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1. Introduction

A substantial amount of economic activity takes place outside of centralized markets, within

networks of interpersonal relationships. The importance of interpersonal relationships

has been documented, e.g., for information dissemination (Banerjee et al. 2013) and

informal insurance (Fafchamps and Lund 2003). Social network data encodes interpersonal

relationships as links in a network and makes them amendable to empirical investigation.

In models of dyadic link formation, linking decisions are a binary choice that depends

only on the characteristics of the two agents connected by the link. Models of dyadic link

formation are straight-forward to implement and often applied in practice (Mayer and

Puller 2008; Fafchamps and Gubert 2007). Even though dyadic linking models ignore the

strategic dimension of link formation, they can still replicate important stylized features of

social networks (Jochmans 2017). Some of the agent characteristics entering the linking

decisions may be unobserved to the Econometrician but can be accounted for using a fixed

effects approach. Controlling for a high-dimensional vector of fixed effects complicates

inference because of the incidental parameter problem (Neyman and Scott 1948). For dyadic

linking models, the incidental parameter problem has been discussed in Charbonneau (2017),

Graham (2017), and Jochmans (2017).

This paper studies inference in a dyadic linking model with fixed effects. I consider sig-

nificance testing for the parameters that describe homophily preferences and the propensity

of agents to reciprocate links, as well as a test of model specification based on the transitive

structure of the network. Robustness to the incidental parameter problem is ensured by

using new test statistics that are based on analytical formulas that approximate the effect

of fixed effect estimation on the bias and variance of a näıve t-test. The approximation is

theoretically justified for large networks.

In my linking model, agents form directed links if the link surplus exceeds a random
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threshold. The model is related to Holland and Leinhardt (1981) and accounts for all

three drivers of linking behavior that they identify: homophily, degree heterogeneity and

reciprocity. Homophily in linking decisions is the clustering of agents who share similar

observed characteristics (McPherson, Smith-Lovin, and Cook 2001). Degree heterogeneity

means that the number of linking partners varies a lot between agents. Link reciprocity

refers to the fact that, conditional on agent characteristics, observing a link from one agent

to another agent renders observing the link in the opposite direction more likely.

My linking network targets the linking behavior within dyads (groups of two). A test of

model specification can be based on the predictive power of the linking model for network

statistics that are not pinned down completely by pairwise interactions. My specification

test looks at transitive relationships in triads (groups of three). A transitive relationship

arises if two agents who are connected indirectly via a third agent form a link that connects

them directly. The test statistic of the specification test compares the number of observed

transitive relationships to the number of transitive relationships predicted by the dyadic

linking model. The dyadic model is rejected if the test detects that it significantly under-

or overestimates transitivity.

The idea of using network statistics to elicit the plausibility of dyadic linking was first

suggested in Holland and Leinhardt (1978) and subsequently developed in Karlberg (1997)

and Karlberg (1999). More recently, Chandrasekhar and Jackson (2016) use simulated

network statistics to evaluate a dyadic linking model. They find that a dyadic model

without fixed effects predicts too little transitivity.1 Using a different approach, I replicate

their finding. By using a dyadic model with fixed effects, I show that the conclusion in

Chandrasekhar and Jackson (2016) is robust to allowing some determinants of the linking

decisions to be unobserved.

1See also Davis (1970), Watts and Strogatz (1998), and Apicella et al. (2012).
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My transitivity test can be interpreted as testing the dyadic model against models that

target the formation of transitive relationships. This includes models of strategic network

formation with agents who value transitive closure (Leung 2015; Mele 2016; Menzel 2017;

Sheng 2016), as well as models in which transitivity is generated by an exogenous mechanism

(Wasserman and Pattison 1996; Snijders et al. 2006; Chandrasekhar and Jackson 2016).

Most of the models from this list are challenging to implement, computationally hard

and make restrictive assumptions about unobserved heterogeneity.2 My transitivity test

can be used to detect networks in which the dyadic linking model, along with its ease of

implementation and permissive assumptions about unobserved characteristics, provides a

reasonable approximation of the true linking process. Even if the specification test rejects,

the dyadic linking model can still serve as a tool to generate useful descriptive statistics such

as a measure of link reciprocity that projects out homophily effects and degree heterogeneity.

Related literature Graham (2017) studies a directed version of the model discussed in the

present paper. He focuses on inference about the homophily component and considers ML

estimation with analytic bias correction as well as an alternative approach that conditions

out the incidental parameter. The latter approach has the advantage of producing reliable

estimates in sparse networks, i.e., in settings where agent degrees grow only slowly as the

number of linking opportunities increases. I justify my approach under the assumption

that the network is not sparse. The identification strategy for the conditioning approach

in Graham (2017) relies on the assumption of logistic errors. Candelaria (2017), Toth

(2017), and Gao (2017) study identification of homophily preferences under non-parametric

distributional assumptions.

Shi and Chen (2016) study a linking model in which undirected links between two agents

2For example, Bhamidi, Bresler, and Sly (2011) show that the computational cost of fitting an exponential
random graph model can be prohibitive.
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are observed if the agents reciprocate links in a latent directed network. Similar to my

analysis, they assume that the linking rule generates a network that is not too sparse.

T. Yan, Jiang, et al. (2018) study analytical bias correction for an estimator of homophily

preferences in a directed dyadic linking model with logistic errors. They also characterize

the joint asymptotic distribution of finite collections of estimated fixed effects. Such a result

is useful, e.g., to test the hypothesis of no structural degree heterogeneity for subsets of

agents.

Charbonneau (2017) identifies homophily preferences in the model with logistic errors

using a conditioning approach. Jochmans (2017) demonstrates theoretically and in Monte

Carlo simulations that the approach in Charbonneau (2017) is robust to sparsity of the

network. His simulations also indicate that analytic bias correction of the type that is

proposed in the present paper and in T. Yan, Jiang, et al. (2018), may not work well in

sparse settings. The conditioning approach is specific to the homophily parameter in the

model with logistic errors and does not extend readily to the inference problems that I

consider.

The asymptotic analysis of my linking model benefits from arguments originally developed

in the context of nonlinear large-T panel models with fixed effects (Hahn and Newey 2004;

Hahn and Kuersteiner 2011; Dhaene and Jochmans 2015). For my proofs, I adapt arguments

from Fernández-Val and Weidner (2016) who study nonlinear panel models in the context of

a broad class of ML models with fixed effects. Their implicit key assumption is equivalent

to assuming that certain derivatives of functionals of the fixed effects satisfy a sparsity

assumption. For the dyadic linking model, I verify that this condition is satisfied for the

functionals related to my parameters of interest.

Organization of paper Section 2 defines the dyadic linking model and discusses two-step

maximum likelihood estimation. Section 3 introduces the asymptotic framework. Section 4
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discusses t-tests for structural parameters and Section 5 discusses the specification test.

Section 6 reports simulation evidence on the finite sample behavior of my procedures and

Section 7 applies the specification test to Indian favor networks.

Notation for networks Let V = V (N) = {1, . . . , N} denote a set of agents (vertices).

The set of all ordered tuples from V represents directed links (edges) between agents and is

denoted by E = E(N) = {(i, j) : i, j ∈ V (N), i 6= j}. For a given link (i, j), i is the sender

and j the receiver of the link. To conserve notation, I frequently shorten (i, j) to ij. For

A ⊂ V and i ∈ V , I write V−A = V \ A and V−i = V−{i}.

2. The dyadic linking model

2.1. Definition of model

We observe agents V (N) = {1, . . . , N} and their linking decisions. For every potential link

ij ∈ E(N), the dummy variable Yij takes the value one if agent i links to agent j and the

value zero otherwise. Linking decisions are described by a version of the linking model

in Holland and Leinhardt (1981) that models linking decisions as a binary choice. Other

versions of this model have recently been studied in Jochmans (2017) and T. Yan, Jiang,

et al. (2018). Each agent i is endowed with characteristics (X ′i, γ
S,0
i , γR,0i )′, where Xi is an

observed vector of agent characteristics and γS,0i and γR,0i are unobserved scalar parameters.

The link ij is established if the latent surplus Zij exceeds a link-specific shock Uij,

Yij = 1 (Zij ≥ Uij) .
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The link surplus is given by

Zij = X ′ijθ
0 + γS,0i + γR,0j ,

where Xij is a known transformation of (X ′i, X
′
j)
′ that takes values in Rdim(θ) and θ0 ∈ Θ ⊂

Rdim(θ) is an unknown model parameter that parameterizes homophily preferences. We

interpret X ′ijθ
0 as a measure of social distance between agents i and j that drives homophily

of linking decisions.3 The sender or productivity effect γS,0i of sender i summarizes the

effect of all characteristics of i that make her efficient at establishing outbound links. The

receiver or popularity effect γR,0j of receiver j summarizes the effect of all characteristics of j

that make her efficient at attracting inbound links. The vector of unobserved agent effects,

denoted by γ0 = (γS,0i , γR,0i )i∈V (N) ∈ Γ ⊂ R2N , can be interpreted as a structural driver

of degree heterogeneity (Graham 2017; Jochmans 2017). I take a fixed effect approach

and treat γ0 as a parameter that has to be estimated. Identification of the agent effects is

achieved by the normalization

∑
i∈V (N)

(
γS,0i − γ

R,0
i

)
= 0.

The shocks (Uij, Uji) are drawn independently across dyads {i, j} from a bivariate normal

distribution with covariance ρ0 and marginal variances equal to one. If ρ0 is positive then

agents will tend to reciprocate links. This is why I refer to ρ0 as the reciprocity parameter.4

The flavor of reciprocity modeled here can be interpreted as the effect of a shock at the

3For a discussion of homophily in dyadic linking models see Graham (2017) and Jochmans (2017). Toth
(2017) discusses specification of Xij .

4In models of dyadic link formation with random effects, reciprocity is modeled in a similar way (Hoff
2005; Hoff 2015).
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dyad level. For positive ρ0, suppose that Uij and Uji can be decomposed as

Uij =
√
ρ0Ud

ij +
√

1− ρ0U l
ij and Uji =

√
ρ0Ud

ij +
√

1− ρ0U l
ji,

where Ud
ij , U

l
ij and U l

ji are independent draws from the standard normal distribution. Here,

Ud
ij represents a shock that affects both linking decisions within the dyad and U l

ij represents

an idiosyncratic link-specific shock. Economically, the dyad-specific shock can be interpreted

as modeling the effect of a meeting process that randomly introduces people to each other,

reducing the cost of establishing links for both parties.5 The parameter ρ0 weighs the

relative importance of the dyad-specific and link-specific components of Uij.

In Holland and Leinhardt (1981), reciprocity is modeled in a different way, by letting the

surplus Zij depend on the link indicator Yji. This can be interpreted as modeling agents

that derive utility from reciprocated links. Such a specification renders the linking decision

endogenous and introduces a strategic element to each linking decision with the possibility

of multiple equilibria. Leung (2015), Mele (2016), and Ridder and Sheng (2017) study

identifying assumptions for models in which agents make strategic decisions about whether

to reciprocate links.

2.2. Two-stage estimation of model parameters

The model is fitted in two stages. The first stage is a pseudo-likelihood approach that

ignores the within-dyad correlations and recovers estimates of the homophily parameter θ0

and the incidental parameter γ0 from the marginal link distribution. In the second stage,

ρ0 is estimated by estimated maximum likelihood, substituting the first-stage estimates for

unknown population parameters in the likelihood for the reciprocity parameter.

5An example in social media (e.g. Tinder) are recommender systems that encourage people to connect to
each other.
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An alternative to the two-stage procedure is to estimate all parameters simultaneously by

maximizing the full information likelihood. This approach yields more efficient estimators

but is computationally challenging. In contrast, the two-stage procedure is easy to implement

in standard statistical software and numerically stable.6

The two-stage estimation proceeds as follows.

Stage 1 For parameter values θ ∈ Θ and γ =
(
γSi , γ

R
i

)
i∈V ∈ Γ, define the linking proba-

bility pij(θ,γ) = Φ
(
X ′ijθ + γSi + γRj

)
, where Φ is the cumulative distribution function of a

standard normal random variable. The first-stage estimator (θ̂′, γ̂ ′)′ solves the constrained

maximum likelihood program

(θ̂′, γ̂ ′)′ = arg maxθ∈Θ
γ∈Γ

1

N

∑
i∈V

∑
j∈V−i

{
Yij log

(
pij(θ,γ)

)
+ (1− Yij) log

(
1− pij(θ,γ)

)}
subject to

∑
i∈V

(
γSi − γRi

)
= 0.

(2.1)

In practice, the constraint can be eliminated by plugging it into the objective function.

Elimination of the constraint yields a probit program with a N+(N−1)+dim(θ) dimensional

parameter. The unconstrained program can be solved by standard methods such as the

probit command in Stata, the glm command in R, or the glmfit command in Matlab.7

6Each of the two stages solves a concave maximization problem.
7Algorithms that exploit the sparse structure of the design matrix, such as speedglm in the R package

Enea (2013), can speed up the computation of the estimates.
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Stage 2 Let r(·, ·, ρ) denote the distribution function of a bivariate normal random variable

with marginal variances equal to one and covariance ρ, i.e.,

r(z1, z2, ρ) =

∫ z1

−∞

∫ z2

−∞
φ2(t1, t2, ρ) dt2 dt1,

where φ2(·, ·, ρ) is the bivariate density

φ2(t1, t2, ρ) =
1

2π
√

1− ρ2
exp

[
t21 + t22 − 2ρt1t2

2(1− ρ2)

]
.

For each dyad {i, j}, the indicator YijYji takes the value one if both links within the dyad

are observed and the value zero otherwise. For ij ∈ E(N) define

rij(θ,γ, ρ) = r
(
X ′ijθ + γSi + γRj , X

′
jiθ + γSj + γRi , ρ

)
.

This function can be used to compute the conditional probability of observing a reciprocated

link. Let Ē denote the conditional expectation operator that integrates out the randomness

in (Uij)ij∈E(N). Then,

Ē(YijYji) = Prob
(
Uij ≤ Zij, Uji ≤ Zji | Xi, Xj,γ

)
= rij(θ

0,γ0, ρ0).

The second stage estimator ρ̂ solves the maximization problem

ρ̂ = arg maxρ∈[−1+κ,1−κ]

1

N

∑
i∈V

∑
j∈V−i

{
YijYji log

(
rij(θ̂, γ̂, ρ)

)
+ (1− YijYji) log

(
1− rij(θ̂, γ̂, ρ)

)}
,

(2.2)

where κ ∈ (0, 1) is a known constant.
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3. Asymptotic framework

My approach is justified by an asymptotic approximation of the network that sends the

number of agents to infinity (“large network asymptotics”). The proofs for the asymptotic

results presented below can be found in Supplemental Appendix B.

For functions of θ and γ, we adopt the convention that omitted function arguments

indicate evaluation at the true parameter values θ0 and γ0. For example, we write pij =

pij(θ
0,γ0). We often consider functions (z1, z2, ρ) 7→ g(z1, z2, ρ) that are evaluated at z1 =

Z∗ij and z2 = Z∗ji. To indicate the point of evaluation, we write gij(ρ) = g(Z∗ij, Z
∗
ji, ρ). We pro-

ceed similarly for partial derivatives and write, e.g., ∂ρrij(ρ) = ∂ρr(z1, z2, ρ) |z1=Z∗ij ,z2=Z∗ji,ρ=ρ0 .

For functions z 7→ g(z), write gij = g(Z∗ij) and ∂zkgij = ∂zkg(z) |z=Z∗ij for k ∈ N ∪ {0}.

Moreover, write p1,ij = pij(1 − pij) for the conditional variance of Yij; r1,ij = rij(1 − rij)

for the conditional variance of YijYji; and ρ̃ij = (rij − pijpji)/
√
p1,ijp1,ji for the conditional

correlation between Yij and Yji. Finally, let Hij = ∂zpij/p1,ij and ωij = Hij(∂zpij).
8

The formulas presented below depend on appropriately projected link characteristics.9 To

define the projections, let P denote the projection operator that orthogonally projects vectors

v = (vij)ij∈E(N) onto the space spanned by the agent effects under an inner product weighted

by the diagonal matrix with diagonal entries (ωij)ij∈E(N). In particular, (Pv)ij = γ̄Si + γ̄Rj ,

where

(γ̄Si , γ̄
R
i )i∈V ∈ arg minγSi ,γRi

∑
i∈V

∑
j∈V−i

ωij
(
vij − γSi − γRj

)2
.

Let X̃k denote the residual of the projection of the kth component of the edge-specific

covariate. Formally, let Xk = (Xij,k)ij∈E(N) and define X̃k = Xk − PXk. Also, let X̃ij

denote the column vector (X̃ij,1, . . . , X̃ij,dim(θ))
′.

8These quantities are linked to the score and the Hessian of the first stage maximum likelihood problem.
In particular, writing `ij = Yij log(pij) + (1− Yij) log(1− pij) for the likelihood contribution of link ij,
we have ∂z`ij = Hij(Yij − pij) and Ē[−∂z2`ij ] = ωij .

9See T. Yan, Jiang, et al. (2018) for an approach that does not rely on projection arguments.
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The asymptotic results reported below hold under the following regularity assumptions:

Assumption 1 (Regularity assumptions). (i) ρ0 ∈ [−1 + 2κ, 1− 2κ].

There is an event AN with P (AN)→ 1 such that on AN :

(ii) Let λ1(M) denote the smallest eigenvalue of a matrix M . For W̄1,N as defined in

Theorem 1, lim infN→∞ λ1(W̄1,N) > 0.

(iii) For k = 1, . . . , dim(θ) and i ∈ V (N), lim supN→∞
1
N

∑
j∈V−i

X̃4
ij,k <∞.

(iv) Let L as defined in (A.1) and H̄ as defined in (A.2) in Supplemental Appendix A and

let b denote the associated penalty parameter. There is b > 0 such that, for all N , L

is concave on Θ× Γ and H̄ is positive definite.

(v) There are pmin and pmax such that 0 < pmin < pij < pmax < 1 for all ij ∈ E(N).

Assumption 1(i) rules out perfectly correlated within-dyad shocks. This implies that

the errors Uij cannot be fully explained by a dyad-level shock. Assumption 1(ii) ensures

that, asymptotically, the variance of θ̂ is non-degenerate. The corresponding assumption

in Fernández-Val and Weidner 2016 requires the limiting variance to be positive definite.

Since I condition on covariates and fixed effects, this limit may not exist. The moment

condition Assumption 1(iii) guarantees that the asymptotic bias and variance of θ̂ are

finite. As in Fernández-Val and Weidner 2016, the theoretical analysis of the maximum

likelihood program (2.1) imposes the normalization of the fixed effects using penalization.

Assumption 1(iv) requires the sample and population versions of the penalized program to

be concave. This can be interpreted as an assumption of sufficient “within variation”.

Assumption 1(v) implies that the linking rule generates a dense network (i.e., a network

that is not sparse). This assumption may be restrictive in some social networks (Graham

2017; Jochmans 2017). For a related dyadic linking model with logistic errors, T. Yan,
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Jiang, et al. (2018) show that analytic bias correction of the homophily parameter can

be justified even with vanishing linking probabilities.10 In my Monte Carlo simulations, I

investigate the robustness of my procedures in sparse designs.

4. Inference with respect to the model parameters

4.1. A t-test for the homophily parameter

The dyadic linking model bears some similarity to panel models with individual and time

fixed effects: In the dyadic model, agent i faces (N − 1) linking choices that each depend

on i’s own sender effect and the receiver effect of the potential linking partner. In a panel

model, agent i makes choices in T time periods, each depending on her own individual

effect and the time of the respective time period. Fernández-Val and Weidner (2016) study

incidental parameter bias in the panel model with two-sided fixed effects. The following

theorem establishes a companion result to Theorem 4.1 in Fernández-Val and Weidner

(2016) for networks.11

Theorem 1 (Distribution of θ̂). Let Bθ
N = Bθ,S

N +Bθ,R
N , where

Bθ,S
N =

[
1

2N

∑
i∈V

∑
j∈V−i

ωijX̃ijX̃
′
ij∑

j∈V−i
ωij

]
θ0, Bθ,R

N =

[
1

2N

∑
j∈V

∑
i∈V−j

ωijX̃ijX̃
′
ij∑

i∈V−j
ωij

]
θ0,

10Their result requires that linking probabilities vanish sufficiently slowly to allow us to observe an infinite
number of connections for all agents in the limit network. This is an intuitive requirement for a procedure
that relies on point identification of all fixed effects.

11As noted in Y. Yan et al. (2016), the result for the panel model does not imply the corresponding result
in the network setting. My proof builds on the results for general ML models with additive fixed effects
in Fernández-Val and Weidner 2016. Checking that the linking model satisfies all assumptions of the
general result is similar, but not completely congruent, to checking the assumptions for the panel setting.
See also Candelaria (2017) for a discussion of how the incidental parameter problem in networks is
different from the incidental parameter problem in panels.
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and let

W̄1,N =
1

N2

∑
i∈V

∑
j∈V−i

ωijX̃ijX̃
′
ij,

W̄2,N =W̄1,N +
1

N(N − 1)

∑
i∈V

∑
j∈V−i

ρ̃ij
√
ωijωjiX̃ijX̃

′
ji.

Under Assumption 1

W̄
−1/2
2,N

(
N W̄1,N(θ̂ − θ0)−Bθ

N

)
= N

(
0, Idim(θ)

)
+ op(1).

To converge to a normal distribution, the difference between the estimator θ̂ and true value

θ0 has to be inflated proportional to the number of agents N . In the dense network setting

considered here, θ0 is estimated based on the observed linking decisions about N(N − 1)

potential links. Therefore, the rate of convergence N is the conventional parametric rate

corresponding to the square root of the sample size (cf. Graham 2017). The expression for

the asymptotic bias term Bθ
N corresponds to a “näıve” translation of the corresponding

formula given in Fernández-Val and Weidner (2016) for panel models.

Let B̂θ
N , Ŵ1,N and Ŵ2,N denote consistent estimators of Bθ

N , W̄1,N and W̄2,N , respectively.

Theorem 1 implies

(
Ŵ−1

1,NŴ2,NŴ
−1
1,N/N

2
)−1/2 (

θ̂ − θ0 − Ŵ−1
1,N B̂

θ
N/N

)
= N

(
0, Idim(θ)

)
+ op(1). (4.1)

This result can be used to construct bias-corrected t-statistics to test, e.g., statistical

significance of the estimated components of θ̂.

The estimators B̂θ
N , Ŵ1,N and Ŵ2,N can be constructed by a plug-in approach, i.e., by

replacing the population parameters in Bθ
N , W̄1,N and W̄2,N by the estimates obtained by
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ML estimation of the model.12 Preliminary estimation of ρ0 can be avoided by estimating

W̄2,N by

Ŵ2,N =
1

N2

∑
i,j∈V
i<j

(
ˆ̃XijĤij(Yij − p̂ij) + ˆ̃XjiĤji(Yji − p̂ji)

)2

,

where ˆ̃Xij , Ĥij and p̂ij are the plug-in estimators of X̃ij , Hij and pij . This variance estimator

clusters errors at the dyad level.13

4.2. A t-test for the reciprocity parameter

Let mij(θ,γ, ρ) = YijYji log
(
rij(θ,γ, ρ)

)
+ (1− YijYji) log

(
1− rij(θ,γ, ρ)

)
so that we can

write the second-stage likelihood evaluated at the true structural parameters as

M(ρ) =
1

N

∑
i∈V

∑
j∈V−i

mij

(
θ̂, γ̂, ρ

)
.

With Jij = ∂ρrij/r1,ij, the corresponding score is

∂ρM =
1

N

∑
i∈V

∑
j∈V−i

∂ρmij =
1

N

∑
i∈V

∑
j∈V−i

Jij(YijYji − rij).

Let Ω = PM for M = (Mij)ij∈E(N) and Mij = Jij(∂z1rij)/ωij. Let ∂z`ij = Hij(Yij − pij)

denote the contribution of link ij to the score of the first stage maximum likelihood problem.

12The plug-in approach is expected to yield consistent estimators (cf. Theorem 4.3 and Lemma S.1 in
Fernández-Val and Weidner 2016).

13By default, most software packages for probit estimation estimate the variance matrix for θ̂ under the
assumption that the information matrix equality holds, i.e., W̄1,N = W̄2,N . This assumption is justified
if within-dyad shocks are uncorrelated in which case ρ̃ij = 0.
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The term

corri =

∑
j∈V−i

ρ̃ij
√
ωijωji(∑

j∈V−i
ωij

)1/2(∑
j∈V−i

ωji

)1/2
.

measures the correlation of all ∂z`ij in the neighborhood of agent i.14 The following result

characterizes the asymptotic behavior of ρ̂.

Theorem 2 (Distribution of ρ̂). Let

QN =− 1

N2

∑
i∈V

∑
j∈V−i

Jij(∂z1rij)X̃ij

and

vρ1,N =
1

N(N − 1)/2

∑
i∈V

∑
j∈V−i

Jij(∂ρrij)

vρ2,N =vρ1,N +
1

N(N − 1)

∑
i∈V

∑
j∈V−i

{
4(qN,ij − Ωij)Jij(∂zpij)

rij
pij

+ 2(qN,ij − Ωij)
2ωij

+ 2(qN,ij − Ωij)(qN,ji − Ωji)ρ̃ij
√
ωijωji

}
,

14Note that corri =
(∑

j∈V−i
Ē(∂z`ij∂z`ji)

)
/

√(∑
j∈V−i

Ē(∂z`ij)2
)(∑

j∈V−i
Ē(∂z`ji)2

)
.
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where qN,ij = Q′NW̄
−1
1,NX̃ij. Moreover, let Bρ

N = Bρ,S
N +Bρ,R

N +Bρ,SR
N with

Bρ,S
N =

1

N

∑
i∈V

∑
j∈V−i

{
∂z1Jij

(
rij∂zpij
pij

− ∂z1rij
)

+ 1
2
ΩijHij(∂z2pij)− 1

2
Jij(∂z21rij)

}∑
j∈V−i

ωij
,

Bρ,R
N =

1

N

∑
j∈V

∑
i∈V−j

{
∂z1Jij

(
rij∂zpij
pij

− ∂z1rij
)

+ 1
2
ΩijHij(∂z2pij)− 1

2
Jij(∂z21rij)

}∑
i∈V−j

ωij
,

Bρ,SR
N =− 1

N

∑
i∈V

corri
∑

j∈V−i

{
(∂z1Jij)(∂z1rji) + (∂z1Jji)(∂z1rij) + Jij(∂z1z2rij)

}(∑
j∈V−i

ωij

)1/2(∑
j∈V−i

ωji

)1/2
.

Under Assumption 1,

N(ρ̂− ρ0)− 2
(
Q′NW̄

−1
1,NB

θ
N +Bρ

N

)
/vρ1,N√

vρ2,N/v
ρ
1,N

= N (0, 2) + op(1).

Let B̂ρ
N , v̂ρ1,N , v̂ρ2,N and Q̂N denote consistent estimators of Bρ

N , vρ1,N , vρ2,N and QN ,

respectively.15 Theorem 2 implies

ρ̂− ρ0 − 2
(
Q̂′NŴ

−1
1,N B̂

θ
N + B̂ρ

N

)
/(Nv̂ρ1,N)√

2v̂ρ2,N/(Nv̂
ρ
1,N)

= N (0, 1) + op(1). (4.2)

The term on the left-hand side of the equality is a bias-corrected t-statistic for ρ̂. It can be

used to test hypotheses about the true reciprocity parameter.

The proof of Theorem 2 exploits results in Fernández-Val and Weidner 2016 who study

functionals of the incidental parameter in a class of ML models with additive fixed effects.

They apply their results to panel models with individual and time fixed effects and derive

an asymptotic bias that exhibits a factoring property: The bias in the model with both

individual and time fixed effects can be recovered as the sum of the bias terms in the

15In Supplemental Appendix H, I discuss how to compute certain derivatives of bivariate normal probabilities
that show up in the formulas in Theorem 2
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two models with only individual or only time fixed effects. Because of the “cross term”

Bρ,SR
N , the asymptotic bias in Theorem 2 does not factor. This behavior is caused by the

within-dyad correlation of linking decisions.16

However, as illustrated by Theorem 1, even with correlated within-dyad shocks, it

is possible to derive an asymptotic bias that factors. The relevant difference between

Theorem 1 and Theorem 2 is that they study functionals of the incidental parameter that

exhibit differently structured Hessians. The appropriate Hessian for Theorem 1 has strong

diagonal and weak off-diagonal elements.17 In a Taylor expansion around the true incidental

parameter, the interaction of ∂z`ij and ∂z`ji is weighed by a weak element and is not of

first order. The corresponding Hessian for Theorem 2 has a two-by-two block structure

where each block has strong diagonal and weak off-diagonal elements. In a Taylor expansion

around the true incidental parameter, the interaction of ∂z`ij and ∂z`ji is weighed by a

strong element and cannot be ignored in the limit.

5. Specification testing

5.1. Motivation of testing approach based on transitive relationships

The dyadic linking model induces a theoretical probability distribution of the random graph

{Yij}ij∈E(N). We can construct tests of model specification by comparing the observed

behavior of a particular network feature to the behavior that is expected under the dyadic

model. The linking model targets the linking behavior within pairs of agents and will

therefore always fit the network relationships within dyads (groups of two agents) fairly well.

To test the model, we can check how well the dyadic linking model replicates the behavior

16If within-dyad shocks are not correlated, i.e., ρ0 = 0, then Bρ,SRN = 0 and the bias term BρN factors.
17A strong element of the appropriately standardized Hessian is of asymptotic order O(1), a weak element

is of order O(N−1).
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(3) Cyclic triangle

Figure 1: An open, a transitive and a cyclic triangle.

within groups of three or larger. In particular, I consider a test of model specification based

on transitive relationships within triads (groups of three).

To introduce the notion of transitive relationships, consider a network where agent i has

linked to agent j, and j has linked to agent k (see panel 1 in Figure 1). Agents i and k

are already indirectly connected and can “close” the open triangle by adding a link that

connects them directly. In a directed network, there are two ways of closing the triangle; i

can link to k to form a transitive triangle (panel 2 in Figure 1), or k can link to i to form a

cyclic triangle (panel 3 in Figure 1).18 Whether it is more salient to test for closure in a

transitive or cyclic sense, depends on the economics of the network. For ease of exposition,

I focus on a test based on transitive triangles. In Supplemental Appendix F, I adapt my

results to a test based on cyclic triangles.

For distinct i, j, k ∈ V (N), the transitive triangle β = {ij, jk, ik} is observed if β ⊂ {ij ∈

18The terms transitive triangle and cyclic triangle are adapted from the notion of transitive and cyclic
triads in Davis and Leinhardt 1972.
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E(N) : Yij = 1}.19 The set of all possible transitive triangles is given by

B = B(N) = {{(i, j), (j, k), (i, k)} : {i, j, k} ⊂ V (N), |{i, j, k}| = 3}.

For β ∈ B, the binary indicator Aβ =
∏

e∈β Ye takes the value one if β is observed, and the

value zero otherwise. The number of observed transitive triangles is given by

SN =
∑

β∈B(N)

Aβ.

My test of model specification compares the observed transitivity SN to the transitiv-

ity predicted by the dyadic linking model. For a given vector of agent characteristics

(X ′i, γ
S,0
i , γR,0i )i∈V , the best prediction of the observed number of transitive triangles is given

by ĒSN . The discrepancy between the observed and the predicted level of transitivity can

be summarized by a measure of excess transitivity defined as

T oracle
N =

SN − ĒSN
N3

, (5.1)

where the denominator normalizes by the number of transitive triangles in the complete

graph, |B(N)| = N3.20 Positive values of this statistic indicate that we observe more

transitive relationships than expected, negative values of the statistic indicate that we

observe less transitive relationships than expected. Under the dyadic linking model, the

variance of T oracle
N vanishes as the size of the network grows. Therefore, we can interpret

“large” values of T oracle
N as evidence against the validity of the dyadic model.

19There may be other interactions within the triad {i, j, k}, such as a link from k to j. These do not play a
role in determining the presence of β. In contrast to triadic configurations (Davis and Leinhardt 1972),
triangles are defined by the presence but not by the absence of links.

20This measure of excess transitivity translates a concept for undirected networks discussed in Karlberg
(1997) to directed networks. An alternative is to standardize by the number of open triangles, yielding
the clustering coefficient (Karlberg 1999; Jackson 2008, p. 37).
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Figure 2: The effect of redistribution of agent popularity.

This kind of specification test can be interpreted in the tradition of transitivity tests in

the sociometric literature (Holland and Leinhardt 1978; Karlberg 1997; Karlberg 1999).

Transitivity tests assess the explanatory power of the transitive structure of a network.

Holland and Leinhardt (1978) argue that it is important to compute the expected transitivity

under a reference distribution that replicates key features of the dyadic interactions such as

degree-heterogeneity and reciprocity.21 Failure to account for dyadic sources of transitivity

may lead a researcher to erroneously ascribe explanatory power to the transitive structure

of the network (“spurious transitivity”). My reference distribution fulfills this requirement,

since it is derived from a model of dyadic link formation that accounts for structural sources

of reciprocity (correlation of within dyad shocks) and degree heterogeneity (productivity

and popularity fixed effects).

Example 1. The effect of model specification on expected transitivity can be illustrated

by a simple example. Consider networks on N = 5 agents with γS,0i = 0 for i ∈ V (5) and∑
i∈V (5) γ

R,0
i = 2.5. The latent link surplus is given by

Zij = −1 + γR,0j .

21Faust (2007) and Graham (2015) discuss the close relationship between the degree distribution and the
triadic structure of a network.
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First, consider distributing popularity evenly among agents by assigning γR,0i = 0.5 for all

i ∈ V . This scenario is depicted in the first panel of Figure 2. For an alternative scenario,

set γR,01 = 2.5 and γR,0i = 0 for i ∈ V−1. This scenario is depicted in the second panel of

Figure 2. The redistribution of popularity increases the expected number of transitive

triangles. Intuitively, concentrated popularity serves as a kind of coordination device that

makes the occurrence of transitive relationships more likely.

Holland and Leinhardt (1978) and Karlberg (1999) do not explicitly model dyadic

link formation. Instead, they condition on observed network characteristics that they

assume to be driven by dyadic interactions. It is not clear how to compute critical values

that appropriately account for the effect of conditioning on observed network features.22

Karlberg (1999) computes critical values using a simulation approach, but does not justify

this procedure theoretically. My approach is amenable to large sample arguments and I

show that critical values can be computed from a normal approximation.

5.2. The test statistic for the transitivity test

Under the dyadic linking model, the conditional probability of observing a transitive triangle

β ∈ B(N) is given by ĒAβ =
∏

e∈β pe(θ
0,γ0). In reality, θ0 and γ0 are unknown and it is

not feasible to compute ĒSN =
∑

β∈B(N) ĒAβ in T oracle
N . A feasible test statistic is given by

TN =
SN − ÊSN

N3
,

22By conditioning on the observed degree sequence, Karlberg (1999) introduces a sample dependence that
is reminiscent of the preliminary estimation of the structural linking model in my case.
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where we replaced ĒSN by the näıve plug-in estimator

ÊSN =
∑

β∈B(N)

∏
e∈β

pe(θ̂, γ̂)

with γ̂ = (γ̂Si , γ̂
R
i )i∈V . A theoretical analysis of TN can be based on the decomposition

N TN = N T oracle
N −N−2

∑
β∈B(N)

(∏
e∈β

pe
(
θ̂, γ̂
)
−
∏
e∈β

pe
(
θ0,γ0

))
. (5.2)

Both terms on the right-hand side are of the same stochastic order and contribute to the

asymptotic distribution. The first term is the appropriately scaled oracle statistic. Under

the dyadic linking model it is centered at zero. The second term represents the effect of

estimating linking probabilities. Because of the incidental parameter problem, this term is

not centered at zero. Consequently, the sign of TN cannot be interpreted in the same way

as the sign of T oracle
N . In particular, values of TN that are close to zero do not indicate that

the observed level of transitivity is consistent with the true dyadic linking model.

In preparation for a formal analysis of TN , let

βNij =
1

HijN

∑
β∈B(N)
β3ij

Ē[Aβ | Yij = 1] =
1

HijN

∑
β∈B(N)
β3ij

pT−ij(β),

where for ij ∈ E(N) and β ∈ B(N)

pT−ij(β) = Ē[Aβ | Yij = 1] =
∏

e∈β\{ij}

pe

is the probability of observing the triangle β conditional on observing the edge ij. The sum

in βNij counts the expected number of observed triangles containing the link ij conditional

on observing ij. Let βN = (βNij )ij∈E(N) and define the projected vector β̃
N

= βN − PβN .
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The following result establishes convergence of TN to a normal limit and gives expressions

for its asymptotic bias and variance.

Theorem 3 (Transitvity test). Let

UN =
1

N2

∑
i∈V

∑
j∈V−i

βNijωijX̃ij

and ũN,ij = U ′NW̄
−1
1,NX̃ij and suppose that Assumption 1 holds. Then

NTN +BT
N + U ′NW̄

−1
1,NB

θ
N√

vTN
= N (0, 1) + op(1),

where

vTN =
1

N2

∑
i∈V

∑
j∈V−i

{(
β̃
N

ij − ũN,ij
)2
ωij +

(
β̃
N

ij − ũN,ij
)(
β̃
N

ji − ũN,ji
)
ρ̃ij
√
ωijωji

}

and BT
N = BT,S

N +BT,R
N +BT,SR

N with

BT,S
N =

1

2N

∑
i∈V

∑
j∈V−i

Hij(∂z2pij)β̃
N

ij∑
j∈V−i

ωij

+
1

2N

∑
i∈V

N−1
∑

j∈V−i

∑
k∈V−{i,j}(∂zpij)(∂zpik) [pjk + pkj]∑

j∈V−i
ωij

BT,R =
1

2N

∑
j∈V

∑
i∈V−j

Hij(∂z2pij)β̃
N

ij∑
j∈V−i

ωij

+
1

2N

∑
j∈V

N−1
∑

i∈V−j

∑
k∈V−{i,j}(∂zpij)(∂zpkj) [pik + pki]∑

i∈V−j
ωij

BT,SR
N =

1

N

∑
i∈V

corriN
−1
∑

j∈V−i

∑
k∈V−{j,k}(∂zpij)(∂zpki)pkj(∑

j∈V−i
ωij

)1/2(∑
j∈V−i

ωji

)1/2
.
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If linking probabilities are sufficiently small, pij ≤ 1/2 for all ij ∈ E(N), and positively

correlated within dyads, i.e., ρ0 ≥ 0, then the bias term BT
N is positive. In particular,

if the link surplus does not contain a homophily component, then TN is guaranteed to

be centered at a negative value if the dyadic linking model is the true model. In more

general specifications, the sign of the bias depends on the numerical values of the structural

parameters and can be positive or negative.

In the case of uncorrelated within-dyad shocks and no covariates, the asymptotic variance

of NTN is given by

vTN =
1

N2

∑
i∈V

∑
j∈V−i

(
β̃
N

ij

)2
ωij

and, by Lemma A.4 in Supplemental Appendix A, the asymptotic variance of the oracle

statistic NT oracle
N is given by

vo,TN =
1

N2

∑
i∈V

∑
j∈V−i

(
βNij
)2
ωij.

When passing from known linking probabilities to estimated linking probabilities, we replace

βNij by its projection β̃
N

ij onto the space that is orthogonal to the space spanned by the

fixed effects. By definition of the projection operator, we have vTN < vo,TN so that the

plug-in statistic TN estimates the expected excess transitivity more precisely than the oracle

statistic T oracle
N .23 Intuitively, TN compares the observed transitivity against the transitivity

predicted by the dyadic model that provides the best fit. Therefore, my test looks only

at the variation in transitivity that cannot be explained by degree distributions that are

spanned by the sender and receiver effects. For the oracle test, the sampling error of the

23Efficiency gains from replacing population quantities by estimated quantities have been observed elsewhere
in the Econometric literature, e.g., in Hahn (1998) and Abadie and Imbens (2016).
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degree distribution under the true dyadic linking model provides an additional source of

uncertainty.

In the general setting with covariates and possibly correlated within-dyad shocks, it is

not clear how vTN and vo,TN are ranked. For the data in my empirical application, I estimate

that vTN < vo,TN by a substantial margin.

Let B̂T
N , ÛN and v̂TN denote consistent estimators of BT

N , UN and vTN , respectively.

Theorem 3 implies that the studentized statistic

T̂ stud
N =

TN +

(
B̂T
N + Û ′N

(
Ŵ1,N

)−1

B̂θ
N

)
/N√

v̂TN/N
(5.3)

follows approximately a standard normal distribution. A feasible transitivity test can

be based on the test statistic T̂ stud
N . Its sign can be interpreted in the same way as

the sign of the infeasible statistic T oracle
N ; large positive values indicate that the dyadic

model underestimates transitivity and large negative values indicate that the dyadic model

overestimates transitivity.

The estimators B̂T
N , ÛN and v̂TN can be constructed by a plug-in approach, i.e., by

replacing the population parameters in BT
N , UN and vTN by the estimates obtained by ML

estimation of the linking model. To reduce the computational burden, the test statistic can

be computed without a preliminary estimate of ρ0, if the asymptotic variance is estimated

by clustering at the dyad level,

v̂TN =
1

N2

∑
i,j∈V
i<j

((
ˆ̃βNij − ˆ̃uN,ij

)
Ĥij(Yij − p̂ij) +

(
ˆ̃βNji − ˆ̃uN,ji

)
Ĥji(Yji − p̂ji)

)2

,
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and if corri is estimated by

ĉorri =

∑
j∈V−i

ĤijĤji(Yij − p̂ij)(Yji − p̂ji)√∑
j∈V−i

ω̂ij
∑

j∈V−i
ω̂ji

,

where ˆ̃βNij , ˆ̃uN,ij, p̂ij and ω̂ij are the obvious plug-in estimators.

6. Monte Carlo simulations

In this section, I investigate the finite sample performance of my procedures in Monte Carlo

simulations.24 Agent i ∈ V (N) is characterized by an observed scalar covariate Xi,

Xi = 1− 21{i is odd}

and agent fixed effects

γS,0i =

(
N − i
N − 1

)
CN

and γR,0i = γS,0i , where CN ∈ {log logN, log1/2N, 2 log1/2N, logN} is a sparsity parameter.

This parameterized family of fixed effect specifications has first been proposed in T. Yan,

Leng, Zhu, et al. (2016) and has also been used in Jochmans (2017) and T. Yan, Jiang,

et al. (2018). Let the density of a network be defined as the fraction of possible links that

are observed, i.e., density =
∑

i∈V
∑

j∈V−i
Yij/(N(N − 1)). The larger CN , the denser the

generated networks tend to be. For CN = logN , only about 3% of all possible links are

realized in my simulation designs.

As in Graham (2017), the link-specific covariate is given by Xij = XiXj. In this

24The simulations were carried out on computational resources at Chalmers Center for Computational
Science and Engineering provided by the Swedish National Infrastructure for Computing.
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bias rej prob

N ρ CN density θ̂ θ̂ bc ρ̂ ρ̂ bc θ̂ ρ̂

50 0.0 log logN 0.19 1.22 0.13 -0.02 -0.05 0.07 0.09

50 0.0 log1/2N 0.12 1.10 0.22 -0.00 -0.06 0.08 0.08

50 0.0 2 log1/2N 0.06 0.70 0.33 -0.13 -0.20 0.07 0.10
50 0.0 logN 0.03 0.88 0.59 -0.10 -0.18 0.08 0.15
50 0.5 log logN 0.19 1.14 0.17 0.25 -0.17 0.13 0.11

50 0.5 log1/2N 0.12 1.00 0.24 0.50 -0.01 0.13 0.11

50 0.5 2 log1/2N 0.06 0.71 0.34 0.62 0.03 0.11 0.12
50 0.5 logN 0.03 - - - - - -
70 0.0 log logN 0.18 1.11 0.03 0.04 0.01 0.10 0.07

70 0.0 log1/2N 0.11 1.12 0.16 -0.01 -0.07 0.11 0.12

70 0.0 2 log1/2N 0.06 0.97 0.30 -0.02 -0.10 0.09 0.09
70 0.0 logN 0.03 0.71 0.37 -0.18 -0.26 0.07 0.12
70 0.5 log logN 0.18 1.03 0.07 0.34 -0.07 0.14 0.10

70 0.5 log1/2N 0.11 1.12 0.23 0.46 -0.08 0.12 0.10

70 0.5 2 log1/2N 0.06 1.05 0.27 0.65 0.06 0.13 0.11
70 0.5 logN 0.03 0.69 0.37 0.58 -0.19 0.09 0.03

Table 1: Simulation results for θ̂ and ρ̂. The bias is reported in terms of standard deviations.
“θ̂ bc” and “ρ̂ bc” give results for the bias-corrected estimators.26 The empirical
rejection probabilities (“rej prob”) are for two-sided t-tests against the truth based
on (4.1) and (4.2). Missing results (“-”) are reported if simulation runs are aborted
due to numerical instability.

specification, agents with an even index prefer links to agents with an even index over links

to agents with an odd index, and vice versa for agents with an odd index. The homophily

parameter is fixed at θ0 = 1. The reciprocity parameter is set to ρ0 = 0, 0.5. I simulate

networks with N = 50, 70 agents.25 Network statistics for the simulated networks are given

in Table E.1 in Supplemental Appendix E. Unless stated otherwise, the simulation results

are based on 500 replications. All rejection probabilities are calculated based on a nominal

level of α = 0.1.

25Since the relevant sample size is the number of potential links N(N − 1), passing from N = 50 to N = 70
can be interpreted as doubling the sample size.

26The bias-corrected estimator of θ0 is given by θ̂− Ŵ−11,N B̂
θ
N/N , the bias-corrected estimator of ρ0 is given
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t-tests for θ0 and ρ0 Table 1 summarizes simulation results for the homophily and the

reciprocity parameter.

The maximum likelihood estimator θ̂ exhibits a bias of up to more than than one standard

deviation. The quality of the analytical bias correction decreases the sparser the design is.

In the most sparse case, slightly less than half of the bias is eliminated. The empirical size

of a t-test based on (4.1) that tests θ̂ against the truth concentrates around the nominal

level. The observed size distortions slightly exceed those expected under the random Monte

Carlo design.27

Without link reciprocity (ρ0 = 0), the maximum likelihood estimator ρ̂ of the reciprocity is

approximately unbiased. In this case, analytical bias correction increases the bias slightly.28

With link reciprocity (ρ0 = 0.5), ρ̂ exhibits a positive bias that is detected by the analytical

bias correction. In all but the most sparse designs, the empirical size of a t-test based

on (4.2) that tests ρ̂ against the truth is close to the nominal level. In the designs with

correlated within-dyad shocks and extreme sparsity (CN = logN), inference with respect

to ρ0 is unreliable. In the smaller sample, the maximum likelihood estimation becomes

numerically unstable. In the larger sample, the analytical bias correction picks up only

about two-thirds of the bias and the t-test testing against the truth is undersized.

Specification test The simulation results for the specification test suggest that the test

statistic T stud
N converges only slowly to its limit distribution. This can render the specification

test based on analytical critical values oversized. As an alternative, I study bootstrap

critical values based on a percentile bootstrap of the test statistic. The details of the

bootstrap protocol are given in Supplemental Appendix D. The bootstrap procedure can

by ρ̂− 2
(
Q̂′NŴ

−1
1,N B̂

θ
N + B̂ρN

)
/(Nv̂ρ1,N ).

27The theoretical MC standard deviation for the rejection probabilities is ≈ 0.013.
28Analytical bias correction introduces estimation error that can cause a small bias at parameter values

where the ML estimator is approximately unbiased.
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be interpreted as a version of the double bootstrap in Kim and Sun (2016), where the inner

loop is replaced by an analytical bias calculation.

As a benchmark, I consider a “näıve” implementation of a feasible test that ignores the

effect of estimating the structural parameters. Lemma A.4 in Supplemental Appendix C

suggests that the variance of the oracle excess transitivity T oracle
N can be estimated by

v̂T,oN =
1

N(N − 1)

∑
i,j∈V
i<j

(
β̂
N

ij Ĥij(Yij − p̂ij) + β̂
N

jiĤji(Yji − p̂ji)
)2

,

where β̂
N

ij is the obvious plug-in estimator. The näıve test statistic is given by T̂ naive
N =

TN/
√
v̂T,oN /N . I also consider a bias-corrected version of T̂ naive

N that is defined by replacing

v̂TN in (5.3) by v̂T,oN .

The simulation results are summarized in Table 2. The estimated excess transitivity

exhibits a negative bias of between −3.8 and −5.4 standard deviations. Even though the

analytical correction removes a large portion of the bias, the magnitude of the remaining

bias is still large, in particular in the sparser designs. As predicted by the asymptotic

theory, increasing the sample size increases the quality of the bias correction. However, the

rate at which the analytical correction improves is slow.

For the test using critical values calculated from the normal distribution, type-I error

exceeds the nominal level by more than ten percentage points. The size distortion is caused

by unaccounted bias and the fact that v̂TN underestimates the true variability of TN . Again,

increasing the sample size increases the quality of the asymptotic approximation, albeit not

by a sufficient degree to appropriately control the size of the test. In contrast, the empirical

size of the test with bootstrapped critical value is close to the nominal level, suggesting

that the bootstrap distribution may replicate higher-order terms that are ignored by the

analytical approximation.
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bias rej prob

N ρ CN density TN TN bc analy boot näıve näıve bc ratio

50 0.0 log logN 0.19 -5.45 -0.27 0.28 0.10 0.00 0.00 0.15

50 0.0 log1/2N 0.12 -4.74 -0.47 0.29 0.11 0.00 0.00 0.22

50 0.0 2 log1/2N 0.06 -4.09 -0.67 0.45 0.10 0.01 0.00 0.26
50 0.0 logN 0.03 -4.03 -0.81 0.58 - 0.01 0.00 0.25
50 0.5 log logN 0.19 -4.82 -0.24 0.33 0.11 0.00 0.00 0.17

50 0.5 log1/2N 0.12 -4.44 -0.43 0.33 0.12 0.00 0.00 0.22

50 0.5 2 log1/2N 0.06 -4.12 -0.65 0.45 0.11 0.01 0.00 0.26
50 0.5 logN 0.03 - - - - - - -
70 0.0 log logN 0.18 -5.56 -0.24 0.23 0.10 0.00 0.00 0.16

70 0.0 log1/2N 0.11 -4.67 -0.36 0.23 0.08 0.00 0.00 0.22

70 0.0 2 log1/2N 0.06 -4.64 -0.61 0.31 0.11 0.02 0.00 0.25
70 0.0 logN 0.03 -4.33 -0.71 0.45 0.11 0.01 0.00 0.24
70 0.5 log logN 0.18 -5.16 -0.22 0.27 0.10 0.00 0.00 0.17

70 0.5 log1/2N 0.11 -4.56 -0.32 0.25 0.09 0.00 0.00 0.22

70 0.5 2 log1/2N 0.06 -4.27 -0.49 0.34 0.09 0.01 0.00 0.25
70 0.5 logN 0.03 -4.01 -0.63 0.51 0.07 0.01 0.00 0.28

Table 2: Simulation results for the specification test under the null hypothesis. Bias is
reported in terms of standard deviations of estimated excess transitivity. “TN
bc” gives the empirical bias for the bias-corrected excess transitivity estimator
TN +

(
B̂T
N + Û ′N(Ŵ1,N)−1B̂θ

N

)
/N . For the empirical rejection probabilities (“rej

prob”), “analy” and “boot” give results for the test based on (5.3) with analytical
and bootstrap critical values, respectively, and “näıve” and “näıve bc” give results
for the näıve test with and without bias correction. The bootstrap results are
based on 250 simulations with 500 bootstrap replications each. The column “ratio”
gives the ratio of the standard deviations of T̂ stud

N and T oracle
N .
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The näıve tests with and without bias correction are severely undersized. This is because

v̂T,oN substantially overestimates the variance of TN . The column “ratio” in Table 2 gives

the standard deviation of TN as a fraction of the standard deviation of T oracle
N . The

reported ratios indicate that estimating the structural parameters substantially decreases

the variability of excess transitivity. A theoretical argument for why this happens is given

in Section 5.2.

Specification test under a dynamic alternative To study the power properties of the

specification test, I simulate an alternative model in which agents work endogenously

towards transitive closure. The alternative model is a dynamic process with two stages. At

stage k = 1, 2, the network is given by

Y
(k)
ij = 1

(
Xij + γS,0i + γR,0j ≥ U

(k)
ij

)
.

The link covariate Xij and the agent fixed effects are defined as above. In the network

{Y (1)
ij }ij∈E(N), the link ij is called an unsupported link if ij realizes, but none of the transitive

triangles containing ij do. The link ij is called a closing link if, for some k ∈ V−{i,j}, the

links ik and kj realize, but ij does not. A closing link completes an open triangle and

makes it transitive (see Figure 1). The first stage errors (U
(1)
ij )ij∈E(N) are drawn as in the

dyadic linking model. Let (Vij)ij∈E(N) denote a vector of N(N − 1) independent draws from

the standard normal distribution. The second stage errors are given by

U
(2)
ij =


min{U (1)

ij , Vij} if ij is an unsupported link in {Y (1)
ij }ij∈E(N)

max{U (1)
ij , Vij} if ij is a closing link in {Y (1)

ij }ij∈E(N)

U
(1)
ij otherwise.
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rej prob

N ρ CN density analy boot oracle näıve näıve bc ratio

50 0.0 log logN 0.18 1.00 1.00 0.65 0.00 0.00 0.24

50 0.0 log1/2N 0.10 0.93 0.95 0.20 0.00 0.00 0.30

50 0.0 2 log1/2N 0.05 - - - - - -
50 0.0 logN 0.02 - - - - - -
50 0.5 log logN 0.18 0.99 1.00 0.67 0.00 0.00 0.25

50 0.5 log1/2N 0.10 0.90 0.93 0.21 0.00 0.00 0.29

50 0.5 2 log1/2N 0.05 - - - - - -
50 0.5 logN 0.02 - - - - - -
70 0.0 log logN 0.17 1.00 1.00 0.97 0.00 0.02 0.25

70 0.0 log1/2N 0.09 1.00 1.00 0.31 0.00 0.01 0.29

70 0.0 2 log1/2N 0.04 0.86 0.93 0.08 0.00 0.00 0.31
70 0.0 logN 0.02 - - - - - -
70 0.5 log logN 0.17 1.00 1.00 0.95 0.00 0.02 0.27

70 0.5 log1/2N 0.09 1.00 1.00 0.30 0.00 0.01 0.30

70 0.5 2 log1/2N 0.04 0.86 0.90 0.07 0.00 0.00 0.31
70 0.5 logN 0.02 - - - - - -

Table 3: Simulation results for the specification test under the dynamic alternative. “analy”
and “boot” give results for the test based on (5.3) with analytical and bootstrap
critical values, respectively, and “näıve” and “näıve bc” give results for the näıve
test with and without bias correction. The bootstrap results are based on 250
simulations with 500 bootstrap replications each. The column “ratio” gives the
ratio of the standard deviations of T̂ stud

N and T oracle
N .

The second stage randomly removes some unsupported links and adds some closing links.29

The final network is the observed network. Network statistics are given in Table E.2 in

Supplemental Appendix E. Parameters are estimated by näıvely fitting the dyadic linking

model.

The simulation results for the model specification test in the alternative model are

summarized in Table 3.30 The model specification test based on T̂ stud
N detects the alternative

29Manipulating the network by both adding and removing links, ensures that the second stage does not
substantially change the network density.

30Under the dynamic alternative, the simulated parameters give rise to slightly sparser networks than
under the simulated null model, rendering the maximum likelihood estimator non-existent for a wider
range of designs.
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reliably, with rejection probabilities ranging from .86 for the sparser designs to one for the

denser designs. The difference between using analytical and bootstrap critical values is

small, with bootstrap critical values yielding a slightly more powerful test.

As predicted by the theory, the test based on the infeasible statistic T oracle
N is substantially

less powerful than the test based on T̂ stud
N . The näıve tests have barely any power. Only the

näıve approach with bias correction leads to rejections, albeit with very small probability.

The näıve test without bias correction is unable to detect any excess transitivity since the

increase in the measured transitivity is not large enough to offset the negative bias in TN .

7. Empirical application

I study excess transitivity in favor networks using the Indian village data from Banerjee

et al. (2013) and Jackson, Rodriguez-Barraquer, and Tan (2012). This data set contains

survey data from 75 Indian villages. In each village, about 30-40% of the adult population

were handed out detailed questionnaires that elicit network relationships to other people in

the same village as well as a wide range of socio-economic characteristics.

For each village, I define a directed network based on the survey questions “If you

suddenly needed to borrow Rs. 50 for a day, whom would you ask?” and “If you needed

to borrow kerosene or rice, to whom would you go?”. To set up the network, I let every

surveyed individual send directed links to each of the individuals nominated in one of the

two questions, provided that the nominee was also included in the survey.31

Economists and Sociologists have long argued that transitive closure plays an important

role in favor networks, where agents have to trust each other to repay favors in the future

(see, e.g., Coleman 1988). Jackson, Rodriguez-Barraquer, and Tan (2012) study a game-

31The observed networks are defined to be the network of interest, sidestepping identification issues that
arise when using a partial sample of the network (see Chandrasekhar and Lewis 2016).
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theoretic model of favor exchange in which agents are punished by their network neighbors

for reneging on reciprocating a favor. They show that networks with a large degree of

transitive closure facilitate favor exchange, while satisfying certain optimality criteria.

The theoretical appeal of transitivity motivates the empirical study of excess transitivity

in favor networks. Leung (2015) estimates a model in which agents endogenously form favor

networks and finds that agents derive utility from being included in a transitive relationship.

Chandrasekhar and Jackson (2016) use data on favor networks to test whether a dyadic

linking model can explain the observed level of transitivity.32 They find that the dyadic

model generates an insufficient amount of transitivity. Using my model specification test, I

replicate their finding.

My empirical finding complements the result in Chandrasekhar and Jackson (2016) by

showing that it is robust against more sophisticated dyadic linking models. While the

linking probabilities in Chandrasekhar and Jackson (2016) are a function of observables,

my linking model can capture unobserved components of agent productivity and popularity

using the fixed effect approach. As illustrated in Example 1, it is important to account for

all dyadic sources of degree heterogeneity when testing transitivity. Moreover, my test does

not rely on across-network variation and can be computed from one network observation.

Therefore, it can be applied even if agents in different networks follow different linking rules.

For my transitivity test, I estimate dyadic linking models for each of the 75 village

networks. The link-specific covariates for the homophily component are given in Table G.1

and test results are given in Table G.2 in Supplemental Appendix G. At level α = 0.1, the

test with analytical critical value detects excess transitivity in all networks, and the test

with bootstrap critical value detects excess transitivity in all but one village.

Table G.2 also reports results for the näıve tests from Section 6. Even though these are not

32They refer to a model with dyadic linking as a block model and report a clustering coefficient that can
be interpreted as measuring transitivity.
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expected to work well, they are still instructive about the empirical relevance of accounting

for the estimation of the dyadic model. The näıve approach with bias correction consistently

detects excess transitivity, albeit with larger p-values than the preferred approach. This

indicates that, for the data used in this application, my transitivity test is more powerful

than the infeasible oracle test that uses the true dyadic linking probabilities. Without

bias correction, the näıve test does not reject at level α = 0.1 for eight of the 75 villages.

As discussed in Section 6, failure to correct for a negative bias makes it harder to detect

excess transitivity. Indeed, for all villages, the bias is estimated to be negative and large in

absolute value. For the median village, the bias accounts for about half of the estimated

excess transitivity after bias correction.
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A. Applying results from Fernández-Val and Weidner
(2016)

Fernández-Val and Weidner (2016) (henceforth FVW) study a panel model with time and
individual fixed effects. Their results can be leveraged for the analysis of my network model.
In particular, FVW derive a stochastic expansion for a broad class of maximum likelihood
models with an incidental parameter (Theorem B.1 in FVW). It can be shown that this
class contains the dyadic linking model. Below, I adapt some key results in FVW to the
dyadic linking model.
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Let 1N denote an N -vector of ones and let vN = (1′N ,−1′N)′. For b > 0, the ML
program (2.1) can be rewritten as

(θ̂, γ̂) = arg maxθ,γ L(θ,γ),

where

L(θ,γ) =
1

N

∑
i∈V

∑
j∈V−i

{
Yij log

(
pij(θ,γ)

)
+ (1− Yij) log

(
1− pij(θ,γ)

)}
− b

2N
(v′Nγ)2.

(A.1)

The penality imposes the normalization constraint in the ML program (2.1). Let

S(θ,γ) = ∂γL(θ,γ) H(θ,γ) = −∂γγ′L(θ,γ).

We adapt the convention that omitting function argument indicates that the function is
eliminated at the true paramters, e.g., S = S(θ0,γ0) and H = H(θ0,γ0). For a random
variable W we set W̄ = ĒW and W̃ = W − W̄ . In particular, let

H̄ =

[
H̄∗SS H̄∗SR(
H̄SR

)′ H̄∗RR
]

+ b (vNv
′
N) /N,

where

H̄∗SS = diag
(( 1

N

∑
j∈V−i

ωij

)
i∈V

)
and H̄∗RR = diag

(( 1

N

∑
i∈V−j

ωij

)
j∈V

)
, (A.2)

and H̄∗SR is the N ×N matrix with diagonal entries equal to zero and off-diagonal entries
ωij/N for i, j ∈ V and i 6= j.

Lemma A.1 (Network version of Lemma D.1 in FVW). Under Assumption 1∥∥∥H̄−1 −
(

diag(H̄∗SS, H̄∗RR)
)−1
∥∥∥

max
= Op

(
N−1

)
.

Proof. For the purposes of this proof define ωii = 0. Then we can write

H̄∗SS = diag
(( 1

N

N∑
j=1

ωij

)
i∈V

)
, and H̄∗RR = diag

(( 1

N

N∑
i=1

ωij

)
j∈V

)
and H̄∗SR for the matrix with entries H̄∗SR,ij = ωij/N for i, j ∈ V . Assumption 1(v)
implies that there are constants bmin and bmax that are independent of N and satisfy
0 < bmin < ωij < bmax for i 6= j. If ωii could be assumed to satisfy the same inequality
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then the Hessian would exhibit the structure that is exploited by the proof of Lemma D.1
in FVW. Define ω†ij = max{ωij, bmin}. Define H̄†SS, H̄†RR and H̄†SR similar to H̄SS, H̄RR

and H̄SR with ωij replaced by ω†ij. Let D = diag(H̄∗SS, H̄∗RR) and D† = diag(H̄†SS, H̄
†
RR).

Lemma D.1 in FVW implies that
∥∥(H̄†)−1 − (D†)−1

∥∥
max

= Op (N−1). By the inequality on
p 351 in Horn and Johnson 2012∥∥(H̄†)−1

∥∥
max
≤
∥∥(D†)−1

∥∥
max

∥∥∥(I2N − (D† − H̄†)
)−1
∥∥∥

max

≤bmax

(
1−

∥∥D† − H̄†∥∥
max

)−1 ≤ 2bmax.

By construction
∥∥H̄† − H̄∥∥

max
≤ bmin/N and

∥∥D† −D∥∥
max
≤ bmin/N . Therefore∥∥H̄−1 − (H̄†)−1

∥∥
max
≤
∥∥∥(H̄†)−1(H̄† − H̄)(H̄†)−1

(
I2N − (H̄† − H̄)

)−1
∥∥∥

max

≤
∥∥(H̄†)−1

∥∥2

max

∥∥H̄† − H̄∥∥
max

(
1−

∥∥H̄† − H̄∥∥
max

)−1

≤4b2
max

bmin

N

(
1− bmin

N

)−1

= Op

(
N−1

)
.

Then, by the triangle inequality∥∥H̄−1 −D−1
∥∥

max
≤
∥∥H̄−1 − (H̄†)−1

∥∥
max

+
∥∥(H̄†)−1 − (D†)−1

∥∥
max

+
∥∥(D†)−1 −D−1

∥∥
max

= Op

(
N−1

)
.

Lemma A.2 (Network version of Theorem B.1 in FVW). Let

γ̂(θ) = arg maxγ L(θ,γ).

denote the concentrated likelihood and suppose that Assumption 1 holds. Then

γ̂(θ)− γ0 = H−1S +H−1[∂γθ′L](θ − θ0) +
1

2
H−1

2N∑
g=1

[∂γγ′γg
L]H−1S[H−1S]g +Rγ(θ)

and

∂θL(θ,γ) = U − W̄N(θ − θ0) +R(θ),

3



where U = U (0) + U (1), and

W̄ =− 1

N

(
∂θ,θ′L̄+ [∂θγL̄]H̄−1[∂γθL̄]

)
,

U (0) =∂θL+ [∂θγ′L̄]H̄−1S,
U (1) =[∂θγL̃]H̄−1S − [∂θγ′L]H̄−1H̃H̄−1S

+
1

2

2N∑
g

(
∂θγ′γg

L̄+ [∂θγ′L̄]H̄−1[∂γγ′γg
L̄]
)

[H̄−1S]gH̄−1S.

The remainder terms Rγ and R satisfy

sup
θ∈ΘN

N
7
8 ‖Rγ(θ)‖8

1 +N ‖θ − θ0‖
= op(1), sup

θ∈ΘN

R(θ)

1 +N ‖θ − θ0‖
= op(1),

where ΘN ⊂ Rdim(θ) satisfies Prob(θ̂ ∈ ΘN)→ 1.

Proof. Let C denote a generic constant. To apply Theorem B.1 in FVW we have to verify
their Assumption B.1. It is without loss of generality to operate conditional on the event
AN . We set T = N , q = 8, rβ = log(N)N−1/4 and rφ = N−1/8. B.1(i) holds trivially. B.1(ii)
holds since pij is bounded away from zero and one. B.1(iv) holds by Assumption (iv) and
Lemma A.1 (see the proof of Theorem 4.1 in FVW). Condition B.1(v) can be checked by
following the arguments for the panel case. The arguments are very similar to the ones
employed in the respective proofs of Lemma C.7 and Lemma C.8. For condition B.1(vi)
the arguments for the panel model carry over almost ad verbatim. For example, to prove
that ‖H̃‖ = op(N

1/4) let H̄SS and H̄RR and H̄SR as defined in the proof of Lemma A.1. By
the triangle inequality∥∥∥H̃∥∥∥ ≤ ∥∥−∂γSγS

L − H̄∗SS
∥∥+

∥∥−∂γRγR
L − H̄∗RR

∥∥+ 2
∥∥−∂γSγR

L − H̄∗SR
∥∥ .

Let ξij = (Yij − pij)∂γSi
[

φ(Y ∗ij)

pij(1−pij)

]
for i 6= j and ξii = 0 for i ∈ V . Then −∂γSγS

L − H̄∗SS =

− diag
(
( 1
N

∑
j∈V−i

ξij)i∈V
)
. The ‖·‖ matrix norm is given by the largest eigenvalue of a

matrix. Therefore

Ē
∥∥−∂γSγS

L − H̄∗SS
∥∥8

=Ē

max
i∈V

 1

N

∑
j∈V−i

ξij

8
≤
∑
i∈V

Ē

 1

N

∑
j∈V−i

ξij

8 = Op

(
N−3

)
.
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A similar argument applies to
∥∥−∂γRγR

L − H̄∗RR
∥∥. This shows that∥∥−∂γSγS

L − H̄∗SS
∥∥ = Op

(
N−

3
8

)
,∥∥−∂γRγR

L − H̄∗RR
∥∥ = Op

(
N−

3
8

)
.

Now apply Lemma S.6 in FVW with T = N and eit = ξij. For i, j ∈ V we have Ē[ξ2
ij] = 0

if i = j and Ē[ξ2
ij] ≤

(
∂γSi

[
φ(Y ∗ij)

pij(1−pij)

])2

if i 6= j. Assumption 1(v) ensures that Ē[ξ2
ij] < C

so that σ̄2
i = 1

N

∑
j∈V Ē(ξ2

ij) < C. The matrix Ω with elements is a N × N matrix

with elements given by Ωj` = 1
N

∑
i∈V Ē(eijei`). It is easy to see that Ω is a diagonal

matrix whose diagonal elements are bounded by C. Therefore, 1
N

Tr(Ω) = Op(1). Let
ηij = 1√

N

∑
`∈V
(
ξi`ξj` − Ē[ξi`ξj`]

)
. We have

Ē(ηii)
4 ≤ N−2(N +N2)(2C)4

and therefore 1
N

∑N
i=1 Ē(ηii)

4 = Op(1). For i 6= j we have ηij = 1√
N

∑
`∈V ξi`ξj`. Taking the

4th power of ηij gives a long sum where each term has the form

Ē[ξik1ξik2ξik3ξik4ξjk1ξjk2ξjk3ξjk4 ].

Clearly, the term is equal to 0 if there is a k` ∈ {i, j}. Therefore we may assume that the
k` ∈ V \ {i, j}. The term is also equal to zero if a k` gets picked only once. Therefore we
can bound the term by (relabelling the k’s if necessary)

Ē[ξik`1ξik`2ξjk`1ξjk`2 ] ≤
(
Ē[(ξik`1 )8]

) 1
4
(
Ē[(ξik`2 )8]

) 1
4
(
Ē[(ξjk`1 )8]

) 1
4
(
Ē[(ξjk`2 )8]

) 1
4 < C.

There are (N − 2)2 ways of picking the k`’s so that 1
N2

∑
i,j∈V Ē(η4

ij) < C. Thus, all the
conditions of Lemma S.6 in FVW are satisfied and the matrix ξ = (ξij)i 6=j has ‖ξ‖ =
Op(N

5/8). Since Nξ = −∂γRγR
L − H̄∗RR this implies∥∥−∂γRγR

L − H̄∗RR
∥∥ = Op

(
N−

3
8

)
.

The other arguments in FVW can be adapted similarly. To verify assumption B.1(iii)
in FVW, we apply Theorem B.3 in FVW. A condition of the theorem is that W̄ has a
positive definite limit. Inspection of the proof in FVW shows that this condition can
be replaced by assuming that the eigenvalues of W̄ are positive and bounded away from
zero. It can be shown that W̄ − W̄N,1 = op(1). Therefore W̄ satisifies this eigenvalue
condition by Assumption 1(ii). It remains to check that U = Op(1). It can be shown that
U = Bθ

N+ 1
N

∑
i∈V
∑

j∈V−i
HijX̃ij(Yij−pij)+op(1). We first show Bθ

N = Op(1). We only show

Bθ,S
N = Op(1). The proof for Bθ,R

N is similar. Since
∑

j∈V−i
ωij/N is bounded away from zero
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uniformly over i ∈ V by Assumption 1(v), it suffices to show that ‖
∑

j∈V−i
ωijX̃ijX̃

′
ij/N‖ is

bounded uniformly over i ∈ V . It suffices to bound each of the elements of the matrix. For
i ∈ V and k1, k2 = 1, . . . , dim(θ), applying the the Cauchy-Schwarz inequality twice gives
the bound

∣∣∣ 1

N

∑
j∈V−i

ωijX̃ij,k1X̃ij,k2

∣∣∣ ≤
 1

N

∑
j∈V−i

ω2
ij

1/2 1

N

∑
j∈V−i

X̃4
ij,k1

+
1

N

∑
j∈V−i

X̃4
ij,k2

1/2

.

The first term in the product is bounded by Assumption 1(v), the second term is bounded
by Assumption 1(iii). This verifies that Bθ

N is. Boundedness of

Ē
[ 1

N

∑
i∈V

∑
j∈V−i

HijX̃ij(Yij − pij)
]2

= W̄2,N

can be shown using similar arguments. Therefore U = Op(1) and Theorem B.3 in FVW
can be applied. It follows that Assumption B.1(iii) in FVW is met and

‖θ̂ − θ0‖ = Op

(
N−

1
2

)
.

If we define ΘN = {θ ∈ Θ : ‖θ − θ0‖ < N−
1
4} then Prob(θ̂ ∈ ΘN) → 1 and also

ΘN ⊂ {θ ∈ Θ : ‖θ − θ0‖ < rβ}. The conclusion now follows from Theorem B.1 in FVW.

For convenience I restate some bounds originally derived in FVW.

Lemma A.3. Suppose Assumption 1 holds. Then∥∥H−1 − H̄−1
∥∥ = op

(
N−1/4

)
,∥∥H−1 −

(
H̄−1 − H̄−1H̃H̄−1

)∥∥ = op
(
N−1/2

)
,∥∥∥ dim(γ)∑

g,h=1

∂γγgγh
L̃[H̄−1S]g[H̄−1S]h

∥∥∥ = op
(
N−1/2

)
.

Moreover,
∥∥H−1

∥∥ = Op(1),
∥∥H̃∥∥ = op

(
N−1/4

)
,
∥∥∂γθ′L∥∥ = Op

(
N1/2

)
,
∥∥∂γθ′L̃∥∥ = Op(1).

Proof. Fernández-Val and Weidner 2016. See also proof of Lemma A.2.

Lemma A.4 (Stochastic expansion of θ̂). Under Assumption 1

N W̄1,N(θ̂ − θ0) = Bθ
N +

1

N

∑
i∈V

∑
j∈V−i

HijX̃ij(Yij − pij) + op(1)
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and

W̄
−1/2
2,N

(
N W̄1,N(θ̂ − θ0)−Bθ

N

)
= N (0, 1) + op(1)

where Bθ
N , W̄1,N and W̄2,N are defined in Theorem 1.

Proof. This follows from Lemma A.2 employing similar arguments as in the proof of
Theorem 4.1 in FVW.

B. Proofs of main results

Proof of Theorem 1. Apply Lemma A.2 and employ similar arguments as in the proof of
Theorem 4.1 in FVW to derive the linear asymptotic expansion. For the distributional
result write

1

N

∑
i∈V

∑
j∈V−i

HijX̃ij(Yij − pij)

=
1√
2

1√
N(N − 1)/2

∑
i,j∈V
i<j

{
HijX̃ij(Yij − pij) +HjiX̃ji(Yji − pji)

}
+ op(1)

and apply a multi-variate CLT to the normalized sum on the right-hand side. The
(conditional) variance of the normalized sum is given by

2W̄2,N =
1

N(N − 1)/2

∑
i,j∈V
i<j

{
Hij(∂πpij)X̃ijX̃

′
ij +Hji(∂πpji)X̃jiX̃

′
ji

+ 2HijHjiX̃ijX̃
′
jiρ̃ij
√
p1,ijp1,ji

}
=2W̄1,N +

4

N(N − 1)

∑
i,j∈V
i<j

HijHjiX̃ijX̃
′
jiρ̃ij
√
p1,ijp1,ji + op(1).

Proof of Theorem 2. This theorem follows from the stochastic expansion in Lemma C.1.
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By Lemma C.3,

∂ρM+
(
∂ρθ′M+ ∂ργ′M̄H̄−1

[
∂γθ′L̄

])
(θ̂ − θ0) +

(
∂ργ′M̄

)
H̄−1S

=
1

N

∑
i,j∈V
i<j

Jij(Zij − rij) + T ′NN(θ̂ − θ0)− 1

N

∑
i∈V

∑
j∈V−i

ΩijHij(Yij − pij)

=
1

N

∑
i,j∈V
i<j

Jij(Zij − rij) +
1

N

∑
i∈V

∑
j∈V−i

(t̃ij − Ωij)Hij(Yij − pij)

=
1

N

∑
i,j∈V
i<j

Uij + T ′NW
−1
1,NB

θ
N ,

where

Uij = Jij(Zij − rij) + (t̃ij − Ωij)Hij(Yij − pij) + (t̃ji − Ωji)Hji(Yji − pji).

The sum on the right-hand side is over
(
N
2

)
= N(N−1)

2
independent observations. To verify

that the (conditional) variance of the normalized sum is given by v2,N note that

Ē[(Zij − rij)(Yij − pij)] = rij(1− pij) = p1,ij
rij
pij
,

Ē[(Zij − rij)(Yji − pji)] = rij(1− pji) = p1,ji
rij
pji
,

Ē[(Yij − pij)(Yji − pji)] = rij − pijpji = ρ̃ij
√
p1,ijp1,ji,

and Ē[(Yij − pij)2] = p1,ij, Ē[(Yji − pji)2] = p1,ji, and Ē[(Zij − rij)2] = r1,ij. Now straight-
forward calculations yield

v̄ar

(
1

N(N − 1)/2

∑
i,j∈V
i<j

Uij

)

=
1

N(N − 1)/2

∑
i,j∈V
i<j

{
J2
ijr1,ij + [(t̃ij − Ωij)Hij]

2p1,ij + [(t̃ji − Ωji)Hji]
2p1,ji

+ 2Jij(t̃ij − Ωij)Hijp1,ij
rij
pij

+ 2Jij(t̃ji − Ωji)Hjip1,ji
rij
pji

+ 2(t̃ij − Ωij)(t̃ji − Ωji)HijHjiρ̃ij
√
p1,ijp1,ji

}
= v2,N .
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Setting ∂ρM(γ̂, θ̂, ρ̂) = 0 and rearranging from Lemma C.1 now gives

(
− ∂ρ2M

)
[ρ̂− ρ0] =

1

N

∑
i,j∈V
i<j

Uij + T ′NW̄
−1
1,NB

θ
N +Bρ,∗

N

+Op

(√
N
∣∣ρ̂− ρ0

∣∣+N
∣∣ρ̂− ρ0

∣∣2 )+ op(1).

Plugging in for ∂ρ2M from Lemma C.3 and for Bρ,∗
N from Lemma C.2 now gives

v1,NN [ρ̂− ρ0] =

√
2√

N(N − 1)/2

∑
i,j∈V
i<j

Uij + 2T ′NW̄
−1
1,NB

θ
N + 2Bρ

N

+Op

(√
N
∣∣ρ̂− ρ0

∣∣+N
∣∣ρ̂− ρ0

∣∣2 )+ op(1).

By an appropriate CLT

1√
v2,NN(N − 1)/2

∑
i,j∈V
i<j

Uij → N (0, 1).

Proof of Theorem 3. Write

N−2
(
SN − ÊSN

)
= N−2

(
SN − ĒSN

)
−N−2

(
ÊSN − ĒSN

)
.

We first analyze the second term. By definition

N−2
(
ÊSN − ĒSN

)
= sN(γ̂, θ̂)− sN(γ0, θ0)

Therefore, by Lemma C.4 and Lemma C.5

N−2
(
ÊSN − ĒSN

)
=
{

(∂θ′sN) + (∂γ′sN) H̄−1
[
∂γθ′L̄

]}
(θ̂ − θ0)

+ (∂γ′sN) H̄−1S +BS
N + op

(
1).

Straightforward calculations give

∂θsN =
1

N

∑
i∈V

∑
j∈V−i

βNijωijXij.
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As in the proof of Lemma C.3, for k = 1, . . . , dim(θ) let

Ξij,k = − 1

N

∑
k1∈V

∑
k2∈V−k1

(
H̄−1
SS,ik1

+ H̄−1
RS,jk1

+ H̄−1
SR,ik2

+ H̄−1
RR,jk2

)
Ē(∂θkπ`k1k2).

and let Ξij = (Ξij,1, . . . ,Ξij,dim(θ))
′. By Lemma S.8(i) in FVW and the matrix representation

of ∂γsN from the proof of Lemma C.5

(∂γ′sN)H̄−1(∂γθ′L̄) =− 1

N

∑
i∈V

∑
j∈V−i

βNijωijΞ
′
ij,

(∂γ′sN)H̄−1S =− 1

N

∑
i∈V

∑
j∈V−i

(PβN)ijHij(Yij − pij).

Straightforward calculations give Xij − Ξij = X̃ij so that

∂θsN + (∂γ′sN)H̄−1(∂γθ′L̄) =
1

N

∑
i∈V

∑
j∈V−i

βNijωijX̃
′
ij.

Plugging in the linear representation of θ̂ from Lemma A.4 gives

N−2
(
ÊSN − ĒSN

)
=BS

N + U ′NW̄
−1
1,NB

θ
N +

(
U ′NW̄

−1
1,N

)′ 1

N

∑
i∈V

∑
j∈V−i

X̃ijHij(Yij − pij)

+
1

N

∑
i∈V

∑
j∈V−i

(PβN)ijHij(Yij − pij) + op(1).

Then, by Lemma C.6

N−2
(
SN − ÊSN

)
=−BS

N − U ′NW−1
1,NB

θ
N +

1

N

∑
i∈V

∑
j∈V−i

(
βNij − (PβN)ij − ũN,ij

)
Hij(Yij − pij) + op(1).

The sum on the right-hand side has conditional variance vSN . The conclusion now follows
by applying a CLT.
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C. Supporting lemmas

Lemma C.1 (Expansion of score of second stage likelihood). Under Assumption 1,

∂ρM
(
γ̂, θ̂, ρ

)
=∂ρM+ (∂ρ2M)(ρ− ρ0) +

(
∂ρθ′M+ ∂ργ′M̄H̄−1

[
∂γθ′L̄

])
(θ̂ − θ0)

+
(
∂ργ′M̄

)
H̄−1S +Bρ,∗

N +Op

(√
N
∣∣ρ− ρ0

∣∣+N
∣∣ρ− ρ0

∣∣2 )+ op(1)

where the order of the higher-order terms is uniform in ρ ∈ [−1 + κ, 1− κ] and

Bρ,∗
N =

(
∂ργ′M̃

)
H̄−1S −

(
∂ργ′M̄

)
H̄−1H̃H̄−1S

+
1

2

(
H̄−1S

)′{
∂ργγ′M̄+

dim(γ)∑
g=1

∂γγ′γg
L̄
[
H̄−1∂ργ′M̄

]
g

}(
H̄−1S

)
.

Proof. Throughout the proof q = 8. By a Taylor expansion

∂ρM
(
γ̂, θ̂, ρ

)
− ∂ρM

(
γ̂, θ0, ρ0

)
=∂ρ2M̄

(
γ0, θ0, ρ0

)
(ρ− ρ0)

+ ∂ρθ′M̄
(
γ0, θ0, ρ0

)
(θ̂ − θ0) +RN,1(ρ) +RN,2

where

RN,1(ρ) =∂ρ2M̃
(
γ0, θ0, ρ0

)
(ρ− ρ0) + (γ̂ − γ0)′

[
∂ρ2γM

(
γ̄, θ̄, ρ0

)]
(ρ− ρ0)

+ (θ̂ − θ0)′
[
∂ρ2θM

(
γ̄, θ̄, ρ0

)]
(ρ− ρ0) + ∂ρ3M

(
γ̂, θ̂, ρ̄

)
(ρ− ρ0)2

RN,2 =∂ρθ′M̃
(
γ0, θ0, ρ0

)
(θ̂ − θ0) + (γ̂ − γ0)′

[
∂ργθ′M

(
γ̃, θ0, ρ0

)]
(θ̂ − θ0)

+ (θ̂ − θ0)′
[
∂ρθθ′M

(
γ̂, θ̃, ρ0

)]
(θ̂ − θ0)

and γ̄, γ̃, θ̄, θ̃, ρ̄ are intermediate values. It is easy to see that

sup
γ∈Γ,θ∈Θ

∥∥∂ρθθ′M(γ, θ, ρ0
)∥∥ = Op(N),

sup
γ∈Γ,θ∈Θ

∥∥∂ρ2θM(γ, θ, ρ0
)∥∥ = Op(N),

sup
γ∈Γ,θ∈Θ,ρ∈[−κ,κ]

∥∥∂ρ3M(γ, θ, ρ)∥∥ = Op(N),

and ∥∥∂ρ2M̃(γ0, θ0, ρ0
)∥∥ = Op(1),∥∥∂ρθ′M̃(γ0, θ0, ρ0
)∥∥ = Op(1).
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Moreover, applying Lemma C.7(i) gives

sup
γ∈Γ,θ∈Θ

∥∥∂ρ2γM(γ, θ, ρ0
)∥∥

q
= Op

(
N

1
q

)
,

sup
γ∈Γ,θ∈Θ

∥∥∂ργθ′M(γ, θ, ρ0
)∥∥

q
= Op

(
N

1
q

)
.

Noting that ‖γ̂ − γ0‖q = Op(N
−1/2+1/q) and

∥∥θ̂ − θ∥∥ = Op(N
−1), we have

|RN,1(ρ)| ≤
∥∥∂ρ2M̃(γ0, θ0, ρ0

)∥∥ ∣∣ρ̂− ρ0
∣∣

+N1−2/q
∥∥∂ρ2γM(γ̄, θ̄, ρ0

)∥∥
q

∥∥γ̂ − γ0
∥∥
q

∣∣ρ− ρ0
∣∣

+
∥∥θ̂ − θ0

∥∥ ∣∣ρ− ρ0
∣∣ ∥∥∂ρ2θM(γ̄, θ̄, ρ0

)∥∥+
∣∣ρ− ρ0

∣∣2 ∥∥∂ρ3M(γ̂, θ̂, ρ0
)∥∥

=Op

(√
N
∣∣ρ− ρ0

∣∣+N
∣∣ρ− ρ0

∣∣2) .
Moreover,

|RN,2| ≤
∥∥∂ρθ′M̃(γ0, θ0, ρ0

)∥∥ ∥∥∥θ̂ − θ0
∥∥∥

+N1−2/q
∥∥∂ργθ′M(γ̃, θ0, ρ0

)∥∥
q

∥∥γ̂ − γ0
∥∥
q

∥∥θ̂ − θ0
∥∥

+
∥∥θ − θ0

∥∥2∥∥∂ρθθ′M(γ̂, θ̃, ρ0
)∥∥ = op (1) .

Next, Taylor-expanding ∂ρM
(
γ̂, θ0, ρ0

)
and plugging in the expansion for γ̂ from Lemma A.2

∂ρM(γ̂, θ0, ρ0)− ∂ρM(γ0, θ0, ρ0)

=∂ργ′M(γ0, θ0, ρ0)

{
H−1S +H−1

[
∂γθ′L

]
(θ̂ − θ0)

+
1

2
H−1

dim(γ)∑
g=1

[
∂γγ′γg

L
]
H−1S

[
H−1S

]
g

}

+
1

2

(
H−1S

)′[
∂ργγ′M(γ0, θ0, ρ0)

](
H−1S

)
+RN,3

with

RN,3 =
[
∂ργ′M(γ0, θ0, ρ0)

]
Rγ(θ̂)

+
1

2

(
γ̂ − γ0 −H−1S

)[
∂ργγ′M(γ0, θ0, ρ0)

](
γ̂ − γ0 +H−1S

)
+

1

6

dim(γ)∑
g=1

(γ̂ − γ0)′
[
∂ργγ′γg

M(γ̄, θ0, ρ0)
]
(γ̂ − γ0)[γ̂ − γ0]g,
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where γ̄ is an intermediate value By Lemma C.7,∥∥∂ργ′M(γ0, θ0, ρ0)
∥∥
q

= Op

(
N

1
q

)
sup
γ∈Γ

∥∥∂ργγγM(γ, θ0, ρ0)
∥∥
q

= Op(1).

Noting that
∥∥γ̂ − γ0 −H−1S

∥∥
q

= Op

(
N−1+2/q

)
,

|RN,3| ≤N1−2/q
∥∥∂ργ′M(γ0, θ0, ρ0)

∥∥
q

∥∥Rγ(θ̂)
∥∥
q

+
1

2
N1−2/q

∥∥γ̂ − γ0 −H−1S
∥∥
q

(∥∥γ̂ − γ0
∥∥
q

+
∥∥H−1S

∥∥
q

)∥∥∂ργγ′M(γ0, θ0, ρ0)
∥∥
q

+
1

6
N1−2/q

∥∥γ̂ − γ0
∥∥3

q

∥∥∂ργγγM(γ̄, θ0, ρ0)
∥∥
q

≤(1 +N‖θ̂ − θ0‖)N1−1/q

∥∥Rγ(θ̂)
∥∥
q

1 +N‖θ̂ − θ0‖
+Op

(
N−1/2+1/q

)
= op(1).

From now on, drop the arguments of M and its derivatives whenever they are evaulated at
their true values. Then(

∂ργ′M
)
H−1S =

(
∂ργ′M̄

)
H̄−1S +

(
∂ργ′M̃

)
H̄−1S −

(
∂ργ′M̄

)
H̄−1H̃H̄−1S +RN,4

with

RN,4 = −
(
∂ργ′M̃

)
H̄−1H̃H̄−1S +

(
∂ργ′M

)(
H−1 −

(
H̄−1 − H̄−1H̃H̄−1

))
S.

Lemma C.7 applied with q = 2 yields
∥∥∂ργ′M̃∥∥ = Op(1) and

∥∥∂ργ′M̄∥∥ = Op

(
N1/2

)
. Then,

by Lemma A.3

|RN,4| ≤
∥∥∂ργ′M̃∥∥∥∥H̄−1

∥∥2∥∥H̃∥∥∥∥S∥∥+
∥∥∂ργ′M∥∥∥∥H−1 −

(
H̄−1 − H̄−1H̃H̄−1

)∥∥ ‖S‖ = op(1).

Next, (
∂ργ′M

)
H−1

[
∂γθ′L

]
(θ̂ − θ0) =

(
∂ργ′M̄

)
H̄−1

[
∂γθ′L̄

]
(θ̂ − θ0) +RN,5

with

RN,5 =
(
∂ργ′M̃

)
H−1

[
∂γθ′L

]
(θ̂ − θ0) +

(
∂ργ′M̄

)(
H−1 − H̄−1

)[
∂γθ′L

]
(θ̂ − θ0)

+
(
∂ργ′M̄

)
H̄−1

[
∂γθ′L̃

]
(θ̂ − θ0)

13



and

|RN,5| ≤
∥∥∂ργ′M̃∥∥∥∥H−1

∥∥∥∥∂γθ′L]∥∥∥∥θ̂ − θ0
∥∥

+
∥∥∂ργ′M̄∥∥∥∥θ̂ − θ0

∥∥{∥∥H−1 − H̄−1
∥∥∥∥∂γθ′L∥∥+

∥∥H̄−1
∥∥∥∥∂γθ′L̃∥∥} = op(1).

Repeating the last argument in the proof of Theorem B.1, Part 2 in FVW almost ad verbum
gives

(
∂ργ′M

)
H−1

dim(γ)∑
g=1

[
∂γγ′γg

L
]
H−1S

[
H−1S

]
g

=
(
∂ργ′M̄

)
H̄−1

dim(γ)∑
g=1

[
∂γγ′γg

L̄
]
H̄−1S

[
H̄−1S

]
g

+ op(1).

Now write (
H−1S

)′[
∂ργγ′M

](
H−1S

)
=
(
H̄−1S

)′[
∂ργγ′M̄

](
H̄−1S

)
+RN,6

with

|RN,6| ≤
∥∥S∥∥2∥∥H−1 − H̄−1

∥∥(∥∥H−1
∥∥+

∥∥H̄−1
∥∥)∥∥∂ργγ′M∥∥

+
∥∥S∥∥2∥∥H̄∥∥2∥∥∂ργγ′M̃∥∥ = op(1).

The last inequality uses that by Lemma C.7(iii)∥∥∂ργγ′M̃∥∥ = Op

(
N−3/8

)
.

We may now conclude that

∂ρM(γ̂, θ0, ρ0)− ∂ρM(γ0, θ0, ρ0)

=
(
∂ργ′M̃

)
H̄−1S + H̄−1

[
∂γθ′L̄

]
(θ̂ − θ0) +

(
∂ργ′M̄

)
H̄−1S −

(
∂ργ′M̄

)
H̄−1H̃H̄−1S

+
1

2

(
H̄−1S

)′{
∂ργγ′M̄+

dim(γ)∑
g=1

[
∂γγ′γg

L̄
]
H̄−1S

[
H̄−1∂ργ′M̄

]
g

}(
H̄−1S

)
+ op(1).

Lemma C.2 (Behavior of deterministic term of ρ̂). Under Assumption 1

Bρ,∗
N = Bρ

N +Op

(
N−1/2

)
with Bρ

N as defined in Theorem 2.
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Proof.
Step 1: behavior of (∂ργM̃)H̄−1S − (∂ργM̄)H̄−1H̃H̄−1S.

Let D
(m)
ij = ∂ρz1mij − Ωij(∂z2`ij) and

Λij = − 1

N

∑
k∈V

∑
l∈V−k

(
H̄−1
SS,ik + H̄−1

RS,jk + H̄−1
SR,il + H̄−1

RR,jl

)
(∂z`kl).

By Lemma S.8(i) and (iii) in FVW

(∂ργM̃)H̄−1S − (∂ργM̄)H̄−1H̃H̄−1S

=− 1

N

∑
i 6=j

Λij(∂ρz1m̃ij) +
1

N

∑
i 6=j

ΛijΩij

(
∂z2`ij − Ē[∂z2`ij]

)
=− 1

N

∑
i 6=j

Λij

(
D

(m)
ij − ĒD(m)

ij

)
= U1 + U2 + U3 + U4

with

U1 =
1

N2

∑
i∈V

{( ∑
k∈V
l∈V−k

H̄−1
SS,ik(∂z`k,l)

) ∑
j∈V−i

(
D

(m)
ij − ĒD(m)

ij

)}
,

U2 =
1

N2

∑
j∈V

{( ∑
k∈V
l∈V−k

H̄−1
RS,jk(∂z`k,l)

) ∑
i∈V−j

(
D

(m)
ij − ĒD(m)

ij

)}
,

U3 =
1

N2

∑
i∈V

{( ∑
k∈V
l∈V−k

H̄−1
SR,il(∂z`k,l)

) ∑
j∈V−i

(
D

(m)
ij − ĒD(m)

ij

)}
,

U4 =
1

N2

∑
j∈V

{( ∑
k∈V
l∈V−k

H̄−1
RR,jl(∂z`k,l)

) ∑
i∈V−j

(
D

(m)
ij − ĒD(m)

ij

)}
.

Next,

U1 =
1

N2

∑
i∈V

{(∑
k∈V

∑
l∈V−k

[
(H̄∗SS)−1

]
ik

(∂z`k,l)
) ∑
j∈V−i

(
D

(m)
ij − ĒD(m)

ij

)}
+

1

N2

∑
i∈V

{(∑
k∈V

∑
l∈V−k

[
H̄−1
SS − (H̄∗SS)−1

]
ik

(∂z`k,l)
) ∑
j∈V−i

(
D

(m)
ij − ĒD(m)

ij

)}
=U1a + U1b.
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A straightforward application of Cauchy-Schwarz yields

(U1b)
2 ≤N−1 1

N

∑
i∈V

(
1

N

∑
k∈V

∑
l∈V−k

N
[
H̄−1
SS − (H̄∗SS)−1

]
ik

(∂z`k,l)

)2

× 1

N

∑
i∈V

(
1√
N

∑
j∈V−i

(
D

(m)
ij − ĒD(m)

ij

))2

.

Now observe that for k1, k2, l1, l2 ∈ V , Ē[∂z`k1,l1∂z`k2,l2 ] is bounded if {k1, l1} = {k2, l2} and
0 otherwise. The cardinality of the set {(k1, k2, l1, l2) : k1, k2, l1, l2 ∈ V, {k1, l1} = {k2, l2}}
is O(N2). Moreover, by Lemma A.1

N
∥∥H̄−1

SS − (H̄∗SS)−1
∥∥

max
= Op(1).

Therefore,

sup
i∈V

Ē
{

1

N

∑
k∈V

∑
l∈V−k

N
[
H̄−1
SS − (H̄∗SS)−1

]
ik

(∂z`k,l)

}2

≤ sup
i∈V

1

N2

∑
k1,k2,l1,l2∈V

{
N
[
H̄−1
SS − (H̄∗SS)−1

]
ik1
N
[
H̄−1
SS − (H̄∗SS)−1

]
ik2

× Ē[∂z`k1l1∂z`k2l2 ]

}2

= Op(1).

Furthermore,

sup
i∈V

Ē
{

1√
N

∑
j∈V−i

(
D

(m)
ij − ĒD(m)

ij

)}2

= sup
i∈V

1

N

∑
j∈V−i

Ē
(
D

(m)
ij − ĒD(m)

ij

)2

= Op(1).

This implies that Ē(U1b)
2 = Op(N

−1) and therefore U1b = Op(N
−1/2). Moving on to the

analysis of the term U1a, we can write

U1a =
1

N

∑
i∈V

(H̄∗SS)−1
ii

(
1√
N

∑
l∈V−i

∂z`il

)(
1√
N

∑
j∈V−i

(
D

(m)
ij − ĒD(m)

ij

))
.

16



Let

si1 =

( ∑
l1∈V−i1

∂z`i1l1

)( ∑
j1∈V−i1

D̃i1j1

)

=

(
∂z`i1i2 +

∑
l1∈V−{i1,i2}

∂z`i1l1

)(
D̃i1i2 +

∑
j1∈V−{i1,i2}

D̃i1j1

)
.

Under our assumptions, for i1 6= i2

Ē(si1si2)

=Ē
( ∑
l1∈V−{i1,i2}

∂z`i1l1
∑

j1∈V−{i1,i2}

D̃i1j1

)
Ē
( ∑
l2∈V−{i1,i2}

∂z`i2l2
∑

j2∈V−{i1,i2}

D̃i2j2

)

+ Ē
[(
D̃i1i2

∑
l1∈V−{i1,i2}

∂z`i1l1

)(
D̃i2i1

∑
l2∈V−{i1,i2}

∂z`i2l2

)]

+ Ē
[(
∂z`i1i2

∑
l1∈V−{i1,i2}

D̃i1l1

)(
∂z`i2i1

∑
l2∈V−{i1,i2}

D̃i2l2

)]
+Op(N)

=Ē
( ∑
l1∈V−{i1,i2}

∂z`i1l1
∑

j1∈V−{i1,i2}

D̃i1j1

)
Ē
( ∑
l2∈V−{i1,i2}

∂z`i2l2
∑

j2∈V−{i1,i2}

D̃i2j2

)
+Op(N)

where the Op(N) term is uniform in i1, i2. Similarly,

Ē(si1) = Ē
( ∑
l1∈V−i1

∂z`i1l1
∑

j1∈V−{i1,i2}

D̃i1j1

)
+Op(1).
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Then,

v̄ar(U1a) =N−4
∑
i∈V

(H̄∗SS)−2
ii Ē

( ∑
l∈V−i

(∂z`il)
2 +

∑
l∈V−i

∑
k∈V−{i,l}

∂z`il∂z`ik

)2

+N−4
∑
i1∈V

∑
i2∈V−i1

(H̄∗SS)−1
i1i1

(H̄∗SS)−1
i2i2

Ē(si1si2)−
(∑
i1∈V

(H̄∗SS)−1
i1i1

Ē(si1)

)2

=N−4
∑
i∈V

(H̄∗SS)−2
ii

( ∑
l∈V−i

Ē(∂z`il)
4 +

∑
l∈V−i

∑
k∈V−{i,l}

Ē(∂z`il)
2Ē(∂z`ik)

2

)
+N−4

∑
i1∈V

∑
i2∈V−i1

(H̄∗SS)−1
i1i1

(H̄∗SS)−2
i2i2

Ē(si1si2)

−N−4
∑
i1∈V

∑
i2∈V−i1

(H̄∗SS)−2
i1i1

(H̄∗SS)−2
i2i2

Ē(si1)Ē(si2) +Op

(
N−3

)
= Op

(
N−1

)
.

Therefore, U1a = Ē(U1a) +Op

(
N−1/2

)
or

U1a =
1

N

∑
i∈V

(H̄∗SS)−1
ii

(
1

N

∑
j∈V−i

Ē
(
∂z`ijD̃

(m)
ij

))
+Op

(
N−1/2

)
=

1

N

∑
i∈V

∑
j∈V−i

Ē
(
∂z`ijD

(m)
ij

)∑
j∈V−i

Ē
(
− ∂z2`ij

) +Op

(
N−1/2

)
.

Similar arguments can be used to show that

U2 =Op

(
N−1/2

)
,

U3 =Op

(
N−1/2

)
,

U4 =
1

N

∑
j∈V

∑
i∈V−j

Ē
(
∂z`ijD

(m)
ij

)∑
i∈V−j

Ē
(
− ∂z2`ij

) +Op

(
N−1/2

)
.
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In summary,

(∂ργM̃)H̄−1S − (∂ργM̄)H̄−1H̃H̄−1S

=
1

N

∑
i∈V

∑
j∈V−i

Ē
(
∂z`ijD

(m)
ij

)∑
j∈V−i

Ē
(
− ∂z2`ij

) +
1

N

∑
j∈V

∑
i∈V−j

Ē
(
∂z`ijD

(m)
ij

)∑
i∈V−j

Ē
(
− ∂z2`ij

) +Op

(
N−1/2

)
=

1

N

∑
i∈V

∑
j∈V−i

(∂zpij)
{

(∂z1Jij)
rij
pij
− Ωij(∂zHij)

}∑
j∈V−i

(Hij∂zpij)

+
1

N

∑
j∈V

∑
i∈V−j

(∂zpij)
{

(∂z1Jij)
rij
pij
− Ωij(∂zHij)

}∑
i∈V−j

(Hij∂zpij)
+Op

(
N−1/2

)
.

The second equality follows by noting that

Ē[(∂z`ij)(∂z2`ij)] =Hij(∂zHij)Ē[(Yij − pij)2] + 0 = (∂zHij)(∂zpij),

Ē[(∂z`ij)(∂ρz1mij)] =Hij(∂z1Jij)Ē[(Yij − pij)(Zij − rij)] + 0

=Hij(∂z1Jij)(rij/pij)p1,ij = (∂zpij)(∂z1Jij)(rij/pij),

Ē[−(∂z2`ij)] =Hij(∂zpij).

Step 2: behavior of 1
2

(
H̄−1S

)′
∂ργγ′M̄

(
H̄−1S

)
.

Inspection of the proof of Lemma C.7 shows that ∂ργγ′M̄ can be written as

∂ργγ′M̄ =

[
DSS,1 +DSS,2 DSR,1 +DSR,2

D′SR,1 +D′SR,2 DRR,1 +DRR,2

]
where DSS,1, DSR,1, DRR,1 are N ×N diagonal matrices with entries

(DSS,1)ii =∂γSi γSi ∂ρM̄
(DSR,1)ii =∂γSi γRi ∂ρM̄
(DRR,1)ii =∂γRi γRi ∂ρM̄

and DSS,2, DSR,2, DRR,2 are Op(N
−1) in the ‖·‖max-norm. Let Υ denote the N ×N matrix

with entries Υij = ∂z`ij. By Lemma A.1, H̄−1 can be written as

H̄−1 =

[
(H̄∗SS)−1 0

0 (H̄∗RR)−1

]
+RN ,
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where ‖RN‖max = Op(N
−1). By the first assertion of Lemma C.12,

N2
(
H̄−1S

)′(
∂ργγ′M̄

)
H̄−1S

=(ι′NΥ′, ι′NΥ) H̄−1(∂ργγ′M̄)H̄−1

(
ΥιN
Υ′ιN

)
=ι′NΥ′(H̄∗SS)−1DSS,1(H̄∗SS)−1ΥιN + ι′NΥ(H̄∗RR)−1DRR,1(H̄∗RR)−1Υ′ιN

+ 2ι′NΥ′(H̄∗SS)−1DSR,1(H̄∗RR)−1Υ′ιN +Op(N).

By the second assertion of Lemma C.12 and a Bartlett equality

ι′NΥ′(H̄∗SS)−1DSS,1(H̄∗SS)−1ΥιN =
∑
i∈V

∑
j∈V−i

[
(H̄∗SS)−1

]2
ii
[DSS,1]iiĒ[(∂z`ij)

2] +Op

(
N3/2

)
=
∑
i∈V

[DSS,1]ii
∑

j∈V−i
Ē[(∂z2`ij)](

N−1
∑

j∈V−i
Ē[−∂z2`ij]

)2 +Op

(
N3/2

)
=N

∑
i∈V

[DSS,1]ii(
N−1

∑
j∈V−i

Ē[−∂z2`ij]
) +Op

(
N3/2

)
.

Similarly,

ι′NΥ(H̄∗RR)−1DRR,1(H̄∗RR)−1Υ′ιN = N
∑
j∈V

[DRR,1]jj(
N−1

∑
i∈V−j

Ē[−∂z2`ij]
) +Op

(
N3/2

)
and

ι′NΥ′(H̄∗SS)−1DSR,1(H̄∗RR)−1Υ′ιN

=N
∑
i∈V

(DSR,1)ii corri(
N−1

∑N
j=1 Ē[−∂z2`ij]

)1/2(
N−1

∑N
j=1 Ē[−∂z2`ji]

)1/2
,
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where

corri =

∑
j∈V−i

Ē[∂z`ij∂z`ji](∑
j∈V−i

Ē[(∂z`ij)2]
)1/2(∑

j∈V−i
Ē[(∂z`ji)2]

)1/2

=

∑
j∈V−i

HijHji(rij − pijpji)(∑
j∈V−i

Hij(∂zpij)
)1/2(∑

j∈V−i
Hji(∂zpji)

)1/2

=

∑
j∈V−i

ρ̃ij
√
ωijωji(∑

j∈V−i
ωij

)1/2(∑
j∈V−i

ωji

)1/2
.

Closed-form expressions for the elements of DSS,1, DSR,1, DRR,1 are given in the proof of
Lemma C.7. Re-writing them using Lemma C.9 yields

∂(γSi )2∂ρM =
1

N

∑
j∈V
j>i

∂ρz21mij +
1

N

∑
j∈V
j<i

∂ρz22mji =
1

N

∑
j∈V−i

∂ρz21mij,

∂(γRi )2∂ρM =
1

N

∑
j∈V
j>i

∂ρz22mij +
1

N

∑
j∈V
j<i

∂ρz21mji =
1

N

∑
j∈V−i

∂ρz21mji,

∂γSi γRi ∂ρM =
1

N

∑
j∈V
j>i

∂ρz1z2mij +
1

N

∑
j∈V
j<i

∂ρz2z1mji =
1

N

∑
j∈V−i

∂ρz1z2mij.

Computing the derivatives and re-writing using Lemma C.9 gives

∂ρz21mij =
(
∂z21Jij

)
(Zij − rij)− 2

(
∂z1Jij

)(
∂z1rij

)
− Jij

(
∂z21rij

)
∂ρz1z2mij =

(
∂z1z2Jij

)
(Zij − rij)−

(
∂z1Jij

)(
∂z2rij

)
−
(
∂z2Jij

)(
∂z1rij

)
− Jij

(
∂z1z2rij

)
=
(
∂z1z2Jij

)
(Zij − rij)−

(
∂z1Jij

)(
∂z1rji

)
−
(
∂z1Jji

)(
∂z1rij

)
− Jij

(
∂z1z2rij

)
and therefore

(DSS)ii =− 1

N

∑
j∈V−i

{
2Ē
[(
∂z1Jij

)(
∂z1rij

)]
+ Ē

[
Jij
(
∂z21rij

)]}
(DRR)ii =− 1

N

∑
j∈V−i

{
2Ē
[(
∂z1Jji

)(
∂z1rji

)]
+ Ē

[
Jji
(
∂z21rji

)]}
(DSR)ii =− 1

N

∑
j∈V−i

{
Ē
[(
∂z1Jij

)(
∂z1rji

)]
+ Ē

[(
∂z1Jji

)(
∂z1rij

)]
+ Ē

[
Jij
(
∂z1z2rij

)]}
.

Step 3: behavior of 1
2

(
H̄−1S

)′{∑dim(γ)
g=1 ∂γγ′γg

L̄
[
H̄−1∂ργ′M̄

]
g

}(
H̄−1S

)
.
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Following the argument in the proof of Theorem C.1 part(ii) in FVW and letting C denote
the N ×N matrix with elements (C)ij = ΩijĒ

(
∂z3`ij

)
and

C =
1

N

[
diag(CιN) C

C ′ diag(C ′ιN)

]
gives

1

2

(
H̄−1S

)′{ dim(γ)∑
g=1

∂γγ′γg
L̄
[
H̄−1∂ργ′M̄

]
g

}(
H̄−1S

)
= − 1

2N

∑
i∈V

∑
j∈V−i

Λ2
ijΩijĒ

(
∂z3`ij

)
.

Lemma S.8(iii) in FVW yields

− 1

2N

∑
i∈V

∑
j∈V−i

Λ2
ijΩijĒ

(
∂z3`ij

)
= −1

2
(ι′NΥ′, ι′NΥ)H̄−1CH̄−1

(
ΥιN
Υ′ιN

)
.

By Lemma C.12 the right-hand side of the preceding equation is equivalent to

− 1

2N
ι′NΥ′(H̄∗SS)−1

(
N−1 diag(CιN)

)
(H̄∗SS)−1ΥιN

− 1

2
ι′NΥ(H̄∗RR)−1

(
N−1 diag(C ′ιN)

)
(H̄∗RR)−1Υ′ιN +Op

(
N−1

)
=− 1

2N2

∑
i∈V

{
[(H̄∗SS)−1]2ii

(
N−1

∑
j∈V−i

ΩijĒ[∂z3`ij]

) ∑
j∈V−i

Ē
[
(∂z`ij)

2
]}

− 1

2N2

∑
j∈V

{
[(H̄∗RR)−1]2jj

(
N−1

∑
i∈V−j

ΩijĒ[∂z3`ij]

) ∑
i∈V−j

Ē
[
(∂z`ij)

2
]}

+Op

(
N−1/2

)
.

By the definition of H̄∗SS and a Bartlett equality

− 1

2N2

∑
i∈V

{
[(H̄∗SS)−1]2ii

(
N−1

∑
j∈V−i

ΩijĒ[∂z3`ij]

) ∑
j∈V−i

Ē
[
(∂z`ij)

2
]}

=− 1

2N

∑
i∈V

∑
j∈V−i

ΩijĒ[∂z3`ij]∑
j∈V−i

Ē[−∂z2`ij]

=
1

2N

∑
i∈V

∑
j∈V−i

Ωij

{
2(∂zpij)(∂zHij) +Hij(∂z2pij)

}∑
j∈V−i

Hij(∂zpij)
,

where we use

∂z3`ij = ∂z2Hij(Yij − pij)−Hij(∂z2pij)− 2(∂zHij)(∂zpij).
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Similarly,

− 1

2N2

∑
j∈V

{
[(H̄∗RR)−1]2jj

(
N−1

∑
i∈V−j

ΩijĒ[∂z3`ij]

) ∑
i∈V−j

Ē
[
(∂z`ij)

2
]}

=
1

2N

∑
j∈V

∑
i∈V−j

Ωij

{
2(∂zpij)(∂zHij) +Hij(∂z2pij)

}∑
i∈V−j

Hij(∂zpij)
.

Lemma C.3 (Behavior of stochastic part of ρ̂). Under Assumption 1

∂ρ2M =− 1

N

∑
i,j∈V
i<j

Jij(∂ρrij) +Op(1),

∂ρθ′M+ (∂ργ′M)H̄−1(∂γθ′L̄) =− 1

N

∑
i∈V

∑
j∈V−i

Jij(∂z1rij)X̃
′
ij +Op(1),

(∂ργ′M̄)H̄−1S =− 1

N

∑
i∈V

∑
j∈V−i

ΩijHij(Yij − pij).

Proof. We have

∂ρ2M =
1

N

∑
i,j∈V
i<j

{
∂ρJij(Zij − rij)− Jij(∂ρrij)

}
.

It is easy to see that

Ē
[(

1

N

∑
i,j∈V
i<j

∂ρJij(Zij − rij)
)2]

= Op(1)

and therefore

∂ρ2M =− 1

N

∑
i,j∈V
i<j

Jij(∂ρrij) +Op(1).
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Arguing similarly we get

∂ρθ′M =− 1

N

∑
i,j∈V
i<j

Jij(∂θ′rij) +Op(1)

=− 1

N

∑
i,j∈V
i<j

Jij
{

(∂z1rij)X
′
ij + (∂z2rij)X

′
ji

}
+Op(1)

=− 1

N

∑
i∈V

∑
j∈V−i

Jij(∂z1rij)X
′
ij +Op(1),

where the first equality is by the chain rule for derivatives and the second equality follows
from Lemma C.9 and symmetry of Jij. For k = 1, . . . , dim(θ) let

Ξij,k = − 1

N

∑
k1∈V

∑
k2∈V−k1

(
H̄−1
SS,ik1

+ H̄−1
RS,jk1

+ H̄−1
SR,ik2

+ H̄−1
RR,jk2

)
Ē(∂θkz`k1k2).

and let Ξij = (Ξij,1, . . . ,Ξij,dim(θ))
′. By Lemma S.8(i) in FVW and Lemma C.11

(∂ργ′M)H̄−1(∂γθ′L̄) =
1

N

∑
i∈V

∑
j∈V−i

Jij(∂z1rij)Ξ
′
ij +Op(1).

Straightforward calculations give Xij − Ξij = X̃ij so that

∂ρθM+ (∂ργ′M)H̄−1(∂γθ′L̄) = − 1

N

∑
i∈V

∑
j∈V−i

Jij(∂z1rij)X̃
′
ij +Op(1).

Lemma S.8(i) in FVW in conjunction with Lemma C.11 gives

(∂ργ′M̄)H̄−1S = − 1

N

∑
i∈V

∑
j∈V−i

ΩijHij(Yij − pij).

Lemma C.4 (Stochastic expansion of sN(γ̂, θ̂)). Under Assumption 1

sN(γ̂, θ̂)− sN(γ0, θ0)

=
{

(∂θ′sN) + (∂γ′sN) H̄−1
[
∂γθ′L̄

]}
(θ̂ − θ0) + (∂γ′sN) H̄−1S +BS,∗

N + op
(
1),
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where

BS,∗
N =− (∂γ′sN) H̄−1H̃H̄−1S +

1

2
(∂γ′sN)

dim(γ)∑
g=1

[
∂γγ′γg

L̄
]
H̄−1S

[
H̄−1S

]
g

+
1

2

(
H̄−1S

)′
[∂γγ′sN ]

(
H̄−1S

)
.

Proof. In the following set q = 8. By straightforward Taylor expansions

sN(γ̂, θ̂)− sN(γ0, θ0) =∂θ′sN(γ0, θ0)(θ̂ − θ0) + ∂γ′sN(γ0, θ0)(γ̂ − γ0)

+
1

2
(γ̂ − γ0)′

(
∂γγ′sN(γ0, θ0)

)
(γ̂ − γ0) +R1,N ,

where

R1,N =(γ̂ − γ0)′
(
∂θγ′sN(γ̄, θ0)

)
(θ̂ − θ0) +

1

2
(θ̂ − θ0)′

(
∂θθ′sN(γ̂, θ̄)

)
(θ̂ − θ0)

+
1

6

dim(γ)∑
g=1

(γ̂ − γ0)′
[
∂γγ′γg

sN(γ∗, θ0)](γ̂ − γ0)[γ̂ − γ0]g.

Note that

sup
θ∈Θ,γ∈Γ

‖∂θθ′sN(γ, θ)‖2 = Op(N),∥∥∂θγ′sN(γ0, θ0)
∥∥
q

= Op

(
N

1
q

)
,

sup
γ∈Γ

∥∥∂γ3sN(γ, θ0)
∥∥
q

= Op(1),∥∥∂γsN(γ0, θ0)
∥∥

2
= Op

(
N

1
2

)
,

where θ̄ and γ∗ are intermediate values. The first equality follows by inspection and the

other equalities follow from Lemma C.8. Therefore, since ‖γ̂ − γ0‖q = Op

(
N−

1
2

+ 1
q

)
we

have

|R1,N | ≤N1− 2
q

∥∥∂θγ′sN(γ̄, θ0)
∥∥
q

∥∥γ̂ − γ0
∥∥
q

∥∥∥θ̂ − θ0
∥∥∥

2
+

1

2

∥∥∂θθ′sN(γ̂, θ̄)
∥∥

2

∥∥∥θ̂ − θ0
∥∥∥2

q

+
1

6
N1− 2

q

∥∥∂γ3sN(γ∗, θ0)
∥∥
q

∥∥γ̂ − γ0
∥∥3

q
= Op

(
N−

1
2

+ 1
q

)
= op(1).

From now on, drop the arguments of sN and its derivatives whenever they are evaulated at
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their true values. Then,

sN(γ̂, θ̂)− sN(γ0, θ0) = (∂θ′sN) (θ̂ − θ0) + (∂γ′sN)H−1S
+ (∂γ′sN)H−1 [∂γθ′L] (θ̂ − θ0)

+
1

2
(∂γ′sN)

dim(γ)∑
g=1

[
∂γγ′γg

L
]
H−1S

[
H−1S

]
g

+
1

2

(
H−1S

)′
[∂γγ′sN ]

(
H−1S

)
+R2,N ,

with

R2,N = (∂γ′sN)Rγ(θ̂) +
1

2

(
γ̂ − γ0 −H−1S

)′
[∂γγ′sN ]

(
γ̂ − γ0 +H−1S

)
,

where Rγ(θ̂) is the remainder term from Theorem B.1 in FVW (compare also proof of
Lemma C.7). By Lemma C.8,∥∥∂γ′sN∥∥q = Op

(
N

1
q

)
and

∥∥∂γ3sN
∥∥
q

= Op(1).

Noting that
∥∥γ̂ − γ0 −H−1S

∥∥
q

= Op

(
N−1+2/q

)
,

|RN,2| ≤N1−2/q
∥∥∂γ′sN∥∥q∥∥Rγ(θ̂)

∥∥
q

+
1

2
N1−2/q

∥∥γ̂ − γ0 −H−1S
∥∥
q

(∥∥γ̂ − γ0
∥∥
q

+
∥∥H−1S

∥∥
q

)∥∥∂γγ′sN∥∥q
≤(1 +N‖θ̂ − θ0‖)N1−1/q

∥∥Rγ(θ̂)
∥∥
q

1 +N‖θ̂ − θ0‖
+Op

(
N−1/2+1/q

)
= op(1).

Following closely the proof of Lemma C.1 it is now easy to prove the assertion of the
lemma.

Lemma C.5 (Behavior of deterministic part of TN). Suppose that Assumption 1 holds.
For BS,∗

N in the statement of Lemma C.4 we have

BS,∗
N =BS

N +Op

(
N−1/2

)
,

where BS
N is given in Theorem 3.
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Proof. Tedious calculations yield

∂γSi

{
sN(γ0, θ0)

}
=

1

N

∑
j∈V−i

(∂zpij)Hijβ
N
ij ,

∂γRi

{
sN(γ0, θ0)

}
=

1

N

∑
j∈V−i

(∂zpji)Hjiβ
N
ji .

This implies that

∂γsN(γ0, θ0) =
1

N

[
AιN
A′ιN

]
for a N ×N matrix A with entries

(A)ij =

{
ωijβ

N
ij for i 6= j

0 for i = j
.

We will exploit this representation in our projection arguments below.
Step 1: behavior of −(∂γsN)H̄−1H̃H̄−1S.
Let

Λij = − 1

N

∑
k∈V

∑
l∈V−k

(
H̄−1
SS,ik + H̄−1

RS,jk + H̄−1
SR,il + H̄−1

RR,jl

)
(∂z`kl).

By Lemma S.8(iii) of FVW

−(∂γsN)H̄−1H̃H̄−1S =
1

N

∑
i∈V

∑
j∈V−i

Λij(PβN)ij

{
∂z2`ij − Ē ∂z2`ij

}
.

Following similar arguments as in the proof of Lemma C.2 it can then be shown that

−(∂γsN)H̄−1H̃H̄−1S =− 1

N

∑
i∈V

∑
j∈V−i

(PβN)ijĒ
[
∂z`ij(∂z2`ij)

]∑
j∈V−i

Ē(−∂z2`ij)
+Op

(
N−1/2

)
=− 1

N

∑
i∈V

∑
j∈V−i

(PβN)ij(∂zHij)(∂zpij)∑
j∈V−i

ωij
+Op

(
N−1/2

)
.

Step 2: behavior of 1
2

(
H̄−1S

)′
(∂γγ′sN)

(
H̄−1S

)
.
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We have

∂(γSi )2

{
sN(γ0, θ0)

}
=

1

N

∑
j∈V−i

(∂z2pij)Hijβ
N
ij ,

+
1

N2

∑
j∈V−i

∑
k∈V−{i,j}

(∂zpij)(∂zpik) [pjk + pkj] ,

∂(γRi )2

{
sN(γ0, θ0)

}
=

1

N

∑
j∈V−i

(∂z2pji)Hjiβ
N
ji

+
1

N2

∑
j∈V−i

∑
k∈V−{i,j}

(∂zpji)(∂zpki) [pjk + pkj] ,

∂γSi γRi

{
sN(γ0, θ0)

}
=

1

N2

∑
j∈V−i

∑
k∈V−{i,k}

(∂zpij)(∂zpki)pkj.

Moreover, for all i 6= j the “cross derivatives” ∂γSi γSj (sN), ∂γRi γRj (sN) and ∂γSi γRj (sN) are

bounded by N times a universal constant. This implies that

∂γγ′sN(γ0, θ0) =

[
DSS +MSS DSR +MSR

D′SR +M ′
SR DRR +MRR

]
,

where DSS is a diagonal matrix with entries
(
∂(γSi )2sN

)
i∈V , DRR is a diagonal matrix

with entries
(
∂(γRi )2sN

)
i∈V , and DSR is a diagonal matrix with entries

(
∂γSi γRi sN

)
i∈V . The

matrices MSS, MRR and MSR are off-diagonal matrices that are bounded in terms of the
‖·‖max-norm. Arguing similarly as in Lemma C.2 it can now be shown that

1

2

(
H̄−1S

)′(
∂γγ′sN

)
H̄−1S

=
1

2N

∑
i∈V

[DSS]ii(
N−1

∑
j∈V−i

Ē[−∂z2`ij]
)

+
1

2N

∑
j∈V

[DRR]jj(
N−1

∑
i∈V−j

Ē[−∂z2`ij]
)

+
1

N

∑
i∈V

(DSR)ii corri(
N−1

∑N
j=1 Ē[−∂z2`ij]

)1/2(
N−1

∑N
j=1 Ē[−∂z2`ji]

)1/2
+Op

(
N3/2

)
.

Step 3: behavior of 1
2

(
H̄−1S

)′{∑dim(γ)
g=1 ∂γγ′γg

L̄
[
H̄−1∂γsN

]
g

}(
H̄−1S

)
.
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Following the arguments in the proof of Lemma C.2 yields

1

2

(
H̄−1S

)′{ dim(γ)∑
g=1

∂γγ′γg
L̄
[
H̄−1∂γsN

]
g

}(
H̄−1S

)
=− 1

2N

∑
i∈V

∑
j∈V−i

(PβN)ijĒ[∂z3`ij]∑
j∈V−i

Ē[−∂z2`ij]
− 1

2N

∑
i∈V

∑
j∈V−i

(PβN)ijĒ[∂z3`ij]∑
j∈V−i

Ē[−∂z2`ij]

=
1

2N

∑
i∈V

∑
j∈V−i

(PβN)ij
{

2(∂zpij)(∂zHij) +Hij(∂z2pij)
}∑

j∈V−i
Hij(∂zpij)

+
1

2N

∑
j∈V

∑
i∈V−j

(PβN)ij
{

2(∂zpij)(∂zHij) +Hij(∂z2pij)
}∑

i∈V−j
Hij(∂zpij)

.

Lemma C.6 (Linear representation of T oracle
N ). Under Assumption 1

SN − ĒSN = N
∑

ij∈E(N)

βNijHij(Yij − pij) + op

(√
v̄ar(SN)

)
and

v̄ar(SN) = N2
∑

ij∈E(N)

{
p1,ij

(
Hijβ

N
ij

)2

+ ρ̃ij
√
p1,ijp1,ji

(
HijHjiβ

N
ijβ

N
ji

)}
+Op

(
N3
)
.

Proof. We start by computing the conditional variance of SN . Since triangles β and β′ are
conditionally independent provided that V (β) ∩ V (β′) = ∅ we have

Ē
[
(Aβ − ĒAβ)(Aβ′ − ĒAβ′)

]
= 0
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for such triangles. Now,

v̄ar(SN) =Ē
( ∑
β∈B(N)

(
Aβ − ĒAβ

))2

=
∑

β,β′∈B2(N)
|V (β)∩V (β′)|=2

(
Aβ − ĒAβ

)(
Aβ′ − ĒAβ′

)
+HN

=
∑

ij∈E(N)

( ∑
β,β′3ij

|V (β)∩V (β′)|=2

pT−ij(β)pT−ij(β
′)Ē
[
(Yij − pij)2

]

+
∑

β∈ij,β′3ji
|V (β)∩V (β′)|=2

pT−ij(β)pT−ji(β
′)Ē [(Yij − pij)(Yji − pji)]

)
+HN

=
∑

ij∈E(N)

(
p1,ij

(∑
β3ij

pT−ij(β)

)2

+ ρ̃ij
√
p1,ijp1,ji

(∑
β3ij

pT−ij(β)

)(∑
β3ji

pT−ji(β)

))
+H∗N

where HN is the contribution of triangle pairs that share the same vertex set and

H∗N = HN +
∑

ij∈E(N)

∆N,ij

with

∆N,ij =p1,ij

∑
β,β′3ij

|V (β)∩V (β′)|=2

pT−ij(β)pT−ij(β
′) + ρ̃ij

√
p1,ijp1,ji

∑
β,β′3ij

|V (β)∩V (β′)|=2

pT−ij(β)pT−ji(β
′)

− p1,ij

(∑
β3ij

pT−ij(β)

)2

− ρ̃ij
√
p1,ijp1,ji

(∑
β3ij

pT−ij(β)

)(∑
β3ji

pT−ji(β)

)

Clearly, HN is of order Op(N
3). Each ∆N,ij can be bounded by N times a universal constant.

Therefore, H∗N is Op(N
3) as well. The assumption of non-vanishing linking probabilities

ensures that v̄ar(SN) � N4. We now consider the Hajek projection ŜN of SN − ĒSN onto
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dyads, i.e.

ŜN =
∑

ij∈V 2(N)

Ē
[
(SN − ĒSN) | Yij, Yji

]
=
∑

β∈B(N)

∑
ij∈E(N)

Ē
[
(Aβ − ĒAβ) | Yij

]
=

∑
ij∈E(N)

{
(Yij − pij)

∑
β3ij

pT−ij(β)
}
.

Here, the second equality uses that every transitive triangle β may contain the link ij or ji
but not both. We now compute the conditional variance of ŜN :

v̄ar(ŜN) =
∑

ij∈V 2(N)

Ē
{

(Yij − pij)
∑
β3ij

pT−ij(β) + (Yji − pji)
∑
β3ji

pT−ji(β)

}2

=
∑

ij∈E(N)

{
p1,ij

(∑
β3ij

pT−ij(β)

)2

+ ρ̃ij
√
p1,ijp1,ji

(∑
β3ij

pT−ij(β)

)(∑
β3ji

pT−ji(β)

)}
.

From the previous results it is easy to see that

v̄ar(SN − ĒSN)

v̄ar(ŜN)
=

v̄ar(SN)

v̄ar(ŜN)
→ 1.

We now apply a conditional version of Theorem 11.2 in van der Vaart (2000). To prove
the conditional version of the theorem simply replace the convergence in squared mean
argument in the proof given in van der Vaart (2000) by an analogous squared condtional
mean argument. It follows that

SN − ĒSN = ŜN + op

(√
v̄ar(SN)

)
= ŜN + op(N

2).

Lemma C.7 (Sparse bounded functionals of the incidental parameter I). Let K denote a
finite constant and let (πk)

K
k=1 denote a collection of N-dimensional parameters. Define

π = (π′1, . . . ,π
′
K)′. Let {gij}i<j denote an an array of functions such that

gij(π) = gij(π1,i, . . . , πK,i, π1,j, . . . , πK,j)

with
‖∂π`gij(π)‖max ≤ C for ` = 0, 1, 2, 3
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for a universal constant C. Let

g(π) =
1

N

∑
i<j

gij(π).

Then

(i) ‖∂πg(π)‖q = Op

(
N

1
q

)
, moreover, if

1

N

∑
i

∣∣∣∣ 1√
N

∑
j∈V
j>i

∂πk,1gij(π)

∣∣∣∣q +
1

N

∑
i

∣∣∣∣ 1√
N

∑
j∈V
j<i

∂πk,2gji(π)

∣∣∣∣q = Op (1)

then ‖∂πg(π)‖q = Op

(
N−

1
2

+ 1
q

)
.

(ii) Moreover, ‖∂π2g(π)‖q = Op (1) and ‖∂π3g(π)‖q = Op (1) .

(iii) For a σ-field A let Ē = E[· | A]. Suppose that conditional on A the elements of the
arrays (∂πi,1πj,2gij)

N
i,j=1 and (∂πi,2πj,1gji)

N
i,j=1 are independent. Then∥∥∂π2g(π)− Ē

[
∂π2g(π)

]∥∥ = Op

(
N−3/8

)
.

Proof. First proof (i). Note that

∂πk,ig(π) =
1

N

∑
j∈V
j>i

∂πk,1gij(π) +
1

N

∑
j∈V
j<i

∂πk,2gji(π).

By definition of the ‖·‖q-norm and the Minkowski inequality,

‖∂πg(π)‖q ≤

(
KN∑
`=1

|∂π`
g(π)|q

) 1
q

≤

 K∑
k=1

N∑
i=1

∣∣∣ 1

N

∑
j∈V
j>i

∂πk,1gij(π)
∣∣∣q


1
q

+

 K∑
k=1

N∑
i=1

∣∣∣ 1

N

∑
j∈V
j<i

∂πk,2gji(π)
∣∣∣q


1
q

.

To prove the first claim of (ii) note that

∂πk,iπ`,ig(π) =
1

N

∑
j∈V
j>i

∂πk,1π`,1gij(π) +
1

N

∑
j∈V
j<i

∂πk,2π`,2gji(π)
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and for j 6= i

∂πk,iπ`,jg(π) =

{
1
N
∂πk,1π`,2gij(π) for j > i

1
N
∂πk,2π`,1gji(π) for j < i

.

Every element πs of the parameter vector π corresponds to a unique πk,i. Use the notation
πs = πk(s),i(s). For every 1 ≤ s ≤ KN

KN∑
t=1

|[∂π2g(π)]s,t| =
1

N

K∑
`=1

∣∣∣∣ ∑
j∈V
j>i(s)

∂πk(s),1π`,1gi(s)j(π) +
∑
j∈V
j<i(s)

∂πk(s),2π`,2gji(s)(π)

∣∣∣∣
+

1

N

K∑
`=1

{ ∑
j∈V
j>i(s)

∣∣∣∂πk(s),1π`,2gi(s)j(π)
∣∣∣+

∑
j∈V
j<i(s)

∣∣∣∂πk(s),2π`,1gji(s)(π)
∣∣∣ }

≤2KC.

By the symmetry of partial derivatives

KN∑
s=1

|[∂π2g(π)]s,t| =
KN∑
s=1

|[∂π2g(π)]t,s| ≤ 2KC.

It follows that

‖∂π2g(π)‖∞ = max
1≤s≤KN

KN∑
t=1

|[∂π2g(π)]s,t| ≤ 2KC

‖∂π2g(π)‖1 = ‖∂π2g(π)′‖∞ = max
1≤t≤KN

KN∑
s=1

|[∂π2g(π)]s,t| ≤ 2KC.

By Lemma S.4 in FVW

‖∂π2g(π)‖q ≤ ‖∂π2g(π)‖
1
q

1 ‖∂π2g(π)‖
1− 1

q
∞ ≤ 2KC.

Turning to the second claim of (ii) note that for {k, `,m} ⊂ {1, . . . , K}

∂πk,iπ`,iπm,i
g(π) =

1

N

∑
j∈V
j>i

∂πk,1π`,1πm,1gij(π) +
1

N

∑
j∈V
j<i

∂πk,2π`,2πm,2gji(π)
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and for i 6= j

∂πk,iπ`,iπm,j
g(π) =

{
1
N
∂πk,1π`,1πm,2gij(π) for j > i

1
N
∂πk,2π`,2πm,1gji(π) for j < i

.

For i1, i2, i3 ∈ V such that {i1} ∩ {i2} ∩ {i3} = ∅ we have

∂πk,i1π`,i2πm,i3
g(π) = 0.

For convenience of notation, define the tensor D with

D =
(
∂πk(s1),i(s1)πk(s2),i(s2)πk(s3),i(s3)g(π)

)
s1,s2,s3∈{1,...,KN}

.

Also, let P(e1, . . . , en) denote the set of all permutations of the finite tupel (e1, . . . , en) and
let Ck(e1, . . . , en) denote all k-combinations from the finite set {e1, . . . , en}. Use∑

s1,s2,s3
i=(i1,i2,i3)
k=(`1,`2,`3)

as a shorthand for
∑

s1,s2,s3
i(s1)=i1,i(s2)=i2,i(s3)=i3
k(s1)=`1,k(s2)=`2,k(s3)=`3

.

As in the proof of Lemma S.5 in FVW exploit that the ‖·‖q vector norm is dual to the
‖·‖ q

q−1
vector norm

‖D‖q = max
‖u(1)‖ q

q−1
=1

max
‖u(2)‖

q
=1

max
‖u(3)‖

q
=1

∣∣∣∣ KN∑
s1,s2,s3=1

u(1)
s1
u(2)
s2
u(3)
s3
Ds1,s2,s3

∣∣∣∣
≤

∑
(`1,`2,`3)∈C3(1,...,K)

D(`1,`2,`3)
s1,s2,s3

,
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with

D(`1,`2,`3)
s1,s2,s3

= max
‖u(1)‖ q

q−1
=1

max
‖u(2)‖

q
=1

max
‖u(3)‖

q
=1

∣∣∣∣ N∑
i=1

∑
s1,s2,s3
i=(i,i,i)

k=(`1,`2,`3)

u(1)
s1
u(2)
s2
u(3)
s3
Ds1,s2,s3

∣∣∣∣
+ max
‖u(1)‖ q

q−1
=1

max
‖u(2)‖

q
=1

max
‖u(3)‖

q
=1

∣∣∣∣ N∑
i,j=1
i 6=j

∑
s1,s2,s3
i=(i,i,j)

k=(`1,`2,`3)

u(1)
s1
u(2)
s2
u(3)
s3
Ds1,s2,s3

∣∣∣∣
+ max
‖u(1)‖ q

q−1
=1

max
‖u(2)‖

q
=1

max
‖u(3)‖

q
=1

∣∣∣∣ N∑
i,j=1
i 6=j

∑
s1,s2,s3
i=(i,j,i)

k=(`1,`2,`3)

u(1)
s1
u(2)
s2
u(3)
s3
Ds1,s2,s3

∣∣∣∣
+ max
‖u(1)‖ q

q−1
=1

max
‖u(2)‖

q
=1

max
‖u(3)‖

q
=1

∣∣∣∣ N∑
i,j=1
i 6=j

∑
s1,s2,s3
i=(j,i,i)

k=(`1,`2,`3)

u(1)
s1
u(2)
s2
u(3)
s3
Ds1,s2,s3

∣∣∣∣
=E1 + E2 + E3 + E4.

Let

d(`1,`2,`3) =
(
∂π`1,iπ`2,iπ`3,ig(π)

)
i=1,...,N

.

Then

E1 ≤ max
ũ(1)∈RN ,‖ũ(1)‖ q

q−1
≤1

max
ũ2∈RN ,‖ũ(2)‖

q
≤1

∣∣∣∣ N∑
i,j=1

ũ
(1)
i ũ

(2)
j

[
diag

(
d(`1,`2,`3)

) ]
i,j

∣∣∣∣
=
∥∥diag

(
d(`1,`2,`3)

)∥∥
q

≤
∥∥diag

(
d(`1,`2,`3)

)∥∥ 1
q

1

∥∥diag
(
d(`1,`2,`3)

)∥∥1− 1
q

∞

=
∥∥diag

(
d(`1,`2,`3)

)∥∥
∞ = max

i∈V

∣∣∣[diag
(
d(`1,`2,`3)

)]
i,i

∣∣∣
To see why the first inequality holds construct feasible values of ũ(1) and ũ(2) from feasible
values of u(1), u(2), u(3) in the following way. To determine the i’s element of ũ(1) find the
unique elements u

(1)
s1 and u

(2)
s2 such that k(s1) = `1, k(s2) = `2 and i(s1) = i(s2) = i. Then

let ũ
(1)
i = u

(1)
s1 u

(2)
s2 . Note that

∥∥u(2)
∥∥
q

= 1 implies
∥∥u(2)

∥∥
max
≤ 1 and therefore

∥∥ũ(1)
∥∥

q
1−q

≤ 1.

Also, to determine the j’s element of ũ(2) find the unique element u
(3)
s3 such that k(s3) = `3

and i(s3) = j. Note that
∥∥u(3)

∥∥
q

= 1 implies
∥∥ũ(2)

∥∥
q
≤ 1. The second inequality follows by

Lemma S.4 in FVW and the last two equalities follows from the diagonal structure of the
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matrix whose norm we are considering. Therefore,

E1 ≤max
i∈V

∣∣∣[diag
(
d(`1,`2,`3)

)]
i,i

∣∣∣
= max

i∈V

∣∣∂πk,iπ`,iπm,i
g(π)

∣∣
= max

i∈V

∣∣∣∣ 1

N

∑
j∈V
j>i

∂πk,1π`,1πm,1gij(π) +
1

N

∑
j∈V
j<i

∂πk,2π`,2πm,2gji(π)

∣∣∣∣ ≤ C.

Let

e(`1,`2,`3) =
(
∂π`1,iπ`2,iπ`3,jg(π)

)
i,j=1,...,N

.

Then

E2 ≤ max
ũ(1)∈RN ,‖ũ(1)‖ q

q−1
≤1

max
ũ2∈RN ,‖ũ(2)‖

q
≤1

∣∣∣∣ N∑
i,j=1

ũ
(1)
i ũ

(2)
j e

(`1,`2,`3)
i,j

∣∣∣∣
=
∥∥e(`1,`2,`3)

∥∥
q

≤
∥∥e(`1,`2,`3)

∥∥ 1
q

1

∥∥e(`1,`2,`3)
∥∥1− 1

q

∞

=

{
max
j∈V

∣∣∣∣∑
i∈V

e
(`1,`2,`3)
i,j

∣∣∣∣} 1
q
{

max
i∈V

∣∣∣∣∑
j∈V

e
(`1,`2,`3)
i,j

∣∣∣∣}1− 1
q

.

≤
{

max
j∈V

∣∣∣∣ 1

N

∑
i∈V
i<j

∂πk,1π`,1πm,2gij(π) +
1

N

∑
i∈V
i>j

∂πk,2π`,2πm,1gji(π)

∣∣∣∣} 1
q

×
{

max
i∈V

∣∣∣∣ 1

N

∑
j∈V
j>i

∂πk,1π`,1πm,2gij(π) +
1

N

∑
j∈V
j<i

∂πk,2π`,2πm,1gji(π)

∣∣∣∣}1− 1
q

≤ C.

The first inequality can be argued similarly to the argument for the bound on E1. The
second inequality follows, again, from Lemma S.4 in FVW. The same bound can be derived
for E3 and E4 in a similar way. In summary,

‖D‖q ≤
∑

(`1,`2,`3)∈C3(1,...,K)

D(`1,`2,`3)
s1,s2,s3

≤ 4K3C,

concluding the proof of (ii). For (iii), write G11,k`
π2 for the diagonal matrix with entries(

G̃11,k`
π2

)
i,i

= ∂πk,iπ`,ig(π)− Ē
[
∂πk,iπ`,ig(π)

]
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and G12,k`
π2 for the matrix with entries

(
G̃12,k`

π2

)
i,j

=

{
∂πk,iπ`,jg(π)− Ē

[
∂πk,iπ`,jg(π)

]
for i 6= j

0 for i = j
.

Now, we can write for a constant CK,8 depending only on K

∥∥∂π2g(π)− Ē
[
∂π2g(π)

]∥∥8 ≤

(
K∑

k,`=1

{∥∥∥G̃11,k`
π2

∥∥∥+ 2
∥∥∥G̃12,k`

π2

∥∥∥})8

≤CK,8
(∥∥∥G̃11,k`

π2

∥∥∥8

+
∥∥∥G̃12,k`

π2

∥∥∥8
)
.

Fix k, ` ∈ {1, . . . , K}. Let

g̃ij = ∂πk,1π`,1gij − Ē
[
∂πk,1π`,1gij

]
,

g̃ji = ∂πk,2π`,2gji − Ē
[
∂πk,2π`,2gji

]
.

As G̃11,k`
π2 is a diagonal matrix

Ē
∥∥∥G̃11,k`

π2

∥∥∥8

=Ē
(

max
i∈V

∣∣∣∣[G̃11,k`
π2

]
i,i

∣∣∣∣ )8

≤
∑
i∈V

Ē
∣∣∣∣[G̃11,k`

π2

]
i,i

∣∣∣∣8 .
Then,

Ē
[
G̃11,k`

π2

]8

i,i
≤ 27Ē

(
1

N

∑
j∈V,j>i

g̃ij

)8

+ 27Ē

(
1

N

∑
j∈V,j<i

g̃ji

)8

= Op

(
N−4

)
.

To prove the claim about the stochastic order of the right-hand side consider expanding

Ē
(∑

j∈V,j>i g̃ij

)8

(the argument for the second term is similar). A typically term in the

expansion will look like Ēg̃ij1 g̃ij2 g̃ij3 g̃ij4 . The boundedness assumption gives us a universal
upper bound on this term. By conditional independence and Ēg̃ik = 0, whenever there is a
m = 1, . . . , 4 such that jm ∩ {jn : n = 1, . . . , 4;n 6= m} = ∅ we will have Ēg̃ij1 g̃ij2 g̃ij3 g̃ij4 = 0.
The set of permissable j1, . . . , j4 that do not have one distinct index has cardinality less
than

(
N
3

)
. Now, we can conclude that

Ē
∥∥∥G̃11,k`

π2

∥∥∥8

= Op

(
N−3

)
.
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Next, let’s turn to bounding Ē
∥∥∥G̃12,k`

π2

∥∥∥8

. Let

ĝij = N
(
∂πk,1π`,2gij − Ē

[
∂πk,1π`,2gij

])
,

ĝji = N
(
∂πk,2π`,1gji − Ē

[
∂πk,2π`,1gji

])
.

We will apply Lemma S.6 in FVW. Note that the assertion of this lemma remains true if Eφ
is replaced by Ē and independence conditional on φ is replaced by independence conditional
on A. This can easily be seen by inspection of their proof. Let e denote the matrix with
entries

(e)i,j =
[
NG̃12,k`

π2

]
i,j

Let σ̄2
i = 1

N

∑N
j=1 Ēe2

i,j. Since there is a bound on the second derivative of gij there is a
universal constant C such that

σ̄2
i ≤

2

N

{∑
j∈V
i<j

ĝ2
ij +

∑
j∈V
i>j

ĝ2
ji

}
≤ N.

Therefore, 1
N

∑N
i=1 (σ̄2

i )
4

= Op(1). Let Ω denote the matrix with entries (Ω)j1,j2 =
1
N

∑N
i=1 Ē(ei,j1ei,j2). Under our boundedness assumptions ‖Ω‖max ≤ C and therefore33

1

N
Tr(Ω4) ≤ ‖Ω‖4 ≤ ‖Ω‖4

max .

Let ηi1,i2 = 1√
N

∑N
j=1

[
ei1,jei2,j − Ē(ei1,jei2,j)

]
. By conditional independence

Ē(η4
i1,i2

) =
1

N2

N∑
j1,j2=1

Ē
[
(ei1,j1ei2,j1 − Ē(ei1,j1ei1,j1))(ei1,j2ei2,j2 − Ē(ei1,j2ei1,j2))

]
≤
(

2

N

N∑
j=1

Ē(ei1,j)
2Ē(ei2,j)

2

)2

≤ C

and therefore 1
N

∑N
i=1 Ē(η4

i,i) = Op(1) and 1
N2

∑N
i1,i2=1 Ē

(
η4
i1,i2

)
= Op(1). Thus, Lemma S.6

is applicable and we can conclude that Ē ‖e‖ = Op

(
N5/8

)
or, equivalently, Ē

∥∥∥G̃12,k`
π2

∥∥∥ =

33For every symmetric N ×N matrix M we have 1
N Tr(M2) ≤ ‖M‖2. To prove this, consider a slightly

more general case and let A, B denote symmetric N ×N matrices with eigenvalues α1 ≤ · · · ≤ αN and
β1 ≤ · · · ≤ βN , respectively. By the von-Neumann trace inequality, Tr(AB) ≤

∑N
i=1 αiβi. For symmetric

square matrices it is well-known that ‖A‖ = αN and ‖B‖ = βN . Therefore, Tr(AB) ≤ N ‖A‖ ‖B‖. For

any square matrix Ω, M = Ω′Ω is symmetric. Therefore, 1
N Tr(Ω′ΩΩ′Ω) ≤ ‖Ω′Ω‖2 ≤ ‖Ω‖2 ‖Ω′‖2. The

first inequality now follows from noting that Ω as defined above is symmetric.
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Op

(
N−3/8

)
. In summary, we have shown that

Ē
∥∥∂π2g(π)− Ē

[
∂π2g(π)

]∥∥ = Op

(
N−3/8

)
.

This implies ∥∥∂π2g(π)− Ē
[
∂π2g(π)

]∥∥ = Op

(
N−3/8

)
,

concluding the proof of (iii).

Lemma C.8 (Sparse bounded functionals of the incidental parameter II). Let K denote a
finite constant and let (πk)

K
k=1 denote a collection of N-dimensional parameters. Define

π = (π′1, . . . ,π
′
K)′. Let {gi1,...,iL}i1<···<iL denote an array of functions such that

gi1,...,iL(π) = gi1,...,iL(π1,i1 , . . . , πK,i1 , . . . , π1,iL , . . . , πK,iL)

with
‖∂π`gi1,...,iL(π)‖max ≤ C for ` = 0, 1, 2, 3

for a universal constant C. Let

g(π) =
1

NL−1

∑
i1<···<iL

gi1,...,iL(π).

Then ‖∂πg(π)‖q = Op

(
N−

1
q

)
, ‖∂π2g(π)‖q = Op(1) and ‖∂π3g(π)‖q = Op(1).

Proof. The proof is very similar to that of Lemma C.7. For example,

∂πk,i
g(π) =

∑
i<i1<···<iL

∂πk,i
gi1,...,iL(π)

+
∑

i1<i<i3<···<iL

∂πk,i
gi1,...,iL(π) + · · ·+

∑
i1<···<iL−1<i

∂πk,i
gi1,...,iL(π).

Therefore, there is a constant C such that

‖∂πg(π)‖q ≤

(
KN∑
`=1

|∂π`
g(π)q|

) 1
q

≤

(
1

NL−1

K∑
k=1

∑
i1<···<iL

L∑
`=1

∣∣∣∂πk,i`
gi1,...,iL(π)

∣∣∣q) 1
q

<C(KLN)
1
q .

Lemma C.9 (Symmetric functions). Define a class of symmetric functions,

G =
{
g : R2 → R | g(z1, z2) = g(z2, z1)

}
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The function class G is closed under multiplication and addition , i.e.,

g, h ∈ G ⇒gh ∈ G
g, h ∈ G ⇒g + h ∈ G.

If g ∈ G is (partially) differentiable in the first component, then g is also differentiable in
the second component and

∂1g(z1, z2) = ∂2g(z2, z1).

Moreover, if g ∈ G is twice (partially) differentiable in the first component, then g is also
twice differentiable in the second component and

∂22g(z1, z2) = ∂11g(z2, z1),

∂21g(z1, z2) = ∂12g(z2, z1).

Let φ denote a scalar parameter and let Bε denote an open ball on the real line. Suppose
that g(z1, z2, φ) ∈ G for all φ ∈ Bε and that g is differentiable in φ on Bε. Then,

∂φg(z1, z2, φ) ∈ G for φ ∈ Bε.

Proof. Suppose that g ∈ G is differentiable in the first component. Then

∂1g(z1, z2) = lim
δ→0

g(z1 + δ, z2)− g(z1, z2)

δ
= lim

δ→0

g(z2, z1 + δ)− g(z2, z1)

δ
= ∂2g(z2, z1).

Existence of the limit on the right-hand side follows from existence of the limit on the
left-hand side. Furthermore,

∂22g(z1, z2) =
d

dz2

(
∂2g(z1, z2)

)
=

d

dz2

(
∂1g(z2, z1)

)
= ∂11g(z2, z1).

The claim about the cross-derivative follows in a similar way. The last claim follows by
noting that

∂φg(z1, z2, φ) = lim
δ→0

g(z1, z2, φ+ δ)− g(z1, z2, φ)

δ

= lim
δ→0

g(z2, z1, φ+ δ)− g(z2, z1, φ)

δ
= ∂φg(z2, z1, φ).

Lemma C.10. For a function g : R3 → R write gij = g(Zij, Zji, YijYji). Let

G(γ) =
∑
i<j

gij =
∑
i<j

g(Zij, Zji, YijYji).
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Define the matrix A = (Aij)i,j∈V where

Aij =


∂1g(Zij, Zji, YijYji) if i < j

∂2g(Zji, Zij, YijYji) if i > j

0 if i = j

.

Then

∂γG(γ) =

[
A ιN
A′ ιN

]
.

Proof. This follows from a straightforward inspection. In particular,

∂γSi G =
∑
j∈V
j>i

∂1g(Zij, Zji, YijYji) +
∑
j∈V
j<i

∂2g(Zji, Zij, YijYji)

=
∑
j∈V−i

{
1{i<j}∂1g(Zij, Zji, YijYji) + 1{i>j}∂2g(Zji, Zij, YijYji)

}
=
∑
j∈V−i

Aij

and

∂γRj G =
∑
i∈V
i<j

∂1g(Zij, Zji, YijYji) +
∑
i∈V
i>j

∂2g(Zji, Zij, YijYji)

=
∑
i∈V−j

{
1{i<j}∂1g(Zij, Zji, YijYji) + 1{i>j}∂2g(Zji, Zij, YijYji)

}
=
∑
i∈V−j

Aij.

Lemma C.11. Under Assumption 1(i) and Assumption 1(v)

∂ργM =

[
AιN
A′ιN

]
where A is a N ×N matrix with entries

Ai,j =

{
∂ρy1mij for i 6= j

0 for i = j.

Moreover,

∂ργM =

[
ĀιN
Ā′ιN

]
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where Ā is a N ×N matrix with entries

Āi,j =

{
∂ρy1m̄ij = −Jij(∂z1rij) for i 6= j

0 for i = j.

Proof. We will apply Lemma C.10 with gij = ∂ρmij. Lemma C.10 gives that

∂ργM =

[
AιN
A′ιN

]
,

where A is a N ×N matrix with entries

Ai,j =


∂ρz1mij for i < j

∂ρz2mji for i > j

0 for i = j.

It remains to show that ∂ρz2mji = ∂ρz1mij. By construction rij is a symmetric function
in the sense of Lemma C.9. Repeated application of Lemma C.9 shows that Jij is also a
symmetric function and therefore ∂z2Jji = ∂z1Jij by Lemma C.9. Similary, one can show
that ∂z2(Jjirji) = ∂z1(Jijrij). The second assertion is proved similarly.

Lemma C.12. Let A denote a σ-field and let EA denote the expectation operator conditional
on A. Let (Yi,j, Yj,i)i,j=1,...,n denote an array of random tuples that are mutually independent
conditional on A and satisfy EA |Yi,j|4 ≤ C for a constant C. Suppose that EAYi,j = 0 for
i, j = 1, . . . , n and let Υ denote the matrix random entries (Υ)i,j = Yi,j. Let M denote a
matrix with A-measurable random entries such that ‖M‖max = Op(n

−1) and let D denote a
diagonal matrix with with A-measurable random entries such that ‖D‖max = Op(1). Then
for A,B ∈ {Υ,Υ′}

1′nA
′MB1n = Op(n),

1′nA
′DB1n = EA[1′nA

′DB1n] +Op

(
n3/2

)
=

n∑
i,j=1

(D)i,iEA[ai,jbi,j] +Op

(
n3/2

)
.

Proof. To prove the first statement note that

n 1′nA
′MB1n =

n∑
i,j,k,`=1

aikb`j[nmk,`]

For κ = 3, 4 let

Pκ(i1, . . . , iκ) = {(j1j2, . . . , j2κ−1j2κ) : j1, . . . , j2κ ∈ {i1, . . . , iκ}}
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the set of all 4-tuples of index pairs that can be generated from a given set of four (not
necessarily distinct) indices i1, . . . , iκ. Conditional independence and the zero mean property
of the Yi,j yields

EA[n 1′nA
′MB1n]2 =

n∑
i,j,k,`=1

∑
(p1,...,p4)∈P4(i,j,k,`)

[nm]p12p21 [nm]p32p41EA[ap1bp2ap3bp4 ]

≤C
n∑

i,j,k,`=1

∑
(p1,...,p4)∈P4(i,j,k,`)

[nm]p12p21 [nm]p32p41 = Op(n
4),

where the inequality follows from Cauchy-Schwarz. The first claim follows now immediately.
To prove the second claim note that

1′nA
′DB1n =

n∑
i,j,k=1

aijbikdii.

Taking the squared expectation gives

EA[1′nA
′DB1n]2 =

n∑
i,j,k=1

∑
(p1,...,p3)∈P3(i,j,k)

dp11p11dp31p31EA[ap1bp2ap3bp4 ] = Op(n
3).

It follows that 1′nA
′MB1n = EA[1′nA

′MB1n] +Op(n
3/2). Finally, it is easy to see that

EA[1′nA
′MB1n] =

n∑
i,j,k=1

diiEA[aijbik] =
n∑

i,j=1

diiEA[aijbij].

D. Bootstrap protocol for percentile bootstrap of T̂ stud
N

The following bootstrap protocol is a variation of the double bootstrap procedure in Kim
and Sun (2016). Draw B times from the bootstrap distribution as follows:

1. Draw
(
N
2

)
independent pairwise bootstrap shocks {(U∗ij, U∗ji)}i,j∈V

i<j
from the bivariate

normal distribution with marginal variance equal to one and covariance ρ̂.

2. The bootstrapped network is given by {Y ∗ij}ij∈E(N) where

Y ∗ij = 1
(
X ′ij θ̂ + γ̂Si + γ̂Rj ≥ U∗ij

)
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3. Estimate θ∗ and γ∗ = (γS,0,∗i , γS,0,∗i )i∈V on the bootstrapped network using the first
stage of the ML procedure from Section 2.2.

4. Compute
(
T̂ stud
N

)∗
on the bootstrapped network, using θ∗ and γ∗ as inputs for the

plug-in estimators.

This gives a vector of draws {
(
T̂ stud
N

)∗}j=1,...,B. Let tα/2 and t1−α/N denote the empirical

α/2 and 1−α/2 quantiles of {
(
T̂ stud
N

)∗}j=1,...,B. The transitivity test with bootstrap critical

values rejects if T̂ stud
N /∈ [t∗α/N , t

∗
1−α/2].

E. Network statistics for simulated designs

in-degree out-degree

N ρ CN density mean median mean median comp min cut clust

50 0.0 log logN 0.19 9.50 9.16 9.50 9.14 1.00 1.51 0.57

50 0.0 log1/2N 0.12 5.65 4.97 5.65 4.92 0.90 0.00 0.47

50 0.0 2 log1/2N 0.06 3.05 2.06 3.05 2.04 0.62 0.00 0.42
50 0.0 logN 0.03 1.57 0.45 1.57 0.50 0.35 0.00 0.40
50 0.5 log logN 0.19 9.50 9.18 9.50 9.16 1.00 1.52 0.51

50 0.5 log1/2N 0.12 5.67 4.96 5.67 4.94 0.91 0.00 0.42

50 0.5 2 log1/2N 0.06 3.05 2.03 3.05 2.04 0.63 0.00 0.38
50 0.5 logN 0.03 1.58 0.52 1.58 0.51 0.37 0.00 0.36
70 0.0 log logN 0.18 12.56 12.03 12.56 12.00 1.00 1.95 0.56

70 0.0 log1/2N 0.11 7.50 6.43 7.50 6.42 0.93 0.00 0.47

70 0.0 2 log1/2N 0.06 3.99 2.52 3.99 2.56 0.67 0.00 0.43
70 0.0 logN 0.03 1.90 0.41 1.90 0.40 0.39 0.00 0.41
70 0.5 log logN 0.18 12.54 12.01 12.54 12.05 1.00 1.90 0.50

70 0.5 log1/2N 0.11 7.49 6.40 7.49 6.40 0.94 0.01 0.42

70 0.5 2 log1/2N 0.06 3.99 2.53 3.99 2.51 0.68 0.00 0.38
70 0.5 logN 0.03 1.89 0.39 1.89 0.41 0.40 0.00 0.37

Table E.1: Statistics for simulated networks under the null hypothesis (averaged over 500
replications): “comp” = share of agents belonging to the largest connected
component, “min cut” = minimum cut of the network, “clust” = clustering
coefficient.
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in-degree out-degree

N ρ CN density mean median mean median comp min cut clust

50 0.0 log logN 0.18 8.74 8.21 8.74 8.21 0.98 0.53 0.57

50 0.0 log1/2N 0.10 4.75 3.50 4.75 3.49 0.70 0.00 0.50

50 0.0 2 log1/2N 0.05 2.24 1.00 2.24 1.00 0.33 0.00 0.47
50 0.0 logN 0.02 1.13 0.00 1.13 0.00 0.18 0.00 0.48
50 0.5 log logN 0.18 8.74 8.21 8.74 8.20 0.98 0.50 0.56

50 0.5 log1/2N 0.10 4.77 3.54 4.77 3.56 0.70 0.00 0.49

50 0.5 2 log1/2N 0.05 2.26 0.98 2.26 1.01 0.34 0.00 0.46
50 0.5 logN 0.02 1.15 0.00 1.15 0.00 0.18 0.00 0.48
70 0.0 log logN 0.17 11.70 10.66 11.70 10.69 0.99 0.82 0.56

70 0.0 log1/2N 0.09 6.38 4.47 6.38 4.50 0.82 0.00 0.49

70 0.0 2 log1/2N 0.04 3.08 1.31 3.08 1.32 0.46 0.00 0.47
70 0.0 logN 0.02 1.43 0.00 1.43 0.00 0.21 0.00 0.49
70 0.5 log logN 0.17 11.69 10.67 11.69 10.65 0.99 0.82 0.55

70 0.5 log1/2N 0.09 6.40 4.55 6.40 4.55 0.82 0.00 0.48

70 0.5 2 log1/2N 0.04 3.09 1.30 3.09 1.34 0.46 0.00 0.46
70 0.5 logN 0.02 1.44 0.00 1.44 0.00 0.21 0.00 0.48

Table E.2: Statistics for simulated networks under the dynamic alternative (averaged over
500 replications): “comp” = share of agents belonging to the largest connected
component, “min cut” = minimum cut of the network, “clust” = clustering
coefficient.

F. Model specification test based on cyclic triangles

A model specification test based on cyclic triangles can be implemented similarly to the
specification test based on transitive triangles. The theory carries over in a straightforward
way. It is convenient to use notation that is similar to the notation used for the test based
on transitive triangles. To indicate that symbols refer to the test based on cyclic triangles,
I add a “◦” superscript. The set of all cyclic triangles is given by

B◦ = B◦(N) =
{
{(i, j), (j, k), (k, i)} : {i, j, k} ⊂ V (N), {i, j, k} = 3

}
.
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On N vertices, there are
(
N
3

)
cyclic triangles. Let

S◦N =
∑
β∈B◦

(∏
ij∈β

Yij

)

ÊS◦N =
∑
β∈B◦

(∏
ij∈β

p̂ij

)
,

denote the observed and the (estimated) predicted number of cyclic triangles, respectively.
Excess cyclic closure can be measured by

T ◦N = 6

(
S◦N − ÊS◦N

N3

)
.

Let

β◦,Nij =
1

HijN

∑
β∈B◦(N)
β3ij

∏
e∈β
e6=ij

pe.

The following result characterizes the asymptotic distribution of T ◦N . Similar to the the
corresponding result for transitive triangles (Theorem 3) it can be used to construct a
specification test based on cyclic closure (see Section 5.2).

Theorem 4 (Model specification test based on excess cyclic closure). Let

U◦N =
1

N2

∑
i∈V

∑
j∈V−i

β◦,Nij ωijX̃ij

and ũ◦N,ij = (U◦N)′W̄−1
1,NX̃ij and suppose that Assumption 1 holds. Then

NT ◦N + 6
(
BT ◦
N + (U◦N)′W̄−1

1,NB
θ
N

)√
vT
◦

N

= N (0, 36) + op(1),

where

vT
◦

N =
1

N2

∑
i∈V

∑
j∈V−i

{(
β̃
◦,N
ij − ũ◦N,ij

)2
ωij +

(
β̃
◦,N
ij − ũ◦N,ij

)(
β̃
◦,N
ji − ũ◦N,ji

)
ρ̃ij
√
ωijωji

}
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and BT ◦
N = BT ◦,S

N +BT ◦,R
N +BT ◦,SR

N with

BT ◦,S
N =

1

2N

∑
i∈V

∑
j∈V−i

Hij(∂z2pij)β̃
◦,N
ij∑

j∈V−i
ωij

BT ◦,R =
1

2N

∑
j∈V

∑
i∈V−j

Hij(∂z2pij)β̃
◦,N
ij∑

j∈V−i
ωij

BT ◦,SR
N =

1

N

∑
i∈V

corriN
−1
∑

j∈V−i

∑
k∈V−{j,k}(∂zpij)(∂zpji)pkj(∑

j∈V−i
ωij

)1/2(∑
j∈V−i

ωji

)1/2
.

Proof. The proof is analogous to the proof of Theorem 3 and is omitted.

G. Tables for application to favor networks

Variable Description

same caste i and j belong to the same caste
age diff absolute value of age difference between i and j
same family i and j belong to the same family
same latrine i and j both (don’t) live in a house with an own

latrine
same gender i and j have the same gender
both hh heads both i and j are household heads
same village native both i and j were born in the village
educ None-Some one of i and j has no education,

the other has finished primary education
educ None-SSLC one of i and j has no education,

the other has a obtained a SSL certificate
educ Some-SSLC one of i and j has finished primary education,

the other has obtained a SSL certificate

Table G.1: Description of variables measuring homophily (Xij).

Village N TN TN bc rel bias pval anal pval BS pval näıve pval näıve bc

1 203 4.2e-06 6.3e-06 -0.34 < 0.01 < 0.1 < 0.01 < 0.01
2 203 1.5e-06 4.8e-06 -0.69 < 0.01 < 0.1 0.025 < 0.01
3 345 8.5e-07 1.3e-06 -0.35 < 0.01 < 0.1 < 0.01 < 0.01
4 256 2e-06 3.4e-06 -0.41 < 0.01 < 0.1 < 0.01 < 0.01
5 164 1.5e-06 4.8e-06 -0.68 < 0.01 < 0.1 0.035 < 0.01
6 110 3.6e-06 1.3e-05 -0.73 < 0.01 < 0.1 0.23 < 0.01

Continued on next page
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Table G.2 – continued from previous page

Village N TN TN bc rel bias pval anal pval BS pval näıve pval näıve bc

7 172 1.1e-05 1.7e-05 -0.34 < 0.01 < 0.1 < 0.01 < 0.01
8 109 1.1e-05 3.6e-05 -0.69 < 0.01 < 0.1 0.099 < 0.01
9 247 2.9e-06 4.9e-06 -0.40 < 0.01 < 0.1 < 0.01 < 0.01
10 95 3.2e-06 1.5e-05 -0.79 < 0.01 < 0.1 0.5 < 0.01
11 142 5.4e-06 1.5e-05 -0.65 < 0.01 < 0.1 0.075 < 0.01
12 195 7.2e-06 1.2e-05 -0.40 < 0.01 < 0.1 < 0.01 < 0.01
14 150 1.2e-05 2.7e-05 -0.56 < 0.01 < 0.1 < 0.01 < 0.01
15 212 8.6e-07 4.3e-06 -0.80 < 0.01 < 0.1 0.18 < 0.01
16 178 6.6e-06 1.4e-05 -0.52 < 0.01 < 0.1 < 0.01 < 0.01
17 200 1.5e-06 4.7e-06 -0.69 < 0.01 < 0.1 0.086 < 0.01
18 284 4.8e-07 1.6e-06 -0.69 < 0.01 < 0.1 0.015 < 0.01
19 243 2.5e-06 5.2e-06 -0.52 < 0.01 < 0.1 < 0.01 < 0.01
20 159 6.7e-06 1.4e-05 -0.51 < 0.01 < 0.1 0.01 < 0.01
21 210 2.1e-06 6.1e-06 -0.65 < 0.01 < 0.1 < 0.01 < 0.01
23 280 2.6e-06 4e-06 -0.35 < 0.01 < 0.1 < 0.01 < 0.01
24 211 4.2e-06 1e-05 -0.60 < 0.01 < 0.1 < 0.01 < 0.01
25 304 1.3e-06 2.4e-06 -0.47 < 0.01 < 0.1 < 0.01 < 0.01
26 149 1.1e-05 2.1e-05 -0.50 < 0.01 < 0.1 < 0.01 < 0.01
27 174 1.6e-06 1.1e-05 -0.85 < 0.01 ≥ 0.1 0.13 < 0.01
28 395 6.6e-07 1.1e-06 -0.42 < 0.01 < 0.1 < 0.01 < 0.01
29 303 2.7e-06 4.6e-06 -0.42 < 0.01 < 0.1 < 0.01 < 0.01
30 170 1.2e-05 2.4e-05 -0.49 < 0.01 < 0.1 < 0.01 < 0.01
31 200 4.7e-06 9.7e-06 -0.51 < 0.01 < 0.1 < 0.01 < 0.01
32 301 1.2e-06 2.8e-06 -0.56 < 0.01 < 0.1 < 0.01 < 0.01
33 219 4.4e-06 7.4e-06 -0.40 < 0.01 < 0.1 < 0.01 < 0.01
34 181 1e-05 2e-05 -0.50 < 0.01 < 0.1 < 0.01 < 0.01
35 216 8.8e-06 1.5e-05 -0.43 < 0.01 < 0.1 < 0.01 < 0.01
36 293 6.1e-06 7.8e-06 -0.23 < 0.01 < 0.1 < 0.01 < 0.01
37 132 2.8e-05 4.1e-05 -0.31 < 0.01 < 0.1 < 0.01 < 0.01
38 182 1.5e-06 5.6e-06 -0.73 < 0.01 < 0.1 0.15 < 0.01
39 370 1.4e-06 2.8e-06 -0.49 < 0.01 < 0.1 < 0.01 < 0.01
40 266 1.4e-05 2e-05 -0.30 < 0.01 < 0.1 < 0.01 < 0.01
41 181 3.3e-05 4e-05 -0.16 < 0.01 < 0.1 < 0.01 < 0.01
42 206 8.9e-06 1.5e-05 -0.39 < 0.01 < 0.1 < 0.01 < 0.01
43 227 1.5e-05 1.7e-05 -0.14 < 0.01 < 0.1 < 0.01 < 0.01
44 258 1e-05 1.3e-05 -0.21 < 0.01 < 0.1 < 0.01 < 0.01
45 263 2.3e-06 4.5e-06 -0.49 < 0.01 < 0.1 < 0.01 < 0.01
46 279 1.2e-06 2.3e-06 -0.49 < 0.01 < 0.1 < 0.01 < 0.01
47 160 2e-06 7.3e-06 -0.73 < 0.01 < 0.1 0.16 < 0.01
48 217 4.9e-06 1.1e-05 -0.53 < 0.01 < 0.1 < 0.01 < 0.01
49 184 5.6e-06 1.2e-05 -0.54 < 0.01 < 0.1 < 0.01 < 0.01
50 261 1e-05 1.5e-05 -0.33 < 0.01 < 0.1 < 0.01 < 0.01
51 309 6.5e-06 1.1e-05 -0.43 < 0.01 < 0.1 < 0.01 < 0.01
52 395 3.6e-06 5.7e-06 -0.37 < 0.01 < 0.1 < 0.01 < 0.01
53 170 2.4e-05 4.4e-05 -0.46 < 0.01 < 0.1 < 0.01 < 0.01
54 124 7.9e-06 3.4e-05 -0.77 < 0.01 < 0.1 0.14 < 0.01

Continued on next page
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Table G.2 – continued from previous page

Village N TN TN bc rel bias pval anal pval BS pval näıve pval näıve bc

55 279 6e-06 1e-05 -0.42 < 0.01 < 0.1 < 0.01 < 0.01
56 148 2.7e-05 3.2e-05 -0.16 < 0.01 < 0.1 < 0.01 < 0.01
57 234 1.5e-06 2.3e-06 -0.37 < 0.01 < 0.1 < 0.01 < 0.01
58 210 2.1e-06 4.9e-06 -0.58 < 0.01 < 0.1 < 0.01 < 0.01
59 384 2.1e-06 3e-06 -0.32 < 0.01 < 0.1 < 0.01 < 0.01
60 413 1.1e-06 2e-06 -0.44 < 0.01 < 0.1 < 0.01 < 0.01
61 155 2.4e-05 3.8e-05 -0.37 < 0.01 < 0.1 < 0.01 < 0.01
62 242 7.7e-06 1.1e-05 -0.32 < 0.01 < 0.1 < 0.01 < 0.01
63 190 4.6e-06 9.2e-06 -0.50 < 0.01 < 0.1 < 0.01 < 0.01
64 294 4.7e-06 6.6e-06 -0.29 < 0.01 < 0.1 < 0.01 < 0.01
65 341 5.8e-06 1e-05 -0.43 < 0.01 < 0.1 < 0.01 < 0.01
66 189 3.2e-06 6.5e-06 -0.50 < 0.01 < 0.1 < 0.01 < 0.01
67 231 1.1e-06 3.6e-06 -0.68 < 0.01 < 0.1 < 0.01 < 0.01
68 164 -8.3e-07 6.9e-06 -1.12 < 0.01 < 0.1 0.47 < 0.01
69 220 1.4e-05 2.7e-05 -0.48 < 0.01 < 0.1 < 0.01 < 0.01
70 233 5.5e-06 9.4e-06 -0.42 < 0.01 < 0.1 < 0.01 < 0.01
71 298 4.3e-06 7.6e-06 -0.43 < 0.01 < 0.1 < 0.01 < 0.01
72 238 1.9e-06 4.2e-06 -0.56 < 0.01 < 0.1 < 0.01 < 0.01
73 217 5e-06 9.8e-06 -0.49 < 0.01 < 0.1 < 0.01 < 0.01
74 193 9e-06 1.6e-05 -0.42 < 0.01 < 0.1 < 0.01 < 0.01
75 210 8.3e-06 1.3e-05 -0.35 < 0.01 < 0.1 < 0.01 < 0.01
76 269 4.9e-06 7.8e-06 -0.37 < 0.01 < 0.1 < 0.01 < 0.01
77 172 9e-06 2e-05 -0.55 < 0.01 < 0.1 < 0.01 < 0.01

Table G.2: Transitivity tests for all village. TN is the estimated excess transitivity, “TN
bc” is the bias-corrected estimated excess transitivity, “rel bias” = (TN - TN
bc) / (TN bc), “pval anal” gives analytical p-value based on Theorem 1, “pval
BS” gives rejection based on BS critical value at nominal level α = 0.1, “pval
näıve” and “pval näıve bc” are p-values for the naiv̈e tests (with and without
bias correction) introduced in Section 5.2.

H. Derivatives of bivariate normal probabilities

Let U = (U1, U2)′ denote a bivariate random vector with zero-mean and covariance matrix

V =

[
1 ρ
ρ 1

]
where ρ is a parameter giving the correlation between the marginal normals. Let

r(y1, y2, ρ) = P (U1 ≤ y1, U2 ≤ y2)

49



The formula for conditional distributions of a joint normal gives

U2 | U1 ∼ N (ρU1, 1− ρ2).

By a conditioning argument

r(y1, y2, ρ) =P (U1 ≤ y1)P (U2 ≤ y2 | U1 ≤ y1)

=P (U1 ≤ y1)

∫ y1

−∞
P (U2 ≤ y2 | U1 = t)

φ(t)

Φ(t)
dt

=

∫ y1

−∞
Φ

(
y2 − ρt√

1− ρ2

)
φ(t) dt.

Then,

∂y1r(y1, y2, ρ) =Φ

(
y2 − ρy1√

1− ρ2

)
φ(y1)

and

∂y1ρr(y1, y2, ρ) =−
(

y1 − ρy2

(1− ρ2)3/2

)
φ

(
y2 − ρy1√

1− ρ2

)
φ(y1),

∂(y1)2r(y1, y2, ρ) =− ρ√
1− ρ2

φ

(
y2 − ρy1√

1− ρ2

)
φ(y1) + Φ

(
y2 − ρy1√

1− ρ2

)
φ′(y1)

=− ρ√
1− ρ2

φ

(
y2 − ρy1√

1− ρ2

)
φ(y1)− y1Φ

(
y2 − ρy1√

1− ρ2

)
φ(y1),

∂y1y2r(y1, y2, ρ) =
1√

1− ρ2
φ

(
y2 − ρy1√

1− ρ2

)
φ(y1).

Moreover,

∂ρr(y1, y2, ρ) =

∫ y1

−∞

(
ρy2 − t

(1− ρ2)3/2

)
φ

(
y2 − ρt√

1− ρ2

)
φ(t) dt.

The integral on the right-hand side can be solved numerically using the R function
integrate.34 For the case ρ = 0 no numerical integration is needed since

∂ρr(y1, y2, 0) = −φ(y2)

∫ y1

−∞
t φ(t) dt = φ(y1)φ(y2).

34I am grateful to Harry Joe for sharing his thoughts on how to compute this derivative in modern R.
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