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Abstract
Online social networks (OSNs) have become an important part of people’s lives
worldwide. Although users supply OSNs with large amounts of personal data, the
ability to control the audience of one’s own information is often limited to a number
of predefined and often unclear options. In this work, we introduce two formal
frameworks, T FPPF and RT FPPF , with the aim to develop a time-sensitive
formalization of evolving OSNs and the ways information spreads in them.

Both frameworks comprise three main components. First, a social network model
is introduced to capture an OSN, together with its users, the relationships between
them, and their knowledge bases, in a specific moment in time. Then, we define the
syntax and semantics of a temporal knowledge-based logic used to reason about
knowledge and learning in sequences of social network models representing the
evolution of an OSN. Finally, we define a formal privacy policy language, powered
by the knowledge-based logic, along with a conformance relation that determines
whether a policy is violated in a specific OSN.
T FPPF and RT FPPF differ in the notion of time they use. T FPPF utilizes

the standard � and ♦ temporal operators and is thus on the logic level able to
reason about time in a relative way. On the level of the privacy policy language, it
enables to write policies to be enforced in fixed time windows. On the other hand,
RT FPPF uses timestamps as a syntactic component on the logic level, allowing
for more complex formulae and privacy policies.

Both frameworks allow users to define fine-grained, time-sensitive privacy policies
based on formal logic, thus addressing the problem of privacy policy ambiguity in
OSNs. Moreover, the logic in each framework can also be used directly to reason
about knowledge in dynamic OSNs. Both frameworks constitute a step forward in
the area of OSN formalizations.

Keywords: privacy policy, social network, epistemic logic, real-time logic, tem-
poral logic, formal framework
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Chapter 1

Introduction

Online social networks (OSNs) such as Facebook and Twitter have become an im-
portant part of people’s lives worldwide. As much as 76% of all internet users in
the United States use at least one OSN nowadays, which corresponds to a nearly
tenfold increase from 2005 [27]. Another survey from 2015, targeting 32 different
countries across the globe, ranging from Kenya, to Russia, Brazil, Poland, India,
or Thailand, reports that the median of OSN users amounts to a similar number:
82% of adult internet users [18].1

Aside from helping make socializing number one internet activity [18], this pop-
ularity has also given rise to new concerns, the issue of preserving the privacy of
social network users being one of the most fundamental. Even though the right
to privacy is recognized as one of the basic human rights [29], OSN users are not
at all confident about their data staying private and secure. In a recent series of
interviews [22], only 11% of Americans believed their data was safe with social
media sites, compared to 69% of respondents who were “not too confident” or “not
at all confident”. On the other hand, 93% of adults in the same study felt it was
important to be able to control who was able to access information about them.

Although users provide OSNs with a great amount of personal data, the tools to
govern one’s own information offered by popular OSNs are limited, and sometimes
even options one can set turn out to be different from the user’s expectations.
A study from 2011 [21], which focused on Facebook, found that privacy settings
match the expectations of the users only 37% of the time, and when an instance
of this disparity between expectations and reality occurs, the resulting difference is
almost always undesirable: more content is exposed than expected, not the other
way around.

There are, however, ways to address the issue. One suggestion is to assist users
in managing their privacy, for instance by making OSNs such as Facebook more
sensitive to social groups by grouping users into communities [21].

A more general solution is to target privacy policies themselves and their ex-
1To be more specific about what we mean when we say OSNs: In the aforementioned surveys, when the

respondents were asked about their habits, the researchers most often gave Facebook and Twitter as the prime
examples of OSNs. In countries where local sites were also prominent, these were mentioned as well (for example,
VK in Russia and Renren in China).

More generally, we can adopt the definition in [10] by identifying three distinguishing characteristics of social
network sites. These require that users on the site: (a) have uniquely identifiable profiles consisting of data provided
by themselves, other users, and/or system, (b) can publicly articulate connections that can be viewed and traversed
by others, and (c) are able to consume, produce and/or interact with streams of user-generated content.
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pressive power and clarity. The authors of the formal privacy policy framework
FPPF ([26, 25]) see the option of richer and more fine-grained privacy policies
as a potential solution. In their framework, the user is given the opportunity to
define their privacy policy using logic, and the behavior of the social network with
respect to such policy can only be classified as being in compliance with it or not;
there is no middle ground, no uncertainty where the user has to hope their privacy
settings will work like they expect. Able to capture and work with virtually any
social network structure, the framework can be used as an alternative to current
privacy policies. This can be demonstrated by a working prototype implementing
some of the privacy policies in an open-source social network, with full integration
underway.

Writing privacy policies based on FPPF , as opposed to the few hard-coded op-
tions currently being provided by popular OSNs, is a huge improvement. However,
there are cases, interesting from the user’s perspective, where the capabilities of
FPPF fall short. One of these areas is the possibility of writing privacy policies
sensitive to real time. For instance, someone might want to prevent her boss from
knowing her whereabouts outside office hours. Or someone else might be interested
in hiding any photos of him taken on New Year’s Eve. Whatever their reason is,
we firmly believe that the users should have as much control over their private
data as possible. Allowing for even more fine-grained policies on top of FPPF , by
increasing their sensitivity to real time aspects, is a step closer to this goal.

1.1 Thesis Overview

Apart from the introduction (Chap. 1), the preliminaries and literature review
(Chap. 2), the discussion (Chap. 9), and the conclusion (Chap. 10), the thesis is
organized into two major parts.

Two standalone time-sensitive extensions of FPPF are introduced, each in a
separate part. Since the high-level structure of both frameworks is very similar,
each part is structured in the same way. There are three chapters, each describing
the three major components of each framework – the underlying OSN model, the
knowledge-based logic used to reason about agents and the information they possess,
and the privacy policy language, built atop the knowledge-based logic.

The first framework we propose, the timed first-order privacy policy framework
(T FPPF), uses a privacy policy language enhanced with time fields, which make
it possible to define a possibly recurring real-time window in which a policy should
be enforced. The knowledge-based logic of T FPPF utilizes the standard box and
diamond operators found in various temporal logics [17] to be able to reason about
time. T FPPF is introduced in Part I.

The second framework proposed in this thesis, the real-time first-order privacy
policy framework (RT FPPF), represents an alternative way of reasoning about
time in OSNs by incorporating timestamps representing a particular millisecond
right into the syntax of the knowledge-based logic. Privacy policies written using
the privacy policy language powered by the logic allow for even more fine-grained
and flexible policies which need not be constrained by a time window, but can, for
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example, react to events happening in the OSN. RT FPPF is described in Part II.

1.2 Scope
Our aim is to develop a time-sensitive formal framework. To this end we define a
number of formalisms, summarized in the next section. Compared to the previous
FPPF , we do not formalize the notion of OSN instantiation, nor do we introduce
any concrete operational semantics that transform one OSN model to another.
Formalization of what it means for a framework to be privacy preserving is also out
of scope of this thesis. Moreover, it is not our primary aim to explore the theoretical
properties of the formalisms in greater detail in this thesis; we mainly aim to utilize
them.

1.3 Contributions
The contributions presented in this thesis can be summarized as follows.

• Building on the existing framework FPPF , we define two standalone temporal
frameworks for OSNs: T FPPF in Part I and RT FPPF in Part II.

• A social graph-based OSN model is introduced for both frameworks to be able
to capture an OSN at a specific point in time, together with the knowledge and
relationships between its users. Additionally, we introduce the notion of OSN
evolution for both frameworks using traces, that is, sequences of OSN models.
The definitions and the properties of the models can be found in Chapter 3
for T FPPF and in Chapter 6 for RT FPPF .

• A temporal knowledge-based logic is defined for both frameworks. Together
with their associated semantics, these logics are used to reason about knowl-
edge in OSNs in a time-sensitive context. We formally define and describe
these logics in Chapters 4 for T FPPF and 7 for RT FPPF .

• We define two privacy policy languages, one for each framework, that enable
agents in the OSN to define their own privacy policies using a number of
generic templates. A conformance relation is defined for each of the languages
to determine whether a particular policy is not violated in a specific evolution
of the OSN. Chapters 5 (for T FPPF) and 8 (for RT FPPF) are devoted to
these two languages.
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Chapter 2

Preliminaries and Literature Review

From the theoretical point of view, the task of designing a time-sensitive formal
framework for OSNs based on FPPF largely overlaps with the areas of temporal
and epistemic logics. We consider these in Section 2.1.1. In Section 2.1.2, we discuss
frameworks for OSNs by other authors.

Section 2.2 aims to provide a high-level description of FPPF as the foundation
for this work.

2.1 Theoretical Context

2.1.1 Epistemic, Temporal, and Real-Time Logics
First formalizations of what it means to know (or believe) something go back ap-
proximately to the 1950s. Hintikka’s Knowledge and Belief [16] is commonly re-
ferred to as the first book-length treatment of the logic of knowledge, or epistemic
logic. Since then, epistemic logic found its applications in many areas, including
computer science, security, game theory, artificial intelligence and economics [24].

The system proposed by Hintikka in the aforementioned book used the so-called
possible worlds semantics (due to Kripke [20]), an approach that would be com-
monly used in the future to the point where it is often referred to as the classical
model [14]. In it, agents operate with possibly incomplete information about their
surroundings: there are properties they are certain about as well as those they are
uncertain about due to lack of knowledge. In the model, a world is essentially a set
of facts that hold in a particular version of reality represented by the world. An
agent considers some set of worlds to be possible – these are the agent’s candidates
for what the reality is really like. If something holds in every world the agent con-
siders possible, the agent knows it for a fact. This is usually written as Kaϕ, where
a is the agent in question, ϕ is a property in the system of worlds, and K is the
traditional symbol for the epistemic modality. On the other hand, if there exists at
least one possible world in which the property differs from other possible worlds,
the agent does not know which is the case in reality.

A common example to demonstrate this is depicted in Fig. 2.1 [11]. We will
operate with two agents, Alice and Bob, three possible worlds s1, s2, s3, and the
primitive proposition p meaning “it is raining in Stockholm”. Each agent a considers
some worlds possible, which is captured by an equivalence relation Ka. A pair of
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¬p p p

s1 s2 s3

Alice, Bob Alice, Bob Alice, Bob

Alice Bob

Figure 2.1: A Kripke structure can be modeled by a labeled graph whose nodes represent
worlds and edges represent the agents’ relationships to pairs of worlds. More precisely,
the worlds u, v are joined by an edge a whenever agent a considers world v possible
given her information in world u. Such pairs of worlds are said to be indistinguishable
to the agent.

worlds (u, v) belongs to Ka if a finds v possible given the information she or he has
in u. Each such pair is represented by a directed edge in Fig. 2.1. For example,
if Alice thinks the world is currently in state s1, then she considers s1, s2 to be
possible. If, on the other hand, she thinks the world is currently in state s3, she
only considers s3 possible. In world s1 it is not raining in Stockholm (¬p holds),
but Alice does not know that, because in world s1, she considers both s1, where it
is not raining, and s2, where it is raining, possible. However, in world s3, she knows
it is raining in Stockholm (KAlice p) since in all the worlds she considers possible at
s3 (in this case, only s3 itself), p holds.

Though often used in single-agent scenarios to reason about the nature of knowl-
edge itself, epistemic logic found another major application in multi-agent systems,
with notions such as distributed and common knowledge stemming from this com-
bination. In short, ϕ is distributed knowledge among a group of agents (DGϕ) if
ϕ can be obtained from their collective knowledge. Common knowledge is a more
complex concept to grasp – ϕ is common knowledge among a group G of agents
(CGϕ) if everyone in G knows ϕ and everyone in G knows that everyone in G
knows ϕ and everyone in G knows that everyone in G knows that everyone in G
knows ϕ and so on ad infinitum. We can take events that happen publicly, with
everyone present and capable of observing the event, as a natural example of com-
mon knowledge – for instance, two people shaking hands [23], or someone making
a public proclamation [11].

Aside from new group epistemic modalities, in a multi-agent setting, one can also
express facts involving the knowledge of several agents at once like “Alice knows
that Bob knows that Charlie does not know that David knows that it is raining in
Gothenburg tonight”. Coming back to the example in Fig. 2.1, in world s2, Alice
knows that Bob knows whether it is raining in Stockholm (though she does not know
what the weather is herself), since in both s1 and s2, which are the two worlds Alice
considers possible in s2, it is the case that Bob knows what the weather is in the
Swedish capital. Reasoning about knowledge of multiple agents is crucial from
the point of view of applications in privacy which, in essence, is about preventing
someone from learning something that someone else wants to keep hidden. This is
also one of the reasons why multi-agent epistemic logic is a natural candidate for
reasoning about privacy in OSNs.

Epistemic logic is also applicable in a dynamic context in which the world un-
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dergoes a certain evolution. Here, the focus lies on the way knowledge evolves
alongside other properties of the world. A common way to capture the semantics of
this evolution is via interpreted systems, where each agent has a local state whose
precise structure depends on the system being modeled. Moreover, the whole world
is characterized by a global state which consists of the local states of all agents plus
the local state of the environment, which comprises everything relevant not present
in the other local states. A run, then, is a function of time returning the global
state of the system at a specific point in time, and a system is a set of runs. In a
system, a point is characterized by a run and a point in time, and we say that two
points are indistinguishable to an agent if its local state is the same in both points.
For a simple example, we refer to [23].

More generally, formalizing and reasoning about properties in the presence of
time is a field of logic in itself, whose beginnings also date back roughly to the
1950s. Among the oldest and most well-known temporal logics is LTL (Linear
Temporal Logic) [17], originally proposed in [28], which utilizes two special tempo-
ral operators, called “until” and “next”. These can be used to define the perhaps
more well-known box (�) and diamond (♦), commonly read “always” and “eventu-
ally”, respectively. One of the uses of linear-time logics like LTL is checking whether
a system is behaving correctly. Given two propositions p and q, one can, for ex-
ample, express statements like �(p → ♦q) (“it is always the case that if p occurs,
then eventually q will occur”) to ensure that the signal p is always followed by the
appropriate response in the form of q [2].

However, pure LTL allows for reasoning about time in a relative, qualitative
way only. It is, for example, not possible to specify the time interval in which
q has to occur after p, only that it should occur eventually. This is where other
temporal logics, either extensions of LTL, or separate logics on their own, can be
used. These can be classified based on a number of attributes, such as the notion
of time they use, whether they are linear (only accounting for one evolution of the
world) or branching (multiple evolutions), which temporal operators they utilize
[2], what their possible axiomatizations are [15, 30], or their properties in terms
of expressiveness and complexity [3]. Another natural approach to modeling the
behavior of real-time systems over time is to use timed automata, as proposed by
Alur and Dill [1].

For the purposes of this thesis, in which we aim to present a way to reason about
knowledge of OSN users in a linear real-time setting, we are mainly interested in
a combination of the concepts described above, namely real-time epistemic logics.
This particular area contains a number of formalisms created with a specific appli-
cation in mind or with the aim to study a specific property of evolving knowledge
[5, 7, 6, 8, 13]. In [31], Woźna and Lomuscio introduce TCTLKD, a logic to reason
about knowledge, correctness and real time in the context of timed automata and
interpreted systems. TCTLKD utilizes the epistemic modalities K, C and D in a
standard way (for instance, an agent is said to know something if it holds in all
scenarios it considers possible). In [4], Ben-Zvi and Moses revise these operators
themselves by adding a time instance to the knowledge modalities K (written as
K〈a,t〉 where a is an agent and t is a time instance) and C. These represent the
knowledge at a particular moment in time. The authors also introduce a special
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predicate for events, occurred t(e), whose meaning is that the event e has occurred
by time t.

Though we are unaware of the existence of any real-time epistemic logics created
specifically for the purpose of reasoning about knowledge in evolving OSNs, we draw
syntactic inspiration from the aforementioned studies in this thesis, especially LTL
and [4], which we combine with a specialized semantics built upon the one used for
the original framework FPPF [26, 25] (Sec. 2.2).

2.1.2 OSN Formalizations

There at least three formalizations of OSNs whose main focus is on the privacy of
users. Aside from FPPF , which we are building upon and to which we devote
the next section, there is also a model for Facebook-like social network systems by
Fong, Anwar and Zhao [12] and a framework called Poporo by Catano, Kostakos
and Oakley [9].

In the former ([12]), the authors use an access control model to capture the
privacy preservation mechanism of Facebook, which can further be instantiated
into other Facebook-like OSNs. They define social network systems to be made of
users and objects (data that can be accessed) owned by users with the aim to model
the authorization mechanism used to grant access to objects. They also show that
the model can be instantiated to be able to express policies that are currently not
supported by Facebook, but are interesting from the user’s perspective.

The Poporo framework [9], on the other hand, consists of several parts. The
main component is called Matelas and is a specification layer built on predicate
calculus. It is used to model the content of a social network (SN), the privacy
policies used, and the friendship relations. The predicate calculus specification is
then turned into a code-level specification model which the authors call a SN core
application. Additional functionalities, written for example in Java or C, can then
be added (plugged in) to the core and their adherence to the policies stipulated in
Matelas can be determined using a proof validator.

In this thesis, we, too, follow a formal methods-based approach, but one based
on the original FPPF .

2.2 The First-Order Privacy Policy Framework FPPF

Since our extension builds on the foundations laid by FPPF [26, 25], we devote
this section to a high-level overview of the framework.
FPPF comprises three main parts: (a) a social graph-based model for OSNs, (b)

a knowledge-based logic (called KBLSN ) with a satisfiability relation determining
when a formula holds in a network, and (c) a privacy policy language (PPLSN )
together with a conformance relation defining when a social network respects a
specific policy. In the following we describe each of these parts in more detail.
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2.2.1 The Social Network Model SNM
FPPF defines a generic model to capture the specifics of any social network service.
This model is based on social graphs, that is, graphs whose nodes represent users
(or, more generally, agents – we will use these terms interchangeably), with edges
indicating different kinds of relationships between the users. In the case of FPPF ,
these graphs are enriched with other components, such as information about the
agents’ knowledge, stored in their knowledge bases. The agents’ permissions to
carry out actions towards other users, their connections to one another, and their
privacy policies are also included in the model.

2.2.2 The Knowledge-Based Logic KBLSN
The knowledge-based logic KBLSN is used to reason about the properties of the
SNM and its agents. Built on top of epistemic logic, it utilizes modalities such as
Kaϕ,EGϕ, and SGϕ. Intuitively, these mean, in turn: agent a knows ϕ; every agent
in the set G knows ϕ; and someone in the set G knows ϕ. If, for instance, Alice can
see Bob’s location, we can write KAlice location(Bob). Connecting this to the SNM
mentioned before, this would mean that the piece of information location(Bob)
either exists explicitly in Alice’s knowledge base, or can be derived by inference
from information there.
KBLSN also directly provides syntactic support for connections and permissions

(or actions) as relationships typical for social networks. The friendship connection
on Facebook and the follower connection on Twitter can serve as examples of the
former. The action predicates, on the other hand, model permissions between
agents. For instance, we can express that Bob is not allowed to send a friend
request to Alice.

The semantics of KBLSN is given in the form of the satisfiability relation which
determines whether a KBLSN formula is valid in a specific social network model by
looking at its properties, such as knowledge of the agents or the connections and
actions between them.

2.2.3 The Privacy Policy Language PPLSN
The privacy policy language PPLSN is a formal language that can be used to write
complex privacy policies based on KBLSN . Each policy belongs to (is written by)
an agent who is regarded as its owner. PPLSN chooses to write privacy policies in
a restrictive sense, i.e., each privacy policy disallows a particular behavior to take
place or a piece of information to spread. One can express simple requirements like
“no one can know my location” or “Alice cannot send me a friend request”, but also
complex ones, for instance “if I create an event and only give certain people the
permission to join it, it cannot be accessed by people outside of the group”.
PPLSN provides two templates for privacy policies: direct restrictions and con-

ditional restrictions. In direct restrictions, there is no precondition that “activates”
the policy; the first two policies mentioned above are examples of direct restric-
tions. In conditional restrictions, like the more complicated event example above,
the policy should only be enforced when the model is in a specific state.
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The conformance relation provides the semantics of the privacy policy language,
where the policy is checked to comply with a certain SNM. This is done with the
help of KBLSN ’s satisfiability relation.

2.2.4 Other Features
Aside from SNM, KBLSN , and PPLSN , the framework FPPF is also characterized
by a number of additional features. To be able to reason about a specific OSN, it
defines the notion of framework instantiation (in [25], an example instantiation of
Twitter is given).

A dynamic version of the framework is also given in [25]. Using a labeled tran-
sition system, it is possible to capture certain predecessor-successor relationships
between SNMs and the actions that transformed one model to another. The dy-
namic behavior of an OSN is described using small-step operational semantics.
FPPF also defines what it means for an OSN to be privacy-preserving – no

matter what events happen inside it, it can never violate a user’s privacy policy.
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Part I

Privacy Policies with Real-Time
Windows
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Chapter 3

Timed Social Network Model (TSNM)

3.1 Timed First-Order Privacy Policy Framework
T FPPF

As an extension of FPPF , the framework proposed in this part relies on the foun-
dations laid by the original framework. As a result, the structure of the framework
proposed in this part is very similar to the original one. We, too, define three
major components upon which the framework is built: (a) a timed social network
model (TSNM), together with the notion of traces, that is, sequences of these mod-
els that represent the evolution of an OSN; (b) a temporal knowledge-based logic
(T KBLSN ) with temporal modalities, inspired by temporal logics such as LTL, and
one new epistemic modality; and (c) a timed privacy policy language (T PPLSN ),
enabling the user to define a (possibly recurring) real-time window in which their
policy should be enforced.

Together, these parts form the new timed first-order privacy policy framework
(T FPPF). Its formal definition follows.

Definition 1 (Timed First-Order Privacy Policy Framework). The tuple

T FPPF = 〈T SN , T KBLSN , |=, T PPLSN , |=C〉

is a timed first-order privacy policy framework where

• T SN is the set of all possible timed social network models;

• T KBLSN is a temporal knowledge-based logic;

• |= is a satisfiability relation defined for T KBLSN ;

• T PPLSN is a formal timed privacy policy language;

• |=C is a conformance relation defined for T PPLSN .

In what follows we devote a chapter to each of these components. We first formal-
ize timed social network models in the remaining sections of this chapter. In Chap-
ter 4, we give the syntax and the semantics (|=) of the temporal knowledge-based
logic T KBLSN . Finally, we describe the timed privacy policy language T PPLSN
together with its conformance relation |=C in Chapter 5.
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3.2 Timed Social Network Model TSNM
In the original framework FPPF , social network models were defined as social
graphs with agents, their knowledge bases and privacy policies, and a first-order
relational structure. T FPPF retains this definition, but extends the formulae
in the knowledge bases of agents with a timestamp, thus rooting each piece of
information in time. What notion of time we will be working with in this thesis is
discussed and formalized in Section 3.2.1.

Moreover, in addition to the definition of timed social network models, we also
introduce our notion of dynamic, evolving OSNs. In FPPF , a labeled transition
system was used for a similar purpose. Here, we use sequences of timed social
network models, each representing a snapshot of the modeled OSN at a specific
moment in time. We describe and formalize these notions in Section 3.2.2.

3.2.1 Formalizing Time
Adding timestamps to formulae in the knowledge bases of agents enables us to tell
apart pieces of information in a way that is not possible in the original framework.
Let us take the simple example of Alice learning Bob’s location. In FPPF , the
simplest way to capture this scenario is that the predicate location(Bob) either exists
explicitly in Alice’s knowledge base, or she is able to infer it from the knowledge she
already has. At a later point, Alice might learn the location of Bob again, and again
it will be available to her as location(Bob). As a consequence, Alice knowing Bob’s
location does not really tell us anything about Bob’s location – the information
might easily be outdated and there is no way to find out.

Another option in FPPF is to somehow establish the relative order of the
instances when Alice learns Bob’s location using so-called resource identifiers, so she
would be able to access predicates like location(Bob, 1) or location(Bob, 47). This
is closer to the design of T FPPF , as it enables us to “refresh” knowledge without
losing previous instances. Still, however, although it is possible to determine the
relative order of pieces of knowledge of the same kind, there is nothing preventing
the latest one from being outdated, as in the previous case.

By adding timestamps to the agents’ knowledge bases, one is both able to tell
apart pieces of information of the same kind, and precisely pinpoint the moment
when the piece of knowledge was learned.

Let us now formalize the notion of timestamps.

Definition 2 (Timestamp). A timestamp t is a natural number representing the
number of milliseconds elapsed since January 1, 1970, 00:00:00.000.

Of course, we could have chosen a large number of equally good starting points;
the beginning of 1970 was chosen simply because it is also the Unix epoch.

We will use T to denote the set of all timestamps.
Since referring to specific dates as, for example, t1 = 1458986348693 or t2 =

192814041542693 has the potential to become rather confusing, we will use the
more human-readable standard ISO format [19] of YYYY-MM-DD hh:mm:ss.sss when
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Table 3.1: When talking about timestamps, we use the standard human-readable ISO
format, optionally skipping some parts of the time component. We use the format in
the first column.

Compact Full

2016-03-26 10:59:08.562 2016-03-26 10:59:08.562
2000-01-01 2000-01-01 00:00:00.000
1990-03-10 12:00 1990-03-10 12:00:00.000
8080-01-12 23:59:02.100 8080-01-12 23:59:02.100

talking about timestamps.1 Optionally we might skip the time part, in which case
we assume it defaults to 00:00:00.000, or its suffix, starting with either seconds
or milliseconds – then we assume the number of missing (milli)seconds amounts
to zero. Table 3.1 contains a number of examples. In some cases where we want
to demontrate a point (most often in examples) and specific timestamps are not
important, we will use dummy timestamps 1, 2, and so on.

There are two main reasons behind choosing this particular timestamp format.
First, it is practical – any timestamp represents a valid date and time and one does
not have to consider technicalities such as variable month and year length. The
other reason is that they work well in contexts where they are meant to be used –
both attached to pieces of knowledge in agents’ knowledge bases, and in the privacy
policy language.

Their use in the knowledge bases relies on the basic property that, given any two
timestamps t1 and t2, it is possible to determine their relative order, i.e., consid-
ering the two points in time represented by the timestamps, determine which one
happened sooner (later). As for their use in privacy policies, one of the goals of the
extension in this part is to allow users to define a real-time window frame in which
their privacy policy should be enforced. Therefore, when defining the time-sensitive
version of the privacy policy language (T PPLSN ), the user has to be able to pin-
point a specific moment in time, which is done using our notion of timestamps. In
addition, this simple definition makes it possible to not only determine the order
of timestamps, but also to quantify the distance |t2 − t1|, which is later formalized
as duration (Def. 11). This property is also used in T PPLSN , where the most
basic privacy policy window is defined using a timestamp and a duration field (as
opposed to using two timestamps).

3.2.2 Capturing the Evolution of an OSN
We now provide a definition of a timed social network model, with timestamps
attached to information in the knowledge bases of agents. FT KBL stands for the set
of all well-formed formulae of the time-sensitive knowledge-based logic T KBLSN ,
which is defined at a later point (Def. 7). The specific shape of the formulae used
is not important at this point.

1Note that there is a number of technical issues that would arise if this format was to be used in practice. For
instance, we do not specify whether we count leap seconds – which would have an effect on the conversion from
and to the ISO format –, or what timezone we are in.
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Definition 3 (Timed Social Network Model). Given a set of formulae F ⊆ FT KBL,
a set of privacy policies Π, and a finite set of agents Ag ⊆ AU from a universe AU ,
a timed social network model (TSNM) is a social graph 〈Ag ,A,KB , π〉, where

• Ag is a nonempty finite set of nodes representing the agents in the OSN;

• A is a first-order relational structure over the TSNM, consisting of a set of
domains {Do}o∈D, where D is an index set; a set of relation symbols, function
symbols and constant symbols interpreted over a domain;

• KB : Ag → 2F×T is a function retrieving the set of accumulated knowledge,
each piece with an associated timestamp, for each agent, stored in the knowl-
edge base of the agent; we write KB i for KB(i);

• π : Ag → 2Π is a function returning the set of privacy policies of each agent;
we write πi for π(i).

We denote T SN the set of all TSNMs.
Let us take a closer look at each component.

Agents We assume that, in addition to “normal” agents (that is, those who repre-
sent actual users of the OSN), there is also a special agent called the environment
(e). The environment contains all knowledge that is true in the TSNM.

Knowledge Bases The set retrieved by the knowledge base function KB of an
agent contains everything the agent has learned so far, written in the language of
the temporal knowledge-based logic T KBLSN . This can be anything from simple
predicates meaning “I learned Alice’s location on April 29, 2016 at 18:44:13.562”,
to more complex information such as “on July 15, 2008 at 10:00 I learned that Bob
learned that Alice knew Bob’s location”. Note that there is only one timestamp
in any formula in an agent’s knowledge base, so timestamps are not nested – they
always refer to the formula as a whole. For the formalization of what agents can
know and what it means in the context of T FPPF we refer to Chapter 4, which
is devoted to T KBLSN and its properties.

The First-Order Relational Structure The overall shape of A depends on the prop-
erties of the OSN being modeled. This is especially apparent in the case of relational
symbols, which are used to represent the connections and permission actions (or
just permissions, or actions) – the edges of the underlying social graph. Connec-
tions stand for relationships (not necessarily symmetric) between agents, such as
friends (usually two-way) or follower (usually one-way). Permissions model what
actions a user is allowed to execute toward other users. For example, Alice might
not give Bob permission to send her a friend request.

More formally, given sets of indices C for connections and Σ for permissions,
we define connections and permissions as families of binary relations on the set of
agents: {Ci}i∈C ⊆ Ag × Ag and {Ai}i∈Σ ⊆ Ag × Ag , respectively. For better read-
ability, we will use a predicate like friends(Alice,Bob) to mean that Alice,Bob ∈ Ag
belong to the binary relation friends .
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Alice

Bob Charlie

frie
nds

friendRequest

blocked

Figure 3.1: A simple social graph with three agents, two connections (the bidirectional
friends and the one-way blocked) and one permission ( friendRequest). The connections
are represented by normal edges, the permission uses a dashed one. The information
from this graph can be summarized as follows: Alice is friends with Bob and vice-versa,
Bob is blocking Charlie, and Charlie is allowed to send a friend request to Alice.

Privacy Policies In addition to possessing a set of knowledge, each agent is able
to define their own set of privacy policies using the timed privacy policy language
T PPLSN . Generally speaking, the goal of these policies is to restrict the audience
of something in the OSN, for example a post or a picture. The language itself and
its attributes are described in detail in Chapter 5.
Example 1. We give a simple example of a TSNM in Fig. 3.1 with Ag = {Alice,
Bob,Charlie}, C = {friends , blocked} and Σ = {friendRequest}. The agents’ knowl-
edge bases and privacy policies are not depicted at this point – we will revisit this
example later once we have established the general shape of formulae in the users’
knowledge bases.

Since T FPPF is by definition a dynamic framework, we need a way to capture
the evolution of an OSN. This is done by using sequences of TSNMs, so that every
TSNM in the sequence represents a snapshot of the OSN at some point. This
structure is called a trace.

More specifically, a trace is a sequence of pairs consisting of a specific TSN ∈
T SN together with a timestamp t. The intuitive meaning is that each such TSN
is a snapshot of the OSN at point t, as if we froze the network, along with the
knowledge and relationships between its agents, at that moment.

We demand traces be finite. This makes working with them more practical,
especially in terms of the semantics we give at a later point (Def. 10), which relies
on access to all social network models in the trace.

Definition 4 (Trace). Given k ∈ N, a trace σ is a finite sequence

σ = 〈(TSN 0, t0), (TSN 1, t1), . . . , (TSN k, tk)〉

such that, for all 0 ≥ i ≥ k, TSN i ∈ T SN and ti ∈ T.

This basic definition does not impose any restrictions on the timestamps or
TSNMs used, so even sequences of TSNMs that have little in common, with arbi-
trary, and potentially repeating, timestamps, are traces by definition. To single out
meaningful traces, that is, those that actually capture the evolution of an OSN, we

17



introduce the notion of well-formed traces. To be well-formed, a trace has to satisfy
three conditions.

Order We place a restriction on the ordering of the pairs in the trace with regards
to the timestamps, which we require to be strictly ordered from smallest to largest.
This allows us to immediately identify the successors and predecessors and the
gradual changes happening between TSNMs at different positions of the trace.

Plausible Knowledge Moreover, for each (TSN , t) in the trace, the timestamps used
inside the agents’ knowledge bases must be at most t. Intuitively, if a snapshot of
an OSN was taken at time t, then t should be the latest point at which the agents
could have obtained new knowledge.

Continuity Finally, for the successor-predecessor relationships between two adja-
cent TSNMs to make sense, each TSNM, starting from the second one, has to be
the result of some events happening in the TSNM that comes immediately before.
For this purpose we use the transition relation −→ defined for FPPF [25], extended
with a timestamp capturing when a particular set of events happens. More formally,
assuming that EVT is the set of all events, the −→ relation here is characterized as
−→ ⊆ T SN × 2EVT ×T×T SN and the tuple 〈TSN 1, E, t,TSN 2〉 is in −→ if TSN 2

is the result of the nonempty set of events E happening in TSN 1 at time t. We will
write this as TSN 1

E,t−−→ TSN 2.

Definition 5 (Well-Formed Trace). Let

σ = 〈(TSN 0, t0), (TSN 1, t1), . . . , (TSN k, tk)〉

be a trace. σ is well-formed if the following conditions hold:

1. For any i, j such that 0 ≥ i, j ≥ k and i < j, it is the case that ti < tj.

2. Let KBTSN denote the knowledge base function of model TSN , and similarly
for AgTSN . For all (TSN , t) ∈ σ, for all a ∈ AgTSN , for all (ϕ, tϕ) ∈ KBTSN

a , it
is the case that tϕ ≤ t.

3. For all i such that 0 ≤ i ≤ k − 1, it is the case that TSN i
E, ti+1−−−−→ TSN i+1,

where E ⊆ EVT and E is nonempty.

We will use TCS to refer to the set of all well-formed traces.

3.2.3 Notation
In the previous text we established a number of interconnected notions. In order
to simplify notation used in the future, we introduce the following shortcuts. We
assume σ is a well-formed trace.
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Trace Properties

We name the set of all timestamps associated with the TSNMs in the trace Tσ.
In other words, Tσ = {t | (TSN , t) ∈ σ}. In a similar manner, we use T SN σ to
denote the set of all TSNMs in the trace: T SN σ = {TSN | (TSN , t) ∈ σ}.
Example 2. Let us say that

σ = 〈(TSN 0, 2016-04-30 19:57),

(TSN 1, 2016-04-30 19:59),

(TSN 2, 2016-04-30 20:00),

(TSN 3, 2016-04-30 20:37),

(TSN 4, 2016-04-30 20:47)〉.

Retrieving the set of all timestamps or TSNMs present in σ is straightforward:

Tσ = {2016-04-30 19:57, 2016-04-30 19:59, 2016-04-30 20:00,
2016-04-30 20:37, 2016-04-30 20:47}

T SN σ = {TSN 0,TSN 1,TSN 2,TSN 3,TSN 4}

Accessing Parts of a Trace

Specific TSNMs Often we will need to refer to a specific TSNM in a trace. For
this purpose, σ[t] for a timestamp t ∈ Tσ is the model TSN ∈ T SN belonging to
the pair (TSN , tTSN ) ∈ σ for which tTSN = t. Note that in a well-formed trace,
there is exactly one such model.

Once we have retrieved a specific TSNM TSN ∈ T SN σ, we will often need to
refer to its components directly. We will write AgTSN , ATSN , KBTSN , ΠTSN to
access TSN ’s agent set, relational structure, knowledge base, and privacy policy
function, respectively.
Example 3. Let σ be the trace from Example 2. The indexing function can be used
to access any of the three models in a straightforward way:

σ[2016-04-30 19:57] = TSN 0

σ[2016-04-30 19:59] = TSN 1

σ[2016-04-30 20:00] = TSN 2

Note that by definition, only timestamps that actually exist in the trace (that is,
those that belong to Tσ) can be used, so for example σ[2016-04-30 19:58] is invalid.

If we want to get the knowledge base function of TSN 1, we can write

KBσ[2016-04-30 19:59]

and similarly for other TSNMs and their components.

Subtraces We define σ[t1 .. t2], where t1 ≤ t2, to be a function returning a specific
subtrace of σ. The first element of the subtrace is the first (TSN , t) ∈ σ for which
t ≥ t1; the last element of the subtrace is the last (TSN , t) ∈ σ such that t ≤ t2.
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Essentially, the function simply extracts all the TSNMs with timestamps that fall
into the interval from t1 to t2, inclusive.

Note that unlike the indexing function σ[t], here the index timestamps need not
be actual timestamps of the models in the trace. It might even be the case that t1
is greater than the last timestamp of σ (using the notation introduced previously,
t1 ≥ max(Tσ)) or that t2 is less than the very first timestamp of σ (t2 ≤ min(Tσ)).
In these cases, the subtrace returned is empty.

We will also use σ[t .. ] and σ[ .. t] to retrieve the suffix (prefix) of σ that satisfies
the corresponding part of the previous description.
Example 4. Once again, we will use σ from the previous Examples 2 and 3. Imagine
we want to take the subtrace starting with TSN 2 and ending with TSN 4. There is
a number ways to achieve this. For instance:

σ[2016-04-30 20:00 .. 2016-04-30 20:47]

σ[2016-04-30 19:59:30.587 .. 2016-05-01]

σ[2016-04-30 19:59:11 .. ]
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Chapter 4

Temporal Knowledge-Based Logic (T KBLSN )

In this chapter we introduce a logic that will be used to reason about knowledge in
T FPPF . It will also be the base upon which the timed privacy policy language
T PPLSN (Chap. 5) will be built.

Again, we follow in the footsteps of the authors of FPPF [25], extending their
knowledge-based KBLSN with two temporal operators and a new epistemic oper-
ator for learning. The resulting logic is called temporal knowledge-based logic, or
T KBLSN .

4.1 Syntax of T KBLSN
We assume that the most basic building blocks of the logic – the function, relation,
and constant symbols – are parts of a vocabulary. We also assume that the former
two have an implicit arity, corresponding to the number of arguments they take.
Furthermore, we assume we have an infinite supply of variables we can use.

Definition 6 (Term). Let c be a constant, f be a function symbol, and x be a
variable. A term s is inductively defined as

s ::= c | x | f(~s),

where ~s is a tuple of terms respecting the arity of f .

One of the parts that sets T KBLSN (and the original KBLSN ) apart from other
logics is the existence of two special types of predicates: connections and actions.
These mirror the different kinds of edges in the social graph of TSNMs (Def. 3).
To recapitulate: Connections C represent relationships between agents, as defined
by the authors of the specific OSN they are modeling. They can be symmetric
(friends) as well as asymmetric (follower). Actions (or permissions) Σ connect two
users a, b if a is allowed to execute a specific action towards b, for example send a
friend request.

Definition 7 (Syntax of T KBLSN ). Given agents a, b ∈ Ag , a nonempty set of
agents G ⊆ Ag , predicate symbols an(a, b), cm(a, b), p(~s) where m ∈ C and n ∈ Σ,
and a variable x, the syntax of the temporal knowledge-based logic T KBLSN is

21



t1 t2 t4 t6

KaψLaψ

KaϕLaϕ

Figure 4.1: Our interpretation of learning and knowing can be illustrated by this
picture. Suppose we have two formulae ϕ and ψ and an agent a. t1 and t2 represent
the point in time when a came to possess (learned) ψ and ϕ, respectively. If this picture
captures all knowledge transfer, then Laψ should only be true at time t1 and Laϕ only
at time t2. However, at any time t ≥ t1 (for example t4) we have Kaψ and at any time
t′ ≥ t2 (such as t6), Kaϕ.

inductively defined as:

ϕ ::= ρ | ϕ ∧ ϕ | ¬ϕ | ∀x.ϕ | Kaψ | Laψ | CGψ | DGψ | �ϕ | ♦ϕ
ψ ::= ρ | ψ ∧ ψ | ¬ψ | ∀x.ψ | Kaψ | Laψ | CGψ | DGψ

ρ ::= cm(a, b) | an(a, b) | p(~s)

We use FT KBL to denote the set of all well-formed formulae of T KBLSN .
The epistemic modalities used here are read, in turn: Kaψ as “agent a knows

ψ”, Laψ as “agent a learns ψ”, CGψ as “it is common knowledge in group G that
ψ”, and DGψ as ”it is distributed knowledge in group G that ψ”. The temporal
operator � is read “always”, ♦ is “eventually”.

There are two main differences between T KBLSN and KBLSN .

Temporal Operators T KBLSN utilizes the temporal operators � and ♦. These
can be found in many temporal logics, where they are usually defined using a more
basic until operator. We do not have such operator here since we were unable to
find interesting use cases in the context of OSNs.

Note also that no temporal operator is allowed inside an epistemic modality.
The reason is that, as we are about to show, the temporal operators are used with
regards to traces, to be able to iterate through them, whereas once a formula is
inside an epistemic modality, it is checked in a single knowledge base which itself
is static.

Learning Modality In a static context, the K modality is quite enough to express
that an agent possesses a specific piece of knowledge. In a dynamic context, how-
ever, we found it more natural to separate knowing something and learning it. The
distinction is captured by what we later on establish as the learning axiom: if an
agent learns something, she knows it.

Learning can be intuitively described as the instant in time when an agent comes
into contact with a piece of information. On the other hand, knowing something is
not a single point in time, it is more of an interval (Fig. 4.1).
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4.1.1 Notation
We will use the following syntactic sugar borrowed from KBLSN . Given agents
a, b ∈ Ag , a nonempty group G ⊆ Ag , and an action an, we have:

P c
b an := an(b, c)

SP c
Gan :=

∨
b∈G an(b, c)

GP c
Gan :=

∧
b∈G an(b, c)

These stand for, in turn: “b is permitted to execute an to c”, “someone in G is
permitted to execute an to c”, and “everyone in G is permitted to execute an to c”.

Often it is useful to be able to express that, in a group G , everyone (E) knows
(or learns) something. The same goes for someone (S) in a group G learning or
knowing something. These notions are straightforward to define using the basic K
and L modalities:

SGϕ ,
∨
a∈G Kaϕ SLGϕ ,

∨
a∈G Laϕ

EGϕ ,
∧
a∈G Kaϕ ELGϕ ,

∧
a∈G Laϕ

These are read “someone in G knows (learns) ϕ” and “everyone in G knows
(learns) ϕ”.

4.2 Agents and Their Knowledge
Let us now retrace a bit and take a closer look at the knowledge bases of agents,
first defined in Def. 3. The set retrieved by the KB function contains everything
the agent knows, in form of timestamped T KBLSN formulae.

In addition to possessing specific knowledge, we also want to make the agents
smarter by enabling them to gain new knowledge on their own, if it follows from
what they already know. For this purpose we define the notion of timed closure of
a knowledge base (ClT ). In short, the closure of a knowledge base KB of an agent
contains all the knowledge already in KB , plus all knowledge that can be inferred
from it according to a set of rules. Of course, for this to be useful, the process
should be sound – agents should not be able to infer something that is not true in
the TSNM.

Following is the formal definition of ClT and the related notion of timed deriva-
tion.

Definition 8 (Timed Closure of a Knowledge Base). Given the knowledge base
of an agent a, KBa, the timed closure of KBa, ClT (KBa), satisfies the following
properties:

1. For all ϕ ∈ FT KBL and t ∈ T, if (ϕ, t) ∈ ClT (KBa) then (¬ϕ, t) 6∈ ClT (KBa).

2. Introduction and elimination rules for conjunction:

∧I - If (ϕ, t) ∈ ClT (KBa) and (ψ, t′) ∈ ClT (KBa), then (ϕ ∧ ψ,max(t, t′)) ∈
ClT (KBa).
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∧E1 - If (ϕ ∧ ψ, t) ∈ ClT (KBa) and ∧I was not used to derive ϕ ∧ ψ, then
(ϕ, t) ∈ ClT (KBa).

∧E2 - Analogous to ∧E1 but for ψ.

3. If (ϕ, t) ∈ ClT (KBa) and (ϕ =⇒ ψ, t′) ∈ ClT (KBa), then (ψ,max(t, t′)) ∈
ClT (KBa).

4. If (ϕ, t) ∈ ClT (KBa) then (Kaϕ, t) ∈ ClT (KBa).

5. If ϕ is provable in the axiomatization S5 ([11]) from ClT (KBa), then ϕ ∈
ClT (KBa). Formally:

A1 - If ϕ is an instance of a first-order tautology, then (ϕ, t>) ∈ ClT (KBa).
A2 - If (Kaϕ, t) ∈ ClT (KBa) and (Ka(ϕ =⇒ ψ), t′) ∈ ClT (KBa), then

(Kaψ,max(t, t′)) ∈ ClT (KBa).
A3 - If (Kaϕ, t) ∈ ClT (KBa), then (ϕ, t) ∈ ClT (KBa).
A4 - If (Kaϕ, t) ∈ ClT (KBa), then (KaKaϕ, t) ∈ ClT (KBa).
A5 - If (ϕ, t) /∈ ClT (KBa), then (¬Kaϕ, t) ∈ ClT (KBa).
R1 - Modus ponens, defined as 3).
R2 - If (ϕ, t) is provable from no assumptions (i.e., ϕ is a tautology), then

(Kaϕ, t) ∈ ClT (KBa).
C1 - (EGϕ, t) ∈ ClT (KBa) iff (

∧
i∈G Kiϕ, t) ∈ ClT (KBa).

C2 - (CGϕ, t) ∈ ClT (KBa) iff (EG(ϕ ∧ CGϕ), t) ∈ ClT (KBa).
RC1 - If (ϕ =⇒ EG(ψ ∧ ϕ), t) is provable from no assumptions, then (ϕ =⇒

CGψ, t) ∈ ClT (KBa).
D1 - (D{a}ϕ, t) ∈ ClT (KBa) iff (Kaϕ, t) ∈ ClT (KBa).
D2 - If (DGϕ, t) ∈ ClT (KBa), then (DG′ϕ, t) ∈ ClT (KBa) if G ⊆ G ′.

DA2-DA5 Properties A2, A3, A4 and A5, replacing the modality Ka with the modal-
ity DG for each axiom.

Definition 9 (Timed Derivation). A timed derivation of a formula ϕ ∈ FT KBL with
timestamp t ∈ T is a finite sequence of formulae and timestamps

(ϕ1, t1), (ϕ2, t2), . . . , (ϕk, tk) = (ϕ, t),

where each ϕi, for 1 ≤ i ≤ k, is either an instance of the axioms or the conclusion
of one of the derivation rules of which premises has already been derived, i.e., it
appears as ϕj with j < i of ClT (KBa).

The previous definitions build on those defined for the original FPPF . The
main difference is the handling of timestamps in knowledge bases of agents. More
precisely, we want to ensure that a timestamp attached to a formula in a KB has
the intended meaning, i.e., it should be the time when that particular information
was either learned or inferred.
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Combining Knowledge For instance, we allow agents to combine individual pieces
of information using the conjuction introduction rule ∧I . The timestamp of the
resulting conjunction is the maximum of the timestamps of the individual formulae.
The reasoning behind this is that one can claim they know both ϕ and ψ only once
they obtain both ϕ and ψ – more precisely, at the point in time when the last
missing piece was obtained. This is also the case in the modus ponens rule in 3: the
resulting knowledge could only be inferred at the point when the agent is aware of
both the precondition and the rule itself.

An agent is also capable of breaking a conjunction ϕ ∧ ψ down into its two
conjuncts ϕ and ψ. This is, however, only possible if it was not obtained using the
introduction rule. The reason for this is to avoid obtaining knowledge with incorrect
timestamps. If the restriction were not in place and we attempted to break down
a conjunction obtained by ∧I , we could end up with either ϕ or ψ with an illegal
timestamp.

Tautologies Tautologies are a special case as they should be true at any point in
time. To reflect this, we use a special timestamp t> which stands for any timestamp
(for all t ∈ T, t> = t). This guarantees that, when using a tautology in a derivation
including other premises, we will delegate the timestamp t of the premise that is
not a tautology since max(t, t>) = t.

Knowledge Evolution It should be noted that in our model, the knowledge of agents
grows monotonically – there is no notion of forgetting and the agents remember
everything they have learned so far. We do not provide a formal proof here, but
it follows from examining Def. 8 case by case as none of the properties results in
inferred knowledge with a timestamp less than those of the premises used. Neither
is it the case that inferred knowledge would get a timestamp strictly greater than
the maximum of its premises.

4.3 Semantics of T KBLSN
Now that we have defined both the syntax of T KBLSN and the notion of a trace,
we are ready to introduce a precise way to determine whether a formula holds in a
trace.

Definition 10 (Satisfiability Relation for T KBLSN ). Given a well-formed trace
σ ∈ TCS , agents a, b ∈ Agσ, a finite set of agents G ⊆ Ag , formulae ϕ, ψ ∈ FT KBL,
m ∈ C, n ∈ Σ, o ∈ D, and t ∈ Tσ, the satisfiability relation |= is defined as shown
in Fig. 4.2.

In the semantics, we use a timestamp t to help determine which TSNM in the
trace we are interested in. For the temporal operators � and ♦, which are used to
manipulate t, this simply means that we have to check either all TSNMs starting
with t, or we have to find at least one at time t or greater for which the inner
formula holds.

The cases of negation, conjunction, and quantification are dealt with in a stan-
dard way. For connections and actions, we simply look into the relational structure
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σ, t |= �ϕ iff for all t′ ∈ Tσ, t′ ≥ t, σ, t′ |= ϕ
σ, t |= ♦ϕ iff there exists t′ ∈ Tσ, t′ ≥ t,

such that σ, t′ |= ϕ

σ, t |= ¬ϕ iff σ, t ��|= ϕ
σ, t |= ϕ ∧ ψ iff σ, t |= ϕ and σ, t |= ψ

σ, t |= ∀x.ϕ iff for all v ∈ Dσ[t]
o , σ, t |= ϕ[v/x]

σ, t |= cm(a, b) iff (a, b) ∈ Cσ[t]m

σ, t |= an(a, b) iff (a, b) ∈ Aσ[t]n

σ, t |= p(~s) iff there exists t′ ∈ Tσ such that (p(~s), t′) ∈ KBσ[t]
e

σ, t |= Kaϕ iff there exists t′ ∈ Tσ such that (ϕ, t′) ∈ ClT (KBσ[t]
a )

σ, t |= Laϕ iff (ϕ, t) ∈ ClT (KBσ[t]
a )

σ, t |= CGϕ iff σ, t |= EkGϕ for k = 1, 2, . . .

σ, t |= DGϕ iff there exists t′ ∈ Tσ such that (ϕ, t′) ∈ ClT (
⋃
i∈G KB

σ[t]
i )

Figure 4.2: The semantics for T KBLSN is given in terms of the satisfiability relation.

of the TSNM at time t to determine whether the agents in question were in the
relation at that point.

Predicates are checked with respect to the environment, which contains every-
thing that is true in the TSNM. A predicate is considered to hold at time t if
the knowledge base of the environment at time t contains said predicate with any
timestamp (note that since σ is well-formed, only timestamps less than t and t itself
may exist there). The knowledge modality K is treated in essentially the same way,
with the only exception being that we look into the timed closure of the knowledge
of the agent in question. Learning ϕ at time t in terms of the semantics given here
means that ϕ with timestamp t has to be in the timed closure of the knowledge
base at time t – in other words, ϕ has to have appeared in the closure at precisely
t.

The semantics given for common knowledge are defined using the E shortcut
modality (Sec. 4.1.1). For ϕ to be distributed knowledge among agents of G at
time t it has to be the case that ϕ appears with some timestamp (again, by definition
this can never be more than t) in the closure of the collective knowledge bases of
all agents in G at time t.

4.4 Properties of T KBLSN
As mentioned before, while L is used to represent the time instant in which some-
one learns a piece of information, K is the lasting effect of learning something.
The relationship between the two operators is demonstrated by the following two
properties.

Given an agent a and a T KBLSN formula ϕ, we can formulate the following as
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Alice

Bob Charlie

(∀η.post(Bob, η) =⇒ loc(Bob, η), 1)
(post(Bob, 1), 3)

(∀x.bYear(x) ∧ bMonth(x)∧
bDay(x) =⇒ age(x), 1)

(bMonth(Alice), 3)
(bDay(Alice), 4)
(loc(Bob, 1), 7)

(bYear(Alice), 5)
(loc(Bob, 1), 7)

frie
nds

friendRequest

blocked

Figure 4.3: We revisit the previous Example 1 by making the knowledge bases of agents
explicit. In the picture, these are depicted as grey rectangles connected to the node
representing the owner agent. Note that we use simple dummy timestamps to simplify
the picture (originally, timestamp t = 1 would mean January 1, 1970, 00:00:00.001).

the learning axiom:
Laϕ =⇒ Kaϕ (L)

The intuition behind L is that in order for the premise to be true in any trace
σ ∈ TCS at time t ∈ Tσ, it has to be the case that (ϕ, t) ∈ ClT (KBσ[t]

a ). But then
the conclusion is trivially satisfied by the same (ϕ, t) being in a’s knowledge base
closure.

However, the converse does not hold. It is often the case that (ψ, t′) ∈ ClT (KB
σ[t]
b )

and t′ < t, in which case ψ is simply knowledge obtained in the past (t′). Then by
definition σ, t |= Kbψ since ψ is in b’s knowledge base closure with any timestamp,
but at the same time σ, t ��|= Lbψ since t′ < t.

Moreover, the following property, henceforth called the perfect recall axiom, ex-
presses the relationship between knowledge and time in T KBLSN :

Kaϕ =⇒ �Kaϕ (PR)

In other words, if an agent knows something, then they will always know it. As
mentioned before, knowledge here is monotonic – agents cannot forget anything
they have learned. Once (ϕ, t) is in an agent’s knowledge base closure, there is no
way to remove it in the future since ClT only adds new knowledge and we have not
formalized any notion of taking away knowledge, or forgetting, so the same (ϕ, t)
will still be there at any point in the future, thus satisfying the consequence of PR.

By combining L and PR, we also have the property that once an agent learns
something, they will always know it:

Laϕ =⇒ �Kaϕ

4.5 Examples
Example 5. At this point we can revisit the previous example (Ex. 1). Figure
4.3 contains the same set of agents, connections and permissions as before, but
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now the knowledge bases have been made explicit. Each rectangle represents the
accumulated knowledge of an agent.

The knowledge bases of both Bob and Charlie contain the timestamped formula
(loc(Bob, 1), 7), which means that they both learned Bob’s location 1 at time 7.
We use the second argument of loc, 1, as a resource identifier to be able to tie
together related information. This is used for example in the first formula in Alice’s
knowledge base, which says that she can derive the location of Bob if she can
access his post, where the loc(Bob, η) and post(Bob, η) have the same identifier,
meaning that Bob’s location is attached to his post in some way. Since Alice
learned post(Bob, 1) at time 3, she can use this rule to derive the timestamped
formula (loc(Bob, 1), 3). Note that according to the closure definition (Def. 8), the
timestamp of the new piece of information is the maximum out of the two formulae
used to derive it (1 and 3).

Agents can also combine their knowledge. For instance, if G = {Bob,Charlie},
then DGage(Alice) holds at the time of this particular TSNM. Bob knows Alice’s
day and month of birth, Charlie knows the year Alice was born. Moreover, Bob
knows that once he knows someone’s day, month, and year of birth, he can infer the
age of the person in question. And so, if Bob and Charlie combined their knowledge
at time 5 (since that is when the last “piece of the puzzle” was obtained) or later,
they would be able to find out Alice’s age.
Example 6. To demonstrate how the satisfiability relation works, consider an OSN
with at least two events: checkIn, which discloses a user’s location to all their
friends, and openFeed , which retrieves all information a user has access to, including
locations. Let us assume TSN is the TSNM from Fig. 4.3 and it represents the
OSN at time 7. Afterwards, it undergoes the following evolution:

TSN
{checkIn(Alice)}, 8−−−−−−−−−−→ TSN ′

{openFeed(Bob)}, 9−−−−−−−−−−−→ TSN ′′

In other words, Alice makes her location public to her friends at time 8 and then
Bob opens his news feed at time 9. Using the more commonly used notation, we
can write

σ = 〈(TSN , 7), (TSN ′, 8), (TSN ′′, 9)〉.

We can use the satisfiability relation (Def. 10) to determine whether Bob learns
Alice’s location after she discloses it to her friends. More precisely, we are interested
in whether it is the case that

σ, 7 |= �(friends(Alice, Bob) ∧ checkIn(Alice, 7) =⇒ ∃x.♦LBob loc(Alice, x)).

According to the definition, in order for �ϕ to hold, ϕ has to hold in all TSNMs
that are not older than the guiding timestamp on the left-hand side, which in our
case is 7. Therefore, we must in fact check every TSNM in σ.

As for the premise, the predicate friends(Alice,Bob) was true in TSN and since
no unfriend event took place, it is the case that (Alice,Bob) ∈ Aσ[t]

friends for all t ≥ 7,
that is, Alice and Bob are friends in all three TSNMs in σ – at time 7, 8 and
9. The predicate checkIn(Alice, 7) in this case represents that Alice executed the
checkIn event after time 7. Since according to the transition relation the checkIn
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event was executed at time 8, the associated predicate is true at time 8 and 9:
checkIn(Alice, 7) ∈ KBσ[t]

e for t ≥ 8.
Moving over to the right-hand side of the implication, ♦ψ requires there to be

at least one TSNM not older than the guiding timestamp such that ψ holds. In our
case, there has to be some TSNM in which a timestamped loc(Alice, x) for some x
is in ClT (KB

σ[t]
Bob) for some t satisfying the above condition. In this case Bob does

not need to infer any knowledge: once he opens his news feed at time 9, he will
see Alice’s location, so (loc(Alice, 1), 9) (where 1 is the resource identifier of the
location) will appear in KB

σ[9]
Bob .

To conclude, since the premise holds at time 8 and 9 and in both cases, Bob
eventually learns Alice’s location at 9, the property holds.
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Chapter 5

Timed Privacy Policy Language (T PPLSN )

One of the main goals of T FPPF is to equip users of OSNs with additional power
when defining their privacy policies. Building on FPPF , this is done by extend-
ing the original privacy policy language PPLSN with time fields, which enable
the user to specify a (possibly recurring) real-time window in which their policy
should be enforced. The resulting language is called timed privacy policy language
(T PPLSN ).

In the following sections, we first describe how to capture a specific time win-
dow (or windows) using T PPLSN (Sec. 5.1), followed by the formal definition,
semantics and properties of T PPLSN (Sec. 5.2, 5.3, 5.4). The remaining Sec. 5.5
is devoted to examples of policies written in T PPLSN and their properties and
consequences.

5.1 Privacy Policies in Real Time
Our aim is to provide a way to enforce a privacy policy in a specific real-time
window. Additionally, we also want to be able to repeat this window after a chosen
time period has passed. To this end T PPLSN offers a total of three time fields
(Fig. 5.1), called start , duration, and recurrence.

Starting Point The first field, start , is a timestamp (Def. 2). It is the only com-
pulsory field out of the three. If a policy only uses the start field, it is meant to be
enforced from the point represented by its value forward. Such policies (which only
have a start) are the T PPLSN version of the original PPLSN policies.

Window Duration The second field is duration. Unlike the start field, it does not
contain a timestamp, but a slightly different notion with the same name as that

J¬αK[ start ]
a Jϕ =⇒ ¬αK[ start ]

a

J¬αK[ start | duration ]
a Jϕ =⇒ ¬αK[ start | duration ]

a

J¬αK[ start | duration | recurrence ]
a Jϕ =⇒ ¬αK[ start | duration | recurrence ]

a

Figure 5.1: Basic forms of privacy policies one can define in T PPLSN . There are
two basic shapes for the inner content and three possible time fields.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

δ1

δ2

δ3 δ3 δ3

Figure 5.2: Consider three policies δ1, δ2, δ3, each with as many time fields defined
as its index. If δ1 only has the start field defined and set to 13, it will hold from that
point forward, assuming the owner user does not deactivate it altogether. If δ2 has a
start and a duration, it will be enforced in one fixed time window. In this case, the
respective fields are 3 and 16, making the starting time of δ2 3 and the ending time
3 + 16 = 19. In case of δ3, we also have the recurrence field defined. In this case, the
values of the fields are, in order, 5, 6, and 10, meaning that the starting points will be
5, 5+10, 5+2∗10, . . ., while the ending points will be 5+6, 5+10+6, 5+2∗10+6, . . ..

Table 5.1: Given the time fields start, duration, recurrence, a privacy policy should be
enforced in intervals 0, 1, . . . , specified by the table. If the recurrence field is not defined,
then a policy should be only enforced in interval 0. This table is not applicable when
only the start field has been defined – in that case, there is no end of the time frame.

Interval Start End

0 start start + duration
1 start + recurrence start + recurrence + duration
2 start + 2 recurrence start + 2 recurrence + duration
3 start + 3 recurrence start + 3 recurrence + duration
...

...
...

i start + i recurrence start + i recurrence + duration

of the field itself: duration (Def. 11). A duration simply stands for the amount of
time between two points in time. If a policy is defined with both a start field and
a duration field, but the last field is missing, it is meant to be enforced in the time
window starting at start and ending at start + duration.

Recurrence Offset The last field is recurrence and it also uses the duration format.
It can only be defined if both the start and the duration fields have been defined.
The recurrence field is essentially the offset between the starting point of each pair
of adjacent time windows. A policy with all three fields is meant to be enforced
first in the window from start to start + duration. The second window starts at
start + recurrence and ends at start + recurrence + duration. The third window is
offset by twice the value of the recurrence field, and so on (Table 5.1).

For a more intuitive explanation of how the three fields work together, see Table
5.1 and Fig. 5.2. We also provide a simple example (Ex. 7) at the end of this
section.

Let us now formalize the aforementioned notion of durations. The definition
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provided below is very similar to the definition of timestamps (Def. 2) – it is also
essentially just a natural number representing a number of milliseconds. In this
case, however, it stands for the absolute difference of two timestamps |t2 − t1|, i.e.,
the time elapsed between t1 and t2.

Definition 11 (Duration). A duration d is a positive natural number representing
the number of milliseconds elapsed between two points in time.

As was the case of timestamps, here, too, we will use a more human-readable
format for durations. For instance, d = 60000 will be 1 minute, d = 2167236000 will
be 25 days, 2 hours and 36 seconds, and so on. To avoid unnecessary ambiguity,
we will avoid referring to months and years, since their length varies.1

Example 7. A privacy policy defined with the time field

[ 2016-02-02 14:00 ]

is meant to be enforced from February 2, 2016, 14:00 onwards. If the fields defined
are

[ 2016-02-02 14:00 | 6 hours ],
it gives the policy an ending point – now it should be enforced on February 2, 2016,
from 14:00 to 20:00. And finally,

[ 2016-02-02 14:00 | 6 hours | 1 day ]

stands for every afternoon from 14:00 to 20:00, starting on February 2, 2016.

5.2 Writing Privacy Policies
With the intuition behind the time fields explained and the notion of durations
introduced, we are now ready to define the general shape of formulae used in the
timed privacy policy language T PPLSN . The language is very similar to that of
the original PPLSN , as given in [25].

Definition 12 (Syntax of T PPLSN ). Given agents a, b ∈ Ag , a nonempty set
G ⊆ Ag , a timestamp s, durations d, r, a variable x, a formula ϕ ∈ FT KBL, relation
symbols cm(a, b), an(a, b), p(~s) where m ∈ C and n ∈ Σ, the syntax of the timed
privacy policy language T PPLSN is inductively defined as:

δ ::= δ ∧ δ | ∀x.δ | τ
τ ::= J¬αK[ s ]

a | J¬αK[ s | d ]
a | J¬αK[ s | d | r ]

a |
Jϕ =⇒ ¬αK[ s ]

a | Jϕ =⇒ ¬αK[ s | d ]
a | Jϕ =⇒ ¬αK[ s | d | r ]

a

α ::= α ∧ α | ∀x.α | ψ | γ′
γ′ ::= Kaγ | Laγ | DGγ | CGγ
γ ::= γ ∧ γ | ¬γ | p(~s) | γ′ | ψ | ∀x.γ
ψ ::= cm(a, b) | an(a, b)

Furthermore, let FT PPL denote the set of all formulae of T PPLSN and FRT PPL
the set of all formulae created using the α category (the restrictions).

1In general, variable month and year length has a number of consequences from the point of view of practical
usability of T PPLSN ; we discuss these in Sec. 5.4.
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σ |=C δ1 ∧ δ2 iff σ |=C δ1 ∧ σ |=C δ2

σ |=C ∀x.δ iff for all v ∈ Dσ[t]
o , σ |=C δ[v/x]

σ |=C J¬αK[ s | d | r ]
a iff for all c ∈ N0

such that 0 ≤ s+ cr ≤ max(Tσ),
σ |=C J¬αK[ s + cr | d ]

a

σ |=C J¬αK[ s | d ]
a iff σ[s .. s+ d], s |= �(¬α)

σ |=C J¬αK[ s ]
a iff σ[s .. ], s |= �(¬α)

σ |=C Jϕ =⇒ ¬αK[ s | d | r ]
a iff for all c ∈ N0

such that 0 ≤ s+ cr ≤ max(Tσ),
σ |=C Jϕ =⇒ ¬αK[ s + cr | d ]

a

σ |=C Jϕ =⇒ ¬αK[ s | d ]
a iff σ[s .. s+ d], s |= �(ϕ =⇒ ¬α)

σ |=C Jϕ =⇒ ¬αK[ s ]
a iff σ[s .. ], s |= �(ϕ =⇒ ¬α)

Figure 5.3: The semantics of the timed privacy policy language T PPLSN is given
in terms of the conformance relation |=C . We use N0 to denote the set of all natural
numbers and zero. Both the direct and the conditional restriction policy form have two
base cases, based on the time fields defined. These base cases take the relevant subtrace
of the original trace and the content of the policy, with � attached, is then checked using
the satisfiability relation.

5.3 Checking Privacy Policies

Now that we are able to define policies to be enforced in real-time, we need to
be able to determine whether they actually work in an OSN. For this purpose we
formalize the semantics of T PPLSN , which define whether a privacy policy is or is
not violated during the evolution of an OSN, encoded in a well-formed trace.

The actual checking process uses notions defined earlier: it combines basic trace
operations (Sec. 3.2.3) with the satisfiability relation for T KBLSN (Def. 10).

Definition 13 (Conformance Relation). Given a well-formed trace σ ∈ TCS , an
agent a ∈ Ag , formulae ϕ ∈ FT KBL, α ∈ FRT PPL, and δ, δ1, δ2 ∈ FT PPL, the confor-
mance relation |=C is defined as shown in Fig. 5.3.

The conformance relation treats both direct and conditional restrictions in the
same way: both are interpreted using the satisfiability relation based on the time
fields they have; the shape of the content of the policy is not relevant. The three
cases mirror the three possible configurations of policy time fields: by Def. 12, a
policy either only has a start , or it has a start and a duration, or a start , a duration
and a recurrence.

One-Field Policies This is a base case in the conformance relation. With only the
start field defined, we take the suffix of the original trace σ starting at start : since
we are only interested in enforcing the policy from that point forward, we only need
to look at those TSNMs in the trace whose timestamps are start or greater. We also
set the trace position variable to start . Finally, we attach the � (always) temporal
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operator to the policy, to make sure that it will be checked in every TSNM of the
subtrace, and we delegate the checking process to the satisfiability relation.

Two-Field Policies This is also a base case in the conformance relation. It is very
similar to the previous one, the only difference being that we do not delegate a
whole suffix of the original trace, but a subtrace starting at start and ending at
start + duration. The philosophy behind this is exactly the same as before: we are
only interested in the time window between these two time points.

Three-Field Policies This is the only complex form. The intuition behind the
reduction to a simpler case is illustrated by Fig. 5.2, which was mentioned before.
Essentially, we cut the original trace into the windows specified by the time fields
and check each of the windows separately by reducing to a simpler case. This is
quite straightforward, since we can easily calculate the starting and ending point
of any time window from the three fields, as shown previously by Table 5.1.

Note that even though the counter c (which basically stands for the window
number) is a nonnegative integer, we only check a finite number of windows (it
would not make much sense otherwise, since the trace itself is finite). There is also
one notable corner case: if the last window is not complete (because the trace ends
somewhere in it), we just check the part that can be accessed. This is because of
the way the subtrace function (Sec. 3.2.3) works when handling timestamps out of
range.

5.4 Clarifications

5.4.1 Checking Outside Policy Windows
The behavior and meaning of T PPLSN policies might differ from initial expec-
tations. For example, imagine Alice wants to define a policy that says that Bob
cannot learn about any of her pictures during the weekend.

Now let us say that on Wednesday, Bob learns about Alice’s picture, taken at
a party on Saturday. Is this a violation of Alice’s policy? Not in terms of the
conformance relation. This is because the relation trims away any part of the trace
that does not have a weekend timestamp, so the policy is really checked only in the
time frame it is defined for. Essentially, it says that Bob is not allowed to learn
about Alice’s picture during any weekend.

To further clarify what the policy actually means, consider now the opposite sce-
nario: on Saturday, Bob learns about Alice’s picture, which was taken on Wednes-
day. This is a violation of Alice’s policy, because the conformance (and satisfiability,
by extension) relation does not care about the original date of something happening
or appearing in the OSN, it only checks whether something was learned at a specific
point (e.g. on Saturday).

For similar potentially ambiguous cases and their handling in T PPLSN , we refer
to the examples in Sec. 5.5.
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5.4.2 Variable Window Offset
Shortly after defining the notion of durations, we briefly mentioned that we will
avoid using months and years in the human-readable format to avoid confusion
caused by the variability in their length. Take month lengths, for example: a
month can mean any number of days from 28 to 31, depending on a number of
factors. In year length, leap years are the cause of ambiguity.

It might seem that this is not actually a problem; we can just use the precise
number of days in a specific month or year to translate a duration unambiguously.
The issue, however, extends further.

Imagine a user wants to define a policy that should be enforced on the last day
of each month. There is no way to achieve this with just one policy with all three
time fields: as the recurrence field value is used as the offset between the starting
point of windows, the duration between each window will be the same and there is
no way to offset the second window by 31 days, the next one by 28 days, and so on.

Nevertheless, there is a number of solutions that can be used in scenarios like
these. For example, one can define multiple policies (or one longer policy that is
a conjunction of several basic policies) with the same content, but different time
fields. Since the number of options one needs to account for is finite, the number
of policies needed to capture them is finite as well. Alternatively, we could have
a notion of months and years that would be automatically translated to the right
number of days based on the starting point of the policy window. For example,
if we are currently checking a policy in a time window starting on November 5,
2016, and the next window based on the recurrence field is supposed to be a month
from that point, we could calculate the number of days between November 5 and
December 5 and use that as the next starting point.

5.5 Example Privacy Policies
Example 8. On Friday, April 15, 2016, Alice decides that she wants to keep her
private life separate from her life as a graduate student. In an OSN with privacy
policies using T PPLSN , she can keep her supervisor Bob from learning her location
on weekends by defining the following privacy policy:

δ = J¬LBob location(Alice)K[ 2016-04-16 | 2 days | 1 week ]
Alice

Given a trace of the OSN Alice and Bob use, δ would be checked first in the subtrace
from Saturday 16th, 00:00, to Monday 18th, 00:00, then again from Saturday 23rd,
00:00, to the end of Sunday 24th, and so on.

In order for the trace to be in conformance with δ, in each of these subtraces, the
T KBLSN formula � (¬LBob location(Alice)) needs to be satisfied. Based on the sat-
isfiability relation (Def. 10), this is only the case if the formula ¬LBob location(Alice)
is satisfied at every point of the subtrace. This, in turn, means that it must not be
the case that LBob location(Alice) is satisfied in any of the TSNMs of the subtrace.

To determine whether LBob location(Alice), we consult the closure of Bob’s knowl-
edge base to see whether it contains the pair (location(Alice), t), where t is the
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timestamp of the TSNM currently being checked. In other words, we have to de-
termine whether Bob learned (either directly, or by inference) location(Alice) at
point t. As t is a time in one of the time windows δ is defined for (i.e., a weekend
sometime after April 16th), Bob having access to this particular piece of knowledge
would be a violation of Alice’s policy, since it would mean Bob managed to learn
Alice’s location on a weekend. Note, however, that Bob learning Alice’s weekend
location at any point not during a weekend is not considered a violation of the pol-
icy. This is due to the fact that the policy is not checked outside the time windows
it is defined for.

There is also an alternative way of writing the policy using the knowledge modal-
ity K. In fact, although it is not always so, in this simple case L and K are
interchangeable. Consider the policy

δ′ = J¬KBob location(Alice)K[ 2016-04-16 | 2 days | 1 week ]
Alice

and the way it is checked with respect to a trace, according to the conformance
and satisfiability relations. The process is the same as before – we slice the trace
into relevant windows and delegate the actual checking of these subtraces to the
sastifiability relation – until the point when we are looking for a certain piece of
information in the closure of Bob’s knowledge base in every relevant model of the
subtrace. While in the previous case we were looking for a “fresh” location(Alice)
(that is, one with the same timestamp as that of its model), this time we are
interested in any location(Alice) whose timestamp falls anywhere within the start
of the time window being checked and the timestamp of the model. In order for
such location(Alice) to be in the closure of Bob’s knowledge base, he must have
learned it sometime in the time frame being checked, which is exactly what the
original policy δ meant.

Note that when checking a specific time frame starting at time s, there might
be instances of location(Alice) with timestamps older than s in Bob’s knowledge
base. This, however, does not violate δ′ since by Def. 13, we are only checking the
subtrace starting at s, and by Def. 10, in order for Bob to know something, that
particular piece of knowledge has to have a timestamp greater than or equal to the
oldest timestamp of the trace, which in this case is s, so older knowledge is not
taken into account.
Example 9. Charlie will start a new one-month job on July 1st, 2016, and she would
like to ensure that, during this period, only her friends can learn about her posts
when she is at home, and only her colleagues can learn about her posts when she
is at work. In T PPLSN , she can accomplish this by defining two privacy policies
δ1, δ2:

δ1 = ∀x.Jhome(Charlie) ∧ ¬friends(Charlie, x) =⇒
¬Lxpost(Charlie, text)K[ 2016-07-01, 31 days ]

Charlie

δ2 = ∀x.Jworking(Charlie) ∧ ¬colleagues(Charlie, x) =⇒
¬Lxpost(Charlie, text)K[ 2016-07-01, 31 days ]

Charlie
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The predicates home(Charlie) and working(Charlie) are checked by consulting the
environment, which contains everything that holds in a specific model. Checking
whether δ1 or δ2 are violated ultimately boils down to checking whether all TSNMs
in the trace, starting at 2016-07-01 00:00 and ending at 2016-08-01 00:00, satisfy
the whole formula inside the policy. It should be noted, however, that the time
when the post was actually posted is irrelevant; what matters is when the users
learn about it. So if Charlie is working and her colleague Daniel somehow gains
access to her post that was originally posted when she was at home, it is not a
violation of either of the policies.

In Example 8, the learning and knowledge modalities could be swapped without
changing the meaning of the policy. This is usually not possible in conditional
policies like δ1 and δ2. Consider the following variation of a simplified δ1:

δ′1 = ∀x.J¬friends(Charlie, x) =⇒ ¬Kxpost(Charlie, text)K
[ 2016-07-01, 31 days ]
Charlie

Imagine we want to check δ′1 on a trace with a user Greg whose relationship with
Charlie is a little complicated. They first meet and become friends on July 15th,
but for some reason Greg unfriends Charlie on July 25th. Both dates fall into the
time window of the policy.

Now let us say Greg learns Charlie’s location when they are friends, on July
20th. Since agents do not forget anything, it will still be in his knowledge base
after he unfriends Charlie. This, however, means that δ′1 will be violated, since
at any point after July 25th, someone who is not a friend of Charlie’s knows her
location with a timestamp greater than July 1st.

If we use the learning modality instead, this will not be a problem. The difference
is that in order for δ′1 to be violated, the state of Charlie and Greg not being friends
and Greg knowing Charlie’s location have to happen at the same time (in the same
model). If L is used instead of K, the violating condition changes to not being
friends and Greg learning Charlie’s location at the same time.
Example 10. Another example of a privacy policy could be “if we break up, then
you can no longer learn about pictures I am tagged in”. Let us say it is Frank
who wants to enforce this and Eve is his current girlfriend. He is free to write the
following in T PPLSN :

δ = JbrokenUp(Frank ,Eve) ∧ taggedIn(Frank , η) =⇒ ¬LEvepicture(η)K[ t ]Frank

To rephrase the policy to better capture the meaning of the individual predicates,
we could say: “If Frank and Eve are in the state of being broken up according to the
environment and Frank is tagged in picture η, then Eve does not learn about the
picture η”, where η is a unique identifier tying the taggedIn and picture predicates
together.

Here, too, checking whether δ is violated with respect to a trace means checking
the contents of the policy in all TSNMs in the trace, starting at time t. So if Eve
gains access to a picture Frank is tagged in that is new to her (no matter when
it was originally posted) when they are no longer together, Frank’s policy will be
violated.
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Part II

Towards More Variability in Privacy
Policies
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Chapter 6

Real-Time Social Network Model (RTSNM)

6.1 Real-Time First-Order Privacy Policy Framework
RT FPPF

The second part of the thesis is devoted to the real-time first-order privacy policy
frameworkRT FPPF . This framework aims to solve the delimitations of T FPPF ,
using it as an intermediate step towards a more fine-grained time-sensitive epistemic
logic and privacy policy language.

Some of the delimitations of T FPPF were described in the previous chapters.
Essentially, they can be summed up as follows:

• Inflexibility. The policies of T PPLSN are only enforced in a fixed time window,
though that may not be the desired behavior, as illustrated in Sec. 5.4.1 and
5.5.

• Inability to determine the time when a piece of information was up-to-date, or
more precisely, when it appeared in the OSN. The timestamps in the knowledge
bases of agents only represent the point of learning. If an agent learns some
piece of information from a year ago at the same time as a piece of information
that has just been posted, both will be in their knowledge base with a recent
timestamp.

• Limited ability to reason about time relative to what happens in the OSN.
One cannot write policies that react to events in the OSN, nor is it possible to
tie predicates together based on when they were or were not true.

The logic proposed in this part, RT KBLSN (Chap. 7), marks the transition
from the temporal T KBLSN to a logic which contains timestamps as a syntactic
component. In RT KBLSN , timestamps become part of every predicate and knowl-
edge modality, making it possible to distinguish between the point when a piece
of information appeared in the OSN and the point when an agent learns it. To
progress from the implicit notion of events in T FPPF , they become an explicit
part of the OSN trace in RT FPPF . These and other differences will be described
in the following chapters.

Formally, we define:
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Definition 14 (Real-Time First-Order Privacy Policy Framework). The tuple
RT FPPF = 〈RT SN ,RT KBLSN , |=,RT PPLSN , |=C〉 is a real-time first-order
privacy policy framework where

• RT SN is the set of all possible real-time social network models;

• RT KBLSN is a real-time knowledge-based logic;

• |= is a satisfiability relation defined for RT KBLSN ;

• RT PPLSN is a formal real-time privacy policy language;

• |=C is a conformance relation defined for RT PPLSN .

The structure of RT FPPF is very similar to that of T FPPF . In fact, some
of the notions defined in T FPPF , such as timestamps, can and will be reused. To
reflect this continuity, the rest of this part of the thesis is organized in the same way
as the previous one. There are three chapters, each describing one of the major
components (the underlying model in the rest of Chapter 6, the logic to reason
about knowledge in Chapter 7, and the privacy policy language in Chapter 8).

Some of the notions in this part will reuse the names from Part I, even in cases
where the definition might be different. This is to avoid heavy notation, which
could be the case if we decided to use subscripts and superscripts to distinguish
between names used in both frameworks. In cases when we want to use a previously
established name to refer to the notion from the previous framework, it will be
explicitly stated.

6.2 Real-Time Social Network Model RTSNM
The shape of the model used to capture a specific OSN in a given moment in
RT FPPF is the same as in T FPPF . It is a social graph with agents, the re-
lationships between them, and their privacy policies. Each agent, including the
environment, has their own knowledge base with timestamped pieces of knowledge.
There are two differences compared to TSNM: the shape of formulae in the users’
knowledge bases is different, and their privacy policies use a different language.

As mentioned before, we will use the original definition for timestamps (Def. 2).
Also, T stands for the set of all timestamps as before, while FRT KBL denotes the
set of all formulae of the logic RT KBLSN defined in the next chapter.

Definition 15 (Real-Time Social Network Model). Given a set of formulae F ⊆
FRT KBL, a set of privacy policies Π, and a finite set of agents Ag ⊆ AU from a uni-
verse AU , a real-time social network model (RTSNM) is a social graph 〈Ag ,A,KB ,
π〉, where

• Ag is a nonempty finite set of nodes representing the agents in the social
network;

• A is a first-order relational structure over the RTSNM, consisting of a set of
domains {Do}o∈D, where D is an index set, and a set of relation symbols,
function symbols and constant symbols interpreted over a domain;
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• KB : Ag → 2F×T is a function retrieving the set of accumulated knowledge,
each piece with an associated timestamp, for each agent, stored in the knowl-
edge base of the agent; we write KB i for KB(i);

• π : Ag → 2Π is a function returning the set of privacy policies of each agent;
we write πi for π(i).

We will use RT SN to denote the set of all RTSNMs.

6.2.1 Evolving OSNs
In RT FPPF , we extend the traces of T FPPF with events from a universe EVT .
What these events look like and how they change the structure of the RTSNM –
the transition relation – depends on the OSN being modeled. A tweet event could
model a tweet being published on Twitter, for example [25]. The meaning of the
events is the same as previously (Sec. 3.2.2) – they transform one RTSNM to
another.

Definition 16 (Trace). Given k ∈ N, a trace σ is a finite sequence

σ = 〈(RTSN 0, E0, t0), (RTSN 1, E1, t1), . . . , (RTSN k, Ek, tk)〉

such that, for all 0 ≥ i ≥ k, RTSN i ∈ RT SN , Ei ⊆ EVT , and ti ∈ T.

As before, given a trace σ, we define Tσ = {t | (RTSN , E, t) ∈ σ}.
The conditions a trace must fullfil in order to be meaningful (well-formed) closely

follow the ones established before for T FPPF (Def. 5), with two notable differ-
ences.

Accounting for Events The definition has to account for events being explicit in
the trace. We use an updated version of the transition relation described be-
fore (Sec. 3.2.2), this time as −→ ⊆ RT SN × 2EVT × T × RT SN . We have
〈RTSN 1, E, t,RTSN 2〉 ∈ −→ if RTSN 2 is the result of the set of events E ∈ EVT
happening in RTSN 1 at time t. Note that we allow E to be empty, in which case
RTSN 2 = RTSN 1. Again, we will use the more compact notation of

RTSN 1
E,t−−→ RTSN 2

where appropriate.

Traces without Gaps We require that there be a RTSNM in the trace for every
time instant between the beginning of the trace and its end. Formally:

Definition 17 (Complete Trace). Let σ be a trace. σ is complete if for all t ∈ T
such that min(Tσ) ≤ t ≤ max(Tσ), t ∈ Tσ.

Example 11. Suppose we have the following trace

σ = 〈(RTSN 0, E0, 2016-05-27 00:00:00.000),

(RTSN 1, E1, 2016-05-27 00:00:00.001),

(RTSN 2, E2, 2016-05-27 00:00:00.003)〉.
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σ is missing at least one entry to be complete, since there is one valid timestamp
in the range from 2016-05-27 00:00:00.000 to 2016-05-27 00:00:00.003 that is part
of T but not Tσ, and that is 2016-05-27 00:00:00.002.

Using trace completeness as a prerequisite, we can now provide a formal defini-
tion of well-formed RTSNM traces.

Definition 18 (Well-Formed Trace). Let

σ = 〈(RTSN 0, E0, t0), (RTSN 1, E1, t1), . . . , (RTSN k, Ek, tk)〉

be a complete trace. σ is well-formed if the following conditions hold:

1. For any i, j such that 0 ≥ i, j ≥ k and i < j, it is the case that ti < tj.

2. Let KBRTSN denote the knowledge base function of model RTSN , and similarly
for AgRTSN . For all (RTSN , t) ∈ σ, for all a ∈ AgRTSN , for all (ϕ, tϕ) ∈
KBRTSN

a , it is the case that tϕ ≤ t.

3. For all i such that 0 ≤ i ≤ k−1, it is the case that RTSN i
Ei+1, ti+1−−−−−−→ RTSN i+1.

Again, we will use TCS to refer to the set of all well-formed RT FPPF traces.

6.2.2 Notation
Accessing a specific RTSNM RTSN in a well-formed trace is done using the same
notation as before: σ[t] for a timestamp t ∈ T. If t ∈ Tσ, then the result is the
RTSNM RTSN ∈ RT SN belonging to the tuple (RTSN , E, t′) ∈ σ for which t′ = t,
as previously.

There are two corner cases arising from the fact that this time we do not require
that t ∈ Tσ: t can be out of bounds if it represents a time instant before or after
every RTSNM in the trace. If t > t′ for all t′ ∈ Tσ, we define σ[t] to be the very
last RTSNM in σ. Conversely, if t < t′ for all t′ ∈ Tσ, then σ[t] will be the very first
RTSNM in σ. A demonstration of how the indexing function works can be found
in Example 12.

Given a specific RTSNM RTSN , we will write AgRTSN , ARTSN , KBRTSN , ΠRTSN

to access RTSN ’s agent set, relational structure, knowledge base, and privacy policy
function, respectively.

Example 12. We revisit and expand Example 11 to illustrate how the new indexing
function works. Suppose we have the following well-formed σ ∈ TCS :

σ = 〈(RTSN 0, E0, 2016-05-27 00:00:00.000),

(RTSN 1, E1, 2016-05-27 00:00:00.001),

(RTSN 2, ∅, 2016-05-27 00:00:00.002),

(RTSN 3, E3, 2016-05-27 00:00:00.003),

(RTSN 4, E4, 2016-05-27 00:00:00.004)〉.
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Given t ∈ Tσ, the indexing function returns the corresponding RTSNM, as
before.

σ[2016-05-27 00:00:00.002] = RTSN 2

σ[2016-05-27 00:00:00.004] = RTSN 4

Given a timestamp t /∈ Tσ, it returns the closest RTSNM in the trace.

σ[2006-04-30 20:42] = RTSN 0

σ[2016-05-26 19:58] = RTSN 0

σ[2016-05-27 00:00:00.005] = RTSN 4

σ[2016-05-28 00:47] = RTSN 4
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Chapter 7

Real-Time Knowledge-Based Logic (RT KBLSN )

While T KBLSN utilized the temporal operators � and ♦ to capture the dynamic
character of the framework, RT KBLSN promotes timestamps themselves to a syn-
tactic component of the language. Since both � and ♦ are derivable in RT KBLSN ,
these operators are not present in the basic syntax of RT KBLSN .

This transition from temporal operators to timestamps being part of the syntax is
the main difference between the temporal T KBLSN and the real-time RT KBLSN .

7.1 Syntax of RT KBLSN
We reuse the standard definition of terms from before (Def. 6) to build the syntax
of the new logic, where each of the basic building blocks contains a timestamp.

Definition 19 (Syntax of RT KBLSN ). Given agents a, b ∈ Ag , a nonempty set of
agents G ⊆ Ag , a timestamp t, an event e ∈ EVT , a variable x, predicate symbols
an(a, b, t), cm(a, b, t), p(~s, t) where m ∈ C and n ∈ Σ, the syntax of the real-time
knowledge-based logic RT KBLSN is inductively defined as:

ϕ ::= ρ | ϕ ∧ ϕ | ¬ϕ | ∀x.ϕ | Kt
aϕ | Ct

Gϕ | Dt
Gϕ

ρ ::= cm(a, b, t) | an(a, b, t) | p(~s, t) | happened(e, t)

We will use FRT KBL to denote the set of all well-formed RT KBLSN formulae.
As the definition suggests, apart from the now absent temporal operators men-

tioned earlier, the syntax introduces a number of new notions.

Timestamped Predicates Timestamps are explicitly part of each predicate, includ-
ing connections and actions. The meaning of the timestamp attached to a pred-
icate is that it should capture the moment where that particular predicate was
true. In this sense, timestamped predicates can be seen as functions of time. For
instance, if Alice and Bob were friends in a certain time period, then the predicate
friends(Alice,Bob, t) should be true for all t falling into the period, and false for all
t outside.

Timestamped Knowledge Modalities Timestamps are now also part of the knowl-
edge modalities K,C,D. These timestamps represent the moment in time when a
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particular piece of knowledge was obtained. For example, the meaning of the for-
mula Kt

Alice friends(Bob,Charlie, t′) is that Alice learns at time t that Charlie was
friends with Bob at time t′.

It should also be noted that RT KBLSN does not include separate modalities
for learning and knowledge, as was the case in T KBLSN . Semantically, here the K
modality stands for learning: it is true if the agent in question acquires a certain
piece of information at the moment given by the timestamp (Def. 21). Knowledge
in the sense of the K of T FPPF , i.e., simply having a piece of information in
the knowledge base closure, can be derived from the K modality of RT FPPF
thanks to the ability to quantify over timestamps – we can use this to translate
the meta language quantification in Def. 10 to quantification on the syntactic level
of RT KBLSN . Semantically, evaluating Kaϕ (for the T KBLSN K) at time t in
a trace has the same interpretation as the RT KBLSN formula ∃t′.t′ ≤ t ∧ Kt′

a ϕ,
which can be read as “there is a time in the past when a learned ϕ”.

Using timestamps in both the knowledge modalities and predicates enables us
to make a crucial distinction impossible in T FPPF : we can now separate and
capture the time of a predicate being valid in the OSN and the time when an agent
learns it. This allows for more fine-grained privacy policies (Chapter 8).

Special Event Predicate Now that events are explicitly part of any RT FPPF
trace, the happened(e, t) predicate has been introduced to be able to syntactically
capture the moment when a specific event occurred. This makes it possible to
reason about time relative to the time of the event, enabling the user to define
policies such as “if someone unfriends me, they are not allowed to send me a friend
request”. Note that now that events are explicit in the trace, they need not be
included in the KB of the environment.

7.1.1 Notation
Given agents a, b ∈ Ag , a nonempty group G ⊆ Ag , and an action an, we define, as
before in T FPPF (Sec. 7.1.1):

P b
aan := an(a, b)

SP b
Gan :=

∨
a∈G an(a, b)

GP b
Gan :=

∧
a∈G an(a, b)

Again, these are read: “a is permitted to execute an to b”, “someone in G is
permitted to execute an to b”, and “everyone in G is permitted to execute an to b”.

Furthermore, we also capture the statements “someone in group G knows ϕ” and
“everyone in group G knows ϕ” by the following shortcut modalities:

SGϕ ,
∨
a∈G Kaϕ EGϕ ,

∧
a∈G Kaϕ

Note that semantically, these will be the RT KBLSN equivalents of T KBLSN ’s
SL (“someone learned”) and EL (“everyone learned”) modalities.
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7.2 Semantics of RT KBLSN
In order to define a RT KBLSN -based inference engine for agents, the definition
of timed derivation (Def. 9) can be reused entirely, just replacing ClT with the
real-time version we are about to define, ClRT . We will also reuse most of the ClT
definition (Def. 8), since the way it captures learning and inferring new knowledge
applies here as well. We have to, however, update it with timestamps where missing.
To make the following definition more readable, we use the placeholder variable
name _ when the variable in question is not used again in the same context. If
there are more instances of _ in the same formula, they refer to different variables.

Definition 20 (Real-Time Closure of a Knowledge Base). Given the knowledge
base of an agent a, KBa, the real-time closure of KBa, ClRT (KBa), satisfies the
following properties:

1. Properties 1, 2, 3 in Def. 8, with ClRT instead of ClT .

2. If (ϕ, t) ∈ ClRT (KBa) then (Kt
aϕ, t) ∈ ClRT (KBa).

3. If ϕ is provable in the axiomatization S5 from ClRT (KBa) then ϕ ∈ ClRT (KBa).
Formally:

A1, R2 - As A1, R2 in Def. 8, with ClRT instead of ClT .
A2 - If (K

_
a ϕ, t) ∈ ClRT (KBa) and (K

_
a (ϕ =⇒ ψ), t′) ∈ ClRT (KBa), then

(K
max(t,t′)
a ψ,max(t, t′)) ∈ ClRT (KBa).

A3 - If (K
_
a ϕ, t) ∈ ClRT (KBa), then (ϕ, t) ∈ ClRT (KBa).

A4 - If (Kt′
a ϕ, t) ∈ ClRT (KBa), then (Kt

aK
t′
a ϕ, t) ∈ ClRT (KBa).

A5 - If (ϕ, t) /∈ ClRT (KBa), then (¬Kt
aϕ, t) ∈ ClRT (KBa).

R2 - If (ϕ, t) is provable from no assumptions (i.e., ϕ is a tautology), then
(Kt

aϕ, t) ∈ ClRT (KBa).
C1 - (Et′

Gϕ, t) ∈ ClRT (KBa) iff (
∧
i∈G K

t′
i ϕ, t) ∈ ClRT (KBa).

C2 - (Ct′
Gϕ, t) ∈ ClRT (KBa) iff (Et′

G(ϕ ∧ Ct′
Gϕ), t) ∈ ClRT (KBa).

RC1 - If (ϕ =⇒ Et′
G(ψ ∧ ϕ), t) is provable from no assumptions, then (ϕ =⇒

Ct′
Gψ, t) ∈ ClRT (KBa).

D1 - (Dt′

{a}ϕ, t) ∈ ClRT (KBa) iff (Kt′
a ϕ, t) ∈ ClRT (KBa).

D2 - If (Dt′
Gϕ, t) ∈ ClRT (KBa), then (Dt′

G′ϕ, t) ∈ ClRT (KBa) if G ⊆ G ′.
DA2-DA5 Properties A2, A3, A4 and A5, replacing the modality Kt

a with the modal-
ity Dt

G for each axiom.

The basic principle behind the rules in the previous definition is the same as
before. As was the case of T KBLSN , the semantics of RT KBLSN is also given in
terms of a satisfiability relation.

Definition 21 (Satisfiability Relation). Given a well-formed trace σ ∈ TCS , agents
a, b ∈ Ag , a finite set of agents G ⊆ Ag , formulae ϕ, ψ ∈ FRT KBL, m ∈ C, n ∈ Σ,
o ∈ D, a variable x, an event e ∈ EVT , and a timestamp t, the satisfiability relation
|= ⊆ TCS ×FRT KBL is defined as shown in Fig. 7.1.
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σ, t |= happened(e, t′) iff e ∈ E where (RTSN , E, t′) ∈ σ

σ, t |= ¬ϕ iff σ, t ��|= ϕ
σ, t |= ϕ ∧ ψ iff σ, t |= ϕ and σ, t |= ψ

σ, t |= ∀x.ϕ iff for all v ∈ Dσ[t]
o , σ, t |= ϕ[v/x]

σ, t |= cm(a, b, t′) iff (a, b) ∈ Cσ[t
′]

m

σ, t |= an(a, b, t
′) iff (a, b) ∈ Aσ[t

′]
n

σ, t |= p(~s, t′) iff (p(~s, t′), t′) ∈ KBσ[t′]
e

σ, t |= Kt′

a ϕ iff (ϕ, t′) ∈ ClRT (KBσ[t′]
a )

σ, t |= Ct
′

Gϕ iff σ, t′ |= Et
′,k

G ϕ for k = 1, 2, . . .

σ, t |= Dt′

Gϕ iff (ϕ, t′) ∈ ClRT (
⋃
i∈G KB

σ[t′]
i )

Figure 7.1: The semantics for RT KBLSN is given in terms of the satisfiability rela-
tion.

One of the differences from the previous satisfiability relation (Def. 10) is the
meaning of the timestamp on the left-hand side. In T KBLSN , this timestamp
marked the TSNM in the trace in which the right-hand side formula was meant to
be checked. Here, we use the timestamps in the syntax to guide the checking process
to the corresponding RTSNMs. When checking connections and actions at time t,
we check whether the corresponding relation of the RTSNM at time t contains the
agents in question. Checking a predicate with timestamp t is equivalent to looking
into the knowledge base of the environment at time t and looking for the predicate.
Determining whether an agent a knows ϕ at time t translates to looking into the
closure of a’s knowledge base at time t to see whether a learns ϕ at time t. The
left-hand-side timestamp is only used in the quantification case to determine the
RTSNM in the trace whose relational structure should be used to obtain the values
to substitute for the quantified variable.

The semantics of the new special event predicate happened(e, t) boils down to
looking into the set of events that happened in the trace at time t and determining
whether e is one of them.

7.3 Examples
Example 13. Consider Fig. 7.2 which shows a RTSNM with Alice, Bob and Charlie,
the connections between them, and their knowledge bases. In this case, the predi-
cates used have the following meaning; we use picture(x, y, z) for “there is a picture
posted by x with resource identifier y”, and similarly for location; event(x , y) stands
for “there is an event with resource identifier x”, and attending(x, y, z) is “agent x
is attending event with identifier y”. In all cases, the remaining argument is the
timestamp representing when that particular piece of information was true.

Let RTSN 0 be the RTSNM modeled in the picture and let σ be the well-formed
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Alice

Bob Charlie

(event(1, 2), 1)

(∀x.∀y.∀z.(picture(x, y, z) =⇒
location(x, y, z)), 1)

(∀x.∀y.∀z.(location(x, y, z)∧
event(y, z) =⇒
attending(x, y, z)), 1)fri

en
ds

friends

follower

Figure 7.2: A RTSNM with three agents, the connections between them, and their
knowledge bases. Here, Bob is able to derive the location of a picture if they share
the same resource identifier, and Charlie is able to conclude that if the time and place
of someone’s location correspond to that of a known event, the person in question is
attending the event. Meanwhile, Alice found out about an event with identifier 1 which
happens at time 2.

trace

σ = 〈(RTSN 0, E0, 1),

(RTSN 1, {postPicture(Alice)}, 2),

(RTSN 2, {openFeed(Charlie)}, 3),

(RTSN 3, {openFeed(Bob)}, 4)〉,

where the postPicture(Alice) event – which transforms RTSN 0 to RTSN 1 at time
2 – represents Alice making a picture public to her friends and followers and the
meaning of the openFeed event is the same as before: it refers to a user accessing
all information available to them in the OSN.

The knowledge evolution from RT SN 0 to RT SN 3 is as follows. At time 2, a
picture with resource identifier 1 (that is, tied to event 1) taken by Alice appears
in the network. Charlie then learns about the picture at time 3, while Bob learns
about it at time 4. In addition, let us assume both Bob and Charlie learn about
event 1 when they open their news feed.

Let us now check the following properties on σ:

σ, 3 |= ¬K3
Bob location(Alice, 1, 2) (1)

σ, 4 |= K4
Bob location(Alice, 1, 2) (2)

To check whether Bob does not learn Alice’s location 1 from time 2 at time 3, we
consult the satisfiability definition (Def. 21). We look into the closure of Bob’s
knowledge base at time σ[3] = RTSN 2. Since Bob could not learn or infer Alice’s
location from time 2 at time 3, (location(Alice, 1, 2), 3) /∈ ClRT (KB

σ[3]
Bob), and so

property (1) holds.
However, as soon as Bob opens his news feed at time 4, he learns about Alice’s

picture, so (picture(Alice, 1, 2), 4) ∈ ClRT (KB
σ[4]
Bob). He is then able to use the rule

in his knowledge base to learn location(Alice, 1, 2), 4), which will be in the closure
of his knowledge base at time 4, thus fullfiling (2).
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Example 14. Using everything established in Example 13, let us also check a prop-
erty regarding the knowledge of multiple agents at once. Let G = {Bob,Charlie}.

σ, 4 |= D4
Gattending(Alice, 1, 2) (1)

To answer whether Bob and Charlie together are able to learn at time 4 about
Alice attending event 1 at time 2, let us consider what they know independently
at 4. According to the previous example, (location(Alice, 1, 2), 4) ∈ ClRT (KB

σ[4]
Bob).

Charlie learns about Alice’s picture 1 from time 2 as well as about event 1 from
time 2 once he opens his news feed at time 3. He is, however, unable to use the
rule he has had in his KB from time 1 to infer anything new from the two pieces
of information.

The collective knowledge of Bob and Charlie at time 4 contains all of this. And
so, since both (location(Alice, 1, 2), 4) and (event(1, 2), 3) are in ClRT (

⋃
i∈G KB

σ[4]
i ),

the old rule of Charlie’s can be used so that we get

(attending(Alice, 1, 2), 4) ∈ ClRT

(⋃
i∈G

KB
σ[4]
i

)
,

which is the interpretation of (1).
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Chapter 8

Real-Time Privacy Policy Language
(RT PPLSN )

Since RT KBLSN treats timestamps like any other variable, we do not need to
define any special time fields to take care of the time aspect artificially, as we did
previously. Instead, we rely on the power of RT KBLSN itself.

8.1 Writing Privacy Policies
The definition of the real-time privacy policy language (RT PPLSN ) contains less
rules than that for T PPLSN . It closely follows the description of the original
FPPF , adding timestamps where necessary.

Definition 22 (Syntax of RT PPLSN ). Given agents a, b ∈ Ag , a nonempty set of
agents G ⊆ Ag , timestamps s, t, a variable x, relation symbols cm(a, b, t), an(a, b, t),
p(~s, t), and a formula ϕ ∈ FRT KBL, the syntax of the real-time privacy policy lan-
guage RT PPLSN is inductively defined as:

δ ::= δ ∧ δ | ∀x.δ | J¬αKsa | Jϕ =⇒ ¬αKsa
α ::= α ∧ α | ∀x.α | ∃x.α | ψ | γ′
ψ ::= cm(a, b, t) | an(a, b, t)
γ′ ::= Kt

aγ | Dt
Gγ | Ct

Gγ
γ ::= γ ∧ γ | ¬γ | p(~s, t) | γ′ | ψ | ∀x.γ

We will use FRT PPL to denote the set of all privacy policies created according
to the previous definition.

8.2 Checking Privacy Policies
To determine whether a policy gets violated in an evolving OSN, we formalize the
notion of conformance for RT PPLSN .

Definition 23 (Conformance Relation). Given a well-formed trace σ ∈ TCS , a
variable x, a timestamp s, and an agent a ∈ Ag , the conformance relation |=C is
defined as shown in Fig. 8.1.
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σ |=C ∀x.δ iff for all v ∈ Do, σ |=C δ[v/x]

σ |=C J¬αKsa iff σ |= ¬α
σ |=C Jϕ =⇒ ¬αKsa iff σ |= ϕ =⇒ ¬α

Figure 8.1: The semantics of the real-time privacy policy language RT PPLSN is
given in terms of the conformance relation |=C .

The definition is quite simple, especially compared to that of conformance of
T PPLSN (Def. 13). If the policy is quantified, we substitute in the usual way.
The main body of the policy in double brackets is dealt with by simply delegating
to the satisfiability relation.

8.3 Clarifications

8.3.1 Indefinitely Recurring Windows

While RT PPLSN allows users to define more fine-grained policies than T PPLSN
(Sec. 8.4), it has its limits. For example, defining a recurring privacy policy cannot
be done without help of specialized predicates, and some more complex recurrent
windows cannot be defined at all.

Suppose a user wants to define a policy which utilizes a timestamp that should
represent a weekend. We can introduce a specialized predicate for this, called
weekend(t), which is true if t belongs to a weekend. Analogously, we could have
predicates like weekday , evening , or Monday , that would help anchor a timestamp
in correct context.

But how does one deal with contexts that are more arbitrary, for example, from
a fixed date to a fixed date each year? This is not easily done. Though we can
compare timestamps – so it is possible to write statements like t < 2016-28-05∧ t >
2016-02-03 –, there is no other way to capture multiple windows (like “from February
3 to May 28 every year”) than to restrict the timestamps by adding more intervals
into the conjunction, which is not ideal, especially when the interval should repeat
more often and many times – perhaps even indefinitely.

8.3.2 Restricting in the Past

The ability to use timestamps in almost arbitrary ways in RT PPLSN creates a
problem that has to do with restricting past behavior. Consider the following policy:

δ = J¬K1
bϕK4

a

Here, a is attempting to prevent b from learning ϕ at time 1, but the activation
time of the policy is 4. In other words, δ wants to restrict something that may have
already happened, in which case it would be trivially violated.
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8.4 Examples
Example 15. Revisiting Example 8, assume Alice decides to hide all her weekend
locations from her supervisor Bob. She has a number of options how to achieve
this, depending on what the precise meaning of the policy should be.

If the idea she has is to restrict Bob learning her weekend location directly when
she posts it, she can define

δ1 = ∀x.Jweekend(x) =⇒ ¬Kx
Bob location(Alice, x)K2016-04-16Alice

where the weekend predicate is true if the timestamp supplied represents a time
during a weekend. This policy can be read as “if x is a time instant during a
weekend, then Bob is not allowed to learn at x Alice’s location from time x”.

This, however, is a very specialized scenario that captures only a small number
of situations. Bob is, for example, free to learn Alice’s location at any point not
during the weekend, or at any point during the weekend when Alice’s location is
no longer up-to-date. Though there might be scenarios where this might be the
desired behavior, we can define a policy that seems much closer to the intuitive
meaning of learning someone’s location on a weekend. Consider

δ2 = ∀x.Jweekend(x) =⇒ ¬∃y.(Ky
Bob location(Alice, x ))K2016-04-16Alice .

Here, Bob is not allowed to learn Alice’s location from a weekend, no matter when.
If the policy does not get violated, then Alice’s weekend locations will be completely
safe from Bob – on the OSN, at least.
Example 16. One of the advantages of RT PPLSN is the ability to distinguish
between the original time of a piece of information and the time when it should be
hidden. Suppose Diane activates the following policy:

δ1 = ∀x.∀y.J¬friends(Diane, x, y) =⇒ ¬∃z.(Ky
xpost(Diane, z))K

2016-05-28
Diane

This aims to prevent anyone who is not a friend of Diane’s from learning any of
her posts (here we assume that the friends connection is reflexive for simplicity,
otherwise the restriction would target Diane herself, too).

Though δ1 may seem reasonable enough, it might be unnecessarily restrictive.
Let us say there is another user, Ethan. Diane becomes friends with Ethan on May
31, so when her policy is already in effect. Should Ethan be able to learn about
Diane’s posts from when they were not friends? Not according to δ1, which says
that no one, regardless of their relationship with Diane at the moment, is able to
learn about her posts from when they were not friends.

Note that while this may indeed be the desired behavior, it is, for example,
not what happens on Facebook, where when two users become friends, they are
free to access each other’s timeline including past events and posts. RT PPLSN is
expressive enough to model this behavior as well. We can define:

δ2 = ∀x.∀y.∀y′.J¬friends(Diane, x, y) ∧ ¬friends(Diane, x, y′) =⇒
¬Ky′

x post(Diane, y)K2016-05-28Diane
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This policy precisely defines the point in time from when to hide information, y, as
well as the point in time when to hide it, y′. It says, “if Diane is not friends with
someone, then that someone cannot learn her posts, but only if they come from a
time when they were not friends”. Note that δ2 says nothing about users who are
currently friends of Diane’s, which is different from δ1 – here her friends can learn
anything, including past posts from when they were not friends with her.
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Chapter 9

Discussion

Both T FPPF and RT FPPF have their strengths and weaknesses. Both allow
for fine-grained policies and even though T FPPF is in many aspects limited com-
pared to RT FPPF , it carries out its specialized task of enabling policies in fixed,
recurring windows ad infinitum well. T KBLSN acts as an important milestone
from the original KBLSN by allowing to reason about time, though it is arguably
RT KBLSN that actually achieves what one would consider reasoning about knowl-
edge in real time. However, it is still our belief that there is a large number of use
cases in which T FPPF would be a good candidate, especially if one does not need
the additional machinery introduced in RT FPPF , or if one wants to define truly
indefinitely recurrent policies. RT FPPF , on the other hand, is preferable where
even more fine-grained policies are needed.
T FPPF has a number of areas to improve, many of which RT FPPF manages

to address – after all, they were the reason why RT FPPF was developed. Most of
these issues stem from the limited expressive power of T KBLSN , which introduces
time, but in a relative way only. This is because we utilize the � and ♦ operators
without any notion of real time, so while it is possible to ensure, for example, that
something will eventually hold, one cannot specify the actual time when it should.
This is partially remedied on the T PPLSN level, but again only in a limited way
– while policies can be defined for fixed time windows, they are very rigid and
incapable of carrying out any more complex requests a user might have. They only
specify a part of the trace where a property should hold; anything outside is not
taken into account and even the ability to navigate the subtrace is limited.

While RT FPPF manages to address most of these issues, it comes with its
own set of shortcomings. The definition of the trace indexing function (Sec. 6.2.2)
is problematic in its handling of out-of-bounds timestamps. To recapitulate, if one
tries to access a RTSNM with a timestamp that is greater than the last one in the
trace, the function just returns the last one, and analogously for a timestamp lower
than the very first. This can be an issue if one looks at the definition of the satisfia-
bility relation (Def. 21) – when quantifying over timestamps, it treats them like any
other variable, but when evaluating a basic formula, the timestamp in it has a very
special interpretation and is used to navigate the trace. So when interpreting a pred-
icate like location(Alice, 2000-01-01) over a trace that starts at time 2016-01-01, we
actually end up checking something entirely different, location(Alice, 2016-01-01).
Probably the most reasonable solution is that accessing an out-of-bounds RTSNM
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should be undefined, since we cannot say anything about what the OSN looked like
at that point. This, however, has other implications, as it essentially results in a
three-valued logic.

As hinted at in the previous paragraph, timestamps are really a very specific
part of the RT KBLSN syntax. The timestamp domain is naturally ordered and
they receive special treatment in the satisfiability relation. These are good reasons
for promoting the timestamp domain to a special one, but in this thesis we just
assume they have the same status and importance as other domains.

Also, looking back at the RT KBLSN satisfiability relation, we mentioned that
the timestamp on the left-hand side is only used in one case – to deal with quan-
tification. This is, actually, the reason why we introduced this special timestamp
in the first place: to be able to determine which relational structure to use when
looking for candidates for a certain variable. This choice has its issues, as does the
T KBLSN satisfiability relation (Def. 10), since it uses the same principle. The
problem is that the structure of the RTSNMs in the trace changes over time – for
example, users may leave the OSN. However, when quantifying over the domain of
agents, we take the set of agents at time t, when the quantified formula is being
checked, which may result in problems when evaluating any inner formulae at a
different point in time.

As we mentioned in the chapter about RT PPLSN (Chap. 8), the language has
some disadvantages, some even compared to T PPLSN . Unlimited recurrence is
hard to achieve unless the user does not mind activating a new policy everytime it
exhausts the finite number of time windows it can capture. This could be remedied
by adding arithmetic to RT PPLSN .

9.1 Future Work
We can imagine a large number of potential paths future research can take to
improve the frameworks we propose in this work. Some of them have been hinted
at in the previous section. Other ideas are:

• Wementioned early on that the formalization of OSN instantiation and privacy
preservation are out of the scope of this work. These two notions are natural
candidates for future investigation.

• Some information and knowledge can be overriden by new data of the same
kind. Consider, for example, knowing someone’s birthday and knowing their
location. While the location of an agent may and probably will change a
lot, their birthday is set in stone. If Alice learns Bob’s location on Monday
afternoon, it does not tell her anything about his location a year from then, but
learning Bob’s birthday is permanent. We could therefore find a categorization
for information, for instance into transient and permanent. This would bring
the framework closer to the actual notion of learning and knowing in reality.

• A related notion is that of knowledge validity in time. Each piece of information
has an implicit timeout – the time after which it is no longer up-to-date. For
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permanent knowledge, like someone’s birthday, this would be infinity. How-
ever, the real challenge would be to reasonably determine this timeout for
transient knowledge. For example, how long should someone’s location be
valid for? Probably not until they post a new one, because the two may be
years apart. This is an interesting question both philosophically and from the
privacy point of view, which could be explored in future work.

• When we talk about knowledge in this work, we actually mean belief as there
is no universal way to check whether an arbitrary piece of information one
comes across on an OSN is true. One problem that stems from this is that an
agent can receive conflicting pieces of information. For example, Alice might
tag Bob in a post about sitting in a pub in Dublin with her friends, but at the
same time, Bob might post a picture of himself in front of the Eiffel Tower.
Which of these is true? Is any? It might worthwhile to have a subset of data
one is sure of and can really claim to know, like birthdays of family members or
information about events one has actually attended. This would help separate
belief from actual knowledge.

• It might also be interesting to explore other formalizations of real-time, since
here we model it discretely. It seems to work well for our purpose, but other
formalizations might bring other advantages.
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Chapter 10

Conclusion

Online social networks (OSNs) are an important part of people’s lives worldwide
and their users supply them with a large amount of personal data. The audience
of this information is usually restricted by privacy policies which the users can
define. However, these settings are often limited and their meaning is not clearly
defined, leading to discrepancies between the users’ expectations and actual flow of
information in the OSN.

In this thesis we explored and formalized two concepts of real-time OSN frame-
works built upon the formal privacy policy framework FPPF [25, 26]. The aim
was to develop a time-sensitive formalization of OSNs and the ways information
spreads there, ultimately leading to a fine-grained privacy policy language based on
a knowledge-based logic.

The first framework we propose, T FPPF , comprises three main components.
First, there is the timed social network model TSNM, which captures the structure
of an OSN at a certain point in time, along with its users and the relationships
and permissions between them. Next, we introduce the temporal knowledge-based
logic T KBLSN , which is used to reason about knowledge in evolving OSNs. A
satisfiability relation is then used to determine whether a T KBLSN formula holds
in an evolving OSN. Finally, we define the timed privacy policy language T PPLSN ,
a formal language to write privacy policies based on T KBLSN , and we also formalize
how to determine if an OSN violates a specific policy. T PPLSN allows the users to
have their policies evaluated either from a point in time forward, or in a (number
of) precisely defined time window(s).

The second framework proposed in this work, RT FPPF , also comprises three
parts. First, there is the real-time social network model RTSNM, whose structure
is very similar to that of TSNM. The first major difference comes at the level of
the knowledge-based logic. RT FPPF ’s logic is called real-time knowledge-based
logic (RT KBLSN ) and contains timestamps on the level of syntax, allowing for a
wide range of time-sensitive formulae. A satisfiability relation is provided as well,
to determine whether a RT KBLSN formula holds in the dynamic OSN. Finally,
we define the real-time privacy policy language RT PPLSN , built on RT KBLSN ,
together with a conformance relation.

Each of the frameworks allows users of OSNs to define fine-grained, time-sensitive
privacy policies based on formal logic, thus addressing the problem of privacy
policy ambiguity in OSNs in a dynamic context. Moreover, both T KBLSN and
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RT KBLSN can be used directly to reason about knowledge spreading and evolving
in an OSN.

Both T FPPF and RT FPPF constitute a step forward in reasoning about
knowledge and restricting the audience of information in evolving OSNs.
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