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ABSTRACT 

There is a large inter-individual variation in intrinsic sensitivity in patients 

receiving treatment with DNA damaging agents.  Cancer therapy exemplifies 

this problem where patients experience varying degree of normal tissue side 

effects in response to radiation or chemotherapy.  For this reason, it is 

necessary to develop an assay to predict sensitivity of a patient prior to 

treatment with DNA damaging agents.  This may allow more individualized 

treatment and improve the therapeutic index.  In paper I and II we focused 

on developing and validating a flow cytometry - based cell division assay 

(CD) that uses the thymidine analogue EdU (5-ethynyl-2’-deoxyuridine) to 

measure the proliferative ability after DNA damaging treatment.  In paper I, 

the CD assay measured sensitivity to radiation of human skin fibroblasts 

with a correlation similar to the standard clonogenic survival assay in a 

relatively short time frame.  Using the easily sampled peripheral blood 

lymphocytes, the CD assay found variation in intrinsic sensitivity to 

radiation and detected increased sensitivity in patients with DNA repair 

defects.  In paper II, the CD assay was further validated for measurement of 

cell sensitivity to DNA damaging drugs.  The results indicated that the assay 

can be used to identify sensitive patients. 

 

Exposure to ionizing radiation generates free radicals that carry out most 

part of the toxic effects.  The cellular antioxidant system regulated by the 

Nrf2 transcription factor plays a key role in protecting cells against radical 

induced damage; hence in paper III we have investigated if pretreating cells 

with Nrf2 activators influence the sensitivity to radiation.  Results from paper 

III demonstrated that repeated treatment using the isothiocyanate 

sulforaphane protected human skin fibroblasts from toxic effects of ionizing 

radiation in an Nrf2-dependent manner.  In paper IV we found that repeated 

pretreatment of cells with Nrf2 activators, sulforaphane or synthetic 

triterpenoid bardoxolone methyl trained the cells to acquire resistance 

against higher toxic concentrations of both drugs.  Together these results 

indicate that repeated stimulation of Nrf2 system can enhance cytoprotection 

and that adaptation to stress may be a general feature of the Nrf2 response 

mechanism. 

 

Keywords: Intrinsic sensitivity, DNA damage, ionizing radiation, cell 

division, Nrf2, sulforaphane, bardoxolone methyl, cytoprotection 

  



 

 



SAMMANFATTNING PÅ SVENSKA 

Det finns en stor individuell variation i inneboende känslighet mellan 

patienter som får behandling med DNA-skadande ämnen. Ett exempel är 

strålning, där en del av patienterna upplever allvarliga biverkningar trots att 

behandlingen är samma för alla. Det är därför nödvändigt att identifiera 

patienter som är extra känsliga innan behandling. Detta kan förbättra 

behandlingen i resterande patientgrupp samtidigt som allvarliga 

biverkningar kan undvikas hos känsliga patienter. I artikel I och II har vi 

fokuserat på att utveckla och validera en flödescytometrisk 

celldelningsmetod (CD), som använder thymidin-analogen EdU (5-ethynyl-

2’-deoxyuridine) för att mäta cellens proliferativa svar på DNA-skadande 

ämnen. I artikel I mätte CD-metoden strålkänslighet hos humana fibroblaster 

från hud på relativt kort tid, jämfört med standardmetoden clonogenic assay. 

Genom att använda lymfocyter, hittade CD-metoden variationer i 

inneboende känslighet mot strålning och detekterade ökad känslighet hos 

patienter med defekter i DNA-reparationssystemen. Resultaten från artikel II 

indikerar att CD-assayn kan mäta patient-känslighet för ämnen som 

krosslinkar till DNA och kan användas för att identifiera känsliga patienter i 

en population. 

Det cellulära oxidationssystemet som regleras av transkriptionsfaktorn Nrf2 

spelar en nyckelroll för att skydda celler mot skadliga fria radikaler. I artikel 

III och IV fokuserade vi på att studera det Nrf2-medierade cellulära svaret 

mot toxiska utmaningar. Våra resultat från artikel III demonstrerade att 

upprepade korta stimuleringar med Nrf2-aktivatorn sulforafan skyddar 

humana fibroblaster mot joniserande strålning. Denna studie indikerar att 

Nrf2-systemet kan tränas för att förbättra cellöverlevnaden. I artikel IV 

demonstrerade vi att upprepade exponeringar med olika Nrf2-aktivatorer, 

som sulforafan och CDDO-metylester, gjorde att cellerna blev korsresistenta 

och mer motståndskraftiga mot denna stress. Detta indikerar att anpassning 

till stress kan vara en generell mekanism bakom Nrf2-systemet. 
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1 INTRODUCTION 

Preserving DNA integrity is critical for normal cellular function and survival.  

DNA damage inflicted by endogenous and exogenous sources may trigger 

cellular responses including cell cycle arrest, DNA repair and cell death.  But 

in cancer treatment DNA is targeted and DNA damaging agents are used to 

induce damage and cell death in tumor cells.  This often cause varying levels 

of normal tissue toxicity in patients, possibly due to individual variation in 

the intrinsic ability to cope with the DNA damage [1].  However in clinical 

settings, the intrinsic sensitivity of a patient to DNA damaging agents is not 

identified and the treatment doses are set to limit adverse toxicity in sensitive 

patients.  As a consequence, majority of the patients who will not develop 

severe toxicities with higher doses may be undertreated.  A predictive assay 

to detect intrinsic sensitivity of patients in clinical practice is therefore of 

great importance as it may contribute to increase tumor control in non-

sensitive patients while preventing severe toxicity in sensitive patients. 

Our cells are continuously exposed to free radicals that are generated during 

intracellular processes and cells respond to these free radicals by increasing 

their antioxidant capacity mainly through the Nrf2 transcription factor.  As 

ionizing radiation is known to exhibit most part of cytotoxicity through free 

radical generation [2], Nrf2 mediated cellular antioxidant system is therefore 

likely to be involved in maintaining the redox balance after radiation 

exposure.  Nrf2 can be activated by thiol rich chemicals and the 

cytoprotective effect induced by different Nrf2 activators has been reported 

[3].  However, relatively little is known about how the Nrf2 signaling system 

can be tuned to enhance the cellular adaptive ability.  It is therefore 

important to see if pre-activation of Nrf2 influences cellular adaptation to 

toxic challenges like radiation.  Furthermore, the studies on adaptive 

resistance induced by different Nrf2 activators may open more insights on 

Nrf2 mediated cytoprotection. 

 

The above topics are discussed in detail in the following sections. 
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1.1 DNA - damaging agents 

Our genomic DNA is constantly encountering lesions occurring as a result of 

endogenous metabolic reactions, enzymatic conversions and replication 

errors or from exogenous sources like radiation, tobacco smoke and a wide 

range of chemicals and chemotherapeutic agents.  These DNA lesions may 

affect fundamental processes and may result in cytotoxicity, gene mutations 

or genomic instability [4]. 

1.1.1 Endogenous agents 

Although oxygen is important for aerobic life, the chemical nature of oxygen 

makes it prone to generate free radicals.  Free radicals or oxygen derived 

reactive oxygen species (ROS) that are usually generated within the 

mitochondria as part of the aerobic metabolism are one of the main source of 

endogenous DNA damage.  ROS are also produced by peroxisomes during 

phagocytosis and by immune cells like macrophages and neutrophils during 

inflammation and infections [5, 6].  Spontaneous formation of apurinic 

/apyraminidnic (AP) sites by cleavage of glycosidic bonds is one of the most 

frequent lesions.  Hydrolytic deamination of cytosine to uracil also leads to 

damage and mutations [7] 

1.1.2 Exogenous agents 

DNA is also susceptible to exogenous DNA damaging agents such as UV 

radiation, ionizing radiation, chemicals and other toxic substances.  Ionizing 

radiation and different chemotherapeutic drugs used in this thesis are 

discussed below. 

Ionizing radiation 

As the name indicates ionizing radiation (IR) causes ionization of molecules 

in its track, leading to chemical alterations. Based on linear energy transfer 

(LET), IR is subdivided into low LET and high LET radiations.  High LET 

radiation (e.g. alpha and beta particles, heavy ions) generates dense 
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ionizations and therefore deposits high energy in a small area, causing more 

complex clustered damage.  Low LET radiation (e.g.  x-rays, gamma-rays) 

penetrates deeper into the tissue and therefore causes sparse ionization over 

long distances.  When photons are exposed to matter, they deposit some 

energy in their path and the unit of this absorbed dose is measured in Gray 

(Gy) which is equivalent to 1 joule/kg.  However, the biological effect of 

radiation depends on the type of radiation used and the ratio of the 

radiation dose required to produce the same biological effect between two 

types of radiation is often represented by the Relative biological 

effectiveness (RBE) [8]. 

When ionizing radiation hits a cell, it interacts with cellular targets through 

direct and indirect actions.  The direct effect involves photons interacting with 

cellular biomolecules including DNA, thereby causing ionization by direct 

energy deposition.  The indirect effect involves ionization of cellular water 

molecules resulting in the formation of powerful hydroxyl radicals which 

then damage the DNA and other critical biomolecules including lipids, 

protein and DNA [9, 10]  Most of the damage inferred by IR exposure is 

through the indirect effect [2].  Through direct and indirect effects, radiation 

causes different DNA lesions including oxidized bases, apurinic/ 

apyramidinic sites, sugar modification, single-strand breaks, DNA double-

strand breaks, DNA- DNA and DNA- protein cross links [11, 12].  More 

complex clustered damages occur if multiple lesions in both strands are 

within a helical turn of the DNA molecule [13]. 

 

 

Figure 1. DNA damages caused by ionizing radiation 
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1.1.3 DNA - damaging drugs 

DNA damaging drugs are divided into different groups based on the 

mechanism of cell killing. Most of these drugs target replication fork 

progression through direct or indirect interactions and induce cell death. 

 

Table 1. DNA damaging drugs and the DNA lesions caused by these agents modified 
from [14] 

 

Drugs 

 

 

DNA damage 

Antimetabolites  Replicative damage, base damage 

Alkylating agents  Replicative damage, DNA crosslinks, DNA 

double strand breaks, DNA adducts 

Anthracycline antibiotic  Intercalates into DNA, DNA double strand 

breaks, DNA crosslinks 

Topoisomerase inhibitors  DNA strand breaks, Replicative damage 

Radiomimetics  DNA strand breaks, base damage 

 

Different DNA damaging drugs used in this thesis are briefly described 

below. 

Cytarabine 

The antimetabolite drug cytarabine (AraC) is a deoxycytidine analogue that 

interferes with DNA replication and thus induces DNA damage.  It is 

converted to nucleotide analogue AraCTP by deoxycytidine kinases and gets 

incorporated into DNA during its replication. Once incorporated into the 

DNA, it inhibits DNA polymerase and prevents further DNA synthesis [15]. 
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Etoposide 

Etoposide induce toxicity mainly by inhibiting topoisomerase II enzyme and 

thus preventing re-ligation of DNA double strand breaks produced by the 

topoisomerase II enzyme [16]. Topoisomerase enzymes are responsible for the 

unwinding and rewinding of DNA double helix and prevents tangling of the 

DNA strands during replication, transcription and recombination [17].  

 

Doxorubicin 

Doxorubicin is an anthracycline antibiotic derived from Streptomyces. It 

mainly acts by inhibiting the topoisomerase II enzyme but also intercalates 

into DNA and form adducts. The quinone moiety present in doxorubicin is 

oxidized to the unstable semiquinone and its conversion back to quinone 

releases free radicals that also cause toxicity.  It alkylates DNA and forms 

crosslinks [18, 19].   

 

Calicheamicin 

Calicheamicin γ-1 is a radiomimetic antitumor drug that has two radical 

centers. It binds to the minor groove of the DNA in such a way that its two 

radical centers become close to the sugar- phosphate backbone of the DNA. 

The radical centers are activated through trisulfide reduction which in turn 

abstract hydrogen atoms from the DNA backbone and results in the incision 

of DNA strands. Most of the DNA strand breaks caused by Calicheamicin γ-1 

is double strand breaks [20]  

 

Mitomycin C 

Mitomycin C is a bi-functional alkylating agent that induces DNA-protein 

and DNA-DNA (both intrastrand and interstrand) crosslinks. It is activated 

by a cycloreduction reaction to a reactive intermediate which then attacks 

both strands of DNA [21]. Inter-strand cross-links (ICLs) are highly toxic 

DNA lesions occurring between the two complementary strands of the 

double helix. A covalent cross linkage formed between nucleotides on 

opposite strands prevents separation of the DNA strands and thereby blocks 

DNA replication and transcription [22].  
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1.2 DNA double strand breaks 
Among the different types of DNA lesions, DNA double strand breaks (DSBs) 

are generally considered to be the most potent [23].  They are the major cause 

of cell sensitivity after radiation and one gray of radiation dose is believed to 

cause 20-40 DSBs [24].  Besides radiation, different chemotherapeutic drugs 

also generate DSBs either directly or from lesions during DNA replication. 

DSBs are also generated endogenously during DNA replication phase due to 

damage in the template strand.  Endogenous site-specific DSBs are also 

produced  during certain cellular processes such as V(D)J recombination, 

class-switch recombination and meiosis [25].  DSBs occur when both strands 

of the DNA double helix are broken. They pose a threat to the genomic 

integrity and cell survival as any unrepaired DSBs may result in growth 

arrest, cell death, mutation or chromosomal aberrations [26, 27].  

1.3 Cellular response to DNA damage 
Cells have evolved specific mechanisms that effectively respond to DNA 

damage and the signaling network is known as DNA damage response 

(DDR) pathway.  The DDR senses DNA damage, signal the location to 

transducer kinases and coordinate cellular responses such as cell cycle 

checkpoint control, DNA repair, cell death or senescence [28].  In response to 

DNA DSBs, three proteins MRE11, RAD50 and NBS1 (MRN) acts as a 

complex and play key role in DNA damage detection and signaling.  The 

complex binds to the damaged sites and recruits and activates the ATM 

signaling kinase [29].  ATM or Ataxia Telangiectasia Mutated, a 

serine/threonine kinase member of the phosphatidylinositol-3-OH kinase-like 

kinases (PIKKs) family play a crucial role in signaling DNA double - strand 

break damage. ATM activates different downstream targets involved in the 

cell cycle check point control, DNA repair and cell death [30].  

 

As ATM has a crucial role in coordinating cellular response to DNA DSBs, 

individuals with genetic defect in ATM are highly sensitive to DSBs caused 

by ionizing radiation and other DSB inducing agents [31].  Loss of ATM 

function causes the genetic disorder Ataxia telangiectasia (AT).  It is a 

neurodegenerative disorder characterized by neurodegeneration, immune 
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deficiency and an increased risk of developing cancer.  Cells derived from AT 

patient exhibit hypersensitivity to radiation. [32, 33] 

1.3.1 Gamma H2AX  
In response to DNA DSBs, the H2A histone variant H2AX becomes 

phosphorylated at the serine -139 residue [34].  The phosphorylated H2AX or 

the gamma H2AX (γ-H2AX) formed within seconds after the DSB formation 

extends to other H2AX molecules within a few mega base pairs of DNA 

surrounding the DSB [35].  Being a rapid response following DSB formation, 

γ-H2AX serves as a biomarker of DSB formation [36].  Gamma H2AX 

signaling is involved in recruiting DNA repair machineries to the damaged 

site and is usually lost during or after the DNA repair process [37, 38].  H2AX 

can thus be used to detect the radiosensitivity or the ability to repair damage 

in cells. 

1.3.2 Cell cycle arrest 

In response to DNA damage, the cell-cycle checkpoints are activated to 

prevent cell cycle progression, thereby allowing time for repairing the DNA 

damage before cell division.  However, severe DNA damage can cause 

prolonged or permanent cell cycle arrest leading to senescence, a state in 

which cells stop dividing but remain metabolically active[39].  

 

Following sensing the DNA double strand breaks, ATM phosphorylates and 

activates several downstream proteins such as p53, MDM2,CHK1, CHK2, 

NBS1 and BRCA1 [40].  The movement of cells through the cell cycle is mainly 

controlled by cyclin-dependent kinases (CDKs), therefore inhibition of CDK 

activity through phosphorylation or dephosphorylation is essential to prevent 

cell cycle progression.  ATM induced p53 and CHK 1 /2 plays a major role in 

inhibiting CDKs.  

 

At the G1/S checkpoint, cells with damaged DNA are prevented entering into 

the DNA replicating S phase.  In response to DNA damage, ATM activated 

p53 transactivates the cyclin dependent kinase inhibitor, p21 (CIP1/WAF1). 
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P21 suppress the cyclin E and cyclin A/CDK2 (cyclin dependent kinase 2) 

complexes necessary for S-phase initiation.  In late G1, activated Chk1/Chk2 

phosphorylates Cdc25A and targets enhanced degradation of Cdc25A, 

thereby inhibiting Cdk2 activity and preventing DNA synthesis [41].  

 

The S phase checkpoints activated by damage arising during the DNA 

replication process slows down the DNA synthesis process by inhibiting the 

origins of replication.  Apart from the ATM activated Chk1/Chk2 -Cdc25A-

Cdk2 pathway, the other pathway involved in S-phase checkpoint is activated 

by ATM-mediated phosphorylation of Nbs1 [42]. Cells with a phenotype 

defective in degrading Cdc25A or phosphorylating Nbs1 had increased 

radiosensitivity like ATM-defective cells [43]. The G2/M phase checkpoint 

prevents cells from entering mitosis if there is a DNA damage and serves to 

minimize the extent of DNA damage passed on to daughter cells.  Analogous 

to the G1/S checkpoint, Chk1/Chk2-mediated cytoplasmic sequestration of the 

Cdc25C phosphatase results in the inhibition of cyclin B/Cdk1 and results in 

G2/M arrest.  

1.3.3 DNA repair  

The DNA repair process is of crucial importance in maintaining genetic 

stability and cells have different mechanisms to repair DNA damage.  DNA 

base damages caused by oxidation, alkylation or hydrolysis is excised and 

repaired by base excision repair.  Bulky lesions like DNA adducts are 

repaired by Nucleotide excision repair where several base pairs containing 

DNA lesions are removed from the single-stranded DNA, followed by DNA 

synthesis and ligation.  The mismatch or nucleotide errors occurring during 

DNA replication and recombination are repaired by mismatch repair process 

[44]. 

 

DNA double strand breaks (DSBs) which are the most toxic lesions are mainly 

repaired through two different mechanisms such as homologous 

recombination (HR) and non-homologous end joining (NHEJ). 
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Homologous Recombination  

Homologous recombination (HR) requires a homologous DNA sequence 

from the undamaged sister chromatid as a template to repair the DSB lesion. 

For this reason, this repair process occurs only during the late S and G2 phase 

of the cell cycle [45] . It is basically an error-free repair process because it 

relies on the homologous DNA strand of the undamaged sister chromatid as a 

template for the repair.  

 

The initial step in HR repair is binding of the Mre11–Rad50–Nbs1 (MRN) 

complex to the DSB ends and generating 3’ – single - stranded DNA (ssDNA) 

overhangs capable of invading duplex DNA. These 3’ overhangs gets coated 

by the ssDNA- binding protein RPA which is subsequently replaced by the 

RAD51 [46]. RAD51 promotes strand invasion of the homologous sister 

chromatid forming a Holliday junction structure. After alignment of the 

homologous sequences, RAD51 is removed followed by DNA synthesis, 

resolution of the Holliday junction and ligation. 

Non-Homologous End joining  

Non-homologous end joining (NHEJ) is a conservative end-joining process 

essential for V (D) J recombination during B cell development. It is also the 

major pathway for repairing DSB as it allows fast repair throughout the entire 

cell cycle .  NHEJ involves ligation of DNA break ends and therefore does not 

require sequence homology.  The DNA-PK having DNA-binding Ku70/Ku80 

heterodimeric subunit (Ku) and DNA-dependent protein kinase catalytic 

subunit (DNA-PKcs) is a key player in signaling the NHEJ repair process [47]  

 

The repair pathway is initiated by the binding of the Ku complex to the DSB 

ends followed by recruitment of the DNA-PKcs, a serine/threonine kinase 

member of the PIKK family [48].  DNA-PKcs tether to the damaged DNA 

ends and forms a synaptic complex that brings the two DNA ends close to 

each other.  Activated DNA-PKcs becomes autophosphorylated and 

phosphorylates several other proteins involved in DNA end processing [49]. 

DNA ends are processed to remove damaged or mismatched bases followed 

by ligation by the LigIV/XRCC4 complex and XLF/Cernunnos [50].  Several 
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proteins including Artemis, polynucleotide kinase, DNA polymerases are 

known to take part in NHEJ repair [51] 

Fanconi anemia pathway for repairing DNA interstrand cross links 

DNA interstrand cross links are usually detected during the S phase of the 

cell cycle when the DNA replication fork is blocked due to the covalent cross 

links between the two DNA strands [52].  Fanconi anemia proteins play a key 

role in sensing and signaling ICL damage in cells during the S/G2 phase. The 

stalled replication forks are recognized by FANCM and FAAP24 proteins 

and the FA core complex containing FANCA, FANCB, FANCC, FANCE, 

FANCF, FANCG, FANCL, FANCM, FANCT, FAAP100, MHF1, MHF2, 

FAAP20 and FAAP24 proteins are recruited to the damaged site.  This core 

complex proteins catalyzes monoubiquitination of FANCD2 and FANCI [53]. 

Ubiquitinylated FANCD2 triggers the recruitment of several factors 

including endonucleases such as ERCC4, MUS81 and FAN1 [54]. The 

endonucleases coordinates incision on both sides of the cross links resulting 

in breaking one parental strand and unhooking the ICL from the opposite 

parental strand. The unhooked cross link on the complementary strand is 

bypassed by translesion synthesis (TLS) polymerases such as REV1 or DNA 

polymerase ζ [55]. The incisions can lead to the formation of DNA double 

strand breaks which are eventually targeted for HR repair [56]. Finally, the 

FANCD2–I heterodimer is deubiquitylated by the USP1–UAF1enzyme 

complex and the FA pathway is turned off [57, 58]. Thus the FA pathway is 

likely to be involved in nucleolytic incision, TLS and HR repair processes.  

 

Mutation in any of the identified FANC genes can result in Fanconi anemia. 

It is a cancer susceptible genetic disorder characterized by multiple 

congenital abnormalities, progressive bone marrow failure and increased 

sensitivity to DNA interstrand crosslinking agents [59]. Due to the repair 

defect, FA patients are hypersensitive to DNA interstrand cross linking 

agents.  
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1.3.4 Cell death  

Cells may die if the DNA damage is too high or if the damage cannot be 

repaired properly.  

 

In response to radiation or DNA damaging drugs, cells may undergo cell 

death through a programmed mechanism known as apoptosis [60].  

Apoptosis occurs through a series of events including chromatin 

condensation, DNA fragmentation followed by disintegration to apoptotic 

bodies and subsequent phagocytosis [61].  The tumor suppressor protein, p53 

is known to coordinate apoptosis as it activates the pro-apoptotic protein and 

causes mitochondrial release of cytochrome c followed by activation of 

caspase 9 leading to apoptotic process.  

 

The prevailing mechanism behind radiation induced cell death is mitotic 

catastrophe.  In this mode of cell death, cells usually undergo several rounds 

of cell divisions before they die [62].  Cells that undergo cell division without 

proper repair of DNA damage because of a defective G2/M cell-cycle check 

point mechanism or cells attempting to enter mitosis before the completion of 

DNA replication in the S phase can cause a mitotic catastrophe [63].  Mitotic 

catastrophe is often accompanied by key molecular events of apoptosis that 

executes cell death. Failure of subsequent cell demise can cause aneuploidy 

and genomic instability [64, 65]. 

 

 

1.4 Cancer treatment 
Cancer treatment mainly involves surgery, chemotherapy, radiotherapy and 

biologic therapy or their combinations. DNA damaging agents like radiation 

and chemotherapeutic drugs are used in cancer treatment to induce DNA 

damage and cell death in tumor cells.  
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1.4.1  Radiotherapy 

Radiotherapy is an important cancer treatment modality with approximately 

50 percent of cancer patients are being treated with radiation either as the 

primary therapy or as part of the combination therapy.  Being a localized 

treatment, it can kill tumor cells in a region but the radiation doses are often 

limited to avoid toxicities to the surrounding normal tissues.  Acute toxicity 

which may occur within weeks after radiation treatment includes skin and 

gut tissue damage, inflammation and erythema of the skin and pneumonia. 

Late tissue damage occurs due to fibrosis, necrosis, atrophy and vascular 

damage [66-68].  Among patients receiving radiotherapy, severe side effects 

are reported in five to ten percent while approximately 50 % of patients 

experience less severe, yet troublesome, effects [69, 70] 

 

The chance of eradicating tumors depends on the treatment doses delivered.  

The steep dose-response curve indicates that small dose difference can result 

in clinically relevant tumor control.  However, the dose-response 

relationships for normal tissue toxicity is also steep and any increase in the 

dose may cause major toxicity [71].  It is represented by standard sigmoid 

dose–response curves with a narrow therapeutic index between tumor control 

probability (TCP) and normal tissue complication probability (NTCP).  

 

 

 

 

 

 

 

 

 

 

Figure 2. Sigmoid curve showing therapeutic window of radiotherapy. (Figure 

adapted from Barnett et.al [66]) 
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1.4.2 Chemotherapy 

Chemotherapy has been used in the treatment of cancer for more than 50 

years.  Being a systemic treatment option, the DNA damaging drugs usually 

affects the dividing ability of normal cells such as bone marrow, digestive 

tract and hair follicles are also affected resulting in  mucositis, alopecia, bone 

marrow suppression, leukopenia, anemia and thrombocytopenia, increased 

susceptibility to infections [72].  The individual variation in sensitivity to 

DNA damaging agents may increase the extent of side effects.  For example, 

patients with mutations in DNA repair genes can be more sensitive to DNA 

damaging drugs and thus may end up with severe side effects following 

treatment with conventional chemotherapeutics [73]. 

1.5 Individual difference in cellular response to 
DNA damage 

There is wide inter-individual variation in response to DNA damaging 

treatment, also within a group of identically treated patients.  The first 

evidence was published in the 1970s when clinical hyper-sensitivity in ataxia 

telangiectasia (A-T) patients treated with radiation was reported  [74].  

Several factors including physical (e.g. total dose, dose per fraction) as well as 

patient-related factors  such as age, smoking, coexisting disease conditions 

and cellular antioxidant levels influence a patient’s risk of developing 

toxicities [1, 75].  However, studies suggest that genetic predisposition 

accounts for 70% of the individual differences in radiosensitivity [76].  The 

exact genetic mechanism behind individual variation in intrinsic sensitivity is 

not clear however, it is evident that individuals with genetic disorders 

involving DNA repair defects are more sensitive to radiation.  
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Table 2. Genetic syndromes associated with  DNA repair defects, modified from [77] 

Genetic disorder Gene DNA repair defect 

Ataxia Telangiectasia (AT) ATM DSB signaling 

Nijmegan breakage 

syndrome (NBS) 

NBS1 DSB signaling 

A-T like disorder (ATLD) MRE11 DSB signaling 

Fanconi Anemia (FA) FANC Fanconi repair (HR) 

Ligase IV syndrome LIGIV NHEJ repair 

Seckel syndrome  ATR DSB signaling 

 

Cells derived from patients with genetic syndromes present with 

hypersensitivity to radiation due to the mutation in genes involved in DNA 

damage recognition, signaling and repair [78].  These mutations accounts for 

only a small subset of the population [79].  However, reports indicate that the 

radiosensitivity of cells from normal population shows a wide variation in 

adverse effects and that proportion of patients developing adverse effects 

after radiotherapy is much high [71, 76, 80-83].  Consequently, more factors 

influencing radiosensitivity remains to be discovered.  

1.5.1 Predicting sensitivity to DNA damage 
Due to patient-to-patient variation in intrinsic sensitivity to radiation, several 

endpoints have been analyzed to predict sensitivity.  Since DNA repair is 

thought to be involved in the mechanism of radiation sensitivity, several 

methods to detect DNA damage repair are reported including comet 

assay[84], the gamma H2AX assay[85], pulse field gel electrophoresis[86], 

DNA end binding complex[87], micronucleus assay [88] and chromosomal 

aberrations analysis.  Gene expression profiling assays such as SNP analysis 
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and transcriptional profiling have attempted to explore the mechanism 

behind radiation sensitivity; however, with limited success [89, 90]. The 

reason for this may be that the individual variation in sensitivity to DNA 

damaging agents is not based on a general mechanism but may be 

multifactorial.  Due to this, measuring sensitivity from a single endpoint may 

fail to provide the predictability necessary for clinical settings.  In this 

situation, an assay that measures the net effect of DNA damage in terms of 

cell survival may be able to predict the intrinsic sensitivity of an individual.  

Clonogenic survival assay 

Cell survival measured by clonogenic assay has been considered as a gold 

standard reference endpoint to measure the extent of a patient’s normal tissue 

reaction after radiotherapy.  Many studies have found a correlation between 

clinical radiosensitivity and intrinsic radiation sensitivity measured by 

clonogenic survival of fibroblasts or lymphocytes [91-93].  However, the assay 

is quite laborious and time consuming and therefore not clinically applicable 

in order to test patient’s cell sensitivity prior to treatment.   

1.6 Free radicals and stress 
Free radicals are highly reactive due to the presence of unpaired electrons in 

their outer shell [10].  Low to moderate levels of ROS are beneficial as cellular 

signaling molecules but, excessive ROS levels can cause damage to DNA, 

proteins and lipids [94].  They can oxidize cellular components like DNA, 

leading to adduct that impair base-pairing, cause base loss, or single-strand 

breaks (SSBs).  However, when in close proximity SSBs on DNA strands may 

lead to double strand breaks [51].  When the level of free radicals within the 

body increases and exceeds the body’s ability to remove them, a condition 

known as oxidative stress occurs.  Oxidative stress is a deleterious process 

contributing to various disease conditions including cancer [95], 

neurodegeneration [96] and ageing [97].  Cellular exposure to free radicals 

cannot be avoided as they are continuously generated by intracellular 

processes.  Moreover exposure to environmental toxins like UV radiation, 

ionizing radiation and smoke also give rise to radical production.  Cells have 
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therefore evolved an antioxidant defense network that constantly acts to 

balance the cellular redox status.   

1.7 Nrf2-Keap1 pathway 
 In humans and several other mammals, the antioxidant defense system is 

mainly regulated by the basic leucine zipper transcription factor Nuclear 

factor erythroid 2- related factor 2 (Nrf2) [98].  In response to oxidative or 

electrophilic stress, activated Nrf2 enter the nucleus and form heterodimer 

with small Maf protein and initiates transcription of genes containing an 

antioxidant response element (ARE) in the DNA regulatory region [98].  Nrf2 

activates the expression of a series of ARE dependent genes including phase 2 

antioxidant enzymes such as heme oxygenase-1, NAD(P)H:quinone 

oxidoreductase, glutathione peroxidase and other members of the glutathione 

transferase family.  The critical importance of Nrf2 in protecting cells against 

toxic substances is evidenced in different studies where Nrf2 deletions 

increased the susceptibility of mice to different toxic chemicals and 

pathological conditions related to oxidative stress [99-102] 

 

Homeostatic levels of Nrf2 are kept low by its association with the repressor 

protein Kelch–like ECH-associated protein 1 (Keap1) in the cytoplasm.  Keap1 

function as a negative regulator of Nrf2 by targeting Nrf2 for ubiquitin 

dependent proteasomal degradation by Cullin 3-base E3 ubiquitin ligase [103, 

104].  Keap1 is a cysteine rich protein consisting of 27 cysteine residues in 

humans.  These cysteine residues act as critical sensors of oxidative or 

electrophilic stress.  Modification of cysteine residues prevents Keap1 

mediated Nrf2 ubiquitination, followed by Nrf2 stabilization and nuclear 

translocation to induce ARE dependent genes.  Upon restoring redox 

homeostasis, Keap1 moves into the nucleus and controls nuclear export of 

Nrf2 for subsequent proteasomal degradation in the cytoplasm [105].  Thus 

Keap1 act as a chemical sensor regulating the levels of Nrf2 based on cellular 

redox status.  
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Figure 3. Keap1 mediated Nrf2 regulation.  

In basal conditions, Nrf2 is bound to Keap1 in the cytoplasm and undergoes 

proteasomal degradation. The presence of inducers/stress, cause modification of Keap1 

cysteine residues and Nrf2 levels increase. Activated Nrf2 enters the nucleus and 

dimerizes with Maf to promote transcription of ARE-dependent genes. Finally, Nrf2 is 

transported out of the nucleus by Keap1 for subsequent proteasomal degradation.  

 

1.8 Activators of Keap1-Nrf2 pathway  
In addition to cellular stress different classes of chemicals in table 3 have 

been shown to induce Nrf2 [3]. These Nrf2 inducing agents are structurally 

diverse but they share a common property of reacting with sulfhydryl 

groups of Keap1 cysteine residues and thereby resulting in Nrf2 activation 

[106, 107].  Nrf2 activators that have been studied in this thesis are discussed 

later.  

Studies have identified critical cysteine residues of Keap1 such as cysteine 

273 or cysteine 288 are involved in Keap1 repression of Nrf2 under basal 

conditions and cysteine 151 for Nrf2 activation in response to electrophilic 

stress [108-110].  However evidences suggest that different Nrf2 activators 
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prefer specific cysteine residues to induce Nrf2 activation. Based on the 

evidences, a “cysteine code” which converts the preferential target cysteine 

modifications into distinct biological effects has been proposed [111]. 

 

 

Table 3. Different classes of Nrf2 inducers and their example [3] 

Classes of Nrf2 activators Example 

Michael reaction acceptors triterpenoids, curcumin 

Oxidizable phenols/ quinones Resveratrol, Tert-

butylhydroquinone,  

Isothiocyanates 

/sulfoxythiocarbamates 

Sulforaphane, phenethyl 

isothiocyanate 

Dithiolthiones/diallyl sulfides Oltipraz, diallyl trisulfide 

Trivalent arsenicals Arsenic trioxide, phenylarsine 

oxide 

Dimercaptans  
R-lipoic acid, 

2,3-dimercaptosuccinic acid 

Selenium based compounds Selenite, organoselenium 

compounds 

Polyenes Carotenoids, lycopene 

Hydroperoxides Tert-butylhydroperoxide, 

cumol hydroperoxide 

Heavy metals/ metal 

complexes 

Cadmium, auranofin 
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1.8.1 Sulforaphane 

Sulforaphane (SF) is an isothiocyanate abundantly present in broccoli sprouts 

and other cruciferous vegetables.  The glucoraphanin present in these 

vegetables is broken down by the enzyme myrosinase into the isothiocyanate 

sulforaphane during cutting or chewing [112].  The isothiocyanate group (-

N=C=S) linked to the glucosinolate moiety mainly contributes to the 

chemopreventive actions of SF.  In rats, an oral dose of 50 µmol of SF leads to 

a peak plasma concentration of approximately 20 μM [113].  In humans, 

consumption of 200 µmol isothiocyanate prepared from broccoli sprouts lead 

to peak plasma concentration of ~3.0 μM after 1 hour and declined with a 

mean half-life of 1.77 ± 0.13 hours [114, 115].  The main urinary excretory 

products are mercapturic acid and cysteine conjugate forms. 

 

 

 

 

Figure 4. Chemical structure of sulforaphane  

Sulforaphane activates Keap1-Nrf2 pathway through its direct interaction 

with Cys-151, a cysteine residue of Keap1 [116].  It has been shown to induce 

expression of phase II enzymes and antioxidant proteins including heme 

oxygenase 1 (HO-1), NAD(P)H:quinone oxidoreductase-1 (NQO1) and 

glutathione transferases (GSTs) [117]. Thus SF induces a protective effect 

against various toxic chemicals [118].  As reported, SF inhibits cancer cell 

proliferation by inducing cell cycle arrest and apoptosis [119-121].  In a recent 

clinical trial on patients with recurrent prostate cancer, daily administration 

200 μmol/day sulforaphane rich extracts for up to 20 weeks did not lead to 

any signs of adverse effects but decreased the PSA levels to 50% in 1 out of 20 

patients and PSA doubling time was reduced with sulforaphane treatment 

[122].  Further clinical studies such as the POUDER trial are underway to 

evaluate the feasibility of SFN as an adjuvant for chemotherapy in patients 

with advanced pancreatic cancer [123].  
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1.8.2 Bardoxolone methyl 

Bardoxolone methyl or BARD (also known as CDDO methyl ester) is a 

synthetic derivative of triterpenoid oleanolic acid and a well-known potent 

Nrf2 inducer activating Nrf2 at nanomolar concentrations.  It belongs to the 

class of Michael reaction acceptors and is known to activate downstream 

targets of Nrf2 including HO-1 and NQO1 and thereby induce 

chemopreventive properties [124]. 

 

BARD has been shown to protect cells from ionizing radiation as 

demonstrated by Kim,et.al [125] and others[126].  It has been shown to 

enhance the estimated glomerular filtration rate (eGFR) in patients with 

chronic kidney disease [127].  However, a Phase III clinical trial with 

treatment of advanced chronic kidney disease (CKD) in patients with type 2 

diabetes mellitus was terminated due to fatal side effects [128]. 

 
Figure 5. Chemical structure of bardoxolone methyl  

1.9 Hormesis  

Hormesis is described as a biphasic dose-response phenomenon where an 

agent inducing stimulatory effect at moderate doses can produce an 

inhibitory effect at high doses [129, 130].  The hormetic effect has been 

observed with different stress inducers including oxidants, phytochemicals, 

exercise and calorie restriction.  
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Figure 6. Illustration of hormetic response. 

1.9.1 Hormetic effect of Nrf2 inducers 

It has become increasingly clear that Nrf2 activation is often tightly 

regulated and Nrf2 inducing agents follow a hormetic dose-response 

curve [131].  The electrophilic characteristic of Nrf2 inducing agents 

enable them to act as pro-oxidants and thus the protective effects can 

only be observed at particular nontoxic doses.  Sulforaphane is a well-

known hormetic agent that has chemopreventive and cytoprotective 

effect at lower concentrations but cytotoxic and antiproliferative effect at 

higher concentrations [132, 133]. The chemoprevention is mainly due to 

Nrf2 based Phase II gene induction [134] while the cytotoxic effect is  

reported to be mediated by cell cycle arrest and apoptosis.  Other Nrf2 

inducers including a BARD analog may also be considered as hormetic 

moieties as they induce protective effects at low nano - molar 

concentrations but higher concentrations are reported to be toxic to cells 

[135].  
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2 AIM 

The main aim of the research work presented in this thesis was to develop 

and validate a flow cytometry based method to measure intrinsic sensitivity 

to DNA damaging agents.  How the pre-activation of Nrf2 influenced 

inherent radiosensitivity and cellular adaptation was also studied.  

 

2.1 Specific aims: 
 

In paper I, we aimed to develop a flow cytometry based cell division assay 

that can be used in clinical settings to measure patient sensitivity to radiation 

and chemotherapeutic agents. 

In paper II, the aim was to validate the cell division assay in predicting 

sensitivity to DNA inter-strand crosslinking agent and thereby identifying 

sensitive patients in a population.  

The study presented in paper III investigated whether repeated treatment 

using the Nrf2 activator sulforaphane protects skin fibroblasts from the toxic 

effects of ionizing radiation.  

In paper IV, the adaptive response after pretreatment with the Nrf2 

activators, sulforaphane and bardoxolone methyl was studied.  
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3 MATERIALS AND METHODS 

This section provides an overview of the methods used in this study. A 

detailed description of all the experimental methods can be found in the 

attached papers.   

Patient samples  
Blood samples from healthy individuals described in paper I and II were 

collected from the Hematology lab at the Clinical Chemistry department at 

Sahlgrenska University hospital.  Blood samples from Ataxia telangiectasia 

(AT) and Fanconi anemia (FA) patients were obtained from other hospitals in 

Sweden.  This study was approved by the ethical committee and informed 

consent was obtained for the FA and AT patients.  Peripheral blood 

mononuclear cells (PBMNCs) were isolated from blood samples through 

density gradient centrifugation using Lymphoprep (Axis shield).  

 

Cell types 
Human primary skin fibroblasts bought from ATCC (CRL- 2091) were used 

in the study described in paper I, III and IV. The Nrf2 wild type (Nrf2 +/+) 

and Nrf2 knock out (Nrf2 -/-) mouse embryonic fibroblasts (MEFs) used in 

paper III was a kind gift by Professor John D. Hayes at the University of 

Dundee, UK.  

 

 In paper IV, lymphoblasts derived from Fanconi anemia patients (GM13071-

A -complementation group B, GM16749 -A– complementation group A and 

GM16756 -A–complementation group D2 from the Coriell Institute for 

Medical research) and normal lymphoblasts (MTB-B-1 and SAC-B-1) 

immortalized with the B95-8 strain of the EBV virus was used to study the 

sensitivity to cytotoxic drugs.  All the cells were grown in appropriate 

growth medium in a humidified incubator with 5 % CO2 at 37 ° C. 
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Radiation 
Cells were irradiated using the Gammacell 3000 Elan instrument (Best 

Theratronics) at the dose rate of 128 mGy/s.  In paper I and III, cells were 

treated with clinically relevant doses of γ-radiation.  

 

Cytotoxic drugs 
DNA damage was chemically induced using different chemotherapeutic 

agents as in paper I and II.  Stock solutions of 100 mM etoposide, 3.4 mM 

doxorubicin, 10 mM cytarabine, 20 μM calicheamicin, 30 mM mitomycin C, 10 

mM DNA-PK inhibitor Nu7441 and 10 mM ATM inhibitor Ku55933 (Merck 

Millipore) were prepared in dimethyl sulfoxide (DMSO) and stored at −80 °C 

(4 °C for Mitomycin C).  The drugs were diluted in DMSO and working 

concentrations were added to the media.  In all the treatments, the final 

concentration of the DMSO solvent was 0.1 %.  

 

Nrf2 activating agents 
Nrf2 activating agents such as sulforaphane (100 mM), BARD (10 mM), 

curcumin and tBHQ used in paper III and IV were prepared in DMSO and 

stored at −80 °C.  Working concentrations were prepared in DMSO and 0.1 % 

DMSO was used as a vehicle control.  

 

METHODS 

Clonogenic assay 
The clonogenic assay or colony assay which is considered as the ‘’gold 

standard’’ method for measuring intrinsic sensitivity was used in paper I to 

measure the radiosensitivity of human skin fibroblasts.  Cells were allowed to 

divide and form colonies under normal growth conditions.  After 10-12 days 

of incubation, cell colonies were stained and manually counted.  Colonies 

with 50 or more cells were considered as a colony [136].  Thus the results 

represent long term dividing ability of cells in response to radiation.  

However, the long time required in completing an experiment and the 
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manual labor in counting the colonies makes this assay less practical in 

clinical settings.     

Cell division (CD) assay 
In this thesis, the proportion of cells that have undergone cell division after 

cytotoxic treatments were EdU labeled and detected with the help of flow 

cytometer.  

 

EdU labeling  

The thymidine analogue, 5-ethynyl 2- deoxyuridine (EdU) was used to label 

proliferating cells.  EdU incorporated into newly synthesized DNA during S-

phase of the cell cycle can be easily identified through the Click-iT staining 

[137, 138].  The terminal alkyne group in EdU specifically reacts with 

fluorescently labeled azide dye and form a triazole bond between alkyne and 

azide groups in the presence of copper sulphate.  This allows the detection of 

EdU labeled DNA in the divided cells [139].  In all the papers, 10 µM EdU 

was used for cell labeling.    

 

 

 

Figure 7. EdU detection using specific click-iT staining. EdU incorporates into 

DNA during the replication phase. The ethynyl group of the incorporated EdU 

in the DNA reacts with the azide group of the dye in a copper catalyzed Click-

iT reaction and forms a triazole bond. 
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EdU staining 

Cells are allowed to grow in appropriate growth medium for 48 or 72 h after 

which 10 µM EdU was added.  After 16 h incubation in the presence of EdU, 

cells are harvested and fixed using formaldehyde and permeabilized using 

saponin.  EdU labeled cells were stained using the Click-iT reaction mix 

where the azide conjugated fluorescent dye forms covalent bond with the 

alkyne group in the EdU in the presence of CuSO4 and a reducing agent.  

Finally, cells were stained using a cell cycle dye to analyze the DNA content 

in the cells.  CountBright absolute counting beads (Life technologies) were 

added to the samples prior to a flow cytometry analysis as an internal control 

for the sample volume analyzed by the flow cytometer.  

 

Measurement of DNA double strand breaks  
Phosphorylation of the histone protein H2AX or gamma H2AX is considered 

to be a biomarker for DNA double-strand breaks (DSBs) formation [36, 140].  

Therefore DSBs can be detected by staining cells with Gamma H2AX 

antibody using immunofluorescence, flow cytometry or western blot.  

According to evidences, the number of γ-H2AX foci is equivalent to the 

number of DSBs formed and therefore disappearance of these foci are likely to 

represent repair of DSBs [141].  In paper I, gamma H2AX in patient blood 

lymphocytes was measured using γ-H2AX flow cytometry assay [142].  The 

ability of lymphocytes treated with ATM or DNA PK inhibitors to recover 

from radiation induced damage was validated by measuring γ-H2AX 

fluorescence at different time points after radiation.  In paper III, gamma 

H2AX foci formed after radiation in 10 µM sulforaphane treated cells was 

detected and quantified by immunofluorescence [143].  

 

Measurements of reactive oxygen species 
Fluorescent probes have been used to quantify intracellular reactive oxygen 

species (ROS).  The cell permeable fluorescent probe 2′, 7′-

dichlorodihydrofluorescein diacetate (H2DCFDA) has been used to detect 

radiation induced ROS [144].  It is cleaved by cellular esterases to DCFH 

which is converted to fluorescent 2',7'-dichlorofluorescein (DCF) upon 

oxidation by several ROS including hydroxyl radicals (OH) and peroxynitrite 
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[145].  In paper III, we used the chloromethyl derivative of H2DCFDA to 

quantify the basal and radiation induced ROS levels in sulforaphane treated 

cells.  The ROS levels were detected using a flow cytometer.  

 

Gene expression analysis 
Quantitative analysis of the messenger RNA (mRNA) expression patterns 

was done using quantitative PCR or qPCR.  In paper III, the Nrf2 target gene 

expressions after SFN treatment was studied using qPCR.   

 

Cells were lysed and mRNA was extracted using oligo (d)T-covered 

magnetic beads which attract the poly adenine tails of mRNA.  To ensure 

greater stability, the single stranded mRNA was converted to double-

stranded complementary DNA or cDNA using a reverse transcriptase 

enzyme.  The expression of the Nrf2 target genes Heme oxygenase (human 

HMOX1and mouse Hmox1) and NAD(P)H dehydrogenase quinone 1 

(human NQO1and mouse Nqo1) was studied using the TaqMan® Gene 

Expression Assay.  In TaqMan® assays the target gene specific probes are 

coupled to a fluorophore and a quencher and the exponential amplification 

of DNA is identified by the accumulation of the fluorescent signal from the 

probe.  If the probe remains intact, the quencher prevents fluorescence. 

During the amplification process, the probes hybridized to the target 

sequences are cleaved by the DNA polymerase enzyme resulting in the 

fluorescence signal allowing quantification of amplified DNA.  A reference 

gene that is thought to be evenly expressed is measured in all the samples. 

Using the relative quantification (ΔΔCT) method [146], the fluorescence from 

the target gene was related to the reference gene in each sample and finally 

normalized to the control sample.   

 

Nuclear localization of Nrf2  
In response to oxidative or electrophilic stress, Nrf2 is activated and moves to 

the nucleus to induce response gene transcription [147]; nuclear accumulation 

of Nrf2 therefore reflects Nrf2 activation.  In paper III, the nuclear 
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translocation of Nrf2 in sulforaphane-treated cells was assessed using 

immunofluorescence technique. 
 

Statistical analysis 
Data in this thesis is presented as mean standard deviation of the replicates. 

The ratio of standard deviation to mean was calculated and represented as 

coefficient of variation (CV) in paper I and II.  Further statistical significance 

between different groups was analyzed using unpaired student’s t-test, one-

way ANOVA or two-way ANOVA as indicated in the papers.  In paper I, the 

relationship between two different groups was analyzed using Pearson 

correlation coefficient.  All the graphs were plotted and statistical analysis 

was done using the Graphpad prism software. 
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4 RESULTS AND DISCUSSION 

PAPER I 

Radiation sensitivity of human skin fibroblasts measured using cell 

division assay correlates to the clonogenic assay 

Although it is quite evident that the intrinsic sensitivity to DNA damaging 

agents varies among individuals, this is not considered when prescribing 

treatment with DNA damaging agents.  In radiation therapy, the treatment is 

based on population averages and this may result in severe side effects in the 

extremely sensitive patients while non-sensitive patients may not receive an 

adequate dose for tumor control.  Finding methods to identify intrinsic 

sensitivity of patients prior to treatment with DNA damaging agents is 

therefore of critical importance.  Identifying sensitive patients prior to 

treatment can prevent adverse effects and at the same time provide a chance 

to use higher doses in non-sensitive patients to achieve better tumor control. 

 

The cell division (CD) assay was developed to detect intrinsic sensitivity to 

DNA damaging agents in patients.  The method utilizes the thymidine 

analogue EdU (5-ethynyl-2’- deoxyuridine) to label the cells that divide in 

response to treatment with DNA damaging agents and the divided cells are 

specifically stained using an EdU-reactive dye and detected with the aid of a 

flow cytometer.  Prior to EdU labeling, cells were allowed adequate time to 

exhibit cytotoxicity or growth arrest caused by DNA damaging agents.  Since 

EdU induce cell cycle arrest and apoptosis [148], the cells usually divide only 

once in the presence of EdU.  Our results indicated that 16 h incubation of the 

cells in EdU-containing medium allows detection of almost all the dividing 

cells in the culture.  

 

Skin fibroblasts have been widely used in measuring sensitivity to radiation 

and studies have shown a positive correlation between fibroblasts sensitivity 

measured by clonogenic assay and radiotherapy toxicities [91, 149].  The 

radiosensitivity of human skin fibroblasts measured using the CD assay 
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showed a similar correlation to the clonogenic assay.  The clonogenic survival 

assay is considered as the gold standard method to measure cell sensitivity 

[150] but when compared with the practical aspects of the clonogenic assay, 

the CD assay is simpler and less time-consuming (4 days) than the colony 

assay (10–14 days). 

 

The cell division assay detected lymphocyte sensitivity to radiation 

and chemotherapeutic drugs  

Peripheral blood lymphocytes can be easily obtained from patients with less 

pain and it has been widely used in biological dosimetry studies. We 

optimized the CD assay on peripheral blood lymphocytes and measured 

CD3/CD28 specific T-cell proliferation in response to ionizing radiation and 

chemotherapeutic drugs treatment.  Chemicals like NU7441and KU55933 are 

potent and selective inhibitors of DNA-PKcs [151] and ATM [152] and 

treating cells with these agents can sensitize the cells to DNA double strand 

break inducing agents.  Using the CD assay we measured the increased 

radiosensitivity of lymphocytes treated with DNA-PK and ATM inhibitors.  

Furthermore, the CD assay was able to detect the increased radiosensitivity 

in two patients with the Ataxia telangiectasia (AT), a genetic disorder due to 

defective ATM signaling [153].  

 

The method also measured lymphocyte sensitivity to different 

chemotherapeutic drugs including drugs that induce DNA damage during 

the DNA replication process.  Many DNA damaging agents induce toxicity 

during replication however; it is not possible to measure sensitivity to such 

agents using short-term assays that measure DNA damage and repair in the 

absence of cell division.  An assay which measured apoptosis of T-

lymphocyte has shown positive correlation to radiation-induced late toxicity; 

however this assay cannot predict sensitivity to agents that induce toxicity 

during replication [154].  Our results indicated that the CD assay is able to 

detect patient sensitivity to drugs that specifically induce damage in dividing 

cells.  Using the CD assay, we were able to detect hypersensitivity to the 

DNA interstrand cross linking agent mitomycin C in a patient with suspected 

Fanconi anemia.  
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We also measured the radiosensitivity of blood lymphocytes from healthy 

controls.  The results showed up to twofold inter- individual variation with 

marked sensitivity in one patient.  This also indicates that the number of 

radiosensitive patients may be much higher than the patients with rare 

genetic syndromes.  Inter-individual variation in intrinsic sensitivity to 

radiation has been reported in several previous research studies [71, 81].  

Moreover, heterozygous carriers of genetic disorders like AT may also have 

an increased risk to developing cancer and may have increased sensitivity to 

radiation [155, 156].  

As most of the DNA repair disorders are characterized by sensitivity to DNA 

damaging agents and cancer predisposition, these sensitive individuals run a 

potential risk of accidental injury during cancer treatment.  The common 

phenotypic characteristics can help physicians identify the sensitive 

population before cancer treatment is initiated.  However, the heterozygotes 

for these disorders with no symptoms can be left unidentified before 

treatment and may end up in severe side effects due to increased sensitivity.  

Thus there is a need for rapid screening of patient sensitivity prior to DNA 

damaging therapy in clinical settings.  Our results indicate that the CD assay 

can measure sensitivity to these agents quickly and conveniently. 

 

PAPER II 

The cell division assay is able to detect increased sensitivity to DNA 

inter- strand cross linking agent  

Individuals with DNA repair defects have increased sensitivity to DNA 

damaging agents and Fanconi anemia (FA) is one such genetic syndrome 

caused by a defect in any of the Fanconi repair genes specialized at repairing 

DNA interstrand cross links [157].  These patients are likely to have 

congenital abnormalities, developmental delays, bone marrow failure and 

increased susceptibility to hematological malignancies and squamous cell 

carcinoma [53].  DNA interstrand cross links are deleterious lesions inhibiting 

DNA replication and transcription and cells from FA patients are therefore 

extremely sensitive to DNA interstrand cross linking agents (ICLs) like 
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mitomycin C. Therefore sensitivity to mitomycin C has been used as a 

diagnostic tool to identify these patients [158].  

 

The CD assay is able to measure the proliferative response to different DNA 

damaging agents including those that induce damage during cell division.  In 

the previous study, it has been shown that the CD assay can detect the 

hypersensitivity to mitomycin C in Fanconi anemia patient.  To further 

validate the CD assay, we measured the mitomycin C sensitivity of Epstein 

Barr Virus (EBV) transformed lymphoblastoid cells (LCLs) from FA patients.  

The CD assay detected increased sensitivity in the all FA cell types with 

defects in FANCD2, FANCA and FANCB complementation compared to cells 

from healthy controls.  FA patients are prone to bone marrow failure and are 

likely to undergo treatment with different chemotherapeutic drugs during 

bone marrow transplantation process.  Antimetabolite drugs like cytarabine 

and its analogues are used in the bone marrow transplant conditioning 

process and we; therefore measured the sensitivity of the FA- LCLs to 

cytarabine.  When compared to the control LCLs, we observed increased 

sensitivity in cell types derived from FA patients with complementation 

group FANCA and FANCD2 but not in FANCB suggesting that the 

sensitivity of FA patients varies based on the gene mutation.  We also 

observed no increased sensitivity in FA- LCLs (FANCD2 and FANCB) treated 

with the radiomimetic drug calicheamicin.  Although FA patients are known 

to have increased sensitivity to radiation, there are reports demonstrating no 

increased radiosensitivity in FA patient cells [159, 160].  Further analysis of 

lymphocyte sensitivity to mitomcyin C showed a wide variation in intrinsic 

sensitivity among healthy controls emphasizing the importance of measuring 

sensitivity to DNA damaging drugs prior to treatment. 

Due to hypersensitivity to ICL inducing drugs, FA patients must avoid 

treatment with these drugs.  However, the diagnosis based on clinical 

symptoms is not always possible due to the wide variation in patient 

phenotype. [161].  Therefore patients lacking congenital abnormalities or a 

positive family history of Fanconi anemia may be left undiagnosed until they 

develop severe toxicity upon treatment with a bone marrow transplant 

conditioning regimen or cancer therapy [73, 162, 163].  Heterozygous FA 
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carriers with an estimated frequency of 1 in 181[164] have also been reported 

to suffer severe complications after chemo/radiotherapy [165, 166].  For this 

reason, it is quite important to identify the sensitivity of patients prior to the 

use of DNA damaging agents.  Currently the diagnosis of Fanconi anemia is 

based on chromosomal breakage analysis in lymphocytes exposed to ICL 

generating drugs.  However, this test is only available in specific laboratories. 

Our results indicate that the CD assay can measure patient sensitivity to 

mitomycin C and can therefore be used to identify FA patients.  

 

PAPER III 

 
Repeated treatment using Nrf2 activating sulforaphane protects cells 

from ionizing radiation 

Being a DNA damaging agent, ionizing radiation (IR) interrupts cell 

homeostasis and causes cytotoxicity mainly through the generation of 

reactive oxygen species (ROS).  Since Nrf2 is involved in cytoprotection 

against radicals, we investigated if pre-activation of Nrf2 influence intrinsic 

cell radiosensitivity.  A previous study from our laboratory showed that Nrf2 

response levels are increased in cells exposed to repeated brief sulforaphane 

treatment [167].  We therefore wanted to investigate if repeated pretreatment 

with sulforaphane could protect cells from radiation induced toxicity.  To test 

this hypothesis, human skin fibroblasts were treated with different 

concentrations (0 – 30 µM) of sulforaphane (SF) for a single four hour (single 

treatment) or four hour repeatedly for 3 days (repeated treatment) prior to 

radiation.  The plasma half-life of sulforaphane in humans who ate broccoli is 

approximately two hour [114].  In our experimental settings, we used the 

four hour SF treatment to mimic this brief exposure time point and tried to 

investigate how repeated daily exposure to SF influence the Nrf2 response 

and cellular adaptation to radiation induced cell damage. 

 

The cell proliferative response after 2 Gy and 4 Gy radiation doses showed 

increased protection in repeatedly treated cells but not in single four hour 

treated cells.  However, the protective effect was observed at intermediate 
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sulforaphane concentrations with a maximum effect at 10 µM and declined at 

higher concentrations indicating the hormetic response.  ROS levels 

measured using a fluorescent probe showed decreased levels of ROS in 

sulforaphane treated cells at basal conditions and after exposure to 2Gy and 4 

Gy radiation doses suggesting that the repeated sulforaphane stimulations 

increased the intracellular antioxidant capacity.  Moreover, in cells 

repeatedly treated with 10 μM SFN, γ-H2AX foci formed after 1Gy radiation 

tend to decrease with time and at 4h the number of foci were significantly 

fewer compared to the vehicle treated control.  Reports suggest that the 

disappearance of γ-H2AX foci is linked to the repair of DNA double strand 

breaks after low dose of radiation [168].  Therefore the faster clearance of γ-

H2AX foci observed in sulforaphane treated cells may be due to repeated 

sulforaphane treatment having a positive influence on radiation induced DSB 

repair. 

 

Protective effect with repeated sulforaphane treatment is Nrf2 

dependent 

To evaluate the role of Nrf2 in mediating the SF induced protective effect, the 

gene expressions of two Nrf2 response genes heme oxygenase 1 (HO-1), 

NAD(P)H:quinone oxidoreductase-1 (NQO1) that are known to be induced 

by sulforaphane was measured after single and repeated treatment [169].  

HO-1 expression was induced in cells treated with SF (both single and 

repeated treatment).  The maximum induction was at 10 µM and decreased 

at higher sulforaphane concentrations, thus indicating a hormetic response.  

In line with the previous study [167], dose-dependent induction of NQO1 

was observed only in repeatedly treated cells but not in single treated cells. 

 

The role of Nrf2 was further investigated using Nrf2 +/+ (WT) and Nrf2 -/- 

(KO) mouse embryonic fibroblasts (MEFs).  Cells were treated with 0 -10µM 

concentrations of SF (single and repeated treatment) prior to radiation and 

cell division was measured.  In Nrf2 WT MEFs, a single 4 h SF treatment 

failed to show cytoprotection against radiation while enhanced protection 

was observed with the repeated treatment that tend to decrease at higher 

concentrations. However, sulforaphane treatment resulted in increased 

toxicity in MEF cells lacking the functional Nrf2 gene and this was more 
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pronounced with repeated sulforaphane treatment and/or irradiation.  This is 

in line with another study which has reported increased intrinsic 

radiosensitivity in Nrf2 KO MEFs [170].  From our results it was clear that 

sulforaphane mediated cytoprotective effect against radiation requires a 

functional Nrf2 response  

 

Together our results showed that repeated sulforaphane treatment can 

protect cells from radiation induced toxicities at moderate concentrations.  

However, the radioprotective effect started to decline at higher SF 

concentrations and SF itself was toxic to cells.  Thus SF treatment induced 

hormetic effect on cells; that is at moderate doses it showed cytoprotective 

effect while at higher doses it induced cytotoxic effect. 

 

PAPER IV 

Preconditioning cells with sulforaphane or BARD induces 

adaptation to toxic challenge  

The cellular network to adapt to oxidative and electrophilic stress is mainly 

regulated by the Nrf2 transcription factor [171]. In paper III, we have 

observed a hormetic dose response with SF treatment where moderate 

concentrations of SF showed protection against damage caused by ionizing 

radiation but higher SF concentrations appeared to be toxic to the cells [172].  

Therefore we tried to explore whether pretreatment of cells with nontoxic 

concentration of sulforaphane can permit adaptation to toxic concentrations 

of the same or other Nrf2 activating chemical.  In order to validate the extent 

of Nrf2 stimulation required to induce cellular adaptation, human skin 

fibroblasts were treated with Nrf2 activating agents such as sulforaphane 

(SF) and synthetic triterpenoid bardoxolone methyl (BARD) for 4 h daily for 

5 days (5-day protocol), 4 h daily for 3 days (3-day protocol), 24 h for 2 days 

(2-day protocol) and 4h for 1 day (1-day protocol).   

 

Cells treated with 10 µM SF or 30 nM BARD were exposed to higher toxic 

concentrations of the same substance along with the non-pretreated control.  
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The dividing ability of cells measured by the CD assay showed several folds 

increase in percentage cell division in pretreated cells compared to the cells 

which had no pretreatment.  This indicated that the adaptive resistance to 

toxicity can be acquired if preceded by pretreatment with the same stressor. 

The adaptive ability was more enhanced in cells repeatedly treated for short 

time period (4h daily) for 3 days and 5 days.  Moreover, pretreatment with 

higher concentrations (30 µM SF) resulted in relatively decreased adaptation 

indicating hormesis where protective effects tend to lose at higher 

concentration.  Similar adaptation has been reported in rodents where 

regular exercise activated Nrf2 signaling however, no Nrf2 induction was 

observed when the exercise was continued until exhaustion [173, 174].  The 

cells were able to withstand the toxic challenge even one week after 

pretreatment with SF or BARD.  However the cells that were freeze-thawed 

and grown in the absence of SF lost the resistance to higher toxic 

concentration.  This suggests that the adaptive effect may be transient but not 

long term based on selection. 

 

Preconditioning cells with sulforaphane or BARD induces cross 

resistance  

In many cases, the tolerance developed through adaptation cause resistance 

against toxic doses of the same stressor and cross-adaptation to other stress 

factors [175].  Therefore we have checked whether preconditioning with one 

chemical activator could induce cross resistance to the other substance. The 

results from the cell division assay showed adaptive cross resistance to 

higher toxic concentrations with both SF and BARD pretreatment.  Similar 

cross-adaptation was reported in another study where pretreatment with 

different Nrf2 inducers protected mouse embryonic fibroblasts against 

challenging dose of hydrogen peroxide [27].  

 

Although SF and BARD are Nrf2 activating agents, they belong to different 

classes of structurally different Nrf2 activators.  SF is an isothiocyanate and 

BARD is a synthetic triterpenoid.  The cross-resistance observed in 

preconditioned cells suggest that the chemical structure of the electrophilic 

compound is not an important factor in modulating transient adaptation to 
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stress.  Therefore the protective effect of Nrf2 against stress is a more general 

response that is not based on chemical nature of the stress.  
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5 CONCLUSION AND FUTURE 
PERSPECTIVES 

 

The cell division assay described in paper I and II in this thesis can detect 

patient’s intrinsic sensitivity to radiation and other DNA damaging agents.  

Using this assay the sensitivity of a patient can be easily identified with a 

small volume of blood sample and results can be obtained in 4 days.  

However, more clinical validation studies in patients undergoing treatment 

with radiation and other DNA damaging agents are required to confirm the 

predictive ability of the method before implementing it in the routine 

laboratories to test patient sensitivity prior to DNA damaging therapies.  

 

 

The work presented in paper III of this thesis demonstrated that repeated 

treatment with isothiocyanate sulforaphane protects human skin fibroblasts 

and mouse embryonic fibroblasts from cellular damage caused by ionizing 

radiation in an Nrf2 dependent manner.  Based on the results, it is plausible 

that sulforaphane could be used to protect normal tissue damage caused by 

radiation during radiation therapy.  However, further studies are needed to 

investigate whether sulforaphane could selectively protect the normal cells 

but not tumor. 

 

In paper IV we found that repeated pretreatment with structurally different 

Nrf2 activators, sulforaphane and bardoxolone methyl trained the skin 

fibroblasts to acquire resistance against higher toxic concentrations of both 

the drugs. Our results suggest that adaptation to stress is a general feature of 

Nrf2 response and that usually follows a hormetic pattern. 
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