
 

 

 

 

 
 
 
ISSN 1403-2473 (Print)  
ISSN 1403-2465 (Online) 

 
 
 
 
 
 
 
 
 
Working Paper in Economics No. 698  
 
An empirical model of dyadic link formation 
in a network with unobserved heterogeneity  
 
Andreas Dzemski   
 
Department of Economics, March 2017  

 
 

 



An empirical model of dyadic link formation
in a network with unobserved heterogeneity

Andreas Dzemski∗

March 21, 2017

In this paper I study a fixed effects model of dyadic link formation for directed
networks. I discuss inference on structural parameters as well as a test of model
specification. In the model, an agent’s linking decisions depend on perceived similarity
to potential linking partners (homophily). Agents are endowed with potentially
unobserved characteristics that govern their ability to establish links (productivity)
and to receive links (popularity). Heterogeneity in productivity and popularity
is a structural driver of degree heterogeneity. The unobserved heterogeneity is
captured by a fixed effects approach. This allows for arbitrary correlation between
an observed homophily component and latent sources of degree heterogeneity. The
linking model accounts for link reciprocity by allowing linking decisions within
each pair of agents to be correlated. Estimates of structural parameters related
to homophily preferences and reciprocity can be obtained by ML but inference is
non-standard due to the incidental parameter problem (Neyman and Scott 1948).
I study t-statistics constructed from ML estimates via a naive plug-in approach.
For these statistics it is not appropriate to compute critical values from a standard
normal distribution because of the incidental parameter problem. I suggest modified
t-statistics that are justified by an asymptotic approximation that sends the number
of agents to infinity. For a t-test based on the modified statistics, critical values
can be computed from a standard normal distribution. My model specification test
compares observed transitivity to the transitivity predicted by the dyadic linking
model. The test statistic corrects for incidental parameter bias that is due to ML
estimation of the null model. The implementation of my procedures is illustrated by
an application to favor networks in Indian villages.
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1. Introduction

Economic agents concentrate a substantial amount of their activities within their networks
of interpersonal relationships. These interpersonal relationships play a prominent role
when centralized institutions such as markets are missing or unable to provide certain
goods or services. Studying them provides valuable insights into many relevant economic
problems, such as information dissemination in small communities (Banerjee et al. 2013)
and informal insurance (Fafchamps and Lund 2003). Interpersonal relationships can
be formalized as links between agents. The collection of all links is called the network.
Given their vital role in many policy-relevant problems, it is important to understand
how networks are formed. Consequently, econometricians have endeavored to estimate
models of formation of informal insurance networks in villages (Fafchamps and Gubert
2007; Leung 2015) or friendship networks in high-schools (Mele 2016). De Paula 2015
provides a survey of recent research on the econometric analysis of social networks.

This paper contributes to the literature by offering new results for statistical inference
in an empirical model of link formation. In my linking model, the decision to link follows
a classical threshold rule. An agent establishes a directed link to another agent if a latent
link surplus that is computed from the joint characteristics of the pair is deemed large
enough. Conditional on agent characteristics, the linking decisions between a given pair
(or dyad) of agents are independent of linking decisions in the rest of the network. This
is the defining property of the class of dyadic linking models. Models from this class
can be estimated from a single observation of the network and are frequently applied
in practice (Mayer and Puller 2008; Fafchamps and Gubert 2007). Only recently have
econometricians started to investigate the theoretical properties of these models.

The main innovation of my model is that it employs a fixed effects approach to account
for relevant attributes that are not observable to the econometrician. Adding fixed
effects substantially complicates inference by introducing a so-called incidental parameter
problem (Neyman and Scott 1948). As a result, standard maximum likelihood inference
is not valid. The t-statistics for parameter significance are not centered at zero even if
the null hypothesis of no effect is correct and confidence intervals do not concentrate
around the true parameter values. I provide an alternative way to compute t-statistics
and confidence sets that does not suffer from this drawback and that is theoretically
justified by an asymptotic approximation. In addition, I offer a new model specification
test that accounts correctly for the presence of an incidental parameter in the null model.

My linking model bears a strong resemblance to the seminal model by Holland and
Leinhardt 1981. In particular, my model accounts for all three drivers of linking behavior
that they identify and incorporate into their model. The three drivers are homophily,
degree heterogeneity and link reciprocity. Homophily refers to the tendency of agents to
initiate ties to agents who share similar observed characteristics (McPherson, Smith-Lovin,
and Cook 2001). This can be interpreted as a distaste for social distance and is related
to the concept of assortative matching in other areas of economics (Becker 1973). Degree
heterogeneity refers to the fact that agents may exhibit vast differences in the number of
in-bound or out-bound links. As in Holland and Leinhardt 1981, agents are endowed
with productivity and popularity attributes that are not necessarily observed by the
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econometrician.1 An agent’s productivity determines her ability to generate out-bound
links, her popularity determines her ability to attract in-bound links. Link reciprocity
refers to the fact that, conditional on agent characteristics, observing a link from one
agent to another agent renders observing the link in the opposite direction more likely. In
my model, link reciprocity arises because unobserved gains from linking may be correlated
for links within the same dyad. The correlation may reflect, for example, that agents
who have encountered one another in a latent meeting process are able to form more
profitable links. This approach to modeling reciprocity is similar to how reciprocity is
modeled in network formation models with random effects (Hoff 2005; Hoff 2015). In
contrast, in Holland and Leinhardt 1981 link reciprocity arises because agents receive
utility from reciprocated links.

Agent productivity and popularity effects are treated nonparametrically by estimating
the model with sender and receiver fixed effects. This approach allows for arbitrary
correlations between agent productivity and popularity and observed agent characteristics.
The fixed effects are treated as additional (“incidental”) parameters that are estimated
by maximum likelihood jointly with the other model parameters. Thus, the estimated
number of parameters increases as more agents are added to the network, leading to
non-standard behavior of the parameter estimates obtained by maximum likelihood.

My recommendations for statistical inference in my linking model are justified by
a large network approximation that sends the number of agents to infinity. I provide
distributional results for the maximum likelihood estimators of the structural parameters
related to homophily preferences and link reciprocity. Moreover, I give the large sample
distribution of a “plug-in” test statistic for model specification that is constructed
from preliminary maximum likelihood estimates. My asymptotic results give explicit
expressions for asymptotic bias and variance of the different test statistics. These
expressions suggest formulas for correcting the t-statistics for parameter significance as
well as the test statistic for my test of model specification. The correction formulas
properly standardize the respective test statistic under the null hypothesis. Uncorrected
test statistics are affected by incidental parameter bias and are not guaranteed to be
centered at zero if the null hypothesis is true.

For the model in Holland and Leinhardt 1981 the incidental parameter bias has not
been resolved. Applying it in practice requires the researcher to make possibly restrictive
assumptions about the distribution of the unobserved heterogeneity.2 My model can be
applied without requiring such restrictions.

An observed network can be characterized along many different dimensions. For
example, the triad census describes the behavior within triads, i.e. groups of three agents
(Davis and Leinhardt 1972; Wasserman 1977). Other popular summary measures for
networks include average-path length and measures of centrality (Jackson 2008). In this
paper, I focus on a particular triadic configuration that is called a transitive relationship.
A transitive relationship arises if two agents who are connected indirectly via a third agent

1In the context of a specific application, Comola and Fafchamps 2014 argue for the empirical relevance
of unobserved productivity and popularity effects.

2Variations of the Holland and Leinhardt 1981 model where unobserved heterogeneity is restricted in a
random effects approach are discussed in Hoff 2003; Hoff 2005; Duijn, Snijders, and Zijlstra 2004.
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form a link that connects them directly. For the observed network we can compute a
measure of overall transitivity. The dyadic linking model induces a probability distribution
of the random network. This distribution serves as a benchmark and is called the reference
distribution. By comparing the observed measure of network transitivity to its prediction
under the reference distribution we can assess the plausibility of dyadic linking. Such a
procedure was first suggested in Holland and Leinhardt 1978 and subsequently developed
in Karlberg 1997; Karlberg 1999. More recently, Chandrasekhar and Jackson 2016 use
simulated network statistics to evaluate a dyadic linking model.3 They find that the
dyadic model predicts too little transitivity.4 Using a different approach, I replicate their
finding. My approach complements previous contributions in three ways. First, I provide
a formal transitivity test that accounts for all sources of uncertainty, namely uncertainty
about the realization of the transitivity measure for a given reference distribution as well
as uncertainty about the true reference distribution due to parameter estimation. An
interesting property of my test is that replacing the true reference distribution by an
estimator may reduce noise and yield a more powerful test. Secondly, my fixed effects
approach can capture unobserved components of the dyadic linking decision that may
affect the network’s tendency towards transitive closure. Thirdly, my transitivity test
can be computed from a single network observation and does not rely on across network
variation to estimate the variance of the test statistic.

My transitivity test can be interpreted as a test of model validity that looks in the
direction of models that target the formation of transitive relationships. These models
include agent-based models with agents who have a taste for transitive closure so that
transitive closure arises endogenously (Leung 2015; Mele 2016; Menzel 2015; Sheng 2016).
Also included are models in which transitive triangles are generated by an exogenous
mechanism (Wasserman and Pattison 1996; Snijders et al. 2006; Chandrasekhar and
Jackson 2016). Passing from a dyadic model to a model that targets the transitive
structure of the network exerts a very high cost in terms of implementation effort and
computational resources.5 It also requires the researcher to make restrictive assumptions
about unobserved heterogeneity. For example, a common assumption for agent-based
models is that observationally identical agents play identical strategies. My specification
test can be used to detect situations in which the dyadic model can serve as as a reasonable
approximation. Even if the specification test rejects, fitting my linking model may still
yield useful descriptive statistics. For example, my model generates a measure of link
reciprocity that projects out homophily effects.

This research ties in with the recent literature on dyadic network models with fixed
effects. Graham 2016 studies a directed version of the model discussed in the present
paper. He focuses on inference about the homophily component and considers ML
estimation with analytic bias correction as well as an alternative approach that conditions

3They refer to a model with dyadic linking as a block model and report a clustering coefficient that can
be interpreted as measuring transitivity.

4This has also been observed for other social networks, e.g., in Davis 1970; Watts and Strogatz 1998;
Apicella et al. 2012.

5Bhamidi, Bresler, and Sly 2011 give conditions under which the computational cost of fitting an
exponential random graph model is prohibitive.
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out the incidental parameter. The latter approach has the advantage of producing reliable
estimates in sparse networks, i.e. in settings where agent degrees grow only slowly as the
number of linking opportunities increases. A network that is not sparse is called dense.
My identification strategy relies on a dense network assumption. A conditioning approach
for the directed model is suggested in Charbonneau 2014 and analyzed in Jochmans
2016. The latter paper reports also an interesting simulation exercise that illustrates
that my estimator of homophily preferences may not work well in very sparse networks.
The estimator based on the conditioning approach is more robust. Unfortunately, the
conditioning approach does not extend readily to the other parameters of interest that I
consider.

Yan et al. 2016 provide an alternative derivation of my bias correction formula for the
homophily parameter. They also characterize the uniform convergence of the incidental
parameter to a normal limit. Shi and Chen 2016 study a dyadic linking model in which
undirected links between two agents are observed if the agents reciprocate links in a latent
directed network. Similar to my analysis, they assume that the linking rule generates a
dense network.

The technical analysis of linking models with fixed effects benefits from arguments
originally developed in the context of studying large-T panel models with fixed effects
(Hahn and Newey 2004; Fernández-Val 2009; Hahn and Kuersteiner 2011; Dhaene and
Jochmans 2015). For my proofs, I adapt arguments from Fernández-Val and Weidner
2016 (henceforth cited as FVW). Their main results have been developed with a long
panel model in mind but apply more generally to ML estimation with an incidental
parameter. Their key assumption is that derivatives of functionals of the incidental
parameter satisfy a sparsity condition. This condition can be verified for the functionals
related to the parameters of interest in my network model. Despite helpful similarities,
the analysis of the network model is not completely congruent to the analysis of a long
panel model. In particular, I find that some bias terms do not satisfy the factoring
property that FVW observe for panel models.

Based on my asymptotic analysis I make recommendations for inference in finite
networks. The accuracy of the asymptotic approximation for inference in finite samples
is studied in Monte Carlo simulations. In my simulation design, analytic bias adjustment
based on the asymptotic approximation is effective at centering parameter estimators at
their true values. I find that bias adjustment is essential for making sure that tests work
as expected. In particular, a specification test without proper bias adjustment will reject
a correctly specified model with probability close to one.

The implementation of my methods is illustrated by an application to data on favor
networks in Indian villages. The favor networks are constructed from the survey data
of Jackson, Rodriguez-Barraquer, and Tan 2012 and Banerjee et al. 2013. A directed
link from agent i to agent j exists if i nominates j as someone she would ask for help
if she needed to borrow household staples or money. From an economic perspective,
these relationships are interesting because they can serve as a partial insurance device. I
estimate homophily preferences, link reciprocity and test the validity of the model.
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Notation for networks Let V = V (N) = {1, . . . , N} denote a set of agents (vertices).
The set of all ordered tuples from V represents directed links (edges) between agents and
is denoted by E = E(N) = {(i, j) : i, j ∈ V (N), i 6= j}. For a given link (i, j), I refer to
i as the sender of the link and to j as the receiver of the link. To conserve notation, I
will frequently shorten (i, j) to ij. For A ⊂ V I will write V−A = V \A for the set of all
agents excluding the agents in A. Moreover, for i ∈ V define V−i = V−{i}. A graph g
on V is a subset of E. For g ⊂ E, (i, j) ∈ g is taken to mean that in g agent i links to
agent j. For arbitray graphs g define the vertex function V that maps a graph into the
set of its constituent vertices. Note that V (E) = V . A dyad is a subset of V that has
cardinality two. Let V 2(N) = {{i, j} : i, j ∈ V (N), i 6= j} denote the set of all dyads on
V . I will often refer to the dyad {i, j} as ij with the implicit assumption that i < j.

2. The linking model

2.1. Definition of model

We observe agents V (N) = {1, . . . , N} and their linking decisions. For every potential
link ij ∈ E(N) we observe a dummy variable Yij that takes the value one if agent i
links to agent j and the value zero otherwise. Linking decisions are random so that each
link indicator Yij is a random variable and the collection (Yij)ij∈E(N) is a random graph.
Links are formed according to a binary choice model. In particular, agent i links to agent
j and Yij = 1 if and only if the latent link surplus Y ∗ij exceeds a link-specific shock Uij ,

Yij = 1(Y ∗ij ≥ Uij).

The shocks (Uij , Uji) that govern the linking decisions within the dyad {i, j} are drawn
from a bivariate normal distribution with covariance matrix

V =

[
1 ρ0

ρ0 1

]
.

We allow for correlation between Y ∗ij and Y ∗ji so that in general the linking decisions within

a dyad may be correlated. Setting ρ0 6= 0 introduces an additional source of dependency
in the linking decisions within a dyad. In particular, if ρ0 is positive, agents will tend to
reciprocate links. This is why I will refer to ρ0 as the reciprocity parameter. In models of
dyadic link formation with random effects, reciprocity is modeled in a similar way (Hoff
2005; Hoff 2015). Economically, the within dyad correlation of shocks may approximate
an imperfect latent coordination mechanism such as a meeting process.

Each agent i is endowed with characteristics (Xi, γ
S,0
i , γR,0i ). The vector Xi collects

agent characteristics that are observable to the econometrician. The scalar parameters
γSi and γRi are unobserved agent effects. Similar to Holland and Leinhardt 1981 the

sender or productivity effect γS,0i encapsulates all aspects of agent i’s eagerness to initiate
links to other agents. An agent with a large productivity effect will be a good sender
and will exhibit a large out-degree. The receiver or popularity effect γR,0i subsumes
all of agent i’s qualities that make her an attractive linking partner. An agent with a
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large popularity effect will be a good receiver and will exhibit a large in-degree. For
notational convenience, we denote the profile of agent effects by γ0 = (γS,0i , γR,0i )i∈V . The
agent effects γ0 enter the estimation of various parameters of interest as an incidental
parameter. The presence of the incidental parameter complicates statistical inference.
The latent link surplus for link ij is given by

Y ∗ij = Y ∗ij(θ
0,γ0) = X ′ijθ

0 + γS,0i + γR,0j , (2.1)

where the link-specific covariate vector Xij is a known transformation of the agent
characteristics Xi and Xj and takes values in Rdim(θ). We interpret X ′ijθ

0 as a measure of
social distance based on observed characteristics. Including it in the link surplus imbues
agents with a tendency to link to agents with similar attributes and hence enforces
homophily of linking decisions. Agent preferences for homophily are parameterized by
the homophily parameter θ0. Sender and receiver effects are treated as fixed effects.
As in Holland and Leinhardt 1981, identification of the location of the agent effects is
achieved by the normalization ∑

i∈V (N)

(γS,0i − γR,0i ) = 0.

The specification of the link surplus in (2.1) introduces three implicit assumptions. First,
the three components homophily, productivity and popularity are required to be additively
separable. This rules out, for example, linking behavior based on homophily preferences
that change according to how popular a potential linking partner is. The separability
assumption does not, however, restrict correlations between the three components of
link surplus. Secondly, it is assumed that the homophily component belongs to a known
parametric family. Thirdly, all characteristics contributing to the homophily component
are assumed to be observable to the econometrician. The observability assumption is
relaxed in latent space models (Hoff, Raftery, and Handcock 2002; Krivitsky et al. 2009).
In these models, the mutual attraction between agents is allowed to depend on the
distance between agents in a low-dimensional latent space. The class of latent space
models does not, however, nest my model. The models in this class impose a relatively
simple structure of unobserved heterogeneity that can make it impossible to correctly
disentangle homophily from unobserved heterogeneity (Graham 2016).

2.2. Transitive structure

The dyadic linking model induces a theoretical probability distribution of the random
graph G = (Yij)ij∈E , the so-called reference distribution. We can construct tests of model
specification by comparing the observed distribution of a particular network feature to the
distribution under the reference distribution. The dyadic linking model targets the linking
behavior within pairs of agents and will therefore always fit the network relationships
within dyads (groups of two agents) fairly well. To test the model, we can exploit the
fact that the linking behavior within dyads also pins down the network relationships
in larger groups of agents. When fitting the model, we do not use information about

7



network relationships in groups of size larger than two. Therefore, there are degrees of
freedom in how well the model replicates the behavior within groups of three or larger.
This can be used for testing. In particular, I consider a test of model specification based
on transitive relationships within triads (groups of three). Three agents i, j and k are
in a transitive relationship if, possibly upon reshuffling the labels within the triad, the
network contains the links (i, j), (i, k) and (j, k). The subgraph β = {(i, j), (i, k), (j, k)}
is called a transitive triangle. The set of all transitive triangles on the complete graph
E(N) is given by

B = B(N) = {{(i, j), (i, k), (j, k)} : {i, j, k} ⊂ V (N), |{i, j, k}| = 3}.

For every transitive triangle β take β = {β1, β2, β3}, noting that the labeling of the edges
is arbitrary. Let Tβ = Yβ1Yβ2Yβ3 denote the binary indicator that takes the value one if
β is observed, i.e. β ⊂ G, and the value zero otherwise. We can construct measures of
network transitivity by counting the number of transitive triangles in the network:

SN =
∑

β∈B(N)

Tβ.

The simplest way of constructing a measure of transitivity that allows for meaningful
comparisons between networks is to standardize by the number of all possible transitive
triangles |B| = N3. This is the measure considered in the present paper. It translates
a concept for undirected networks discussed in Karlberg 1997 to directed networks. A
popular alternative is to standardize by the number of potentially transitive triples
(Karlberg 1999, Jackson 2008, p. 37). This yields the clustering coefficient

ClN =
SN∑

i∈V
∑

j∈V−i

∑
k∈V−{j,k} YijYik

.

It is possible to construct a test of model specification based on the clustering coefficient
(see also Karlberg 1999) and my theoretical arguments can be extended to analyze the
theoretical properties of such a test.

My test of model specification compares the observed transitivity SN to the transitivity
predicted by the dyadic linking model. Let Ē denote the conditional expectation operator
that integrates out the randomness in (Uij)i 6=j . For a are given set of agents V = V (N)

and a given vector of agent characteristics (X ′i, γ
S,0
i , γR,0i )i∈V our best prediction of the

observed number of transitive triangles is given by ĒSN . The discrepancy between the
observed and the predicted level of transitivity can be summarized by a measure of excess
transitivity defined as

Eoracle
N =

SN − ĒSN
N3

. (2.2)

Positive values of this statistic indicate that we observe more transitivity than expected,
negative values of the statistic indicate that we observe less transitivity than expected.
Under an asymptotic sequence of reference distributions that takes the number of agents
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N to infinity, the number of transitive triangles SN satisfies a law of large numbers.
Therefore, if the number of agents is large, Eoracle

N will be close to zero. This allows us
to interpret values of the statistic Eoracle

N that are large in absolute value as evidence
against the validity of the dyadic model.

This specification test can also be interpreted in the tradition of transitivity tests in
the sociometric literature (Holland and Leinhardt 1978; Karlberg 1997; Karlberg 1999).
Transitivity tests assess the explanatory power of the transitive structure of a network.
Holland and Leinhardt 1978 argue that it is important to base transitivity tests on a
reference distribution that replicates key features of dyadic interactions such as degree-
heterogeneity and reciprocity. Failure to account properly for dyadic interactions may lead
a researcher to erroneously ascribe explanatory power to the transitive structure of the
network (“spurious transitivity”). My reference distribution fulfills this requirement by
explicitly modeling dyadic interactions in a structural way. Holland and Leinhardt 1978
and Karlberg 1999 take a different approach by conditioning their reference distribution
on a set of observed network characteristics that they assume to be driven by dyadic
interactions. Compared to my approach, the conditioning approach is much harder to
interpret. It is also not clear what features of the network should be be conditioned on
and how validity and power of the test depend on the conditioning set. From a technical
perspective, the conditioning approach complicates the analysis of the distribution of the
test statistic considerably. For example, to compute critical values Karlberg 1999 suggests
a simulation approach that is not justified theoretically. My approach is amendable
to large sample arguments and I show that my test statistic is asymptotically normal.
Approximate critical values can be computed from the normal approximation.

A test based on Eoracle
N is infeasible since it presumes knowledge of ĒSN which is a

function of the unknown true dyadic model. In Section 3.5, I discuss a feasible test
statistic in which ĒSN is replaced by a suitable estimator. The additional noise from
estimating the reference distribution is taken into account when computing critical
values.6

3. Estimation and testing

3.1. Estimation of model parameters

The model is fitted in two stages. The first stage is a pseudo-likelihood approach that
ignores the within dyad correlations and recovers estimates of the homophily parameter
θ0 and the incidental parameter γ0 from the marginal link distribution. In the second
stage, an estimate of the reciprocity parameter ρ0 is computed by estimated maximum
likelihood. To this end, the estimates from the first stage are used to produce an estimate
of the unknown log likelihood for the reciprocity parameter.

6By conditioning on observed network features, Karlberg 1999 introduces a sample dependence that
is reminiscent of my preliminary estimation step. It is not clear how the conditioning should affect
critical values.
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3.2. Stage 1

Under a hypothetical parameter configuration (θ′,γ ′)′ the latent link surplus for the link
ij is given by

Y ∗ij(θ,γ) = X ′ijθ + γSi + γRi

and, conditional on observed covariates and agent effects, the probability of observing ij is
given by pij(θ,γ) = Φ(Y ∗ij(θ,γ)). Here Φ is the distribution function of a standard normal

random variable. The first stage estimator (θ̂′, γ̂ ′) solves the constrained optimization
problem

(θ̂′, γ̂ ′)′ = arg maxθ∈Θ,γ∈Γ L∗(θ,γ)

subject to
∑
i∈V

(
γSi − γRi

)
= 0,

(3.1)

where

L∗θ,γ) =
1

N

∑
i,j∈V (N)

i 6=j

{
Yij log

(
pij(θ,γ)

)
+ (1− Yij) log

(
1− pij(θ,γ)

)}
.

In practice, the constraint can be eliminated by plugging it into the objective function.
Elimination of the constraint yields an unconstrained probit program in N × (N − 1)×
dim(θ) parameters. The unconstrained program can then be solved by standard methods
such as the probit command in Stata, the glm command in R, or the glmfit in Matlab.

3.3. Stage 2

Let r(·, ·, ρ) denote the distribution function of a standardized bivariate normal random
variable with correlation ρ, i.e.,

r(y1, y2, ρ) =

∫ y1

−∞

∫ y2

−∞
φ2(t1, t2, ρ) dt1 dt2,

where φ2 is the bivariate density

φ2(t1, t2, ρ) =
1

2π
√

1− ρ2
exp

[
t21 + t22 − 2ρt1t2

2(1− ρ2)

]
.

For each dyad ij the indicator Zij = YijYji takes the value one if both links within the
dyad are observed (reciprocated links) and the value zero otherwise. For dyad ij define

rij(θ,γ, ρ) = r
(
Y ∗ij(θ,γ), Y ∗ji(θ,γ), ρ

)
.

This function can be used to compute the probability of observing a reciprocated link.
In particular,

ĒZij = Prob
(
Y ∗ij ≤ Uij , Y ∗ji ≤ Uji | Xi, Xj ,γ

)
= rij(θ

0,γ0, ρ0).
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The second stage estimator ρ̂ solves the maximization problem

ρ̂ = arg maxρ∈[−1+κ,1−κ] M̂(ρ), (3.2)

where

M̂(ρ) =
1

N

∑
i,j∈V
i<j

{
Zij log

(
rij(θ̂, γ̂, ρ)

)
+ (1− Zij) log

(
1− rij(θ̂, γ̂, ρ)

)}

and |κ| < 1 is a known constant.

3.3.1. Discussion of full information approach

An alternative to this procedure is to estimate all three parameters simultaneously by
maximizing the full information likelihood. This would yield more efficient estimators.
There are practical and theoretical considerations for foregoing the full information
approach.

Maximizing the full information likelihood is computationally challenging. In contrast,
the first stage of the two stage approach amounts to fitting a probit regression. This is
computationally easy and efficiently implemented in most statistical software packages.
Modern algorithms can even exploit the sparse nature of this particular probit model (Enea
2013). The evaluation of the likelihood for the second stage involves the computation
of bivariate normal probabilities. While this is a computationally expensive operation,
the likelihood does not have to be evaluated many times as the optimization problem is
concave and one-dimensional.

For the theoretical analysis of the two stage approach I can leverage existing results in
FVW who analyze a related incidental parameter problem in models for panel data. In
contrast, the analysis of the full information problem would require completely new and
substantially different arguments. In particular, I would have to prove new theoretical
results that describe the asymptotic behavior of the Hessian of the full information
likelihood.

3.4. Testing significance of the estimated model parameters

In this section, I discuss inference with respect to the homophily parameter θ0 and the
reciprocity parameter ρ0. Inference with respect to the vector γ0 is discussed in Yan
et al. 2016.

My procedure for computing t-statistics is based on a large network approximation
which sends the number of agents N to infinity. Due to the non-linear nature of the
binary choice problem, there is no trivial transformation that eliminates the fixed effects.
To recover θ0 we have to estimate it jointly with the vector of agent effects γ0. For
every agent that is added to the network two additional parameters, namely the agent’s
productivity and popularity effects, have to be estimated. Consequently, the number of
estimated parameters is a non-trivial fraction of the number of potential link observations
even if the network is large. This renders the estimation problem non-standard. In the
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statistical literature, a nuisance parameter that behaves like γ0 in my model is called
an incidental parameter (Andersen 1970). The incidental parameter problem has been
investigated thoroughly in the recent literature on non-linear panel models with fixed
effects (Hahn and Newey 2004; Hahn and Kuersteiner 2011; Dhaene and Jochmans 2015;
FVW). The incidental parameter problem in the dyadic network model shares many
similarities with the incidental parameter problem in non-linear panel models.

Due to the presence of an incidental parameter the estimator θ̂ is biased. The bias
term is of the same asymptotic order as the leading stochastic term. Therefore, while θ̂
is consistent for θ0, the t-statistics reported by implementations of maximum likelihood
in standard software will not be centered at zero if the null hypothesis of no effect is true
and the reported p-values will not be valid.

Theorem 1 in Section 4.1 suggests a way to construct correctly centered t-statistics
and compute valid p-values. Let Ŵ1,N , Ŵ2,N and B̂θ as defined in Section 4.1 and define

V̂ (θ̂) =
1

N2
Ŵ−1

1,NŴ2,NŴ
−1
1,N .

The covariance matrix V̂ (θ̂) is an estimator of the covariance matrix for θ̂ that clusters
standard errors at the dyad level. An asymptotically equivalent matrix is reported for
example by the Stata command probit. As discussed in Section 4.1, we can approximate
θ̂ in large networks by

θ̂ ≈ θ0 +
B̂θ

N
+N

(
0, V̂ (θ̂)

)
.

From this representation we can construct valid hypothesis tests for the vector θ0. In
particular, we can construct a bias-corrected t-statistic to test the significance of the
kth element of θ̂. Let SE(θ̂k) denote the square root of the kth diagonal element of the
matrix V̂ (θ̂). Under the null hypothesis of no effect the bias-corrected t-statistic

t̂N (θ̂k) =
θ̂ − B̂θ/N

SE(θ̂k)
(3.3)

has an approximate standard normal distribution. The bias-corrected statistic can be
used to compute valid p-values. Moreover, the confidence interval for the parameter θk
that is computed by inverting the t-test with bias correction will have correct coverage.
We can also compute a version of θ̂ with superior finite sample performance by removing
the first-order bias. The bias-corrected estimator is given by

θ̂ĉorr = θ̂ − Ŵ−1
1,N B̂

θ
N/N. (3.4)

Theorem 2 in Section 4.2 gives the asymptotic distribution of ρ̂. In my two stage
approach, the reciprocity parameter ρ0 is not estimated jointly with the incidental
parameter. Even though, the estimated likelihood M̂ is a function of the imprecisely
estimated incidental parameter from the first stage. Therefore, the estimator ρ̂ is still
affected by the incidental parameter problem and is asymptotically biased. The first-stage
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estimation also affects the precision of the estimator ρ̂. In contrast to the estimation
of the homophily parameter, the standard error reported by statistical software that
computes ρ̂ by solving the ML program (3.2) does not measure the true uncertainty
inherent in the estimates and cannot be used to construct a valid t-statistic. Let v̂1,N ,

v̂2,N , T̂N and B̂ρ
N as defined in Section 4.2. A standard error of ρ̂ that correctly accounts

for the estimation of the likelihood is given by

SE(ρ̂) =

√
2v̂2,N

Nv̂1,N
.

Under the null hypothesis of no effect the t-statistic

t̂N (ρ̂) =
ρ̂− 2(T̂ ′NŴ

−1
1,N B̂

θ
N + B̂ρ

N )/N

SE(ρ̂)
(3.5)

has an approximate standard normal distribution. This can be exploited to compute
valid p-values and confidence intervals. A bias-corrected estimator is given by

ρ̂ĉorr = ρ̂− 2(T̂ ′NŴ
−1
1,N B̂

θ
N + B̂ρ

N )/N. (3.6)

3.5. Model specification test based on transitive structure

For a transitive triangle β ∈ B(N) and hypothetical parameter values θ and γ let pTβ (θ,γ)
denote the probability of observing β conditional on observed covariates. The between
dyad independence of links implies pTβ (θ,γ) =

∏
e∈β pe(θ,γ). The predicted number of

transitive triangles is given by

ĒSN =
∑

β∈B(N)

pTβ (θ0,γ0).

An estimator of this population parameter is given by

ÊSN =
∑

β∈B(N)

pTβ (θ̂, γ̂).

Since it is a function of the estimated incidental parameter, this estimator is biased. The
bias vanishes asymptotically so that the estimator is consistent for ĒSN . To construct a
feasible analogue of the the oracle transitivity statistic EN from equation (2.2) we can

replace ĒSN by its estimated counterpart ÊSN . The bias of ÊSN is of the same order
as the standard deviation of the oracle test statistic. Therefore, a feasible test statistic
constructed in this way will, upon proper normalization, not be centered at zero if the
model is correctly specified. Consequently, we cannot interpret positive values of the test
statistic as evidence that the dyadic model does not produce enough transitive closure,
or negative values of the test statistic as evidence that the dyadic model produces too
much transitive closure.
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Theorem 3 in Section 4.3 suggests a feasible test statistic that is properly centered
under the null hypothesis. Let B̂S

N , ÛN and v̂SN be defined as in Section 4.3. In large
networks the test statistic

ÊN = (v̂SN )−
1
2

(
N
SN − ÊSN

N3
+ B̂S

N + Û ′NŴ
−1
1,N B̂

θ
N

)
(3.7)

has an approximate standard normal distribution if the dyadic model is correctly specified.
The interpretation of positive and negative values of the statistic is the same as for the
oracle test statistic Eoracle

N .

4. Asymptotic results

This section discusses the stochastic limiting behavior of the procedures considered in
this paper under an asymptotic sequence that takes the number of agents N to infinity.
The proofs for all results presented in this section can be found in Appendix C.

For functions of the model parameters θ and γ we adopt the convention that omitted
function arguments indicate evaluation at the true parameter values θ0 and γ0. With
this notation, we have for example pij = pij(θ

0,γ0). In the following, we will consider
functions (y1, y2, ρ) 7→ g(y1, y2, ρ) that are evaluated at y1 = Y ∗ij and y2 = Y ∗ji. To
indicate the point of evaluation we write gij(ρ) = g(Y ∗ij , Y

∗
ji, ρ). For example, in a slight

abuse of notation, write ∂ρrij(ρ) for the partial derivative ∂ρr(y1, y2, ρ) |y1=Y ∗ij ,y2=Y ∗ji,ρ=ρ0

and write ∂y1rij(ρ) for the partial derivative ∂y1r(y1, y2, ρ) |y1=Y ∗ij ,y2=Y ∗ji,ρ=ρ0 . We adapt

similar notation for other derivatives. For a function π 7→ g(π) that is evaluated at
π = Y ∗ij write gij to indicate the point of evaluation and ∂πkgij = ∂πkg(π) |π=Y ∗ij

to denote

the kth derivative with respect to the latent index. Write p1,ij = pij(1 − pij) for the
conditional variance of Yij , r1,ij = rij(1 − rij) for the conditional variance of Zij and
ρ̃ij = (rij − pijpji)/

√
p1,ijp1,ji for the conditional correlation between Yij and Yji. Let

`ij = Yij log(pij) + (1− Yij) log(1− pij) so that we can write

L(θ,γ) =
1

N

∑
i,j∈V (N)

i 6=j

`ij(θ,γ).

The score of the first stage problem will be a function of the ∂π`ij . The corresponding
Hessian can be characterized in terms of the ∂π2`ij . The behavior of my procedures is
linked intimately to these quantities. Let Hij = ∂πpij/p1,ij and ωij = Hij(∂πpπ). Then
∂π`ij = Hij(Yij − pij) and Ē[−∂π2`ij ] = ωij .

The asymptotic results reported below describe certain relevant quantities in terms
of appropriately projected link characteristics. An approach that does not rely on
such projection arguments can be found in Yan et al. 2016. To define the appropriate
projections let P denote a projection operator. P orthogonally projects vectors v =
(vij)i 6=j onto the space spanned by the agent effects under an inner product weighted by
a diagonal matrix with diagonal entries (ωij)i 6=j . In particular, (Pv)ij = γ̂Si + γ̂Rj for any
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(γ̂Si , γ̂
S
i )i∈V solving

min
γSi ,γ

R
i

∑
i,j∈V
i 6=j

ωij
(
vij − γSi − γRj

)2
.

Let X̃k denote the projected value of the kth edge-specific covariate out of the space
where the agent effects live. Formally, let Xk denote the vector (Xij,k)i 6=j and define
X̃k = Xk − PXk. Also, let X̃ij denote the column vector (X̃ij,1, . . . , X̃ij,dim(θ))

′.
The results reported in this section hold under a set of regularity assumption sum-

marized in Assumption 1 in the appendix. Assumption 1(ii) and (iv) ensure that the
maximum likelihood program is concave and that this concavity is preserved in the limit.
In practice, this is satisfied if varying the sender or the receiver subscript of a link while
keeping the other subscript fixed induces variation in the link specific covariates that
contribute to the homophily component (“within variation”). Assumption 1(v) and (vi)
require that the link surplus is bounded away from infinity which imposes density of the
resulting network. This assumption may be restrictive in some social networks (Graham
2016, Jochmans 2016).

4.1. Estimation of homophily parameter

The following result on the asymptotic behavior of θ̂ is closely related to Theorem 4.1 in
FVW.

Theorem 1 (Distribution of θ̂). Under Assumption 1

N W̄1,N (θ̂ − θ0) = Bθ
N +

1

N

∑
i∈V

∑
j∈V−i

HijX̃ij(Yij − pij) + op(1)

and

W̄
−1/2
2,N

(
N W̄1,N (θ̂ − θ0)−Bθ

N

)
= N (0, 1) + op(1)

where Bθ
N = Bθ,S

N +Bθ,R
N and

Bθ,S
N =

[
1

2N

∑
i∈V

∑
j∈V−i

ωijX̃ijX̃
′
ij∑

j∈V−i
ωij

]
θ0,

Bθ,R
N =

[
1

2N

∑
j∈V

∑
i∈V−j

ωijX̃ijX̃
′
ij∑

i∈V−j
ωij

]
θ0,

W̄1,N =
1

N2

∑
i∈V

∑
j∈V−i

ωijX̃ijX̃
′
ij ,

W̄2,N =W̄1,N +
1

N(N − 1)

∑
i∈V

∑
j∈V−i

ρ̃ij
√
ωijωjiX̃ijX̃

′
ji.
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The theorem states that, upon normalization, the difference between the estimator
and the true value of the homophily parameter is asymptotically normal and centered
at the asymptotic bias term Bθ

N . For a non-degenerate limit distribution the difference
between estimator and true value has to be inflated proportional to the factor N . Note
that we observe N(N − 1) potential links so that N behaves like the square root of
the total number of link observations. Therefore, the estimator converges at the usual
parametric rate (cf. Graham 2016). Due to the within-dyad correlation of shocks the
information matrix equality does not hold and the asymptotic variance matrix of the
estimator is given by the sandwich W̄−1

1,NW̄2,NW̄
−1
1,N . Uncorrelated within-dyad shocks

(i.e. ρ0 = 0) imply ρ̃ij = 0 so that the variance matrix reduces to W̄−1
1,N if shocks are

uncorrelated within dyads. By default, most software packages that have the capability to
solve program (3.1) will report an estimated covariance matrix based on the assumption
that the variance of θ̂ is well approximated by W̄−1

1,N . While the estimator θ̂ is biased,

the leading-order term of the bias vanishes at rate N so that θ̂ will be consistent for the
true parameter value. The bias does, however, affect test statistics and has to be taken
into account when conducting hypothesis testing.

The distributional result in Theorem 1 describes bias and variance in terms of unknown
population quantities and can therefore not be used directly in hypothesis testing. To
construct estimators of the required population quantities define ω̂ij = ωij(θ̂, γ̂) and
let P̂ denote the projection operator that is defined similarly to P with the weights

ωij replaced by the estimated weights ω̂ij . Define ˆ̃Xk = Xk − P̂Xk and let ˆ̃Xij denote

the column vector ( ˆ̃Xij,1, . . . ,
ˆ̃Xij,dim(θ))

′. In practice, the necessary projections can be
computed by methods for weighted least squares supplied by most statistical software
packages. Also set ˆ̃ρij = ρ̃ij(θ̂, γ̂). We can now define estimators B̂θ

N , Ŵ1,N and Ŵ2,N by

substituting ω̂ij for ωij , ˆ̃ρij for ρ̃ij , θ̂ for θ0, and ˆ̃Xij for X̃ij in the expressions for Bθ
N ,

W̄1,N and W̄2,N given in Theorem 1. It is expected (cf. FVW) that

Ŵ
−1/2
2,N

(
N Ŵ1,N (θ̂ − θ0)− B̂θ

N

)
= N (0, 1) + op(1),

a conjecture that can be proved similarly to Theorem 4.3 in FVW. From this representation
we can derive the t-statistic t̂N (θ̂k) and the bias-corrected estimator θ̂ĉorr discussed in
Section 3.4.

4.2. Estimation of reciprocity parameter

Let mij = Zij log(rij) + (1− Zij) log(1− rij) so that we can write

M̂(ρ) =
1

N

∑
i,j∈V (N)

i 6=j

mij(θ̂, γ̂).
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Define Jij = ∂ρrij/r1,ij and note that the corresponding score evaluated at the true
parameter values is given by

∂ρM =
1

N

∑
i,j∈V (N)

i 6=j

∂ρmij =
1

N

∑
i,j∈V (N)

i 6=j

Jij(Zij − rij).

Let Ω = PA for A = (Aij)i 6=j and Aij = Ē[∂∂y1mij ]/Ē[∂π2`ij ] = Jij(∂y1rij)/ωij .

Theorem 2 (Distribution of ρ̂). Under Assumption 1

v1,NN(ρ̂− ρ0)− 2T ′NW̄
−1
1,NB

θ
N − 2Bρ

N√
v2,N

= N (0, 2) + op(1)

where

TN =− 1

N2

∑
i∈V

∑
j∈V−i

Jij(∂y1rij)X̃ij

and t̃N,ij = T ′NW̄
−1
1,NX̃ij and

v1,N =
1

N(N − 1)/2

∑
i,j∈V
i<j

Jij(∂ρrij)

v2,N = v1,N +
1

N(N − 1)

∑
i∈V

∑
j∈V−i

{
4(t̃N,ij − Ωij)Jij(∂πpij)

rij
pij

+ 2(t̃N,ij − Ωij)
2ωij

+ 2(t̃N,ij − Ωij)(t̃N,ji − Ωji)ρ̃ij
√
ωijωji

}

and Bρ
N = Bρ,S

N +Bρ,R
N +Bρ,SR

N with

Bρ,S
N =

1

N

∑
i∈V

∑
j∈V−i

{
(∂πpij)(∂y1Jij)

rij
pij

+ 1
2ΩijHij(∂π2pij)

}∑
j∈V−i

ωij

− 1

N

∑
i∈V

∑
j∈V−i

{
(∂y1Jij)(∂y1rij) + 1

2Jij(∂y21rij)
}∑

j∈V−i
ωij

Bρ,R
N =

1

N

∑
j∈V

∑
i∈V−j

{
(∂πpij)(∂y1Jij)

rij
pij

+ 1
2ΩijHij(∂π2pij)

}∑
i∈V−j

ωij

− 1

N

∑
j∈V

∑
i∈V−j

{
(∂y1Jij)(∂y1rij) + 1

2Jij(∂y21rij)
}∑

i∈V−j
ωij

Bρ,SR
N =− 1

N

∑
i∈V

corri
∑

j∈V−i

{
(∂y1Jij)(∂y1rji) + (∂y1Jji)(∂y1rij) + Jij(∂y1y2rij)

}
(∑

j∈V−i
ωij

)1/2(∑
j∈V−i

ωji

)1/2
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and

corri =

∑
j∈V−i

ρ̃ij
√
ωijωji(∑

j∈V−i
ωij

)1/2(∑
j∈V−i

ωji

)1/2
.

This result establishes that ρ̂ is asymptotically normal, converges to the true population
parameter at rate N and exhibits an asymptotic bias term that is of the same order as
the stochastic term.

The proof of Theorem 2 exploits results for long panel models with individual and time
fixed effects reported in FVW. Interestingly, the structure of the incidental parameter bias
of the estimator ρ̂ differs from the bias terms of functionals of the incidental parameter
that are of interest in a panel context. In panel models, FVW consider the incidental
parameter that is associated with marginal effects. For this functional, they observe a
factoring property of the incidental parameter bias. In particular, under true models with
only individual or only time fixed effects, the estimator of the functional will be biased.
The bias term under a model that includes both individual and time fixed effects can be
computed as the sum of the bias terms from the two more restricted models. The bias of
the estimator ρ̂ does not obey a similar factoring property. It is not possible to recover
the bias in the model with both sender and receiver fixed effects from the bias terms in
the two more restricted models that include fixed effects only for one direction of the
link. The lack of a factoring property is owed to the presence of the bias term Bρ,SR

N .
This bias term is a weighted average over transformed agent characteristics with weights
given by corri. Each dyad contributes twice to the first-stage likelihood, once for each
possible link within the dyad. The weight corri measures the (conditional) correlation
between the two contributions for the links to and from agent i. In particular,

corri =

∑
j∈V−i

Ē(∂π`ij∂π`ji)√(∑
j∈V−i

Ē(∂π`ij)2
)(∑

j∈V−i
Ē(∂π`ji)2

) .
In the special case of uncorrelated within-dyad shocks (ρ0 = 0) these weights will be zero
and the asymptotic bias term will factor.

It is worthwhile to compare Theorem 2 to Theorem 1 which predicts a bias term
that factors even in the case of non-zero correlation of the within-dyad shocks. The
crucial difference between the two theorems is that the structure of the Hessians of
the functionals that they are considering exhibit crucial differences. The appropriate
Hessian for Theorem 1 has a strong diagonal and weak off-diagonal elements. In a Taylor
expansion around the true incidental parameter the interaction of ∂π`ij and ∂π`ji is
weighed by a weak element and will not be of asymptotic first order. The corresponding
Hessian for Theorem 2 has a two-by-two block structure where each block has a strong
diagonal and weak off-diagonal elements. In a Taylor expansion around the true incidental
parameter the interaction of ∂π`ij and ∂π`ji is weighed by a strong element and cannot
be ignored in the limit.

The proof of Theorem 2 adapts the arguments in FVW to a different class of functionals.
To analyze second-order terms in a Taylor expansion, FVW employ projection arguments
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that assume a particular symmetric structure of certain second-order derivatives. My
proof of Theorem 1 relies on an alternative argument since the functional that I am
analyzing exhibits a different structure.

To evaluate the bias and variance terms in Theorem 2 we have to compute derivatives
of bivariate normal probabilities. In Appendix I, I derive formulas for the required
derivatives. The terms defined in Theorem 2 depend on unknown population quantities.
A feasible t-statistic can be defined by replacing unknown population parameters by

estimators. Let Ĵij = Jij(θ̂, γ̂) and define ∂̂y1rij , ∂̂y21rij , ∂̂y1y2rij , ∂̂ρrij , ∂̂πpij , ∂̂π2pij , and

∂̂y1Jij similarly. Let Ω̂ = P̂Â with Â = (Âij) and Âij = Ĵij ∂̂y1rij/ω̂ij . Define B̂ρ
N with

Ωij replaced by Ω̂ij , ∂πpij replaced by ∂̂πpij and so forth. Similarly, define estimators
v̂1,N , v̂2,N and T̂N . It is expected that

v̂1,NN(ρ̂− ρ0)− 2T̂ ′NŴ
−1
1,N B̂

θ
N − 2B̂ρ

N√
v̂2,N

= N (0, 2) + op(1)

From this representation we can derive the t-statistic t̂N (ρ̂k) and the bias-corrected
estimator ρ̂ĉorr discussed in Section 3.4.

4.3. Testing model specification

We now turn to the asymptotic behavior of the naive transitivity statistic (SN−ÊSN )/N3.
Consider a link ij contained in a transitive triangle β. The probability of observing

triangle β conditional on observing the link ij is given by

Ē[Tβ | Yij = 1] = pT−ij(β) =
∏

e∈β\{ij}

pe.

For the asymptotic theory we have to consider the expected number of transitive triples
containing the link ij conditional on the event that the link ij has realized. In particular
we are interested in a transformation of this conditional probability which is given by

βNij =
1

HijN

∑
β∈B(N)
β3ij

Ē[Tβ | Yij = 1] =
1

HijN

∑
β∈B(N)
β3ij

pT−ij(β).

Let βN = (βNij )i 6=j and define β̃
N

= βN − PβN .
The following result establishes convergence of the naive test statistic to a normal

random variable. The naive test statistic exhibits an incidental parameter bias and is
not centered at zero if the null hypothesis is true.

Theorem 3 (Transitvity test). Let

UN =
1

N2

∑
i∈V

∑
j∈V−i

βNijωijX̃ij
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and ũN,ij = U ′NW̄
−1
1,NX̃ij and suppose that Assumption 1 holds. Then

EN = (vSN )−
1
2

(
N
SN − ÊSN

N3
+BS

N + U ′NW̄
−1
1,NB

θ
N

)
= N (0, 1) + op(1),

where

vSN =
1

N2

∑
i∈V

∑
j∈V−i

{(
β̃
N
ij − ũN,ij

)2
ωij +

(
β̃
N
ij − ũN,ij

)(
β̃
N
ji − ũN,ji

)
ρ̃ij
√
ωijωji

}

and BS
N = BS,S

N +BS,R
N +BS,SR

N with

BS,S
N =

1

2N

∑
i∈V

∑
j∈V−i

Hij(∂π2pij)β̃
N
ij∑

j∈V−i
ωij

+
1

2N

∑
i∈V

N−1
∑

j∈V−i

∑
k∈V−{i,j}(∂πpij)(∂πpik) [pjk + pkj ]∑

i∈V−j
ωij

BS,R =
1

2N

∑
j∈V

∑
i∈V−j

Hij(∂π2pij)β̃
N
ij∑

j∈V−i
ωij

+
1

2N

∑
j∈V

N−1
∑

i∈V−j

∑
k∈V−{i,j}(∂πpij)(∂πpkj) [pik + pki]∑

j∈V−i
ωij

BS,SR
N =

1

N

∑
i∈V

corriN
−1
∑

j∈V−i

∑
k∈V−{j,k}(∂πpij)(∂πpki)pkj(∑

j∈V−i
ωij

)1/2(∑
j∈V−i

ωji

)1/2
.

In Appendix D, I present a similar result for a fully parametric model without fixed
effects. The proof of Theorem 3 is based on the representation

N−2
(
SN − ÊSN

)
= N−2

(
SN − ĒSN

)
−N−2

(
ÊSN − ĒSN

)
(4.1)

that decomposes the appropriately scaled naive transitivity statistic as the sum of the
oracle test statistic and the estimation error. The leading order terms of both summands
are of the same order. The oracle statistic contributes a stochastic term to the asymptotic
distribution and the estimation error contributes both a stochastic and a deterministic
term. Interestingly, the variation that is due to estimating the incidental parameter
cancels out some of the variation of the oracle statistic, reducing overall variance. It is
instructive to compare the result in Theorem 3 to the corresponding result for a fully
parametric model. To this end, suppose that the link surplus is given by Y ∗ij = X ′p,ijθ

0
p.

This linear specification subsumes edge-specific homophily effects as well as the sender’s

productivity effect and the receiver’s popularity effect. Let Êp SN denote the MLE
estimator of ĒSN based on the parametric model. Theorem 4 in the Appendix gives the
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asymptotic variance vSp,N of a transitivity statistic based on the fully parametric model.

In particular, for ρ0 = 0 the asymptotic variance of (SN − Êp SN )/N2 is given by

vSp,N =
1

N2

∑
i∈V

∑
j∈V−i

(
βNij − up,N,ij

)2
ωij ,

where up,N,ij is defined in Theorem 4. The variance of the normalized oracle statistic
NEoracle

N = (SN − ĒSN )/N2 is given by

vSo,N =
1

N2

∑
i∈V

∑
j∈V−i

(
βNij
)2
ωij .

By the definition of the projection operator P we always have∑
i∈V

∑
j∈V−i

(
β̃
N
ij

)2
ωij ≤

∑
i∈V

∑
j∈V−i

(
βNij
)2
ωij

and the inequality will be strict if degree heterogeneity is at least partially driven by
the fixed effects. The ordering of vSN , vSp,N and vSo,N is not uniquely determined because

of the up,N,ij and ũp,N,ij terms.7 In practice, I find that vSN < vSp,N and vSN < vSo,N by a
substantial margin. Consequently, for scenarios in which a fully parametric specification
is plausible, the transitivity test based on estimates from the model with fixed effects
may be more powerful than the test based on estimates from the parametric model or
the test based on the true values. It may seem counterintuitive that a semiparametric
model can estimate a zero more precisely than a tightly specified parametric model or a
model that uses the true linking probabilities. However, such behavior is not without
precedent. Abadie and Imbens 2016 give another example of an econometric problem
where estimating a quantity rather than using its true value can lead to efficiency gains.

Consistent estimators of the bias and variance terms in Theorem 3 can be constructed
by a simple plug-in approach. Let β̂

N

ij = βNij (θ̂, γ̂) and β̂
N

= (β̂
N

ij )i 6=j and define the

projected vector
ˆ̃
βN = β̂

N−P̂β̂N . Define ÛN by replacing the population quantities in UN

by estimators, i.e. replace βNij by β̂
N

ij , ωij by ω̂ij and X̃ij by ˆ̃Xij . Let uN,ij = Û ′NŴ
−1
1,N

ˆ̃Xij .

Define B̂S
N by replacing the population quantities in BS

N with estimators, i.e. replace ωij

by ω̂ij , β̃ij by
ˆ̃
βij , ũN,ij by ˆ̃uN,ij and so forth. Similarly, define an estimator v̂SN of vSN .

It is expected that

ÊN = (v̂SN )−
1
2

(
N
SN − ÊSN

N3
+ B̂S

N + Û ′NŴ
−1
1,N B̂

θ
N

)
= N (0, 1) + op(1).

The interpretation of this test statistic is discussed in Section 3.5.

5. Simulations

In this section, I present results of a simulation exercise that investigates the finite sample
accuracy of the procedures suggested in this paper.

7If there is no homophily component then vSN ≤ vSo,N . Under a weak condition the inequality is strict.
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homophily reciprocity

N ρ0 bias NC bias C rej NC rej C bias NC bias C rej NC rej C

50 0.0 0.80 -0.03 0.18 0.12 -0.13 -0.13 0.09 0.08
50 0.3 0.80 -0.03 0.20 0.09 0.13 -0.12 0.12 0.08
50 0.6 0.58 -0.16 0.17 0.12 0.47 -0.08 0.17 0.07

100 0.0 0.84 -0.08 0.20 0.07 -0.01 -0.01 0.11 0.10
100 0.3 0.77 -0.11 0.19 0.08 0.27 0.03 0.09 0.09
100 0.6 0.62 -0.17 0.16 0.09 0.67 0.05 0.18 0.10

Table 1: Simulation results for estimated homophily and reciprocity parameters. The
simulated bias terms are reported in terms of standard deviations of the corre-
sponding estimator. The column ‘bias NC’ gives the bias of the estimator if no
bias correction is carried out, the column ‘bias C’ gives the bias of the estimator
after analytic bias correction. The ‘rej C’ column gives the empirical rejection
probability of a t-test against the true parameter value where the test statistic
has been bias-corrected (nominal level α = 0.1). The ‘rej NC’ column gives the
corresponding empirical rejection probability if no bias correction is carried out.

The simulation design is similar to Graham 2016. Agents i ∈ V (N) are characterized
by independent draws from the joint distribution of (Xi, γ

S
i , γ

R
i ). Here, Xi is a scalar

covariate drawn from {−1, 1} with even odds. The distribution of the agent effects
depends on the observed realization of Xi. For given Xi the agent effects are generated
according to

γSi =− 1 + 0.51{Xi=−1} + BetaS

γRi =− 1 + 0.51{Xi=−1} + BetaR,

where BetaS and BetaR are independent draws from a centered Beta distribution with
parameters λ0 = 0.25 and λ1 = 0.75. The skewness of the Beta distribution endows a
minority of agents with exceptionally large productivity and popularity effects. This
heterogeneous minority dominates the linking activity inside the network. The majority of
agents receives draws for the agent effects that are small in magnitude. Consequently, these
agents exhibit small in-degrees and small out-degrees. This kind of degree distribution
is reminiscent of social networks in the real world. By construction, agent effects are
correlated with agent characteristics thus rendering a random effects approach infeasible.
For link ij the link-specific homophily variable is a scalar given by Xij = XiXj . The
true homophily parameter is given by θ0 = 0.5 and the link surplus of link ij is given by

Y ∗ij = 0.5Xij + γSi + γRj .

The simulation results are based on 500 simulations. To assess the effect of the sample
size, I present results for a small network (N = 50) and a moderately sized network
(N = 100). I simulate models with different values of the reciprocity parameter and
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analytic SE bootstrap SE

N ρ0 bias NC bias C rej NC rej C bias NC bias C rej NC rej C

50 0.0 -5.99 -0.10 0.99 0.28 -3.94 -0.06 0.98 0.10
50 0.3 -5.78 0.14 0.99 0.26 -3.61 0.10 0.98 0.04
50 0.6 -5.83 0.20 0.99 0.27 -3.47 0.12 0.94 0.10

100 0.0 -5.60 0.19 1.00 0.14 -4.35 0.15 1.00 0.06
100 0.3 -5.69 0.23 1.00 0.20 -4.29 0.16 1.00 0.07
100 0.6 -5.82 0.25 0.99 0.21 -4.19 0.18 0.99 0.10

Table 2: Simulation results for transitivity tests. Test statistics are computed by stan-
dardizing by analytic (“analytic SE”) as well as bootstrapped standard errors
(“bootstrap SE”). The nominal level of the test is α = 0.1. The results for ana-
lytic standard errors are based on 500 simulations. The results for bootstrapped
standard errors are based on 200 simulations with B = 200 bootstrap iterations.

set ρ0 ∈ {0, 0.3, 0.6}. Table 1 summarizes simulation results for the estimators of the
homophily parameter θ0 and the reciprocity parameter ρ0.

The MLE estimator θ̂ without bias correction exhibits a bias of between 60% and
80% of a standard deviation. The bias has a similar magnitude for both sample sizes
indicating that the speed of convergence to the asymptotic bias is relatively swift. I
simulate t-tests (α = 0.1) that test the estimated homophily parameter against its true
value. Without bias correction, the tests overreject. The simulated empirical rejection
probability lies between 0.16 and 0.20. In contrast, a test based on the bias-corrected
t-statistic computed according to formula (3.3) controls the size of the test.

The finite sample bias for the estimator ρ̂ depends on the true value ρ0. If the
idiosyncratic errors affecting linking decisions within a dyad are uncorrelated (ρ0 = 0)
then ρ0 will be estimated virtually without bias. For positively correlated errors, the
estimator ρ̂ exhibits a positive bias that is increasing in the true correlation. For ρ0 = 0.6
the bias of ρ̂ amounts to almost 70% of a standard deviation in the larger sample. The
magnitudes of the bias terms are slightly different for the two sample sizes, indicating
that convergence to the asymptotic limit is slower than for the estimator of the homophily
parameter. Without bias correction, a t-test of ρ̂ against the true value does not control
the size in the designs where ρ0 = 0.6. In these designs, the empirical rejection probability
exceeds the nominal level by about 8 percentage points. For the test based on the bias-
corrected t-statistic from equation (3.5) the empirical rejection probability is close to the
nominal size for all designs.

We now turn to Table 2 which summarizes simulation results for the transitivity test
(α = 0.1). For the simulations reported under the caption “analytic SE” the estimator v̂SN
in (3.7) is a sample analogue of vSN in Theorem 3. Since the test statistic is studentized,
the units in which the bias is measured can be interpreted as standard deviations.
Without bias correction, the test statistic exhibits a negative bias of almost six standard
deviations. Analytic bias correction as implemented in formula (3.7) picks up more than
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test ĒSN oracle test

N ρ0 bias NC bias C rej NC rej C bias rej

50 0.0 0.80 -0.04 0.21 0.10 -0.06 0.10
50 0.3 0.73 -0.10 0.22 0.11 -0.08 0.09
50 0.6 0.71 -0.14 0.16 0.12 -0.11 0.11

100 0.0 0.84 -0.02 0.24 0.09 0.01 0.10
100 0.3 0.73 -0.12 0.18 0.09 -0.08 0.09
100 0.6 0.79 -0.06 0.22 0.10 -0.02 0.10

Table 3: Simulating the two components in decomposition (4.1).

95% of this bias. The transitivity test without bias correction rejects a true model with
probability close to one. Even with analytic bias correction the test is overrejecting by
a margin of between 4-11% in the larger sample. In this simulation design, the first
order approximation of the stochastic term underestimates the true variability of the test
statistics without studentization. In the smaller sample it captures about 65% of the
variation, in the larger sample it captures about 80% of the variation. It is not surprising
that the stochastic term converges rather slowly to its limit. In Section 4.3, I discuss a
cancellation property of the test statistic that eliminates many first-order terms. In small
samples, higher-order terms may contribute to the sampling variance in a substantial
way.

As an alternative way for computing appropriate standard errors, I consider a para-
metric bootstrap procedure. Simulation results for a transitivity test with analytic bias
correction and a bootstrap estimate of vSN are reported in Table 2 under the caption
“bootstrap SE”. In my designs, the test with bootstrap errors has appropriate size control.

To investigate the cancellation property further, I conduct additional simulation
experiments and simulate the two terms in decomposition (4.1) separately. In particular,

I simulate a (in reality infeasible) t-test of ÊSN against the true ĒSN based on the test
statistic

tN (ĒSN ) = (ÊSN − ĒSN + B̂S
N + Û ′NŴ

−1
1,N B̂

θ
N )/(N2

√
v̂ESN ),

where v̂ESN is a sample counterpart of

vESN =
1

N2

∑
i∈V

∑
j∈V−i

{(
(PβN )ij + ũN,ij

)2
ωij

+
(
(PβN )ij + ũN,ij

)(
(PβN )ji + ũN,ji

)
ρ̃ij
√
ωijωji

}
.

Moreover, I simulate the oracle test based on the test statistic

Êoracle
N = (SN − ĒSN )/(N2v̂So,N ),
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where v̂So,N is the sample counterpart of

vSo,N =
1

N2

∑
i∈V

∑
j∈V−i

{(
βNij
)2
ωij + βNijβ

N
ji ρ̃ij
√
ωijωji

}
.

Simulation results are summarized in Table 3. Both tests have good size control. This
shows that for each of the two terms in decomposition (4.1) the finite sample distribution
is approximated well by a first-order expansion. For small samples, the quality of
the approximation is reduced when putting the two terms together since some of the
dominating terms cancel out.

In Section 4.3, I discuss the possibility that the cancellation property of the transitivity
test statistic may lead to efficiency gains compared to oracle estimation. In a simulation
framework we can elicit the magnitude of this efficiency gain. Comparing unstudentized
versions of the feasible test statistic ÊN and the oracle test statistic Êoracle

N for my designs,
I find that the standard deviation of the feasible test statistic is less than 20% of the
standard deviation of the oracle test statistic. This indicates that the efficiency gains
can be quite substantial in practice.

6. Application: Favor networks in Indian villages

I use the Indian village data from Banerjee et al. 2013 and Jackson, Rodriguez-Barraquer,
and Tan 2012. This data set contains survey data from 75 Indian villages. In each village,
about 30 - 40% of the adult population were handed out detailed questionnaires that
elicit network relationships to other people in the same village as well as a wide range of
socio-economic characteristics.

For this application, networks are defined on the village level. Therefore, the data set
contains 75 network observations.8 For each village, the set of agents is given by the
surveyed villagers. Links are defined by a social relationship related to anticipated favor
exchanges.

Network definition The directed network considered in this application is constructed
from the survey questions “If you suddenly needed to borrow Rs. 50 for a day, whom
would you ask?” and “If you needed to borrow kerosene or rice, to whom would you
go to?”. To set up the network, I let every surveyed individual send directed links to
each of the individuals nominated in one of the two questions, provided that the nominee
was also included in the survey. The network generated in this way is defined to be
the network of interest. This avoids identification issues that arise when using a partial
sample for inference on an imperfectly observed population network (Chandrasekhar and
Lewis 2011). Addressing such problems is beyond the scope of this paper. Links are
defined by aggregating information for two different favor requests. This benefits the
econometric analysis by reducing sparsity of the resulting network.

8In my analysis, I discard 8 networks in which agents are very homogeneous so that multicollinearity
issues arise.
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i jSender Receiver
link

i asks j for help

maybe flow of goods

Figure 1: Definition of link: There is a link from i to j if, under a hypothetical situation,
i would go to j to ask for help.

A link from agent i to agent j indicates that, in times of need, i would ask j for help.
Note that, if j accedes to the request, the direction of the flow of goods will be opposite
to the direction of the link. Figure 1 illustrates the behavior of two linked villagers under
the hypothetical situation from the survey question.

Interpretation of dyadic linking model It is instructive to discuss the significance of
productivity, popularity and homophily in the context of this application. When deciding
about whether to establish a link to some agent j, a sender i ponders whether j is able
and willing to grant the request. Agent j’s ability to provide help is affected by her own
wealth and liquidity as well as i’s ability to repay the loan or return the favor in the
future. In the context of my model, the first effect contributes to j’s popularity, and the
second effect adds to i’s productivity. Agent j’s willingness to help is a function of how
altruistic she is, of i’s skill in negotiating the favor, and of how sympathetic j is towards
i’s plight. The first two considerations are, again, subsumed in j’s popularity and i’s
productivity, respectively. It is plausible to assume that j is more sympathetic towards i
the more similar the two of them are. This tendency is a manifestation of homophily.
For example, j might have a high willingness to offer assistance to members of her own
family, or have little inclination to help out individuals belonging to a different caste.

In the highly stylized decision model sketched in the previous paragraph, many drivers
of productivity and popularity such as an innate predisposition towards acts of altruism,
or expectations about future liquidity are inherently unobservable. In the dyadic linking
model these unobserved factors will be captured by the agent fixed effects. If the network
is based on survey data, the sender effect can also subsume reporting behavior. This
makes the estimator of the homophily parameter robust to some common forms of
measurement error.

Homophily preferences and reciprocity I estimate homophily preferences and reci-
procity separately for each network. Table 5 lists all variables that are used in the
specification for the homophily component. For the variables related to education, in-
dividuals are sorted into one of three bins according to their reported years of formal
schooling. Individuals are assigned to the bin “SSLC” if they have obtained a Secondary
Schooling Leaving Certificate. In India, this certificate is awarded to students who pass
an examination at the end of grade 10. It is a prerequisite for enrolling in pre-university
courses. All other individuals are assigned to “no education” if they have completed less
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smallest median largest

coeff tN coeff tN coeff tN

N 95 212 413

same caste -0.16 (-0.9) -0.24*** (-3.4) 0.58*** (10.3)
age diff -0.01 (-1.0) -0.00 (-1.0) -0.01*** (-4.6)

same family 1.14*** (5.0) 0.60*** (4.4) 1.52*** (15.2)
same latrine 0.17 (1.4) -0.79*** (-9.6) -0.07* (-1.8)
same gender 0.51*** (3.5) 0.23*** (2.9) 0.41*** (7.4)

both hh heads -0.29** (-2.1) -0.29*** (-3.9) -0.06 (-1.2)
both village native 0.00 (0.0) -0.23*** (-3.8) -0.06 (-1.4)

educ NONE-SOME -0.74*** (-4.4) -0.88*** (-11.1) -0.46*** (-9.1)
educ NONE-SSLC -0.48*** (-3.1) -1.66*** (-17.1) -0.69*** (-11.8)
educ SOME-SSLC -0.52*** (-3.7) -2.12*** (-18.0) -0.58*** (-10.1)

reciprocity 0.53*** (4.3) 0.50*** (6.8) 0.71*** (25.0)

Table 4: Estimation results for the smallest, the largest and the median network. Es-
timation of homophily preferences and reciprocity parameter (*=p-val < 0.1,
**=p-val < 0.05, ***=p-val < 0.01).

Variable Description

same caste i and j belong to the same caste
age diff absolute value of age difference between i and j
same family i and j belong to the same family
same latrine i and j both (don’t) live in a house with an own

latrine
same gender i and j have the same gender
both hh heads both i and j are household heads
same village native both i and j were born in the village
educ None-Some one of i and j has no education,

the other has finished primary education
educ None-SSLC one of i and j has no education,

the other has a obtained a SSL certificate
educ Some-SSLC one of i and j has finished primary education,

the other has obtained a SSL certificate

Table 5: Description of variables measuring homophily (Xij).
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than five years of schooling, and to “some education” if they report at least five years of
schooling. For caste membership I adopt the fairly broad categorization from the data
set. Individuals are described as members of scheduled tribes, scheduled castes, other
backwards castes (OBC’s) or general castes.

Table 3.1 summarizes estimation results for the smallest network (village 10, N = 95),
the largest network (village 60, N = 413), and the median network (village 15, N = 212).
For my analysis I maintain a nominal significance level of 5%. The reported estimates have
been bias corrected using formulas (3.4) and (3.6) for improved finite-sample precision.
The reported t-statistics and p-values are computed from formulas (3.3) and (3.5) and
account properly for the presence of an incidental parameter.

The presence of family ties has a positive effect on the probability of identifying
someone as a target for favor requests. This may reflect a strong sense of solidarity
between family members. Homophily in gender increases the likelihood of establishing a
link, whereas differences in educational attainment lower the probability of a link forming.
Interestingly, the effect of caste membership is heterogeneous across networks. In the
smallest network the effect of belonging to the same caste is insignificant, in the median
network the effect is negative, and in the largest network the effect is positive. A positive
effect may be explained by an aversion to dealing with members of other castes. A
negative effect may be explained by a correlation between caste membership and risk.
Favor networks that bridge boundaries of caste may be more efficient. The “same latrine”
dummy, which has been included as a proxy for similarities in wealth, is significant and
negative in the two larger networks. This is indicative of a redistributional role of the
favor networks.

Estimates of the reciprocity parameter for all networks are depicted in Figure 2. Each
village is represented by two dots that give the size of the village and an estimate of
the reciprocity parameter. The dark blue dots give bias-adjusted estimates, the lightly
shaded dots give estimates without bias adjustment. In the following, I consider only
bias-adjusted estimates. For all networks the estimated reciprocity parameter is positive
and significantly different from zero. This means that shocks to i’s willingness to link
to j are positively correlated with j’s willingness to link to i. For different villages, the
estimated correlations range between 0.4 and 0.8. The correlation tends to be lower
in small networks and higher in large networks. Reciprocity estimates are informative
even if we are not willing to uphold the behavioral interpretation of the dyadic model.
Estimated reciprocity measures the correlation of linking decisions within a dyad in a way
that projects out the effect of homophily as well as agent productivity and popularity.
Therefore, the dyadic linking model can be used as a descriptive device for decomposing
the within dyad correlation of links.

Transitivity test The dyadic linking model is based on an exogeneity assumption which
requires individuals to evaluate each link in isolation of all other links. In particular,
individuals do not care about the network positions of their potential linking partners.
For favor networks, this assumption has been challenged. Jackson, Rodriguez-Barraquer,
and Tan 2012 argue that reciprocation of favors is best enforced by the threat of other
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Figure 2: Confidence sets for network-specific reciprocity parameters. The lightly shaded
points represent estimates that have not been bias-corrected.

agents in the network to withhold future favors from shirking individuals. Leung 2015
provides some empirical evidence for preferences for local structure in favor networks. In
particular, he estimates that agent prefer to form links that lead to transitive closure. The
transitivity test developed in this paper allows us to test the plausibility of the assumption
of dyadic linking against linking models that are endowed with some mechanism that
generates transitive relationships.

For the Indian favor networks, I apply the transitivity test from Section 3.7 as well
as a transitivity test based on estimates from a fully parametric model without fixed
effects (see Appendix D). The test based on estimates from a parametric model makes a
restrictive assumption about the determinants of productivity and popularity but is more
robust to sparsity. In the parametric model, productivity and popularity are parametric
functions of observed agent characteristics. The parametric specification of the link
surplus for link ij is given by

Y ∗ij = X ′ijθ
H,0 + (XS

i )′θS,0 + (XR
j )′θR,0,

where XS
i is a variable vector that is related to agent i’s productivity, XR

j is a variable

vector that is related to agent j’s popularity, and θH,0, θS,0 and θR,0 are unknown
parameters. My specification for the variables XS

i and XR
j is listed in Table B.2 in the

appendix. For the model with fixed effects, I compute test statistics based on analytic as
well as bootstrapped variance estimates. The transitivity test detects excess transitivity
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and rejects the null hypothesis of a correctly specified model. This finding is robust
over networks and model specifications. Test statistics are reported in Table B.1 in the
appendix. Chandrasekhar and Jackson 2016 analyze the same dataset and find also
evidence for excess transitivity using a different testing approach.

Correlates of productivity and popularity In the dyadic linking model with fixed effects
all determinants of productivity and popularity are subsumed in the sender and receiver
fixed effects. In Appendix A, I study the median network and sort agents into groups
according to their estimated fixed effects. By investigating the distribution of observed
covariates within these groups we can learn how latent productivity and popularity
correlate with observed characteristics. I find that a disproportionate amount of agents
with high popularity effects are head of their household and that a disproportionate
amount of agents with high productivity effects are female. Moreover, the age distribution
in the groups associated with high popularity effects places less mass at young ages than
the age distributions in the other groups. This indicates that young people are unlikely
to be receivers of favor requests.

7. Conclusion

The ideas explored in this paper open up several avenues for future research.
I have suggested a procedure for testing transitivity. Depending on the specific

application in mind, other network features might be of interest as well. It is an
interesting challenge to provide a unified theory of inference in the presence of unobserved
heterogeneity for a broad class of local network features. The difficulty of such an
endeavor lies in finding a general expression for the asymptotic bias.

In Section 5, I provide some evidence that in smaller networks the variance estimate
based on a first-order approximation may underestimate the true variability of the
transitivity test statistic. I attribute this to the “cancellation property” of the test
statistic that eliminates many first-order terms and renders the influence of higher-order
terms noticable in some smaller networks. This suggests that, in small networks, the
performance of the test may be improved by taking into account second or higher-
order terms when constructing the variance estimator and the analytic bias correction.
Justifying such a procedure requires new tools for deriving higher-order expansions in
nonlinear models with two-way fixed effects and is beyond the scope of this paper.

My estimation and testing procedures rely on a dense network assumption. The
recent literature suggests that some model features can be recovered from a sparse
network by using a conditioning approach (Graham 2016; Jochmans 2016). It is not clear
whether conditioning arguments can be used to construct an estimator of reciprocity
or to test transitivity. Even if conditioning arguments apply, it seems likely that the
size of the conditioning set will render this approach computationally intractable. To
preserve tractability, it may be necessary to put more structure on the distribution of
the unobserved effects. An interesting direction for future research is to explore models
of unobserved heterogeneity that are less restrictive than pure random effects but still
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identifiable in sparse networks.
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Appendix

A. More empirical results for favor networks

This section provides some further analysis of the empirical application. I study correlates
of productivity and popularity for the median network (village = 15).

The unobserved type of agent i corresponds to the tupel (γSi , γ
R
i ). Thus, every agent

type can be represented as a point on a two-dimensional plane. For the median network,
a plot of estimated types is provided in Figure B.1. The graph reveals an interesting
pattern of unobserved heterogeneity. Types cluster into four distinct groups. The largest
cluster consists of agents with relatively large sender and receiver effects (high S, high R).
The second largest cluster is composed of agents with relatively large sender effects and
relatively small receiver effect (high S, low R). The set of agents with below average
sender effects splits neatly into a group with relatively large receiver effects (low S, high R)
and a group with relatively small receiver effects (low S, low R).

There is no monotone relationship between sender and receiver effects. This suggests
that productivity and popularity are distinct phenomena rather than two manifestations
of one underlying variable such as social skill. This exemplifies the value of using data
on the direction of links. Models for directed networks, such as Graham 2016, are by
necessity restricted to modeling one-dimensional types and can therefore not reflect as
rich a picture of the unobserved heterogeneity. The latter group produces isolates, i.e.
agents who are not connected to anyone.

The clusters can be compared along a wide range of observed characteristics such as age
profiles (Figure B.2). The group with the lowest average age is the high S, low R group.
Summary statistics for other agent characteristics are presented in Table B.3. Women
comprise the majority of the agents in the groups with high sender effects. In particular,
they dominate the low S, low R group of isolates (67%). A disproportionate amount of
agents in clusters with high receiver effects are heads of their respective household (47%
for the high S, high R cluster, 60% for the low S, high R cluster).

B. Tables and figures

Village N ÊN Êuc
N Êboot

N Êp
N

1 203 27.39 18.73 9.00 35.30
2 203 12.87 5.20 5.32 11.26
3 345 54.82 36.79 11.82 48.26
4 256 33.98 21.42 10.06 26.11
5 164 18.79 6.73 4.63 11.69
7 172 26.63 18.38 11.03 18.84
8 109 14.78 4.97 6.34 6.50

Continued on next page
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Table B.1 – continued from previous page

Village N ÊN Êuc
N Êboot

N Êp
N

9 247 46.34 29.73 11.37 35.67
10 95 11.41 2.56 2.86 6.56
11 142 12.03 4.93 5.70 8.71
12 195 26.32 16.86 17.25 16.31
14 150 16.52 8.62 8.50 17.76
15 212 12.78 2.67 6.72 6.23
16 178 24.75 12.51 9.28 16.13
17 200 13.01 4.64 4.75 12.38
18 284 17.15 6.03 5.61 12.13
19 243 18.08 9.34 9.86 12.74
20 159 13.94 7.43 6.77 16.67
21 210 18.90 7.43 8.17 16.68
23 280 41.70 28.27 13.76 38.43
24 211 24.65 11.05 10.37 14.28
25 304 38.01 21.49 9.96 27.10
26 149 28.37 15.33 9.03 16.34
27 174 21.57 3.59 7.53 5.78
28 395 36.34 22.83 9.60 38.58
29 303 28.96 17.86 13.80 18.99
30 170 44.79 25.85 15.48 22.33
31 200 24.92 13.65 10.52 14.08
32 301 26.87 12.84 9.61 23.09
33 219 25.42 16.42 9.35 17.29
34 181 48.08 24.42 17.20 16.68
35 216 43.62 25.86 17.06 29.04
38 182 15.42 4.28 4.97 9.25
39 370 29.44 15.59 16.60 18.68
40 266 73.88 52.47 29.37 44.64
41 181 50.10 42.86 20.22 31.05
42 206 39.19 24.76 13.03 15.38
43 227 73.24 63.06 21.04 45.56
44 258 69.79 55.61 21.76 38.96
45 263 37.26 21.18 12.22 18.16
46 279 28.16 15.56 8.76 26.40
47 160 13.91 4.48 4.28 6.14
48 217 27.99 13.74 11.23 16.19
49 184 29.31 14.15 8.81 10.60
50 261 67.57 46.22 23.26 29.79
51 309 61.24 35.55 26.88 30.52
52 395 63.35 40.25 23.90 45.43
53 170 64.35 35.45 20.38 23.64
54 124 22.18 5.54 7.07 6.39
55 279 55.95 34.70 19.11 26.36
60 413 24.11 14.29 12.48 17.92
62 242 48.45 33.95 16.44 30.29
63 190 24.62 14.59 7.41 11.10
64 294 61.59 45.62 19.53 42.42
65 341 66.53 40.06 26.40 34.14
66 189 26.23 14.61 6.55 20.59

Continued on next page
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Table B.1 – continued from previous page

Village N ÊN Êuc
N Êboot

N Êp
N

67 231 22.43 8.72 6.44 14.23
68 164 13.11 -2.06 4.38 3.85
69 220 38.17 20.68 18.67 19.10
70 233 34.86 20.58 12.47 21.85
71 298 61.98 35.98 20.14 20.70
72 238 25.01 12.07 8.43 15.39
73 217 31.01 16.32 10.46 18.63
74 193 33.13 19.82 11.93 12.65
75 210 49.44 33.38 15.56 31.44
76 269 48.61 31.55 19.04 31.06
77 172 23.98 11.61 9.78 15.58

Table B.1: Transitivity tests for all networks. ÊN is the transitivity statistic for the model with fixed
effects, Êuc

N is same statistic without bias correction, Êboot
N is the transitivity statistic with

bootstrapped standard errors, and Êp
N is the transitivity statistic for the fully parametric

model without fixed effects.

Variable Description

age age of respondent
age2 square of age
female respondent is female
latrine respondent lives in a house with an own latrine
obc respondent’s caste is considered an OBC (Other Backward Caste)
general respondent’s caste is considered a General caste
educ Primary respondent has completed primary education
educ SSLC respondent has obtained a Secondary Schooling Leaving Certificate
has savings respondent has at least one savings account
has shg respondent participates in a SHG (Self Help Group)
is hhhead respondent is head of her household
is village native respondent was born in village

Table B.2: Description of variables approximating productivity (XS
i ) and popularity

(XR
j ) in the fully parametric model.
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Figure B.1: Distribution of estimated agent effects in median village (village = 15).
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Figure B.2: Age profile in median village by latent productivity/popularity clusters.
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type
high S,
high R

low S,
high R

high S,
low R

low S,
low R

household head 0.46 0.47 0.29 0.28
house has own latrine 0.21 0.24 0.24 0.33

house has electricity 0.90 1.00 0.95 0.89
participates in SHG 0.31 0.24 0.31 0.33

has rationcard 0.96 1.00 0.86 0.89
is spouse of household head 0.43 0.12 0.29 0.39

female 0.53 0.24 0.59 0.72
scheduled caste or tribe 0.25 0.29 0.31 0.33

general caste 0.13 0.18 0.14 0.17

Table B.3: Summary statistics for median village by latent productivity/popularity
clusters.

C. Regularity conditions and proofs of main results

Assumption 1 (Regularity assumptions). There is an event AN such that P (AN )→ 1.

(i) The true reciprocity paramter is in the interior of the parameter space, ρ0 ∈
[−1 + 2κ, 1− 2κ].

On AN :

(ii) Let λ1(M) denote the smallest eigenvalue of a matrix M . For W̄1,N as defined in
Theorem 1

lim inf
N→∞

λ1(W̄1,N ) > 0.

(iii) For Bθ
N and W2,N as defined in Theorem 1,

lim sup
N→∞

∥∥∥Bθ
N

∥∥∥ <∞ and lim sup
N→∞

∥∥W̄2,N

∥∥ <∞.
(iv) Let L and H̄ as defined in Appendix H. There is a b > 0 such that L = L(b) is

globally concave and H̄ is positive definite for all N .

(v) There are bmin and bmax such that 0 < bmin < ωij < bmax for all i 6= j.

(vi) There are pmin and pmax such that 0 < pmin < pij < pmax < 1 for all i 6= j.

Proof of Theorem 1. Apply Lemma H.2 and employ similar arguments as in the proof of
Theorem 4.1 in FVW to derive the linear asymptotic expansion. For the distributional
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result write

1

N

∑
i∈V

∑
j∈V−i

HijX̃ij(Yij − pij)

=
1√
2

1√
N(N − 1)/2

∑
i,j∈V
i<j

{
HijX̃ij(Yij − pij) +HjiX̃ji(Yji − pji)

}
+ op(1)

and apply a multi-variate CLT to the normalized sum on the right-hand side. The
(conditional) variance of the normalized sum is given by

2W̄2,N =
1

N(N − 1)/2

∑
i,j∈V
i<j

{
Hij(∂πpij)X̃ijX̃

′
ij +Hji(∂πpji)X̃jiX̃

′
ji

+ 2HijHjiX̃ijX̃
′
jiρ̃ij
√
p1,ijp1,ji

}
=2W̄1,N +

4

N(N − 1)

∑
i,j∈V
i<j

HijHjiX̃ijX̃
′
jiρ̃ij
√
p1,ijp1,ji + op(1).

Proof of Theorem 2. This theorem follows from the stochastic expansion in Lemma E.1.
By Lemma E.3,

∂ρM+
(
∂ρθ′M+ ∂ργ′M̄H̄−1

[
∂γθ′L̄

])
(θ̂ − θ0) +

(
∂ργ′M̄

)
H̄−1S

=
1

N

∑
i,j∈V
i<j

Jij(Zij − rij) + T ′NN(θ̂ − θ0)− 1

N

∑
i∈V

∑
j∈V−i

ΩijHij(Yij − pij)

=
1

N

∑
i,j∈V
i<j

Jij(Zij − rij) +
1

N

∑
i∈V

∑
j∈V−i

(t̃ij − Ωij)Hij(Yij − pij)

=
1

N

∑
i,j∈V
i<j

Uij + T ′NW
−1
1,NB

θ
N ,

where

Uij = Jij(Zij − rij) + (t̃ij − Ωij)Hij(Yij − pij) + (t̃ji − Ωji)Hji(Yji − pji).

The sum on the right-hand side is over
(
N
2

)
= N(N−1)

2 independent observations. To
verify that the (conditional) variance of the normalized sum is given by v2,N note that

Ē[(Zij − rij)(Yij − pij)] = rij(1− pij) = p1,ij
rij
pij
,

Ē[(Zij − rij)(Yji − pji)] = rij(1− pji) = p1,ji
rij
pji
,

Ē[(Yij − pij)(Yji − pji)] = rij − pijpji = ρ̃ij
√
p1,ijp1,ji,
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and Ē[(Yij − pij)
2] = p1,ij , Ē[(Yji − pji)

2] = p1,ji, and Ē[(Zij − rij)
2] = r1,ij . Now

straightforward calculations yield

v̄ar

(
1

N(N − 1)/2

∑
i,j∈V
i<j

Uij

)

=
1

N(N − 1)/2

∑
i,j∈V
i<j

{
J2
ijr1,ij + [(t̃ij − Ωij)Hij ]

2p1,ij + [(t̃ji − Ωji)Hji]
2p1,ji

+ 2Jij(t̃ij − Ωij)Hijp1,ij
rij
pij

+ 2Jij(t̃ji − Ωji)Hjip1,ji
rij
pji

+ 2(t̃ij − Ωij)(t̃ji − Ωji)HijHjiρ̃ij
√
p1,ijp1,ji

}
= v2,N .

Setting ∂ρM(γ̂, θ̂, ρ̂) = 0 and rearranging from Lemma E.1 now gives(
− ∂ρ2M

)
[ρ̂− ρ0] =

1

N

∑
i,j∈V
i<j

Uij + T ′NW̄
−1
1,NB

θ
N +Bρ,∗

N

+Op

(√
N
∣∣ρ̂− ρ0

∣∣+N
∣∣ρ̂− ρ0

∣∣2 )+ op(1).

Plugging in for ∂ρ2M from Lemma E.3 and for Bρ,∗
N from Lemma E.2 now gives

v1,NN [ρ̂− ρ0] =

√
2√

N(N − 1)/2

∑
i,j∈V
i<j

Uij + 2T ′NW̄
−1
1,NB

θ
N + 2Bρ

N

+Op

(√
N
∣∣ρ̂− ρ0

∣∣+N
∣∣ρ̂− ρ0

∣∣2 )+ op(1).

By an appropriate CLT

1√
v2,NN(N − 1)/2

∑
i,j∈V
i<j

Uij → N (0, 1).

Proof of Theorem 3. Write

N−2
(
SN − ÊSN

)
= N−2

(
SN − ĒSN

)
−N−2

(
ÊSN − ĒSN

)
.

We first analyze the second term. By definition

N−2
(
ÊSN − ĒSN

)
= sN (γ̂, θ̂)− sN (γ0, θ0)

Therefore, by Lemma F.1 and Lemma F.2

N−2
(
ÊSN − ĒSN

)
=
{

(∂θ′sN ) +
(
∂γ′sN

)
H̄−1

[
∂γθ′L̄

]}
(θ̂ − θ0)

+
(
∂γ′sN

)
H̄−1S +BS

N + op
(
1).
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Straightforward calculations give

∂θsN =
1

N

∑
i∈V

∑
j∈V−i

βNijωijXij .

As in the proof of Lemma E.3, for k = 1, . . . ,dim(θ) let

Ξij,k = − 1

N

∑
k1∈V

∑
k2∈V−k1

(
H̄−1
SS,ik1

+ H̄−1
RS,jk1

+ H̄−1
SR,ik2

+ H̄−1
RR,jk2

)
Ē(∂θkπ`k1k2).

and let Ξij = (Ξij,1, . . . ,Ξij,dim(θ))
′. By Lemma S.8(i) in FVW and the matrix represen-

tation of ∂γsN from the proof of Lemma F.2

(∂γ′sN )H̄−1(∂γθ′L̄) =− 1

N

∑
i∈V

∑
j∈V−i

βNijωijΞ
′
ij ,

(∂γ′sN )H̄−1S =− 1

N

∑
i∈V

∑
j∈V−i

(PβN )ijHij(Yij − pij).

Straightforward calculations give Xij − Ξij = X̃ij so that

∂θsN + (∂γ′sN )H̄−1(∂γθ′L̄) =
1

N

∑
i∈V

∑
j∈V−i

βNijωijX̃
′
ij .

Plugging in the linear representation of θ̂ from Theorem 1 gives

N−2
(
ÊSN − ĒSN

)
=BS

N + U ′NW̄
−1
1,NB

θ
N +

(
U ′NW̄

−1
1,N

)′ 1

N

∑
i∈V

∑
j∈V−i

X̃ijHij(Yij − pij)

+
1

N

∑
i∈V

∑
j∈V−i

(PβN )ijHij(Yij − pij) + op(1).

Then, by Lemma F.3

N−2
(
SN − ÊSN

)
=−BS

N − U ′NW−1
1,NB

θ
N +

1

N

∑
i∈V

∑
j∈V−i

(
βNij − (PβN )ij − ũN,ij

)
Hij(Yij − pij) + op(1).

The sum on the right-hand side has conditional variance vSN . The conclusion now follows
by applying a CLT.
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D. Transitivity test in parameteric model

In this section, suppose that Y ∗ij = X ′p,ijθ
0
p. Let θ̂p denote the probit estimator of θ0

p. We
can estimate the number of transitive triangles predicted by the model by

Êp SN = Φ(X ′p,ij θ̂p).

The following result gives the asymptotic distribution of a transitive test based on the
parametric model.

Theorem 4. Let

Up,N =
1

N2

∑
i∈V

∑
j∈V−i

βNijωijXp,ij

and up,N,ij = U ′p,NW̄
−1
1,NXp,ij and suppose that Assumption 1 holds. Then

Ep,N =
SN − Êp SN
N2
√
vSp,N

= N (0, 1) + op(1).

where

vSp,N =
1

N2

∑
i∈V

∑
j∈V−i

{(
βNij − up,N,ij

)2
ωij +

(
βNij − up,N,ij

)(
βNji − up,N,ji

)
ρ̃ij
√
ωijωji

}
Proof. The theorem follows from Lemma F.3 and a standard stochastic expansion of the
probit estimator.

E. Main lemmas for expansion of ρ̂

Lemma E.1 (Stochastic expansion of estimated score). Under Assumption 1

∂ρM
(
γ̂, θ̂, ρ

)
=∂ρM+ (∂ρ2M)(ρ− ρ0) +

(
∂ρθ′M+ ∂ργ′M̄H̄−1

[
∂γθ′L̄

])
(θ̂ − θ0)

+
(
∂ργ′M̄

)
H̄−1S +Bρ,∗

N +Op

(√
N
∣∣ρ− ρ0

∣∣+N
∣∣ρ− ρ0

∣∣2 )+ op(1)

where the order of the higher-order terms is uniform in ρ ∈ [−κ, κ] and

Bρ,∗
N =

(
∂ργ′M̃

)
H̄−1S −

(
∂ργ′M̄

)
H̄−1H̃H̄−1S

+
1

2

(
H̄−1S

)′{
∂ργγ′M̄+

dim(γ)∑
g=1

∂γγ′γg
L̄
[
H̄−1∂ργ′M̄

]
g

}(
H̄−1S

)
.

Proof. Throughout the proof q = 8. By a Taylor expansion

∂ρM
(
γ̂, θ̂, ρ

)
− ∂ρM

(
γ̂, θ0, ρ0

)
=∂ρ2M̄

(
γ0, θ0, ρ0

)
(ρ− ρ0)

+ ∂ρθ′M̄
(
γ0, θ0, ρ0

)
(θ̂ − θ0) +RN,1(ρ) +RN,2
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with

RN,1(ρ) =∂ρ2M̃
(
γ0, θ0, ρ0

)
(ρ− ρ0) + (γ̂ − γ0)′

[
∂ρ2γM

(
γ̄, θ̄, ρ0

)]
(ρ− ρ0)

+ (θ̂ − θ0)′
[
∂ρ2θM

(
γ̄, θ̄, ρ0

)]
(ρ− ρ0) + ∂ρ3M

(
γ̂, θ̂, ρ̄

)
(ρ− ρ0)2

RN,2 =∂ρθ′M̃
(
γ0, θ0, ρ0

)
(θ̂ − θ0) + (γ̂ − γ0)′

[
∂ργθ′M

(
γ̃, θ0, ρ0

)]
(θ̂ − θ0)

+ (θ̂ − θ0)′
[
∂ρθθ′M

(
γ̂, θ̃, ρ0

)]
(θ̂ − θ0)

and γ̄, γ̃, θ̄, θ̃, ρ̄ are intermediate values. It is easy to see that

sup
γ∈Γ,θ∈Θ

∥∥∂ρθθ′M(γ, θ, ρ0
)∥∥ = Op(N),

sup
γ∈Γ,θ∈Θ

∥∥∂ρ2θM(γ, θ, ρ0
)∥∥ = Op(N),

sup
γ∈Γ,θ∈Θ,ρ∈[−κ,κ]

∥∥∂ρ3M(γ, θ, ρ)∥∥ = Op(N),

and ∥∥∂ρ2M̃(γ0, θ0, ρ0
)∥∥ = Op(1),∥∥∂ρθ′M̃(γ0, θ0, ρ0
)∥∥ = Op(1).

Moreover, applying Lemma G.1(i) gives

sup
γ∈Γ,θ∈Θ

∥∥∂ρ2γM(γ, θ, ρ0
)∥∥
q

= Op

(
N

1
q

)
,

sup
γ∈Γ,θ∈Θ

∥∥∂ργθ′M(γ, θ, ρ0
)∥∥
q

= Op

(
N

1
q

)
.

Noting that
∥∥γ̂ − γ0

∥∥
q

= Op(N
−1/2+1/q) and

∥∥θ̂ − θ∥∥ = Op(N
−1), we have

|RN,1(ρ)| ≤
∥∥∂ρ2M̃(γ0, θ0, ρ0

)∥∥ ∣∣ρ̂− ρ0
∣∣

+N1−2/q
∥∥∂ρ2γM(γ̄, θ̄, ρ0

)∥∥
q

∥∥γ̂ − γ0
∥∥
q

∣∣ρ− ρ0
∣∣

+
∥∥θ̂ − θ0

∥∥ ∣∣ρ− ρ0
∣∣ ∥∥∂ρ2θM(γ̄, θ̄, ρ0

)∥∥+
∣∣ρ− ρ0

∣∣2 ∥∥∂ρ3M(γ̂, θ̂, ρ0
)∥∥

=Op

(√
N
∣∣ρ− ρ0

∣∣+N
∣∣ρ− ρ0

∣∣2) .
Moreover,

|RN,2| ≤
∥∥∂ρθ′M̃(γ0, θ0, ρ0

)∥∥ ∥∥∥θ̂ − θ0
∥∥∥

+N1−2/q
∥∥∂ργθ′M(γ̃, θ0, ρ0

)∥∥
q

∥∥γ̂ − γ0
∥∥
q

∥∥θ̂ − θ0
∥∥

+
∥∥θ − θ0

∥∥2∥∥∂ρθθ′M(γ̂, θ̃, ρ0
)∥∥ = op (1) .
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Next, Taylor-expanding ∂ρM
(
γ̂, θ0, ρ0

)
and plugging in the expansion for γ̂ from

Lemma H.2

∂ρM(γ̂, θ0, ρ0)− ∂ρM(γ0, θ0, ρ0)

=∂ργ′M(γ0, θ0, ρ0)

{
H−1S +H−1

[
∂γθ′L

]
(θ̂ − θ0)

+
1

2
H−1

dim(γ)∑
g=1

[
∂γγ′γg

L
]
H−1S

[
H−1S

]
g

}

+
1

2

(
H−1S

)′[
∂ργγ′M(γ0, θ0, ρ0)

](
H−1S

)
+RN,3

with

RN,3 =
[
∂ργ′M(γ0, θ0, ρ0)

]
Rγ(θ̂)

+
1

2

(
γ̂ − γ0 −H−1S

)[
∂ργγ′M(γ0, θ0, ρ0)

](
γ̂ − γ0 +H−1S

)
+

1

6

dim(γ)∑
g=1

(γ̂ − γ0)′
[
∂ργγ′γg

M(γ̄, θ0, ρ0)
]
(γ̂ − γ0)[γ̂ − γ0]g,

where γ̄ is an intermediate value By Lemma G.1,∥∥∂ργ′M(γ0, θ0, ρ0)
∥∥
q

= Op

(
N

1
q

)
sup
γ∈Γ

∥∥∂ργγγM(γ, θ0, ρ0)
∥∥
q

= Op(1).

Noting that
∥∥γ̂ − γ0 −H−1S

∥∥
q

= Op
(
N−1+2/q

)
,

|RN,3| ≤N1−2/q
∥∥∂ργ′M(γ0, θ0, ρ0)

∥∥
q

∥∥Rγ(θ̂)
∥∥
q

+
1

2
N1−2/q

∥∥γ̂ − γ0 −H−1S
∥∥
q

(∥∥γ̂ − γ0
∥∥
q

+
∥∥H−1S

∥∥
q

)∥∥∂ργγ′M(γ0, θ0, ρ0)
∥∥
q

+
1

6
N1−2/q

∥∥γ̂ − γ0
∥∥3

q

∥∥∂ργγγM(γ̄, θ0, ρ0)
∥∥
q

≤(1 +N‖θ̂ − θ0‖)N1−1/q

∥∥Rγ(θ̂)
∥∥
q

1 +N‖θ̂ − θ0‖
+Op

(
N−1/2+1/q

)
= op(1).

From now on, drop the arguments of M and its derivatives whenever they are evaulated
at their true values. Then(

∂ργ′M
)
H−1S =

(
∂ργ′M̄

)
H̄−1S +

(
∂ργ′M̃

)
H̄−1S −

(
∂ργ′M̄

)
H̄−1H̃H̄−1S +RN,4

with

RN,4 = −
(
∂ργ′M̃

)
H̄−1H̃H̄−1S +

(
∂ργ′M

)(
H−1 −

(
H̄−1 − H̄−1H̃H̄−1

))
S.
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Lemma G.1 applied with q = 2 yields
∥∥∂ργ′M̃∥∥ = Op(1) and

∥∥∂ργ′M̄∥∥ = Op
(
N1/2

)
.

Then, by Lemma H.3

|RN,4| ≤
∥∥∂ργ′M̃∥∥∥∥H̄−1

∥∥2∥∥H̃∥∥∥∥S∥∥+
∥∥∂ργ′M∥∥∥∥H−1 −

(
H̄−1 − H̄−1H̃H̄−1

)∥∥ ‖S‖ = op(1).

Next, (
∂ργ′M

)
H−1

[
∂γθ′L

]
(θ̂ − θ0) =

(
∂ργ′M̄

)
H̄−1

[
∂γθ′L̄

]
(θ̂ − θ0) +RN,5

with

RN,5 =
(
∂ργ′M̃

)
H−1

[
∂γθ′L

]
(θ̂ − θ0) +

(
∂ργ′M̄

)(
H−1 − H̄−1

)[
∂γθ′L

]
(θ̂ − θ0)

+
(
∂ργ′M̄

)
H̄−1

[
∂γθ′L̃

]
(θ̂ − θ0)

and

|RN,5| ≤
∥∥∂ργ′M̃∥∥∥∥H−1

∥∥∥∥∂γθ′L]∥∥∥∥θ̂ − θ0
∥∥

+
∥∥∂ργ′M̄∥∥∥∥θ̂ − θ0

∥∥{∥∥H−1 − H̄−1
∥∥∥∥∂γθ′L∥∥+

∥∥H̄−1
∥∥∥∥∂γθ′L̃∥∥} = op(1).

Repeating the last argument in the proof of Theorem B.1, Part 2 in FVW almost ad
verbum gives

(
∂ργ′M

)
H−1

dim(γ)∑
g=1

[
∂γγ′γg

L
]
H−1S

[
H−1S

]
g

=
(
∂ργ′M̄

)
H̄−1

dim(γ)∑
g=1

[
∂γγ′γg

L̄
]
H̄−1S

[
H̄−1S

]
g

+ op(1).

Now write (
H−1S

)′[
∂ργγ′M

](
H−1S

)
=
(
H̄−1S

)′[
∂ργγ′M̄

](
H̄−1S

)
+RN,6

with

|RN,6| ≤
∥∥S∥∥2∥∥H−1 − H̄−1

∥∥(∥∥H−1
∥∥+

∥∥H̄−1
∥∥)∥∥∂ργγ′M∥∥

+
∥∥S∥∥2∥∥H̄∥∥2∥∥∂ργγ′M̃∥∥ = op(1).

The last inequality uses that by Lemma G.1(iii)∥∥∂ργγ′M̃∥∥ = Op

(
N−3/8

)
.

We may now conclude that

∂ρM(γ̂, θ0, ρ0)− ∂ρM(γ0, θ0, ρ0)

=
(
∂ργ′M̃

)
H̄−1S + H̄−1

[
∂γθ′L̄

]
(θ̂ − θ0) +

(
∂ργ′M̄

)
H̄−1S −

(
∂ργ′M̄

)
H̄−1H̃H̄−1S

+
1

2

(
H̄−1S

)′{
∂ργγ′M̄+

dim(γ)∑
g=1

[
∂γγ′γg

L̄
]
H̄−1S

[
H̄−1∂ργ′M̄

]
g

}(
H̄−1S

)
+ op(1).

The assertion of the lemma now follows immediately.
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Lemma E.2 (Behavior of bias term). Under Assumption 1

Bρ,∗
N = Bρ

N +Op
(
N−1/2

)
with Bρ

N as defined in Theorem 2.

Proof.
Step 1: behavior of (∂ργM̃)H̄−1S − (∂ργM̄)H̄−1H̃H̄−1S.

Let D
(m)
ij = ∂ρy1mij − Ωij(∂π2`ij) and

Λij = − 1

N

∑
k∈V

∑
l∈V−k

(
H̄−1
SS,ik + H̄−1

RS,jk + H̄−1
SR,il + H̄−1

RR,jl

)
(∂π`kl).

By Lemma S.8(i) and (iii) in FVW

(∂ργM̃)H̄−1S − (∂ργM̄)H̄−1H̃H̄−1S

=− 1

N

∑
i 6=j

Λij(∂ρy1m̃ij) +
1

N

∑
i 6=j

ΛijΩij

(
∂π2`ij − Ē[∂π2`ij ]

)
=− 1

N

∑
i 6=j

Λij

(
D

(m)
ij − ĒD(m)

ij

)
= U1 + U2 + U3 + U4

with

U1 =
1

N2

∑
i∈V

{( ∑
k∈V
l∈V−k

H̄−1
SS,ik(∂π`k,l)

) ∑
j∈V−i

(
D

(m)
ij − ĒD(m)

ij

)}
,

U2 =
1

N2

∑
j∈V

{( ∑
k∈V
l∈V−k

H̄−1
RS,jk(∂π`k,l)

) ∑
i∈V−j

(
D

(m)
ij − ĒD(m)

ij

)}
,

U3 =
1

N2

∑
i∈V

{( ∑
k∈V
l∈V−k

H̄−1
SR,il(∂π`k,l)

) ∑
j∈V−i

(
D

(m)
ij − ĒD(m)

ij

)}
,

U4 =
1

N2

∑
j∈V

{( ∑
k∈V
l∈V−k

H̄−1
RR,jl(∂π`k,l)

) ∑
i∈V−j

(
D

(m)
ij − ĒD(m)

ij

)}
.

Next,

U1 =
1

N2

∑
i∈V

{(∑
k∈V

∑
l∈V−k

[
(H̄∗SS)−1

]
ik

(∂π`k,l)
) ∑
j∈V−i

(
D

(m)
ij − ĒD(m)

ij

)}

+
1

N2

∑
i∈V

{(∑
k∈V

∑
l∈V−k

[
H̄−1
SS − (H̄∗SS)−1

]
ik

(∂π`k,l)
) ∑
j∈V−i

(
D

(m)
ij − ĒD(m)

ij

)}
=U1a + U1b.
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A straightforward application of Cauchy-Schwarz yields

(U1b)
2 ≤N−1 1

N

∑
i∈V

(
1

N

∑
k∈V

∑
l∈V−k

N
[
H̄−1
SS − (H̄∗SS)−1

]
ik

(∂π`k,l)

)2

× 1

N

∑
i∈V

(
1√
N

∑
j∈V−i

(
D

(m)
ij − ĒD(m)

ij

))2

.

Now observe that for k1, k2, l1, l2 ∈ V , Ē[∂π`k1,l1∂π`k2,l2 ] is bounded if {k1, l1} = {k2, l2}
and 0 otherwise. The cardinality of the set {(k1, k2, l1, l2) : k1, k2, l1, l2 ∈ V, {k1, l1} =
{k2, l2}} is O(N2). Moreover, by Lemma D.1 in FVW

N
∥∥H̄−1

SS − (H̄∗SS)−1
∥∥

max
= Op(1).

Therefore,

sup
i∈V

Ē
{

1

N

∑
k∈V

∑
l∈V−k

N
[
H̄−1
SS − (H̄∗SS)−1

]
ik

(∂π`k,l)

}2

≤ sup
i∈V

1

N2

∑
k1,k2,l1,l2∈V

{
N
[
H̄−1
SS − (H̄∗SS)−1

]
ik1
N
[
H̄−1
SS − (H̄∗SS)−1

]
ik2

× Ē[∂π`k1l1∂π`k2l2 ]

}2

= Op(1).

Furthermore,

sup
i∈V

Ē
{

1√
N

∑
j∈V−i

(
D

(m)
ij − ĒD(m)

ij

)}2

= sup
i∈V

1

N

∑
j∈V−i

Ē
(
D

(m)
ij − ĒD(m)

ij

)2
= Op(1).

This implies that Ē(U1b)
2 = Op(N

−1) and therefore U1b = Op(N
−1/2). Moving on to the

analysis of the term U1a, we can write

U1a =
1

N

∑
i∈V

(H̄∗SS)−1
ii

(
1√
N

∑
l∈V−i

∂π`il

)(
1√
N

∑
j∈V−i

(
D

(m)
ij − ĒD(m)

ij

))
.

Let

si1 =

( ∑
l1∈V−i1

∂π`i1l1

)( ∑
j1∈V−i1

D̃i1j1

)

=

(
∂π`i1i2 +

∑
l1∈V−{i1,i2}

∂π`i1l1

)(
D̃i1i2 +

∑
j1∈V−{i1,i2}

D̃i1j1

)
.
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Under our assumptions, for i1 6= i2

Ē(si1si2)

=Ē
( ∑
l1∈V−{i1,i2}

∂π`i1l1
∑

j1∈V−{i1,i2}

D̃i1j1

)
Ē
( ∑
l2∈V−{i1,i2}

∂π`i2l2
∑

j2∈V−{i1,i2}

D̃i2j2

)

+ Ē
[(
D̃i1i2

∑
l1∈V−{i1,i2}

∂π`i1l1

)(
D̃i2i1

∑
l2∈V−{i1,i2}

∂π`i2l2

)]

+ Ē
[(
∂π`i1i2

∑
l1∈V−{i1,i2}

D̃i1l1

)(
∂π`i2i1

∑
l2∈V−{i1,i2}

D̃i2l2

)]
+Op(N)

=Ē
( ∑
l1∈V−{i1,i2}

∂π`i1l1
∑

j1∈V−{i1,i2}

D̃i1j1

)
Ē
( ∑
l2∈V−{i1,i2}

∂π`i2l2
∑

j2∈V−{i1,i2}

D̃i2j2

)
+Op(N)

where the Op(N) term is uniform in i1, i2. Similarly,

Ē(si1) = Ē
( ∑
l1∈V−i1

∂π`i1l1
∑

j1∈V−{i1,i2}

D̃i1j1

)
+Op(1).

Then,

v̄ar(U1a) =N−4
∑
i∈V

(H̄∗SS)−2
ii Ē

( ∑
l∈V−i

(∂π`il)
2 +

∑
l∈V−i

∑
k∈V−{i,l}

∂π`il∂π`ik

)2

+N−4
∑
i1∈V

∑
i2∈V−i1

(H̄∗SS)−1
i1i1

(H̄∗SS)−1
i2i2

Ē(si1si2)−
( ∑
i1∈V

(H̄∗SS)−1
i1i1

Ē(si1)

)2

=N−4
∑
i∈V

(H̄∗SS)−2
ii

( ∑
l∈V−i

Ē(∂π`il)
4 +

∑
l∈V−i

∑
k∈V−{i,l}

Ē(∂π`il)
2Ē(∂π`ik)

2

)
+N−4

∑
i1∈V

∑
i2∈V−i1

(H̄∗SS)−1
i1i1

(H̄∗SS)−2
i2i2

Ē(si1si2)

−N−4
∑
i1∈V

∑
i2∈V−i1

(H̄∗SS)−2
i1i1

(H̄∗SS)−2
i2i2

Ē(si1)Ē(si2) +Op
(
N−3

)
= Op

(
N−1

)
.

Therefore, U1a = Ē(U1a) +Op
(
N−1/2

)
or

U1a =
1

N

∑
i∈V

(H̄∗SS)−1
ii

(
1

N

∑
j∈V−i

Ē
(
∂π`ijD̃

(m)
ij

))
+Op

(
N−1/2

)
=

1

N

∑
i∈V

∑
j∈V−i

Ē
(
∂π`ijD

(m)
ij

)∑
j∈V−i

Ē
(
− ∂π2`ij

) +Op
(
N−1/2

)
.
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Similar arguments can be used to show that

U2 =Op
(
N−1/2

)
,

U3 =Op
(
N−1/2

)
,

U4 =
1

N

∑
j∈V

∑
i∈V−j

Ē
(
∂π`ijD

(m)
ij

)∑
i∈V−j

Ē
(
− ∂π2`ij

) +Op
(
N−1/2

)
.

In summary,

(∂ργM̃)H̄−1S − (∂ργM̄)H̄−1H̃H̄−1S

=
1

N

∑
i∈V

∑
j∈V−i

Ē
(
∂π`ijD

(m)
ij

)∑
j∈V−i

Ē
(
− ∂π2`ij

) +
1

N

∑
j∈V

∑
i∈V−j

Ē
(
∂π`ijD

(m)
ij

)∑
i∈V−j

Ē
(
− ∂π2`ij

) +Op
(
N−1/2

)
=

1

N

∑
i∈V

∑
j∈V−i

(∂πpij)
{

(∂y1Jij)
rij
pij
− Ωij(∂πHij)

}∑
j∈V−i

(Hij∂πpij)

+
1

N

∑
j∈V

∑
i∈V−j

(∂πpij)
{

(∂y1Jij)
rij
pij
− Ωij(∂πHij)

}∑
i∈V−j

(Hij∂πpij)
+Op

(
N−1/2

)
.

The second equality follows by noting that

Ē[(∂π`ij)(∂π2`ij)] =Hij(∂πHij)Ē[(Yij − pij)2] + 0 = (∂πHij)(∂πpij),

Ē[(∂π`ij)(∂ρy1mij)] =Hij(∂y1Jij)Ē[(Yij − pij)(Zij − rij)] + 0

=Hij(∂y1Jij)(rij/pij)p1,ij = (∂πpij)(∂y1Jij)(rij/pij),

Ē[−(∂π2`ij)] =Hij(∂πpij).

Step 2: behavior of 1
2

(
H̄−1S

)′
∂ργγ′M̄

(
H̄−1S

)
.

Inspection of the proof of Lemma G.1 shows that ∂ργγ′M̄ can be written as

∂ργγ′M̄ =

[
DSS,1 +DSS,2 DSR,1 +DSR,2

D′SR,1 +D′SR,2 DRR,1 +DRR,2

]
where DSS,1, DSR,1, DRR,1 are N ×N diagonal matrices with entries

(DSS,1)ii =∂γSi γSi
∂ρM̄

(DSR,1)ii =∂γSi γRi
∂ρM̄

(DRR,1)ii =∂γRi γRi
∂ρM̄

and DSS,2, DSR,2, DRR,2 are Op(N
−1) in the ‖·‖max-norm. Let Υ denote the N × N

matrix with entries Υij = ∂π`ij . By Lemma H.1 H̄−1 can be written as

H̄−1 =

[
(H̄∗SS)−1 0

0 (H̄∗RR)−1

]
+RN ,
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where ‖RN‖max = Op(N
−1). By the first assertion of Lemma G.6

N2
(
H̄−1S

)′(
∂ργγ′M̄

)
H̄−1S

=(ι′NΥ′, ι′NΥ) H̄−1(∂ργγ′M̄)H̄−1

(
ΥιN
Υ′ιN

)
=ι′NΥ′(H̄∗SS)−1DSS,1(H̄∗SS)−1ΥιN + ι′NΥ(H̄∗RR)−1DRR,1(H̄∗RR)−1Υ′ιN

+ 2ι′NΥ′(H̄∗SS)−1DSR,1(H̄∗RR)−1Υ′ιN +Op(N).

By the second assertion of Lemma G.6 and a Bartlett equality

ι′NΥ′(H̄∗SS)−1DSS,1(H̄∗SS)−1ΥιN =
∑
i∈V

∑
j∈V−i

[
(H̄∗SS)−1

]2
ii

[DSS,1]iiĒ[(∂π`ij)
2] +Op

(
N3/2

)
=
∑
i∈V

[DSS,1]ii
∑

j∈V−i
Ē[(∂π2`ij)](

N−1
∑

j∈V−i
Ē[−∂π2`ij ]

)2 +Op
(
N3/2

)
=N

∑
i∈V

[DSS,1]ii(
N−1

∑
j∈V−i

Ē[−∂π2`ij ]
) +Op

(
N3/2

)
.

Similarly,

ι′NΥ(H̄∗RR)−1DRR,1(H̄∗RR)−1Υ′ιN = N
∑
j∈V

[DRR,1]jj(
N−1

∑
i∈V−j

Ē[−∂π2`ij ]
) +Op

(
N3/2

)
and

ι′NΥ′(H̄∗SS)−1DSR,1(H̄∗RR)−1Υ′ιN

=N
∑
i∈V

(DSR,1)ii corri(
N−1

∑N
j=1 Ē[−∂π2`ij ]

)1/2(
N−1

∑N
j=1 Ē[−∂π2`ji]

)1/2
,

where

corri =

∑
j∈V−i

Ē[∂π`ij∂π`ji](∑
j∈V−i

Ē[(∂π`ij)2]
)1/2(∑

j∈V−i
Ē[(∂π`ji)2]

)1/2

=

∑
j∈V−i

HijHji(rij − pijpji)(∑
j∈V−i

Hij(∂πpij)
)1/2(∑

j∈V−i
Hji(∂πpji)

)1/2

=

∑
j∈V−i

ρ̃ij
√
ωijωji(∑

j∈V−i
ωij

)1/2(∑
j∈V−i

ωji

)1/2
.
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Closed-form expressions for the elements of DSS,1, DSR,1, DRR,1 are given in the proof of
Lemma G.1. Re-writing them using Lemma G.3 yields

∂(γSi )2∂ρM =
1

N

∑
j∈V
j>i

∂ρy21mij +
1

N

∑
j∈V
j<i

∂ρy22mji =
1

N

∑
j∈V−i

∂ρy21mij ,

∂(γRi )2∂ρM =
1

N

∑
j∈V
j>i

∂ρy22mij +
1

N

∑
j∈V
j<i

∂ρy21mji =
1

N

∑
j∈V−i

∂ρy21mji,

∂γSi γRi
∂ρM =

1

N

∑
j∈V
j>i

∂ρy1y2mij +
1

N

∑
j∈V
j<i

∂ρy2y1mji =
1

N

∑
j∈V−i

∂ρy1y2mij .

Computing the derivatives and re-writing using Lemma G.3 gives

∂ρy21mij =
(
∂y21Jij

)
(Zij − rij)− 2

(
∂y1Jij

)(
∂y1rij

)
− Jij

(
∂y21rij

)
∂ρy1y2mij =

(
∂y1y2Jij

)
(Zij − rij)−

(
∂y1Jij

)(
∂y2rij

)
−
(
∂y2Jij

)(
∂y1rij

)
− Jij

(
∂y1y2rij

)
=
(
∂y1y2Jij

)
(Zij − rij)−

(
∂y1Jij

)(
∂y1rji

)
−
(
∂y1Jji

)(
∂y1rij

)
− Jij

(
∂y1y2rij

)
and therefore

(DSS)ii =− 1

N

∑
j∈V−i

{
2Ē
[(
∂y1Jij

)(
∂y1rij

)]
+ Ē

[
Jij
(
∂y21rij

)]}
(DRR)ii =− 1

N

∑
j∈V−i

{
2Ē
[(
∂y1Jji

)(
∂y1rji

)]
+ Ē

[
Jji
(
∂y21rji

)]}
(DSR)ii =− 1

N

∑
j∈V−i

{
Ē
[(
∂y1Jij

)(
∂y1rji

)]
+ Ē

[(
∂y1Jji

)(
∂y1rij

)]
+ Ē

[
Jij
(
∂y1y2rij

)]}
.

Step 3: behavior of 1
2

(
H̄−1S

)′{∑dim(γ)
g=1 ∂γγ′γg

L̄
[
H̄−1∂ργ′M̄

]
g

}(
H̄−1S

)
.

Following the argument in the proof of Theorem C.1 part(ii) in FVW and letting C
denote the N ×N matrix with elements (C)ij = ΩijĒ

(
∂π3`ij

)
and

C =
1

N

[
diag(CιN ) C

C ′ diag(C ′ιN )

]
gives

1

2

(
H̄−1S

)′{ dim(γ)∑
g=1

∂γγ′γg
L̄
[
H̄−1∂ργ′M̄

]
g

}(
H̄−1S

)
= − 1

2N

∑
i∈V

∑
j∈V−i

Λ2
ijΩijĒ

(
∂π3`ij

)
.

Lemma S.8(iii) in FVW yields

− 1

2N

∑
i∈V

∑
j∈V−i

Λ2
ijΩijĒ

(
∂π3`ij

)
= −1

2
(ι′NΥ′, ι′NΥ)H̄−1CH̄−1

(
ΥιN
Υ′ιN

)
.
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By Lemma G.6 the right-hand side of the preceding equation is equivalent to

− 1

2N
ι′NΥ′(H̄∗SS)−1

(
N−1 diag(CιN )

)
(H̄∗SS)−1ΥιN

− 1

2
ι′NΥ(H̄∗RR)−1

(
N−1 diag(C ′ιN )

)
(H̄∗RR)−1Υ′ιN +Op

(
N−1

)
=− 1

2N2

∑
i∈V

{
[(H̄∗SS)−1]2ii

(
N−1

∑
j∈V−i

ΩijĒ[∂π3`ij ]

) ∑
j∈V−i

Ē
[
(∂π`ij)

2
]}

− 1

2N2

∑
j∈V

{
[(H̄∗RR)−1]2jj

(
N−1

∑
i∈V−j

ΩijĒ[∂π3`ij ]

) ∑
i∈V−j

Ē
[
(∂π`ij)

2
]}

+Op
(
N−1/2

)
.

By the definition of H̄∗SS and a Bartlett equality

− 1

2N2

∑
i∈V

{
[(H̄∗SS)−1]2ii

(
N−1

∑
j∈V−i

ΩijĒ[∂π3`ij ]

) ∑
j∈V−i

Ē
[
(∂π`ij)

2
]}

=− 1

2N

∑
i∈V

∑
j∈V−i

ΩijĒ[∂π3`ij ]∑
j∈V−i

Ē[−∂π2`ij ]

=
1

2N

∑
i∈V

∑
j∈V−i

Ωij

{
2(∂πpij)(∂πHij) +Hij(∂π2pij)

}∑
j∈V−i

Hij(∂πpij)
,

where we use

∂π3`ij = ∂π2Hij(Yij − pij)−Hij(∂π2pij)− 2(∂πHij)(∂πpij).

Similarly,

− 1

2N2

∑
j∈V

{
[(H̄∗RR)−1]2jj

(
N−1

∑
i∈V−j

ΩijĒ[∂π3`ij ]

) ∑
i∈V−j

Ē
[
(∂π`ij)

2
]}

=
1

2N

∑
j∈V

∑
i∈V−j

Ωij

{
2(∂πpij)(∂πHij) +Hij(∂π2pij)

}∑
i∈V−j

Hij(∂πpij)
.

Lemma E.3 (Behavior of stochastic term). Under Assumption 1

∂ρ2M =− 1

N

∑
i,j∈V
i<j

Jij(∂ρrij) +Op(1),

∂ρθ′M+ (∂ργ′M)H̄−1(∂γθ′L̄) =− 1

N

∑
i∈V

∑
j∈V−i

Jij(∂y1rij)X̃
′
ij +Op(1),

(∂ργ′M̄)H̄−1S =− 1

N

∑
i∈V

∑
j∈V−i

ΩijHij(Yij − pij).
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Proof. We have

∂ρ2M =
1

N

∑
i,j∈V
i<j

{
∂ρJij(Zij − rij)− Jij(∂ρrij)

}
.

It is easy to see that

Ē
[(

1

N

∑
i,j∈V
i<j

∂ρJij(Zij − rij)
)2]

= Op(1)

and therefore

∂ρ2M =− 1

N

∑
i,j∈V
i<j

Jij(∂ρrij) +Op(1).

Arguing similarly we get

∂ρθ′M =− 1

N

∑
i,j∈V
i<j

Jij(∂θ′rij) +Op(1)

=− 1

N

∑
i,j∈V
i<j

Jij
{

(∂y1rij)X
′
ij + (∂y2rij)X

′
ji

}
+Op(1)

=− 1

N

∑
i∈V

∑
j∈V−i

Jij(∂y1rij)X
′
ij +Op(1),

where the first equality is by the chain rule for derivatives and the second equality follows
from Lemma G.3 and symmetry of Jij . For k = 1, . . . ,dim(θ) let

Ξij,k = − 1

N

∑
k1∈V

∑
k2∈V−k1

(
H̄−1
SS,ik1

+ H̄−1
RS,jk1

+ H̄−1
SR,ik2

+ H̄−1
RR,jk2

)
Ē(∂θkπ`k1k2).

and let Ξij = (Ξij,1, . . . ,Ξij,dim(θ))
′. By Lemma S.8(i) in FVW and Lemma G.5

(∂ργ′M)H̄−1(∂γθ′L̄) =
1

N

∑
i∈V

∑
j∈V−i

Jij(∂y1rij)Ξ
′
ij +Op(1).

Straightforward calculations give Xij − Ξij = X̃ij so that

∂ρθM+ (∂ργ′M)H̄−1(∂γθ′L̄) = − 1

N

∑
i∈V

∑
j∈V−i

Jij(∂y1rij)X̃
′
ij +Op(1).

Lemma S.8(i) in FVW in conjunction with Lemma G.5 gives

(∂ργ′M̄)H̄−1S = − 1

N

∑
i∈V

∑
j∈V−i

ΩijHij(Yij − pij).
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F. Main lemmas for expansion of SN − ÊSN
Lemma F.1 (Taylor expansion of sN (γ̂, θ̂)). Under Assumption 1

sN (γ̂, θ̂)− sN (γ0, θ0)

=
{

(∂θ′sN ) +
(
∂γ′sN

)
H̄−1

[
∂γθ′L̄

]}
(θ̂ − θ0) +

(
∂γ′sN

)
H̄−1S +BS,∗

N + op
(
1),

where

BS,∗
N =−

(
∂γ′sN

)
H̄−1H̃H̄−1S +

1

2

(
∂γ′sN

) dim(γ)∑
g=1

[
∂γγ′γg

L̄
]
H̄−1S

[
H̄−1S

]
g

+
1

2

(
H̄−1S

)′ [
∂γγ′sN

] (
H̄−1S

)
.

Proof. In the following set q = 8. By straightforward Taylor expansions

sN (γ̂, θ̂)− sN (γ0, θ0) =∂θ′sN (γ0, θ0)(θ̂ − θ0) + ∂γ′sN (γ0, θ0)(γ̂ − γ0)

+
1

2
(γ̂ − γ0)′

(
∂γγ′sN (γ0, θ0)

)
(γ̂ − γ0) +R1,N ,

where

R1,N =(γ̂ − γ0)′
(
∂θγ′sN (γ̄, θ0)

)
(θ̂ − θ0) +

1

2
(θ̂ − θ0)′

(
∂θθ′sN (γ̂, θ̄)

)
(θ̂ − θ0)

+
1

6

dim(γ)∑
g=1

(γ̂ − γ0)′
[
∂γγ′γg

sN (γ∗, θ0)](γ̂ − γ0)[γ̂ − γ0]g.

Note that

sup
θ∈Θ,γ∈Γ

‖∂θθ′sN (γ, θ)‖2 = Op(N),∥∥∂θγ′sN (γ0, θ0)
∥∥
q

= Op

(
N

1
q

)
,

sup
γ∈Γ

∥∥∂γ3sN (γ, θ0)
∥∥
q

= Op(1),∥∥∂γsN (γ0, θ0)
∥∥

2
= Op

(
N

1
2

)
,

where θ̄ and γ∗ are intermediate values. The first equality follows by inspection and the

other equalities follow from Lemma G.2. Therefore, since
∥∥γ̂ − γ0

∥∥
q

= Op

(
N
− 1

2
+ 1

q

)
we

have

|R1,N | ≤N1− 2
q
∥∥∂θγ′sN (γ̄, θ0)

∥∥
q

∥∥γ̂ − γ0
∥∥
q

∥∥∥θ̂ − θ0
∥∥∥

2
+

1

2

∥∥∂θθ′sN (γ̂, θ̄)
∥∥

2

∥∥∥θ̂ − θ0
∥∥∥2

q

+
1

6
N

1− 2
q
∥∥∂γ3sN (γ∗, θ0)

∥∥
q

∥∥γ̂ − γ0
∥∥3

q
= Op

(
N
− 1

2
+ 1

q

)
= op(1).

52



From now on, drop the arguments of sN and its derivatives whenever they are evaulated
at their true values. Then,

sN (γ̂, θ̂)− sN (γ0, θ0) = (∂θ′sN ) (θ̂ − θ0) +
(
∂γ′sN

)
H−1S

+
(
∂γ′sN

)
H−1

[
∂γθ′L

]
(θ̂ − θ0)

+
1

2

(
∂γ′sN

) dim(γ)∑
g=1

[
∂γγ′γg

L
]
H−1S

[
H−1S

]
g

+
1

2

(
H−1S

)′ [
∂γγ′sN

] (
H−1S

)
+R2,N ,

with

R2,N =
(
∂γ′sN

)
Rγ(θ̂) +

1

2

(
γ̂ − γ0 −H−1S

)′ [
∂γγ′sN

] (
γ̂ − γ0 +H−1S

)
,

where Rγ(θ̂) is the remainder term from Theorem B.1 in FVW (compare also proof of
Lemma G.1). By Lemma G.2,∥∥∂γ′sN∥∥q = Op

(
N

1
q

)
and

∥∥∂γ3sN
∥∥
q

= Op(1).

Noting that
∥∥γ̂ − γ0 −H−1S

∥∥
q

= Op
(
N−1+2/q

)
,

|RN,2| ≤N1−2/q
∥∥∂γ′sN∥∥q∥∥Rγ(θ̂)

∥∥
q

+
1

2
N1−2/q

∥∥γ̂ − γ0 −H−1S
∥∥
q

(∥∥γ̂ − γ0
∥∥
q

+
∥∥H−1S

∥∥
q

)∥∥∂γγ′sN∥∥q
≤(1 +N‖θ̂ − θ0‖)N1−1/q

∥∥Rγ(θ̂)
∥∥
q

1 +N‖θ̂ − θ0‖
+Op

(
N−1/2+1/q

)
= op(1).

Following closely the proof of Lemma E.1 it is now easy to prove the assertion of the
lemma.

Lemma F.2 (Behavior of bias term). Suppose that Assumption 1 holds. For BS,∗
N in

the statement of Lemma F.1 we have

BS,∗
N =BS

N +Op
(
N−1/2

)
,

where BS
N is given in Theorem 3.

Proof. Tedious calculations yield

∂γSi

{
sN (γ0, θ0)

}
=

1

N

∑
j∈V−i

(∂πpij)Hijβ
N
ij ,

∂γRi

{
sN (γ0, θ0)

}
=

1

N

∑
j∈V−i

(∂πpji)Hjiβ
N
ji .
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This implies that

∂γsN (γ0, θ0) =
1

N

[
AιN
A′ιN

]
for a N ×N matrix A with entries

(A)ij =

{
ωijβ

N
ij for i 6= j

0 for i = j
.

We will exploit this representation in our projection arguments below.
Step 1: behavior of −(∂γsN )H̄−1H̃H̄−1S.
Let

Λij = − 1

N

∑
k∈V

∑
l∈V−k

(
H̄−1
SS,ik + H̄−1

RS,jk + H̄−1
SR,il + H̄−1

RR,jl

)
(∂π`kl).

By Lemma S.8(iii) of FVW

−(∂γsN )H̄−1H̃H̄−1S =
1

N

∑
i∈V

∑
j∈V−i

Λij(PβN )ij

{
∂π2`ij − Ē ∂π2`ij

}
.

Following similar arguments as in the proof of Lemma E.2 it can then be shown that

−(∂γsN )H̄−1H̃H̄−1S =− 1

N

∑
i∈V

∑
j∈V−i

(PβN )ijĒ
[
∂π`ij(∂π2`ij)

]∑
j∈V−i

Ē(−∂π2`ij)
+Op

(
N−1/2

)
=− 1

N

∑
i∈V

∑
j∈V−i

(PβN )ij(∂πHij)(∂πpij)∑
j∈V−i

ωij
+Op

(
N−1/2

)
.

Step 2: behavior of 1
2

(
H̄−1S

)′
(∂γγ′sN )

(
H̄−1S

)
.

We have

∂(γSi )2

{
sN (γ0, θ0)

}
=

1

N

∑
j∈V−i

(∂π2pij)Hijβ
N
ij ,

+
1

N2

∑
j∈V−i

∑
k∈V−{i,j}

(∂πpij)(∂πpik) [pjk + pkj ] ,

∂(γRi )2

{
sN (γ0, θ0)

}
=

1

N

∑
j∈V−i

(∂π2pji)Hjiβ
N
ji

+
1

N2

∑
j∈V−i

∑
k∈V−{i,j}

(∂πpji)(∂πpki) [pjk + pkj ] ,

∂γSi γRi

{
sN (γ0, θ0)

}
=

1

N2

∑
j∈V

∑
k∈V−{i,k}

(∂πpij)(∂πpki)pkj .
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Moreover, for all i 6= j the “cross derivatives” ∂γSi γSj
(sN ), ∂γRi γRj

(sN ) and ∂γSi γRj
(sN ) are

bounded by N times a universal constant. This implies that

∂γγ′sN (γ0, θ0) =

[
DSS +MSS DSR +MSR

D′SR +M ′SR DRR +MRR

]
,

where DSS is a diagonal matrix with entries
(
∂(γSi )2sN

)
i∈V , DRR is a diagonal matrix

with entries
(
∂(γRi )2sN

)
i∈V , and DSR is a diagonal matrix with entries

(
∂γSi γRi

sN
)
i∈V .

The matrices MSS , MRR and MSR are off-diagonal matrices that are bounded in terms
of the ‖·‖max-norm. Arguing similarly as in Lemma E.2 it can now be shown that

1

2

(
H̄−1S

)′(
∂γγ′sN

)
H̄−1S

=
1

2N

∑
i∈V

[DSS ]ii(
N−1

∑
j∈V−i

Ē[−∂π2`ij ]
)

+
1

2N

∑
j∈V

[DRR]jj(
N−1

∑
i∈V−j

Ē[−∂π2`ij ]
)

+
1

N

∑
i∈V

(DSR)ii corri(
N−1

∑N
j=1 Ē[−∂π2`ij ]

)1/2(
N−1

∑N
j=1 Ē[−∂π2`ji]

)1/2
+Op

(
N3/2

)
.

Step 3: behavior of 1
2

(
H̄−1S

)′{∑dim(γ)
g=1 ∂γγ′γg

L̄
[
H̄−1∂γsN

]
g

}(
H̄−1S

)
.

Following the arguments in the proof of Lemma E.2 yields

1

2

(
H̄−1S

)′{ dim(γ)∑
g=1

∂γγ′γg
L̄
[
H̄−1∂γsN

]
g

}(
H̄−1S

)
=− 1

2N

∑
i∈V

∑
j∈V−i

(PβN )ijĒ[∂π3`ij ]∑
j∈V−i

Ē[−∂π2`ij ]
− 1

2N

∑
i∈V

∑
j∈V−i

(PβN )ijĒ[∂π3`ij ]∑
j∈V−i

Ē[−∂π2`ij ]

=
1

2N

∑
i∈V

∑
j∈V−i

(PβN )ij
{

2(∂πpij)(∂πHij) +Hij(∂π2pij)
}∑

j∈V−i
Hij(∂πpij)

+
1

2N

∑
j∈V

∑
i∈V−j

(PβN )ij
{

2(∂πpij)(∂πHij) +Hij(∂π2pij)
}∑

i∈V−j
Hij(∂πpij)

.

Lemma F.3 (Linear representation of oracle test statistic). Under Assumption 1

SN − ĒSN = N
∑

ij∈E(N)

βNijHij(Yij − pij) + op

(√
v̄ar(SN )

)
and

v̄ar(SN ) = N2
∑

ij∈E(N)

{
p1,ij

(
Hijβ

N
ij

)2
+ ρ̃ij

√
p1,ijp1,ji

(
HijHjiβ

N
ijβ

N
ji

)}
+Op

(
N3
)
.
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Proof. We start by computing the conditional variance of SN . Since triangles β and β′

are conditionally independent provided that V (β) ∩ V (β′) = ∅ we have

Ē
[
(Tβ − ĒTβ)(Tβ′ − ĒTβ′)

]
= 0

for such triangles. Now,

v̄ar(SN ) =Ē
( ∑
β∈B(N)

(
Tβ − ĒTβ

))2

=
∑

β,β′∈B2(N)
|V (β)∩V (β′)|=2

(
Tβ − ĒTβ

)(
Tβ′ − ĒTβ′

)
+HN

=
∑

ij∈E(N)

( ∑
β,β′3ij

|V (β)∩V (β′)|=2

pT−ij(β)pT−ij(β
′)Ē
[
(Yij − pij)2

]

+
∑

β∈ij,β′3ji
|V (β)∩V (β′)|=2

pT−ij(β)pT−ji(β
′)Ē [(Yij − pij)(Yji − pji)]

)
+HN

=
∑

ij∈E(N)

(
p1,ij

(∑
β3ij

pT−ij(β)

)2

+ ρ̃ij
√
p1,ijp1,ji

(∑
β3ij

pT−ij(β)

)(∑
β3ji

pT−ji(β)

))
+H∗N

where HN is the contribution of triangle pairs that share the same vertex set and

H∗N = HN +
∑

ij∈E(N)

∆N,ij

with

∆N,ij =p1,ij

∑
β,β′3ij

|V (β)∩V (β′)|=2

pT−ij(β)pT−ij(β
′) + ρ̃ij

√
p1,ijp1,ji

∑
β,β′3ij

|V (β)∩V (β′)|=2

pT−ij(β)pT−ji(β
′)

− p1,ij

(∑
β3ij

pT−ij(β)

)2

− ρ̃ij
√
p1,ijp1,ji

(∑
β3ij

pT−ij(β)

)(∑
β3ji

pT−ji(β)

)

Clearly, HN is of order Op(N
3). Each ∆N,ij can be bounded by N times a universal

constant. Therefore, H∗N is Op(N
3) as well. The assumption of non-vanishing linking

probabilities ensures that v̄ar(SN ) � N4. We now consider the Hajek projection ŜN of
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SN − ĒSN onto dyads, i.e.

ŜN =
∑

ij∈V 2(N)

Ē
[
(SN − ĒSN ) | Yij , Yji

]
=

∑
β∈B(N)

∑
ij∈E(N)

Ē
[
(Tβ − ĒTβ) | Yij

]
=

∑
ij∈E(N)

{
(Yij − pij)

∑
β3ij

pT−ij(β)
}
.

Here, the second equality uses that every transitive triangle β may contain the link ij or
ji but not both. We now compute the conditional variance of ŜN :

v̄ar(ŜN ) =
∑

ij∈V 2(N)

Ē
{

(Yij − pij)
∑
β3ij

pT−ij(β) + (Yji − pji)
∑
β3ji

pT−ji(β)

}2

=
∑

ij∈E(N)

{
p1,ij

(∑
β3ij

pT−ij(β)

)2

+ ρ̃ij
√
p1,ijp1,ji

(∑
β3ij

pT−ij(β)

)(∑
β3ji

pT−ji(β)

)}
.

From the previous results it is easy to see that

v̄ar(SN − ĒSN )

v̄ar(ŜN )
=

v̄ar(SN )

v̄ar(ŜN )
→ 1.

We now apply a conditional version of Theorem 11.2 in van der Vaart 2000. To prove
the conditional version of the theorem simply replace the convergence in squared mean
argument in the proof given in van der Vaart 2000 by an analogous squared condtional
mean argument. It follows that

SN − ĒSN = ŜN + op

(√
v̄ar(SN )

)
= ŜN + op(N

2).

G. Technical lemmas

Lemma G.1 (Sparse bounded functionals of the incidental parameter). Let K denote a
finite constant and let (πk)

K
k=1 denote a collection of N -dimensional parameters. Define

π = (π′1, . . . ,π
′
K)′. Let {gij}i<j denote an an array of functions such that

gij(π) = gij(π1,i, . . . , πK,i, π1,j , . . . , πK,j)

with
‖∂π`gij(π)‖max ≤ C for ` = 0, 1, 2, 3

for a universal constant C. Let

g(π) =
1

N

∑
i<j

gij(π).

Then
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(i) ‖∂πg(π)‖q = Op

(
N

1
q

)
, moreover, if

1

N

∑
i

∣∣∣∣ 1√
N

∑
j∈V
j>i

∂πk,1gij(π)

∣∣∣∣q +
1

N

∑
i

∣∣∣∣ 1√
N

∑
j∈V
j<i

∂πk,2gji(π)

∣∣∣∣q = Op (1)

then ‖∂πg(π)‖q = Op

(
N
− 1

2
+ 1

q

)
.

(ii) Moreover, ‖∂π2g(π)‖q = Op (1) and ‖∂π3g(π)‖q = Op (1) .

(iii) For a σ-field A let Ē = E[· | A]. Suppose that conditional on A the elements of the
arrays (∂πi,1πj,2gij)

N
i,j=1 and (∂πi,2πj,1gji)

N
i,j=1 are independent. Then∥∥∂π2g(π)− Ē

[
∂π2g(π)

]∥∥ = Op

(
N−3/8

)
.

Proof. First proof (i). Note that

∂πk,ig(π) =
1

N

∑
j∈V
j>i

∂πk,1gij(π) +
1

N

∑
j∈V
j<i

∂πk,2gji(π).

By definition of the ‖·‖q-norm and the Minkowski inequality,

‖∂πg(π)‖q ≤

(
KN∑
`=1

|∂π`
g(π)|q

) 1
q

≤

 K∑
k=1

N∑
i=1

∣∣∣ 1

N

∑
j∈V
j>i

∂πk,1gij(π)
∣∣∣q


1
q

+

 K∑
k=1

N∑
i=1

∣∣∣ 1

N

∑
j∈V
j<i

∂πk,2gji(π)
∣∣∣q


1
q

.

To prove the first claim of (ii) note that

∂πk,iπ`,ig(π) =
1

N

∑
j∈V
j>i

∂πk,1π`,1gij(π) +
1

N

∑
j∈V
j<i

∂πk,2π`,2gji(π)

and for j 6= i

∂πk,iπ`,jg(π) =

{
1
N ∂πk,1π`,2gij(π) for j > i
1
N ∂πk,2π`,1gji(π) for j < i

.
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Every element πs of the parameter vector π corresponds to a unique πk,i. Use the
notation πs = πk(s),i(s). For every 1 ≤ s ≤ KN

KN∑
t=1

|[∂π2g(π)]s,t| =
1

N

K∑
`=1

∣∣∣∣ ∑
j∈V
j>i(s)

∂πk(s),1π`,1gi(s)j(π) +
∑
j∈V
j<i(s)

∂πk(s),2π`,2gji(s)(π)

∣∣∣∣
+

1

N

K∑
`=1

{ ∑
j∈V
j>i(s)

∣∣∣∂πk(s),1π`,2gi(s)j(π)
∣∣∣+

∑
j∈V
j<i(s)

∣∣∣∂πk(s),2π`,1gji(s)(π)
∣∣∣ }

≤2KC.

By the symmetry of partial derivatives

KN∑
s=1

|[∂π2g(π)]s,t| =
KN∑
s=1

|[∂π2g(π)]t,s| ≤ 2KC.

It follows that

‖∂π2g(π)‖∞ = max
1≤s≤KN

KN∑
t=1

|[∂π2g(π)]s,t| ≤ 2KC

‖∂π2g(π)‖1 =
∥∥∂π2g(π)′

∥∥
∞ = max

1≤t≤KN

KN∑
s=1

|[∂π2g(π)]s,t| ≤ 2KC.

By Lemma S.4 in FVW

‖∂π2g(π)‖q ≤ ‖∂π2g(π)‖
1
q

1 ‖∂π2g(π)‖
1− 1

q
∞ ≤ 2KC.

Turning to the second claim of (ii) note that for {k, `,m} ⊂ {1, . . . ,K}

∂πk,iπ`,iπm,ig(π) =
1

N

∑
j∈V
j>i

∂πk,1π`,1πm,1gij(π) +
1

N

∑
j∈V
j<i

∂πk,2π`,2πm,2gji(π)

and for i 6= j

∂πk,iπ`,iπm,jg(π) =

{
1
N ∂πk,1π`,1πm,2gij(π) for j > i
1
N ∂πk,2π`,2πm,1gji(π) for j < i

.

For i1, i2, i3 ∈ V such that {i1} ∩ {i2} ∩ {i3} = ∅ we have

∂πk,i1π`,i2πm,i3
g(π) = 0.

For convenience of notation, define the tensor D with

D =
(
∂πk(s1),i(s1)πk(s2),i(s2)πk(s3),i(s3)g(π)

)
s1,s2,s3∈{1,...,KN}

.
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Also, let P(e1, . . . , en) denote the set of all permutations of the finite tupel (e1, . . . , en)
and let Ck(e1, . . . , en) denote all k-combinations from the finite set {e1, . . . , en}. Use∑

s1,s2,s3
i=(i1,i2,i3)
k=(`1,`2,`3)

as a shorthand for
∑

s1,s2,s3
i(s1)=i1,i(s2)=i2,i(s3)=i3
k(s1)=`1,k(s2)=`2,k(s3)=`3

.

As in the proof of Lemma S.5 in FVW exploit that the ‖·‖q vector norm is dual to the
‖·‖ q

q−1
vector norm

‖D‖q = max
‖u(1)‖ q

q−1
=1

max
‖u(2)‖

q
=1

max
‖u(3)‖

q
=1

∣∣∣∣ KN∑
s1,s2,s3=1

u(1)
s1 u

(2)
s2 u

(3)
s3 Ds1,s2,s3

∣∣∣∣
≤

∑
(`1,`2,`3)∈C3(1,...,K)

D(`1,`2,`3)
s1,s2,s3 ,

with

D(`1,`2,`3)
s1,s2,s3 = max

‖u(1)‖ q
q−1

=1
max
‖u(2)‖

q
=1

max
‖u(3)‖

q
=1

∣∣∣∣ N∑
i=1

∑
s1,s2,s3
i=(i,i,i)

k=(`1,`2,`3)

u(1)
s1 u

(2)
s2 u

(3)
s3 Ds1,s2,s3

∣∣∣∣

+ max
‖u(1)‖ q

q−1
=1

max
‖u(2)‖

q
=1

max
‖u(3)‖

q
=1

∣∣∣∣ N∑
i,j=1
i 6=j

∑
s1,s2,s3
i=(i,i,j)

k=(`1,`2,`3)

u(1)
s1 u

(2)
s2 u

(3)
s3 Ds1,s2,s3

∣∣∣∣

+ max
‖u(1)‖ q

q−1
=1

max
‖u(2)‖

q
=1

max
‖u(3)‖

q
=1

∣∣∣∣ N∑
i,j=1
i 6=j

∑
s1,s2,s3
i=(i,j,i)

k=(`1,`2,`3)

u(1)
s1 u

(2)
s2 u

(3)
s3 Ds1,s2,s3

∣∣∣∣

+ max
‖u(1)‖ q

q−1
=1

max
‖u(2)‖

q
=1

max
‖u(3)‖

q
=1

∣∣∣∣ N∑
i,j=1
i 6=j

∑
s1,s2,s3
i=(j,i,i)

k=(`1,`2,`3)

u(1)
s1 u

(2)
s2 u

(3)
s3 Ds1,s2,s3

∣∣∣∣
=E1 + E2 + E3 + E4.

Let

d(`1,`2,`3) =
(
∂π`1,iπ`2,iπ`3,ig(π)

)
i=1,...,N

.
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Then

E1 ≤ max
ũ(1)∈RN ,‖ũ(1)‖ q

q−1
≤1

max
ũ2∈RN ,‖ũ(2)‖

q
≤1

∣∣∣∣ N∑
i,j=1

ũ
(1)
i ũ

(2)
j

[
diag

(
d(`1,`2,`3)

) ]
i,j

∣∣∣∣
=
∥∥∥diag

(
d(`1,`2,`3)

)∥∥∥
q

≤
∥∥∥diag

(
d(`1,`2,`3)

)∥∥∥ 1
q

1

∥∥∥diag
(
d(`1,`2,`3)

)∥∥∥1− 1
q

∞

=
∥∥∥diag

(
d(`1,`2,`3)

)∥∥∥
∞

= max
i∈V

∣∣∣∣[diag
(
d(`1,`2,`3)

)]
i,i

∣∣∣∣
To see why the first inequality holds construct feasible values of ũ(1) and ũ(2) from feasible
values of u(1), u(2), u(3) in the following way. To determine the i’s element of ũ(1) find

the unique elements u
(1)
s1 and u

(2)
s2 such that k(s1) = `1, k(s2) = `2 and i(s1) = i(s2) = i.

Then let ũ
(1)
i = u

(1)
s1 u

(2)
s2 . Note that

∥∥u(2)
∥∥
q

= 1 implies
∥∥u(2)

∥∥
max
≤ 1 and therefore∥∥ũ(1)

∥∥
q

1−q
≤ 1. Also, to determine the j’s element of ũ(2) find the unique element u

(3)
s3

such that k(s3) = `3 and i(s3) = j. Note that
∥∥u(3)

∥∥
q

= 1 implies
∥∥ũ(2)

∥∥
q
≤ 1. The

second inequality follows by Lemma S.4 in FVW and the last two equalities follows from
the diagonal structure of the matrix whose norm we are considering. Therefore,

E1 ≤max
i∈V

∣∣∣∣[diag
(
d(`1,`2,`3)

)]
i,i

∣∣∣∣
= max

i∈V

∣∣∂πk,iπ`,iπm,ig(π)
∣∣

= max
i∈V

∣∣∣∣ 1

N

∑
j∈V
j>i

∂πk,1π`,1πm,1gij(π) +
1

N

∑
j∈V
j<i

∂πk,2π`,2πm,2gji(π)

∣∣∣∣ ≤ C.
Let

e(`1,`2,`3) =
(
∂π`1,iπ`2,iπ`3,jg(π)

)
i,j=1,...,N

.
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Then

E2 ≤ max
ũ(1)∈RN ,‖ũ(1)‖ q

q−1
≤1

max
ũ2∈RN ,‖ũ(2)‖

q
≤1

∣∣∣∣ N∑
i,j=1

ũ
(1)
i ũ

(2)
j e

(`1,`2,`3)
i,j

∣∣∣∣
=
∥∥∥e(`1,`2,`3)

∥∥∥
q

≤
∥∥∥e(`1,`2,`3)

∥∥∥ 1
q

1

∥∥∥e(`1,`2,`3)
∥∥∥1− 1

q

∞

=

{
max
j∈V

∣∣∣∣∑
i∈V

e
(`1,`2,`3)
i,j

∣∣∣∣} 1
q
{

max
i∈V

∣∣∣∣∑
j∈V

e
(`1,`2,`3)
i,j

∣∣∣∣}1− 1
q

.

≤
{

max
j∈V

∣∣∣∣ 1

N

∑
i∈V
i<j

∂πk,1π`,1πm,2gij(π) +
1

N

∑
i∈V
i>j

∂πk,2π`,2πm,1gji(π)

∣∣∣∣} 1
q

×
{

max
i∈V

∣∣∣∣ 1

N

∑
j∈V
j>i

∂πk,1π`,1πm,2gij(π) +
1

N

∑
j∈V
j<i

∂πk,2π`,2πm,1gji(π)

∣∣∣∣}1− 1
q

≤ C.

The first inequality can be argued similarly to the argument for the bound on E1. The
second inequality follows, again, from Lemma S.4 in FVW. The same bound can be
derived for E3 and E4 in a similar way. In summary,

‖D‖q ≤
∑

(`1,`2,`3)∈C3(1,...,K)

D(`1,`2,`3)
s1,s2,s3 ≤ 4K3C,

concluding the proof of (ii). For (iii), write G11,k`
π2 for the diagonal matrix with entries(

G̃11,k`
π2

)
i,i

= ∂πk,iπ`,ig(π)− Ē
[
∂πk,iπ`,ig(π)

]
and G12,k`

π2 for the matrix with entries

(
G̃12,k`

π2

)
i,j

=

{
∂πk,iπ`,jg(π)− Ē

[
∂πk,iπ`,jg(π)

]
for i 6= j

0 for i = j
.

Now, we can write for a constant CK,8 depending only on K

∥∥∂π2g(π)− Ē
[
∂π2g(π)

]∥∥8 ≤

 K∑
k,`=1

{∥∥∥G̃11,k`
π2

∥∥∥+ 2
∥∥∥G̃12,k`

π2

∥∥∥}
8

≤CK,8
(∥∥∥G̃11,k`

π2

∥∥∥8
+
∥∥∥G̃12,k`

π2

∥∥∥8
)
.
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Fix k, ` ∈ {1, . . . ,K}. Let

g̃ij = ∂πk,1π`,1gij − Ē
[
∂πk,1π`,1gij

]
,

g̃ji = ∂πk,2π`,2gji − Ē
[
∂πk,2π`,2gji

]
.

As G̃11,k`
π2 is a diagonal matrix

Ē
∥∥∥G̃11,k`

π2

∥∥∥8
=Ē
(

max
i∈V

∣∣∣∣[G̃11,k`
π2

]
i,i

∣∣∣∣ )8

≤
∑
i∈V

Ē
∣∣∣∣[G̃11,k`

π2

]
i,i

∣∣∣∣8 .
Then,

Ē
[
G̃11,k`

π2

]8

i,i
≤ 27Ē

 1

N

∑
j∈V,j>i

g̃ij

8

+ 27Ē

 1

N

∑
j∈V,j<i

g̃ji

8

= Op
(
N−4

)
.

To prove the claim about the stochastic order of the right-hand side consider expanding

Ē
(∑

j∈V,j>i g̃ij

)8
(the argument for the second term is similar). A typically term in

the expansion will look like Ēg̃ij1 g̃ij2 g̃ij3 g̃ij4 . The boundedness assumption gives us
a universal upper bound on this term. By conditional independence and Ēg̃ik = 0,
whenever there is a m = 1, . . . , 4 such that jm ∩ {jn : n = 1, . . . , 4;n 6= m} = ∅ we will
have Ēg̃ij1 g̃ij2 g̃ij3 g̃ij4 = 0. The set of permissable j1, . . . , j4 that do not have one distinct
index has cardinality less than

(
N
3

)
. Now, we can conclude that

Ē
∥∥∥G̃11,k`

π2

∥∥∥8
= Op

(
N−3

)
.

Next, let’s turn to bounding Ē
∥∥∥G̃12,k`

π2

∥∥∥8
. Let

ĝij = N
(
∂πk,1π`,2gij − Ē

[
∂πk,1π`,2gij

])
,

ĝji = N
(
∂πk,2π`,1gji − Ē

[
∂πk,2π`,1gji

])
.

We will apply Lemma S.6 in FVW. Note that the assertion of this lemma remains true
if Eφ is replaced by Ē and independence conditional on φ is replaced by independence
conditional on A. This can easily be seen by inspection of their proof. Let e denote the
matrix with entries

(e)i,j =
[
NG̃12,k`

π2

]
i,j

Let σ̄2
i = 1

N

∑N
j=1 Ēe2

i,j . Since there is a bound on the second derivative of gij there is a
universal constant C such that

σ̄2
i ≤

2

N

{∑
j∈V
i<j

ĝ2
ij +

∑
j∈V
i>j

ĝ2
ji

}
≤ N.
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Therefore, 1
N

∑N
i=1

(
σ̄2
i

)4
= Op(1). Let Ω denote the matrix with entries (Ω)j1,j2 =

1
N

∑N
i=1 Ē(ei,j1ei,j2). Under our boundedness assumptions ‖Ω‖max ≤ C and therefore9

1

N
Tr(Ω4) ≤ ‖Ω‖4 ≤ ‖Ω‖4max .

Let ηi1,i2 = 1√
N

∑N
j=1

[
ei1,jei2,j − Ē(ei1,jei2,j)

]
. By conditional independence

Ē(η4
i1,i2) =

1

N2

N∑
j1,j2=1

Ē
[
(ei1,j1ei2,j1 − Ē(ei1,j1ei1,j1))(ei1,j2ei2,j2 − Ē(ei1,j2ei1,j2))

]
≤
(

2

N

N∑
j=1

Ē(ei1,j)
2Ē(ei2,j)

2

)2

≤ C

and therefore 1
N

∑N
i=1 Ē(η4

i,i) = Op(1) and 1
N2

∑N
i1,i2=1 Ē

(
η4
i1,i2

)
= Op(1). Thus, Lemma

S.6 is applicable and we can conclude that Ē ‖e‖ = Op
(
N5/8

)
or, equivalently, Ē

∥∥∥G̃12,k`
π2

∥∥∥ =

Op
(
N−3/8

)
. In summary, we have shown that

Ē
∥∥∂π2g(π)− Ē

[
∂π2g(π)

]∥∥ = Op

(
N−3/8

)
.

This implies ∥∥∂π2g(π)− Ē
[
∂π2g(π)

]∥∥ = Op

(
N−3/8

)
,

concluding the proof of (iii).

Lemma G.2 (Sparse bounded functionals of the incidental parameter II). Let K denote
a finite constant and let (πk)Kk=1 denote a collection of N -dimensional parameters. Define
π = (π′1, . . . ,π

′
K)′. Let {gi1,...,iL}i1<···<iL denote an array of functions such that

gi1,...,iL(π) = gi1,...,iL(π1,i1 , . . . , πK,i1 , . . . , π1,iL , . . . , πK,iL)

with
‖∂π`gi1,...,iL(π)‖max ≤ C for ` = 0, 1, 2, 3

for a universal constant C. Let

g(π) =
1

NL−1

∑
i1<···<iL

gi1,...,iL(π).

Then ‖∂πg(π)‖q = Op

(
N
− 1

q

)
, ‖∂π2g(π)‖q = Op(1) and ‖∂π3g(π)‖q = Op(1).

9For every symmetric N ×N matrix M we have 1
N

Tr(M2) ≤ ‖M‖2. To prove this, consider a slightly
more general case and let A, B denote symmetric N ×N matrices with eigenvalues α1 ≤ · · · ≤ αN

and β1 ≤ · · · ≤ βN , respectively. By the von-Neumann trace inequality, Tr(AB) ≤
∑N

i=1 αiβi. For
symmetric square matrices it is well-known that ‖A‖ = αN and ‖B‖ = βN . Therefore, Tr(AB) ≤
N ‖A‖ ‖B‖. For any square matrix Ω, M = Ω′Ω is symmetric. Therefore, 1

N
Tr(Ω′ΩΩ′Ω) ≤ ‖Ω′Ω‖2 ≤

‖Ω‖2 ‖Ω′‖2. The first inequality now follows from noting that Ω as defined above is symmetric.
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Proof. The proof is very similar to that of Lemma G.1. For example,

∂πk,i
g(π) =

∑
i<i1<···<iL

∂πk,i
gi1,...,iL(π)

+
∑

i1<i<i3<···<iL

∂πk,i
gi1,...,iL(π) + · · ·+

∑
i1<···<iL−1<i

∂πk,i
gi1,...,iL(π).

Therefore, there is a constant C such that

‖∂πg(π)‖q ≤

(
KN∑
`=1

|∂π`
g(π)q|

) 1
q

≤

 1

NL−1

K∑
k=1

∑
i1<···<iL

L∑
`=1

∣∣∣∂πk,i`
gi1,...,iL(π)

∣∣∣q
 1

q

<C(KLN)
1
q .

Lemma G.3 (Symmetric functions). Define a class of symmetric functions,

G =
{
g : R2 → R | g(y1, y2) = g(y2, y1)

}
The function class G is closed under multiplication and addition , i.e.,

g, h ∈ G ⇒gh ∈ G
g, h ∈ G ⇒g + h ∈ G.

If g ∈ G is (partially) differentiable in the first component, then g is also differentiable in
the second component and

∂1g(y1, y2) = ∂2g(y2, y1).

Moreover, if g ∈ G is twice (partially) differentiable in the first component, then g is also
twice differentiable in the second component and

∂22g(y1, y2) = ∂11g(y2, y1),

∂21g(y1, y2) = ∂12g(y2, y1).

Let φ denote a scalar parameter and let Bε denote an open ball on the real line. Suppose
that g(y1, y2, φ) ∈ G for all φ ∈ Bε and that g is differentiable in φ on Bε. Then,

∂φg(y1, y2, φ) ∈ G for φ ∈ Bε.

Proof. Suppose that g ∈ G is differentiable in the first component. Then

∂1g(y1, y2) = lim
δ→0

g(y1 + δ, y2)− g(y1, y2)

δ
= lim

δ→0

g(y2, y1 + δ)− g(y2, y1)

δ
= ∂2g(y2, y1).

Existence of the limit on the right-hand side follows from existence of the limit on the
left-hand side. Furthermore,

∂22g(y1, y2) =
d

dy2

(
∂2g(y1, y2)

)
=

d

dy2

(
∂1g(y2, y1)

)
= ∂11g(y2, y1).
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The claim about the cross-derivative follows in a similar way. The last claim follows by
noting that

∂φg(y1, y2, φ) = lim
δ→0

g(y1, y2, φ+ δ)− g(y1, y2, φ)

δ

= lim
δ→0

g(y2, y1, φ+ δ)− g(y2, y1, φ)

δ
= ∂φg(y2, y1, φ).

Lemma G.4. For a function g : R3 → R write gij = g(Y ∗ij , Y
∗
ji, Zij). Let

G(γ) =
∑
i<j

gij =
∑
i<j

g(Y ∗ij , Y
∗
ji, Zij).

Define the matrix A = (Aij)i,j∈V where

Aij =


∂y1g(Y ∗ij , Y

∗
ji, Zij) if i < j

∂y2g(Y ∗ji, Y
∗
ij , Zji) if i > j

0 if i = j

.

Then

∂γG(γ) =

[
A ιN
A′ ιN

]
.

Proof. This follows from a straightforward inspection. In particular,

∂γSi
G =

∑
j∈V
j>i

∂y1g(Y ∗ij , Y
∗
ji, Zij) +

∑
j∈V
j<i

∂y2g(Y ∗ji, Y
∗
ij , Zji)

=
∑
j∈V−i

{
1{i<j}∂y1g(Y ∗ij , Y

∗
ji, Zij) + 1{i>j}∂y2g(Y ∗ji, Y

∗
ij , Zji)

}
=
∑
j∈V−i

Aij

and

∂γRj
G =

∑
i∈V
i<j

∂y1g(Y ∗ij , Y
∗
ji, Zij) +

∑
i∈V
i>j

∂y2g(Y ∗ji, Y
∗
ij , Zji)

=
∑
i∈V−j

{
1{i<j}∂y1g(Y ∗ij , Y

∗
ji, Zij) + 1{i>j}∂y2g(Y ∗ji, Y

∗
ij , Zji)

}
=
∑
i∈V−j

Aij .

Lemma G.5. Under Assumption 1(i) and Assumption 1(vi)

∂ργM =

[
AιN
A′ιN

]
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where A is a N ×N matrix with entries

Ai,j =

{
∂ρy1mij for i 6= j

0 for i = j.

Moreover,

∂ργM =

[
ĀιN
Ā′ιN

]
where Ā is a N ×N matrix with entries

Āi,j =

{
∂ρy1m̄ij = −Jij(∂y1rij) for i 6= j

0 for i = j.

Proof. We will apply Lemma G.4 with gij = ∂ρmij . Lemma G.4 gives that

∂ργM =

[
AιN
A′ιN

]
,

where A is a N ×N matrix with entries

Ai,j =


∂ρy1mij for i < j

∂ρy2mji for i > j

0 for i = j.

It remains to show that ∂ρy2mji = ∂ρy1mij . By construction rij is a symmetric function
in the sense of Lemma G.3. Then, repeated application of Lemma G.3 shows that Jij is
also a symmetric function and therefore ∂y2Jji = ∂y1Jij by Lemma G.3. Similary, one can
show that ∂y2(Jjirji) = ∂y1(Jijrij). Finally Zij = Zji by definition. The second assertion
is proved similarly.

Lemma G.6. Let A denote a σ-field and let EA denote the expectation operator condi-
tional on A. Let (Yi,j , Yj,i)i,j=1,...,n denote an array of random tupels that are mutually
independent conditional on A and satisfy EA |Yi,j |4 ≤ C for a constant C. Suppose that
EAYi,j = 0 for i, j = 1, . . . , n and let Υ denote the matrix random entries (Υ)i,j = Yi,j.
Let M denote a matrix with A-measurable random entries such that ‖M‖max = Op(n

−1)
and let D denote a diagonal matrix with with A-measurable random entries such that
‖D‖max = Op(1). Then for A,B ∈ {Υ,Υ′}

ι′nA
′MBιn = Op(n),

ι′nA
′DBιn = EA[ι′nA

′DBιn] +Op
(
n3/2

)
=

n∑
i,j=1

(D)i,iEA[ai,jbi,j ] +Op
(
n3/2

)
.
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Proof. To prove the first statement note that

n ι′nA
′MBιn =

n∑
i,j,k,`=1

aikb`j [nmk,`]

For κ = 3, 4 let

Pκ(i1, . . . , iκ) = {(j1j2, . . . , j2κ−1j2κ) : j1, . . . , j2κ ∈ {i1, . . . , iκ}}

the set of all 4-tupels of index pairs that can be generated from a given set of four
(not necessarily distinct) indices i1, . . . , iκ. Conditional independence and the zero mean
property of the Yi,j yields

EA[n ι′nA
′MBιn]2 =

n∑
i,j,k,`=1

∑
(p1,...,p4)∈P4(i,j,k,`)

[nm]p12p21 [nm]p32p41EA[ap1bp2ap3bp4 ]

≤C
n∑

i,j,k,`=1

∑
(p1,...,p4)∈P4(i,j,k,`)

[nm]p12p21 [nm]p32p41 = Op(n
4),

where the inequality follows from Cauchy-Schwarz. The first claim follows now immedi-
ately. To prove the second claim note that

ι′nA
′DBιn =

n∑
i,j,k=1

aijbikdii.

Taking the squared expectation gives

EA[ι′nA
′DBιn]2 =

n∑
i,j,k=1

∑
(p1,...,p3)∈P3(i,j,k)

dp11p11dp31p31EA[ap1bp2ap3bp4 ] = Op(n
3).

It follows that ι′nA
′MBιn = EA[ι′nA

′MBιn] +Op(n
3/2). Finally, it is easy to see that

EA[ι′nA
′MBιn] =

n∑
i,j,k=1

diiEA[aijbik] =

n∑
i,j=1

diiEA[aijbij ].

H. Applying results from FVW

FVW study a panel model with time and individual fixed effects. Their results can be
leveraged for the analysis of my network model. In particular, FVW derive a stochastic
expansion for a broad class of general likelihood models with an incidental parameter
(Theorem B.1 in FVW). This class comprises also the dyadic network model. To verify
that the network model satisfies all assumptions, the corresponding argument for panel
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models can be adapted with minimal changes. This is demonstrated below. In addition
FVW characterize the inverse of the Hessian for the panel model. This is easily adapted
to the network setting as well. Below, I restate these results explicitly for the dyadic
network model. First, we need some additional notation.

Let 1N denote an N -vector of ones and let vN = (1′N ,−1′N )′. For b > 0, the ML
program (3.1) can be rewritten as

(θ̂, γ̂) = arg maxθ,γ L(θ,γ)

where

L(θ,γ) = L∗(θ,γ)− b

2N
(v′Nγ)2.

The penality imposes the normalization constraint in the ML program (3.1). Let

S(θ,γ) = ∂γL(θ,γ) H(θ,γ) = −∂γγ′L(θ,γ).

We adapt the convention that omitting function argument indicates that the function is
eliminated at the true paramters, e.g. S = S(θ0,γ0). For a random variable W we set
W̄ = ĒW and W̃ = W − W̄ .

Lemma H.1 (Lemma D.1 in FVW). Let H̄∗SS = diag
((

1
N

∑
j∈V−i

ωij
)
i∈V
)

and H̄∗RR =

diag
((

1
N

∑
i∈V−j

ωij
)
j∈V
)
. Under Assumption 1∥∥∥H̄−1 −
(

diag(H̄∗SS , H̄∗RR)
)−1
∥∥∥

max
= Op

(
N−1

)
.

Proof. For the purposes of this proof define ωii = 0. Then we can write H̄∗SS =

diag
((

1
N

∑N
j=1 ωij

)
i∈V
)
, H̄∗RR = diag

((
1
N

∑N
i=1 ωij

)
j∈V
)
. Also we write H̄∗SR for the

matrix with entries H̄∗SR,ij = ωij/N . Note that we can write

H̄ =

[
H̄∗SS H̄∗SR

[H̄SR]′ H̄∗RR

]
+

b

N
vNv

′
N .

If bmin < ωij < bmax then this would satisfy the restriction imposed on the panel model

in FVW and we could apply their Lemma D.1. Define ω†ij = max{ωij , bmin}. Define

H̄†SS , H̄†RR and H̄†SR similar to H̄SS , H̄RR and H̄SR with ωij replaced by ω†ij . Let

D = diag(H̄∗SS , H̄∗RR) and D† = diag(H̄†SS , H̄
†
RR). Lemma D.1 in FVW implies that∥∥(H̄†)−1 − (D†)−1

∥∥
max

= Op
(
N−1

)
. By the inequality on p 351 in Horn and Johnson

2012 ∥∥∥(H̄†)−1
∥∥∥

max
≤
∥∥∥(D†)−1

∥∥∥
max

∥∥∥(I2N − (D† − H̄†)
)−1
∥∥∥

max

≤bmax

(
1−

∥∥∥D† − H̄†∥∥∥
max

)−1
≤ 2bmax.
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By construction
∥∥H̄† − H̄∥∥

max
≤ bmin/N and

∥∥D† −D∥∥
max
≤ bmin/N . Therefore∥∥∥H̄−1 − (H̄†)−1

∥∥∥
max
≤
∥∥∥(H̄†)−1(H̄† − H̄)(H̄†)−1

(
I2N − (H̄† − H̄)

)−1
∥∥∥

max

≤
∥∥∥(H̄†)−1

∥∥∥2

max

∥∥∥H̄† − H̄∥∥∥
max

(
1−

∥∥∥H̄† − H̄∥∥∥
max

)−1

≤4b2max

bmin

N

(
1− bmin

N

)−1

= Op
(
N−1

)
.

Then, by the triangle inequality∥∥H̄−1 −D−1
∥∥

max
≤
∥∥∥H̄−1 − (H̄†)−1

∥∥∥
max

+
∥∥∥(H̄†)−1 − (D†)−1

∥∥∥
max

+
∥∥∥(D†)−1 −D−1

∥∥∥
max

= Op
(
N−1

)
.

Lemma H.2 (Theorem B.1 in FVW). Let

γ̂(θ) = arg maxγ L(θ,γ).

denote the concentrated likelihood and suppose that Assumption 1 holds. Then

γ̂(θ)− γ0 = H−1S +H−1[∂γθ′L](θ − θ0) +
1

2
H−1

2N∑
g=1

[∂γγ′γg
L]H−1S[H−1S]g +Rγ(θ)

and

∂θL(θ,γ) = U − W̄N(θ − θ0) +R(θ),

where U = U (0) + U (1), and

W̄ =− 1

N

(
∂θ,θ′L̄+ [∂θγL̄]H̄−1[∂γθL̄]

)
,

U (0) =∂θL+ [∂θγ′L̄]H̄−1S,
U (1) =[∂θγL̃]H̄−1S − [∂θγ′L]H̄−1H̃H̄−1S

+
1

2

2N∑
g

(
∂θγ′γg

L̄+ [∂θγ′L̄]H̄−1[∂γγ′γg
L̄]
)

[H̄−1S]gH̄−1S.

The remainder terms Rγ and R satisfy

sup
θ∈ΘN

N
7
8 ‖Rγ(θ)‖8

1 +N ‖θ − θ0‖
= op(1), sup

θ∈ΘN

R(θ)

1 +N ‖θ − θ0‖
= op(1),

where ΘN ⊂ Rdim(θ) satisfies Prob(θ̂ ∈ ΘN )→ 1.
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Proof. Let C denote a generic constant. To apply Theorem B.1 in FVW we have to
verify their Assumption B.1. It is without loss of generality to operate conditional on
the event AN . We set T = N , q = 8, rβ = log(N)N−1/4 and rφ = N−1/8. B.1(i) holds
trivially. B.1(ii) holds since pij is bounded away from zero and one. B.1(iv) holds by
Assumption (iv) and Lemma H.1 (see the proof of Theorem 4.1 in FVW). Condition
B.1(v) can be checked by following the arguments for the panel case. The arguments are
very similar to the ones employed in the respective proofs of Lemma G.1 and Lemma G.2.
For condition B.1(vi) the arguments for the panel model carry over almost ad verbatim.
For example, to prove that ‖H̃‖ = op(N

1/4) let H̄SS and H̄RR and H̄SR as defined in the
proof of Lemma H.1. By the triangle inequality∥∥∥H̃∥∥∥ ≤ ∥∥−∂γSγS

L − H̄∗SS
∥∥+

∥∥−∂γRγR
L − H̄∗RR

∥∥+ 2
∥∥−∂γSγR

L − H̄∗SR
∥∥ .

Let ξij = (Yij−pij)∂γSi
[

φ(Y ∗ij)

pij(1−pij)

]
for i 6= j and ξii = 0 for i ∈ V . Then −∂γSγS

L−H̄∗SS =

−diag
(
( 1
N

∑
j∈V−i

ξij)i∈V
)
. The ‖·‖ matrix norm is given by the largest eigenvalue of a

matrix. Therefore

Ē
∥∥−∂γSγS

L − H̄∗SS
∥∥8

=Ē

max
i∈V

 1

N

∑
j∈V−i

ξij

8
≤
∑
i∈V

Ē

 1

N

∑
j∈V−i

ξij

8 = Op
(
N−3

)
.

A similar argument applies to
∥∥−∂γRγR

L − H̄∗RR
∥∥. This shows that∥∥−∂γSγS

L − H̄∗SS
∥∥ = Op

(
N−

3
8

)
,∥∥−∂γRγR

L − H̄∗RR
∥∥ = Op

(
N−

3
8

)
.

Now apply Lemma S.6 in FVW with T = N and eit = ξij . For i, j ∈ V we have

Ē[ξ2
ij ] = 0 if i = j and Ē[ξ2

ij ] ≤
(
∂γSi

[
φ(Y ∗ij)

pij(1−pij)

])2
if i 6= j. Assumption 1(vi) ensures that

Ē[ξ2
ij ] < C so that σ̄2

i = 1
N

∑
j∈V Ē(ξ2

ij) < C. The matrix Ω with elements is a N ×N
matrix with elements given by Ωj` = 1

N

∑
i∈V Ē(eijei`). It is easy to see that Ω is a

diagonal matrix whose diagonal elements are bounded by C. Therefore, 1
N Tr(Ω) = Op(1).

Let ηij = 1√
N

∑
`∈V

(
ξi`ξj` − Ē[ξi`ξj`]

)
. We have

Ē(ηii)
4 ≤ N−2(N +N2)(2C)4

and therefore 1
N

∑N
i=1 Ē(ηii)

4 = Op(1). For i 6= j we have ηij = 1√
N

∑
`∈V ξi`ξj`. Taking

the 4th power of ηij gives a long sum where each term has the form

Ē[ξik1ξik2ξik3ξik4ξjk1ξjk2ξjk3ξjk4 ].
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Clearly, the term is equal to 0 if there is a k` ∈ {i, j}. Therefore we may assume that the
k` ∈ V \ {i, j}. The term is also equal to zero if a k` gets picked only once. Therefore we
can bound the term by (relabelling the k’s if necessary)

Ē[ξik`1 ξik`2 ξjk`1 ξjk`2 ] ≤
(
Ē[(ξik`1 )8]

) 1
4
(
Ē[(ξik`2 )8]

) 1
4
(
Ē[(ξjk`1 )8]

) 1
4
(
Ē[(ξjk`2 )8]

) 1
4 < C.

There are (N − 2)2 ways of picking the k`’s so that 1
N2

∑
i,j∈V Ē(η4

ij) < C. Thus, all
the conditions of Lemma S.6 in FVW are satisfied and the matrix ξ = (ξij)i 6=j has
‖ξ‖ = Op(N

5/8). Since Nξ = −∂γRγR
L − H̄∗RR this implies∥∥−∂γRγR
L − H̄∗RR

∥∥ = Op

(
N−

3
8

)
.

The other arguments in FVW can be adapted similarly. Next, we apply Theorem B.3 in
FVW. A condition of the theorem is that W̄ has a positive definite limit. Inspection of the
proof in FVW shows that this condition can be replaced by assuming that the eigenvalues
of W̄ are positive and bounded away from zero. It can be shown that W̄ − W̄N,1 = op(1).
Therefore W̄ satisifies this eigenvalue condition by Assumption 1(ii). It remains to check
that U = Op(1). It can be shown that U = Bθ

N + 1
N

∑
i∈V

∑
j∈V−i

HijX̃ij(Yij−pij)+op(1).

Bθ
N is stochastically bounded by Assumption 1(iii). Moreover

Ē
[ 1

N

∑
i∈V

∑
j∈V−i

HijX̃ij(Yij − pij)
]2

= W2,N

is bounded by Assumption 1(iii). Therefore U = Op(1) and Theorem B.3 in FVW can
be applied. It follows that Assumption B.1(iii) in FVW is met and

‖θ̂ − θ0‖ = Op

(
N−

1
2

)
.

If we define ΘN = {θ ∈ Θ :
∥∥θ − θ0

∥∥ < N−
1
4 } then Prob(θ̂ ∈ ΘN ) → 1 and also

ΘN ⊂ {θ ∈ Θ :
∥∥θ − θ0

∥∥ < rβ}. The conclusion now follows from Theorem B.1 in
FVW.

For convenience I restate some bounds originally derived in FVW.

Lemma H.3. Suppose Assumption 1 holds. Then∥∥H−1 − H̄−1
∥∥ = op

(
N−1/4

)
,∥∥H−1 −

(
H̄−1 − H̄−1H̃H̄−1

)∥∥ = op
(
N−1/2

)
,∥∥∥ dim(γ)∑

g,h=1

∂γγgγh
L̃[H̄−1S]g[H̄−1S]h

∥∥∥ = op
(
N−1/2

)
.

Moreover,
∥∥H−1

∥∥ = Op(1),
∥∥H̃∥∥ = op

(
N−1/4

)
,
∥∥∂γθ′L∥∥ = Op

(
N1/2

)
,
∥∥∂γθ′L̃∥∥ = Op(1).

Proof. FVW. See also proof of Lemma H.2.
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I. Derivatives of bivariate normal probabilities

Let U = (U1, U2)′ denote a bivariate random vector with zero-mean and covariance
matrix

V =

[
1 ρ
ρ 1

]
where ρ is a parameter giving the correlation between the marginal normals. Let

r(y1, y2, ρ) = P (U1 ≤ y1, U2 ≤ y2)

The formula for conditional distributions of a joint normal gives

U2 | U1 ∼ N (ρU1, 1− ρ2).

By a conditioning argument

r(y1, y2, ρ) =P (U1 ≤ y1)P (U2 ≤ y2 | U1 ≤ y1)

=P (U1 ≤ y1)

∫ y1

−∞
P (U2 ≤ y2 | U1 = t)

φ(t)

Φ(t)
dt

=

∫ y1

−∞
Φ

(
y2 − ρt√

1− ρ2

)
φ(t) dt.

Then,

∂y1r(y1, y2, ρ) =Φ

(
y2 − ρy1√

1− ρ2

)
φ(y1)

and

∂y1ρr(y1, y2, ρ) =−
(

y1 − ρy2

(1− ρ2)3/2

)
φ

(
y2 − ρy1√

1− ρ2

)
φ(y1),

∂(y1)2r(y1, y2, ρ) =− ρ√
1− ρ2

φ

(
y2 − ρy1√

1− ρ2

)
φ(y1) + Φ

(
y2 − ρy1√

1− ρ2

)
φ′(y1)

=− ρ√
1− ρ2

φ

(
y2 − ρy1√

1− ρ2

)
φ(y1)− y1Φ

(
y2 − ρy1√

1− ρ2

)
φ(y1),

∂y1y2r(y1, y2, ρ) =
1√

1− ρ2
φ

(
y2 − ρy1√

1− ρ2

)
φ(y1).

Moreover,

∂ρr(y1, y2, ρ) =

∫ y1

−∞

(
ρy2 − t

(1− ρ2)3/2

)
φ

(
y2 − ρt√

1− ρ2

)
φ(t) dt.

73



The integral on the right-hand side can be solved numerically using the R function
integrate.10 For the case ρ = 0 no numerical integration is needed since

∂ρr(y1, y2, 0) = −φ(y2)

∫ y1

−∞
t φ(t) dt = φ(y1)φ(y2).
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