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Abstract 
The increase of mass loss from the Antarctic Ice Sheet is a significant 
contribution to global sea level rise. The most rapid changes are occurring in 
the Amundsen Sea area, where the thinning of the floating glaciers is 
assumed to be driven by the ocean. Relatively warm and salty deep water is 
forced upon the continental shelf and then flows southward in deep glacially 
scoured channels crossing the shelf. The warm waters contain enough heat to 
melt the glacial ice as they reach the base of the glaciers. The circulation of 
water masses on the Amundsen Sea shelf is sensitive to atmospheric forcing, 
while the regional atmospheric conditions are highly variable. A better 
understanding of this ice-ocean-atmosphere system is central to our ability to 
assess global sea level rise, which is occurring today and is projected to 
increase in the future. 

The temporal variability, heat content, pathways and vertical structure of the 
ocean currents in primarily the Dotson-Getz trough, the main western 
pathway for warm deep waters on the Amundsen Sea continental shelf, were 
investigated in this study. The major data source for these analyses was in-
situ subsurface moorings giving time series of temperature, salinity and 
current velocity. Other material includes shipborne measurements, numerical 
model output and a variety of satellite and reanalysis data. The main findings 
from this work are the following.  In the bottom layer on the eastern side of 
the trough, there is a continuous inflow of warm deep water with a 
temperature of several degrees C above the local freezing point. The currents 
transporting the heat have a strong a depth independent part. Flow variability 
is substantial on daily and sub-daily timescales and inflows are correlated 
with regional eastward winds. The warm inflows interact with the base of the 
ice shelves and a part of this flow leaves the channel on the western side as 
cooled and freshened water mass. The assessed melt rates induced by this 
clockwise circulation agree with satellite based estimates. The bathymetry 
databases for this region contain large errors, which has implications for 
model studies and transport calculations.    

Keywords: Antarctica, Amundsen Sea, West Antarctic Ice Sheet, 
Circumpolar Deep Water, shelf circulation, ocean model, icebergs, remote 
sensing 
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Part I 

Summary 

Knowledge speaks, but wisdom listens. 

- Jimi Hendrix
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1 Introduction 
Antarctica is a land of extremes. This mythical “Terra Australis” (Southern 

Land) with its vast glaciers, ferocious seas dotted with icebergs and strange 
species found nowhere else, was the last region of earth to be discovered by 
humans. The first sighting of the mainland has been attributed to a Russian 
expedition in 1820, led by Fabian Gottlieb von Bellingshausen (Day, 2013), 
who now lends his name to one of the Antarctic marginal seas. It is the 
southernmost continent, to 98% covered by ice with an average thickness of 
1.9 km (Fretwell et al., 2013), extending over all areas except the 
northernmost tip of the Antarctic Peninsula. Antarctica is on average the 
windiest, coldest and driest continent (Schwerdtfeger, 1984) with the highest 
mean elevation (Hastings et al., 1999). The continent covers about 10% of the 
land surface  and holds 90% of the ice and 70% of the fresh water of the earth 
(Kennicutt et al., 2014). Antarctica is surrounded by the fourth largest ocean 
of the planet, the Southern Ocean, which is the central connection for the 
world ocean basins via the earth´s largest ocean current, the clockwise 
circulating Antarctic Circumpolar Current (ACC, Rintoul et al., 2001). The 
upwelling in the Southern Ocean is together with the North Atlantic down-
welling the most important part of the global overturning circulation, which 
connects the deep and shallow layers of the ocean (Marshall & Speer, 2012). 
This makes the Southern Ocean disproportionately important to the climate 
and biogeochemistry of the earth relative to its size (Schofield et al., 2016). 

The remoteness of this region, together with the extreme conditions of heavy 
sea ice, cold temperatures and high winds has always limited the number of 
scientific observations. But Antarctica and its surrounding ocean and 
atmosphere are today known to be experiencing fast changes. Regional 
disturbances such as loss of ice, changes in ocean circulation and atmospheric 
composition have global implications for sea level, climate, biodiversity and 
society. The oceans have absorbed an estimated 90% of the 
anthropogenically induced climate warming and thereby slowing the 
response to greenhouse gas forcing (Trenberth & Fasullo, 2013). The 
Southern Ocean has been responsible for more than 50% of this heat uptake 
during the last 50 years (Levitus et al., 2012), with the warming concentrated 
to the ACC (Gille, 2008; Gille et al., 2016). Half of the annual uptake of 
anthropogenic carbon from the atmosphere is taking place in the Southern 
Ocean (Le Quéré  et al., 2007; Sallée et al., 2012). This rate of atmospheric 
drawdown of carbon has been hypothesized to have weakened (Sallée et al., 
2012; Meredith et al., 2012). Changes have already been registered in various 
ecosystems (Smetacek and Nicol, 2005; Schofield et al., 2010). The ongoing 
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ocean acidification is predicted to continue quickly in the Southern Ocean, 
with substantial implications for its ecosystems (McNeil and Matear, 2008; 
Kawaguchi et al., 2013). 

One key part of the Southern Ocean to understand these rapid changes is the 
Amundsen Sea, which up until the focused interest of the last decade has 
been the least sampled region. This is both due to the extreme conditions and 
the fact that no land based research station exists there and thus it has only 
been infrequently visited by research ships. This is the region where a large 
part of the West Antarctic Ice Sheet (WAIS) is drained into the ocean via its 
marine terminating outlet glaciers. The gravity driven discharge of ice from 
the continental ice sheet is now greater the mass added by precipitation over 
the interior, which results in a global sea level rise. Observations show that 
the Thwaites glacier is now losing mass at a rate of about 83 Gigatonnes yr-1 
and may be in the first stages of a collapse  with a potential to contribute to 1 
mm yr-1 of sea level rise (Joughin et al., 2014; Scambos et al., 2017). The 
Getz ice shelf (Figure 1) is currently responsible for the largest part of the 
overall loss of ice from the Antarctic ice shelves, with a yearly average loss 
of approximately 54 Gt (Paolo et al., 2015). The rapid changes have 
significant implications for global sea level rise, a fact further emphasized by 
the possibility that the retreat of several of the glaciers may be irreversible 
(Rignot et al., 2014). 
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Figure 1. Getz ice shelf, Jan 2014. 

The melting of the West Antarctic glaciers is believed to be due to an 
increased heat supply from warm deep waters (Jenkins et al., 2010; Jacobs et 
al., 2011; Schmidtko et al., 2014). The warm and salty deep waters, 
originating from the ACC, access the floating parts of the ice sheets via deep 
troughs on the continental shelf and melt them from below. The first 
observations of ocean conditions on the continental shelf were presented by 
Jacobs et al. (1996) who found a presence of warm Circumpolar Deep Water 
(CDW) in Pine Island Bay. Today there exists a both spatially and temporally 
irregular collection of ocean measurements over 20 years helping to provide 
understanding of the system changes. The major aim of this thesis work is to 
add to the growing body of knowledge about the ocean forcing of the 
glaciological changes. Several important questions regarding the ocean 
circulation are not sufficiently resolved. How are the currents and their heat 
content changing over time? What paths do they take on the continental 
shelf? How much heat available for melting do they bring to the ice shelves? 
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This thesis is based on five papers that I have co-authored and then published 
or submitted to peer-reviewed scientific journals. The research work is 
summarized in the five chapters of the first part, where I have aimed to write 
the text in a simple way, such that a person with a general scientific interest 
can understand the basic significance of the results. The chapters are outlined 
as follows. A general description of the Amundsen Sea research area is given 
in chapter 2. The methods and material, including in-situ measurements, 
numerical modelling and satellite data, are explained in chapter 3. The most 
important results from the five papers are summarized in chapter 4. Finally, 
chapter 5 summarizes the main conclusions and a gives brief future 
perspective. The second part of the thesis shows the five research papers, 
which hold the complete details regarding my research. 
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2 Area description 

2.1 Atmospheric conditions 
The Amundsen Sea continental shelf area is characterized by fierce winds, 
heavy ice conditions and low temperatures, with above zero conditions 
occurring only sporadically during the austral summer. The atmospheric 
circulation is more variable than any other area on earth (Connolley, 1997), 
largely due to the movement and strength of the Amundsen Sea Low (ASL, 
Hosking et al., 2016), a climatological low pressure system approximately 
located between 60-180°W E and 60-80° S. The average longitudinal 
position of the ASL migrates from 110 to 150°W between austral summer 
and winter, influencing temperature, precipitation and winds. Variability in 
intensity and location of the ASL induce changes in ocean circulation as well 
as warm marine air intrusions (Nicolas & Bromwich, 2011). The ASL is 
strongly influenced by both tropical temperature changes connected to the El 
Niño-Southern Oscillation (ENSO, Ding et al., 2011) as well as the phase of 
the Southern Annular Mode (Marshall, 2003), an oscillation of air masses 
between high and mid latitudes which modulates the westerly winds. 

Figure 2. Antipodean Albatross in a westerly gale, Amundsen Sea, Jan 2014. 
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Time averaged (2006-2012) gridded fields of surface wind (Bumbaco et al., 
2014), sea ice drift (Fowler et al., 2013) and sea ice concentration (Cavalieri 
et al., 1996) are shown in Figure 3. The surface winds are most intense over 
land, where catabatic winds are persistent, northwestward in the south and 
southwestward in the east. On the eastern side of the shelf area, winds are 
generally towards west, with decreasing intensity in the north closer to the 
shelf break. The western area of the shelf has winds of slightly larger 
magnitude, directed more towards northwest. North of the shelf break winds 
are generally very calm, this being the transition zone south of the large west 
wind belt beginning at 65°S.  

The sea ice drift on the eastern part of the shelf tends to be directed towards 
north-northwest, to the right of the prevailing winds, with drift speeds 
increasing in the north at the shelf break. On the western shelf area, the drift 
direction is west to northwesterly and similar to the wind, with generally 
larger drift speeds than in the east. The time averaged sea ice concentration is 
consistently high over the whole shelf, except over the seasonal polynyas. 
The Amundsen polynya (Stammerjohn et al., 2015), north of Dotson ice 
shelf, and the area west of Pine Island glacier containing several smaller 
polynyas (Mankoff et al., 2012), have average concentrations between 0.3 
and 0.4. The polynyas are biologically highly productive areas, also 
important for the distribution of sea ice (Randall-Goodwin et al., 2015).  
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Figure 3. Amundsen Sea continental shelf. Time averaged (2006-2012) 
fields of a) surface winds (brown) and sea ice drift (red), b) Sea-ice 
concentration (fraction according to scale bar). 

2.2 Continental shelf and glaciers 
The Amundsen Sea continental shelf (Figure 4) is cross cut by two major 
deep channels, carved by paleo-ice streams from past glacial epochs. These 
are the Dotson-Getz trough in the west and the Pine Island trough in the east. 
In the middle of the shelf, Pine Island trough bifurcates into a western and an 
eastern branch. The troughs reach the shelf break in the north, where depths 
drop rapidly from 500-600 m down to 2500 m. In the southern parts of the 
troughs, near the termination of the floating glaciers, there are basins with 
depths exceeding 1000 m. During the Last Glacial Maximum (Clark et al., 
2009) about 23000-19000 years B.P., the WAIS reached further north onto 
the shelf, and may have extended all the way to the shelf break (Larter et al., 
2014). The onset of the deglaciation has been dated to 14500 y B.P. (Larter et 
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al., 2014). The drivers for this glacial retreat are poorly constrained, but may 
include seafloor topography, global sea level rise and upwelling of warm 
water (Turner et al., 2017). 

Figure 4. Map of Amundsen Sea continental shelf. Shown are major ice 
shelves and troughs. The bathymetry is from (Arndt et al., 2013). 

The outlet glaciers in the Amundsen Sea embayment have undergone rapid 
changes in recent decades. All glaciers in the area are fed by inland 
accumulation areas and the gravitationally forced flow of ice exits at the 
marine terminating floating ice shelves, which are grounded below sea level 
(Fretwell et al., 2013). The previously assumed approximate glaciological 
balance of the glaciers was questioned with the advent of surface elevation 
satellite measurements over the interior areas, beginning in the early 1990s 
(Jenkins et al., 2016). The glaciers have accelerated, thinned (Figure 5), 
retreated and been subject to basal melting by warm currents and currently 
contribute to approximately 10% of global sea level rise, with a future 
potential of 4.3 m for the whole WAIS (Turner et al, 2017; Fretwell et al., 
2013). It has been found that the Thwaites glacier is undergoing the most 
rapid changes of any ice-ocean system in Antarctica (Paolo et al., 2015), now 
contributing to approximately 0.1 mm of sea level rise per year, twice as 
much compared with its mid-1990 rates (Scambos et al., 2017). The recent 
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growing research interest and urgency behind implications of future melting 
has provided thorough documentation of the changes, as summarized by 
Rignot et al. (2014) and Mouginot et al. (2014). In most locations around the 
continent, the accelerating melt rates are attributed to increased oceanic heat 
supply (Jenkins et al., 2010; Jacobs et al., 2011; Pritchard et al., 2012). 
Relatively warm Circumpolar Deep Water (CDW) access the underside of 
the floating ice shelves and melt them from below. This is in contrast to some 
other areas, such as the Larsen Ice Shelf, where warmer surface winds are 
thought to cause ice shelf disintegration (Doake et al., 1998). 

2.3 Oceanographic conditions 
Figure 5 shows an estimate of bottom water temperatures around the 
Antarctic continent (Orsi & Whitworth, 2005). Most parts of the continental 
shelves of East Antarctica and the eastern side of the Antarctic Peninsula are 
dominated by lower temperature waters, while in the Amundsen and 
Bellingshausen Seas and the western Antarctic Peninsula warmer waters are 
present. The waters on the continental shelves occupy a relatively narrow 
thermohaline range. Following Whitworth et al. (1998), they can be classified 
as follows: The upper layer consists of cold and fresh Antarctic Surface 
Water (AASW), which contains a cold core often termed Winter Water. 
Beneath the AASW is warm and salty Circumpolar Deep Water (CDW) 
and/or cold and salty Shelf Water (SW).  
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Figure 5. Rate of change of Antarctic ice-shelf thickness, 2003–2008 
(according to left scale bar) and estimated average sea-floor potential 
temperatures (according to right scale bar) from the World Ocean 
Circulation Experiment Southern Ocean Atlas (Orsi & Whitworth, 2005). 
Image modified from figure 2 in Pritchard et al. (2012). 

The basal melting of the ice shelves is characterized by three modes (Jacobs 
et al., 1992; Jenkins et al., 2016). In Mode 1 melting, SW formed by brine 
rejection from sea ice formation enters below the ice shelves. The 
temperature of the SW is close to the in-situ freezing point, but still contains 
enough heat to melt the base of the ice shelves. This mode typically governs 
the slow melting on the largest ice shelves (Ross, Filchner-Ronne and 
Amery). Due to a large scale clockwise wind stress, the isotherms are 
depressed and the CDW layer is sloping downwards and cannot intrude on 
the shelf. In Mode 2 (Figure 6) CDW originating from the ACC enters the 
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base of the ice shelves after some modification. The low pressure systems 
giving clockwise wind patterns over the Amundsen and Bellingshausen Seas 
are centered over the continental shelf and the resulting weaker westward or 
even eastward winds cause an upward shoaling of the CDW layer which 
enhances deep water intrusions. Since the CDW can be up to 4°C warmer 
than the in-situ freezing point, the melting is fast and no SW can form. The 
mode 2 melting is highly sensitive to atmospheric variability due the 
associated vertical displacement of the pycnocline that separates the AASW 
and CDW waters (Heywood et al., 2016). 

Figure 6. Mode 2 basal melt of an ice shelf and the associated circulation 
and stratification (Jacobs et al., 1992). Circumpolar Deep Water is the 
densest water on the shelf and no Shelf Water is present. Since CDW 
temperatures normally are around 3°C above the in situ freezing point, 
melting is rapid and no Shelf Water forms. Image modified from figure 3 in 
Jenkins et al. (2016). 

In Mode 3 melting, which occurs mainly at some smaller ice shelves in East 
Antarctica, AASW with temperature near the freezing point enters the ice 
shelf cavities. Melt rates are controlled by the cold core of the AASW and are 
similar to those of Mode 1, but an increased heat supply can be delivered by 
wind forced down-welling of the warmed upper layer AASW in summer 
(Hattermann et al., 2012). This thickening of the surface layer also acts to 
exclude the denser water masses below. These three regimes are governed by 
regional meteorological conditions, both via wind and snowfall and their 
influence on sea ice together with ocean dynamics and the proximity of the 
ACC. 
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The processes that control the warm inflows at the shelf break are not fully 
understood and their temporal variabilities need additional investigations 
(Heywood et al., 2016). Important mechanisms are thought to be wind 
forcing (Thoma et al., 2008; Wåhlin et al., 2013), bottom Ekman layer 
transport (Wåhlin et al., 2012) and a topographically steered eastward 
undercurrent (Walker et al., 2013; Assmann et al., 2013). High-resolution 
modeling studies have pointed to other alternatives, such as air-sea 
interactions in the polynyas (St-Laurent et al., 2015)  as well as the location 
of the polynyas (Nakayama et al., 2014). The accelerated melting is 
determined by complex ocean-ice and atmosphere interactions, rather than a 
direct warming of the ocean. However, there are some indications that the 
waters of the ACC are getting warmer (Gille, 2008). A warming and shoaling 
of the CDW at the West Antarctic Peninsula and in the Amundsen and 
Bellingshausen Seas has been observed (Schmidtko et al., 2014), but in 
similarity with several others parts of the Southern Ocean, measurements 
remain sparse and are normally insufficient to confidently determine trends in 
longer term variabilities. The Amundsen Sea area is very sensitive to wind 
forced variabilities, partly due to the tropical Pacific teleconnections, thus 
decadal scale variability associated with ENSO and other climate oscillations 
may dominate other processes influencing oceanic changes on the shelf 
(Jenkins et al., 2016).   

2.4 Icebergs 
Icebergs are formed by calving at the fronts of marine terminating glaciers or 
by calving off other icebergs. They can have substantial impact on primary 
production (Smith et al., 2007; Biddle et al., 2015), local ocean circulation 
(Stern, 2015) and sea ice formation. During the drift of an iceberg, large 
quantities of freshwater are released into the upper ocean layer, an important 
component in the process of sea ice formation (Björk et al., 2002; Bintanja et 
al., 2015). This is evident in many parts of the Southern Ocean where melting 
icebergs are frequently surrounded by sea ice. 
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Figure 7. A tabular iceberg in the Amundsen Sea, Jan 2014. 

A map showing the probability of icebergs in the Amundsen Sea is given in 
Figure 8, using an iceberg database produced from radar satellite images by 
Mazur et al. (2017). The map shows the probability of finding an iceberg 
inside a grid cell (7.5 × 7.5 km). There are high probabilities of finding 
icebergs on top of shallow ridges and banks where they become stranded. 
Probabilities also coincide with depth contours in areas close to the iceberg 
sources at the ice shelf fronts. Locations of high likelihood are generally on 
the eastern side of ridges, indicating a westward drift of the icebergs over the 
shelf area. A large cluster of icebergs are stranded on the ridge separating the 
Dotson-Getz and Pine Island troughs. This acts as a barrier to the westward 
sea ice drift and strongly influences conditions in the Amundsen Sea polynya.  



Ola Kalén: Ocean Circulation in the Amundsen Sea, West Antarctica 

14 

Figure 8. Probability of occurrence of icebergs in the Amundsen Sea in 2011 
(Mazur et al., 2017). Thin lines indicate bathymetry according to the IBCSO 
database (Arndt et al., 2013) and colors indicate iceberg probability by the 
ratio of the number of days that an iceberg is found to the number of days 
that have satellite image coverage. 

The annual mass loss from the glaciers terminating in the Amundsen Sea due 
to basal melt and calving during the recent decade has been approximated to 
480 and 190 Gt year-1 respectively (Depoorter et al., 2013; Rignot et al., 
2013). Thus it is probable that icebergs account for over a third of the ice 
budget. Despite indications that the Amundsen Sea is the most productive 
area in terms of iceberg mass (Liu et al., 2015), the knowledge about icebergs 
in this region is limited (Wesche & Dierking, 2015). There is a need for 
increased understanding of the ice-ocean interactions, including improved 
calving rate estimates, but also the fate of the icebergs after calving and their 
subsequent interactions with the ocean and atmosphere. 
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3 Methods 

3.1 In-situ ocean measurements 
Data from on-site hydrographic sampling are essential for understanding 
marine processes and form the basis of the research in this thesis. Two 
general methods were used, the stationary, bottom mounted mooring system 
(Figure 9) and the shipborne station work, where instruments are lowered 
from a ship (Figure 11), in our case an icebreaking research vessel. In both 
methods CTD (conductivity, temperature and depth) as well as current 
velocity sensors were used. The moorings provide the data continuous in time 
necessary for studying temporal variability while station data gives a spatial 
overview, although only during a snapshot in time.  

Figure 9 a) A mooring deployment operation on RVIB Araon in the 
Amundsen Sea, Jan 2014. b) Sketch of a mooring setup (S1). 
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The time series data used in this study are from six bottom mounted 
hydrographic moorings (Table 1, Figure 10), which were deployed and 
retrieved during austral summer cruises with the icebreakers RVIB Oden, 
RVIB Araon and RVIB Nathaniel B. Palmer. All moorings were equipped 
with arrays of CTDs (Seabird microCAT SBE37) to measure temperature and 
conductivity (from which salinity is derived). The accuracies are on the order 
of 10-3 K and 10-3 PSU (Practical Salinity Unit, Lewis & Perkin, 1981) 
respectively. For velocity measurements, the moorings S1 and S2 were both 
equipped with a 150 kHz Quarter Master Acoustic Current Doppler Profiler 
(ADCP, RD instruments). This upward looking instrument transmits a fixed 
frequency pulse and uses the Doppler shift of the echo returning from sound 
scatterers, mostly zooplankton with size of around 1 mm, assumed to move 
with the same velocity as the currents. In the clear waters on the Amundsen 
Sea shelf, the depth range will normally be 200-250 meters with a velocity 
resolution on the order of 10-1 cm s-1 for a 150 kHz ADCP.  

Figure 10. Map of Amundsen Sea continental shelf. Shown are mooring 
positions (colored circles), major ice shelves, two cross-trough sections 
(brown 2010, white 2008), geometry of channel rotated velocities (orange 
arrows) and iceberg B22 (approximate outline and position in Jan 2012). 
The bathymetry is from the IBCSO database (Arndt et al., 2013). 
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Table 1. Coordinates, depths and instrumentation type for bottom mounted 
moorings. 

Mooring Long W Lat S Bot. Dep. (m) Sensor types Used in Paper 

S1 116.349 72.455 557 ADCP/CTD I-V

S2 117.249 73.017 546 ADCP/CTD II-V

K1 117.710 72.387 253 Current meter/CTD II, V 

K2 114.950 73.281 275 Current meter/CTD II,V 

BSR12 113.042 71.576 611 Current meter/CTD V 

BSR14 118.463 71.959 602 Current meter/CTD V 

The moorings K1and K2 were fitted with several RCM-11 current meters 
(Aanderaa). This is also an acoustic Doppler instrument, but one which 
transmits horizontal beams and thus measures currents at one discrete depth 
with velocity resolution of 10-1 cm s-1. BSR12 and BSR14 were equipped 
with AEM-USB current meters (Alec Electronics), which are electromagnetic 
velocity meters. Velocity, at the depth of the instrument only, is deduced 
from the potential differences between the electrodes as the water flows 
through the magnetic field generated by the instrument, with a resolution of 
10-2 cm s-1. 

Tides can be significant in coastal regions and it is often necessary to separate 
the tidal and non-tidal signal when analyzing ocean time series. Tides play an 
important role also in the Antarctic coastal Seas, with the strongest tides 
found in the Weddell Sea where they can generate mean currents of up to 5 
cm s-1 and have a large impact on ice shelf melting (Mueller et al., 2012). 
Tides are weaker in the Amundsen Sea, but may still have a significant 
impact for circulation and melting under the ice shelves (Robertson, 2013). 
For the mooring time series, de-tiding can be carried out with harmonic 
analysis, where the tidal signal is modeled as a sum of individual oscillations 
at frequencies connected to astronomical parameters. The Matlab t_tide 
package (Pawlowicz et al., 2002) was used to de-tide all time series.  
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For the shipborne stations, a rosette, including water samplers, a CTD (Sebird 
911+) and a downward looking lowered ADCP (LADCP) was used (Figure 
11). The LADCP data were then processed to correct for instrument and ship 
motions and to transform the relative current profiles to a fixed reference, 
here the inversion method developed by Visbeck (2001) was used. For tidal 
prediction at such stations lacking the temporal resolution, a model is needed. 
For this purpose, the The Circum-Antarctic Tidal Simulation (CATS, 
Padman et al., 2002) was utilized, which is an inverse model constrained by 
data assimilation widely used in the Southern Ocean. 

Figure 11. A rosette, including CTD and LADCP, lowered from RVIB Araon 
in the Amundsen Sea, Jan 2014. Getz ice shelf in the background.  

The quality control threshold in the processing of the ADCP data was error 
velocity below 15 cm s-1 and correlation magnitude values greater than 110 
for at least three of the four beams. In paper V, it was of interest to get the 
uppermost velocities from the ADCP since connections between icebergs and 
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currents were investigated. From the data which passed the quality control, 
the 10 shallowest bins (each 8 meter deep) at each time were chosen. At 
mooring S1, the uppermost measurements varied between 201 and 481 m 
with standard deviation 33 m. Currents were then averaged over the 10 top 
bins with the resulting average depth of 314 m for the whole measurement 
period. The same procedure was applied to the S2 data, with top 
measurement depth varying between 213 and 437 m (st. dev. 40 m) and the 
average 10 bin depth of 314 m. 

3.2 Circulation model 
In-situ measurements in the polar oceans remain difficult and expensive, 
using icebreakers in remote areas with heavy sea ice. During the past several 
decades, numerical models have been an increasingly important tool to study 
how oceans are interacting with the ice shelves, contributing both to process 
understanding and increase in data coverage. Necessary physical processes to 
resolve in simulations are melting at the ice-ocean interface, circulation in the 
ice shelf cavities and the oceanic heat transport from the open ocean 
(Dinniman et al., 2016). Despite great progress both in system knowledge 
and computational power, it is currently not possible to fully simulate the 
complex interactions between the surface atmospheric flow, the oceanic 
conditions and the ice shelf dynamics in the models. This is in part due to 
lack of resolution of topographic and bathymetric features and limited 
knowledge of sub-ice shelf conditions (Turner et al., 2017) and a shortage of 
observations against which to compare and test the models and use as 
boundary conditions. 

The model data used in paper IV and V were from a regional setup of 
MITgcm (Marshall et al., 1997), which is an open-source 3D, z-coordinate 
ocean circulation model. It was previously applied to investigate deep water 
intrusions on the shelf by Assmann et al. (2013), whose study the reader is 
referred to for further information. 

The model setup includes a sea ice model (Losch et al., 2010) and a sub-ice 
shelf-ocean interaction model (Losch, 2008) applied on the domain 80°-
140°W and 62-76°S. The resolution is 0.1° longitude and 0.1° x cos (φ) 

latitude, which corresponds to an average of 3.3 km over the shelf. The initial 
conditions came from World Ocean Atlas (WOA) 2009 salinity (Antonov et 
al., 2010) and potential temperature (Locarnini et al., 2010). The model was 
forced with atmospheric data from the National Centers for Environmental 
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Prediction Climate Forecast System Reanalysis (NCEP CSFR) as described 
by Saha et al. (2010). The bathymetry and ice shelf topography is from the 
RTOPO1.0.5 dataset (Timmermann et al., 2010). The model has 50 vertical 
layers, of which 20 are located in the upper 1000 m. Monthly averages from 
WOA09 were used to prescribe salinity and potential temperature at the open 
boundaries. The boundary conditions for the velocities were assigned from a 
circumpolar setup of MITgcm with 0.25° resolution that was run with 
identical atmospheric forcing (Holland et al., 2014). The model was spun-up 
for 10 years with atmospheric forcing from NCEP CFSR 1980 and then run 
from 1979 to 2011. The model does not include tides, however typical 
observed maximum tidal velocities range from 1 to 4 cm s-1, less than typical 
average velocities at many locations (Wåhlin et al., 2012).  

3.3 Iceberg detection 
Studies of icebergs in the Southern Ocean have been carried out using a 
variety of methods, including ship based observations, (Jacka & Giles, 2007; 
Romanov et al., 2011),  in-situ sensors on icebergs (Scambos et al., 2008), 
drift models (Gladstone et al., 2001) and satellite based systems, such as 
radar altimetry (Tournadre et al., 2008; Tournadre et al., 2016), microwave 
scatterometry (Stuart & Long, 2011), visual and near-infrared (VIR) sensors 
(Bindschadler, 2002) and synthetic aperture radar (SAR, Young et al., 1998; 
Wesche & Dierking, 2015, Mazur et al., 2017). Generally, the low resolution 
of the scatterometers makes this sensor type suitable for very large icebergs 
only and radar altimetry does not give reliable results in areas with high sea 
ice concentration. The dependency of cloud cover and light conditions of the 
VIR sensors is problematic in polar regions. Despite the computational 
demands and elaborate image processing, the ability of SAR systems to 
continuously acquire high resolution images in all atmospheric conditions 
make them suitable for remote sensing of high latitude areas with heavy sea 
ice cover. 

In contrast to the passive altimeters and scatterometers, SAR is an active 
system, which carries its own source of radiation to illuminate the target 
(Rees, 2013). The sensor sends out a microwave pulse and measures the 
backscattered energy (Figure 12), which is dependent on the beam angle, 
radar beam penetration and roughness of the illuminated area. The distance 
traveled by the sensor over the target in the time taken for the pulses to return 
to the antenna generates the synthetic antenna aperture. The image resolution 
is proportional to the length of the aperture. The actual physical antenna is 
usually around 10 meters long. 
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Figure 12. A radar antenna transmitting signals and receiving 
backscattered echoes. Credit: ESA. 

Envisat (Figure 13) is a satellite that was operated by the European Space 
Agency (ESA). It was launched on the 1st of March 2002 into a sun 
synchronous orbit circling the Earth in 101 minutes at an altitude of 790 km, 
with a repeat cycle of 35 days. The contact was lost with the satellite on 8th 
of April 2012, possibly due to power failure or short circuit (ESA declares 
end of mission for Envisat, 2012). It carried 10 Earth observation instruments 
including an ASAR sensor operated at C-band (5.3 GHz) and incidence angle 
17°-43° (Envisat ASAR (Advanced SAR) Product Handbook, 2007).  

Figure 13. a) An artist´s impression of Envisat b) Envisat in the European 
Space Research and Technology Centre in Noordwijk, the Netherlands. 
Credit: ESA. 
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The iceberg information used in paper V was based on ASAR data from 
Envisat. Icebergs were detected using an object-based algorithm developed 
by  Mazur et al. (2017), applied on 2505 Wide Swath Mode Level 1 images 
recorded between Jan 2006 and Apr 2012. The images are first geo-located 
and radiometrically calibrated to the backscattering coefficient according to 
Rosich and Meadows (2004). Next the images are filtered using a Frost filer 
3×3 to additionally remove speckle (Frost et al., 1982). In the following step, 
icebergs are identified using an object-oriented image interpretation with 
segmentation and classification carried out on different scale levels. 
Distinction of icebergs is then based on homogeneity, brightness, contrast 
and shape qualities with thresholds given on each scale. The icebergs which 
are distinguishable on different images are then manually tracked.  

In the domain 70-75.5°S, 100-126°W (Figure 10), 56 non-stationary icebergs 
were identified, with areas ranging from 3 to 261 km2 (average 20 km2). The 
time step between iceberg observations, dependent on the average revisit 
frequency of the satellite, decreased from 9 days in 2006 to 2 days in 2012. 
Spatially, the best satellite coverage were in the southern and eastern areas 
close to the ice shelves, with around 40% coverage in the first years 
increasing to 50% the last two years (Aleksandra Mazur, pers. comm., 2016). 
The outer shelf area was less densely covered in the first two years, 
approximately 15 %, but increased to 50% in the last two years. The effect of 
low coverage resulted in longer time steps between observations and thus 
difficulties in tracking icebergs for their full path. 
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4 Contributions to understanding of the 
Amundsen Sea circulation 

4.1 Continuous inflow of warm deep water 
(paper I) 

The Amundsen Sea Embayment had started to attract research attention due 
to melting of the ice shelves, observed particularly at Pine Island Glacier. 
Warm deep water had been identified near Pine Island glacier by Jacobs et al. 
(1996) and in the entrance of the western Pine Island trough by Walker et al. 
(2007), but knowledge of temporal variations was still limited. In paper I, the 
structure and variability of the inflow of CDW in the Dotson-Getz trough, 
earlier observed by Wåhlin et al. (2010) using shipborne measurements, was 
investigated. Statistical methods were applied to the two year time series data 
from mooring S1. This was one of the earliest reports presenting in-situ 
ocean time series data from a “warm” Antarctic shelf, following the study by 
Arneborg et al. (2012)  
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Figure 14. a) Daily average of the along-trough velocity (positive values 
indicating southward flow) as a function of time and depth b) Percent of 
total variance that is explained by the first five EOF modes for the two 
years c) Shape of the first (red) and second (blue) EOF modes as a function 
of depth for 2010 (dashed), 2011 (dotted) and for the whole measurement 
period (solid) d) The first EOF mode for the whole measurement period e) 
Along-trough residue current, i.e. velocity minus the first EOF mode, with 
positive values indicating southward flow. Black line is the 0 oC isotherm. 

Warm deep water was found to be present in the bottom layer of the trough at 
all times. The black line in Figure 14e shows the 0°C isotherm, below which 
the temperature is above zero. The thickness of the warm water layer as well 
as maximum temperatures occurred during autumn (March-April-May). 
Thinner bottom layers containing cooler and fresher deep waters were found 
in spring (September-October-November) coinciding with maximum extent 
of the upper winter mixed layer. 

The de-tided daily averaged velocity time series showed the dominance of 
energetic fluctuations on daily timescales with little vertical variability. The 
inflow component of the current, rotated to align with the channel isobaths, is 
shown in Figure 14a, has a vertical average of 2.4 cm s-1 for the whole time 
series. The cross-trough component is smaller, vertical average of -0.5 cm s-1 

(towards SW), with less vertical variability. To investigate the structure of the 
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currents, we used empirical orthogonal functions (EOF) analysis, a method 
which finds patterns of variability, their temporal variation and rates the 
significance of each pattern (Björnsson & Venegas, 1997). The first EOF 
mode explains about 90% of the variance, 7% was contained in the second 
mode EOF (Figure 13b), leaving an insignificant contribution higher modes. 
The vertical structure of the mode shapes are given in Figure14c, where 
EOF1 shows a nearly depth independent pattern, while EOF2 changes 
direction with depth. Keeping in mind that EOF analysis is a statistical 
procedure without physical connection, the flow in the lower half of the water 
column was interpreted to consist of a dominant energetic barotropic 
component and a smaller bottom-intensified part, shown in the time series of 
Figures 14d and e. 

The connection between the mooring data and the wind was examined using 
daily and monthly averages of ERA-Interim (Dee et al., 2011) winds. 
Significant correlations of 0.4 were found between the eastward pseudo-
stress (the product of the wind speed and the wind vector) and both the along 
trough EOF1 and the heat transport induced by the EOF1.  This result is in 
agreement with circulation theory where eastward winds drive an Ekman 
transport away from the coast which is the compensated by an on shelf 
southward flow in the bottom layer. No significant correlations were found 
on monthly scales; however this result is also influenced by the limited length 
of the dataset. A widely cited modeling study by Thoma et al. (2008) had 
found a warm layer maximum in spring (September-October-November) as 
well as a correlation between the warm-layer thickness and eastward winds. 
Results from paper I did not support these results. However, it should be 
noted that the study by Thoma et al. (2008) was more focused on Pine Island 
Bay and used another reanalysis product for the winds (US National Centers 
for Environmental Prediction, NCEP, Kalnay et al., 1996). The general 
finding that eastward winds may force CDW intrusions on the shelf hold for 
both studies, but paper I pointed towards the importance of the velocity rather 
than the temperature of the inflows. 

4.2 Clockwise channel circulation (paper II) 
The pathways of the circulation of warm deep water in the Dotson-Getz 
trough were inferred from four moorings deployed during 2011. Results 
based mostly on recordings from the lower part of the water column at the 
moorings S1 and S2 (in paper II denoted as M1 and M2) showed that there 
was a southeastward inflow in approximate geostrophic balance on the 
eastern side, as reported earlier by Arneborg et al. (2012) and in paper I. In 



Ola Kalén: Ocean Circulation in the Amundsen Sea, West Antarctica 

26 

paper II it was shown that there is also an outflow on the western side. The 
clockwise circulation and ice shelf melting by the deep currents were 
deduced from the observed northwestward flow of colder water on the 
western side of the channel at mooring S2. 

Assessments of the amount of heat the currents can bring to the ice shelves 
were made. The total heat flux QH (W) through a cross-channel transect is 
given by 

        (1) 

where x is the horizontal coordinate (m) from grid point x1 to xN, -D is the 
bottom depth (m), -d is the level (m) up to which the integration is performed 
(the surface or the reach of the ADCP), ρ (kg m-3) is the in-situ density, Cp (J
K-1 kg-1) is the specific heat capacity, dependent on the local temperature, 
salinity and pressure, U (m s-1) is the along-trough velocity, T (K) is the 
temperature and TR (K) is a reference temperature to which the water 
eventually cools. Since the moorings measure at one point in space only, the 
horizontal coordinate was approximated with an effective inflow width, a 
ratio between the geostrophic heat flux and the heat flux per unit width. At 
the inflow side, the length 80 km was used, based on data from the cross-
trough transects in 2008 (Wåhlin et al., 2010) and 2010 (Paper II). The 
corresponding value used for the western side was 40 km. 

The current directions were visualized using progressive vector diagrams, 
constructed by time-integration of the mooring velocities and giving pseudo 
vectors of downstream displacement. Results are shown in Figure 15a, where 
the red lines from the lower ADCP bins at S1 (panel M1) reveal that warm 
water flows toward southeast following the channel bathymetry. The 
outflowing waters at S2 (panel M2), also steered by local bathymetry in the 
bottom layers, are colder. Time average properties were temperature 0.8°C 
and salinity 34.5 on the inflow side and -0.4°C and 34.2 for the outflow. The 
seemingly cold water on the western side is still warm, salty and dense 
compared with the overlying surface layer. 
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Figure 15. a) Progressive vector diagrams of velocities at the four moorings, 
color coded by temperature. Data from M1and M2: the lines correspond to 
ADCP bins (every 8m) and interpolated temperature. Data from M3: the two 
lines correspond to the velocity and temperature at 409- and 253-m depth. 
Data from M4: the two lines correspond to the velocity and temperature at 
431- and 276-m depth. Start time is 1000 UTC 1 Jan 2011. The ‘‘along-
trough direction’’ at M1 andM2 is indicated by black dashed lines. Each 
gray rectangle encompasses the data from the designated mooring. The inset 
shows vectors of time-averaged currents (color coded by temperature) near 
the bottom at M1 and M2.(bottom) The 2-day low-pass-filtered mooring data 
as a function of time and depth for M1 and M2. b) Temperature and c) along-
trough velocity at M1; d) temperature and e) along-trough velocity at M2. 
Along-trough velocities are calculated by the direction given in (a), and 
negative velocities indicate northwestward flow. 
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Using the vertically integrated velocity time series and the effective transect 
widths, volume flows of deep water were estimated. Average inflow was 0.34 
Sv (=106 m3 s-1) while the outflow was 0.12 Sv, thus only a third of the 
inflow exits as a cooled and freshened water mass at S2. The possible 
alternative routes for this water mass were hypothesized to be in the surface 
layers, in channels below the Getz ice shelf or in the western deep troughs, 
but further measurements are needed to solve this question. Using an 
assumption of long term conservation of volume and salt in the trough, 
computations of freshwater flux and corresponding latent heat to ice shelf 
melt were made. Of the different assessments, an intermediate weighted 
average freshwater flux taking the bottom inflow/outflow imbalance into 
account was deemed most realistic. The corresponding glacial melt was 237 
Gt yr-1. This value was seen to agree qualitatively with glaciological 
estimates using a satellite based input-output method by Rignot et al. (2013), 
who found melt rates of 145 Gt yr-1 for Getz ice shelf and 45 Gt yr-1 for 
Dotson ice shelf for the years 2007-2008. 

4.3 Energetic current oscillations (paper III) 
Energetic wavelike oscillations in the lower water column were discovered 
on the western outflow side of the Dotson-Getz trough. This phenomenon 
was detected through frequency domain analysis of the time series from 
mooring S2. The waves had power of similar magnitude to the oscillations 
caused by tides and Coriolis forces (due the rotation of the earth). Broad 
peaks in the power spectra around periods of 40-80 hours were also found for 
temperature, salinity, pressure and velocity, with a more pronounced 
signature in the cross-shelf direction. The time variability of the signal was 
examined using wavelet-analysis (Torrence & Compo, 1998) and it turned 
out that oscillations were present throughout the whole measurement period 
(2011-2013), with a handful of events causing more elevated energy levels. 
This signal was nonexistent in all data from mooring S1 on the eastern slope. 
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Figure 16. Oscillations in velocity and temperature. a) Detided across-
trough velocity component (ms-1) b) Detided along-trough velocity 
component. c) Temperature (°C). d) Quiver plot showing low-passed velocity 
anomalies from S2, 100 meters above bottom (mab). The velocity scale is 
given in the lower-left corner and the color of the arrow indicates the 
temperature at 100 mab. The dashed, black line indicates the direction of the 
trough. Dates are given in the format month/day. 

 

The powerful oscillations were qualitatively similar throughout the year. One 
example is shown in Figure 16, a detailed view of temperature and velocity 
during one occurrence starting in the end of September 2011. The 
temperature (Figure 16c) co-vary with the velocity (Figures 16a-b), with 
colder temperatures connected to cross-trough southwestward currents and 
warmer waters associated with northeastward flow, implying an up- and 
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downward movement of the bottom warm water layer on the side of the 
trough. The clockwise rotation of the current is evident in the vector plot 
(Figure 16d). 

To characterize the wave oscillations, both a numerical code for computing 
topographically-trapped waves (Brink, 2006) with a measured multi-beam 
topography and an analytical solution from linear wave theory (Gill, 1982) 
with a simplified 1D topography were used. For the simplified geometry, the 
solution to the barotropic wave equation gives that for short waves, the 
energy (i.e. group speed) propagates with shallow water to the right, which is 
southeastward on the western trough slope. For long waves, the energy 
propagation is reversed. When wavelengths in both directions are 
approximately equal, they cancel each other out, the group speed approaches 
zero, which means that the energy does not move away and resonant waves 
are formed. The frequency at which topographic Rossby waves of the first 
mode had zero group velocity were close the observed values for the mooring 
spectra. These results agreed qualitatively for both the analytical and model 
solutions. 

Resonant topographic Rossby waves can be forced by the wind, as shown by 
Gordon and Huthnance (1987) on the Scottish continental shelf and Miller et 
al. (1996) on the Iceland Faroe ridge. The high spectral coherence (0.69) 
between the cross-shelf velocity and the wind at S2 pointed towards the 
importance of wind forcing also in our area. Apart from the value of 
reporting for the first time about a novel wave phenomenon on the Antarctic 
continental shelf, the major implication from the results of Paper III is that 
sporadic hydrographic measurements in this area are of limited value. Single 
snapshot CTD and ADCP measurements will be severely biased if they 
should be taken during a major Rossby wave event.  

4.4 Structure of the oceanic heat transport 
(paper IV) 

This study expanded on the knowledge gained in paper I and II about the heat 
transport by inflowing deep warm currents and their clockwise circulation in 
the trough. Whereas the earlier studies derived conclusions using data from 
the lower part of the water column, the main research inquiry in paper IV was 
to investigate the full depth via the question of the vertical structure of the 
warm water circulation. To help cover for the lack of upper layer data from 
the moorings, the numerical ocean model (Assmann et al., 2013) described in 
section 3.3, two cross-shelf transects and a small selection of shipborne drift 
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station data were used. An additional goal was to assess the accuracy of the 
model simulations with comparisons to the observations. 

In general, the model output showed good qualitative agreement with the 
observations, with a warm water bottom layer on the eastern trough slope and 
an outflowing colder current on the western side. The magnitudes of 
temperature were relatively similar, but the model produced a warm bottom 
layer that was thicker than in the observations. The smaller scale variability 
in the observations is lacking in the model, an indication that the resolution 
may be to coarse to resolve all physical processes (St-Laurent et al., 2015). 
Modeled and measured velocities were relatively similar, except for a lack of 
occasional periods on inflow on the western side in the model which were 
seen in the observations. The position of the inflow core was offset in the 
model due to the discrepancy between the model bathymetry (Timmermann 
et al., 2010) and the actual depths as measured with ship mounted multi-beam 
echo sounding. The center of the trough is in reality 150 m deeper and 
positioned 20 km further west compared with the model bathymetry, which 
highlights the importance of accurate bathymetry to increase model precision. 

The barotropic velocity was defined as the vertical average of the current and 
the baroclinic velocity is then the remaining depth varying part of the current, 
both channel-rotated as in the previous papers. Just as the total flow was 
expressed as a sum of two parts, the total heat flux QH through a cross-
channel transect (Equation 1) was also partitioned into a barotropic and a 
baroclinic flow component. The cross-channel transect was split in two parts 
at the deepest point of the trough to distinguish between the inflowing eastern 
side and the outflowing western slope of the channel.  

Results from the heat flux calculations are shown in Figure 17, where the 
dominance of the barotropic part is evident both in the model and 
observational data. The time averaged heat fluxes (positive towards the 
continent) of 3.25 TW from the mooring data on eastern side and -0.70 TW 
on the western side are of similar magnitudes as those found in paper II.  The 
average heat fluxes in the model have a smaller inflow of 2.10 TW, and a 
larger outflow of -1.63 TW. The discrepancies between the observations and 
model on the eastern side could be due to the shallow model bathymetry and 
on the western slope, the periods of inflowing velocities found in the 
observations are absent in the model.  
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Figure 17. Time series of monthly heat fluxes (TW) induced by the velocity 
components along the cross-trough sections. Times correspond to the 
deployment periods of the two moorings. a) Eastern part, observational data. 
b) Western part, observational data. c) Eastern part, model data. d) Western 
part, model data. 

 

Heat fluxes were also computed for the whole modeled time period 1980-
2011, which showed some variability in the magnitude of fluxes, but with the 
same qualitative result as the shorter period above, which also had 
observational data. The finding that barotropic flow is responsible for the 
major part of the heat flux in the channel may thus be valid for a longer time 
frame.  

Implications of the findings regarding the forcing of the heat flux can be 
drawn. Once the warm deep water has been delivered onto the shelf, its 
circulation in the shelf break trough occurs mainly as a clockwise barotropic 
flow. The  depth-independent structure of the currents indicate that they may 
be forced by local winds, as opposed to earlier investigations (Arneborg et 
al., 2012; Wåhlin et al., 2012), suggesting the flow being buoyancy forced 
and thus more dependent on off-shelf drivers.   
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4.5 Upper ocean currents and iceberg drift 
(paper V) 

Efforts on describing the ocean circulation on the Amundsen Sea continental 
shelf have so far mostly been focused on the lower part of the water column 
and on local channel patterns rather than a regional overview. The aim of 
paper V was to increase the knowledge about the general upper layer 
circulation. This was accomplished by combining in situ ocean measurements 
and ocean model output (same as in paper IV) with iceberg tracks and 
atmospheric forcing fields derived from satellite data. The icebergs were here 
treated as surface drifters and the drivers of the iceberg speed were 
investigated. The iceberg detection algorithm (Mazur et al., 2017) used in this 
study was described in section 3.3. Apart from their use in revealing ocean 
currents, icebergs are also an important source of freshwater and 
approximately half of the mass loss from all Antarctic glaciers is attributed to 
iceberg calving (Depoorter et al., 2013). 

The force balance of horizontal iceberg motion is a sum of the Coriolis 
acceleration, air drag, water drag and sea ice drag (Gladstone et al., 2001). In 
open ocean free-drift, the dominant contributions come from the air and 
water drag and to a lesser degree the Coriolis forces. Large icebergs normally 
follow geostrophic currents in light wind conditions, but in winds exceeding 
10 ms-1 their path get more deflected from the current (Crépon et al., 1988). 
The icebergs get locked into the sea ice when sea ice concentrations exceed 
0.9 and their tracks are then controlled by the wind-induced sea ice drift 
(Lichey & Hellmer, 2001). The satellite data contained no information 
regarding the thickness of the icebergs, thus some assumptions of their draft 
had to be made to assess whether the lower part of the bergs did reach down 
to depths  were the moored sensors measured the currents (approx. 200-400 
m). The height of the major ice shelves from where the icebergs calved 
(Jacka & Giles, 2007; Liu et al., 2015) and the height to thickness ratios of 
icebergs (Orheim, 1980) hinted that many icebergs do reach down to the 
mooring depths. Furthermore, the observation of icebergs stranding on the 
300 m deep ridge separating the Pine Island Trough from the Dotson-Getz 
Trough (Mazur et al., 2017) strengthened this assumption. 

The icebergs were divided into four groups, according to origin and path 
taken (Figure 18). The overall conclusion is that there are two components of 
the upper layer drift. One part is a general shelf-wide drift towards west, as 
seen in all four groups of icebergs. The probable explanation to this pattern is 
that the ocean surface stress (Kim et al., 2017), forced by both wind and sea 
ice drift, produces a westward surface Ekman transport. The other part is  
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more local scale where currents are topographically steered by the 
bathymetry and move with shallow water to the left, as also found in model 
studies (Schodlok et al., 2012; St-Laurent et al., 2013) and in measurements 
of near-bottom currents in the Pine Island (Jacobs et al., 2011) and Dotson-
Getz troughs (Paper II). This structure can be seen in paths of the icebergs 
circling into (Figure 18d) and out of (Figure 18b) Pine Island bay. 

Figure 18. Iceberg tracks. Black lines show average latitude for every 1° 
longitude segment. a) Costal current group, 13 icebergs, average velocity 4 
cms-1. b) Pine Island group, 25 icebergs, avg. velocity 5 cms-1. c) 
Bellingshausen/Abbot North group, 9 icebergs, which never go south of 
Burke Island, avg. velocity 6 cms-1. d) Bellingshausen/Abbot South group, 9 
icebergs, avg. velocity 7 cms-1. Averages were calculated without speeds 
lower than 0.5 cms-1. 

Of the six moorings used in this study (Table 1, Figure 10), current data from 
the four on shelf moorings, S1,S2, K1 and K2, also showed a general 
clockwise circulation. Within their substantial directional spread, they all also 
contained westward components indicating the shelf wide drift pattern. The 
moorings closer to the shelf break, BSR 12 and BSR 14 have deeper sensors 
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and their higher more unidirectional velocities may be influenced by 
undercurrents at the shelf break (Walker et al., 2013) and thus less connected 
to the upper layer circulation. The model circulation clearly showed the 
clockwise channel circulation and also the westward coastal current (Kim et 
al., 2016) influencing the drift of icebergs outside Getz and Dotson ice 
shelves (Figure 18a). The westward drift was however not very evident in the 
model data. 
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5 Conclusions and future outlook 
The results from papers I-V were summarized in the previous chapter. The 
most important general conclusions in this thesis are: 

 On the eastern slope of the Dotson-Getz trough there is 
always warm deep water present. There is large variability in 
the currents on daily and sub-daily timescales. Maximum 
temperatures and warm layer thickness occur during autumn 
(March-April-May). The inflow velocity is correlated with 
eastward winds over the shelf area. 
 

 The inflowing warm deep waters melt the floating ice 
shelves and exit at the western side of the trough. 
Alternative paths for the cooled and freshened water mass 
on the western side exist. The assessed glacial melt rates 
from the in-situ data correspond roughly to satellite based 
estimates. 
 

 Resonant topographic Rossby waves were identified on the 
western side of the Dotson-Getz trough. The oscillating 
wave motions, which are present almost all the time, are 
powerful and sometimes dominate current variability. Their 
presence makes conclusions drawn from snap-shot station 
data in this area less valuable.      
 

 The Southern Ocean bathymetry databases have large errors 
on the Amundsen Sea shelf. The errors make results from 
modeling studies as well as flow and transport calculations 
less reliable. 
 

 A depth independent barotropic flow appears to be the most 
important part of the current circulation on the shelf, which 
transport the heat in the trough. 
 

 The regional upper layer ocean circulation on the Amundsen 
Sea continental shelf has two components. One is a general 
large scale drift towards west and the other is a more local 
clockwise circulation, steered by bathymetry in the glacial 
cross-shelf troughs. 
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This thesis research contributes to our knowledge of the rapid changes taking 
place around the Antarctic continent, which is the earth´s largest source of 
freshwater. The heat supplying deep ocean currents have been investigated 
using in-situ measurements, ocean modeling and remote sensing. The shorter 
term variability with its drivers are now better understood, but one of the 
aspects that are lacking is more decisive analyses of seasonal variation, which 
have so far been discouraged by the lack of adequately long time series. The 
S1 mooring currently contains six years of unbroken measurements and is 
hopefully still functional. The possibly longest time series from a warming 
Antarctic shelf may now be used to shed some light on seasonal variability. 
This data could also be used to investigate the ocean dependency on climate 
indices, such as El Niño-Southern Oscillation, the Southern Annular Mode 
and the variability of the Amundsen Sea Low, which have a significant 
influence in the area (Jenkins et al., 2016). 

Another exciting future project is the analysis of data from new moorings 
currently employed in the western part of Getz Ice Shelf at approximately 
128°W. There exists no ocean time series data from this part of the vast Getz 
Ice Shelf, a severe limitation to the knowledge of the future development of 
Antarctic ice shelves. The Getz area also acts as a connection between a 
hypothesized westward drift of warm deep waters from around the West 
Antarctic Peninsula (Bromwich et al., 2012) and Bellingshausen Seas 
(Holland et al., 2010) towards the colder Ross Sea (Jacobs & Guilivi, 1998; 
Comiso et al., 2011) where large amounts of sea ice and dense High Salinity 
Shelf Water is produced.  

One of the most pressing priorities for Antarctic research is to increase 
measurement frequency in the under-sampled Southern Ocean, both in space 
and time (Kennicut et al., 2014; Schofield et al., 2016). It is also necessary 
with more measurements from the ice-ocean interface below the floating ice 
shelves (Jenkins et al., 2012) in order to better understand the complex 
interactions and improve modeling efforts. The melting may be highly 
influenced by the geometry of gigantic sub ice shelf cavities (Dutrieux et al., 
2014) whose extent and shape remain basically unknown. These formerly 
impossible ocean observations (Nicholls et al., 2008) can now be realized 
with the aid of an Autonomous Underwater Vehicle (AUV), a mini-
submarine equipped with high-resolution sensors, deployed from an 
icebreaker to then go on a mission under the ice shelves. The Polar 
Oceanography group at University of Gothenburg have been leading the 
formation of the national infrastructure facility for marine research called 
MUST (Mobile Underwater System Tools), which will include an under-ice 
going AUV. The planned deployment of the AUV under the Getz Ice Shelf 
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will be an important step towards a better understanding of what has been 
termed the greatest remaining unsolved problem when predicting future 
global sea level rise (Stocker et al., 2013; Kennicut et al., 2014), the fate of 
the West Antarctic Ice Sheet. 
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