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Abstract

This thesis comprises five scientific papers, all of which are focus-
ing on the inverse problem of reconstructing a dielectric permittivity
which may vary in space inside a given domain. The data for the re-
construction consist of time-domain observations of the electric field,
resulting from a single incident wave, on a part of the boundary of the
domain under consideration. The medium is assumed to be isotropic,
non-magnetic, and non-conductive. We model the permittivity as a
continuous function, and identify distinct objects by means of iso-
surfaces at threshold values of the permittivity.

Our reconstruction method is centred around the minimization of
a Tikhonov functional, well known from the theory of ill-posed prob-
lems, where the minimization is performed in a Lagrangian framework
inspired by optimal control theory for partial differential equations.
Initial approximations for the regularization and minimization are ob-
tained either by a so-called approximately globally convergent method,
or by a (simpler but less rigorous) homogeneous background guess.

The functions involved in the minimization are approximated with
finite elements, or with a domain decomposition method with finite
elements and finite differences. The computational meshes are refined
adaptively with regard to the accuracy of the reconstructed permittiv-
ity, by means of an a posteriori error estimate derived in detail in the
fourth paper.

The method is tested with success on simulated as well as labora-
tory measured data.

Keywords: coefficient inverse problem, inverse scattering, Maxwell’s
equations, approximate global convergence, finite element method,
adaptivity, a posteriori error analysis
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Inverse electromagnetic scattering

The thesis you have before you comprises five scientific papers, each
of which deals in one way or another with computational aspects of
inverse electromagnetic scattering. The purpose of this introduction is
to present a background of this subject, to introduce the main mathe-
matical tools which are used in the appended papers, and to highlight
the main results of each of those papers. We will also briefly com-
pare the methods presented in this work to other methods which are
commonly used for the solution of similar problems.

Since inverse electromagnetic scattering, or electromagnetic imag-
ing, constitutes the common underlying theme of each of the appended
papers, this will be our natural starting point for this exposition.

1. Inverse electromagnetic scattering

The term inverse electromagnetic scattering refers to the process
of inferring properties of a medium, or object, through observation
of its interaction with electromagnetic radiation. Which properties
one seeks to image, and what type of radiation used, depends on the
application. In X-ray tomography, one seeks to image the interior
of a patients body by observing its interaction with X-rays. With
a radar, one detects the presence of objects, for example aircraft, in
air with the aid of radio waves. All told, the applications of inverse
electromagnetic scattering are very numerous in such diverse fields as
geology, medicine, process industry, and security. The central idea of
the process remains the same in most applications, and as such we will
describe it below.

As the first step of the imaging process, electromagnetic signals
of predetermined properties (frequency, duration, point of origin, and
so on) are generated by a transmitter. These signals propagate into
the medium to be imaged, where they are scattered — transmitted,
reflected, and absorbed in various combinations determined by the
properties of the medium. Some of these scattered signals are mea-
sured by one or several detectors, and thus we have a relation where
the generated signals are transformed to the measured, or observed,
scattered signals, in a manner which is determined by the medium. By
combining these relations with a suitable mathematical model (typi-
cally Maxwell’s equations, or simplifications thereof) for the scattering
process in terms of the properties of the medium, we can attempt to
solve the inverse scattering problem (which we return to in Section
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Inverse electromagnetic scattering
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FIGURE 1. Schematic visualization of the inverse elec-
tromagnetic scattering process.

to get the image of the medium. The whole process is illustrated
schematically in Figure

In this thesis, our focus is the last step of the procedure outlined
above, that of solving the inverse scattering problem to obtain the
properties of the medium from the relation between incident signals
and corresponding scattered signals. The process of generating and
measuring signals is beyond the scope of this work, and will be con-
sidered only as a limiting factor for the type and amount of measured
signals which we assume to be available. In the next section we will
give some additional details on this.

1.1. Imaging of explosives and tumours. There are two main
applications which we have in mind in the appended papers: detection
of hidden explosives (in the air or buried in the ground) using radio
waves, primarily considered in Papers I and II, and detection of cancer
tumours with microwaves, primarily considered in Paper IV. These
applications impose certain restrictions on the type of data one can
expect to have access to. Here we present a short overview, for more
details, we refer to [? 7 7 ].

In detection of explosives, in particular explosives which are hid-
den in the ground, a potentially hazardous target with an unknown
location, it is important to obtain an image quickly, without access to
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Inverse problems and regularization

measurement around the target. Thus we only work with backscat-
tered data measured on the same side of the target as the original signal
was emitted, and data from only one incident signal. Since backscat-
tered signals are usually weaker than transmitted data, this makes the
problem of imaging more challenging, due to the very limited amount
of data.

For microwave imaging of tumours, the challenges are slightly dif-
ferent. To keep radiation doses low, it is still desirable to work with as
few signals as possible. On the other hand, the approximate location of
the target, that is, the organ to be imaged, is known in advance, allow-
ing for measurements also of transmitted, stronger, signals. However,
the contrast between healthy and unhealthy tissues are significantly
lower than in the case of detection of explosives. Moreover, due to the
conductivity of the tissues of the human body, the signals are damped,
and thus weaker. Of these two additional complications, the first one,
that of low contrasts, are addressed in Paper IV, while that of losses
induced by conductivity remains an ongoing work.

2. Inverse problems and regularization

As we remarked above, the main focus in this thesis is the solution
of an inverse scattering problem. To be more precise, we reconstruct
the dielectric permittivity of the imaged medium, which we assume
to be non-magnetic, non-conductive, and isotropic, from data consist-
ing of time-resolved observations of the electric field generated by a
single pulse. This is an inverse problem in the sense that we, from
given observations (the electric field), seek to determine the physical
conditions (the permittivity) which caused the particular set of obser-
vations. Inverse problems are often ill-posed, which makes them more
challenging to solve than their direct counterparts — here to compute
the electric field from a given dielectric permittivity.

Ill-posed problems are defined as problems which are not well-
posed, where a well-posed problem, in turn, is defined in the sense
of Hadamard as a problem with the following three properties:

(1) A solution exists for any admissible data,

(2) there is only one, unique, solution for each given set of data,
and

(3) the solution varies continuously with the data.
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Inverse problems and regularization

Given that the electric field is observed during a sufficiently long
time interval, we assume that the last two properties of uniqueness and
continuous data dependence are satisfied for our problem. Although
we are not aware of a proof for the particular case we consider, this
assumption appears reasonable in view of related uniqueness results
such as [? 7 7 7 ? ]. We cannot make any similar assumptions
regarding the first property, that of existence of a solution for any
given, and in practice noisy, set of data, and thus our problem is ill-
posed.

The rigorous theory of ill-posed problems was founded by Tikhonov
around 1960 [? ], and has since then been developed and applied by
many others, see for example [? ? ? ]. We shall now outline the
general idea, using our inverse problem as an example.

Let us denote the observed electric field by Egps = Eops(t, x), where
t is the time variable and x is the spatial variable. Further, we denote
the dielectric permittivity by ¢ = &(x), noting that it may vary in
space, but not in time. For any given permittivity e, we have a corre-
sponding electric field which we denote by E. = E.(¢, x). Our inverse
problem can now be stated as to determine € such that E;, = Eg for
0<t<T and x € 'y, where T" > 0 is a final time for our measure-
ments, and Tgps is the region in space (typically a part of a plane),
where our observations are made.

By the ill-posed nature of our inverse problem, we cannot guarantee
that such a permittivity exists for any given noisy observation Egg.
The ideas of Tikhonov gives us a way to circumvent this problem, and
obtain what is known as a quasi-solution, which may be thought of
as the best approximation of a solution as can be expected, given the
amount of noise in the data.

The argument is the following: Suppose that there is an ideal set
of data E7, ., to which corresponds a unique ideal permittivity £* with
E.« = E;,  as desired. We regard the actual observations Eqys as a per-
turbation of E, ., with a noise level 6 > 0 such that |[|[Eqps — EZ, || < 6.
(Here and below we will use the notation ||-|| for a generic norm, the
nature of which may vary depending on the quantity inside. More
precise descriptions can be found in the appended papers.) Assume
now that we have a method of finding a unique &5, for every § > 0
and every Egps with [|[Eqps — EX, (|| < 6, such that e5 — €* as 6 — 0.
We then say that the ill-posed problem is regularizable, and that 5
for our observation Egps is the regularized solution, or quasi-solution,
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Inverse problems and regularization

to the problem. It should be noted that we do not require precise
knowledge of ¢* and E, .. The existence of such a pair of ideal data
and solution is an abstract assumption. Only the noise level § and the
actual observations Egs are needed to obtain 5.

In addition, Tikhonov proposed a method of constructing €5 for
regularizable ill-posed problems, via the minimization of the Tikhonov
functional, here

1 «
(2.1) Fo(e) = 5|’E6_EobSH2+§H5_50H2a

where « = «a(d) > 0 is a regularization parameter which should be
selected appropriately, in particular we must have «(d) — 0 as 6 — 0,
and g¢ is an initial approximation of £*. We will discuss the choice
of a and ¢¢ further below. Given appropriate choices of o and ¢g, a
unique minimizer €, of F, exists, and we can define 5 = €,(s).-

2.1. Choice of regularization parameter. For the theory of
regularization by Tikhonov’s method, it is important to define the cor-
rect behaviour of the regularization parameter a = «(d) as the noise
level § tends to zero. In a practical setting however, we cannot con-
trol the noise level, but instead we are given fixed data, having some
fixed noise level. Thus, how to choose a good value of the regular-
ization parameter for a given observation becomes another important
question.

Numerous methods for doing so exist, ranging from pure heuristics
to rigorous algorithms. Some examples are the discrepancy principle
[? ], the L-curve method [? ], iterative regularization by regarding the
regularization parameter as an additional variable in the minimization
[? |, and manual choice. See for instance also [? ? ] for additional
examples. Some of these methods require the Tikhonov functional to
be minimized for several different values of the regularization parame-
ter. In our case, minimizing the Tikhonov functional is very expensive
in terms of computations, as we will see below. This makes methods
which calls for repeated minimizations inappropriate for our purposes.

Of other methods, we have considered manual choice, and iterative
regularization. The details are presented in Paper V, where we present
a comparison, from which we conclude that the choice of regulariza-
tion parameter does not appear to be the most critical factor in our
approach to the inverse scattering problem under consideration.
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Inverse problems and regularization

2.2. Construction of initial approximation. Not only should
we determine an appropriate value of the regularization parameter,
we must also find a suitable initial approximation ¢ for the dielectric
permittivity. From the theoretical point of view, any ¢ will do as we
let the noise level drop to zero and choose regularization parameter
accordingly. But, again, in practice, we cannot let the noise level drop
to zero, and so the choice of g matters for the concrete reconstruction.

The simplest meaningful choice would be to assume that gq is con-
stant, with a value corresponding to that of the background medium.
In absence of any other information, any other choice would require
additional justification, and so the constant background initial approx-
imation is commonly used. This is the case in Papers IV, and V. How-
ever, at the cost of performing additional computations, it is possible
to use the observed data to construct a better initial approximation.
In Papers I and II, this has been done using a so-called approximately
globally convergent method. The full exposition of this method can
be found in the book [? ], and a brief overview is presented in Pa-
per II of this thesis. For this introduction, we shall restrict ourselves
to summarizing the key points of this method, in particular as applied
to the construction of an initial approximation for the problem studied
in this thesis.

The method is originally derived for reconstruction of the wave
speed in the acoustic wave equation. It does not rely on any optimiza-
tion algorithm, but uses the structure of the differential operator to
obtain a sequence of approximations of the wave speed. The elements
of this sequence are computed successively, with the first element com-
puted from only the problem domain and the observed data.

In the framework of scalar waves, it can be shown that this sequence
can be constructed in such a way that the elements converge to a wave
speed which is close to, but not necessarily equal to, the ideal wave
speed in Tikhonov’s concept for the reconstruction problem [? 7 |.
It is from this property the method derives its name. In addition,
for correct choice of the regularization parameter, it can be shown
that the corresponding Tikhonov functional is strongly convex in a
neighbourhood of the obtained initial approximation, and that this
neighbourhood contains the minimizer (Theorem 3.1 of [? ]).

These important properties are theoretically and numerically es-
tablished for reconstruction of speeds of scalar waves. For electromag-
netic waves, where the dielectric permittivity € corresponds to the wave
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Modelling of the electric field

speed in the scalar case, the dependence of the electric field E. upon €
is more complicated than the dependence of a scalar wave on the wave
speed. Hence, for electromagnetic waves, the approximately globally
convergent method remains a heuristic, and the techniques used in the
case of scalar waves cannot be used to derive a corresponding version
of the approximately globally convergent method for electromagnetic
waves. However, in view of numerical results in the appended papers,
we will assume that the strong convexity property holds for F,, with
the initial approximation €9 obtained as discussed in this section.

3. Modelling of the electric field

Although Tikhonov’s method presented in Section [2, with the aid
of the approximately globally convergent method presented in Sec-
tion shows us the way to proceed with the inverse scattering prob-
lem, we are by no means ready yet. In order to minimize the Tikhonov
functional F,, of , we need at the very least to be able to evaluate
it, and its gradient. This is where the proper mathematical model for
the scattering comes into play. We recall that, in the approximately
globally convergent method, the scalar wave equation was employed
for this purpose. This equation is too unsophisticated to truly capture
the nature of electromagnetic waves, though, and instead we should
resort to Maxwell’s equations

M%I;IJerE:O,

(3.1) 588};]—V><H:—0E,
V- (eE) =p,
V- (uH) =0,

where E = E(x, t) and H = H(x, t) are electric and magnetizing
fields, respectively, 1 = p(x) is magnetic permeability, e = e(x) is
dielectric permittivity as before, o0 = o(x) is conductivity, and p =
p(x, t) is charge density. Here, and for the remaining part of this
introduction, x € R? denotes the spatial coordinates, and ¢t > 0 denotes
the time variable.

In contrast to the wave equation model used in the approximately
globally convergent method, this full system of Maxwell’s equations,
involving six unknown functions (three components each of the two

9



Modelling of the electric field

unknown fields E and H), may be too complicated and hence imprac-
tical for our computations. Therefore, we observe that we are, for the
time being, concerned with non-magnetic and non-conductive media
in absence of free charges, allowing us toput p =1, 0 = p =0, and at
the cost of taking additional derivatives obtain the following system
for E,

O’E 5
5W+VX(VXE):0 in R” x (0, 77,

(3.2) V-(eE)=0 in R? x (0, 77,
E(-, 0) =0, %—f(-, 0) =I5(- —xg) in R,

which we here present as an “ideal” model, set in the whole space
R3, and for the relevant time interval [0, T], completed with initial
conditions describing a pulse, parallel to I, emanating at the point
xg € R3 at time ¢t = 0. Here, § is the Dirac delta.

The system is an ideal model in the sense that it captures more
of the physical nature of electromagnetic waves, while it avoids too
much complexity by not including any quantities which are not directly
related to what we measure or seek to image. However, we cannot
solve the system explicitly unless the permittivity e is very simple,
for instance constant. Moreover, being set in the whole space R3, the
system does not easily lend itself well to numerical approximation by
conventional methods. Thus, in order to proceed, we need to truncate
the computational domain.

Suppose that the region of interest, that is, the region where we in
the end will reconstruct the permittivity ¢, is contained in a bounded
— and for simplicity we may assume rectangular, hence convex — do-
main £ C R3, such that the permittivity has a constant background
value close to the boundary as well as outside of 2, and x¢ & Q. The
constant background value of the permittivity close to the boundary,
together with the divergence condition, implies that the first equation
of decouples into three independent wave equations in that re-
gion. This fact helps us to make sense of the boundary conditions we
apply, and we will also take advantage of it in our numerical scheme
(see Subsection [4.2)).

We describe the systems in Q2 by adding boundary conditions
which emulate the free space around {2, and the initial pulse, which
by the time it reaches 2 is approximated by a plane wave. We end up

10



Modelling of the electric field

with the following system:

2
gffgt?JrvX(vXE):o in Q x (0, 71,
V- (eE)=0 in Q x (0, T,
OE
%:0 OHPNX(O,T]7
OE OE

3.3 —_—=——

( ) o o on I'py x (07 T]v
E-=p on I't x (0, t1),
OE OE
=" on I't x [ty, T,
E(-, 0) = 8E(.’ 0)=0 in €,

ot

where n denotes the outward unit normal vector on the boundary
I'=I'nyUTl'sUTI] of Q.

The boundary conditions, equations three through six in system
should be explained in some detail. See also Figure [2] for illus-
tration. On I'y, which correspond to the faces of €2 which are not
intersected by the line through the center of 2 and the point xg, we
prescribe homogeneous Neumann boundary conditions to simulate free
space stretching away in the directions perpendicular to the incident
plane wave. On I'a, at the “back” of € from the point xg, we prescribe
the first order absorbing boundary conditions of Engquist and Majda
[? ], to absorb transmitted signals. Finally, on I'1 we prescribe an inci-
dent plane wave of profile p = p(t) simulating the signal generated by
the initial pulse in far from the source at xq, until it has passed
at time t = t; for some t; € (0, T'), whence we switch to absorbing
boundary conditions to absorb reflected signals.

The model is the one that we actually use in computations,
with the domain decomposition finite element-finite difference method
of [? ] for discretization. We shall return to this method below. Be-
fore we close this section, in order to simplify further presentation, we
introduce a reduced version of , with simplified boundary condi-
tions on a shrunken domain 2. We also incorporate the divergence
condition, the second equation of , as stabilization term of the
form —sV(V - (¢E)), to the left hand side of the first equation, see [?

11



Modelling of the electric field

FIGURE 2. Schematic illustration of the truncated

computational domain @ (upper left), its boundary
consisting of three parts I' = 'y UT'A UT (lower left),
and viewed from above with incident approximately
plane wave (right).

? ]. We choose s = 1 since this facilitates the derivation of the numer-
ical scheme, and that is the value we typically use in computations.
The stabilization term does not change the solution of the problem,
but induces stability in the numerical approximation scheme which will
be outlined in Section [4] (see [? ]). It should also be mentioned that
this numerical scheme may produce convergence to the wrong result
in the case of non-convex domains, but this problem does not occur
here, since we may always assume that €2 is convex in our problem
framework.

582—E+V><(V><E)—V(V-(5E)):0 in Q x (0, 77,

ot?
OE
3.4 = =
(3.4) on P on I' x (0, TY,
E(-,0) = 8—E(, 0)=0 in Q.

ot



Finite element approximation

Here P = P(x, t) is a given function defined on the entire I" x (0, T7.

4. Finite element approximation

With the models as well as , we no longer face the prob-
lem of dealing with an infinite spatial domain which was the case in
(3.2). But, there are still no explicit formulas available for the solu-
tion E. for a given ¢, except in some trivial cases. Hence, we must
consider numerical approximations. Our main approximation scheme
is the finite element method (in fact hybridized with a finite difference
scheme, as we will return to at the end of this section) which we out-
line below. In this section, we will illustrate this method as applied to
the system , for good overviews, we recommend [? 7 7 7 7 |.

The idea of this method is the following: First, we should refor-
mulate the original problem in variational form. This form makes the
problem easier to analyze than it was in the original form, and one
can show that the solutions to the two formulations coincide, under
suitable assumptions on the problem domain and the data. The varia-
tional form is, in principle, no easier to actually solve than the original
form, but it shows a way to proceed systematically with constructing
approximations to the solution. The way to do it is to restrict the orig-
inal function space over which the variational formulation was stated
to a finite-dimensional subspace consisting of simple functions. Thus,
we obtain a finite approximate problem, the finite element formula-
tion. This problem can be solved systematically (with a computer),
but the solution is no longer the same as to the original or variational
problem, except in trivial cases. However, by selecting the finite di-
mensional subspace appropriately, we can assure that the solutions are
close to each other, and that they become even closer if we increase
the dimension of the finite-dimensional subspace.

For an example, let us consider the problem . To elaborate, we
should really state it in the following way: Given a permittivity € in a
set U® of admissible permittivities, and a function P € C(T" x [0, T1),
determine a function E € C%(Q x [0, T]; R3), such that these functions
satisfy .

The set U¢ is described in detail in for instance Paper IV. Here we
merely note that we should have £ continuous, positive, bounded from
above and below, and constantly equal to 1 on I'. We have used the
notation C¥(X;Y) for k times continuously differentiable functions

13



Finite element approximation

over the domain X taking values in the space Y, leaving out k if it is
zero and Y if it is R.

Whether or not the function spaces stated in this problem are the
least restrictive ones, and whether the problem is well posed in this
formulation can be analyzed, but such analysis is beyond the scope
of this thesis. Instead we refer to, for example, [? 7 |, and assume
for the time being that a solution does exist, and for this solution, we
multiply the first equation of by a smooth R3-valued function ¢
defined in © x [0, T], and integrate. This gives

/ / 3,52 ) - o(x, ) dxdt

+/0 /QV x (Vx E(x, t)) - ¢(x, t)dxdt
T
_/O /Qv(v (EX)E(x, 1)) - p(x, ) dxdt = 0.

Seeing that these expressions tend to become long and bulky, it is ap-
propriate to simplify the notation by introducing the Lo-inner product:

(u, v)x = fX(u, v),
where (-, -) denotes the standard inner product on R", for appropriate

n € N, and the integral is with respect to Lebesgue measure on X.
This allows us to rewrite the above equation as

(41) (%, $hay + (V x (VX B), d)a, — (V(V - (E)), d)a, =0
with QT = X (0, T)
We proceed to write this identity in a more symmetric form, and

lower the burden of derivatives on a single function, by applying the
following integration by parts formulas

T T
/ o (B)o(t) dt + /0 w0 (8) dt = u(T)o(T) — u(0)s(0),
/Vu dx—i—/ﬁu(x)v'v(x) dx:/ru(x)n'v(x) ds

14



Finite element approximation

and the identity V x (V xu) = —Au+ V(V-u). Using these formulas

in (4.1) we get

— (€%, %Yo, + (e22(, T), (-, T))a — (€22(-, 0), (-, 0))e

+ (VE, V¢>QT (B ¢y, —(V-E,V-¢)o, + (V-E, n- @)r,
+(V - (¢E), V- $)a, — (V- (¢E), n- ¢)r, =0,

with T'p :=T x (0, T)).

Here we observe that g—g =P and e =1 on T, that %—?(~, 0) =0,
and prescribe ¢ (-, T') = 0 to arrive at

— (% Far + (VE, Voo,
_<VE7V¢>QT <V( )av¢>QT_<Pa¢>FT:0

We now pause to make some observations. For equation (4.2)) to
make sense, we do not really have to impose such strong restrictions
on E, P, and ¢ as we originally did. It is enough to have at most one
derivative in either space or time on either of E and ¢, and none of the
functions need to be pointwise defined, as long as the integrals are well
defined. Strictly speaking, this means that they need not be functions
at all, but for convenience, we will continue to refer to them as such.
In fact, it is enough to have E, ¢ € H'(Qr; R?) and P € Lo(T'r; R?),
where

Ly(Ppy R?) = {u: Iy = R*: [Jul|p, < oo},
HY(Qr; R) == {u: Qr - R’ |lullg, , [Vullg, ,

(4.2)

%ZHQT < oo}

with ||-|| y == +/(:, -) x, and the derivatives are understood in the weak

sense. That is, %—'tl is defined by the relation

<8t7 ¢> <u7 %7?>

for all ¢ € C*°(Qr; R?) with compact support in Q7, that is, vanishing
for x close to I' and ¢ close to 0 and 7. Similar relations define Vu,
V X u, and so on.

Putting what we have done so far together leads us to the fol-
lowing variational formulation of the problem Given a permit-
tivity ¢ € U, and a function P € Lo(I'r; R?), determine a function
E ¢ HY(Qr; R3) such that E(-, 0) = 0 and 1s satisfied for these
functions and all ¢ € H*(Qp; R3) with ¢(-, T) = 0.
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Finite element approximation

Again, careful analysis may show that, for instance, the assumption
P € Ly(I'p; R3) is stronger than strictly necessary, but this assumption
is sufficient for our purposes here.

The variational formulation enables us to analyze the problem eas-
ier in the framework of functional analysis, but it does not in itself
tell us how to actually compute a solution. By making a finite di-
mensional approximation, we obtain a problem for which is relatively
straight-forward to compute the solution, but this solution is then only
an approximation to solution of the variational problem.

We will concentrate on approximation in the space H!(Qr; R?)
since we consider P € Lo(T'7; R?) to be known exactly. Our aim is to
construct a subspace of simple functions, which can approximate any
function in H!(Q7; R3), and for which we can easily find a basis which
will allow us to reduce the variational problem, restricted to the finite
dimensional subspace, to a problem of linear algebra.

Most methods for constructing such a subspace are based on divid-
ing the underlying space, in our case {27 into small subregions — cells
— and prescribe that the functions of the subspace should belong to
some simple class on each cell. In the computations reported in the
appended papers of this thesis, we have used polynomials of degree one
on each cell, as we will shortly detail. The main reason for this is that
the obtained space will allow domain decomposition and hybridiza-
tion with the simpler but less flexible finite difference method in the
manner of [? |. Polynomials of higher or lower degrees are also com-
monly used, as are special classes of polynomials or functions, such as
in the edge element method of Nédélec [? 7 ], which is widely used for
Maxwell’s equations and related systems. Those polynomials remove
the need of a stabilization term, but is not as clear how to construct
a domain decomposition method similar to [? ] for the correspond-
ing finite element method and a finite difference method. There are
also certain methods which do not rely (directly) on a division of the
problem domain into cells, such as radial basis function methods [?
|, or extended finite element methods [? |, but these methods often
produce less well-conditioned systems of equations than the cell-based
methods, hence we do not consider such methods here.

To begin with the actual construction of finite dimensional sub-
spaces, we let T, = { K} be a division of  into tetrahedra K. This di-
vision is associated to a mesh function h = h(x) with h(x) := diam(K),
x € K, where diam(K) is the diameter, the largest distance between
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two points, of K. We also partition [0, 7] uniformly into subinter-
vals Z, = {I;} with Iy = [tgy1, tx], &k = 0, ..., N, for 0 = ¢y <

. < tn, = T where tgy1 —tp = 7 = T/N;. We choose N, such
that 7 o¢ mingeq h(x) to fulfil a so-called Courant-Friedrichs-Lewy
condition [? |, which ensures stability of the numerical scheme we are
constructing.

We now define the subspace S;, as the space of those functions in
H'(Q7; R3) which on each tetrahedron K and each time interval I
are described by an R3-valued polynomial of degree one in the spatial
variable, times a scalar polynomial of the time variable. In other words,

Sp = {u e H (Qp; R?) : u|gxg, € PH(K; R?) x P(I)
VK € Ty, I € I, },
where
PUEK; R} ={uc O(K;R%:u(x) = Ax +b, A € R¥3 b c R},
PYI) = {uec C(I}) : u(t) = at + b, a, b € R}.

The approximation properties of such a subspace is reflected in the
typical interpolation error estimate

lu—ipullg, < C|A"D™ulq,

where i, : H'(Qr; R?) — S), is an appropriate interpolation operator,
such as the Scott-Zhang interpolant [? |, and D™ denotes derivatives
of order m. Thus, in the worst case, the interpolation error decreases
linearly (m = 1) with the mesh size, for u € H'(Qr; R3). Interpolation
estimates like these play an important role in error analysis for finite
element methods, which we will see examples of below.

We can now state the finite element formulation of the problem just
as we stated the variational formulation, except that we replace the
space H'(Qr; R?) by its subspace Sy. That is: Given € € U®, and a
function P € La(I'p; R3), determine Ej, € S), with Ej(-, 0) = 0, such
that holds for By, and for all ¢ € S, with ¢(-, T) = 0. (Note
that this formulation does not rely on our explicit choice of Sy, and
would be valid for other subspaces if required.)

By introducing a basis for S, we can reduce this finite element
formulation to a system of linear algebraic equations. For a basis, there
is a straight-forward choice, which yields good numerical properties.
The basis is constructed as follows: Let {xi}f\gl be the set of nodes on
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T, and for i =1, ..., Np define p; = ¢;(x) by
vilk € PL(K) ={a-x+bacR} becR®} VK € T,
1, i=y,

pilxj) =005 = {0 i #

Similarly, we define xy = xx(t) for k=0, ..., N; by
xklr, € PH(I) VI, € Z,,
Xk(t)) =0k, L=0,..., Nr.
It is now easy to verify that {e,vixx}, where e, e, es is the

standard basis for R?, is a basis for S,. This means that we may
expand

j=1,..., Ny

3 Np N,

=Y D> Ehlenpi(x)lt),

n=1j=1 I=1

where {E%l} are the weights that we seek. Moreover, it is sufficient
touse p =enpixp form=1,2,3,i=1,..., Ny, k=0, ..., N, — 1
in the finite element formulation.

By doing so, we reduce the finite element formulation for (4.2)) to
the following system of linear equations

Ek+1 _ 2Ek Ek—l Ek-l—l 4Ek Ek—l
(4.3) A(e) S B } TR pk
T
for k=1, ..., N — 1, with the slightly modified system
Ek-‘rl _ Ek Ek—i—l + 2Ek
(4.4) Ale)=——5— +Be)~—(—— =P,
for k = 0. Here A(e) and B(e) are matrices defined by
[M(s) 0 0
Ale) = 0 M(e) 0 1,
| 0 0 M(e)
[S + Dy 1, (8) DLQ(E) D173(€)
B(&‘) = D2 1( ) S+ D272(E) D273(€) ,
D3, 1(5) D372(€) S+ D373(€)

M(e) = (my 5(2)) = (Joy e(x)ep;(x)ps(x) ),
S = (5, Vi (%) - Vips(x) dx)
Dy nl2) = (f V- ((2(%) = D (x)en)V - (pi(x)em) dx),
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and
_Elf_ E#Lk
EF = |E5|, Ef =| : |, E’=o0,
k
_Eg_ ET]T\I{h’k
- 1,k
P’f Pm
PF=|Ps|, PE =] : |,
P4 Ny, k
- O m

phk = / P (t, x)@i(x) xk (t) A5 dt.
I'r

Thus, if we are given € and P, we can compute the matrices A(e)
and B(¢), as well as the vectors P*, and hence compute the vectors E¥,
k=1,..., N;by and , starting from the known E° = 0. We
also note that one particular advantage of the basis we used is that
the matrices M(e), S, and Dy, n(€) become sparse and structured,
symmetric in the case of M(e) and S, since any two basis functions
@; and ¢; overlap only if the nodes x; and x; are adjacent, otherwise
the product of the basis functions, or their derivatives, are zero in all
of Q.

Although the system is sparse, solving it repeatedly for each
time step may be very time consuming, especially since we eventually
compute the electric field not once but several times when solving the
inverse problem. There are ways to circumvent this, and in our work we
have considered the following two: making additional approximations
to obtain an explicit formula for EF! in terms of EF and EF~!, and
using parallel computations. For the former, we use so-called mass
lumping [? ], approximating

Mi(s) 0 0
Ae) = Ap(e) = 0 Mi,(e) 0
0 0 M(e)

where My, (¢) is diagonal, with the row-sums of M (e) as diagonal en-
tries, and

Ek—i—l +4Ek +Ek—1
6
With these approximations, we get
EF = oBF — EF1 4 7241 (e)"Y(PF — B(e)EF),
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which is explicit, since the inverse of the diagonal matrix Ay (e) is just
another diagonal matrix, with reciprocal diagonal entries.

For parallel computations, the idea of which is to divide the full
problem into smaller sub-problems which are solved in parallel on sev-
eral computer processors, we use the PETSc library [? | as imple-
mented in the software package WavES [? ].

4.1. Adaptivity. Regardless of the practicalities of the imple-
mentation, having stated a variational problem and its corresponding
finite element formulation, where the solution to the latter approxi-
mates the solution to the former, leads to two natural questions:

(1) How large is the error, the difference between the finite ele-
ment solution which we compute, and the solution to the vari-
ational problem, which we ideally would like to have? And,

(2) how do we efficiently make this error as small as we require?

The first of these two questions is answered through a priori error
analysis. In such analysis, one relates the error to the mesh size h and
the problem data (€2, T', £, and P for the problem above). Typical re-
sults show how the error decreases as some power of h, with a constant
related to the data, as h tends to zero.

In answering the second question, that of efficiently reducing the
error, another kind of analysis, a posteriori error analysis, plays an
important role. Here, the idea is to estimate local (in space or time)
contributions to the error, in terms of quantities which are actually
computed, such as Ej in the problem described above. Since the
approach we use to the inverse problem is based on improving the
accuracy of an initial approximation, a posteriori error analysis is of
primary interest. In the remainder of this section, we will describe
the principle of how to use such analysis to efficiently reduce errors,
with so-called adaptive error control (see for instance [? ? ]). For the
precise estimates we use, we refer to the next section as well as the
appended papers, in particular Paper IV.

To illustrate the principle, suppose that we have a mesh 7, as above,
and that we on this mesh have computed a quantity ¢, approximating
the true quantity ¢q. Suppose also that through a posteriori error anal-
ysis, we have obtained an estimate on the form ||¢ — qp|| < C'[|Rp g, ||,
where C' > 0 is some constant, and Ry 4, = Rp, g, (%) is some known
non-negative function, depending only on the listed computed quanti-
ties, such that, in the worst case |¢(x) — qn(x)| = CRy, 4, (X).
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The idea is now to use a balancing principle, reducing large contri-
butions to the error while not wasting additional computational efforts
on reducing errors which already are small. Thus, as we have bounded
the error in terms of Ry 4,, and as we know that a finer mesh (with
smaller mesh size h) leads to a smaller error, our strategy for reducing
the error is to make the mesh finer where Ry, 4, is close to attaining its
maximum value. In other words, we have the following step by step
procedure:

0: Make an initial coarse mesh 7.

1: Compute g, on the current mesh 7p,.

2: Compute Ry, 4, on the current mesh, using g;, from Step 1.

3: Check some stopping criterion, such as the size of Ry, 4, , if
the criterion is satisfied, stop computing and accept the latest
approximation gy, otherwise proceed to Step 4.

4: Refine the current mesh by splitting cells in which Ry, 4, (x) >
0 maxx Ry, q, (x), where § € (0, 1) is a chosen tolerance. Then
return to Step 1 with the refined mesh as the current mesh.

We illustrate one cycle of this procedure schematically for a mesh
in one dimension in Figure [3]

4.2. Hybridization with finite differences. We conclude this
section with some words about the hybridization of the finite element
method with the finite difference method, which was mentioned pre-
viously. The details can be found in [? ]. Here, we begin with a brief
introduction to the finite difference method.

As with the finite element method, we start with a subdivision
of the problem domain. Here, however, we are not concerned with
what happens inside cells, but focus on the nodes from the beginning.
As a consequence, we must be more restrictive with what types of
subdivisions that we allow, namely, we require that the subdivision
produces a rectangular grid of nodes (see Figure [4]).

On this rectangular grid, we approximate the differential equation
at each node using difference quotients for the derivatives. For exam-
ple, if we consider the scalar wave equation

Pu
ot?

we get the following equation at each node x; ;1 (see Figure [5)

(%, t) — Au(x, t) =0,
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F1GURE 3. One dimensional schematic illustration of
adaptivity: (0) The mesh at the start of the cycle.
(1) The mesh with computed approximation. (2) Es-
timated errors, indicated by the width of the gray box
around the approximation. (3) The refined mesh, for a
certain tolerance.

Ui j k(1) N Ui-1,j,k(t) = 2U; j k() + Uis1, 5,k (?)

ot2 h?
Ui, j—1,6(t) = 2U; j k() + Ui, j+1,6(t)
+ 52
Ui j—1(t) = 2U; 5 1(t) + Us j kg1 ()
+ 2, —0,

where U; j 1(t) denotes the nodal value of the approximation of the
solution at node x; ; 1 time ¢, and h is the distance between two adja-
cent nodes, assumed for simplicity to be constant. It is convenient to
denote the last three terms in the left hand side of the above equation
by —ApU;, j k(1)
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FIGURE 4. Finite difference meshes (left), and finite
element meshes (right). The meshes in the upper part
have the same 36 nodes. The lower figures show the
meshes adaptively refined to fit the lighter circle to ap-
proximately the same accuracy. Then the finite differ-
ence mesh has 100 nodes, while the finite element mesh
has 56 nodes.

Making a similar discretization in the time variable, we finally ob-
tain

+1 l -1 1+1 l -1
Ui T2Ui 6 = Uiy AnUi o T480U; 5 + AU 5y
72 B 6 =0,
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®
Xi 5, k+1

X, j+1,k

Xit1,4,k

Xi, j—1,k

°
Xi,j. k=1

F1GUrE 5. Local configuration of nodes in a finite dif-
ference mesh.

where Ui{ ik denotes the approximate solution at node x; ; 1 and time
t = t; for a (again for simplicity) uniform time partition. This system
can be solved iteratively, just as in the finite element method.
To connect this to our previous discussion on Maxwell’s equations,
and the finite element method, we make the following observations:
Wherever we have a constant background value of ¢ = 1, the expansion

V x (VxE)=-AE+V(V-E),

and the divergence condition V - E = 0 implies that the differential
equation of (or , or ) decouples into three scalar wave
equations, one for each component of the electric field E. Moreover,
if we consider the scalar wave equation with constant coefficients and
source term, then the discrete system of equations produced by the
finite difference method coincides with the one produced by the piece-
wise linear continuous finite element formulation, if we use a structured
mesh, subdivided for the finite element method as in Figure [6] To
show this is a straight forward generalization of the one dimensional
case presented in Chapter 0 of [? |.

In view of these observations, we can replace the more flexible fi-
nite element method with the more quick-assembled finite difference
method in regions of our computational domain which are occupied
only by the background medium, in other words close to the bound-
ary of €). This allows us to propagate waves and implement boundary
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X7

FIGURE 6. A subdivision of a cube with nodes x;,
i =1,...,8, into six tetrahedra A1954, A1345, Nosgs,
As457, Nasse, DNas78, where the tetrahedron Az’jkl has
nodes x;, X;, Xj, and x;.

conditions more efficiently, while maintaining flexibility to describe
complicated variations in the dielectric permittivity.

5. Minimization, the Lagrangian approach

We have now presented methods for obtaining an initial approxima-
tion, and for approximately solving the direct problem of computing
the electric field. Thus we can construct and evaluate the Tikhonov
functional , and we may turn to the actual minimization.

As a continuous optimization problem, we expect this method to
require the computation of gradients in order to achieve good rates
of convergence in any iterative method used to solve it. Comput-
ing any kind of gradient of the Tikhonov functional directly is a very
complicated task, however, since its dependence on the permittivity
is implicit through the solution of a partial differential equation. Us-
ing techniques of optimal control theory presented in [? |, we can
circumvent this difficulty.

With this approach, we first reformulate the minimization problem
as a problem of two formally independent variables, where a constraint
ensures the correct dependence. That is, we consider the problem to
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minimize
1 2 |, O 2
Fo(e, E) = B |E - EobSHFT + 9 le —eollg
for e € U, E € H'(Q; R3), E(-, 0) = 0, under the constraint that
D(e, B, ¢) =0V¢p € H'(Qr; R’) : ¢(-, T) = 0,

where D is the functional of the variational formulation of the direct
problem.

We may solve this problem by determining the stationary point to
the corresponding Lagrangian

L(e, E, A) == F,(e, E, A) + D(e, E, A\).

Since the three variables of the Lagrangian may be varied indepen-
dently, calculating derivatives of the Lagrangian is much more straight
forward than doing so for the Tikhonov functional. Indeed, we find the
partial Fréchet derivatives of L, acting on £ € U¢, E € H'(Qp; R3) :
E(, 0) =0, and A € H'(Qp; R3) : A(+, T) = 0, respectively, to be

oL
— (e, E, \; &) =ale —eg, E)a — <%];3 . %—i‘, ar+(V-A V- (EE))a,,

Oe
L _ _
%(5’ Ev >‘; E) = A(&, E, )‘7 E)7
gf‘(a, E, \; A) =D(¢, E, X),

where A is the functional of a variational formulation of an adjoint
problem to the direct problem, where E acts as boundary data.

At the stationary point, all of these partial derivatives are zero, or
in other words, their action on each admissible &, E, and X is zero.
We observe that putting OL/OA to zero in this manner implies that E
solves the variational form of the direct problem, and putting 0L/0E
to zeros implies that A solves the adjoint variational problem, deter-
mined by A. Thus, we can ensure that these two partial derivatives
remain zero by letting E and A solve the correct variational problems,
or in practice, the corresponding finite element problems.

Unlike the case of OL/OE = 0 and 0L/0X = 0, there is no obvious
way to achieve OL/0s = 0 by solving a system of partial differential
equations, and so we instead apply the conjugate gradient method.
We then arrive at the following algorithm:
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0. Let g be the initial approximation for the permittivity, set
Ly(Q2) >d_1 =0, and let £k = 0.

Compute Ej by solving D(ey, Eg, ) = 0.

Compute A; by solving A(sk, Ei, Xg, -) =0.

Compute the gradient g = (é‘k, Eg, A\;).

Update the permittivity by the conjugate gradient rule:

Ll e

2
gk |l
lgr—1llg

Ek+1 = €k + Brdy

for step size By > 0 such that

d
<dﬁ (Ek +/Bdk7 Ek7 Ak)) ’B:ﬂk = 0.

5. Check stopping criterion. If satisfied, accept the current ey,
otherwise increase k by 1 and return to step 1.

dp = —gr +

-1

In practice, we replace the variational problems of steps 1 and 2
of this algorithm by the corresponding finite dimensional problems
over some mesh. Consequently, we also obtain an approximate update
of the permittivity in step 5, and an approximate permittivity €; as
output.

At this point, we would like to apply the adaptive algorithm of
Section with ¢ = € being the stationary point to the Lagrangian,
and ¢, = €5, being the output of the algorithm above. In order to
do so, we require an a posteriori error estimate for € — €. Such an
estimate is derived in Paper IV, and we here outline the main steps of
the derivation.

As a first step, we use the strong convexity as discussed in Sec-
tion [2.2] This implies that there is some constant C' > 0 such that

le — enlley < C|Fi(e; € — en) — Filen; € —en)l,

where F! (-, € — gp,) denotes the action of the Fréchet derivative of F,
on € — €. Since € minimizes Fy,, the first term in the right hand side
vanishes, leaving us with

le —enllg < C|Fh(en; e —en)l.
We can relate this derivative of F,, to 9L/0e to get
||€ - Z-:hHQ <C ‘ e €h, EEha )‘Eh; € — gh)‘ )
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where E., and A, are the exact solutions to the direct and adjoint
variational problems, respectively, using the approximate permittivity
Eh.

A Cauchy-Schwartz inequality argument now gives, after cancella-
tion of a common factor |l —ep||q,

le — thQ <C !‘%%(€h, E.,, )‘Eh)H .

Since we cannot evaluate E., and A.,, we need some further ma-
nipulations to obtain an a posteriori estimate. We add and subtract
%—g(sh, Ej, An), where Ej, and Aj, are finite element approximations
of E., and A.,, which we have computed on steps 1 and 2 of the
minimization algorithm. With the triangle inequality, this gives

”6 — Eh” < C‘ e €h, E€h7 )\ ) — (Eh, Eh, )\h)H

(5.1)
+C || % (en, Ba, An)||-

The second term of the right hand side in has already been
calculated (up to the constant C') as part of the minimization algo-
rithm, while the first term must be estimated further. To this end, we
linearize the difference as

oL oL

ag (Eha E€h7 )\Eh) - %(shv Eh7 Ah)
d (0L oL
~ 4 Oe <8E (5}1’ Ehv Aha en Eh) + a(shv Eh7 )‘h;)‘sh - )\h)> .

Here, we can use the fact that the Fréchet derivatives are linear in
the last argument, and the fact that E; and A, as solutions to the
finite element problems, are also valid test functions, to replace the last
E; and Aj of the two terms above, by the corresponding interpolants
inEe, and iy Ay, respectively. Thus we get

OL oL
g(@u Esh, )\eh) - E(Ehv Ey, )\h)
0 (0L )
~ ai <8E (Ehu Eh7 Aha ZhEEh)

oL .
+ ﬁ(ghu Eh7 Ah;AEh - ZhA8h>> .
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Now, we can use the Cauchy-Schwartz inequality and interpolation
estimates to get

155 (s Eeys Asy) = B (ens Eny An)|
<G 8€6E(6ha E, )\h H Hh |:8Ehi| [8Eh} H

| s By )| || ] + 7 | %]

where C; > 0 is an interpolation constant, and [-] denotes jumps of
discontinuous functions over faces in the triangulation of the compu-
tational domain, and nodes in the time partition.

Putting this last estimate back into , we obtain the final esti-

mate
s s B a2 [

7[5
st e B ) [ [B32]  [%
+ C| (¢, Eny An) H

where the first term corresponds to the error incurred by the approx-
imation of the electric field, the second term corresponds to the error
incurred by the approximation of the solution to the adjoint problem,
and the last term corresponds to the error incurred by the approxima-
tions in the computation of the dielectric permittivity.

)

le —enllq <

6. Other methods

We have now presented the principles and ideas of our approach to
the electromagnetic inverse problem. To round off this introduction
we will here perform a brief comparison between the method described
in this thesis, and other methods which are commonly used for solving
related inverse problems.

We begin by mentioning methods of boundary maps which are
widely studied in the mathematical community of inverse problems
(see for example[? ? ] and many other works by Salo, Somersalo,
Uhlmann, and co-workers). These methods usually rely on observa-
tions of scattering of several waves, and thus with over-determined in-
verse problems which are quite different from the single-measurement
context that we deal with in this thesis.

In engineering, minimization based approaches — again determinis-
tic or stochastic — are more common, also for imaging problems similar
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to the one studied here. See for example [? 2 2 2 7 7 |. One ma-
jor difference between the typical approach in engineering, and the
method described in this thesis, is that we are dealing with observa-
tions and computations in time-domain, while the usual engineering
approach is set in frequency-domain, that is, in mathematical ter-
minology, on the Fourier side in the time variable. This removes the
need of time stepping, but introduces a frequency parametrization and
complex arithmetic instead. As such, this may or may not make the
method less computationally demanding, depending on the applica-
tion. By imposing restrictions and parametrizations of the incident
waves, and the geometry of the scatterers, one can lower the com-
putational complexity significantly, possibly even allowing the use of
analytical solution formulas, usually in terms of Hankel and Bessel
functions, for the direct problem. Naturally, this restricts the type of
problems which the method may be applied to. Thus, we can conclude
that the method we study in this thesis may be more computation-
ally demanding, but is comparatively flexible in terms of geometrical
configuration of the scatterers and the nature of the incident waves.

7. Outline of the appended papers

Papers I, II, and III were previously included in the licentiate the-
sis [? ]. The first two papers demonstrate the performance of our
method on experimental data from a laboratory at the University of
North Carolina at Charlotte, USA. In Paper I, the data represents
scatterers placed in air, while the data in Paper II is for the more
challenging case of scatterers placed inside a box filled with dry sand.
Good reconstructions are obtained in both cases, but with restriction
on the depth at which the scatterer was placed below the surface of
the sand in the studies of Paper II. A case of super-resolution, where
two scatterers at a separation of less than one half of a wavelength
were resolved separately, is observed in Paper II.

Paper III can be regarded as a pre-work to Paper IV, it concerns
a simpler a posteriori error estimate, for the error in the value of
the Lagrangian, L(e, E, A) — L(ep, Ep, Ap), and introduces an alter-
native stabilization term. This stabilization fits into the same gen-
eral framework as the one outlined above, namely, we consider a gen-
eral stabilization term of the form —V(sV - (¢E)), where we require
s = s(x) > 1/e(x) by Theorem 4.1 of [? ]|. In this introduction as
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well as the remaining appended papers we take a constant s, while in
Paper III we take s = 1/¢, which allows us to expand V x (V x E)
and cancel certain terms (see Paper III for additional details).

In Paper IV, we derive in full detail the a posteriori error estimate
which was sketched in Section [f] and present additional numerical
results from simulated data for small scatterers with low contrast.

Paper V is devoted to effect of different techniques for choosing
the regularization parameter on the quality of the reconstructed di-
electric permittivity. We find that the regularization parameter has
little impact on the quality of the reconstruction for our inverse prob-
lem, and hence other aspects of the reconstruction procedure are more
important for future studies.
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