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In this paper I study a fixed effects model of dyadic link formation for directed
networks. I discuss inference on structural parameters as well as a test of model
specification. In the model, an agent’s linking decisions depend on perceived similarity
to potential linking partners (homophily). Agents are endowed with potentially
unobserved characteristics that govern their ability to establish links (productivity)
and to receive links (popularity). Heterogeneity in productivity and popularity
is a structural driver of degree heterogeneity. The unobserved heterogeneity is
captured by a fixed effects approach. This allows for arbitrary correlation between
an observed homophily component and latent sources of degree heterogeneity. The
linking model accounts for link reciprocity by allowing linking decisions within
each pair of agents to be correlated. Estimates of structural parameters related
to homophily preferences and reciprocity can be obtained by ML but inference is
non-standard due to the incidental parameter problem (Neyman and Scott 1948).
I study t-statistics constructed from ML estimates via a naive plug-in approach.
For these statistics it is not appropriate to compute critical values from a standard
normal distribution because of the incidental parameter problem. I suggest modified
t-statistics that are justified by an asymptotic approximation that sends the number
of agents to infinity. For a t-test based on the modified statistics, critical values
can be computed from a standard normal distribution. My model specification test
compares observed transitivity to the transitivity predicted by the dyadic linking
model. The test statistic corrects for incidental parameter bias that is due to ML
estimation of the null model. The implementation of my procedures is illustrated by
an application to favor networks in Indian villages.
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1. Introduction

Economic agents concentrate a substantial amount of their activities within their networks
of interpersonal relationships. These interpersonal relationships play a prominent role
when centralized institutions such as markets are missing or unable to provide certain
goods or services. Studying them provides valuable insights into many relevant economic
problems, such as information dissemination in small communities (Banerjee et al. 2013)
and informal insurance (Fafchamps and Lund 2003). Interpersonal relationships can
be formalized as links between agents. The collection of all links is called the network.
Given their vital role in many policy-relevant problems, it is important to understand
how networks are formed. Consequently, econometricians have endeavored to estimate
models of formation of informal insurance networks in villages (Fafchamps and Gubert
2007; Leung 2015) or friendship networks in high-schools (Mele 2016). De Paula 2015
provides a survey of recent research on the econometric analysis of social networks.

This paper contributes to the literature by offering new results for statistical inference
in an empirical model of link formation. In my linking model, the decision to link follows
a classical threshold rule. An agent establishes a directed link to another agent if a latent
link surplus that is computed from the joint characteristics of the pair is deemed large
enough. Conditional on agent characteristics, the linking decisions between a given pair
(or dyad) of agents are independent of linking decisions in the rest of the network. This
is the defining property of the class of dyadic linking models. Models from this class
can be estimated from a single observation of the network and are frequently applied
in practice (Mayer and Puller 2008; Fafchamps and Gubert 2007). Only recently have
econometricians started to investigate the theoretical properties of these models.

The main innovation of my model is that it employs a fixed effects approach to account
for relevant attributes that are not observable to the econometrician. Adding fixed
effects substantially complicates inference by introducing a so-called incidental parameter
problem (Neyman and Scott 1948). As a result, standard maximum likelihood inference
is not valid. The t-statistics for parameter significance are not centered at zero even if
the null hypothesis of no effect is correct and confidence intervals do not concentrate
around the true parameter values. I provide an alternative way to compute t-statistics
and confidence sets that does not suffer from this drawback and that is theoretically
justified by an asymptotic approximation. In addition, I offer a new model specification
test that accounts correctly for the presence of an incidental parameter in the null model.

My linking model bears a strong resemblance to the seminal model by Holland and
Leinhardt 1981. In particular, my model accounts for all three drivers of linking behavior
that they identify and incorporate into their model. The three drivers are homophily,
degree heterogeneity and link reciprocity. Homophily refers to the tendency of agents to
initiate ties to agents who share similar observed characteristics (McPherson, Smith-Lovin,
and Cook 2001). This can be interpreted as a distaste for social distance and is related
to the concept of assortative matching in other areas of economics (Becker 1973). Degree
heterogeneity refers to the fact that agents may exhibit vast differences in the number of
in-bound or out-bound links. As in Holland and Leinhardt 1981, agents are endowed
with productivity and popularity attributes that are not necessarily observed by the



econometrician.! An agent’s productivity determines her ability to generate out-bound
links, her popularity determines her ability to attract in-bound links. Link reciprocity
refers to the fact that, conditional on agent characteristics, observing a link from one
agent to another agent renders observing the link in the opposite direction more likely. In
my model, link reciprocity arises because unobserved gains from linking may be correlated
for links within the same dyad. The correlation may reflect, for example, that agents
who have encountered one another in a latent meeting process are able to form more
profitable links. This approach to modeling reciprocity is similar to how reciprocity is
modeled in network formation models with random effects (Hoff 2005; Hoff 2015). In
contrast, in Holland and Leinhardt 1981 link reciprocity arises because agents receive
utility from reciprocated links.

Agent productivity and popularity effects are treated nonparametrically by estimating
the model with sender and receiver fixed effects. This approach allows for arbitrary
correlations between agent productivity and popularity and observed agent characteristics.
The fixed effects are treated as additional (“incidental”) parameters that are estimated
by maximum likelihood jointly with the other model parameters. Thus, the estimated
number of parameters increases as more agents are added to the network, leading to
non-standard behavior of the parameter estimates obtained by maximum likelihood.

My recommendations for statistical inference in my linking model are justified by
a large network approximation that sends the number of agents to infinity. I provide
distributional results for the maximum likelihood estimators of the structural parameters
related to homophily preferences and link reciprocity. Moreover, I give the large sample
distribution of a “plug-in” test statistic for model specification that is constructed
from preliminary maximum likelihood estimates. My asymptotic results give explicit
expressions for asymptotic bias and variance of the different test statistics. These
expressions suggest formulas for correcting the t-statistics for parameter significance as
well as the test statistic for my test of model specification. The correction formulas
properly standardize the respective test statistic under the null hypothesis. Uncorrected
test statistics are affected by incidental parameter bias and are not guaranteed to be
centered at zero if the null hypothesis is true.

For the model in Holland and Leinhardt 1981 the incidental parameter bias has not
been resolved. Applying it in practice requires the researcher to make possibly restrictive
assumptions about the distribution of the unobserved heterogeneity.? My model can be
applied without requiring such restrictions.

An observed network can be characterized along many different dimensions. For
example, the triad census describes the behavior within triads, i.e. groups of three agents
(Davis and Leinhardt 1972; Wasserman 1977). Other popular summary measures for
networks include average-path length and measures of centrality (Jackson 2008). In this
paper, I focus on a particular triadic configuration that is called a transitive relationship.
A transitive relationship arises if two agents who are connected indirectly via a third agent

'In the context of a specific application, Comola and Fafchamps 2014 argue for the empirical relevance
of unobserved productivity and popularity effects.

2Variations of the Holland and Leinhardt 1981 model where unobserved heterogeneity is restricted in a
random effects approach are discussed in Hoff 2003; Hoff 2005; Duijn, Snijders, and Zijlstra 2004.



form a link that connects them directly. For the observed network we can compute a
measure of overall transitivity. The dyadic linking model induces a probability distribution
of the random network. This distribution serves as a benchmark and is called the reference
distribution. By comparing the observed measure of network transitivity to its prediction
under the reference distribution we can assess the plausibility of dyadic linking. Such a
procedure was first suggested in Holland and Leinhardt 1978 and subsequently developed
in Karlberg 1997; Karlberg 1999. More recently, Chandrasekhar and Jackson 2016 use
simulated network statistics to evaluate a dyadic linking model.? They find that the
dyadic model predicts too little transitivity.* Using a different approach, I replicate their
finding. My approach complements previous contributions in three ways. First, I provide
a formal transitivity test that accounts for all sources of uncertainty, namely uncertainty
about the realization of the transitivity measure for a given reference distribution as well
as uncertainty about the true reference distribution due to parameter estimation. An
interesting property of my test is that replacing the true reference distribution by an
estimator may reduce noise and yield a more powerful test. Secondly, my fixed effects
approach can capture unobserved components of the dyadic linking decision that may
affect the network’s tendency towards transitive closure. Thirdly, my transitivity test
can be computed from a single network observation and does not rely on across network
variation to estimate the variance of the test statistic.

My transitivity test can be interpreted as a test of model validity that looks in the
direction of models that target the formation of transitive relationships. These models
include agent-based models with agents who have a taste for transitive closure so that
transitive closure arises endogenously (Leung 2015; Mele 2016; Menzel 2015; Sheng 2016).
Also included are models in which transitive triangles are generated by an exogenous
mechanism (Wasserman and Pattison 1996; Snijders et al. 2006; Chandrasekhar and
Jackson 2016). Passing from a dyadic model to a model that targets the transitive
structure of the network exerts a very high cost in terms of implementation effort and
computational resources.® It also requires the researcher to make restrictive assumptions
about unobserved heterogeneity. For example, a common assumption for agent-based
models is that observationally identical agents play identical strategies. My specification
test can be used to detect situations in which the dyadic model can serve as as a reasonable
approximation. Even if the specification test rejects, fitting my linking model may still
yield useful descriptive statistics. For example, my model generates a measure of link
reciprocity that projects out homophily effects.

This research ties in with the recent literature on dyadic network models with fixed
effects. Graham 2016 studies a directed version of the model discussed in the present
paper. He focuses on inference about the homophily component and considers ML
estimation with analytic bias correction as well as an alternative approach that conditions

3They refer to a model with dyadic linking as a block model and report a clustering coefficient that can
be interpreted as measuring transitivity.

4This has also been observed for other social networks, e.g., in Davis 1970; Watts and Strogatz 1998;
Apicella et al. 2012.

5Bhamidi, Bresler, and Sly 2011 give conditions under which the computational cost of fitting an
exponential random graph model is prohibitive.



out the incidental parameter. The latter approach has the advantage of producing reliable
estimates in sparse networks, i.e. in settings where agent degrees grow only slowly as the
number of linking opportunities increases. A network that is not sparse is called dense.
My identification strategy relies on a dense network assumption. A conditioning approach
for the directed model is suggested in Charbonneau 2014 and analyzed in Jochmans
2016. The latter paper reports also an interesting simulation exercise that illustrates
that my estimator of homophily preferences may not work well in very sparse networks.
The estimator based on the conditioning approach is more robust. Unfortunately, the
conditioning approach does not extend readily to the other parameters of interest that I
consider.

Yan et al. 2016 provide an alternative derivation of my bias correction formula for the
homophily parameter. They also characterize the uniform convergence of the incidental
parameter to a normal limit. Shi and Chen 2016 study a dyadic linking model in which
undirected links between two agents are observed if the agents reciprocate links in a latent
directed network. Similar to my analysis, they assume that the linking rule generates a
dense network.

The technical analysis of linking models with fixed effects benefits from arguments
originally developed in the context of studying large-T" panel models with fixed effects
(Hahn and Newey 2004; Fernandez-Val 2009; Hahn and Kuersteiner 2011; Dhaene and
Jochmans 2015). For my proofs, I adapt arguments from Ferndndez-Val and Weidner
2016 (henceforth cited as FVW). Their main results have been developed with a long
panel model in mind but apply more generally to ML estimation with an incidental
parameter. Their key assumption is that derivatives of functionals of the incidental
parameter satisfy a sparsity condition. This condition can be verified for the functionals
related to the parameters of interest in my network model. Despite helpful similarities,
the analysis of the network model is not completely congruent to the analysis of a long
panel model. In particular, I find that some bias terms do not satisfy the factoring
property that FVW observe for panel models.

Based on my asymptotic analysis I make recommendations for inference in finite
networks. The accuracy of the asymptotic approximation for inference in finite samples
is studied in Monte Carlo simulations. In my simulation design, analytic bias adjustment
based on the asymptotic approximation is effective at centering parameter estimators at
their true values. I find that bias adjustment is essential for making sure that tests work
as expected. In particular, a specification test without proper bias adjustment will reject
a correctly specified model with probability close to one.

The implementation of my methods is illustrated by an application to data on favor
networks in Indian villages. The favor networks are constructed from the survey data
of Jackson, Rodriguez-Barraquer, and Tan 2012 and Banerjee et al. 2013. A directed
link from agent ¢ to agent j exists if ¢ nominates j as someone she would ask for help
if she needed to borrow household staples or money. From an economic perspective,
these relationships are interesting because they can serve as a partial insurance device. |
estimate homophily preferences, link reciprocity and test the validity of the model.



Notation for networks Let V =V(N)={1,..., N} denote a set of agents (vertices).
The set of all ordered tuples from V' represents directed links (edges) between agents and
is denoted by E = E(N) ={(i,7) : 1,7 € V(N),i # j}. For a given link (i, ), I refer to
1 as the sender of the link and to j as the receiver of the link. To conserve notation, I
will frequently shorten (i, 7) to ij. For A C V I will write V_4 = V' \ A for the set of all
agents excluding the agents in A. Moreover, for ¢ € V define V_; = V_g;3. A graph g
on V is a subset of E. For g C E, (i,7) € g is taken to mean that in g agent i links to
agent j. For arbitray graphs g define the vertex function V' that maps a graph into the
set of its constituent vertices. Note that V(E) = V. A dyad is a subset of V' that has
cardinality two. Let VZ(N) = {{i,j} :4,j € V(N),i # j} denote the set of all dyads on
V. 1 will often refer to the dyad {i,j} as ij with the implicit assumption that i < j.

2. The linking model

2.1. Definition of model

We observe agents V(N) = {1,..., N} and their linking decisions. For every potential
link ij € E(N) we observe a dummy variable Y;; that takes the value one if agent i
links to agent j and the value zero otherwise. Linking decisions are random so that each
link indicator Y;; is a random variable and the collection (Yj;);je E(N) is a random graph.
Links are formed according to a binary choice model. In particular, agent ¢ links to agent
j and Y;; = 1 if and only if the latent link surplus Y; exceeds a link-specific shock Uj;,

Yi; = 1(Y5; > Uij).

The shocks (U, Uj;) that govern the linking decisions within the dyad {3, j} are drawn
from a bivariate normal distribution with covariance matrix

V: |:IOO 1

We allow for correlation between Y;7 and Y} so that in general the linking decisions within
a dyad may be correlated. Setting p # 0 introduces an additional source of dependency
in the linking decisions within a dyad. In particular, if p¥ is positive, agents will tend to
reciprocate links. This is why I will refer to p¥ as the reciprocity parameter. In models of
dyadic link formation with random effects, reciprocity is modeled in a similar way (Hoff
2005; Hoff 2015). Economically, the within dyad correlation of shocks may approximate
an imperfect latent coordination mechanism such as a meeting process.

Each agent ¢ is endowed with characteristics (Xl-,%-s 0 l-R ’0). The vector X; collects
agent characteristics that are observable to the econometrician. The scalar parameters
7;9 and 7 are unobserved agent effects. Similar to Holland and Leinhardt 1981 the
sender or productivity effect %-S 0 encapsulates all aspects of agent i’s eagerness to initiate
links to other agents. An agent with a large productivity effect will be a good sender
and will exhibit a large out-degree. The receiver or popularity effect %,R 0 subsumes
all of agent i’s qualities that make her an attractive linking partner. An agent with a



large popularity effect will be a good receiver and will exhibit a large in-degree. For
notational convenience, we denote the profile of agent effects by v° = (%S ’O, %R ’O)iev. The
agent effects v¥ enter the estimation of various parameters of interest as an incidental
parameter. The presence of the incidental parameter complicates statistical inference.

The latent link surplus for link ¢j is given by
* * 5,0 R,0
Y5 = Y500, 4%) = Xi56° + 97+ (2.1)

where the link-specific covariate vector X;; is a known transformation of the agent
characteristics X; and X; and takes values in RAm™(®)  We interpret XZ{]-GO as a measure of
social distance based on observed characteristics. Including it in the link surplus imbues
agents with a tendency to link to agents with similar attributes and hence enforces
homophily of linking decisions. Agent preferences for homophily are parameterized by
the homophily parameter #°. Sender and receiver effects are treated as fixed effects.
As in Holland and Leinhardt 1981, identification of the location of the agent effects is
achieved by the normalization

i€V (N)

The specification of the link surplus in (2.1) introduces three implicit assumptions. First,
the three components homophily, productivity and popularity are required to be additively
separable. This rules out, for example, linking behavior based on homophily preferences
that change according to how popular a potential linking partner is. The separability
assumption does not, however, restrict correlations between the three components of
link surplus. Secondly, it is assumed that the homophily component belongs to a known
parametric family. Thirdly, all characteristics contributing to the homophily component
are assumed to be observable to the econometrician. The observability assumption is
relaxed in latent space models (Hoff, Raftery, and Handcock 2002; Krivitsky et al. 2009).
In these models, the mutual attraction between agents is allowed to depend on the
distance between agents in a low-dimensional latent space. The class of latent space
models does not, however, nest my model. The models in this class impose a relatively
simple structure of unobserved heterogeneity that can make it impossible to correctly
disentangle homophily from unobserved heterogeneity (Graham 2016).

2.2. Transitive structure

The dyadic linking model induces a theoretical probability distribution of the random
graph G' = (Yj;)ijcE, the so-called reference distribution. We can construct tests of model
specification by comparing the observed distribution of a particular network feature to the
distribution under the reference distribution. The dyadic linking model targets the linking
behavior within pairs of agents and will therefore always fit the network relationships
within dyads (groups of two agents) fairly well. To test the model, we can exploit the
fact that the linking behavior within dyads also pins down the network relationships
in larger groups of agents. When fitting the model, we do not use information about



network relationships in groups of size larger than two. Therefore, there are degrees of
freedom in how well the model replicates the behavior within groups of three or larger.
This can be used for testing. In particular, I consider a test of model specification based
on transitive relationships within triads (groups of three). Three agents i, j and k are
in a transitive relationship if, possibly upon reshuffling the labels within the triad, the
network contains the links (i, 7), (¢,k) and (j, k). The subgraph g = {(4,7), (i, k), (j,k)}
is called a transitive triangle. The set of all transitive triangles on the complete graph
E(N) is given by

B = B(N) = {{(i,7), (i, k), G, k)} : {i, 4, k} C V(N), [{i, 5, k}| = 3}.

For every transitive triangle 5 take 8 = {1, 52, B3}, noting that the labeling of the edges
is arbitrary. Let T3 = Y3, Y3,Ys, denote the binary indicator that takes the value one if
B is observed, i.e. § C GG, and the value zero otherwise. We can construct measures of
network transitivity by counting the number of transitive triangles in the network:

Sx= > Tz
)

BEB(N

The simplest way of constructing a measure of transitivity that allows for meaningful
comparisons between networks is to standardize by the number of all possible transitive
triangles |B| = N3. This is the measure considered in the present paper. It translates
a concept for undirected networks discussed in Karlberg 1997 to directed networks. A
popular alternative is to standardize by the number of potentially transitive triples
(Karlberg 1999, Jackson 2008, p. 37). This yields the clustering coefficient

SN
ZieV ZjEV,i ZkEV,{j’k} }/Z]}/Zk

It is possible to construct a test of model specification based on the clustering coefficient
(see also Karlberg 1999) and my theoretical arguments can be extended to analyze the
theoretical properties of such a test.

My test of model specification compares the observed transitivity Sy to the transitivity
predicted by the dyadic linking model. Let E denote the conditional expectation operator
that integrates out the randomness in (Uj;);;. For a are given set of agents V' = V(N)

Cly =

and a given vector of agent characteristics (X, %-S ’0, %-R ’O)iev our best prediction of the
observed number of transitive triangles is given by E Sy. The discrepancy between the
observed and the predicted level of transitivity can be summarized by a measure of excess
transitivity defined as

Sy —ESn

oracle __
EY = RE

(2.2)
Positive values of this statistic indicate that we observe more transitivity than expected,
negative values of the statistic indicate that we observe less transitivity than expected.
Under an asymptotic sequence of reference distributions that takes the number of agents



N to infinity, the number of transitive triangles Sy satisfies a law of large numbers.
Therefore, if the number of agents is large, E?\}ade will be close to zero. This allows us
to interpret values of the statistic Ef\}”ade that are large in absolute value as evidence
against the validity of the dyadic model.

This specification test can also be interpreted in the tradition of transitivity tests in
the sociometric literature (Holland and Leinhardt 1978; Karlberg 1997; Karlberg 1999).
Transitivity tests assess the explanatory power of the transitive structure of a network.
Holland and Leinhardt 1978 argue that it is important to base transitivity tests on a
reference distribution that replicates key features of dyadic interactions such as degree-
heterogeneity and reciprocity. Failure to account properly for dyadic interactions may lead
a researcher to erroneously ascribe explanatory power to the transitive structure of the
network (“spurious transitivity”). My reference distribution fulfills this requirement by
explicitly modeling dyadic interactions in a structural way. Holland and Leinhardt 1978
and Karlberg 1999 take a different approach by conditioning their reference distribution
on a set of observed network characteristics that they assume to be driven by dyadic
interactions. Compared to my approach, the conditioning approach is much harder to
interpret. It is also not clear what features of the network should be be conditioned on
and how validity and power of the test depend on the conditioning set. From a technical
perspective, the conditioning approach complicates the analysis of the distribution of the
test statistic considerably. For example, to compute critical values Karlberg 1999 suggests
a simulation approach that is not justified theoretically. My approach is amendable
to large sample arguments and I show that my test statistic is asymptotically normal.
Approximate critical values can be computed from the normal approximation.

A test based on E]O\}“ade is infeasible since it presumes knowledge of E Sy which is a
function of the unknown true dyadic model. In Section 3.5, I discuss a feasible test
statistic in which E Sy is replaced by a suitable estimator. The additional noise from
estimating the reference distribution is taken into account when computing critical
values.b

3. Estimation and testing

3.1. Estimation of model parameters

The model is fitted in two stages. The first stage is a pseudo-likelihood approach that
ignores the within dyad correlations and recovers estimates of the homophily parameter
6° and the incidental parameter 4° from the marginal link distribution. In the second
stage, an estimate of the reciprocity parameter p' is computed by estimated maximum
likelihood. To this end, the estimates from the first stage are used to produce an estimate
of the unknown log likelihood for the reciprocity parameter.

5By conditioning on observed network features, Karlberg 1999 introduces a sample dependence that
is reminiscent of my preliminary estimation step. It is not clear how the conditioning should affect
critical values.



3.2. Stage 1

Under a hypothetical parameter configuration (6’,4")" the latent link surplus for the link
ij is given by

Yi(0,7) = X0+ +

and, conditional on observed covariates and agent effects, the probability of observing 7 is
given by p;;(6,v) = ®(Y;3(6,~)). Here @ is the distribution function of a standard normal

random variable. The first stage estimator (é’ ,4") solves the constrained optimization
problem

(9/7 ’3’,)/ =argmaxgeQ ~er L*(0,7)

3.1

subject to Z (%S - %R) =0, o
i€V
where
1
L£0,7y) = N Z {Yij log (pi;j(0,7)) + (1 = Yy;) log (1 —Pij(eﬁ))}
i,jg;/(N)
i#j

In practice, the constraint can be eliminated by plugging it into the objective function.
Elimination of the constraint yields an unconstrained probit program in N x (N — 1) x
dim(0) parameters. The unconstrained program can then be solved by standard methods
such as the probit command in Stata, the glm command in R, or the glmfit in Matlab.

3.3. Stage 2

Let r(-, -, p) denote the distribution function of a standardized bivariate normal random
variable with correlation p, i.e.,

Y1 Y2
(Y1, Y2, p) = / Pa(t1,ta, p) dty dta,
—0o —0o0
where ¢ is the bivariate density
1 t2 +t2 — 2ptits
P2(t1,t2, p) = exp { !
( ) 21y/1 — p2 2(1 - p?)

For each dyad ¢j the indicator Z;; = Y;;Y}; takes the value one if both links within the
dyad are observed (reciprocated links) and the value zero otherwise. For dyad ij define

rij (0,7, p) = r(Yi5(0,7), Y;:(0,7), p)-

This function can be used to compute the probability of observing a reciprocated link.
In particular,

EZij = Prob (Y;; < Uy, Y < Uji | Xi, X5.7) = ri5(6°,4°%, 0°).

10



The second stage estimator p solves the maximization problem

p = argmax e, 1 M(p), (3.2)

where

\.%>
>
e
SN—
SN—
——

M(p) = = E {Zij log (7ij(0,%,p)) + (1 — Zij) log (1 — r4(
igev
i<

and |x| < 1is a known constant.

3.3.1. Discussion of full information approach

An alternative to this procedure is to estimate all three parameters simultaneously by
maximizing the full information likelihood. This would yield more efficient estimators.
There are practical and theoretical considerations for foregoing the full information
approach.

Maximizing the full information likelihood is computationally challenging. In contrast,
the first stage of the two stage approach amounts to fitting a probit regression. This is
computationally easy and efficiently implemented in most statistical software packages.
Modern algorithms can even exploit the sparse nature of this particular probit model (Enea
2013). The evaluation of the likelihood for the second stage involves the computation
of bivariate normal probabilities. While this is a computationally expensive operation,
the likelihood does not have to be evaluated many times as the optimization problem is
concave and one-dimensional.

For the theoretical analysis of the two stage approach I can leverage existing results in
FVW who analyze a related incidental parameter problem in models for panel data. In
contrast, the analysis of the full information problem would require completely new and
substantially different arguments. In particular, I would have to prove new theoretical
results that describe the asymptotic behavior of the Hessian of the full information
likelihood.

3.4. Testing significance of the estimated model parameters

In this section, I discuss inference with respect to the homophily parameter #° and the
reciprocity parameter p°. Inference with respect to the vector 4° is discussed in Yan
et al. 2016.

My procedure for computing t-statistics is based on a large network approximation
which sends the number of agents N to infinity. Due to the non-linear nature of the
binary choice problem, there is no trivial transformation that eliminates the fixed effects.
To recover §° we have to estimate it jointly with the vector of agent effects v°. For
every agent that is added to the network two additional parameters, namely the agent’s
productivity and popularity effects, have to be estimated. Consequently, the number of
estimated parameters is a non-trivial fraction of the number of potential link observations
even if the network is large. This renders the estimation problem non-standard. In the

11



statistical literature, a nuisance parameter that behaves like 4° in my model is called
an incidental parameter (Andersen 1970). The incidental parameter problem has been
investigated thoroughly in the recent literature on non-linear panel models with fixed
effects (Hahn and Newey 2004; Hahn and Kuersteiner 2011; Dhaene and Jochmans 2015;
FVW). The incidental parameter problem in the dyadic network model shares many
similarities with the incidental parameter problem in non-linear panel models.

Due to the presence of an incidental parameter the estimator 6 is biased. The bias
term is of the same asymptotic order as the leading stochastic term. Therefore, while 0
is consistent for 60, the t-statistics reported by implementations of maximum likelihood
in standard software will not be centered at zero if the null hypothesis of no effect is true
and the reported p-values will not be valid.

Theorem 1 in Section 4.1 suggests a way to construct correctly centered {-statistics
and compute valid p-values. Let Wy n, Wa n and BY as defined in Section 4.1 and define

A ~ 1 /\7 _ /\7
V(0) = 3 WA Wan WA

The covariance matrix V(é) is an estimator of the covariance matrix for § that clusters
standard errors at the dyad level. An asymptotically equivalent matrix is reported for
example by the Stata command probit. As discussed in Section 4.1, we can approximate
6 in large networks by

From this representation we can construct valid hypothesis tests for the vector °. In
particular, we can construct a bias-corrected t-statistic to test the significance of the
k*h element of 6. Let SE(ék) denote the square root of the k' diagonal element of the
matrix V(é) Under the null hypothesis of no effect the bias-corrected t-statistic

. . 0-BYN

tN(Ok) = W (3:3)

has an approximate standard normal distribution. The bias-corrected statistic can be
used to compute valid p-values. Moreover, the confidence interval for the parameter ;.
that is computed by inverting the ¢-test with bias correction will have correct coverage.
We can also compute a version of 6 with superior finite sample performance by removing
the first-order bias. The bias-corrected estimator is given by

6% = — W A BY/N. (3.4)

Theorem 2 in Section 4.2 gives the asymptotic distribution of p. In my two stage
approach, the reciprocity parameter p° is not estimated jointly with the incidental
parameter. Even though, the estimated likelihood M is a function of the imprecisely
estimated incidental parameter from the first stage. Therefore, the estimator p is still
affected by the incidental parameter problem and is asymptotically biased. The first-stage
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estimation also affects the precision of the estimator p. In contrast to the estimation
of the homophily parameter, the standard error reported by statistical software that
computes p by solving the ML program (3.2) does not measure the true uncertainty
inherent in the estimates and cannot be used to construct a valid ¢-statistic. Let 01 n,
U2 N, T and Bﬁ] as defined in Section 4.2. A standard error of p that correctly accounts
for the estimation of the likelihood is given by

/209N
SEP) = Norw

Under the null hypothesis of no effect the t-statistic

P 2ATYWI B + B)/N
tn(p) =

SE()

(3.5)

has an approximate standard normal distribution. This can be exploited to compute
valid p-values and confidence intervals. A bias-corrected estimator is given by

PO = p— 2Ty W A B + B)/N. (3.6)

3.5. Model specification test based on transitive structure

For a transitive triangle 5 € B(IN) and hypothetical parameter values 6 and ~ let pg(G, )
denote the probability of observing 8 conditional on observed covariates. The between
dyad independence of links implies pg(ﬁ, ) =1l.c 5 Pe(0,7). The predicted number of
transitive triangles is given by

ESy = Y ph(6°+").
BEB(N)

An estimator of this population parameter is given by
ESy= > p56,%)

Since it is a function of the estimated incidental parameter, this estimator is biased. The
bias vanishes asymptotically so that the estimator is consistent for ESy. To construct a
feasible analogue of the the oracle transitivity statistic Ex from equation (2.2) we can
replace ESy by its estimated counterpart ﬁv The bias of m is of the same order
as the standard deviation of the oracle test statistic. Therefore, a feasible test statistic
constructed in this way will, upon proper normalization, not be centered at zero if the
model is correctly specified. Consequently, we cannot interpret positive values of the test
statistic as evidence that the dyadic model does not produce enough transitive closure,
or negative values of the test statistic as evidence that the dyadic model produces too
much transitive closure.

13



Theorem 3 in Section 4.3 suggests a feasible test statistic that is properly centered
under the null hypothesis. Let Bf,, Uy and 17}%, be defined as in Section 4.3. In large
networks the test statistic

~ ~S 1< SN ]ESN

NE + By + UNW1 NBN> (3.7)

has an approximate standard normal distribution if the dyadic model is correctly specified.
The interpretation of positive and negative values of the statistic is the same as for the
oracle test statistic E?\}”ade.

4. Asymptotic results

This section discusses the stochastic limiting behavior of the procedures considered in
this paper under an asymptotic sequence that takes the number of agents N to infinity.
The proofs for all results presented in this section can be found in Appendix C.

For functions of the model parameters ¢ and ~ we adopt the convention that omitted
function arguments indicate evaluation at the true parameter values 6° and 4°. With
this notation, we have for example p;; = p;;(6°,~°). In the following, we will consider
functions (y1,y2,p) — 9(y1,92,p) that are evaluated at y1 = V;; and yo = Yj;. To
indicate the point of evaluation we write g;;(p) = g(Y;3,Y};, p). For example, in a slight
abuse of notation, write d,r;;(p) for the partial derivative d,7(y1,y2, p) |y, = =Y =Y ="
1= o=y, p=p0- We adapt
similar notation for other derivatives. For a function 7 — g¢(m) that is evaluated at
7 = Y; write g;; to indicate the point of evaluation and 0,k gi; = Orrg() |7r:y;} to denote

and write dy,7;;(p) for the partial derivative 0y, (y1, y2, p)

the kth derivative with respect to the latent index. Write py;; = pi;(1 — p;;) for the
conditional variance of Y;j, r1;; = rj(1 — 74;) for the conditional variance of Z;; and
pij = (1ij — pijpji)//P1,ijP1ji for the conditional correlation between Y;; and Yj;. Let
lij = Yijlog(pij) + (1 — Yij) log(1 — pij) so that we can write

L0 Z ewey

i,JEV(N
i#]

The score of the first stage problem will be a function of the 0;¢;;. The corresponding
Hessian can be characterized in terms of the 0,2¢;;. The behavior of my procedures is
linked intimately to these quantities. Let H;; = Oxpij/p1,ij and wij = H;j(Oxpr). Then
&Jij = Hl‘j(Y{j — pij) and E[—(ipeij] = Wij.

The asymptotic results reported below describe certain relevant quantities in terms
of appropriately projected link characteristics. An approach that does not rely on
such projection arguments can be found in Yan et al. 2016. To define the appropriate
projections let P denote a projection operator. P orthogonally projects vectors v =
(vij)iz; onto the space spanned by the agent effects under an inner product Weighted by
a diagonal matrix with diagonal entries (w;j)ix;. In particular, (Pv);; = 47 + ’y] for any
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(42,42 )iev solving
min Y wy(viy — 77 = ).
TG jev
i#]
Let X denote the projected value of the k' edge-specific covariate out of the space
where the agent effects live. Formally, let X} denote the vector (Xj;)ix; and define
X1, = X, — PX},. Also, let Xij denote the column vector (ij’l, e ,Xijdim(g))/.

The results reported in this section hold under a set of regularity assumption sum-
marized in Assumption 1 in the appendix. Assumption 1(ii) and (iv) ensure that the
maximum likelihood program is concave and that this concavity is preserved in the limit.
In practice, this is satisfied if varying the sender or the receiver subscript of a link while
keeping the other subscript fixed induces variation in the link specific covariates that
contribute to the homophily component (“within variation”). Assumption 1(v) and (vi)
require that the link surplus is bounded away from infinity which imposes density of the
resulting network. This assumption may be restrictive in some social networks (Graham
2016, Jochmans 2016).

4.1. Estimation of homophily parameter

The following result on the asymptotic behavior of 0 is closely related to Theorem 4.1 in
FVW.

Theorem 1 (Distribution of §). Under Assumption 1

_ A~ 1 ~
0
NWin(0-0°) =By + + E E Hij Xij(Yij — pij) + op(1)
i€V jeV_;
and

W;}ﬁ (NWin (6 — 6% — BY) = N(0,1) + 0,(1)

where B]% = Bje\’,s + Bi}R and

B0 _ LZ Ljevs Wi X | o
" NS Ljeve, Wi 7

pii—| Ly Siev.; wii Xi X} 40

N 2N iev.; Wij ’
_ 1 .
Win =132 D wiXyXj,

eV jev_,
_ _ 1 ) .
Won =Wi N+ NN -1 Z Z Pij/@ijw5i X ij X ;-
eV jev_,
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The theorem states that, upon normalization, the difference between the estimator
and the true value of the homophily parameter is asymptotically normal and centered
at the asymptotic bias term B?\,. For a non-degenerate limit distribution the difference
between estimator and true value has to be inflated proportional to the factor V. Note
that we observe N(N — 1) potential links so that N behaves like the square root of
the total number of link observations. Therefore, the estimator converges at the usual
parametric rate (cf. Graham 2016). Due to the within-dyad correlation of shocks the
information matrix equality does not hold and the asymptotic variance matrix of the
estimator is given by the sandwich Wf ]{,Wg NWf ]{, Uncorrelated Within dyad shocks
(i.e. p° = 0) imply pi; = 0 so that the variance matrix reduces to W LN if shocks are
uncorrelated within dyads. By default, most software packages that have the capability to
solve program (3.1) will report an estimated Covarlance matrix based on the assumption
that the variance of 6 is well approximated by I/V1 N While the estimator 6 is biased,

the leading-order term of the bias vanishes at rate IV so that 6 will be consistent for the
true parameter value. The bias does, however, affect test statistics and has to be taken
into account when conducting hypothesis testing.

The distributional result in Theorem 1 describes bias and variance in terms of unknown
population quantities and can therefore not be used directly in hypothesis testing. To
construct estimators of the required population quantities define w;; = wij(é,ﬁ/) and
let P denote the projection operator that is deﬁngd similarly to P with tl}e weights

wi; replaced by the estimated weights @;;. Define Xip = X, — PX}, and let Xij denote

the column vector (Xij 1y f(” dim(0 ))/ In practice, the necessary projections can be
computed by methods for weighted least squares supplied by most statistical software
packages. Also set pw = pw (9 4). We can now deﬁne estimators BY N W1 .~ and Wg N by

substituting w;; for w;;, pw for pij, 0 for 6%, and XZJ for X ;j in the expressions for B N
Wi v and Wy y given in Theorem 1. It is expected (cf. FVW) that

Wy X2 (NWin (6 —6°) — BY) = N(0,1) + 0,(1),
a conjecture that can be proved similarly to Theorem 4.3 in FVW. From this representation

we can derive the t-statistic (ék) and the bias-corrected estimator 6™ discussed in
Section 3.4.

4.2. Estimation of reciprocity parameter

Let mi; = Z;jlog(rij) + (1 — Z;j) log(1 — 745) so that we can write
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Define J;; = 0,rij/r1,;; and note that the corresponding score evaluated at the true
parameter values is given by

1 1
OpM = N Z 0pm;j = v Z Jij(Zij — 1ij)-
1,j€V(N) $,jeV(N)
i#] i
Let Q = PA for A = (Aij)i;éj and Aij = E[aaylmij]/E[Oﬁz&j] = Jij(ﬁylrij)/wij.
Theorem 2 (Distribution of p). Under Assumption 1
vinN(p— p°) = 2T Wi\ BY — 2BY

U2, N

= N(0,2) 4 0p(1)

where

1 N
- N2 YD T 0yrig) Xy

i€V jeV_;
and ENﬂ'j = T],VWf]{IXU and

V1,N = E Jz] pTZ]

1,jeV
1<J

.
V2N FULN T Z b { (i — zg)Jij(asz’j)ﬁ +2(Eng — Qi) wis

1€V]€V v
+ 2(tnij — Qi) (Evji — Qi) i \/Wijwji}

and BY, = BY® + B + BRST with

BR® :% > Zev {(awpij)(agjij);af 3 Hij(0r2pij) }
=% jev._, Wi
1 > eV, {(8y, Ji) By, 4i5) + %Jij(ay%mj)}
N S evs e
BJQ}R :% Z iev., {Oepiy (agjw)r”w 5 Hij(02pij) }
jev ieV_; Wij
1 Ziev, 10 Jij)Oprij) + 3Jij(0,ami5) }
= Siev., @i
BoSE = 72 orT; Y jey, 40y Ji) (Oyi i) + Dy, Jji) By mig) + Jij(Dyayoris) }

eV <Zaev wzy>1/2(zjev,i Wji)1/2
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and
Zjev_i ﬁij\/wijwji
1/2 12"
(Srevewi) " (Syev, wii)

This result establishes that p is asymptotically normal, converges to the true population
parameter at rate N and exhibits an asymptotic bias term that is of the same order as
the stochastic term.

The proof of Theorem 2 exploits results for long panel models with individual and time
fixed effects reported in FVW. Interestingly, the structure of the incidental parameter bias
of the estimator p differs from the bias terms of functionals of the incidental parameter
that are of interest in a panel context. In panel models, FVW consider the incidental
parameter that is associated with marginal effects. For this functional, they observe a
factoring property of the incidental parameter bias. In particular, under true models with
only individual or only time fixed effects, the estimator of the functional will be biased.
The bias term under a model that includes both individual and time fixed effects can be
computed as the sum of the bias terms from the two more restricted models. The bias of
the estimator p does not obey a similar factoring property. It is not possible to recover
the bias in the model with both sender and receiver fixed effects from the bias terms in
the two more restricted models that include fixed effects only for one direction of the
link. The lack of a factoring property is owed to the presence of the bias term B;(}SR.
This bias term is a weighted average over transformed agent characteristics with weights
given by ¢orr;. Each dyad contributes twice to the first-stage likelihood, once for each
possible link within the dyad. The weight ¢orT; measures the (conditional) correlation
between the two contributions for the links to and from agent i. In particular,

Siev, E(9lij0xL};) .
\/< 2jeve, E(aﬁ&j)2> (Zjevfi E<8ﬂgﬁ)2>

In the special case of uncorrelated within-dyad shocks (p® = 0) these weights will be zero
and the asymptotic bias term will factor.

It is worthwhile to compare Theorem 2 to Theorem 1 which predicts a bias term
that factors even in the case of non-zero correlation of the within-dyad shocks. The
crucial difference between the two theorems is that the structure of the Hessians of
the functionals that they are considering exhibit crucial differences. The appropriate
Hessian for Theorem 1 has a strong diagonal and weak off-diagonal elements. In a Taylor
expansion around the true incidental parameter the interaction of 0,¢;; and 0x¢;; is
weighed by a weak element and will not be of asymptotic first order. The corresponding
Hessian for Theorem 2 has a two-by-two block structure where each block has a strong
diagonal and weak off-diagonal elements. In a Taylor expansion around the true incidental
parameter the interaction of 0.¢;; and 0¢;; is weighed by a strong element and cannot
be ignored in the limit.

The proof of Theorem 2 adapts the arguments in FVW to a different class of functionals.
To analyze second-order terms in a Taylor expansion, FVW employ projection arguments

COIT; =

COorr; =
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that assume a particular symmetric structure of certain second-order derivatives. My
proof of Theorem 1 relies on an alternative argument since the functional that I am
analyzing exhibits a different structure.

To evaluate the bias and variance terms in Theorem 2 we have to compute derivatives
of bivariate normal probabilities. In Appendix I, I derive formulas for the required
derivatives. The terms defined in Theorem 2 depend on unknown population quantities.
A feasible t-statistic can be defined by replacing unknown population parameters by
estimators. Let jij = Jij(é,”y) and define @, %, c'?mj, %, O/W\pij, (ﬂp\ij, and
m Similarly. Let Q = 75A with A = (AZ]) and Aij = jlja/le‘\U/(;)l] Define B]@ with
;; replaced by Q,;j, Orxpij replaced by (ip\l] and so forth. Similarly, define estimators
U1,N, U2,n and TN. It is expected that

/U2, N

From this representation we can derive the t-statistic £y (p;) and the bias-corrected
estimator p®'" discussed in Section 3.4.

= N(0,2) + o0p(1)

4.3. Testing model specification

We now turn to the asymptotic behavior of the naive transitivity statistic (Sy —ﬁv)/ N3,
Consider a link ij contained in a transitive triangle 5. The probability of observing
triangle 8 conditional on observing the link ij is given by

E(Ts | Yy =1 =p";(8)= [ pe
ecf\{ij}

For the asymptotic theory we have to consider the expected number of transitive triples
containing the link 75 conditional on the event that the link 75 has realized. In particular
we are interested in a transformation of this conditional probability which is given by

1 _ 1
N = > B Yy=1=2= > o500

HigN 5500 WY geB(N)
B3ij B3ij

Let B = ( f-}-f)#j and define LN"IN =N —pgV.

The following result establishes convergence of the naive test statistic to a normal
random variable. The naive test statistic exhibits an incidental parameter bias and is
not centered at zero if the null hypothesis is true.

Theorem 3 (Transitvity test). Let

1 _
Uy =73 Z Z Biiwii Xij

i€V jev_,
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and Uy ;; = U]’VWD{,X}] and suppose that Assumption 1 holds. Then

1

En = (v3)” 2(NSN ESN

where
1 N N N ~
=<5 2 2 LBy — )y + (B — i) (B — ) iy /o5 |
eV jev_,

and BY, = B>° + BY™ + BYS with

N
BS’S _i ZJEV i Hi;j (67I'2p1])18
N ToNn Z

eV 2 jev.; Wii

n L Z -1 Zjev Zke\/ (6] ( Tl’pl])(aﬂ'pik’) [pjk +pk:j]
2N

eV ZiEV_]‘ Wij
~N
Z ZEV 37r2pzj)/3z‘j
T2N v jGV Wij
n 1 Nt Ziev,j Zkevf“’j} (aﬂpij)(afrpkj) [sz +pki]
2N jeV 2 jev.; Wij

gosr _ 1 cort; N™' 3 iey D kev_ g,y (OnPis) (OnDki )Pk
N TN 1/2 1/2
eV (Zjev,i wz‘j) <Zjev,i wﬁ)

In Appendix D, I present a similar result for a fully parametric model without fixed
effects. The proof of Theorem 3 is based on the representation

2 (SN - m) = N2 (SN - IESN) ~ N2 (IETGTV - IESN) (4.1)

that decomposes the appropriately scaled naive transitivity statistic as the sum of the
oracle test statistic and the estimation error. The leading order terms of both summands
are of the same order. The oracle statistic contributes a stochastic term to the asymptotic
distribution and the estimation error contributes both a stochastic and a deterministic
term. Interestingly, the variation that is due to estimating the incidental parameter
cancels out some of the variation of the oracle statistic, reducing overall variance. It is
instructive to compare the result in Theorem 3 to the corresponding result for a fully
parametric model. To this end, suppose that the link surplus is given by Y. », ”92
This linear specification subsumes edge-specific homophily effects as well as the sender’s
productivity effect and the receiver’s popularity effect. Let m\/ denote the MLE
estimator of ESy based on the parametric model. Theorem 4 in the Appendix gives the
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asymptotic variance fug y of a transitivity statistic based on the fully parametric model.

In particular, for p® = 0 the asymptotic variance of (Sy — mv) /N? is given by

2
p,N N2 E : E : Up,N,ij) Wig,

eV jeV_,

where u, n;; is defined in Theorem 4. The variance of the normalized oracle statistic
NEQale = (Sy —ESy)/N? is given by

1
N =z D D (BY) wis-

i€V jeV_;

By the definition of the projection operator P we always have

PDDIACHEEIED DD DR HET

€V jev_,; €V jev_,;

and the inequality will be strict if degree heterogeneity is at least partially driven by
the fixed effects. The ordering of v]SV, S o and vS v is not uniquely determined because
of the u, n;; and 4, y;; terms. " In practlce I find that ’UN < v N and UN < v N by a
substantial margin. Consequently, for scenarios in which a fully parametrlc spemﬁcation
is plausible, the transitivity test based on estimates from the model with fixed effects
may be more powerful than the test based on estimates from the parametric model or
the test based on the true values. It may seem counterintuitive that a semiparametric
model can estimate a zero more precisely than a tightly specified parametric model or a
model that uses the true linking probabilities. However, such behavior is not without
precedent. Abadie and Imbens 2016 give another example of an econometric problem
where estimating a quantity rather than using its true value can lead to efficiency gains.
Consistent estimators of the bias aI}?lV variance terms in Tgeoren} A?/) can be constructed
by a simple plug-in approach Let Bij = ,BN(H 4) and B = (B;;)i%; and define the
projected vector BY = ,3 77,3 Deﬁne Un by replacing the population quantltles in Uy
by estimators, i.e. replace ,6” by ,6”, wi; by w;; and XZJ by XZ] Let un,ij = UNI/V1 NXU.
Define Bff by replacing the population quantities in B%, X with estimators, i.e. replace w;;
by @;j;, Bij by Bij, up,i; by ﬁN,ij and so forth. Similarly, define an estimator ﬁf\} of vf,.

It is expected that
- g1 Sy —E E Sy N
(W™

The interpretation of this test statistic is discussed in Section 3.5.

+ B + UNW1 NBN> = N(0,1) + op(1).

5. Simulations

In this section, I present results of a simulation exercise that investigates the finite sample
accuracy of the procedures suggested in this paper.

7If there is no homophily component then v5 < vi ~- Under a weak condition the inequality is strict.
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homophily reciprocity
N p° bias NC bias C rej NC rej C bias NC bias C rej NC rej C

50 0.0 0.80 -0.03  0.18 0.12 0.13  -0.13  0.09 0.08
50 0.3 0.80 -0.03  0.20 0.09 0.13 -0.12  0.12 0.08
50 0.6 058 -0.16  0.17 0.12 047 -0.08  0.17 0.07
100 0.0 0.84 -0.08 020 0.07 0.0l -0.01 011 0.10
100 0.3 0.77 -0.11  0.19 0.08 0.27  0.03  0.09 0.0
100 0.6 0.62 -0.17  0.16 0.0 0.67 0.05 0.8 0.10

Table 1: Simulation results for estimated homophily and reciprocity parameters. The
simulated bias terms are reported in terms of standard deviations of the corre-
sponding estimator. The column ‘bias NC’ gives the bias of the estimator if no
bias correction is carried out, the column ‘bias C’ gives the bias of the estimator
after analytic bias correction. The ‘rej C’ column gives the empirical rejection
probability of a t-test against the true parameter value where the test statistic
has been bias-corrected (nominal level a = 0.1). The ‘rej NC’ column gives the
corresponding empirical rejection probability if no bias correction is carried out.

The simulation design is similar to Graham 2016. Agents i € V (V) are characterized
by independent draws from the joint distribution of (Xi,'yis ,%R). Here, X; is a scalar
covariate drawn from {—1,1} with even odds. The distribution of the agent effects
depends on the observed realization of X;. For given X; the agent effects are generated
according to

7 =—1+0511x,— 1 + Beta®
W=—=14051(x,__1} + Beta”,

where Beta® and Beta® are independent draws from a centered Beta distribution with
parameters A\g = 0.25 and A\; = 0.75. The skewness of the Beta distribution endows a
minority of agents with exceptionally large productivity and popularity effects. This
heterogeneous minority dominates the linking activity inside the network. The majority of
agents receives draws for the agent effects that are small in magnitude. Consequently, these
agents exhibit small in-degrees and small out-degrees. This kind of degree distribution
is reminiscent of social networks in the real world. By construction, agent effects are
correlated with agent characteristics thus rendering a random effects approach infeasible.
For link ¢j the link-specific homophily variable is a scalar given by X;; = X;X;. The
true homophily parameter is given by #° = 0.5 and the link surplus of link ij is given by

Ylj = 0.5X;; + %S + ’}/]R.

The simulation results are based on 500 simulations. To assess the effect of the sample
size, I present results for a small network (N = 50) and a moderately sized network
(N = 100). I simulate models with different values of the reciprocity parameter and
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analytic SE bootstrap SE
N p° bias NC bias C rej NC rej C bias NC bias C rej NC rej C

50 0.0 -5.99  -0.10 0.99 0.28 -3.94  -0.06 0.98 0.10
50 0.3 -5.78 0.14 0.99 0.26 -3.61 0.10 0.98 0.04
50 0.6 -5.83 0.20 0.99 0.27 -3.47 0.12 0.94 0.10
100 0.0 -5.60 0.19 1.00 0.14 -4.35 0.15 1.00 0.06
100 0.3 -5.69 0.23 1.00 0.20 -4.29 0.16 1.00 0.07
100 0.6 -5.82 0.25 099 0.21 -4.19 0.18 0.99 0.10

Table 2: Simulation results for transitivity tests. Test statistics are computed by stan-
dardizing by analytic (“analytic SE”) as well as bootstrapped standard errors
(“bootstrap SE”). The nominal level of the test is & = 0.1. The results for ana-
lytic standard errors are based on 500 simulations. The results for bootstrapped
standard errors are based on 200 simulations with B = 200 bootstrap iterations.

set p® € {0,0.3,0.6}. Table 1 summarizes simulation results for the estimators of the
homophily parameter §° and the reciprocity parameter p°.

The MLE estimator 6 without bias correction exhibits a bias of between 60% and
80% of a standard deviation. The bias has a similar magnitude for both sample sizes
indicating that the speed of convergence to the asymptotic bias is relatively swift. I
simulate t-tests (o = 0.1) that test the estimated homophily parameter against its true
value. Without bias correction, the tests overreject. The simulated empirical rejection
probability lies between 0.16 and 0.20. In contrast, a test based on the bias-corrected
t-statistic computed according to formula (3.3) controls the size of the test.

The finite sample bias for the estimator p depends on the true value p°. If the
idiosyncratic errors affecting linking decisions within a dyad are uncorrelated (p° = 0)
then p° will be estimated virtually without bias. For positively correlated errors, the
estimator p exhibits a positive bias that is increasing in the true correlation. For p' = 0.6
the bias of p amounts to almost 70% of a standard deviation in the larger sample. The
magnitudes of the bias terms are slightly different for the two sample sizes, indicating
that convergence to the asymptotic limit is slower than for the estimator of the homophily
parameter. Without bias correction, a t-test of p against the true value does not control
the size in the designs where p° = 0.6. In these designs, the empirical rejection probability
exceeds the nominal level by about 8 percentage points. For the test based on the bias-
corrected t-statistic from equation (3.5) the empirical rejection probability is close to the
nominal size for all designs.

We now turn to Table 2 which summarizes simulation results for the transitivity test
(o = 0.1). For the simulations reported under the caption “analytic SE” the estimator @}%
in (3.7) is a sample analogue of v in Theorem 3. Since the test statistic is studentized,
the units in which the bias is measured can be interpreted as standard deviations.
Without bias correction, the test statistic exhibits a negative bias of almost six standard
deviations. Analytic bias correction as implemented in formula (3.7) picks up more than
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test ESn oracle test
N p% bias NC bias C rej NC 1ej C bias rej

50 0.0 0.80 -0.04 021 010 -0.06 0.10
50 0.3 073 -0.10 022 011 -0.08 0.09
50 0.6 071 -0.14  0.16 0.2 -0.11 0.11
100 0.0 0.84 -0.02 024 0.09 0.0l 0.10
100 0.3 073 -0.12 0.8 0.09 -0.08 0.09
100 0.6 0.79 -0.06 022 010 -0.02 0.10

Table 3: Simulating the two components in decomposition (4.1).

95% of this bias. The transitivity test without bias correction rejects a true model with
probability close to one. Even with analytic bias correction the test is overrejecting by
a margin of between 4-11% in the larger sample. In this simulation design, the first
order approximation of the stochastic term underestimates the true variability of the test
statistics without studentization. In the smaller sample it captures about 65% of the
variation, in the larger sample it captures about 80% of the variation. It is not surprising
that the stochastic term converges rather slowly to its limit. In Section 4.3, I discuss a
cancellation property of the test statistic that eliminates many first-order terms. In small
samples, higher-order terms may contribute to the sampling variance in a substantial
way.

As an alternative way for computing appropriate standard errors, I consider a para-
metric bootstrap procedure. Simulation results for a transitivity test with analytic bias
correction and a bootstrap estimate of vf, are reported in Table 2 under the caption
“bootstrap SE”. In my designs, the test with bootstrap errors has appropriate size control.

To investigate the cancellation property further, I conduct additional simulation
experiments and simulate the two terms in decomposition (4.1) separately. In particular,

I simulate a (in reality infeasible) t-test of E Sy against the true ESy based on the test
statistic

tn(ESy) = (ESy — ESy + B + O WL B%) /(N2 [59),

where f)f,s is a sample counterpart of

oy’ = % > {((PﬂN)ij + iy ,i7) “wij

eV jev_;
+ ((PBM)ij + i) (PBY)ji + U i) pig/@ii Wi }
Moreover, I simulate the oracle test based on the test statistic

ERele = (S — ESy)/(N?05 ),
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where @f n 1s the sample counterpart of

1 -
Uf,N =N Z Z {(5%)2%3' + ﬁ%ﬁ%pij\/wwwﬁ}.

eV jEV,i

Simulation results are summarized in Table 3. Both tests have good size control. This
shows that for each of the two terms in decomposition (4.1) the finite sample distribution
is approximated well by a first-order expansion. For small samples, the quality of
the approximation is reduced when putting the two terms together since some of the
dominating terms cancel out.

In Section 4.3, I discuss the possibility that the cancellation property of the transitivity
test statistic may lead to efficiency gains compared to oracle estimation. In a simulation
framework we can elicit the magnitude of this efficiency gain. Comparing unstudentized
versions of the feasible test statistic Ey and the oracle test statistic E]Ovrade for my designs,
I find that the standard deviation of the feasible test statistic is less than 20% of the
standard deviation of the oracle test statistic. This indicates that the efficiency gains

can be quite substantial in practice.

6. Application: Favor networks in Indian villages

I use the Indian village data from Banerjee et al. 2013 and Jackson, Rodriguez-Barraquer,
and Tan 2012. This data set contains survey data from 75 Indian villages. In each village,
about 30 - 40% of the adult population were handed out detailed questionnaires that
elicit network relationships to other people in the same village as well as a wide range of
socio-economic characteristics.

For this application, networks are defined on the village level. Therefore, the data set
contains 75 network observations.® For each village, the set of agents is given by the
surveyed villagers. Links are defined by a social relationship related to anticipated favor
exchanges.

Network definition The directed network considered in this application is constructed
from the survey questions “If you suddenly needed to borrow Rs. 50 for a day, whom
would you ask?” and “If you needed to borrow kerosene or rice, to whom would you
go to?”. To set up the network, I let every surveyed individual send directed links to
each of the individuals nominated in one of the two questions, provided that the nominee
was also included in the survey. The network generated in this way is defined to be
the network of interest. This avoids identification issues that arise when using a partial
sample for inference on an imperfectly observed population network (Chandrasekhar and
Lewis 2011). Addressing such problems is beyond the scope of this paper. Links are
defined by aggregating information for two different favor requests. This benefits the
econometric analysis by reducing sparsity of the resulting network.

8In my analysis, I discard 8 networks in which agents are very homogeneous so that multicollinearity
issues arise.
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1 asks 7 for help

Sender Receiver

maybe flow of goods

Figure 1: Definition of link: There is a link from ¢ to j if, under a hypothetical situation,
1 would go to j to ask for help.

A link from agent i to agent j indicates that, in times of need, ¢ would ask j for help.
Note that, if j accedes to the request, the direction of the flow of goods will be opposite
to the direction of the link. Figure 1 illustrates the behavior of two linked villagers under
the hypothetical situation from the survey question.

Interpretation of dyadic linking model It is instructive to discuss the significance of
productivity, popularity and homophily in the context of this application. When deciding
about whether to establish a link to some agent j, a sender ¢ ponders whether j is able
and willing to grant the request. Agent j’s ability to provide help is affected by her own
wealth and liquidity as well as ¢’s ability to repay the loan or return the favor in the
future. In the context of my model, the first effect contributes to j’s popularity, and the
second effect adds to i’s productivity. Agent j’s willingness to help is a function of how
altruistic she is, of ¢’s skill in negotiating the favor, and of how sympathetic j is towards
i’s plight. The first two considerations are, again, subsumed in j’s popularity and i’s
productivity, respectively. It is plausible to assume that j is more sympathetic towards 7
the more similar the two of them are. This tendency is a manifestation of homophily.
For example, 7 might have a high willingness to offer assistance to members of her own
family, or have little inclination to help out individuals belonging to a different caste.

In the highly stylized decision model sketched in the previous paragraph, many drivers
of productivity and popularity such as an innate predisposition towards acts of altruism,
or expectations about future liquidity are inherently unobservable. In the dyadic linking
model these unobserved factors will be captured by the agent fixed effects. If the network
is based on survey data, the sender effect can also subsume reporting behavior. This
makes the estimator of the homophily parameter robust to some common forms of
measurement error.

Homophily preferences and reciprocity I estimate homophily preferences and reci-
procity separately for each network. Table 5 lists all variables that are used in the
specification for the homophily component. For the variables related to education, in-
dividuals are sorted into one of three bins according to their reported years of formal
schooling. Individuals are assigned to the bin “SSLC” if they have obtained a Secondary
Schooling Leaving Certificate. In India, this certificate is awarded to students who pass
an examination at the end of grade 10. It is a prerequisite for enrolling in pre-university
courses. All other individuals are assigned to “no education” if they have completed less
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smallest median largest

coeff tn coeff tN coeff tn
N 95 212 413

same caste -0.16 (-0.9)  -0.24%**  (-3.4) 0.58%F%  (10.3)
age diff -0.01 (-1.0)  -0.00 (-1.0)  -0.01%**  (-4.6)
same family 1.14%%%  (5.0)  0.60%%*  (4.4)  1.52%%  (15.2)
same latrine 0.17 (1.4) -0.79%F%  (-9.6) -0.07* (-1.8)
same gender 0.51%**  (3.5) 0.23%F%  (2.9) 0.41%8%  (7.4)
both hh heads -0.29%*  (-2.1)  -0.29***  (-3.9) -0.06 (-1.2)
both village native 0.00 (0.0) -0.23***  (-3.8) -0.06 (-1.4)
educ NONE-SOME ~ -0.74*%* (-4.4)  -0.88%%* (-11.1)  -0.46*** (-9.1)
educ NONE-SSLC ~ -0.48%*%* (-3.1)  -1.66*** (-17.1)  -0.69*** (-11.8)
educ SOME-SSLC  -0.52%%% (-3.7)  -2.12%%*% (118.0)  -0.58%%* (-10.1)

reciprocity  0.53%F%  (4.3) 0.50%** (6.8) 0.71%%%  (25.0)

Table 4: Estimation results for the smallest, the largest and the median network. Es-
timation of homophily preferences and reciprocity parameter (*=p-val < 0.1,
*=p-val < 0.05, ***=p-val < 0.01).

Variable Description
same caste ¢ and j belong to the same caste
age diff absolute value of age difference between ¢ and j
same family ¢ and j belong to the same family
same latrine i and j both (don’t) live in a house with an own
latrine
same gender i and j have the same gender
both hh heads both ¢ and j are household heads
same village native  both ¢ and j were born in the village
educ None-Some one of ¢ and j has no education,
the other has finished primary education
educ None-SSLC one of ¢ and j has no education,
the other has a obtained a SSL certificate
educ Some-SSLC one of ¢ and j has finished primary education,

the other has obtained a SSL certificate

Table 5: Description of variables measuring homophily (Xj;;).
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than five years of schooling, and to “some education” if they report at least five years of
schooling. For caste membership I adopt the fairly broad categorization from the data
set. Individuals are described as members of scheduled tribes, scheduled castes, other
backwards castes (OBC’s) or general castes.

Table 3.1 summarizes estimation results for the smallest network (village 10, N = 95),
the largest network (village 60, N = 413), and the median network (village 15, N = 212).
For my analysis I maintain a nominal significance level of 5%. The reported estimates have
been bias corrected using formulas (3.4) and (3.6) for improved finite-sample precision.
The reported t-statistics and p-values are computed from formulas (3.3) and (3.5) and
account properly for the presence of an incidental parameter.

The presence of family ties has a positive effect on the probability of identifying
someone as a target for favor requests. This may reflect a strong sense of solidarity
between family members. Homophily in gender increases the likelihood of establishing a
link, whereas differences in educational attainment lower the probability of a link forming.
Interestingly, the effect of caste membership is heterogeneous across networks. In the
smallest network the effect of belonging to the same caste is insignificant, in the median
network the effect is negative, and in the largest network the effect is positive. A positive
effect may be explained by an aversion to dealing with members of other castes. A
negative effect may be explained by a correlation between caste membership and risk.
Favor networks that bridge boundaries of caste may be more efficient. The “same latrine”
dummy, which has been included as a proxy for similarities in wealth, is significant and
negative in the two larger networks. This is indicative of a redistributional role of the
favor networks.

Estimates of the reciprocity parameter for all networks are depicted in Figure 2. Each
village is represented by two dots that give the size of the village and an estimate of
the reciprocity parameter. The dark blue dots give bias-adjusted estimates, the lightly
shaded dots give estimates without bias adjustment. In the following, I consider only
bias-adjusted estimates. For all networks the estimated reciprocity parameter is positive
and significantly different from zero. This means that shocks to i’s willingness to link
to j are positively correlated with j’s willingness to link to i. For different villages, the
estimated correlations range between 0.4 and 0.8. The correlation tends to be lower
in small networks and higher in large networks. Reciprocity estimates are informative
even if we are not willing to uphold the behavioral interpretation of the dyadic model.
Estimated reciprocity measures the correlation of linking decisions within a dyad in a way
that projects out the effect of homophily as well as agent productivity and popularity.
Therefore, the dyadic linking model can be used as a descriptive device for decomposing
the within dyad correlation of links.

Transitivity test The dyadic linking model is based on an exogeneity assumption which
requires individuals to evaluate each link in isolation of all other links. In particular,
individuals do not care about the network positions of their potential linking partners.
For favor networks, this assumption has been challenged. Jackson, Rodriguez-Barraquer,
and Tan 2012 argue that reciprocation of favors is best enforced by the threat of other
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Figure 2: Confidence sets for network-specific reciprocity parameters. The lightly shaded
points represent estimates that have not been bias-corrected.

agents in the network to withhold future favors from shirking individuals. Leung 2015
provides some empirical evidence for preferences for local structure in favor networks. In
particular, he estimates that agent prefer to form links that lead to transitive closure. The
transitivity test developed in this paper allows us to test the plausibility of the assumption
of dyadic linking against linking models that are endowed with some mechanism that
generates transitive relationships.

For the Indian favor networks, I apply the transitivity test from Section 3.7 as well
as a transitivity test based on estimates from a fully parametric model without fixed
effects (see Appendix D). The test based on estimates from a parametric model makes a
restrictive assumption about the determinants of productivity and popularity but is more
robust to sparsity. In the parametric model, productivity and popularity are parametric
functions of observed agent characteristics. The parametric specification of the link
surplus for link ij is given by

}/Zj — X{JHH,O + (XZS)IGS,O + (Xf)leR’O,

where XZ-S is a variable vector that is related to agent ¢’s productivity, X jR is a variable
vector that is related to agent j’s popularity, and #7:0, 90 and %0 are unknown
parameters. My specification for the variables X{g and X JR is listed in Table B.2 in the
appendix. For the model with fixed effects, I compute test statistics based on analytic as

well as bootstrapped variance estimates. The transitivity test detects excess transitivity
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and rejects the null hypothesis of a correctly specified model. This finding is robust
over networks and model specifications. Test statistics are reported in Table B.1 in the
appendix. Chandrasekhar and Jackson 2016 analyze the same dataset and find also
evidence for excess transitivity using a different testing approach.

Correlates of productivity and popularity In the dyadic linking model with fixed effects
all determinants of productivity and popularity are subsumed in the sender and receiver
fixed effects. In Appendix A, I study the median network and sort agents into groups
according to their estimated fixed effects. By investigating the distribution of observed
covariates within these groups we can learn how latent productivity and popularity
correlate with observed characteristics. I find that a disproportionate amount of agents
with high popularity effects are head of their household and that a disproportionate
amount of agents with high productivity effects are female. Moreover, the age distribution
in the groups associated with high popularity effects places less mass at young ages than
the age distributions in the other groups. This indicates that young people are unlikely
to be receivers of favor requests.

7. Conclusion

The ideas explored in this paper open up several avenues for future research.

I have suggested a procedure for testing transitivity. Depending on the specific
application in mind, other network features might be of interest as well. It is an
interesting challenge to provide a unified theory of inference in the presence of unobserved
heterogeneity for a broad class of local network features. The difficulty of such an
endeavor lies in finding a general expression for the asymptotic bias.

In Section 5, I provide some evidence that in smaller networks the variance estimate
based on a first-order approximation may underestimate the true variability of the
transitivity test statistic. I attribute this to the “cancellation property” of the test
statistic that eliminates many first-order terms and renders the influence of higher-order
terms noticable in some smaller networks. This suggests that, in small networks, the
performance of the test may be improved by taking into account second or higher-
order terms when constructing the variance estimator and the analytic bias correction.
Justifying such a procedure requires new tools for deriving higher-order expansions in
nonlinear models with two-way fixed effects and is beyond the scope of this paper.

My estimation and testing procedures rely on a dense network assumption. The
recent literature suggests that some model features can be recovered from a sparse
network by using a conditioning approach (Graham 2016; Jochmans 2016). It is not clear
whether conditioning arguments can be used to construct an estimator of reciprocity
or to test transitivity. Even if conditioning arguments apply, it seems likely that the
size of the conditioning set will render this approach computationally intractable. To
preserve tractability, it may be necessary to put more structure on the distribution of
the unobserved effects. An interesting direction for future research is to explore models
of unobserved heterogeneity that are less restrictive than pure random effects but still
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identifiable in sparse networks.
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Appendix

A. More empirical results for favor networks

This section provides some further analysis of the empirical application. I study correlates
of productivity and popularity for the median network (village = 15).

The unobserved type of agent i corresponds to the tupel (%S , 'yiR). Thus, every agent
type can be represented as a point on a two-dimensional plane. For the median network,
a plot of estimated types is provided in Figure B.1. The graph reveals an interesting
pattern of unobserved heterogeneity. Types cluster into four distinct groups. The largest
cluster consists of agents with relatively large sender and receiver effects (high S, high R).
The second largest cluster is composed of agents with relatively large sender effects and
relatively small receiver effect (high S, low R). The set of agents with below average
sender effects splits neatly into a group with relatively large receiver effects (low S, high R)
and a group with relatively small receiver effects (low S, low R).

There is no monotone relationship between sender and receiver effects. This suggests
that productivity and popularity are distinct phenomena rather than two manifestations
of one underlying variable such as social skill. This exemplifies the value of using data
on the direction of links. Models for directed networks, such as Graham 2016, are by
necessity restricted to modeling one-dimensional types and can therefore not reflect as
rich a picture of the unobserved heterogeneity. The latter group produces isolates, i.e.
agents who are not connected to anyone.

The clusters can be compared along a wide range of observed characteristics such as age
profiles (Figure B.2). The group with the lowest average age is the high S, low R group.
Summary statistics for other agent characteristics are presented in Table B.3. Women
comprise the majority of the agents in the groups with high sender effects. In particular,
they dominate the low S, low R group of isolates (67%). A disproportionate amount of
agents in clusters with high receiver effects are heads of their respective household (47%
for the high S, high R cluster, 60% for the low S, high R cluster).

B. Tables and figures

Village N En EYe ERect E?

203 27.39 18.73 9.00 35.30
203  12.87 5.20 5.32  11.26
345 54.82 36.79 11.82 48.26
256  33.98 2142 10.06 26.11
164 18.79 6.73 4.63 11.69
172 26.63 18.38 11.03 18.84
109 14.78 4.97 6.34 6.50

O Ut i W N

Continued on next page
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Table B.1 — continued from previous page

Village N En EYe ERect E?
9 247 46.34 29.73 11.37 35.67
10 95 1141 2.56 2.86 6.56
11 142 12.03 4.93 5.70 8.71
12 195 26.32 16.86 17.25 16.31
14 150 16.52 8.62 8.50 17.76
15 212 12.78 2.67 6.72 6.23
16 178 24.75 12.51 9.28 16.13
17 200 13.01 4.64 4.75 12.38
18 284 17.15 6.03 5.61 12.13
19 243 18.08 9.34 9.86 12.74
20 159 13.94 7.43 6.77 16.67
21 210 18.90 7.43 8.17 16.68
23 280 41.70 28.27 13.76 38.43
24 211 24.65 11.05 10.37 14.28
25 304 38.01 21.49 9.96 27.10
26 149 28.37 15.33 9.03 16.34
27 174 21.57 3.59 7.53 5.78
28 395 36.34 22.83 9.60 38.58
29 303 2896 17.86 13.80 18.99
30 170 4479 2585 1548 22.33
31 200 2492 13.65 10.52 14.08
32 301 26.87 12.84 9.61 23.09
33 219 2542 16.42 9.35 17.29
34 181 48.08 2442 17.20 16.68
35 216 43.62 25.86 17.06 29.04
38 182 15.42 4.28 4.97 9.25
39 370 2944 1559 16.60 18.68
40 266 73.88 52.47 29.37 44.64
41 181 50.10 4286 20.22 31.05
42 206 39.19 24.76 13.03 15.38
43 227 7324 63.06 21.04 45.56
44 258 69.79 55.61 21.76 38.96
45 263 37.26 21.18 1222 18.16
46 279 28.16 15.56 8.76  26.40
47 160 13.91 4.48 4.28 6.14
48 217 2799 13.74 11.23 16.19
49 184 29.31 14.15 8.81 10.60
50 261 67.57 46.22 23.26 29.79
51 309 61.24 35.55 26.88 30.52
52 395 63.35 40.25 23.90 4543
53 170 64.35 35.45 20.38 23.64
54 124 22.18 5.54 7.07 6.39
55 279 55.95 34.70 19.11 26.36
60 413 24.11 1429 1248 17.92
62 242 4845 33.95 16.44 30.29
63 190 24.62 14.59 7.41 11.10
64 294 61.59 45.62 19.53 4242
65 341 66.53 40.06 26.40 34.14
66 189 26.23 14.61 6.55  20.59

Continued on next page
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Table B.1 — continued from previous page

Village N En EYe ERect E?

67 231 2243 8.72 6.44 14.23
68 164 13.11 -2.06 4.38 3.85
69 220 38.17 20.68 18.67 19.10
70 233 34.86 20.58 1247 21.85
71 298 61.98 3598 20.14 20.70
72 238 25.01 12.07 8.43 15.39
73 217 31.01 16.32 1046 18.63
74 193 33.13 19.82 11.93 12.65
75 210 49.44 33.38 15.56 31.44
76 269 48.61 31.55 19.04 31.06
7T 172 2398 11.61 9.78 15.58

Table B.1: Transitivity tests for all networks. ) ~ is the transitivity statistic for the model with fixed
effects, EX¢ is same statistic without bias correction, EX°°! is the transitivity statistic with
bootstrapped standard errors, and ER; is the transitivity statistic for the fully parametric

model without fixed effects.

Variable Description

age age of respondent

age2 square of age

female respondent is female

latrine respondent lives in a house with an own latrine

obc respondent’s caste is considered an OBC (Other Backward Caste)
general respondent’s caste is considered a General caste

educ Primary respondent has completed primary education

educ SSLC respondent has obtained a Secondary Schooling Leaving Certificate
has savings respondent has at least one savings account

has shg respondent participates in a SHG (Self Help Group)

is hhhead respondent is head of her household

is village native respondent was born in village

Table B.2: Description of variables approximating productivity (XZS ) and popularity
(X JR) in the fully parametric model.
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Figure B.1: Distribution of estimated agent effects in median village (village = 15).
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Figure B.2: Age profile in median village by latent productivity /popularity clusters.
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¢ high S, low S, high S, low S,
P high R highR lowR lowR

household head 0.46 0.47 0.29 0.28

house has own latrine 0.21 0.24 0.24 0.33
house has electricity 0.90 1.00 0.95 0.89
participates in SHG 0.31 0.24 0.31 0.33

has rationcard 0.96 1.00 0.86 0.89

is spouse of household head 0.43 0.12 0.29 0.39
female 0.53 0.24 0.59 0.72

scheduled caste or tribe 0.25 0.29 0.31 0.33
general caste 0.13 0.18 0.14 0.17

Table B.3: Summary statistics for median village by latent productivity /popularity
clusters.

C. Regularity conditions and proofs of main results

Assumption 1 (Regularity assumptions). There is an event An such that P(Ay) — 1.

(i) The true reciprocity paramter is in the interior of the parameter space, po €
[—1+2k,1 — 2k].

On Ay :

(ii) Let \1(M) denote the smallest eigenvalue of a matriz M. For Wi n as defined in
Theorem 1

liminf A\q (WLN) > 0.
N—00

(iii) For B and Wa y as defined in Theorem 1,

lim sup HB]%H < 00 and lim sup HV_VQNH < 0.
N—o0 N—oo

(iv) Let £ and H as defined in Appendiz H. There is a b > 0 such that L = L(b) is
globally concave and H is positive definite for all N.

(v) There are buin and bpmay such that 0 < byip < wij < bymag for all i # j.
(vi) There are pmin and pmaz such that 0 < pmin < Dij < Pmaz < 1 for all i # j.

Proof of Theorem 1. Apply Lemma H.2 and employ similar arguments as in the proof of
Theorem 4.1 in FVW to derive the linear asymptotic expansion. For the distributional
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result write

%Z > HiiXij(Yij — pij)

eV jeV_,
1 1 ~ -
“AJUNN 1 > {Hi;Xi;(Yij — pig) + HiX5i(Yii — pji) } + 0p(1)
\Y ijev

1<j
and apply a multi-variate CLT to the normalized sum on the right-hand side. The
(conditional) variance of the normalized sum is given by

1,j€V
1<J

2Wo N = N

+ 2H;Hyi Xy XJipij/Prijprji |
ZQWI,N BT e—— N( — 1 Z Hz]H]z ij ]zpmvpl szl,]1+0p( )

1,jEV
1<J

O

Proof of Theorem 2. This theorem follows from the stochastic expansion in Lemma E.1.
By Lemma E.3,

a M+ (O M + Opy MH [&,9/2])(9 —0°) + (Opy M)H LS
N Z Jij(Zij = rij) + Ty N( 9 0°) — Z Z QijHij(Yij — pij)

JEV ZGV JjeEV_;
1<j

1 1 ~
= > Jij(Zij —rig) + N > D (i — Q) Hig(Yyy — pij)
i,jeV eV jev_;
1<j

1 -
== Y Uiy + Ta Wi A B,
i,jEV
1<J
where

Uij = Jij(Zij — rij) + (tij — Qi) Hig (Yij — pig) + (Gi — Qi) Hyi(Yi — pji)-

The sum on the right-hand side is over (];7 ) = N(]\Qf_l) independent observations. To

verify that the (conditional) variance of the normalized sum is given by v x note that
_ P
E[(Zij = rij)(Yig — pig)l = rij (1 = pij) = szl]v
i
e
E[(Zij — rij) (Yii — pji)] = rij(1 — pji) = P1,]Zp”47
Jt

E[(Yij — pij) (Vi — pji)] = 1ij — Pigpji = Pij\/PLigPLjis
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and E[(Yi; — pij)*] = prij> E[(Yji — pji)?] = p1ji, and E[(Zi; — rij)?] = ri4. Now
straightforward calculations yield

v < N1z 2 U”)

i,j€V
1<j
1 ng 2 Ing 2
:N(N_l)/zgevﬁ {J ir1ig + (G — Qig) Hig"puig + [ — Qi) Hjil “pa i
JE] Tij . Tij
i 205l — Q) Higprag—= + 2035 (Ei — Qi) Hjipa i
Pij Pji

+2(t;; — Qi) (Ei — %)Hinﬁﬁwm} = V2N
Setting 0, M (¥, 0, p) = 0 and rearranging from Lemma E.1 now gives
. 1 = x
(=0 M)p— ") =55 D Uij + TNWixBY + B
ijev
i<j

+Op<

5= ) + 0p(1).

Plugging in for 9, M from Lemma E.3 and for BK}* from Lemma E.2 now gives

V2 i
v NN[p—p°] = ——— Uij + 2T W B + 2B,
1,nN[p—p] N(N_l)/zijzev ij N'W1,NPN N
i<j
/| A . 2
+Op( N‘P—P _PO‘ )+0p(1)~

By an appropriate CLT

1
Ui‘—>/\/0,1.
Vo2 nN(N —1)/21% / (0.1)

1<j

Proof of Theorem 3. Write
2(Sw-ESy) = N"2(Sy ~ESy) - N2(ESy — ESy).
We first analyze the second term. By definition
2(ESy —ESy) = sn(5,0) - sn(+",6°)
Therefore, by Lemma F.1 and Lemma F.2

N2(ESy —ESy ) = {(@wsw) + (Oysn) 7 [030 L]} (0 - 6°)
( /SN) IS+BN+OP(1)
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Straightforward calculations give

Ogsn = Z Z B W'Lg

zEV JjeV_;
As in the proof of Lemma E.3, for £ = 1,...,dim(0) let
— 1 -1 -1 -1 o1 =
Sijk = N Z Z <HSS,z‘k:1 + HRS,jkl + HSR,ikg + HRR,jkg E (O lhikz)-
ki1€eV k2€V7k1

and let Z;; = (4,1, - - -, Zij,dim(e)) - By Lemma S.8(i) in FVW and the matrix represen-
tation of dysy from the proof of Lemma F.2

(8 ’SN>7:[ ( yor £ :_72 Z waw“z]’

i€V jeV_;

(6 ’SN) 18__72 Z PﬁN ij zg zg ng)

i€V jeV_;

Straightforward calculations give X;; — E;; = )E'ij so that

898]\[—1-(87/8]\[)7'_[ 79//_‘, Z Z ,3 wUX

1€V JEV_;
Plugging in the linear representation of 0 from Theorem 1 gives
—2 (IE/STV —ES N)

_ VA N
=B} + UJIVWl_,]{fBg/ + (U]/VWZL_]{[> N Z Z XijHij(Yij — pij)
i€V jev_,;

+ % D> (PBN)iHi;(Yij — pij) + 0p(1).

i€V jeV_;
Then, by Lemma F.3
—2 <SN — IE/STV)

_ 1 -
= — By — UNWABY + i DD (BY = (PB)ij — tini) Hij (Yij — pij) + 0p(1).
1€V jeV_;

The sum on the right-hand side has conditional variance vjf,. The conclusion now follows
by applying a CLT. O
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D. Transitivity test in parameteric model

In this section, suppose that Y7 = X]’M-j@g. Let ép denote the probit estimator of (92. We

can estimate the number of transitive triangles predicted by the model by

The following result gives the asymptotic distribution of a transitive test based on the
parametric model.

Theorem 4. Let )
N
UpN = 372 d > Bijwii Xp

eV jEV_i

and up N,ij = Uz/),Nwl_,]{[Xpﬂj and suppose that Assumption 1 holds. Then

Sy — &, Sy
E,n = % = N(0,1) + 0,(1).
N v, N
where
1 2 -
vpN = N2 > {(55 — upnig) wij + (B — upvij) (BY — Up,N,jz‘)Pz‘Nwz'jwa‘i}

eV jEV,Z‘
Proof. The theorem follows from Lemma F.3 and a standard stochastic expansion of the
probit estimator. O
E. Main lemmas for expansion of p
Lemma E.1 (Stochastic expansion of estimated score). Under Assumption 1
M ('S’v é7 P) =0pM + (3p2M)(p - PO) + (8p9//\/l + 8p7/M7:l‘1 [879/[,_])(9A - 90)
+ (O MYATIS + BY + 0y (VN [p = 0| + N o = ") + 0,(1)
where the order of the higher-order terms is uniform in p € [—k, k] and

B =(0py MYH S — (0py M)HTHH 'S

dim(y)
Lo - A - o
+5(H 18)'{6,)77/M+ Z; Oy, L[H 1am/M}g}(H LS).
g:

Proof. Throughout the proof ¢ = 8. By a Taylor expansion

0pM(%,0,p) — 0 M(%,6°, p°) =0, M(%°,6°, p°) (p — p°)
+ 8p9/-/\;l(70a 007 pO) (é - 90) + RN,I(,O) + RN,Q
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with

Ry(p) =0, M(¥°,6% 0%) (p = p°) + (4 — ) 0,24 M (7,6, 0°)] (p = 1°)
+ (0 — 6% [8p29./\/l(’_y,§,p )] (p— +83M( 0 .0)(p—p°)?
Ry Zape’/\;l(’)’oaeo’ﬂo)(é -0+ (5 - [ o M(7,6°, p° )] ( (006

+ (6= 6°) [0p0 M(3,0,°)] (8- e“>
and 7,7, 0, 9~ are intermediate values. It is easy to see that

sup \}5,)09'/\4(’779,/70)“ = Op(N),

~er fe
sup  {|0,20M(7.0.0°) || = Op(N),
e fe

sup Hap:‘M('V’gvp)H = Op(N),

~€elL0€0,pE[—K,K]
and
o400, )| = 0,(1),
18,0 M(%°,6°,0°) || = Op(D).

Moreover, applying Lemma G.1(i) gives

0 — ]\7l
'vesruepee 107220, 0: )Hq OP( q)’

Ol — o (N
‘YSPP Hap'vﬁ’M('Y’e?P)Hq*Op<N )

Noting that [|4 — 'yqu = 0, (N~1/2+1/a) and Hé — 0| = Op(N~1), we have

By (p)] <[|0,2M(5°,6°,0°) || |5~ #°|

+ NI (30,6, 115 ="l I = "
o= [ 10,20M (3,0, ) || + |0 = 2 [95:M (3.6, %)
=0, (VN |p=o"| + N|p—o"I").

Moreover,

sl <[00, )| [ - o
+ Nli/qH@pﬂ/g/M(,%Qo,pO)HqH;/ _ 70HqHé _ 90“
+ 110 = 0119000 M (5.6, ) | = 0 (1).

41



Next, Taylor-expanding 9,M (’?, Qo,po) and plugging in the expansion for 4 from
Lemma H.2

aPM(;Y? 907 pO) - 8PM (707 907 pO)
=0y M(°,6°, ") {H‘lS +H [0 L] (0 — 6°)

dim(y

. z o £ 5115,

(H'S)'[Dpry M(2, 6, ,00)] (H7'S) + Ry

DN | =

_I_

DN | =

with

Ryz =[0,y M(7°,6° o)) R4(8)

1. ) ~
+ 5 (7 =" = HTS) [0y MY, 0%, )] (7 = 7 + HTLS)
1 dim(~)
5 2 =[Oy, M3, 0| (B = A =2
g=1

where 4 is an intermediate value By Lemma G.1,

[0 M3, 0%, )|, = O (NT)

SUp [|Opyya M (7, 07, PO)Hq = Op(1).
~el

Noting that || —~+° — ’H—ISHq = O, (N~1+%/4),
|[Raval SN0, M(Y°, 6%, )| | B+ (D)],
HS|, (19 =, + 1778, ) [0 M. 0. ),

OH Hamwj\/l('y,eo,p H

6

A H 'Y H
<1+ N|j§—eN"-Ve_1_ 10 g (N-V2H/a) = o (1),
<L+ N0 - PN+ O ) = op(1)

From now on, drop the arguments of M and its derivatives whenever they are evaulated
at their true values. Then

(Opy MYH TS = (0py MYH S + (0pyy M)YH TS = (0pyy M)H ' HH 'S + R4
with

Rya= (0 MyHTHHTIS + (O M) (HT! = (HT! = HTIHHTY))S.
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Lemma G.1 applied with ¢ = 2 yields ||0, M|| = 0,(1) and |9, M|| = O,(NY?).
Then, by Lemma H.3

(B al < [0 MY P IHINS | + 0 MI[H = (37 = F A1) = 0p(1).
Next,
(0py M)YH 040 L] (8 — 6°) = (0py M)YH T [00 L] (6 — 0°) + Riv 5
with
Rovs =0y M) [0 £](0 = 0°) + (0 ) (1! = F) [000£) (6 )
+ (8P7/M)7:[71 [8"/9’2] (é - 90)
and
Bovs| <[ M7 onor L]0 — 6°]

0 WA 0~ 0 {7 0] + [ 0202

y} = 0,(1).

Repeating the last argument in the proof of Theorem B.1, Part 2 in FVW almost ad
verbum gives

dim()
(8PW’M)H_1 Z [877’7g£]H—IS[H_1S]g
g=1
- dim(~y) o B
=(0py M)H ™ [0y LIHTHS[HTES] |+ 0p(1).

g=1

Now write
(H'8) [0y M| (HT18) = (RS |Gy M| (H1S) + R

with

(Bl <ISIFI#H = (12 + 17 D10 M|
+|[SIPI1 M = 00(1):
The last inequality uses that by Lemma G.1(iii)
Hap'w’MH =0p <N73/8> :
We may now conclude that
OpM(%,60°,0°) — 0pM(+°,60°, ")
:(apv’M)ﬁ_IS +H [679/5] (é —0%) + (am’M)f’q_lS - (ap’v’M)ﬁ_lﬁﬁ_ls

1 dim()

+2<ﬂ-ls>'{apw+ S [amqH—lsm—lamfwg}<H-ls>+op<1>.
g=1

The assertion of the lemma now follows immediately. O
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Lemma E.2 (Behavior of bias term). Under Assumption 1
By = B+ 0,(N12)
with BY, as defined in Theorem 2.

Proof. 3 ~
Step 1: behavior of (9, M)H 'S — (8, M)HTHH LS.
Let D@(Jm) = prlmij — Ql‘j (87r2€ij) and

Aij=—+ Z Z (HSS ik T Hstk +Hgp it HRRﬂ)(@wfkl)-
keVleV k
By Lemma S.8(i) and (iii) in FVW
(B MYH 'S — (8, MYH'HH 'S

1 - 1 -
— N Z Aij((?pyl mij) + N Z AijQij (871.2&‘]‘ - E[aﬂew])

it oy
:_721&1]( ED(m))=U1+U2+U3+U4
i#£]
with
Ur = % {( Z ﬁgé,ik(aﬂgk,l)) Z (Dz(;‘n) - I_EDZ”)) }v
eV keV JjeV_;
leV_y
= S (S Hkaientn) 3 (0" 50l |
jev U kev =y
eV,
Us = % {( > Haka@tnn)) S (D4 _EDg;l))}’
iev O kev JEV
16V,
Uy = % {( > Hahao:b)) S (D4 —EDgf))}.
jev U kev icv.
leV_y
Next,
- 2 (X F 1089 u0.00) 3 (0f7 -E05") )
iev \ keviev, jev
+ % > { ( DY [Hes— (His)™ ].k(aﬂék,l)> > (DZ-”) - EDE?)}
iev \ keviev . jev,
=Uiq + Ulb-
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A straightforward application of Cauchy-Schwarz yields

2
O NS (F 2 3 NS - 0259 o)
1€V keVIeV_y
" iz <1 3 (DW _EDW))Q
iJ iJ :
N 2% \/Nje\/,i

Now observe that for ki, ks, l1,l2 € V., E[0rly, 1, 0xlk,y 1] is bounded if {k1,l1} = {k2,l2}
and 0 otherwise. The cardinality of the set {(k1,k2,l1,1l2) : k1, ko,l1,l0 € V. {k1,l1} =
{ks,12}} is O(N?). Moreover, by Lemma D.1 in FVW

NH/}:[Eé (HSS 1Hmax p(l)

Therefore,

2
SUPE{ Z Z [Hss — HES)_l]ik(anfk,z)}

i€V keV eV,

1 _ — A— __ e n—
<oty S N - Gz NP 091,
eV

k1,k2,l1,l2€V

2
X E[aﬂéklllaﬂm]} = Op(l).

Furthermore,

= 1 m = 1~ (m 2 1 = m = (m)\2
supE{\/N > (p§” -ED ))} = sup - Z_.E(ng '—EDJV) = 0,(1).

eV jev_,

This implies that E(U15)? = O,(N~1) and therefore Uy, = O,(N~/2). Moving on to the
analysis of the term Uj,, we can write

1 (m) _ mp(m)

Ui = 2 S (505 ( Yo ezl>< S (DI ~ED: )).
N eV ZEV N JjeV_,; ’ ’

Let

(3 ) . 00)

LeV_y J1€V_sy

= <0ﬂ'€i1i2 + Z 67r€1'111> <Di112 + Z Diljl) .

WeV_iig gy J1EV {iy,in}
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Under our assumptions, for i1 # iy

E(3i1si2)
=K ( Z aﬂ-filll Z Di1j1 > E < Z 8,%2;2 Z D12j2>
WEV_{iin} JLEV_{iy,in} 12€V_{iy,i5} J2EV_{i1in}

+E [(Dm‘g 0 6@111) ( (Y 2 51'212)]
lieVv_ {i1,in} ZQGV {i1,ig}
+ I_E |:<a7r£i1i2 ’Lll1> (

Tligiy Z nglz):| + OP(N)
heV_i gy

€V _{iy,in}

:E< Yoo Ol Y Dm‘l)E< S Onliy, Y. §i2j2>+OP(N)
lLeV. {ig,i 1

—{i1sig} JIEV (4} ,in} L2eV_iin) J2€V_{i1in}

where the Op(N) term is uniform in 4y, 2. Similarly,

E(sq,) = < Z Onlinty, Y bilj1>+0p(1)-

hev-; T1EV_{iy in}
Then,

var Ula =N 42 HSS < Z a gzl + Z Z 0. Ezla Ezk)

eV leV_; keV_ {i,l}

2
Y Y (stm<H§s>;;E<sﬁsi2>—(Z(Hssxm <szl>)
Z'1EV’L'2€V,,L'1 1€V

_ N4 Z(H*SS)’LZ2< Z E(0 Ezl + Z Z E(0 Ezl 8 ik )

eV leV_; leV_; keV_ {i,l}

FNTEY D ()i, (Hes)inElsisi)

eV izEV_il

—NTY DN (M)t (Hes)in E(si)E(si,) + Op(N72) = 0, (N71).

1€V iQEV_il

Therefore, Uy, = E(U14) + O, (Nfl/Q) or

_ _ 1 —_ ~ (m _
Ula =N Z(Hgs)ul<N Z E(aﬂgijDEj ))) +OP(N 1/2)

1% JEV_;
1 Yjev, E(0xL;D5)
N & Yiev, E( = 0r2lij)

+ O, (N712).
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Similar arguments can be used to show that
Uz :Op(Nilﬂ)v
Ug:O(N‘V%
ev., B(0:4;; D))"
jGV Zze ( TrQElJ)

In summary,

(Opy MYHTS — (g MYH'HHS

v, E(8:;D{) v E(0ety; D
_1 2jev. 7( J Z 7( iDij ) L0, (N 1/2)
N2 S Bl 0t) TN 2 S B 020)
_ Z jev_ (aﬂpij){(ayljij)% - z‘j(aﬂHw)}
N eV Zjev,i(Hijawpij)
i (Orpij 0 sz_QzaﬂHZ
+1ZZGV]( ]){( Y1 J) ]( j)} —I—Op(N_l/Q),
N eV Zzev (Hljaﬂpzj)

The second equality follows by noting that

E[(r0ij)(052i7)] =H;j(0: Hij)E[(Yi; — pig)?] + 0 = (9 Hyj) (Oxpig),
E[(0r ;) (Opyimij)] =Hij(0y, Jif )E[(Yij — pij)(Zij — 145)] + 0
=H;;j(0y, Jij)(rij /pij)P1,ij = (Oxpij) Oy, Jij) (i /pij)
I_E[ (aﬂgw)] =H,;(Orpij)-

Step 2: behavior of %(7-_[_18)/8,,77/./\;1(7-_[_13).
Inspection of the proof of Lemma G.1 shows that (9,077//\;1 can be written as

oM = Dgs1+ Dgss2 Dgsr1+ Dgsgr2
. Dsry+Dspys Drri+ Drr2

where Dgs 1, Dspr1, Dgrr,1 are N x N diagonal matrices with entries
(Dss,1)ii =0,5.,50,M
(Dsr)ii 23%5%33,)/\/1
(DrR,1)ii =0,rrOpM

and Dgs2, Dsra, Drra are Op(N71) in the ||-||,,,-norm. Let T denote the N x N

max
matrix with entries Y;; = 0-¢;;. By Lemma H.1 H™" can be written as

_ | /% —1 0
H_l — ( SS) — B _|_R ,
0 (Hr) ™" N
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where ||Ry ||, = Op(N1). By the first assertion of Lemma G.6

N2(H'S) (g M)HTS
- — o1 [Ty
=(NY D) H (Bpyy MYHT! (T,LN>
=T (Hss) ™ Dssa(Hss) ™' Tew + ey Y (Hyr) ™ Drra(Higr) ™ Yy
+ 25 Y (Hs) ' Dsra(Hig) "' Y'in + Op(N).

By the second assertion of Lemma G.6 and a Bartlett equality

T (Hss) " Dosa(Hss) " Ton =Y Y [(Hs) ™' [DssaliBl(0:L:7)%] + O, (N*?)
eV jev_y

:Z [Dss1lii 22jev E[(0x20i;)] N Op(N3/2)

iev (N—l v ,E[—aﬂzf,-j])Q

[Dss,1]ii 3/2
=N> + O, (N?/2).
& (N Tjev, Bl-0.25))

Similarly,
_ _ D g
Y (Hir) " Drra(Hipp) Ty =N > DRl +0,(N%/?)
jev (N Yiev.; Bl- 32%])
and
Y (Hss) ' Dspa(Frg) ™' Y
(DSR1>MWZ
:NZ o ) 73
v (N zjzlE[—aﬂeij]) (N S B0t
where

Y icv., ElOrlij0x ;i)
_ 1/2 _
(Sjev, BlO4:5)2)  (Syer., El@nti0)?))
>jev., HijHji(rij — pijpji)
- 1/2 1/2
( 2jev., Hij(afrpz‘j)> (Z]’ev_i Hji(aijz‘)>
Z]EV pz] \/ WijWii
o 1/2 1/2°
(Srevewi) " (Zyev, wii)

COIT; = s
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Closed-form expressions for the elements of Dgg 1, Dsgr 1, Drr,1 are given in the proof of
Lemma G.1. Re-writing them using Lemma G.3 yields

1
0572 0pM = ZaprmU TN Zapy?mﬂ - N 2. Opyz i

JGV jEV JEV_;
J>i j<i

O 20y M = 9 L3 Ly

R)2 - Z py2mU + N py%mj’b — N Z py%m]’“
JGV JEV JEV_,
Jj>i J<t
1 1

OpapdoM =5 Z Touraaj + 5 > Doy i = N Y Opyryamis-
jev JEV JjevV_,;
Jj>i j<i

Computing the derivatives and re-writing using Lemma G.3 gives
Dpyemij = (0,2 i) (Zig — 1i3) — 2(0ys Jij) Oy 7i5) — Jij (D,2745)
DpyryaMij :(aylyz Jij)(zij —Tij) — (8y1 Jij) (892”]') - (8y2 Jij) (aylrij) — Jij (angrij)
=0y Jig) (Zij — i) = (O i) (O 75i) — (Oys Jji) (Oyuis) — Tij (Byyari)
and therefore

(Dss)ii . Z
V_

2E 6241 JZJ aylrij)] +E [Jij (83;%7"1'3')] }

{2
{21@ (O T51) (Oirsi)] + B[ (9,m30)] |
{E 8lelJ aylrﬂ)] +E[(ay1*]ji) (8y1rij)] +E[Jij (8y1y27ﬂij)]}'

Step 3: behavior of 5 ( 18) { Zdlmw Oy wgﬁ[ﬁilapy’/\;[}g}(ﬁfls).
Following the argument in the proof of Theorem C.1 part(ii) in FVW and letting C
denote the N x N matrix with elements (C);; = Qij]E(@rs&j) and

c_ 1 |diag(Cun) C
N '’ diag(C"uy)

gives

{dlmz 8777 lam’M] }( - Z Z A2Q E 7r3€u)

ZEV]EV i
Lemma S.8(iii) in FVW yields
1 —_ —_ TLN
—72 > AZQGE(0rslij) = —§(L’NT’,L;VT)H len! <T,LN).

eV jeV_,
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By Lemma G.6 the right-hand side of the preceding equation is equivalent to

1 1 4. — e N
2NLNT'(HSS) 1(N 1d1ag(C’LN))(HSS) vy

1 _ _
- §LNT(H7%R)_1 (N~ diag(C"in)) (Hpr) "' Cen + Op(N 1)

:2;]21‘6‘/{[(%*95 ZZ( EST QuE ﬂ3£”> > ]E[(a,,&j)ﬂ}

JeV_; JeEV_,;
- o Z{ (Hir)~ JJ< P> 04E[005] ) > E[(awz,-j)ﬂ} +Op(N7Y2).
jeVv ieV_; 1€eV_;

By the definition of 7-_@5 and a Bartlett equality

2N2 Z{ HSS u( Z QUE 7r3£l]> Z a glﬂ }

eV JjeV_,; eV_;
1 Siev., QijE[0ra ]
TAN Y B[Ol
B Y iev, Qi{2(0xpij) (0 Hij) + Hij(0r2pij) }
“2N 2 > jev, Hij(Orpij) ’

eV

where we use
Oralij = Op2H;j(Yij — pij) — Hij(Or2pij) — 2(0xHij ) (Orpij)-
Similarly,

- onF Z{ (Hrr) '3 <N—1 > Qij]E[awgeijD > I‘E[(awzij)ﬂ}

jev ieV_; ieV_;
Ly Yiev., j{2(0xpi) (0n Hij) + Hij(Or2pij) }
ON >iev.; Hij(0xpij)

Jjev

Lemma E.3 (Behavior of stochastic term). Under Assumption 1

1
8pzM = — N Z Jij(aprij) + Op(l)’
ij€V
1<)
Do M+ (O MYH (D0 L) = — —Z > Jii(0yri) Xij + 0,(1),

1€V jev_;

o 1
(Opy MYH TS = — ¥ S Q4 HG(Yi; - pij)-

eV jev_;
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Proof. We have

1
0pM = S {0,025 — rig) — (B ).
ijev
1<)

It is easy to see that
(/1 2
E[(N > 00Jij(Z —Tij)> } = 0Op(1)
ijev
1<)

and therefore

1
8p2M = - =7 Z Jij(aprij) + Op(l).

,]EV
1<j
Arguing similarly we get
Do M = — Z Jij(rrij) + Op(1)
,JEV
1<J
1 , )
- N Z Jij{ Oy 7ij) Xij + (Byrij) X} + Op(1)
,JEV
1<j
1
=~ 52 2 Jil0nrip) Xi; + Op(1),
eV jev_;

where the first equality is by the chain rule for derivatives and the second equality follows
from Lemma G.3 and symmetry of J;;. For k =1,...,dim(0) let

- 1 _
Sijk = TN Z Z <HSS ik T HRS]kl +Hgp ke T Hpn ]k2> Qo licyky)-
ki€V kQGV_kl
and let Zi5 = (Zij1, - - -, Zijdim(e))- By Lemma S.8(i) in FVW and Lemma G.5
Oy MYH™H (O L) = Z Z Jij Oy 7i)Zij + Op(1).
zerEV
Straightforward calculations give X;; — =;; = X ij so that

DM + (0 MYH (89 L) = fz > Jij(0y,ri) X[ + Op(1).
eV jev_,

Lemma S.8(i) in FVW in conjunction with Lemma G.5 gives

o 1
(O MYHTLS = _NZ Z QijH;j(Yij — pij)-

i€V jeV_;
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F. Main lemmas for expansion of Sy — IEL/EV

Lemma F.1 (Taylor expansion of sy(¥,0)). Under Assumption 1

SN(’SI) é) - SN(707 90)
={(0psn) + (Oysn) H! (040 L]} (0 —6°) + (0ysN) HLS + Bif’* + op(1),

where

B;%*:_(av,sN)ﬂflmflM v s ) Z [m L) Hs A,

+5 (1) (D] (A1)

Proof. In the following set ¢ = 8. By straightforward Taylor expansions
sn(3,0) = sw(7°,0%) =0 s (4°,60°) (6 — 0°) + Oy s (77, 0°) (5 — +°)
1

+ 5('3’ - 70)/ (a'y'y’sN(’YOa 00)) (¥ — '70> + Ry N,

where

Rin =3 = %) (9gysn(7,0%) (0 — 6°) + %(é — 09 (Bpersn(#,0)) (0 — 6°)
dim(y)
F o S (3= [Py, s, 0005 =) =2y

6 =

Note that

sup ||0gersn (Y, 0)|ly = Op(N),
0cO,vel

}|697/3N(70,00)Hq = Op (N%) s
sup |8y (7, 6°), = Op(1),
~yel

0355 (2%, 6%) |, = Op (N3) .

where 6 and ~* are intermediate values. The first equality follows by inspection and the
1 1

other equalities follow from Lemma G.2. Therefore, since Hﬁ/ — 'yqu =0, <N _5+5> we

have

[, + 3 Wowron s 0l - o]

2 =0, (N72FE) = 0,(1).

|R1,n| <N'"s |9 sn (7,

1 42
°N
+ N
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From now on, drop the arguments of sy and its derivatives whenever they are evaulated
at their true values. Then,

sn(%,0) — sn(7°,0°) = (0prsn) (0 — 6°) + (Oysn) H™'S
+ (a rsn)HT! [a o L] (0 —06°)
dim(vy

L 0ysy) Z [a,m cluts s,

1
+ 9 (H_IS) [a‘w’sN] (H_ls) + RaN,

with

A 1
Ron = (Oysn) Ry(0) + 2 (5=~ H_ls)/ [Oyysn] (7 =" +HT'S),

where Ry(é) is the remainder term from Theorem B.1 in FVW (compare also proof of
Lemma G.1). By Lemma G.2,

[0yswl, = Op(N7) and [|oyssn]], = Op(1).
Noting that Hﬁ/ —~0 —H—ISH ( 14-2/q)7

|Bvol SN'21]0ysn| ]| R4(6)

%_ISH(]( ) 0Hq+HH_18Hq>Ha'Y'Y/SNHq

A Ry(0)
<(1+ N6 —0° NH/QH”—A‘? 0, (N~1/2+1/2y — , (1).
<L+ NI = PPN+ Oy ) = op(1)

Following closely the proof of Lemma E.1 it is now easy to prove the assertion of the
lemma. O

Lemma F.2 (Behavior of bias term). Suppose that Assumption 1 holds. For Bff’* in
the statement of Lemma F.1 we have

BY" =B + 0,(N7'/2),
where B}?, 18 given in Theorem 8.

Proof. Tedious calculations yield

0 S{SN("}/ 90)} % Z ( ﬂpzj) 2]:31]7
JEV_i

0 R{SN("}/ 90)} % Z ( ﬂpjz) ]1:3]2
JEV_;



This implies that
1 [ Ay
asz(’Y 0° )= N [A’LN]
for a N x N matrix A with entries
A — wij,BZ]-}[ for i # j
(A)ij = L
0 for i = j

We will exploit this representation in our projection arguments below.
Step 1: behavior of —(0ysy)H 'HH LS.
Let

Aij = —— Z > (Hssm + Hps g + Hona + HRRJI)(GWZM)'
keVleV k

By Lemma S.8(iii) of FVW
L 1 _
Oy H IS = 37 ST A(PBY)ii{0retis - Bl }.
i€V jeV_;

Following similar arguments as in the proof of Lemma E.2 it can then be shown that

TR P L 1 ZjEV (P/BN) (] [8 gij(aﬂgij)} —1/2
—(Oysn ) HTHHTIS = — ; > v B0t + 0, (N2
1 Zjev_- PﬁN) (Or Hij)(Oxpij) -1
=—— : + 0, (N71/?).
N ;/ ZjEV,i wij P( )

Step 2: behavior of 1 (H1S) (944 sn) (H1S).
We have

8(715)2{51\7(70’00)} :% Z ( 7r2p7«]) 2]161]7

jGV—z

N2 Z Z (0xpij) (Onpir) [Pjk + Prjl 5

JEV_; keV_ {i,5}

8(753)2{51\/(70,00)} :% Z ( 7r2pgz) JZIB

jEV i

N2 Z Z Tl'p]’L ﬂpkz) [p]k +pk‘]]

JeEV_; keV_ {i,5}

0,5, {sn (20,6} = QZ > (9xpi)(Onpri)prs-

JEV KEV_ (i1}
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Moreover, for all i # j the “cross derivatives” 0 svs(sN) 9, R R(SN) and 87373(31\/) are
J

bounded by N times a universal constant. This 1mpheb that

Dss + Mgss Dggr+ Mggr

Oyt S 6° [
Y N(7 ) D{S’R + MS’R DRR 4 MRR

where Dgg is a diagonal matrix with entries (8(75)2 s N) Drgpg is a diagonal matrix

eV’
with entries (8( R)QSN) v and Dgpg is a diagonal matrix with entries (8 s RSN)leV.
The matrices MSS, Mpggr and Mgpr are off-diagonal matrices that are bounded in terms

of the [|-||,,..,-norm. Arguing similarly as in Lemma E.2 it can now be shown that

max
1, -
5(% 1) (Oysn ) H1S
Z [Dsslii
2N 1% (N Z]EV E[ a7r2£ij])
1 [DrRljj
2N (N_l Diev. E[—@r?&j])
1 D corT
NESS (Dsn)is O O, (N2),

N & (N_lzj,\leE[_aﬂgijD (N Ly E[-0 Wzﬁ;z])l/

Step 3: behavior of (H™'S) {Zdlmh Oy, L[H D SN] HHLS).
Following the arguments in the proof of Lemma E.2 yields

! dim(v)
-1 71
§ S){ Z Onyry, L[H1O SN] FHT'S)
__ 1y T PEE] 1 s Ker (P20
2N i 2jev Bl=0mnli] 2N i > jev., B[—0r2li]
Z djeve, (PB™)ij{2(0xpis) (O Hij) + Hij (Or2pis) }
2N eV Zjev,i sz(awng)
L L 3 Siev,(PBY)ij{2(8xpij) (0xHij) + Hij(Dr2pij) }
2N 2iev.; Hij(Orpij) '

Lemma F.3 (Linear representation of oracle test statistic). Under Assumption 1
Sy —ESy=N > BYH;(Yi;—pij)+ 0p< Vél"(&v))
ijEB(N)

and

var(Sy) = N2 Z {pl,ij(Hij/BiJ> +IOZJ\/m(HUH]ZIB 35 )} (NS)

ij€B(N)

95



Proof. We start by computing the conditional variance of Sy. Since triangles S and /3’
are conditionally independent provided that V(8) NV (5") = § we have

E [(Ts — ET5)(Ty — ETp)] =0
for such triangles. Now,
2
VE_LI“(SN) :I_E< Z (Tg — I_ETg))
BeB(N)
=Y (T —ETp)(Ty — ETp) + Hy

8,8'eB*(N)
[V(B)NV(8")|=2

=Y ( > Pl (B)E (Vi — i)’
iEE(N) B.65ij
[V(B)NV(8")|=2

+ Y PRy BE Yy — pi) (Vi — )] ) + Hy
B¢€ij,B' 3ji
VBNV (8)|=2

-5 (mij ( ZpTU<ﬁ>)2

ijeE(N i
+ ﬁz‘j\/pl,ijpl,ji( > pTz’j(ﬁ)) < > iji(ﬁ))) + Hy
B3ij B3ji

where Hp is the contribution of triangle pairs that share the same vertex set and

Hy=Hyv+ Y, Ang

ijEE(N)
with
Anig=pri; Y. LB (B + pigyrapis Y. iy (Bp(8)
8,8'>ij B,8'>ij
V(B)nv(8)=2 [V(B)nV(8")|=2
2
— P1ij ( > pTij(5)> — Pij/P1ijP1ji < > pTij(ﬁ)> < > iji(5)>
B3ij B3ij B35t

Clearly, Hy is of order O,(N 3). Bach A N,ij can be bounded by N times a universal
constant. Therefore, H} is O,(N?) as well. The assumption of non-vanishing linking
probabilities ensures that var(Sy) =< N*. We now consider the Hajek projection Sy of

o6



Sy — ESx onto dyads, i.e.
Sx= > E[(Sx-ESN) |V, Y]
ijEV2(N)
= > Y E[T-ETp) Y]
BEB(N) ijEE(N)
= Z {(Yij_pij)zpzij(ﬁ)}'
ijEE(N) 33ij

Here, the second equality uses that every transitive triangle 8 may contain the link ij or
ji but not both. We now compute the conditional variance of Sy:

2
VET(S’N) = Z E{(ng — Dij) szm(ﬁ) + (Y _pji) Ziji<5)}

ijeV2(N) B3ij B>7i
2
= Z {pl,ij < Z pgﬂﬁ)) + ﬁij\/pl,ijpl,ji< Z pfij(ﬁ)) ( Z pzji(ﬁ)) }
ijEE(N) B3ij B>ij B3ji

From the previous results it is easy to see that

var(Sy —ESy)  var(Sy) 1
var(Sy) var(Sy)
We now apply a conditional version of Theorem 11.2 in van der Vaart 2000. To prove
the conditional version of the theorem simply replace the convergence in squared mean
argument in the proof given in van der Vaart 2000 by an analogous squared condtional
mean argument. It follows that

SNy — ESN = SN + op ( VZ_-),I'(SN)> = SN + Op(NQ).

G. Technical lemmas

Lemma G.1 (Sparse bounded functionals of the incidental parameter). Let K denote a
finite constant and let (ﬂ'k)é(zl denote a collection of N-dimensional parameters. Define
w = (m},..., 7). Let {gij}i<j denote an an array of functions such that
9ij () = Gij(T1is - TR i, T g -+ TKj)
with
107955 (T) || e < C for £=0,1,2,3
for a universal constant C. Let
g(m) = = > gij().
1<J
Then
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(i) 110x9(m)l, = Oy (N7 ), moreover, if

1 ‘ 1 Z q 1 1 q
Ly L aﬂk,lgm)\ +§j\§jaﬂk,2gﬂ<w>\ —0,(1)
N - \/Njiy N - ‘/Nj,iy

J>t J<t

thenHaﬂgcn)m]::op(fv—%+%).
(it) Moreover, ||0x2g(m)||, = Op (1) and ||0zsg(m)|, = Op (1) .

(iii) For a o-field A let E = E[- | A]. Suppose that conditional on A the elements of the
arrays (&ri,ﬂmgij)gj:l and (aﬂi,ﬂjylgﬁ)gjzl are independent. Then

[0msg(m) ~ Efomag(m)] | = 0, (N)
Proof. First proof (i). Note that

1 1
Ory,9(m) = N Z Oy, 945 () + N Z Oy, 2951 (7).
jev US4
J>t j<i
By definition of the [|-[| -norm and the Minkowski inequality,

1
q

KN
|0mg(m)|l, < (Z Iawg(fr)!q>
/=1

1 1
q q
S| q K N q
< ZZ‘NZ&M%(”)‘ 22D ‘N > :3m,zgji(7f)‘
k=1 i=1 JjeVv k=1 i=1 JjeEV
> j<i

To prove the first claim of (ii) note that

1 1
67rk,7;7r£,ig(7r) = N Z aﬂk,17re,1gij (77) + ﬁ Z 87%27%29]'2‘(77)
jev jev
J>1 j<i

and for j # i

%aﬂ'k,lﬂ'lggij(ﬂ) for j > i
%aﬂkgﬂe,lgji(ﬂ') for j < i

aﬂ'k,iﬂ'l,jg(ﬂ-) = {

o8



Every element m, of the parameter vector 7 corresponds to a unique ;. Use the

notation g = 7y, i(s)- For every 1 <s < KN

KN K
Z |[67r29(7r)]8,t Z Z 87%( ),17e, 192(3)
t=1 2: Jjev
J>i(s)
1 K
+ N { Z Oy 17me,29i(s);j
=1\ jev
J>i(s)
<2KC.

By the symmetry of partial derivatives

KN

KN
S 0r2g(m)]sitl = S [0n29(m)]es| < 2KC.
s=1

s=1

It follows that

0 =
19m29(m)lloc =, mae

1072g(m)lly = [|Or29(m)||, = max

1<t<KN

By Lemma S.4 in FVW

JeEV
J<i(s)

)+ 3

§:|
Z! r2g (T

Z 87rk( ),27, ng’l(s)( )‘

Wk(s),ﬂe,lgji(S) (7")‘ }

m)|st| < 2KC

Vsl < 2KC.

1 1—-1
1029(m)llg < N|0m2g(m)|[{ [|0729(7)[|oc * < 2KC.

Turning to the second claim of (ii) note that for {k,¢,m} C {1,...

1
T N Z 67rk,27rz,27rm,29ji(7")
Jev
1<t

1
87Tk,i7r2,i77m,ig(7r) = N Z aﬁk,1w,17fm,1gij(7r)

JjeVv
j>i

and for ¢ # j

87Fk,iﬂe,i7rm,jg(7r) = {

For 41,149,135 € V such that {i1} N {ia} N {is} = 0 we have

87Fk,¢1 T0,i0 Tm,ig g(”) = 0.

For convenience of notation, define the tensor D with

D= (&r

99

?K}

1 . .
Naﬂk,lﬂz,lﬂm,zgij (w) forj>i
1 . .
Waﬂk,zw,zﬂm,lgji(ﬂ') for j <

s1),(s $9),i(s s3),i(s g ™ ) :
k(s1),i(s1)Tk(s2),i(s2) Tk(s3),i(s3) ( ) s1,52,83€{1,... KN}



Also, let P(eq, ..
and let Ci(eq, ..

2

as a shorthand for

2.

., en) denote the set of all permutations of the finite tupel (eq, ...
., ep) denote all k-combinations from the finite set {eq, .

..,en}. Use

81,582,583 51,52,53
i=(i1.i2,i3) i(s1)=i1,i(s2)=i2,i(s3)=i3
k=(01,02,03) k(s1)=01,k(s2)=l2,k(s3)=(3

As in the proof of Lemma S.5 in FVW exploit that the ||Hq vector norm is dual to the
”H% vector norm
e

KN
||D|]q: max max max Z ug)ug)ugi)Dshsm%
[ g =1 o] =1 [ =T,
0,020
< > s,
(£17£27£3)EC3(17”'7K)
with
N
gl’;&’sﬁ?’) =  max max max Z Z ug)ug)ug’))Dsl752753
[ ]| ¢ =1 [[u@ || =1[[e®]| =117 5155
-t i=(i,i,i)
k=(£1,02,03)
N
max max max Z Z Ug)ugz)ugg)Dsl,sz,sg
[u®]_g =t{lu® | =1 [ =11721 51’5258
- i i=(ii,)
k=(£1,02,¢3)
N
max max max Z Z ug?ug)ugg)Dsl,52,53
[u®]_g =t{lu® | =1 [ =11721 515288
- Z;é] Z:(Z,],Z)
k=(1,02,(3)
N
max max max Z Z ug)ug)ugg)DShS%SS
[u®]_g =t{lu® | =1 [[e® | =11721 51’5288
- i#j  =(ji,0)
k=(£1,£2,3)
=F1 + Ey + E3 + Ejy.
Let

d(617€2ve3) f— (aﬂél,iﬂ'lg,iﬂlf&i‘g(ﬂ-))

i=1,.,N
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Then

E; < max max
ﬁ(l)ERN7Hﬂ <1 ﬂ2€RN,Hﬂ(2)Hq§1

(1)”4% ij=1

= ||diag (d(él’b’&))

o R

< (1) ()

[diag (d(fl ,52753))]

= ||diag (d(el’b’e:”)) = max

[e9) eV

To see why the first inequality holds construct feasible values of @) and @(?) from feasible
values of v, 4@ 4®) in the following way. To determine the ’s element of @) find
the unique elements ug) and ug) such that k(s1) = 41, k(s2) = l3 and i(s1) = i(s2) = i.
Then let le(-l) = ugpug) Note that HU(Q)HQ = 1 implies Hu(Q)HmaX < 1 and therefore
Hﬂ(l)HL < 1. Also, to determine the j’s element of @(?) find the unique element ug)
1—q

such that k(s3) = ¢3 and i(s3) = j. Note that Hu(3)||q = 1 implies Hﬂ(Q)H < 1. The
second inequality follows by Lemma S.4 in FVW and the last two equalities fqollows from
the diagonal structure of the matrix whose norm we are considering. Therefore,

E < max {diag (d@h@»fa)ﬂ

= rlléé%;( ‘87rk,i772,i7rm,ig(ﬂ-) |

1 1
= Ilneé%;( N Z aﬂk,1ﬂe,1ﬂm,1gij (7") + N Z aﬂ'k,ﬂe,ﬂm,zgﬂ(ﬂ') <C.
i€V eV
J>1 j<i

Let

(b1,62,63) _
e = awel,ﬂeg,iﬂ&jg(ﬂ) i,5=1,....N .
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Then

Fy < max
ARV ||aM|| 4 <1a2eRN, ||u(2)H <1
q—1

N
~ - 01,02,0
Zu ‘ (1,273)

_ H o (1,62,63)
q
l 1—1
< H (1,€2,€3) e(l1:2,63) a
1 00
_1
(€1,62,03) (€1,02,¢: q
{ 17273}{max 26172,3)} _
€V
eV Jjev
1
S{ Zaﬂk 17¢, 17rm292j E :87% 274, 2Tm, 1gﬂ( )‘}
1€V
z<] 1>]
1
1 1=
r{g;c Z 87% 17,1 m, 2ng< N Z aﬂk,zw,zﬂm,lgﬁ(ﬂ-) <C.
JjeEV JjeVv
>t 1<t

The first inequality can be argued similarly to the argument for the bound on E;. The
second inequality follows, again, from Lemma S.4 in FVW. The same bound can be
derived for F3 and Fj in a similar way. In summary,

01,62,
ID|l, < > D) < 4K,
(£1,£2,£3)€C3(1,....K)

concluding the proof of (ii). For (iii), write G71r12’M for the diagonal matrix with entries
~11,k¢ _
(Gﬂ-Q >1/Z = 871'16’1'#[,1-9(77) - E[awk,iﬂ'l,ig(ﬂ)]

and G;QQ’M for the matrix with entries

<(;12,k4) _ J Onime;9() = E[Ony i, 9(m)] for i j
™ Jig 0 fori=j

Now, we can write for a constant Cx g depending only on K
_ 8 K ~ )
[0r2g(m) = E[Om2g(m)]|” < | D {HG;IQMH 4o HG;%MH}

k=1
o2 ké” )

8
~11,k¢
<Ckg (HG,TQ ‘
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Fix k,0 € {1,...,K}. Let

Gij = Orp1men9ij — B [Ony w01 9i5] 5
9ji = Oy omp 2950 — E [aﬂk,zw,zgji] .

~11,k0 . : .
As G_;" is a diagonal matrix

EHGH keH E(max [GH ke] ) ZEH L kq
eV 1%
Then,
8 8
. 8 _[1 . =1 Pt -
o [ngz} <R ~ Z Gi; | +2'E N Z Gii | =0, (N7Y).
4,1 JEV,i>i JEV,i<i

To prove the claim about the stochastic order of the right-hand side consider expanding
_ 8
E (Zje\/,j>i gi]) (the argument for the second term is similar). A typically term in

the expansion will look like I_Egijl Gij»Jij3 Gij,- The boundedness assumption gives us
a universal upper bound on this term. By conditional independence and Eg;, = 0,
whenever there is a m = 1,...,4 such that j, N {j, :n=1,...,4n #m} =0 we will
have Egij, Gij, GijsGijs = 0. The set of permissable ji, ..., j4 that do not have one distinct
index has cardinality less than (1; ) Now, we can conclude that

T 8
E[G | =0, (v,
Next, let’s turn to bounding E HG12 MH . Let

gij =N (67rk,17rz,2gij -E [87rk,17re,2gijD )
Gji = N (Ony 1 9ji — E [Ory yme 1 95i] ) -

We will apply Lemma S.6 in FVW. Note that the assertion of this lemma remains true
if Ky is replaced by E and independence conditional on ¢ is replaced by independence
conditional on A. This can easily be seen by inspection of their proof. Let e denote the
matrix with entries
~12,kl

(€)ij = [NG,,z } ‘
17]
Let 07 = & ZN Ee . Since there is a bound on the second derivative of g;; there is a
universal constant C such that

5l < — 2 {Zgw+29ﬂ} <

jev JEV
1<J (>
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Therefore, + ZN (6?)4 = O0p(1). Let Q denote the matrix with entries ();, j, =

~ L SN E(eij €ij,). Under our boundedness assumptions |||, < C and therefore®

Tr(Q*) < Q)" < |12l

max *
Let niy i, = L N: [6“,3 €irj — E(ei 61273)]- By conditional independence
E(Un,m ell,Jlelz Ji1 T E(eihjl €11 ))(eil,jz €is,jo — E(eildz eilJz))]

2
e“ J 6%2 J)2> <C

(

and therefore Zfil E(n};) = Op(1) and Zﬁ?h:l E (17;11’12> = Op(1). Thus, Lemma
S.6 is applicable and we can conclude that E ||e|| = O, (N 5/ 8) or, equivalently, E H@fzkz H =

2 \

O, (N -3/ 8). In summary, we have shown that

E Haﬂ.zg(ﬂ') — E[0y29(m)] H =0, (N_3/8) .

This implies

H&ng(ﬂ') - ]E[aﬂ.zg(ﬂ')] H = Op (N—3/8) ’

concluding the proof of (iii). O

Lemma G.2 (Sparse bounded functionals of the incidental parameter II). Let K denote
a finite constant and let (ﬂk)le denote a collection of N-dimensional parameters. Define
w=(m),..., 7). Let {gi,, . i, tii<-<i, denote an array of functions such that

Gitroiin, () = Giyoin, (Tliys oo s TR iy o+ s Mg s o+ T ig)

with
Haﬂ-@gh,...,i[, (ﬂ-)”max S C fO’I" g = 07 17 27 3

for a universal constant C. Let

g(ﬂ):% > Girein ()

i1<--<ip,

_1
Then |0rg(m)ll, = Op (N73), 1029(m)ll, = Op(1) and |Bzsg(m), = Op(1).

For every symmetric N x N matrix M we have & Tr(M?) < | M||*. To prove this, consider a slightly
more general case and let A, B denote symmetric N X N matrices with eigenvalues a3 < --- < an
and 81 < --- < Bn, respectively. By the von-Neumann trace inequality, Tr(AB) < Zi\le a;fi. For
symmetric square matrices it is well-known that ||A|| = an and ||B|| = Bn. Therefore, Tr(AB) <
N ||A[| || B|. For any square matrix Q, M = Q'Q is symmetric. Therefore, & Tr(Q'QQ'Q) < |Q'Q|* <
1€2]/% ||9’||*. The first inequality now follows from noting that € as defined above is symmetric.
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Proof. The proof is very similar to that of Lemma G.1. For example,

871']6‘19(7‘-) = Z 877;6,191'1,...,@ (ﬂ-)

1<t <---<tp,
+ E : aﬂ'k,igilwn,iL (7‘-) +eee § : 8Tl'k,igi17~..,iL (ﬂ-)
11 <1<83<---<1if, 11<-<8r,1<%

Therefore, there is a constant C' such that

Q|-

KN % 1 K L q
\awg<w>||qs(z|8mg<wm) A X D [om g ()
(=1

k=1i1<-<ip £=1

<C(KLN)s.

Lemma G.3 (Symmetric functions). Define a class of symmetric functions,

G={g:R* =R |g(y1,y2) = 9(y2, 1)}
The function class G is closed under multiplication and addition , i.e.,
g,heG=gheg
gheG=g+heg.

If g € G is (partially) differentiable in the first component, then g is also differentiable in
the second component and

019(y1,y2) = 029(y2, y1)-

Moreover, if g € G is twice (partially) differentiable in the first component, then g is also
twice differentiable in the second component and

0229(y1,y2) = 0119(y2, Y1),
0219(y1, y2) = 0129(y2,y1)-

Let ¢ denote a scalar parameter and let B. denote an open ball on the real line. Suppose
that g(y1,y2,¢) € G for all ¢ € Be and that g is differentiable in ¢ on Be. Then,

O0p9(y1,y2,0) € G for ¢ € Be.
Proof. Suppose that g € G is differentiable in the first component. Then

g1, y2) = lim 9y +0, y2<)5 —9nye) _ 90291 +6) =gy, 41)

—0 6—0 )

= 0ag(y2, Y1)

Existence of the limit on the right-hand side follows from existence of the limit on the
left-hand side. Furthermore,

d d
D229(y1,92) = @(329(311,.02)) = @(519(y2,y1)> = ong(y2, v1)-
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The claim about the cross-derivative follows in a similar way. The last claim follows by
noting that

91,92, 0 +6) — g(y1, Y2, 9)

39(y1, y2,¢) = lim

6—0 )
92,91, +0) — g(y2,41,9)
=1 =0, Y1, @).
Lim 5 59(Y2, Y1, 9)
O
Lemma G.4. For a function g : R® — R write g;; = 9(Y;5, Y Zij). Let
=2 9= 9.V} Z
1<j 1<J
Define the matriz A = (Asj)i jev where
A = ayzg(Yﬁ,Y,;?Zji) ifi>j.
0 ifi=3j
Then
Ay
o6 = | 4.
Proof. This follows from a straightforward inspection. In particular,
0,5G =" 0,,9(Y53, Y5 Zij) + > 0y 9(V}5, V35, Z5i)
JEV iV
7> 1<t
= Z {1{i<j}8ylg(y;,]7}/}z7 Z ) + 1{i>j}8y29(Y3sz]7Z } = Z AU
JEV-; JEV_;
and
0,nG = 0y g(Y35. Vi, Zij) + ) 03u9(Y55, Y5, Z5o)
eV eV
1<j 1>]
= Z {1{i<j}8ylg(}/;j7 Yv]zv Zi ) + 1{i>j}ay2g(}/;za Y;j’ } Z AU
Z'EV,]' i€eV_ j
O

Lemma G.5. Under Assumption 1(i) and Assumption 1(vi)

A
Iy M = [ Al L]]Vv]
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where A is a N x N matriz with entries

Ay = {apylmij fori#j

0 fori=j.
Moreover,
ALN
8P‘YM = |:A/LN:|

where A is a N x N matriz with entries

A= Opyymij = —Jij(Oy 1)  fori#j
! 0 fori=j.

Proof. We will apply Lemma G.4 with g;; = 0,m;;. Lemma G.4 gives that

A
Oy M = |:A/L]]V\/':| ’

where A is a N x N matrix with entries

8py1 My fori < j
Am‘ = 8py2mj,~ for 7 > ]
0 for i = j.

It remains to show that 0,,,m;; = 0py, m;j. By construction 7;; is a symmetric function
in the sense of Lemma G.3. Then, repeated application of Lemma G.3 shows that J;; is
also a symmetric function and therefore 9,,.J;; = 0y, J;; by Lemma G.3. Similary, one can
show that 0y, (Jjirj;) = Oy, (Jijri;). Finally Z;; = Zj; by definition. The second assertion
is proved similarly. O

Lemma G.6. Let A denote a o-field and let E4 denote the expectation operator condi-
tional on A. Let (Y;j,Yj:)ij=1,..n denote an array of random tupels that are mutually
independent conditional on A and satisfy E 4 \Y”\ < C for a constant C. Suppose that
ELY;;j =0 fori,j=1,...,n and let T denote the matriz random entries (1);; = Y ;.
Let M denote a matrix with A-measurable random entries such that | M| .. = Op(n~1)
and let D denote a diagonal matriz with with A-measurable random entries such that

| D]l hax = Op(1). Then for A, B € {Y,Y'}

t A'M B, = Op(n),
! A'DBu, =E A[ 1 A'DBuy) + 0,(n/?)

- Z )iiEalai jbij] 4+ Op(n 3/2)'

3,J=1

67



Proof. To prove the first statement note that

n
nu, A'MBu,, = Z airbei[n my g
i7j7k7€:1

For k = 3,4 let

Pﬁ(ilv ce. aili) = {(jlea CIEIR aj?ﬁfleK) : jla cee 7.]'2/{ S {Z.lv ey 7’1{}}

the set of all 4-tupels of index pairs that can be generated from a given set of four
(not necessarily distinct) indices i1, ..., ix. Conditional independence and the zero mean
property of the Y; ; yields

n

Ealn L/nA/MBLn]Q = Z Z [ M p1opor [N M psops Balap, bpy aps bp,]
i,j,kl:l (P17-~~ap4)€734(7;7j7k7£)
n
<C Z Z [n m]pupzl [n m]p32p41 = Op(n4)v

,5,k,l=1 (p11-~~7p4)€7)4(i1j1k1€)
where the inequality follows from Cauchy-Schwarz. The first claim follows now immedi-
ately. To prove the second claim note that

n
L;LA/DBLTL = Z aijbikdii.
i,j,k=1
Taking the squared expectation gives

n

EA[L%A/DBLTL]Q = Z Z dp11p11dp31P31EA[aP1 bpzapsbm] = Op(ng)'
Z'7j7k:1 (p17~"7p3)€7)3(i7j7k)

It follows that /, A’M Bu,, = E4[t}, A’"M Bi,,] + O,(n3/?). Finally, it is easy to see that

n n
Eltl, AAMBu,) = Z diiE4laijbix] = Z diiE alaijbij].
i,j,k=1 t,j=1

H. Applying results from FVW

FVW study a panel model with time and individual fixed effects. Their results can be
leveraged for the analysis of my network model. In particular, FVW derive a stochastic
expansion for a broad class of general likelihood models with an incidental parameter
(Theorem B.1 in FVW). This class comprises also the dyadic network model. To verify
that the network model satisfies all assumptions, the corresponding argument for panel
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models can be adapted with minimal changes. This is demonstrated below. In addition
FVW characterize the inverse of the Hessian for the panel model. This is easily adapted
to the network setting as well. Below, I restate these results explicitly for the dyadic
network model. First, we need some additional notation.

Let 15 denote an N-vector of ones and let vy = (1, —1%)". For b > 0, the ML
program (3.1) can be rewritten as

where

£0.7) = £9(0.7) ~ o (Whr)?

The penality imposes the normalization constraint in the ML program (3.1). Let

S(O,7) =04L(0,7)  H(0,7) = =0y L(0,7).

We adapt the convention that omitting function argument indicates that the function is
eliminated at the true paramters, e.g. S =S (6°,4%). For a random variable W we set
W=EWand W =W —W.

Lemma H.1 (Lemma D.1 in FVW). Let Hg = diag ((5 X ey, wij)
diag ((% Zz‘ev_j wij)jev)' Under Assumption 1

z’eV) and 7:1}3 =

|77 — (ding(Rgs, Him) |

=0p (N_l)'

max

Proof. For the purposes of this proof define w;; = 0. Then we can write 7—2;5 =
. 1 N w1 1 N o

diag ((N ijl Wij)iey)’ Hyp = diag ((W doich wij)jev)' Also we write H¢p for the

matrix with entries Hgp . = w;j/N. Note that we can write

o | Hse Hip| b
= [WR]’ Hip) T NN
If binin < wij < bmax then this would satisfy the restriction imposed on the panel model
in FVW and we could apply their Lemma D.1. Define wjj = max{wjj, bymin}. Define

’HES, 7:[%]% and ’HLR similar to Hss, Hrr and Hsr with wi; replaced by ng. Let
D = diag(Hfg, Hpp) and Df = diag(HLg, Hkp). Lemma D.1 in FVW implies that
H(?—lT)_1 — (DT)_IH = Op (N71). By the inequality on p 351 in Horn and Johnson

2012

max

(R

<oy

(Ioy — (DT — ﬂT))71‘

max max max

brnax (1 - HDT - ﬂ*( )71 < Vpmax-

max
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By construction H?-_[T — 7-_[H < bin/N and HDT — DH < bmin/N. Therefore

max max —

o

< H(ﬁ)fl(ﬁ* —H)(H) ! (Tow — (H' - #H))

_1‘

max

) -1
max

max
2

<Jomr

#—ﬁ]

1—||H —H
(1= ==

max max

bni bunin \
<ap, i <1_ §> — 0, (N1).

Then, by the triangle inequality

[ = D7 < [ = )|

max

+||eh = = oh

+ H(DT)*1 —D’l‘

=0p (Nil)'

max max

Lemma H.2 (Theorem B.1 in FVW). Let

A(0) = arg max., L(0,7).
denote the concentrated likelihood and suppose that Assumption 1 holds. Then

2N
1
5(0) =7 = HIS + H [y £)(0 — 0°) + SH D [0y, LIHISIHLS] + R (6)

g=1
and
OL(0,7) =U —WN(O — 6% + R(6),

where U = U + UM | and

_ 1 = r
W =— N (8979/;6 + [ae,y,C]H_l[&ygﬁ]) ’
U =0pL + [0y LIH'S,
U =[Oy LIH LS ~ [0 LIHHH LS

2N
1 . —— N
527 (O, £+ (O LV [0, £]) S| HTS.
g

The remainder terms RY and R satisfy

NEIROs _, ) g CO)

SUp —————————o = ——— = 0,(1),
ge@%\,l—i-NHH—GOH pcoy 1+ N |0 — 60| p(1)

where O C RIMO) sqtisfies Prob(d € On) — 1.
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Proof. Let C' denote a generic constant. To apply Theorem B.1 in FVW we have to
verify their Assumption B.1. It is without loss of generality to operate conditional on
the event Ay. Weset T = N, ¢ = 8, rg = log(N)N~"/* and ry, = N~/%. B.1(i) holds
trivially. B.1(ii) holds since p;; is bounded away from zero and one. B.1(iv) holds by
Assumption (iv) and Lemma H.1 (see the proof of Theorem 4.1 in FVW). Condition
B.1(v) can be checked by following the arguments for the panel case. The arguments are
very similar to the ones employed in the respective proofs of Lemma G.1 and Lemma G.2.
For condition B.1(vi) the arguments for the panel model carry over almost ad verbatim.
For example, to prove that ||H|| = 0,(N'/*) let Hss and Hpr and Hsr as defined in the
proof of Lemma H.1. By the triangle inequality

[ < 1=t = P+ =0 = il +2 |~ — Pl
Let &5 = (Yij—pis)0,s [%} fori # jand & = 0fori € V. Then —y ~ L—Hig =

— diag ((% Zjev,i fz’j)z‘ev)- The ||| matrix norm is given by the largest eigenvalue of a
matrix. Therefore

sYs

8
_ . _ 1
E||*875755*HSSH8 =E max\ v Z &ij
JEV_;
8
= 1 .
<> E szgij =0, (N7%).
eV jGV,i

A similar argument applies to H—&y el — ’H}}PLH. This shows that

— 3
H_a"/s“/sﬁ - HSSH = Op (N 8) )
- _3
H_87R7R£ B H}}RH = OP <N 8) :
Now apply Lemma S.6 in FVW with 7" = N and e; = ;. For i,j € V we have
_ _ * 2
E[ 12]] =0ifi=jand E| f]] < (87_5 [%D if i # j. Assumption 1(vi) ensures that
7 ) )
E[ 12]] < C so that 67 = & djev E( ZQJ) < C. The matrix 2 with elements is a N x N
matrix with elements given by Qj, = & Y. E(ejjes). It is easy to see that Q is a

diagonal matrix whose diagonal elements are bounded by C. Therefore, + Tr(Q) = Op(1).
Let nij = ﬁ ey (&ie€je — Eliése]). We have

E(na)*' < NT*(N + N?)(20)*

and therefore 3 Efil E(ni)* = Op(1). For i # j we have n;; = ﬁ > ey iekje- Taking
the 4th power of n;; gives a long sum where each term has the form

I_E [Ezk‘l gikg éik’g, 5’”4:4 g]kl gjkz g]kg; Ejk’4] .
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Clearly, the term is equal to 0 if there is a ky € {i,j}. Therefore we may assume that the
ke € V '\ {i,7}. The term is also equal to zero if a ky gets picked only once. Therefore we
can bound the term by (relabelling the £’s if necessary)

PN
NI
=

E[Siky, Eike, Eike, Sibey) < (El(Giny,)®]) (E[(gikQ)S])i(E[(gjkgl)g]) (E[(&r,)")* < C.

There are (N — 2)? ways of picking the ks so that dijev (772]) < C. Thus, all
the conditions of Lemma S.6 in FVW are satisfied and the matrix & = (&;;);2; has
€] = Op(N°/8). Since N& = —0sy .y, L — Hizpp this implies

|-yl = Hill = 0p (N7F).

The other arguments in FVW can be adapted similarly. Next, we apply Theorem B.3 in
FVW. A condition of the theorem is that W has a positive definite limit. Inspection of the
proof in FVW shows that this condition can be replaced by assuming that the eigenvalues
of W are positive and bounded away from zero. It can be shown that W — Wy 1 = o,(1).
Therefore W satisifies this eigenvalue condition by Assumption 1(ii). It remains to check
that U = Op(1). It can be shown that U = B¢+ > ey djev, H;i Xij(Yij—pij) +op(1).
BY, is stochastically bounded by Assumption 1(iii). Moreover

1 N 2
E[ﬁ Z Z Hi; Xij (Y — pij)} = Wan
eV jev_;

is bounded by Assumption 1(iii). Therefore U = Op(1) and Theorem B.3 in FVW can
be applied. It follows that Assumption B.1(iii) in FVW is met and

10— 6% = 0, (N7%).

If we define Oy = {6 € © : |0 —6°| < Nfi} then Prob(fd € ©y) — 1 and also
Oy C {0 € ©: HG — HOH < rg}. The conclusion now follows from Theorem B.1 in
FVW. O

For convenience I restate some bounds originally derived in FVW.
Lemma H.3. Suppose Assumption 1 holds. Then
[T = HT | = 0p (N7,
I = (A = H T HA ) || = 0y (N12),

dim(~y)

H Z Oy v, £ ~LS)y[H 718]11” =0p(N*1/2).

g,h=1
H = 0p(1), [[H]| = 0p (N7, [|0ye L[| = Op(NV2), [[040 L] = O(1).
Proof. FVW. See also proof of Lemma H.2. O
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I. Derivatives of bivariate normal probabilities

Let U = (Uy,Us) denote a bivariate random vector with zero-mean and covariance

v=[ 1

where p is a parameter giving the correlation between the marginal normals. Let

matrix

7(y1,y2,p) = P(Ur < y1,Uz < )
The formula for conditional distributions of a joint normal gives
Us | Ui ~ N(pUy, 1 —p?).
By a conditioning argument
r(y1,y2,p) =P(Ur < y1)P(U2 < y2 | Ur < 1)
. o(t)

:P(Ulgyl) P(UQSyQ ’Ulzt)@dt

_ /i o (%) (1) dt.

Then,
Oyir (Y1, Y2, p) =@ (W) ¢(y1)
I—p
and
Oy, pr (Y1, 92, p) = — <(fl__p§)zf/2> ¢ (%) o(y1),
Artne) = - Lo (2 Yo 40 (22 )
P Y2 — pPY1 Y2 — pY1
= — _ (I) ge I2
= p2¢ (M) P(y1) — (ﬂ) (Y1),
1 —
Iyryo7 (Y1, Y2, P) 217_/)2¢ <%) P(y1).
Moreover,

Y1 — —
Oprr (Y1, Y2, p) = /_oo (%) ¢ (%) (1) dt.
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The integral on the right-hand side can be solved numerically using the R function
integrate.! For the case p = 0 no numerical integration is needed since

Y1

Oy (1,2, 0) = — (1) / F(t) dt = Bu1)du).

— o0
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