us which constructs are well-formed. These are ` Γ
for contexts, Γ ` A for types, Γ ` t : A for terms, Γ ` A = B and Γ ` t = u : A for
type and term conversion respectively. There is also the rules for the well-formed
variables xn : A ∈ Γ.7

Certain premises are highlighted below in the rules. These are additional premises,
necessary to be able to prove certain lemmas.

Well-formed contexts:

` ε
` Γ Γ ` A
` Γ, A

Variables:

x0 : wk1 A ∈ Γ, A
xn : A ∈ Γ

xn+1 : wk1 A ∈ Γ, B

Types:

` Γ NΓ ` N
` Γ UΓ ` U

Γ ` F Γ, F ` G ΠΓ ` ΠF G

Γ ` A : U univΓ ` A

Terms:

` Γ x : A ∈ Γ varΓ ` x : A
Γ ` F : U Γ, F ` G : U ΠΓ ` ΠF G : U

Γ ` F Γ, F ` t : G
λΓ ` λ t : ΠF G

Γ ` a : F Γ ` g : ΠF G appΓ ` g a : G[a]

` Γ NΓ ` N : U
` Γ zeroΓ ` zero : N

Γ ` n : N sucΓ ` sucn : N

Γ,N ` G Γ ` z : F [zero] Γ ` s : ΠN (G→ G[suc x0]↑) Γ ` n : N natrecΓ ` natrecGz sn : G[n]

Γ ` t : A Γ ` A = B convΓ ` t : B

Of note here is the natrec rule, specifically the s premise and its type. The type
ΠN (G→ G[suc x0]↑) describes a function that accepts argument two arguments m
and g of types N and G[n] respectively, such that it returns a term of type G[sucn].

6The context type is called Con in the code and is defined in module Definition.Untyped
7In the code, the judgements are defined in the module Definition.Typed

14



3. Language

Below continues the judgements with conversion rules.

Type conversion:

Γ ` A reflΓ ` A = A

Γ ` A = B symΓ ` B = A

Γ ` A = B Γ ` B = C transΓ ` A = C

Γ ` A = B : U univΓ ` A = B

Γ ` F Γ ` F = H Γ, F ` G = E Π-congΓ ` ΠF G = ΠH E

Term conversion:

Γ ` t : A reflΓ ` t = t : A
Γ ` t = u : A symΓ ` u = t : A

Γ ` t = u : A Γ ` u = r : A transΓ ` t = r : A

Γ ` t = u : A Γ ` A = B convΓ ` t = u : B
Γ ` m = n : N suc-congΓ ` sucm = sucn : N

Γ ` F Γ ` F = H : U Γ, F ` G = E : U Π-congΓ ` ΠF G = ΠH E : U

Γ ` f = g : ΠF G Γ ` a = b : F app-congΓ ` f a = g a : G[a]

Γ ` F Γ, F ` b : G Γ ` a : F
β-redΓ ` (λ b) a = b[a] : G[a]

Γ ` F Γ ` f : ΠF G Γ ` g : ΠF G Γ, F ` (wk1 f) x0 = (wk1 g) x0 : G fun-extΓ ` f = g : ΠF G

Γ,N ` F = F ′ Γ ` z = z′ : F [zero] ΠN (F → F [suc x0]↑)
Γ ` s = s′ :

Γ ` n = n′ : N
Γ ` natrecF z s n = natrecF ′ z′ s′ n′ : F [n]

Γ,N ` F Γ ` z : F [zero] Γ ` s : ΠN (F → F [suc x0]↑) natrec-zeroΓ ` natrecF z s zero = z : F [zero]

Γ,N ` F Γ ` z : F [zero] Γ ` s : ΠN (F → F [suc x0]↑) Γ ` n : N natrec-sucΓ ` natrecF z s (sucn) = (s n) (natrecF z s n) : F [sucn]

Additionally, we have the judgements for the weak head reductions, where Γ ` A⇒
B and Γ ` t⇒ u : A are for type and term reduction respectively, and Γ ` A⇒∗ B
and Γ ` t⇒∗ u : A are for type and term reduction closures.
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Reductions:

Γ ` A⇒ B : U univΓ ` A⇒ B

Γ ` t⇒ u : A Γ ` A = B convΓ ` t⇒ u : B

Γ ` f ⇒ g : ΠF G Γ ` a : F app-congΓ ` f a⇒ g a : G[a]

Γ ` F Γ, F ` b : G Γ ` a : F
β-redΓ ` (λ b) a⇒ b[a] : G[a]

Γ,N ` F Γ ` z : F [zero] Γ ` s : ΠN (F → F [suc x0]↑) Γ ` n⇒ n′ : N
Γ ` natrecF z s n⇒ natrecF z s n′ : F [n]

Γ,N ` F Γ ` z : F [zero] Γ ` s : ΠN (F → F [suc x0]↑) natrec-zeroΓ ` natrecF z s zero⇒ z : F [zero]

Γ,N ` F Γ ` z : F [zero] Γ ` s : ΠN (F → F [suc x0]↑) Γ ` n : N
Γ ` natrecF z s (sucn) = (s n) (natrecF z s n) : F [sucn]

Reduction closure:

Γ ` A idΓ ` A⇒∗ A
Γ ` A⇒ A′ Γ ` A′ ⇒∗ B stepΓ ` A⇒∗ B

Γ ` t : A idΓ ` t⇒∗ t : A
Γ ` t⇒ t′ : A Γ ` t′ ⇒∗ u : A stepΓ ` t⇒∗ u : A

For cases where it necessary to not only have well-formed equalities, but also the
types and terms of that equality being well-formed, we introduce the notations
Γ ` A :=: B and Γ ` t :=: u : A. We refer to these as fully well-formed equalities.

Γ ` A Γ ` B Γ ` A = B

Γ ` A :=: B
Γ ` t : A Γ ` u : A Γ ` t = u : A

Γ ` t :=: u : A

Similarly to equality, we also introduce the notion of fully well-formed reduction
closures, formally denoted as Γ ` A :⇒∗: B and Γ ` t :⇒∗: u : A.

Γ ` A Γ ` B Γ ` A⇒∗ B
Γ ` A :⇒∗: B

Γ ` t : A Γ ` u : A Γ ` t⇒∗ u : A
Γ ` t :⇒∗: u : A

For the reductions, there are terms that cannot be reduced. These are called to be
in weak head normal form (WHNF). A view of these are introduced. The terms
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that are in WHNF are U, N, ΠAB for any A and B, λ t for any t, zero, suc t for
any t, and neutral term.

What a neutral term is can be described as a term that cannot be reduced due to it
consisting of free variables. These consists of free variables themselves, applications
where function is a neutral term and natural recursion where the natural number is
neutral.

Below, a couple of simple properties are proved.8

Lemma 3.2.1. The set of reduction rules is a subset of the conversion rules.

Proof. Trivial, as each reduction has a conversion counterpart.

Lemma 3.2.2. Given any well-formed construct with a context of Γ, the context Γ
is well-formed.

Proof. Trivial, as each base case of the inductive definitions have a premise that Γ
is well-formed.

Lemma 3.2.3. It is impossible that both ε ` t : A and t being neutral holds.

Proof. By induction on well-formed term and neutral.

3.2.1 Weakening

We introduce the concept of a valid weakening. This uses the predicate Γ ⊆ ∆
which is parametrized over the two contexts Γ and ∆. The weakening here go from
a context Γ and weaken it to a larger or equally large context ∆. Below are the
rules for valid weakenings.9

id : Γ ⊆ Γ
ρ : Γ ⊆ ∆

step ρ : Γ ⊆ ∆, A
ρ : Γ ⊆ ∆

lift ρ : Γ, A ⊆ ∆, ρA

Note that in the lift case, the right-hand A is weakened by ρ. In the formalisation,
the weakening of the grammar and the valid weakening are defined separately, as
such, a function to convert a valid weakening needs to be mutually defined. This is
called toWk.

Also of note is that context members can depend on each other, as seen in the
well-formed context extension. It is therefore necessary to weaken by ρ in the lift
rule.

8These lemmas are formalised in module Definition.Typed.Properties
9 The module Definition.Typed.Weakening of the code contains the formalisation of valid

weakening and its lemmas.
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Composition of weakenings in this environment is a bit more tricky. Since the
propositional equality of lift ρ · lift ρ′ and lift (ρ · ρ′) does not follow directly here, we
need to prove the following lemma:

Lemma 3.2.4. (ρ ·ρ′) t propositionally equal to ρ (ρ′ t) and composition is distribu-
tive with toWk.

Proof. By recursion over ρ, and by using heterogeneous equality and lemma 3.1.1.

Lemma 3.2.5 (Weakening). Given ρ : Γ ⊆ ∆ and ` ∆ it is such that:

1. If x : A ∈ Γ then ρx : ρA ∈ ∆.

2. If Γ ` A then ∆ ` ρA.

3. If Γ ` t : A then ∆ ` ρt : ρA.

4. If Γ ` A = B then ∆ ` ρA = ρB.

5. If Γ ` t = u : A then ∆ ` ρt = ρu : ρA.

6. If Γ ` A⇒ B then ∆ ` ρA⇒ ρB.

7. If Γ ` t⇒ u : A then ∆ ` ρt⇒ ρu : ρA.

8. If Γ ` A⇒∗ B then ∆ ` ρA⇒∗ ρB.

9. If Γ ` t⇒∗ u : A then ∆ ` ρt⇒∗ ρu : ρA.

Proof. By recursion and lemmas 3.1.1 and 3.1.2.

The highlighted premises of the rules are used, as without them it would be required
to use lemma 3.2.2 and pattern-match on the context. The weakening lemma would
then be used on that result, however Agda cannot derive that such a type is smaller
than the original type, resulting the lemma being deemed non-terminating.

3.2.2 Reduction

For the reductions to work well with respect to computations and proofs, there are
certain properties that needs to be satisfied. For instance, the reduction has to
be deterministic and it has to hold that any WHNF cannot be reduced. Here the
lemmas for these properties are presented.10

Lemma 3.2.6. If Γ ` t⇒ u : A then it is impossible for t to be neutral.

Proof. By induction on the reduction and neutral.

Lemma 3.2.7. If Γ ` A⇒ B then it is impossible for A to be of WHNF. Similarly,
if Γ ` t⇒ u : C then it is impossible for t to be of WHNF.

10These lemmas are formalised in the code in module Definition.Typed.Properties

18



3. Language

Proof. By induction on the reduction and WHNF. For the application and natrec
cases lemma 3.2.6 is needed.

Lemma 3.2.8. If Γ ` A⇒∗ B and A is of WHNF then A and B are propositionally
equal. Similarly, if Γ ` t⇒∗ u : C and t is of WHNF then t and u are propositionally
equal.

Proof. By induction on the reduction closure and lemma 3.2.6 and 3.2.7.

Lemma 3.2.9. If Γ ` A ⇒ B and Γ ` A ⇒ B′ then B is propositionally equal to
B′. Similarly, if Γ ` t⇒∗ u : C and Γ ` t⇒∗ u′ : C then u is propositionally equal
to u′.

Proof. By induction on the two reductions. For the application and natrec cases
lemma 3.2.7 is needed.

Lemma 3.2.10. If Γ ` A ⇒∗ B and Γ ` A ⇒∗ B′ with B and B′ in WHNF then
B is propositionally equal to B′. Similarly, if Γ ` t ⇒∗ u : C and Γ ` t ⇒∗ u′ : C
with u and u′ in WHNF then u is propositionally equal to u′.

Proof. By induction on the two reduction closures and lemma 3.2.7 and 3.2.9.

19



3. Language

20



4
Logical Relation

To be able to prove the properties of the language, we need a relation that reflect
the semantics of the judgements. Terms of a certain type has certain properties, for
instance a term of type N is either zero, a successor to a term of type N or neutral.
As such a relation over the types is introduced.

We introduce Kripke logical relations Γ 
 t : A and Γ 
 t = t′ : A. The Kripke
worlds are contexts and the Kripke relation is context extension (weakening). Our
goal is to show that these relations model the syntactic relations Γ ` t : A and
Γ ` t = t′ : A. In order to accomplish this we introduce a second pair of relations
Γ 
s t : A and Γ 
s t = t′ : A, called validity judgements, that correspond to the
closure of the logical relations under substitutions. We will refer to types, terms
and equalities as sound if they satisfy the logical relation, and valid if they satisfy
the validity judgements. The implication from ` to 
s is called the fundamental
lemma of logical relations, which is the main contribution of this thesis. The general
structure of fundamental and the relations can be seen in figure 4.1.

For the relations, we will use the induction-recursion pattern. This pattern works
such that we inductively define one predicate and define the remaining predicates by
recursion over the one inductively defined. Why this particular pattern is necessary
is since Agda does not allow negative occurrences in data types, however we need
to define a form of negative occurrence.

Γ ` A Γ 
 A
well-formedness

Γ 
s Asoundness

fundamental

Figure 4.1: A representation of the general proof structure, where fundamental is
the fundamental theorem, well-formedness is the well-formedness lemma and

soundness is the logical relation projection.
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4.1 Logical relation definition

For the logical relations, we will apply the induction-recursion pattern. We will
define Γ 
 A by induction and the other relations Γ 
 t : A and Γ 
 A = B and
Γ 
 t = u : A by recursion on the derivation [A] of Γ 
 A. This has to be done in
principle for the two levels of small types and large types. We summarize the two
steps into one by parametrizing the logical relations over the level l, written 
〈l〉.
The levels for small and large types are referred to as level 0 and 1 respectively.1

• If ` Γ and there exists a type level smaller than l then Γ 
〈l〉 U with a proof
instance referred to as [U]. If this holds, then the following holds:

– Γ 
〈l〉 U = B/[U] if and only if U is propositionally equal to B.

– Γ 
〈l〉 A : U/[U] if and only if Γ ` A : U and type level l′ is smaller than
l with Γ 
〈l′〉 A.

– Γ 
〈l〉 A = B : U/[U] if and only if Γ ` A : U and Γ ` B : U and
Γ ` A = B : U and l′ is a smaller type level than l with Γ 
〈l′〉 A and
Γ 
〈l′〉 B and Γ 
〈l′〉 A = B.

• If we have Γ ` A⇒∗ N then we have Γ 
〈l〉 A Given we have instance [A] of
that particular Γ 
〈l〉 A, the following also holds:

– Γ 
〈l〉 A = B/[A] if and only if Γ ` B ⇒∗ N.

– Γ 
〈l〉 t : A/[A] if and only if Γ ` t :⇒∗: n : N where n is either zero, a
successor of some term or neutral, and the following has to hold:

∗ If n is a successor of m, then Γ 
〈l〉 m : N.

∗ If n is neutral, then Γ ` n : N.

– Γ 
〈l〉 t = u : A/[A] if and only if Γ ` t ⇒∗ n : N and Γ ` u ⇒∗ m : N
where n and m are either both zero, successor to some term or neutral,
and the following has to hold:

∗ If n and m are successors to n′ and m′ respectively, then the equality
Γ 
〈l〉 n′ = m′ : N has to hold.

∗ If n and m are neutrals, then Γ ` n = m : N.

• If we have Γ ` A ⇒∗ K with K being neutral then we have Γ 
〈l〉 A. Given
we have instance [A] of that particular Γ 
〈l〉 A, the following also holds:

– Γ 
〈l〉 A = B/[A] if and only if Γ ` B ⇒∗ M with M neutral and
Γ ` K = M .

– Γ 
〈l〉 t : A/[A] if and only if Γ ` t : A.

– Γ 
〈l〉 t = u : A/[A] if and only if Γ ` t = u : A.
1In the code, the logical relation is defined in the module Definition.LogicalRelation.
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• If we have Γ ` A ⇒∗ ΠF G and Γ ` F and Γ, F ` G as well as the following
properties given any ρ : Γ ⊆ ∆ and ` ∆:

– ∆ 
〈l〉 ρF has to hold. We refer to it here as [F ].

– Given ∆ 
〈l〉 a : ρF/[F ] we have ∆ 
〈l〉 (lift ρ)G[a]. We refer to it here
as [G].

– Given ∆ 
〈l〉 a : ρF/[F ] and ∆ 
〈l〉 b : ρF/[F ] and ∆ 
〈l〉 a = b : ρF
/[F ] then we have ∆ 
〈l〉 (lift ρ)G[a] = (lift ρ)G[b]/[G].

When we have all this we have Γ 
〈l〉 A. For any instance [A] of Γ 
〈l〉 A
where the above holds, the following also holds:

– Γ 
〈l〉 A = B/[A] if and only if the following: Suppose that we have
Γ ` B ⇒∗ ΠF ′G′ such that given ρ : Γ ⊆ ∆ and ` ∆ we have both
∆ 
〈l〉 ρF = ρF ′/[F ] and for all ∆ 
〈l〉 a : ρF/[F ] we then have
∆ 
〈l〉 (lift ρ)G[a] = (lift ρ)G′[a]/[G].

– Γ 
〈l〉 t : A/[A] if and only if we have the following: We have Γ ` t : A
and given ρ : Γ ⊆ ∆ and ` ∆ and ∆ 
〈l〉 a : ρF/[F ] then we have
∆ 
〈l〉 (ρt) a : (lift ρ)G[a] / [G] and for all ∆ 
〈l〉 b : ρF / [F ] and
∆ 
〈l〉 a = b : ρF/[F ] we have ∆ 
〈l〉 (ρt) a = (ρt) b : (lift ρ)G[a]/[G].

– Γ 
〈l〉 t = u : A/[A] if and only if the following holds: We have
Γ ` t = u : A and Γ 
〈l〉 t : A/[A] and Γ 
〈l〉 u : A/[A] and
given ρ : Γ ⊆ ∆ and ` ∆ and ∆ 
〈l〉 a : ρF/[F ] then we have
∆ 
〈l〉 (ρt) a = (ρu) a : (lift ρ)G[a]/[G].

• If we have a derivation [A]′ of Γ 
〈l′〉 A and l′ is a smaller type level than l,
then Γ 
〈l〉 A and let [A] be a derivation of it. Additionally, the following
holds from this:

– Γ 
〈l〉 A = B/[A] if and only if Γ 
〈l′〉 A = B/[A]′.

– Γ 
〈l〉 t : A/[A] if and only if Γ 
〈l′〉 t : A/[A]′.

– Γ 
〈l〉 t = u : A/[A] if and only if Γ 
〈l′〉 t = u : A/[A]′.

4.1.1 Equality view

When pattern matching, Agda can automatically refute cases if there is an impossi-
bility. However, this is only if the impossibility arises without further normalisation.

For the types of the logical relation, it is not immediately obvious that two sound
types with different outermost type constructor cannot be reducts of the same type.
For instance, if A both reduces to N and ΠF G for any F and G, we arrive at an
impossibility since both N and ΠF G are of WHNF as per lemma 3.2.10.

In some of the following lemmas, there are premises Γ 
〈l〉 A with derivation [A]
and Γ 
〈l〉 B and Γ 
〈l〉 A = B/[A] where it is necessary to recurse over the types.
As there are five different sound type constructors, we end up with 25 cases, or 18 by
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not using recursion for the first instance when the other is an embedding construct.
For the remaining cases, 12 of the 18 can be refuted.

To avoid repeating the refuting cases for each lemma, a view of two sound types is
introduced without these cases. The view then consists of when both types are U,
reduce to N, reduce to two possibly different neutrals, reduce to ΠF G and ΠF ′G′

or one of the sound types is an embedding.2

Lemma 4.1.1. If [A] : Γ 
〈l〉 A and [B] : Γ 
〈l〉 B and Γ 
〈l〉 A = B/[A] then the
equality view of [A] and [B] holds.

Proof. By recursion on [A] and [B], the cases in the view are trivial and the cases
not in the view are refuted by lemma 3.2.10.

For some of the following lemmas we also need a variant where A and B are the
same. Therefore the reflexivity lemma is introduced:

Lemma 4.1.2 (Reflexivity). For all [A] : Γ 
〈l〉 A it follows that Γ 
〈l〉 A = A/[A].
Additionally, if Γ 
〈l〉 t : A/[A] then Γ 
〈l〉 t = t : A/[A].

Proof. By induction on the sound type or term.

Corollary 4.1.3. If there is two instances [A] and [A]′ of Γ 
〈l〉 A and Γ 
〈l′〉 A
respectively, then there is an equality view of [A] and [A]′.

4.1.2 Proof irrelevance

As the logical relation uses induction-recursion, the recursions depend on the induc-
tion. This means that if we let [A] and [A]′ be of type Γ 
 A then Γ 
 A = B/[A] is
not the same as Γ 
 A = B/[A]′. The same applies to the other recursive instances.

Here we prove that we can change the sound type instance of the recursion instances.
This lemma is particularly useful when we have two types which are propositionally
equal to each other, A and A′, and we need to show that a term is a sound member
of A when it is a sound member of A′.3

Lemma 4.1.4 (Proof irrelevance). If [A] : Γ 
〈l〉 A and [A]′ : Γ 
〈l′〉 A then:

1. If Γ 
〈l〉 A = B/[A] then Γ 
〈l′〉 A = B/[A]′.

2. If Γ 
〈l〉 t : A/[A] then Γ 
〈l′〉 t : A/[A]′.

3. If Γ 
〈l〉 t = u : A/[A] then Γ 
〈l′〉 t = u : A/[A]′.

Proof. The equality view and lemma 4.1.3 is used to refute the refutable cases. Most
of the other cases are trivial. For the neutral case in (1) lemma 3.2.1 is used. For
cases of Π type, recursion is used for the weakening properties.

2In the code this is known as Tactic from the module Definition.LogicalRelation.Tactic.
3 This is formally proven in the module Definition.LogicalRelation.Irrelevance.
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With the proof irrelevance lemma, we can assert that for any recursion instance of
the induction-recursion definition, we do not need a specific instance of a proof, but
only that there exists a proof. Hence if Γ 
〈l〉 A then Γ 
〈l〉 A = B/[A] can be
simplified to Γ 
〈l〉 A = B. Here we will also leave out the type level when it can
be any value. Thus the following simplifications are done:

• Soundness of type equality is simplified to Γ 
 A = B.

• Soundness of a term is simplified to Γ 
 t : A.

• Soundness of term equality is simplified to Γ 
 t = u : A.

Similarly to the judgements, we also introduce Γ 
 A :=: B and Γ 
 t :=: u : A for
cases which not only equality needs to be sound, but also the types and terms.

Γ 
 A Γ 
 B Γ 
 A = B

Γ 
 A :=: B
Γ 
 t : A Γ 
 u : A Γ 
 t = u : A

Γ 
 t :=: u : A

4.1.3 Language properties

Here lemmas are presented for showing that sound constructs are also well-formed,
as well as properties following the judgements are still holding.4

Lemma 4.1.5 (Well-formedness). Any sound construct is also well-formed, that is
if Γ 
 A then Γ ` A. Additionally the following holds:

• If Γ 
 A = B then Γ ` A = B.

• If Γ 
 t : A then Γ ` t : A.

• If Γ 
 t = u : A then Γ ` t = u : A.

Proof. By induction on the sound construct and lemma 3.2.1.

Lemma 4.1.6 (Weakening). If ρ : Γ ⊆ ∆ and ` ∆ and Γ 
〈l〉 A then ∆ 
〈l〉 ρA.
Additionally:

• If Γ 
〈l〉 A = B then ∆ 
〈l〉 ρA = ρB.

• If Γ 
〈l〉 t : A then ∆ 
〈l〉 ρt : ρA.

• If Γ 
〈l〉 t = u : A then ∆ 
〈l〉 ρt = ρu : ρA.

Proof. By induction on the sound construct. For most cases we simply use lemma
3.2.5. For the Π cases, lemmas 3.2.4 and 4.1.4 are used.

4These lemmas are formalised in modules Definition.LogicalRelation.Weakening and
Definition.LogicalRelation.Properties.
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Lemma 4.1.7 (Type conversion). If Γ 
 A = B then:

• Γ 
 t : A if and only if Γ 
 t : B.

• Γ 
 t = u : A if and only if Γ 
 t = u : B.

Proof. By induction on the sound term or equality using the equality view with
lemma 4.1.1.

Lemma 4.1.8 (Symmetry). If Γ 
 A = B then Γ 
 B = A. Additionally, if
Γ 
 t = u : A then Γ 
 u = t : A.

Proof. By induction on the sound equality using the equality view with lemma 4.1.1.
For the Π case lemma 4.1.7 is needed.

Lemma 4.1.9 (Transitivity). If Γ 
 A = B and Γ 
 B = C then Γ 
 A = C.
Additionally, if Γ 
 t = u : A and Γ 
 u = r : A then Γ 
 t = r : A.

Proof. By induction on the sound equality using the equality view with lemma 4.1.1.
For the Π case lemma 4.1.7 is needed.

Lemma 4.1.10 (Natural soundness). For all Γ which are well-formed, Γ 
 N and
Γ 
 zero : N holds. Additionally, if Γ 
 n : N then Γ 
 sucn : N. Similarly, if
Γ 
 n = n′ : N then Γ 
 sucn = sucn′ : N.

Proof. By induction on the sound term or equality.

Lemma 4.1.11 (Neutral soundness). The following properties holds:

• If Γ ` A and A is neutral, then Γ 
 A.

• If Γ ` A :=: B and both A and B are neutral, then Γ 
 A = B.

• If Γ 
 A and Γ ` t : A and t is neutral, then Γ 
 t : A.

• If Γ 
 A and Γ ` t :=: u : A and both t and u is neutral, then Γ 
 t = u : A.

Proof. By induction on the type. For the Π cases lemma 3.2.1 and 4.1.5 are needed.

Lemma 4.1.12 (Reduction soundness). The following properties holds:

• If Γ ` A⇒ B and Γ 
 B then Γ 
 A and Γ 
 A = B.

• If Γ ` t⇒ u : A, Γ 
 A Γ 
 u : A then Γ 
 t : A and Γ 
 t = u : A.

• If Γ ` A⇒∗ B and Γ 
 B then Γ 
 A and Γ 
 A = B.

• If Γ ` t⇒∗ u : A, Γ 
 A Γ 
 u : A then Γ 
 t : A and Γ 
 t = u : A.

Proof. By induction on the type. For the Π cases lemma 3.2.1, 4.1.5, 4.1.7, 4.1.8
and 4.1.9 are needed.
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Lemma 4.1.13 (Application soundness). Whenever Γ 
 F and Γ 
 G[u] and
Γ 
 ΠF G and Γ 
 t : ΠF G and Γ 
 u : F then Γ 
 t u : G[u]. Similarly,
whenever Γ 
 F and Γ 
 G[u] and Γ 
 ΠF G and Γ 
 t = t′ : ΠF G and
Γ 
 u :=: u′ : F then Γ 
 t u = t′ u′ : G[u].

Proof. By lemmas 3.2.2, 3.2.8 and 4.1.4.

4.2 Validity judgements

For the validity judgements, we introduce the concepts of context and substitution
validity as well as the type, term and their respective equalities. Just as in the logical
relation, induction-recursion is used where valid contexts are defined by induction
and the rest are defined by recursion on valid contexts.5

A context is valid if it is either empty or if it extends a valid context with a type
that is valid in the validity judgements. As such, the definitions of valid types and
contexts are mutually dependent. Formally we denote a context Γ valid as 
s Γ.

A substitution σ is valid given we have a valid context Γ and a well-formed context ∆
as well as some additional requirements based on Γ. Γ is here the context which an
expression is valid in to be able to apply σ and ∆ is the context which the resulting
application is valid in. Given that [Γ] is an instance of 
s Γ and [∆] is an instance
of ` ∆ substitution validity is formally denoted as ∆ 
s σ : Γ/[Γ]/[∆] with [σ] as an
instance of it, and ∆ 
s σ = σ′ : Γ/[Γ]/[∆]/[σ] for validity of substitution equality.
The additional requirements are defined recursively over Γ:

• If Γ is an empty context, then any σ is valid and the equality is valid for any σ
and σ′. Since there is nothing to substitute in an expression valid in an empty
context, any substitution is effectively an identity substitution.

• Otherwise, Γ extends a smaller context E by type A. σ is valid if ∆ 
s tailσ : E
/[E]/[∆] and ∆ 
 headσ : (tailσ)A/[A]. Equality of σ and σ′ is valid if
∆ 
s tailσ = tailσ′ : E/[E]/[∆]/[σ] and ∆ 
 headσ = headσ′ : (tailσ)A/[A]
as well as ∆ 
s σ : Γ/[Γ]/[∆].

For the typing and term membership validity, it has to hold that the context Γ is also
valid with instance [Γ]. Additionally, the following has to hold for all well-formed
contexts ∆ with instance [∆] and substitutions [σ] : ∆ 
s σ : Γ/[Γ]/[∆]:

• A type A is valid if ∆ 
〈l〉 σA is satisfied and for all σ′ with ∆ 
s σ = σ′ : Γ
/[Γ]/[∆]/[σ] if ∆ 
〈l〉 σA = σ′A holds. It is formally denoted as Γ 
s〈l〉 A/[Γ].

• Equality of types A and B is valid given A is a valid type with instance [A]. It
also has to satisfy ∆ 
〈l〉 σA = σB. It is formally denoted as Γ 
s〈l〉 A = B
/[Γ]/[A].

5 The module Definition.LogicalRelation.Substitution contains the definitions of the
validity judgements.
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4. Logical Relation

• A term t of type A is valid given that A is a valid type with instance [A].
Additionally, it is required that ∆ 
 σt : σA holds and for all σ′ satisfying
∆ 
s σ = σ′ : Γ it requires that ∆ 
〈l〉 σt = σ′t : σA is satisfied. It is formally
denoted as Γ 
s〈l〉 t : A/[Γ]/[A].

• Equality of terms t and u of type A is valid given A is a valid type with
instance [A]. It also has to satisfy that ∆ 
 σt = σu : σA holds. It is formally
denoted as Γ 
s〈l〉 t = u : A/[Γ]/[A].

Additionally, given derivation [Γ] of 
s Γ, validity of term reduction Γ 
s t⇒ u : A
/[Γ] holds if and only if given derivation [∆] of ` ∆ and ∆ 
s σ : Γ/[Γ]/[∆] such
that ∆ ` σt⇒ σu : σA holds.

We can see in figure 4.2 that a lot of the parts of the validity judgements mutually
depend on each others.


s Γ

∆ 
s σ : Γ ∆ 
s σ = σ′ : Γ

Γ 
s A

Figure 4.2: Graph of the definition dependencies of the validity judgements.
Type equality, type membership and term equality are omitted to make it easier to

read.

4.2.1 Validity of substitutions

Here a couple of lemmas for valid substitutions are presented. These lemmas cover
the irrelevance of inductive proofs of the inductive-recursive relation as well as weak-
ening and lifting of valid substitutions and substitution equalities. Additionally, the
reflexivity, symmetry and transitivity properties are covered for substitution equal-
ity.6

Lemma 4.2.1 (Substitution irrelevance). Given two instances [Γ] and [Γ]′ of 
s Γ
and two instances [∆] and [∆]′ of ` ∆ then whenever [σ] : ∆ 
s σ : Γ/[Γ]/[∆] holds,

6The module Definition.LogicalRelation.Substitution.Irrelevance contains the for-
malisation of the irrelevance lemma and the remaining lemmas are formalised in module
Definition.LogicalRelation.Substitution.Properties.
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4. Logical Relation

then [σ]′ : ∆ 
s σ : Γ/[Γ]′/[∆]′ also holds. Additionally, if ∆ 
s σ = σ′ : Γ/[Γ]/[∆]
/[σ] holds, then ∆ 
s σ = σ′ : Γ/[Γ]′/[∆]′/[σ]′ also holds.

Proof. By induction on the valid substitution and lemma 4.1.4.

With proof irrelevance for the substitution validity, we can now assert that it is only
necessary that there exists a proof and does not have to be a specific instance. As
such, the following simplifications are made:

• Valid substitution is simplified to ∆ 
s σ : Γ.

• Equality of valid substitutions is simplified to ∆ 
s σ = σ′ : Γ.

Lemma 4.2.2. Given that a context Γ is valid, it is also well-formed as well as
Γ 
s id : Γ holding.

Proof. By induction on the valid context and lemma 4.1.5. The two conclusions are
mutually dependent.

Lemma 4.2.3 (Substitution weakening). Given a valid context Γ and well-formed
contexts ∆ and E, if ρ : ∆ ⊆ E and ∆ 
s σ : Γ then E 
s ρσ : Γ. Additionally, if
∆ 
s σ = σ′ : Γ then E 
s ρσ = ρσ′ : Γ.

Proof. By induction on the valid substitution and lemma 4.1.6 and 3.1.3.

Lemma 4.2.4 (Substitution lifting). Given a valid context Γ with instance [Γ] and
a well-formed context ∆, if Γ 
s〈l〉 F/[Γ] and ∆ 
s σ : Γ then ∆, σF 
s liftσ : Γ, F .
Additionally, if ∆ 
s σ = σ′ : Γ then ∆, σF 
s liftσ = liftσ′ : Γ, F .

Proof. By lemma 3.1.3, 4.1.5, 4.1.11 and 4.2.3.

Lemma 4.2.5. For the equality of valid substitutions, the reflexivity, symmetry and
transitivity properties holds.

Proof. By the respective lemmas 4.1.2, 4.1.8 and 4.1.9 as well as lemma 4.1.7.

4.2.2 Validity of types and terms

In this section, proofs for various type, term and equality introductions and substi-
tutions. Similarly to the logical relation, the proof irrelevance property is proved
first to simplify the validity judgements.7

Lemma 4.2.6 (Proof irrelevance). Given the two instances [Γ] and [Γ]′ of 
s Γ and
[A] : Γ 
s〈l〉 A/[Γ] then Γ 
s〈l〉 A/[Γ]′. Additionally if [A]′ : Γ 
s〈l′〉 A/[Γ]′ then:

• Given Γ 
s〈l〉 A = B/[Γ]/[A] then Γ 
s〈l′〉 A = B/[Γ]′/[A]′.

• Given Γ 
s〈l〉 t : A/[Γ]/[A] then Γ 
s〈l′〉 t : A/[Γ]′/[A]′.
7 In the module Definition.LogicalRelation.Substitution.Irrelevance the irrelevance

lemma is formalised.
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• Given Γ 
s〈l〉 t = u : A/[Γ]/[A] then Γ 
s〈l′〉 t = u : A/[Γ]′/[A]′.

Proof. By induction on the valid construct and lemma 4.1.4 and 4.2.1.

Similarly as in the logical relation, with the irrelevance lemma, we can now assert
that dependency of specific proofs and type levels for logical relation instances can
be omitted. As such we have the following simplifications:

• Valid types are denoted as Γ 
s A.

• Valid equality of types are denoted as Γ 
s A = B.

• Valid term of a type are denoted as Γ 
s t : A.

• Valid equality of terms of a type are denoted as Γ 
s t = u : A.

Similar to the judgements and the logical relation, we introduce Γ 
s A :=: B and
Γ 
s t :=: u : A for when a lemma not only need a valid equality, but also that the
types and terms are valid.

Γ 
s A Γ 
s B Γ 
s A = B

Γ 
s A :=: B
Γ 
s t : A Γ 
s u : A Γ 
s t = u : A

Γ 
s t :=: u : A

Following are the lemmas to prove the validity of different types and terms.8

Lemma 4.2.7 (Universe validity). If 
s Γ then Γ 
s U. Additionally, if Γ 
s A : U
then Γ 
s A. Similarly, if Γ 
s A = B : U then Γ 
s A = B.

Lemma 4.2.8 (Natural validity). If 
s Γ then Γ 
s N and Γ 
s zero : N. Addi-
tionally, if Γ 
s n : N then Γ 
s sucn : N.

Lemma 4.2.9 (Type conversion). If 
s Γ and Γ 
s A :=: B then the following
holds:

• Γ 
s t : A if and only if Γ 
s t : B.

• Γ 
s t = u : A if and only if Γ 
s t = u : B.

Lemma 4.2.10 (Single substitution validity). Given valid context Γ and Γ 
s F
and Γ, F 
s G and Γ 
s t : F then Γ 
s G[t]. Also following this:

• If Γ, F 
s g : G then Γ 
s g[t] : G[t].

• If Γ 
s F :=: F ′ and Γ, F 
s G and Γ, F ′ 
s G and Γ, F 
s G = G′ and
Γ 
s t : F and Γ 
s t

′ : F ′ and Γ 
s t = t′ : F then Γ 
s G[t] = G′[t′].

Lemma 4.2.11 (Lifting single substitution validity). If 
s Γ and Γ 
s F and
Γ, F 
s G and Γ 
s t : wk1F then Γ, F 
s G[t]↑. Additionally, if Γ, F 
s G :=: G′
and Γ, F 
s t :=: t′ : wk1F then Γ, F 
s G[t]↑ = G′[t′]↑.

8In module Definition.LogicalRelation.Substitution.Introductions these lemmas are
formalised.
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Lemma 4.2.12 (Π-type validity). Given 
s Γ and Γ 
s F and Γ, F 
s G then
Γ 
s ΠF G. Additionally, if also Γ 
s H and Γ, H 
s E and Γ 
s F = H and
Γ, F 
s G = E holds, then Γ 
s ΠF G = ΠH E.

Lemma 4.2.13 (Application validity). Given 
s Γ and Γ 
s F and Γ 
s ΠF G
and Γ 
s t : ΠF G and Γ 
s u : F then Γ 
s t u : G[u]. Similarly for congruence, if
also Γ 
s t = t′ : ΠF G and u 
s F :=: u′ : F holds, then Γ 
s t u = t′ u′ : G[u].

Lemma 4.2.14 (λ validity). Given valid context Γ and Γ 
s F and Γ, F 
s G and
Γ, F 
s t : G then Γ 
s λ t : ΠF G.

Lemma 4.2.15. Given 
s Γ and Γ 
s F and Γ, F 
s G and Γ 
s f : ΠF G and
Γ 
s g : ΠF G and Γ, F 
s wk1 f x = wk1 g x : G then Γ 
s f = g : ΠF G.

Lemma 4.2.16 (Reduction validity). Given 
s Γ and Γ 
s A and Γ 
s t ⇒ u : A
and Γ 
s u : A then Γ 
s t : A and Γ 
s t = u : A.

Lemma 4.2.17 (Natural recursion validity). Given valid context Γ and Γ,N 
s F
and Γ 
s F [zero] and Γ 
s ΠN (F → F [suc x0]↑) and Γ 
s F [n] and Γ 
s z : F [zero]
and Γ 
s s : ΠN (F → F [suc x0]↑) and Γ 
s n : N then Γ 
s natrecF z s n : F [n]

Lemma 4.2.18 (Well-formedness). Given a valid type, term or respective equality,
it is also well-formed.

4.3 Fundamental theorem

With the logical relation and validity judgements defined, and their lemmas proven,
it is now possible to prove the fundamental theorem.9

Theorem 4.3.1 (Fundamental). Given any well-formed context, type, term or
equality of types or terms, it is also valid. More specifically:

1. If ` Γ then 
s Γ.

2. If Γ ` A then 
s Γ and Γ 
s A.

3. If Γ ` A = B then 
s Γ and Γ 
s A and Γ 
s B.

4. If Γ ` t = u : A then 
s Γ and Γ 
s A and Γ 
s t : A and Γ 
s u : A and
Γ 
s t = u : A.

This theorem states that any well-formed instance will fulfil the logical relations
properties. This means that many more properties can be derived from a well-
formed instance, which lets us prove further properties of the language itself.

9 The module Definition.LogicalRelation.Fundamental contains the formalisation of the
fundamental lemma.
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4.3.1 Consequences

With the fundamental theorem, Π-injectivity can be proven along with other theo-
rems. These theorems are of the form of taking a judgement and showing that an
other judgement is valid.10

Theorem 4.3.2 (Π-injectivity). Given Γ ` ΠF G = ΠH E then Γ ` F = H and
Γ, F ` G = E holds.

Proof. By theorem 4.3.1 and lemma 4.1.11.

Theorem 4.3.3 (Weak canonicity). Given ε ` n : N then there exists a k such that
ε ` n = suck zero : N where suck zero is suc applied k times to zero.

Proof. By theorem 4.3.1 and induction on the sound n. The neutral case is refuted
by lemma 3.2.3. For the sucm case we use recursion on m and for both sucm and
zero case we need lemma 3.2.1.

Theorem 4.3.4 (Syntactic validity). If Γ ` A = B then Γ ` A and Γ ` B.
Similarly, if Γ ` t = u : A then Γ ` t : A and Γ ` u : A. Finally, if Γ ` t : A then
Γ ` A.

Proof. By theorem 4.3.1 and lemma 4.2.18.

Corollary 4.3.5 (Syntactic validity of Π). If Γ ` ΠF G then Γ ` F and Γ, F ` G.

Proof. By theorems 4.3.2 and 4.3.4.

Theorem 4.3.6 (Single substitution). Given Γ ` t : F and either Γ, F ` G or
Γ ` ΠF G then Γ ` G[t].

Proof. By theorem 4.3.1, lemma 4.2.10 and lemma 4.2.18. For ΠF G we need 4.3.5.

Theorem 4.3.7 (Inversion). Given either Γ ` zero : C or Γ ` sucn : C then
Γ ` C = N. Similarly, if Γ ` natrecF z s n : C then Γ ` C = F [n]. Finally, if
Γ ` f a : C then there exists F and G such that Γ ` f : ΠF G and Γ ` a : F and
Γ ` C = G[a].

Proof. By induction on the typing derivation. In cases natrecF z s n and f a we
need theorem 4.3.6.

10 The module Definition.LogicalRelation.Consequences contains the formalisation of the
consequences of the fundamental lemma.
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Discussion

In this chapter the proof and its implications will be discussed.

5.1 Implications of proof

Here we will present what it means for the fundamental theorem and its consequences
to be proven.

With the fundamental theorem proven, it is possible to take any well-formed con-
struct and show that it is valid. This means that as long as the judgemental rules
are followed, the properties of the logical relation for the corresponding are satisfied.

With the well-formedness lemma together with logical relation projection, any valid
construct is also well-formed. As such we can move between well-formed, sound and
valid, meaning that any proof that can be done in one setting can be done in the
others.

Also, the consequences of fundamental theorem follow, meaning that Π injectivity
and canonicity hold (theorems 4.3.2 and 4.3.3). Single term substitution for types
also follows, meaning that it is safe to substitute any variable, given it is in the
context. It is also possible to derive the types of natural numbers, natrec recursion
and applications.

Something that is rarely brought up, but done in this thesis is the use of explicit
derivations of a logical relation defined with induction-recursion as well as the proof
irrelevance of these derivations. Usually, the proof irrelevance is assumed, and with
the formalisation we can be sure that it holds. As such, one uncertainty is eliminated.

5.2 Challenges

In this section some of the challenges of formalising the proof are presented. Different
solutions are here discussed and the final solution to certain problems are motivated.
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5.2.1 Grammar

It is very important that the grammar is formed in a good way, as issues can later
on arise. These can make the proof harder to formalise, or even make the proof
impossible to prove.

One of the questions was how natrec was to be formalised in the grammar. Initially,
it was formed as natrec (λF ) z s, a function of type ΠNF such that an n : N has to
be applied, and the binder is here instead a function. To simplify the construct and
its reduction, the λ and application are embedded in the expression.

An other possible simplification of natrecF z s n is to make s a binder similar to F .
Then ΠN (F → F [suc x0]↑) would be replaced with Γ,N, F ` s : F [sucx1]↑ instead
of ΠN (F → F [suc x0]↑). This could simplify the lemmas as it would no longer be a
function but rather depend on its context.

A consideration for the grammar was to index the terms, such that its type can tell
the scope of the variables. However this created complications when implementing
the judgements, as each term has then to match the size of the context. It would also
make it tricky to implement the well-formed context, as each term in the context
can depend on the ones before it.

A consideration was to use a base context instead of an id context such that base :
ε ⊆ ε. Then id would be equal to liftn base where n is an arbitrary number. This
would make it so that there were a unique weakening for each weakening from a fixed
context to an other. However, for this to function well, it would require that the
terms were indexed, as otherwise it would not be possible to get the correct identity
weakening for a certain pair of contexts. Thus, id was used instead as presented in
the grammar.

There are different possible representations for substitutions. The formalisation
represent them as functions, mapping variable indexes to terms, which proved to be
a simple and efficient solution. Before this a list representation was used, however
this has certain limitations. For instance, it would not be possible to weaken the
substitution list unless it contained all variables of a term, which is only possible to
know with indexed terms.

5.2.2 Logical relation

For the lemmas of validity judgements concerning Π-types and λ-abstractions and
natrec, there were a couple of challenges that appeared. This was mainly due to
the sheer size of the lemmas. All of these lemmas depended on a multitude of the
lemmas before them. This made it tricky to figure out which lemmas where needed
and if a lemma was missing.
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Lines of code Time spent
Grammar 270 3 weeksGrammar lemmas 333
Judgements 253 4 weeksJudgements lemmas 601
Logical relation 291 6 weeksLR. lemmas 1304
Validity judgements 74

11 weeksVJ. lemmas 2731
Fundamental theorem 515
Consequences 229
Total 6601 24 weeks

Table 5.1: Table of the number of lines of code and time spent on the different
parts of the formalisation.

5.3 Formalisation size and time

In this section we present the size of the formalisation and the time it took to
implement. The formalisation was mostly written by one person, with an estimation
of 30 hours per week. The times for each section are not precise since a lot of the
different parts were written in parallel. In table 5.1 the number of lines of code and
time spent on the different sections are presented.

The grammar of the language with weakening and substitution as well as their
lemmas consists of 603 lines of code, the largest part being lemmas for propositional
equality of the grammar with weakening and substitution. The grammar definition
with weakening and substitution was fully realised in 3 weeks. The biggest challenge
here which took time was substitution representation and implementation. The
propositional equalities for the grammar does not have a clear completion time as
the other parts all depends on these proofs with new additions.

For the judgements, with the definitions consisting of 253 lines and the lemmas
consisting of 601 lines of code. It took 4 weeks from the grammar definition to
fully realise the judgements and their lemmas. What took most time here was the
weakening lemma (3.2.5).

The logical relation definition has 291 lines of code and its lemmas consists of 1304
lines of code. From the judgements’ completion the logical relation and most of its
lemmas took 6 weeks to complete. What here took time was a combination of weak-
ening (4.1.6), equality view (4.1.1), proof irrelevance (4.1.4) and type conversation
(4.1.7), where the Π-cases of these lemmas are the most complex. For the size, the
number of lines are fairly evenly distributed between the lemmas, with the Π-cases
of these lemmas using the most lines.

The validity judgements definition has 74 lines of code and its lemmas consists of
2731 lines of code, the natrec lemma being the biggest part consisting of 971 lines
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of code. After the completion of the logical relation, it took 11 weeks to complete
the validity judgements and at the same time completed the fundamental theorem.
What required the most time here and the most complex where the Π validity
(4.2.12), λ validity (4.2.14) and natural recursion validity (4.2.17).

Finally, the fundamental theorem (4.3.1) consist of 515 lines of code and its conse-
quences consists of 229 lines of code. This was written highly in parallel with the
validity judgements lemmas, as the fundamental theorem depend on them, and as
such the it was completed at the same time.

All in all, the full formalisation consists of 6601 lines of code. The total time to
complete the formalisation was 24 weeks.

5.4 Future works

In this section we present possible future extensions or applications of formalisation.

5.4.1 More types

The formulation of this thesis can also be extended with further types. What follows
here are a couple suggestions, some of which are from the full MLTT definition.

One of the most prominent types is the dependent sum type Σ. This will most likely
be equally complex as the Π-type formulations, considering they both are dependent
types. Σ-types can also function as non-dependent product types1 if the dependency
is not used.

Some other types are finite types, examples being the empty, unit and boolean type
and disjunct sum types. It should be easy to extend the formalisation with these,
however note that the number of types will be increased, meaning that the logical
relation will be more complex. This also means that every lemma and theorem
dealing with type and term constructs has to be extended.

An other type that can be interesting to extend the formalisation with is the propo-
sitional equality type.

Finally, a tricky but interesting extension is declaration of arbitrary inductive types.
An idea would be to extend the context definition with inductive type definitions
and implement a primitive recursion method for each inductive type.

5.4.2 Decidability of conversion

One of the more interesting uses of the formalisation is prove the decidability of
conversion. This can be accomplished by further formalising Abel and Scherer’s

1Not to be confused with dependent product types which refer to Π-types.
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proof which this thesis is based on [4]. Originally, this thesis was planned to cover
this extension as well, however it is left as a future work due to time constraints.

5.4.3 Conversion checking in cubical type theory

An application of the formalisation once it is extended with decidability of conversion
is that it can function as a conversion checker for cubical type theory [11]. While
this application is not immediate since there needs to be changes to adapt it to that
type theory, this formalisation still provides a base for conversion checking.

5.4.4 Consistency

An oversight when writing the formalisation was to require that terms of a neutral
type, also were themselves neutral. If this is revised, it would most likely be possible
to prove consistency, by proving that U ` t : x0, or, written with named variables,
X : U ` t : X, is impossible. An other way to prove consistency would be to
introduce the empty type ⊥ and show that ε ` t : ⊥ is impossible.
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6
Conclusions

It has been shown that a proof of Π-injectivity and canonicity of a MLTT language
can be formalised in Agda. This proof should most definitely hold true, given that
there is confidence in the validity of an Agda proof. Additionally, none of the
experimental features of Agda have been used for the formalisation.

It has also been shown that Agda is capable of formalising a simplification of MLTT.
The induction-recursion method is used to construct the relations of types, terms,
and their respective equalities, as it would otherwise be rejected by its highly mutual
dependencies.

Formalisation of a proof is not easy, even with a clear method outlined. Things
that are seen insignificant or trivial in a proof on paper are often a bit more trickier,
often due to formalisation requiring almost every detail. However, while this requires
more work, the confirmation of a proof and a very strongly typed program are two
worthwhile consequences of the formal proof.
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