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ABSTRACT

PURPOSE: Specifying requirements in a semi-formal notation, such as a controlled natural language
(CNL), allows reduction of ambiguity and underspecification in requirement specifications, as the notation
uses well defined semantics and enforces consistency and conformance to syntactical rules. Contradict-
ing requirements can be problematic to detect in practice depending on the size and complexity of the
requirement specification. Requirement simulation is an opportunity to ameliorate the process of detect-
ing inconsistency in requirement specifications. A formal requirement notation, unlike a semi-formal one,
comes with the ability to perform requirement simulation. A formal notation, however, requires training
and familiarity with formal methods in order to be understood, and this is not something that is suitable for
every organisation. Yet, identifying and resolving conflicts between requirements early will help organi-
sations reduce rework, i.e. nonessential efforts. If we can translate a set of requirements in a semi-formal
notation into a formal notation, we facilitate the adoption of a useful practice in organisations that would
not otherwise like to, or be able to, adopt formal methods.

METHOD: The study adopts the methodology of design science research. Design science research ad-
dresses a specific problem that exists in at least one setting and proposes a product such as a model, a
principle, a tool or a technique to solve this problem. In our case, the problem can be stated as translat-
ing semi-formal requirements into a formal notation for strengthening the scope of validation to include
the detection of contradicting requirements in specifications. We use freely and publicly available re-
quirements from the Economic Council of Europe and Daimler-Chrysler to show the application of our
translation. These requirements come from a safety-critical requirements domain (the automotive indus-
try) and describe behaviour of vehicular systems. As safety-critical systems have high safety requirements,
we propose a consistent translation into simulation models, i.e. a mapping between one source model el-
ement into a target model element in a consistent way. We analyse the simulation models created by our
transformation and discuss the feasibility of our approach.

RESULTS: The results show that it is problematic to perform an accurate translation of semi-formal
behavioural requirements specified on a higher level of abstraction with lower attention to specificity and
detail comparatively into a formal notation describing precise details on a more concrete level for the pur-
poses of simulation. Consequentially, a CNL describing behaviour with one specification approach can
not fully capture all the information that is required by a fully automatic translation into a formal notation
with a different specification approach, without first making essential improvements and necessary ad-
justments to account for the differences between the two specification approaches and to mimic numerous
semantic elements from the formal notation onto the semi-formal notation.

CONCLUSION: We propose that specifying requirements in a semi-formal notation to reduce ambigu-
ity and underspecification in specifications, and then translating the requirements into a formal notation for
inconsistency detection, is feasible. This can be applied in the automotive industry and elsewhere where
it is considered useful to improve the ability of testing procedures to detect inconsistency in requirement
specifications for the purpose of streamlining efforts. It is particularly important for safety-critical sys-
tems, where there could be serious consequences of an anomalous specification. Furthermore, we propose
features of a semi-formal notation that is susceptible to translation into a formal notation for simulation
purposes, which could be used as a starting point for adopting the tool suite that we introduce in this study.
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1. INTRODUCTION

Specifying requirements in a semi-formal notation such as a
controlled natural language (CNL) is the preferred way of
specifying requirements for safety-critical systems [2015]. A
CNL can, depending on the language, reduce underspecifi-
cation, because it stipulates details that must be explicitly
specified in order for the requirement to conform to the lan-
guage. This enforced presence of details and an explicit or-
dering of components in the language help requirement engi-
neers to specify requirements in a consistent format. There
is tool support for specifying requirements in CNL by us-
ing a language workbench called Xtext, which is part of the
Eclipse Modeling Framework (EMF).

While CNL is able to reduce underspecification and en-
forces conformance to a specific format, determining if
a CNL requirement specification is consistent, i.e. non-
contradicting could be problematic in practice, depending
on the size and complexity of the specification. If there
are many, interrelated requirements that, while being cor-
rect and completely satisfiable on their own, clash and col-
lide when combined as a unit, these requirements describe
erratic and unsound behaviour which cannot be satisfied.
Proceeding with development of such a system could lead
to profound consequences in a safety-critical domain. The
process of finding inconsistency can be ameliorated by us-
ing requirement simulation. Requirement simulation allows
to identify contradictions, i.e. conflicting requirements, by
verifying that the behaviour of the system specified by a re-
quirement specification, in totality, is correct and consistent.
If this can be done in an early stage of a project, there can
be a reduction in waste, i.e. nonessential efforts, because it
strengthens the ability of a requirement engineer to detect
anomalies in requirements specifications.

Specifying requirements for the purposes of simulation
and detection of contradiction, requires a formal notation. In
our study, we have selected a model language called modal
sequence diagram (MSD), a language based on sequence di-
agrams in the Unified Modeling Language (UML). MSD is
available in a platform called ScenarioTools, a freely avail-
able plugin project in Eclipse Modeling Framework. MSD
implements the executional semantics of the Live Sequence
Chart (LSC) language, adding the ability of specifying a
message in universal mode, i.e. a message which must always
occur. The main use case for LSC and MSD is to model be-
haviour and the ability to make a distinction between what
must happen and what could happen (the distinction be-
tween universal and existential mode) allows the require-
ment simulation to identify violations (inconsistent specifi-
cation). Finding a violation during a requirement simulation
implies that the specification is inconsistent, i.e. describes
incompatible behaviour which cannot be satisfied.

MSD, being a formal language, requires familiarity and
training in formal methods. However, considering that re-
quirements are meant to be understood by not only a se-
lect number of requirement engineers, but a vast majority
of people for communication purposes in a project, it is not
a suitable choice of language for most organisations. Marko
et al. [2015], who conducted a research study as part of the
CRitical sYSTem Engineering AcceLeration (CRYSTAL) re-
search program, argue that using semi-formal specification
is the preferred way of specifying requirements for safety-
critical systems in e.g. the automotive industry. The authors
reason that natural language is ambiguous. Likewise, the au-
thors argue that it is inappropriate to specify requirements
in a formal language because (i) it is problematic to spec-
ify the requirements depending on the background of the
requirements engineer, (ii) it is unlikely that the customer

can understand requirements when they are specified in a
formal language and (iii) there is unsatisfactory tool sup-
port for formal languages in applications which enable the
requirements engineer to specify software requirements.

It would be useful if one can specify requirements in a
semi-formal notation for communication purposes and then
translate the requirements into a formal notation for simu-
lation purposes. This is useful because we reduce the human
error; if we specify requirements in both CNL and MSD we
might not end up with semantically equivalent representa-
tions and furthermore, there is a reduction in effort if we can
reuse information from the CNL requirement specification.
CNL requirements, being a semi-formal notation with well
defined semantics, are suitable input to model transforma-
tions. Therefore, we would like to investigate the possibility
of transforming requirements specified in semi-formal nota-
tion into formal notation.

The recent trend towards a greater continuity in software
development processes is staggering. Processes such as con-
tinuous integration [Beck 2000], continuous delivery [Hum-
ble and Farley 2010] and continuous deployment [Holmstréom
Olsson and Bosch 2014] have been suggested. Continuous in-
tegration means that integration is done frequently on the
main branch, continuous delivery means that the product
is always ready to be released to the customer whenever a
successful integration has been finished and continuous de-
ployment means that the product is actually released to the
customer with every single build. This opens up a whole
new world in which researchers can contribute new knowl-
edge and innovation to software engineering. We concur that
greater continuity in software engineering is important, and
advise that the validation and simulation of requirements be
done as continuously as possible.

For instance, reducing testing feedback time in continu-
ous integration is a challenge which several researchers have
studied, e.g. Nilsson et al. have proposed a technique for
identifying the frequency of testing activities on different
levels; it describes the activities according to their level of
automation and the coverage for four different kinds of re-
quirements [2014]. The idea is to bring awareness of the
testing activities in a given company, which helps to iden-
tify possible opportunities for reducing the testing feedback
time in continuous integration. A study which focused on the
optimal selection of test cases in a system was performed by
Knauss et al. [2015].

Research questions

Specifically, this thesis addresses the following research ques-
tions:

RQ1: To what extent can behaviour requirements be ex-
pressed in selected controlled natural languages?

RQ2: To what extent can behaviour requirements be ex-
pressed in modal sequence diagrams?

RQ3: To what extent can a deterministic transformation
facilitate transformation of the behaviour requirements
expressed in controlled natural language into modal se-
quence diagrams?

Motivation for the research questions are the following.
Firstly, we don’t know to what extent the selected controlled
natural languages are able to express the behaviour require-
ments used in this study. The fact is that the CNLs used in
this study are relatively new and have been tried on some
requirements. But, we don’t know if they are applicable to
the requirements in our study.

Secondly, we don’t know to what extent we are able to ex-
press the behaviour requirements in SML. There have been



Alexander Styre

research studies where some behaviour requirements have
been listed and successfully tried out. But we can’t gener-
alize and say that this will be the case for the behaviour
requirements in this study.

Thirdly, we don’t know if a deterministic transformation
approach is appropriate for transforming the requirements in
controlled natural language into modal sequence diagrams.
Answering this question will help us establish whether a
deterministic transformation approach is feasible in practice.

Outline

The rest of the report is divided into the following sections:
Section 2 is the background, which will describe model-
driven engineering, transformation approaches and message
sequence charts. Section 3 will describe the design science-
based research methodology, the method of evaluation and
threats to validity. Section 4 will outline the design process,
the rationale for the selection of controlled natural languages
(CNLs) and the behaviour requirements and expressing the
requirements in SML. Section 5 is an additional service to
the reader, which will describe Eclipse Modeling Framework,
Xtext and ScenarioTools. Section 6 is the description of the
artifact(s), where we will describe a small set of requirements
and a conceptual overview of the transformation. Section 7
is the evaluation. Section 8 is the discussion. Section 9 is the
conclusion, where we will answer the research questions and
provide suggestions for future studies. We end with appen-
dices. Appendix A is the behaviour requirements. Appendix
B is the controlled natural languages. Appendix C is the
controlled natural languages expressed in Xtext. Appendix
D is the requirements expressed in CNL. Appendix E is the
requirements expressed in SML. Appendix F is the transfor-
mation expressed in Xtend.

2. BACKGROUND

2.1 Coping with the uncertainty of requirements
engineering through play-out simulation

Brooks, Jr. has stated that "The hardest single part of
building a software system is deciding precisely what to
build." [1987, p. 17]. This is in line with the findings of Pro-
caccino et al. [2002] and Ghazi et al. [2014]. Procaccino et
al. found that inadequately specified requirements are a key
factor for failing to meet the project objectives. Similarly,
Ghazi et al. found that clearly stated requirements are a
key factor for being able to achieve the project objectives.

Because late changes to a project can be cost-prohibitive
and technically difficult to realize, it would be useful to min-
imize the amount of late rework as much as possible. One
way in which we can achieve this is to simulate the require-
ments — early, continuously, frequently.

Somé presents a use case-based approach to requirements
engineering in which the requirements are specified as use
cases, then they generate a state machine and simulate the
interaction of requirements [2006]. In this study, we look
at a specific variant of requirement simulation — play-out
simulation. There are two main parts of this approach, play-
in and play-out [Harel and Marelly 2003]. Play-in allows
stakeholders to specify scenarios describing the behaviour of
a system. Play-out is then used to simulate the scenarios and
allows stakeholders to identify problems with the software
requirements specification, such as incomplete, inconsistent
and misunderstood requirements.

ScenarioTools is a tool which allows requirements engi-
neers to specify (and simulate) play-out scenarios [Greenyer
2011]. This tool is described in Section 2.5. Greenyer has
shown that it is useful to specify scenarios and identify

msc AccelerateVehicle

Controller

|:1

TransmissionSystem

|:1

ShiftGear

Gear Changed

GiveThrottle

Endi ralf _—
StopVehicle

Engine 0 -
[ | [ |

Fig. 2.1. Example of an MSC.

anomalies in the requirements specification by using sim-
ulation. We will describe modal sequence diagrams, which
are used to specify play-out scenarios, in Section 2.2. Modal
sequence diagrams are a specific type of message sequence
charts (MSCs), which we will describe in the next section.

2.2 Modal sequence diagrams

A message sequence chart (MSC) is a graphical language
that describes the interaction between actors in a sys-
tem [Telecommunication Standardization Sector of ITU
2011]. They consist of scenarios which mainly describe ac-
tors, messages and parameters. A popular variant of MSCs
are sequence diagrams in the UML. Figure 2.1 shows an
example of an MSC. A description follows:

Two actors, Controller and TransmissionSystem, transmit
and receive messages between each other. ShiftGear is a ref-
erence to another MSC, where presumably more messages
are sent between Controller and TransmissionSystem (and
error handling et cetera takes place). In this scenario, we
consider only the success story, i.e. the gear has changed.
Then, another MSC, GiveThrottle is triggered. This MSC
could involve more actors i.e. the TransmissionSystem could
communicate with Engine. Finally, an alternative region
where we imagine that (i) the acceleration damages the en-
gine and we stop the car unless (ii) the engine actually does
not suffer any damage and remains in operation. Here we
end the MSC.

The main criticism of message sequence charts is that
MSCs merely specify what could happen in a system [Damm
and Harel 2001]. That is, they are semantically weak be-
cause there is no prescription of what must happen. For
this reason, MSCs are usually referred to as modelling only
existential behaviour, i.e., at least one instantiation is re-
quired to successfully satisfy the chart. Live sequence charts
(LSCs), on the other hand, is a specific variant of MSCs
that introduces liveness properties, i.e., they distinguish be-
tween what must happen and what could happen. There-
fore, LSCs are referred to as multi-modal sequence charts,
i.e., modelling both existential and universal behaviour —
where universal behaviour means that every instantiation of
a scenario is required to successfully satisfy the chart. Be-
cause of the distinction between mandatory and optional be-
haviour, LSCs can be used to formally verify the behaviour
of e.g. distributed environments such as driver-less railway
cars [Damm and Westphal 2005]. An example of an LSC is
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Isc ApproveMember

Administrator System

P

Grant Permission

ali) Permission Granted

Insufficient Rights

Fill Out Form

A 4

Fig. 2.2. An LSC showing an interaction between A and B in a
system.

shown in Figure 2.2. Note that the lines are colored red and
blue. A common analogy in LSCs is temperature. Manda-
tory behaviour is associated with being 'hot’ and optional
behaviour is associated with 'cold’. Hence, LSCs use red and
blue colors to distinguish between these two kinds of be-
haviour. A description follows:

Two actors, Administrator and System, communicate with
each other. An Administrator could (but not necessarily)
grant permission to some unprivileged user. We imagine the
system must not allow any banned users to be granted any
permission by a single administrator, so we permit the ad-
ministrator to fill out the request for permission form (which
will be delivered to other administrators in the interface,
who will then be able to reject or accept the request for per-
mission). Alternatively, a non-banned user may be granted
permission by a single administrator. Either one of these
paths must be triggered because they are both strictly re-
quired, i.e. they must occur.

LSCs allow engineers to express behaviour which cannot
happen. This is referred to as forbidden behaviour and mod-
elled with one or more hot conditions, i.e., conditions in
universal mode, at the end of a chart; if the condition is
matched, the chart is violated [Harel and Marelly 2003]. An
example of this is shown in Figure 2.3. This scenario places
an invariant on the interaction in Figure 2.2. Basically, after
the Administrator got the permission request granted, it is
forbidden to fill out the form to ask administrators to reject
or accept the request for permission (that is, it must not
happen — Ever). The message Fill Out Form is modelled as
being possible, i.e. it might occur. If it does, the condition
at the end of scenario will trigger a violation. If, however,
the event labelled Fill Out Form is specified as strict, i.e. it
must occur, then the scenario would be unsatisfiable once it
has been activated for the following reason. After Grant Per-
mission is received, Permission Granted is strictly required
and must occur, otherwise the LSC scenario is violated. Fill
Out Form likewise is strictly required and must occur, other-
wise the LSC scenario is violated. Because the LSC scenario
will progress to the (strict) FALSE condition at the end of
said scenario, the entire scenario will be considered to have
been violated. LSCs, like MSCs, can be expressed in a for-
mal model, i.e. a Biichi automaton, but the difference is that
LSCs are expressed in a Co-Biichi automaton. An example

Isc ApproveMember

Administrator| System

P

Grant Permission

Permission Granted

Fill Out Form

= >

Fig. 2.3. An LSC showing forbidden behaviour.

of a Co-Biichi automaton is shown in Figure 2.4. A descrip-
tion follows:

State 1. Requirement Scenario Deactivated. The state is
final, because a scenario does not need to become active.
Self-transition M \ {grant permission} is omitted from this
figure.

States 2, 3 and 5. The First Message is received. State 2
is not final, because the transition can either go into State
3 (Success) or State 5 (Violation). If permission granted is
not received next, the transition M \ {permission granted}
will occur. State 3 is final — accepting and State 5 is a non-
final, i.e. non-accepting, rejecting dead state (i.e. there is no
sequence of transitions which will lead to a final, accepting
state). The transition M \ {fill out form} from State 3 to
State 1 is omitted.

State 4: Additionally if, after having reached State 3, the
message submit form occurs, the transition to State 4 (For-
bidden Message) will be triggered. State 4 is non-final and
triggers the e-transition to State 5.

Sequence diagrams, which traditionally have been heavily
inspired by MSCs, were revised in UML 2.0 and included
assert and negate statements. Harel and Maoz argued that
these constructs were meant to model mandatory and for-
bidden behaviour in a sequence diagram, with inspiration
of LSC [2007]. However, said authors also heavily criticized
the definition of assert and negate statements in the UML
2.0 standard as expressively weak, contradictory and am-
biguous. Instead, the authors suggested it would be useful
to express interaction in terms of modality, i.e. having a
mode, something which the UML 2.0 standard had omit-
ted, thereby giving birth to a new variant of LSCs, modal
sequence diagrams (MSDs). MSDs are implemented as a
UML 2.0 profile and allow the specification of mandatory
and forbidden behaviour in UML sequence diagrams. MSDs
as defined by Harel and Maoz allow a short-hand notation
for describing mandatory and forbidden behaviour — assert
and negate. An asserted sequence has a hot, i.e. mandatory
mode. This is shown in Figure 2.5. A description follows:

Two actors, Controller and Device (let’s say a Remote
Control sending signals to a Blu-ray player for instance)
communicate with each other. The signal PlayVideo But-
ton Pressed could be sent (but not necessarily, because
there could be other signals being received in other scenarios
e.g. Mute Button Pressed). If the signal PlayVideo Button
Pressed is triggered, the scenario PlayPauseVideo becomes
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Requirement Scenario Deactivated

grant permission

M\ permission granted

First Message

permission granted

Success X X
Violation

fill out form

Forbidden Message

Fig. 2.4. An automaton showing forbidden behaviour.

activated. The assert region has a hot mode which applies
to all messages (in this case, the message Play Mode Acti-
vation becomes hot, despite being represented as blue, i.e.
being in cold mode). The rest of the scenario states that
if PauseVideo Button Pressed signal is received, then Play
Mode Deactivation must occur.

A negated sequence has a hot mode and a condition at the
end, which evaluates to false. This is shown in Figure 2.6. A
description follows:

We continue with the two actors in Figure 2.5. This sce-
nario specifies a sequence where a signal to increase volume
level is forbidden when the disc player has been put in muted
mode. For clarity, we do not specify Mute Mode Activation
inside an assert region, because that would make the di-
agram a bit more complicated than needed so we simply
color it with red color as to indicate that this message is
asserted.

Greenyer was inspired by the research on LSC, and their
UML 2.0 profile MSD, and suggested that this could be used
to identify anomalies and deficiencies in requirement speci-
fications [Greenyer 2011]. His main contributions are:

—The definition of modal sequence diagrams (MSDs). The
MSD language is a variant of SD and includes several addi-
tions, including semantics of LSC and the MSD UML 2.0
profile proposed by Harel and Maoz [2007]. MSD makes
the difference between a system and its environment ex-
plicit, the notion that messages are always coming from
said environment and being able to specify universal and
existential modality based on LSC semantics

msd PlayPauseVideo

Controller Device

P

PlayVideo Button Pressed

assey

Play Mode Activation

PauseVideo Button Pressed

assey

Play Mode Deactivation

Fig. 2.5. An example of an asserted sequence.

msd DontChangeVolume

Controller

negate

Device

Mute Button Pressed

Mute Mode Activation

IncreaseVolume Button Pressed |

Fig. 2.6. An example of a negated sequence.

—An Eclipse Modeling Framework plugin named Scenar-
ioTools for specifying and simulating requirements in
MSD. The tool is described in Section 2.5.

—A synthesis algorithm, which is used to generate a strategy
for simulating the requirements successfully with the play-
out algorithm, or if that is not possible, a strategy for
violating the specification.

It should be noted that while we credit Greenyer to have
initiated the research, he is certainly not alone in making
the research contributions and certainly not the only one to
have made efforts in the research program. In fact, he has
acknowledged the help of dozens and dozens people, several
of which we refer to in our thesis such as Fockel and Holt-
mann, Brenner et al. and Liebel and Tichy. Specifically, we
note that the research into ScenarioTools was published in
a research article by Brenner et al. [Brenner et al. 2013] and
later additions were made to said platform by a large host of
researchers [Brenner et al. 2014]. We will now describe what
Brenner et al. has to say about ScenarioTools and the MSD
language [2013]:
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Table I. Summary of the languages capable of modeling scenarios.

Language Graphical Textual Degree of formality Mode
MSC Yes. Yes. Formal. Existential
SD Yes. Yes. Semi-formal. Existential
LSC Yes. Yes. Formal. Existential+Universal
MSD (UML 2.0 profile) Yes. Yes. Formal. Existential+Universal
MSD (ScenarioTools) Yes. Yes. Formal. Existential4Universal
Summary of the languages capable of modeling scenarios.
requirement scenario R1 {
message env -> gs . selectGear(1) msd Sleep

message requested env -> gs . setAccPhase (true)
violation if [ gs.clutchEngaged ]

}

Fig. 2.7. How we can model interaction between two actors, env
and gs, in SML.

In regard to mandatory behaviour, the authors make
a clear distinction between safety and liveness violations.
Safety violations mean that there is a defined order of events,
i.e. a safety violation would indicate that a message was
triggered at an unbidden time. Liveness violations mean
that there are expectancies of events, i.e. a liveness viola-
tion would indicate that a message has not been triggered
at all. The authors also implemented ScenarioTools, a tool
for executing play-out simulation using the revised modal
sequence diagrams. These MSDs can be expressed either
in a graphical language or in a textual language. We use
mainly the textual language in this study. This language is
known both as Scenario Markup Language (SML) and Sce-
nario Design Language (SDL). In this study, we use SML
to refer to the textual language of MSDs. An example of a
play-out scenario expressed in SML is shown in Figure 2.7.
The scenario is read as: Two actors, Environment env and
GearSelector gs communicate with each other. The scenario
specifies a sequence where if the first gear is selected and the
vehicle accelerates, a violation is triggered should the clutch
be engaged.

Time conditions were proposed in LSCs by Harel and
Marelly [2002] and later implemented in MSDs by Brenner
et al. [2014]. An example of a time condition in an MSD is
shown in Figure 2.8. A description follows:

If the disc player is given the sleep signal, then it must at
some point be put back in operation. The signal Wake Up
must occur after a cooldown period of at least 5 seconds,
otherwise the scenario is violated. The scenario is read as: If
the wake up occurs after 5 seconds, the time condition clock
< 5 is evaluated to false and the scenario is interrupted be-
cause the condition is in cold mode. Otherwise, the scenario
is violated because there is a strict FALSE condition at the
end of scenario (see Figure 2.3).

Table I presents a summary of the modeling languages ca-
pable of modeling scenarios. Figure 2.9 show the relationship
between MSD and related modeling languages. MSD was se-
lected because it is a formal model language with simulation
capabilities, it has good and freely accessible tool support,
it is available in Xtext language workbench, which the au-
thor is familiar with and based on the widely used UML se-
quence diagram language, which the author also is familiar
with. Furthermore, the distinction between mandatory and
optional behaviour provides an unambiguous specification
of mandatory and optional behaviour and is useful for the
validation of requirements in safety-critical domains [Damm
and Westphal 2005].

Controller Device

N

Sleep

clock =0

Wake up

A 4

clock < 5

< >
=

Fig. 2.8. An example of a time condition in MSD.

—Existential behaviour
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uncontrollable sources of events Inspired by

Fig. 2.9. The relationship between MSD and related modeling
languages.

2.3 Model-driven requirements engineering with
controlled natural language specifications

We have stated that specifying requirements in MSD allows
us to simulate the requirements and see in what way they
conflict with each other, if there are any contradictions in the
requirement specification. However, the quality of simulation
and identified anomalies depend on the completeness of the
specification. There is no room for ambiguity in MSD, be-
cause it requires you to be very certain about, and to specify
exactly, what the system can and can not do in a given situa-
tion. The interaction must be clearly defined and must state
the mode of this interaction, as well as the forbidden and in-
terruption messages. In addition, all of these concepts must
be connected to a domain model actors’ attributes and pro-
cedures to describe exactly which actor initiates any given
communication with another actor from the same domain
model and what exactly is being communicated. MSD de-
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mands a precise and exact specification of all the details
necessary to perform simulation on the requirement specifi-
cation. For some projects, we argue that this may be ideal
and fully possible to do. But, if we need to specify under-
specified requirements or requirements with uncertainty, we
would not be able to specify these requirements in MSD, be-
cause we have to be concerned with regards to the low-level
interaction between specific actors. There is another prob-
lem with specifying requirements in MSD, and that is not
related to their attention to details. Mainly, for contractual
negotiations and documentation, natural language is by far
the most favored approach. We have for instance seen the
research by Fockel and Holtmann [2014], where said authors
suggest a round-trip approach to facilitate conversion be-
tween controlled natural language (CNLs) and SysML block
diagrams, was motivated by the demands amongst signato-
ries to be able to have natural or controlled natural language
requirements. Therefore, we want to be able to specify re-
quirements in natural or controlled natural language and
then transform them into MSD. In this section, we will in-
troduce model-driven requirements engineering.

Model-driven requirements engineering (MDRE) is the
application of model-driven engineering to requirements en-
gineering [Berenbach 2012]. An example of this method-
ology could for instance be seen in the aforementioned
study by Fockel and Holtmann [2014]. Model-driven en-
gineering (MDE) is a discipline which cultivates the idea
that platform-independent models (PIMs), i.e. models on
a higher abstraction level which are independent of tech-
nology, can be transformed to other PIMs or to platform-
specific models (PSMs), which are models on a lower ab-
straction level and depend on a technology. MDE integrates
activities of a typical software engineering process such as
requirements engineering, architecture, design, implementa-
tion and testing [France and Rumpe 2007]. Brambilla et al.
state that "MDE goes beyond of the pure development activ-
ities and encompasses other model-based tasks of a complete
software engineering process." [2012, p. 9]. Requirements en-
gineering is a continuous process in which requirements are
elicited, specified, prioritised and released [Lauesen 2002].

A central principle of model-driven engineering is the de-
velopment of domain-specific languages (DSLs). DSLs are
"languages that are devised to address the needs of a specific
application domain." [Brambilla et al. 2012, p. 70]. Domain-
specificity is a desirable property of a language because it
promotes the use of familiar constructs. An example of a
domain could be a transmission system and a DSL could
be defined to specify the behaviour of the transmission sys-
tem. For instance, the behaviour of the transmission system
could be to change the active gear, disengage the clutch and
accelerate the vehicle. Controlled natural languages (CNLs)
are a specific kind of domain-specific languages. IEEE Std.
830-1998 states that "these languages tend to be better at
expressing certain types of requirements and addressing cer-
tain types of systems." [[EEE-SA Standards Board 1998,
p. 5.

Marko et al. argue that using CNL is the preferred way of
specifying semi-formal requirements for safety-critical sys-
tems [2015]. This is in line with de Almeida Ferreira and
Rodrigues da Silva [2009] and Fockel and Holtmann [2014],
who reasoned that CNL is suitable for communication with
stakeholders. Additionally, Lauesen [2002] claims that it is
inappropriate that requirements engineers specify natural
language requirements without being able to establish their
correctness or unambiguity.

There are many benefits of using controlled natural lan-
guages to express requirements. Firstly, it restricts the ex-
pressiveness and subsequent ambiguity in the requirements

by forcing the requirements engineers to use mainly a spe-
cific and predetermined set of key words and operators to
specify requirements [IEEE-SA Standards Board 1998]. Sec-
ondly, it provides detection and resolution of problems in
requirements specifications [Marko et al. 2015]. Thirdly, re-
quirements engineers can specify requirements in certain
controlled natural languages and still be able to negotiate
the details of these requirements with customers [Fockel and
Holtmann 2014].

2.4  Transformation from requirements expressed in
CNL to MSC

We explained that controlled natural languages are a spe-
cific kind of DSL. Furthermore, we stated that DSLs are
used in model-driven engineering and established that mod-
els are transformed in MDE. In model-driven requirements
engineering (MDRE), we transform requirements expressed
in CNL into another model, in our case, the modal sequence
diagrams (a variant of sequence diagrams with LSC seman-
tics). In this section, we describe related research on trans-
formation approaches.

Yue et al. have reported that model transformation
approaches for transforming requirements into platform-
independent models are unsatisfactory based on the sig-
nificant amount of effort required to successfully use
them [2011]. The authors acknowledge that manual effort
can be justified in some cases, for instance to add domain-
specific information. The authors assert that user interven-
tion should be minimized in order to provide automation in
model transformations. Furthermore, the authors identify
the lack of consistent transformation of requirements into
models. Specifically, the authors reason that models have
to be correct, consistent and complete. Finally, the authors
identify the lack of scientific evaluation of model transfor-
mations.

In this research, we have a manual intervention step in the
transformation for the purpose of adding domain-specific in-
formation, which is not specified by the requirements them-
selves. We thus consider this step to be justified, according
to what Yue et al. have stated. The advantage is that there is
no longer a need to re-specify, in MSD scenarios, the details
which are successfully converted in the transformation. With
regard to specification of already specified details in the re-
quirement specification, we avoid re-doing the requirement
specification in MSD from scratch if we use the transforma-
tion. Furthermore, we have transformed the requirements in
a consistent way by using a deterministic approach.

There are many studies of transformations involving the
transformation of CNL requirements into models. We have
for instance seen such research studies in Fockel and Holt-
mann [2014] and Somé [2006].

Fockel and Holtmann suggested a round-trip approach
where platform-independent models are transformed from
a SysML block definition diagram (BDD) into CNL require-
ments and from CNL into SysML BDD diagrams [2014].
They argued that stakeholders would be much more com-
fortable reading and negotiating the requirements in CNL
rather than reviewing the SysML block definition diagrams.
In their study, the authors have demonstrated the feasibility
of using Xtext to express requirements in CNL and then ap-
ply a transformation on these CNL requirements to derive
a complete platform-independent model.

Baudry et al. demonstrated an approach to transform re-
quirements in CNL into use case scenarios for simulation
purposes [2007]. The authors reported on the benefits of us-
ing simulation is to reveal problems with the specification.
There is a fairly limited amount of information available on
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the transformation they used and the CNL grammar which
they used was unrealistic for expressing real requirements, as
they concluded. In this study, however, the CNL grammars
are realistic and have been used in practice, as we describe
in Section 4.3.

Somé [2006] has a similar approach as our study. They
use a controlled natural language to specify use cases and
then transform them into a state machine using a domain
model. The requirements are then simulated. Their simula-
tion approach is similar to play-out simulation. But it does
not support liveness conditions (the difference between what
may happen and must happen). Also, the author suggests
that requirements are specified as use cases, but states that
there are different approaches for this. In his study, the au-
thor demonstrated the feasibility of a deterministic trans-
formation of use cases into MSC.

Feijs [2000] created a controlled natural language which
he transformed into message sequence charts (MSCs). The
author uses mainly three types of sentences, information
(equivalent to message in a use case), action (operation)
and status (condition). In his study, he investigated differ-
ent ways to specify requirements and transform into message
sequence charts. The author states that the controlled nat-
ural language and the message sequence charts are realistic.

Fockel and Holtmann excogitated a controlled natural lan-
guage which suited the needs of transforming SysML into
CNL and backwards. Specifically, they designed a language
in which all the information was available, thus making the
implementation of model transformation a straightforward
task. Somé [2006] used use cases containing all the informa-
tion needed to transform into MSC.

Unlike the study conducted by Fockel and Holt-
mann [2014] and the study by Somé [2006], the target lan-
guage in this study is already out there and can not be eas-
ily adapted to fit the needs of the transformation approach.
Particularly, requirements by themselves do not contain the
information which is necessary to successfully derive such
a complete, correct and consistent simulation model. This
is a major challenge to tackle in this study and indeed not
something which is addressed by for instance, Fockel and
Holtmann. As such, the selection of controlled natural lan-
guage is critically important to this study as it has material
consequences on the ability to express the behaviour require-
ments in this study. The information which is available to
the transformation depends on what information we extract
from the requirements expressed in controlled natural lan-
guage.

We did not find any research addressing the same prob-
lem as our study. But research suggests that deterministic
transformation of controlled natural language requirements
to message sequence charts is feasible. Therefore, we think
that it is important to execute this thesis.

2.5 Eclipse Modeling Framework, Xtext, and
ScenarioTools simulation framework

Eclipse Modeling Framework (EMF) is a framework for cre-
ating models and writing transformations. In this study, we
used this framework to create a transformation in Xtend, ex-
press the requirements in CNL, express the requirements in
SML and to simulate the scenarios in ScenarioTools. In this
section, we will describe Xtext and its relation to Xtend,
and we see that Xtext is the language workbench that is
used to express Xtend. We also describe ScenarioTools and
how a SML specification could be expressed in Xtext.

In this study, we want to accomplish the transformation
of behaviour requirements expressed in CNL into PIMs for
simulation purposes. This is realized by using Xtext. Xtext

—| Xtext -
Xbase
XteE’

CNL SML

CNLToSML

Fig. 2.10. Overview of a model transformation. On the left, CNL.
On the right, SML. A connection between them is the model
transformation in the middle. This picture has been inspired
based on illustrations by Brambilla et al. [2012].

is a language workbench and comes with the Eclipse Mod-
eling Framework (EMF) platform. A language workbench
is a concept to describe an integrated platform with the
means to create DSLs, including support for deriving (and
customizing) an editor for creating concrete representations
in a given DSL [Fowler 2010]. Such an editor could include
e.g. error detection, highlighting etc. Some language work-
benches also support specifying how the execution of the
concrete representations is carried out.

An overview of how the transformation relates to Xtext is
shown in Figure 2.10. The source of the model transforma-
tion is the requirements expressed in a CNL grammar. The
process of getting these requirements expressed in CNL is
described in Section 4.5 and the process of implementing the
grammars of the CNLs in Xtext is described in Section 4.4.
The behaviour requirements are described in sections A.1
and A.2 and the CNL grammars used in this study are de-
scribed in Section 4.3. The target of the model transforma-
tion is the play-out scenarios. The play-out scenarios are
expressed in MSDs, which we describe in Section 2.2. We
describe the process of getting the requirements expressed
in MSDs for evaluation purposes in Section 5.3. SML is the
textual version of MSDs, which we describe in Section 2.6.
Because SML contains quite a few constructs, we think it
is important to describe the structure of an SML specifi-
cation in this thesis. An SML specification is expressed in
Xtext. The transformation operates on and uses constructs
from the CNL and the SML grammars (not shown by the
figure). As shown in the figure, the transformation is defined
in Xtend. Xtend is defined by using Xbase, a Java mapping,
which is defined in Xtext.

ScenarioTools is a simulation framework, which is capable
of identifying irregularities in scenarios according to the syn-
thesis algorithm described by Greenyer [2011]. As a simple
example, Greenyer gives a scenario where something must
happen, but in a different scenario, the same thing is strictly
not allowed to happen. Therefore, a scenario is violated be-
cause there is no way we can legally proceed in the sce-
nario. ScenarioTools can specify scenarios like this and al-
lows simulation, meaning to try different things and see if
violations occur. If one wants to know more about Scenar-
ioTools, we refer to Greenyer’s doctoral thesis. We will use
ScenarioTools to specify requirements in Scenario Markup
Language (SML), which we will describe next.
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2.6 Structure of SML

Lastly, we will go over the structure of an SML specification.
The ScenarioTools configuration consists of a domain model,
an instance model, an SML specification and a runtime con-
figuration model. Figure 2.11 shows how the structure of an
SML specification looks like. A description follows:

Domain model: an Ecore model defining the context, i.e.
the surrounding domain, the actors both inside and outside
of the environment and the operations and the attributes
they may have.

Instance model: a model is instantiated from the Ecore
model with the root class instance containing a reference to
each instance of the domain concepts (e.g. the instance of
root class Transmission contains one instance each of Envi-
ronment, GearSelector and GearController).

SML specification: a model responsible for (i) importing
the domain model, (ii) defining the actors and the role they
play in the scenarios (environment or system), (iii) describ-
ing a collaboration (see Collaboration) and (iv) mapping
the actors in the SML specification with the concepts in the
domain model. A specification has a name.

Collaboration: A model responsible for (i) describing a set
of scenarios (see Scenario) and (ii) defining the actors and
the role they play in the scenarios (static or dynamic). A
collaboration also has a name.

Scenario: A scenario consists of e.g. messages, constraints
and violations. A scenario has a name.

Message: Two actors, sender and recipient, send and re-
ceive messages. An actor (or more precisely, a corresponding
class of the actor) must exist in the Ecore domain model.
Each message is defined as a reference to an operation of
the corresponding class of the actor on the receiving end,
i.e. the operation must exist on beforehand.

Constraint: A constraint is an invariant, which could be
cold (interruption, not to be confused with what is said
about interruptions below, which does not apply to every
message in the MSD). A constraint describes what must not
happen when the MSD is active and thus, it makes sense to
view constraints as a type of precondition.

Interruption: A cold invariant which happens after a se-
quence of messages. Unlike interruptions in a constraint, this
interruption does not apply to every message in the MSD,
just the one it is placed after. What happens is that a cold
violation occurs, i.e. the MSD becomes deactivated, when
the post conditions are not met.

Violation: Identical to an interruption, the only difference
being that the condition is in hot mode, i.e. will lead to a
termination of the simulation if the post conditions are not
met.

In addition, in order to execute the simulation, you need
a runtime configuration.

Runtime configuration: a model instructing ScenarioTools
to (i) import the SML specification, (ii) refer to the instance
model and (iii) map the actors in the SML specification with
the actors in the instance model.

At this stage in this design, we only consider the transfor-
mation into an SML specification. Particularly, the domain
model, the instance model and the runtime configuration
are created manually, as they will likely not change. The
only realistic possibilities for changing any of these models
is when one of the following occurs: There is an actor, or
one of its attributes or operations, which is added, renamed
or removed.

3. METHOD

This thesis adopts the methodology of design science re-
search. In this chapter, we introduce the methodology of

import "MetaModel.ecore"

system specification Specification {
domain Domain

define Environment as uncontrollable
define Controller as controllable
define Device as controllable

collaboration Collaboration{
static role Environment env
static role Controller ¢
static role Device d

requirement scenario R1 {
message env -> c.setMuteMode(true)
message strict requested ¢ -> d.setMuteMode(true)

}
}
}

Fig. 2.11. The structure of an SML specification containing one
collaboration with one requirement scenario.

design science research, the contextualization of design sci-
ence research and the threats to validity. We chose design
science research as we focus on the creation of a product, in
our case a transformation that can ameliorate the process of
detecting contradictions in requirement specifications, and
for establishing and evaluating the usability and feasibility
of this approach. Since we propose a method which is not
used in industry, we can not use a case study approach, for
instance.

3.1 Design science research

We will describe the concrete choices of our method, includ-
ing the method of evaluation, in this section.

Design science research studies use tools and techniques
to solve a problem while focusing on the evaluation of these
artifacts [Johannesson and Perjons 2014]. In our case, the
problem could be stated as "How do we transform con-
trolled natural language requirements into modal sequence
diagrams?" and the answer could be a transformation ap-
proach (a principle) or a transformation (an artifact).

A natural step in the design phase is to do an evalua-
tion, because we need to somehow establish the value of
the answer. The type of evaluation depends on the research
questions, so it would not make sense for instance to con-
duct interviews with practitioners or to do a questionnaire or
a survey of their attitudes towards model transformation of
requirements if they do not have the answers to our research
questions. Therefore, we do not consider a case study to be
applicable in our study, because the requirements engineers
would need to be familiar with, or to first adopt, the princi-
ple which we propose to fully be able to evaluate and assess
accurately its efficacy. Furthermore, an experiment could be
done e.g. in order to measure the efficiency in time units and
the degree of correctness in percentage of the requirements
engineers when specifying requirements in semi-formal no-
tation and a formal notation. The experiment could be com-
bined with qualitative interviews enquiring the opinions of
the requirement engineering regarding which language they
prefer. There would be a number of issues in setting up an
experiment like this. One problem would be the experience
of the requirement engineers. MSD is a formal notation and
requires training in order to be used. Likewise, if the CNLs
are new to the requirement engineers, this would also pose
a problem in that the data would be skewed and give us an
understanding of how a CNL is received among participants
with a limited background in using these CNLs. It is likely
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that the experiment would yield limited results for this rea-
son. A second problem would be to properly acquire a ran-
dom sample amenable to statistical inference, as including
requirement engineers from one organisation is not going to
be reflective for the entire industry. Indeed, if an organisa-
tion is to be involved, it is likely that the participants would
be asked by management to participate, posing a number of
ethical issues as well as skewing the results. On the other
hand, if we allow self-selection, it would lead to bias. The
environment in which the requirement engineers work could
be stressful and monitored by management, making partic-
ipants feel uncomfortable and therefore negatively impact
on the results. Another, related problem is how feasible it
is to acquire a sufficient number of participants to properly
draw a sound conclusion from the data set. A third problem
would be to avoid bias while conducting the interview, as
it is extremely important not to influence the requirement
engineers to give a particular answer. For instance, the re-
searcher should not indicate what he expects as an answer
from the interviewee. A fourth problem would be to keep
the validity intact. For instance, if a manager acting as a
gatekeeper asks to review the answers of each participant,
this should be known and agreed on by the interviewees.
It would still be questionable to share raw results without
first coding away details of the participant for confidential-
ity purposes, even if agreed, because the participant may be
pressured into accepting by management. Furthermore, if
requests are made to alter the raw results or the conclusions
drawn from the experiment, because a gatekeeper stakes his
approval on publishing the thesis on this, it will negatively
influence the research results.

Hevner et al. have described methods of evaluation in de-
sign science research [2004]. They organize these methods
into a classification with observational, analytical, experi-
mental, testing and descriptive. Scenarios and informed ar-
gument fall under descriptive methods. Descriptive methods
are used for instance to exemplify how a specific artifact is
used. We will use scenarios and informed argument as a way
to describe the limitations and benefits of this transforma-
tion. This is the only option that is left to us, because we
want to give the requirements and show the limitations and
benefits of this transformation. This is why we want to use
freely accessible requirements.

But the usefulness of the results in this study is still ap-
plicable to real business. We aim to select a set of require-
ments from the automotive industry. And of course this does
not mean that the requirements are going to be identical
to a specific project’s requirements. It means that the idea
— transformation of requirements into scenarios which are
used for play-out simulation — can be used in industry. As
such, we want to be able to demonstrate the artifact, this is
a key concern of this study. Furthermore, because the pur-
pose of this study is also to answer how reasonable is this
approach?, we might not be able to create a transformation
which is suitable to facilitate transformation of the require-
ments into modal sequence diagrams. If we find that it will
be too limited to be used in practice, then this is also a
useful outcome.

By examining the types of CNL requirements that the
transformation can handle, one can establish a notion of
quality in this transformation approach. That is why it is
appropriate to describe the applicable requirements, and the
limitations of the transformation approach.

To summarize, our evaluation method consists of the fol-
lowing approach:

—Step 1: Generate a simulation model.

—Step 2: Execute a simulation model in ScenarioTools.

—Step 3: Check the correctness of the simulation model
when executed in ScenarioTools and in comparison to the
handmade simulation models.

—Step 4: Describe the scenarios, how well they are handled
by the transformation, and identify where the problems
(if any) are.

Step 1: The transformation should be able to produce a
simulation model.

Step 2: The model is tried in the simulation environment
ScenarioTools. This will identify (all) syntax and (some) se-
mantic problems.

Step 3: The model is evaluated according to the execution
in ScenarioTools and in comparison to the handmade simu-
lation models. A scenario can be simulated if (and only if) it
can be specified in ScenarioTools. A scenario may be speci-
fied in ScenarioTools only if it adheres to play-out semantics,
i.e. it has a finite sequence of messages, it includes actors etc.
First and foremost, we must compare the generated simula-
tion model to the handmade one, to see if we are actually
able to specify a requirement at all. If we are unable to do so,
it is obviously impossible for the transformation to generate
a simulation model and thus the evaluation becomes irrel-
evant. Second, we can say that we are evaluating how the
handmade model is handled by ScenarioTools and then com-
paring the generated model to this expectation. A generated
model may however look different than a handmade model,
yet it might still produce the correct behaviour. Therefore,
we also endorse and carry out execution with ScenarioTools
as this is relatively easy to do. Naturally, the scenarios will
have to be described in detail so the reader can assess the
conceptualization of the problem.

Step 4: This is reported on in Section 6.

In this study, the main artifact is the model transforma-
tion into modal sequence diagrams. This artifact is a "situ-
ated implementation of artifact" [Gregor and Hevner 2013,
p. 342]. However, if we can somehow generalize the guiding
principle or provide comparisons to other works, the arti-
fact may be a "nascent design theory" [Gregor and Hevner
2013, p. 342]. There are other artifacts which are required
to answer the research questions such as the behaviour re-
quirements expressed in CNL (RQ1), the behaviour require-
ments expressed in SML (RQ2) and the controlled natural
language requirements transformed into SML (RQ3).

The construction of the transformation will follow Jones’
model [Wynn and Clarkson 2005]. This process model is
shown in Figure 3.1. The analysis step is about determining
the problem and the constraints on the solution. In order to
describe our constraints, we first go into the activities of de-
sign science research. We will do this in the next paragraphs.
The synthesis step is about picking one solution among a
set of alternatives. For this study, this means that we con-
sidered what solution would be most suitable based on the
constraints that we had. This also means that we considered
different alternative solutions to a problem. For instance, in
order to use a deterministic transformation approach, we
decided to specify requirements in controlled natural lan-
guage in order to limit the expressiveness. However, since
this restrictive syntax does not have all the information we
need, we decided to create a separate transformation and de-
fine additional information which requirements themselves
do not have. There were also different ways to transform
requirements, and we had to decide on which options we
thought was appropriate. The evaluation step is about eval-
uating the quality of the solution which we have described
previously in this section.

The methodology has been introduced and the method of
evaluation and construction have been outlined. We want to
provide more insights into the constraints and the choices we
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Fig. 3.1. Jones’ design process model [Wynn and Clarkson 2005,
p. 38].

have made in our study. Therefore, we describe the activi-
ties of design science research; these activities are grouped
into three cycles — relevance, design and rigor [Hevner and
Chatterjee 2010, p. 17].

The relevance cycle is about establishing the context,
identifying constraints on the solution and justifying the
construction of the design artifact. In our study, we have
chosen the automotive industry, which is especially sensi-
tive with regards to safety and where a mistake can result
in huge fines, life-and-death situations and loss of revenues
in a business there is a significant amount of competition.
Requirements, as we described in Section 2 may be poorly
communicated and misunderstood. If this is discovered early
in the process, we said this is going to be a huge improve-
ment as this will reduce waste. And, we stated that it will be
harder to apply changes the further into the process one is
in. Therefore, continuously being able to verify requirements
in this domain is important. However, a manual specifica-
tion of SML requirements is not a good approach in our
opinion. Then they can be put down in the wrong way and
give false positives. Such an error could evaporate the ben-
efits of using play-out simulation. Similarly, a probability-
based transformation approach would infer details of the
SML specification which are not provided by the require-
ments. The uncertainty is that we could be in one of those
special unlikely events which don’t happen very often, and
then we will get the wrong SML specification. This kind of
uncertainty is inappropriate in the domain of safety-critical
engineering. Especially if you are to verify a requirement
specification which is large and could include hundreds of
requirements, maybe even thousands. Then, you would be
hard-pressed to identify a single mistake in the specification
of the requirement simulation scenarios.

Constraints are therefore:

—Dbehaviour requirements should be from the automotive
industry

—a deterministic transformation (should convert any num-
ber of requirements in the same way)

—requirements should be expressed in controlled natural
languages

The rigor cycle is about drawing ideas from existing
knowledge, establishing appropriate selection of methods for
evaluating the artifact and aligning the research contribu-
tion with existing research. First, we read up on the existing
literature about ScenarioTools, model transformation ap-

proaches, model-driven requirements engineering with CNL,
message/live sequence charts and the general challenges of
model-driven engineering. We also read up on existing litera-
ture about design science research and decided on a method
of evaluation of the transformation.

The design cycle is about the construction of the design
artifact, using the knowledge gained from the rigor cycle
and the constraints placed on the design artifact by the rel-
evance cycle. Based on the constraints and the knowledge
we had, we began by expressing the requirements in SML,
to establish whether we were able to express this. Then, we
expressed the requirements in CNL. And finally we began
writing the transformation in Xtend. A detailed description
of the design, including the selection of behaviour require-
ments, controlled natural languages and writing the model
transformation and the evaluation is further described in
Section 4.

3.2 Threats to validity

Internal validity: We have defined a mapping definition
which helped us convert some of the requirements into com-
plete play-out scenarios. The transformation relies on two
things to be correct: the requirements are expressed in a spe-
cific way, with a certain format and the mapping definition
has to be correct and properly identify the target actors etc,
otherwise it will not produce correct output models. This is
mentioned in Section 4.

Construct validity: There is a formal theory behind MSDs
and we integrate this into the evaluation of the research
contribution, as we describe in sections 4.6 and 5.3. It is
thus believed that the method of evaluation makes sense for
establishing what the transformation can and can not do.

External validity: It is not possible to draw any inferential
conclusions based on this study because the population of
requirements is difficult to measure and cope with. The sheer
amount of requirements that exists today and the continuous
growth of requirements make such a generalization of results
unattainable. However, the principles could theoretically be
applied in different settings and projects, but we can’t know
and make generalized assumptions that it will work for ev-
ery type of project. If we did that, the results would not be
scientific nor would we be fair in our assessment. Rather,
we can only say what the transformation can and can not
do with the requirements in this study, which is pointed
out in Section 8.2. Since we publish the transformation on-
line *, there is a possibility for independent researchers to
acquire and to use the transformation on a different set of
behavioural requirements to research how well it works for
these behavioural requirements. Furthermore, we have se-
lected real requirements from the automotive industry in
order to strengthen the external validity of our test.

Conclusion validity: The results of this study depend on
the ability to express the requirements in CNL, SML and
the ability to create a transformation in Xtend all depends
on the background of the researcher. It could be that there
is a better way to convert some of the requirements, but this
is not achieved because of lack of experience. Therefore the
conclusion validity is low. The selection of requirements is
also skewed and a reason that the study is biased. Conve-
nience sampling was applied. There are thus many different
requirements excluded from this study. Our behaviour re-
quirements come from one domain, which can not account
for behaviour in different domains. Furthermore, our be-
haviour requirements do not account for the behaviour in all
vehicular systems. Our interpretation and understanding of

Lhttps://github.com/alexanderstyre/ConstraintDslToSml
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the requirements are threats to conclusion validity, because
it could have a negative impact on the results of this study.
Furthermore, our understanding of the CNLs and MSD is
also a threat to conclusion validity, because the results from
the transformation depend on the manual conversion of nat-
ural language behavioural requirements into CNL. Lastly,
because the transformation can be found online, there is a
possibility for researchers to get a copy of the transforma-
tion and review the results of this study by running the
transformation on our behavioural requirements.

Ethical issues and impact of the research: An increase in
automation could lead to a reduction of manual labour and
increase the effectiveness of the field, and eventually obsolete
the need for requirement engineers specializing in require-
ment validation. This could lead to a loss of job opportuni-
ties, which burdens employment agencies, state politicians
and society at large. Another consequence of this study is to
raise the awareness of simulation of requirements for valida-
tion purposes, which could lead to more organisations adopt-
ing this methodology and thereby increase the correctness
of requirement specifications in industry. Finally, another
consequence of this study is to bridge the gap for organisa-
tions to adopt formal methods in software engineering. This
could raise the bar for requirement engineers and software
engineers both in education and in industry to learn more
formal methods.

4. DESIGN

In this section, we introduce a more thorough conceptual
overview of the process of designing the solution. Firstly,
expressing the requirements in CNL. Secondly, the changes
made to the CNL grammars needed in order to provide
for such a specification and justifications for these changes.
Thirdly, for conducting the evaluation of the transforma-
tion, we describe the process of expressing the requirements
in SML.

4.1 Conceptual overview of the design process

A conceptual overview of realizing the model transforma-
tion of this study is demonstrated in Figure 4.1. The first
step is to document the requirements in a CNL (RQ1). The
second step is to use a model transformation approach to de-
rive an incomplete model based on the information which is
stored by the requirements. The third step is to add domain-
specific information to derive a complete model. Finally, the
complete model is evaluated to establish the quality of the
model transformation (RQ3).

4.2  Selecting behaviour requirements

In this study, we have used behaviour requirements from
the automotive industry to demonstrate the results of our
study. The behaviour requirements were selected based on
availability, having been published in an online, freely ac-
cessible medium. They were furthermore also published by
reputable agents in the field, one being a manufacturer of
cars (Daimler-Chrysler) and the other being a council of se-
curity experts (organised under the UN).

The requirements are found in Appendix A. In this study,
requirements R1-R7 refer to requirements a-g in Figure A.1
while requirements R8-R16 refer to features 1-7 and use
cases (UCs) 1-2 in Section A.2.

4.3 Selecting CNLs

In this study, the following controlled natural lan-
guages were used: the state machine language defined by

Fig. 4.1. Overview of how to apply a model transformation ap-
proach to transform a CNL requirements specification into a com-
plete platform-independent model.
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ID RO1: While state: waiting, the system: system shall action: se-
lect parameter: digit quantity: 1 within time: 5 s before system:
system starts state: dialling.

Fig. 4.2. A requirement expressed in CNL Marko.

trigger = if event "waiting" with key ("dial_initiated", "value")
== 0 occurs condition = event "dialling" with key ("data",
"value") == key ("dial", "digit") occurs within 5 seconds.

Fig. 4.3. A requirement expressed in CNL Vierhauser.

Marko et al. [2015] and the constraint language defined by
Vierhauser et al. [2015].

The CNL grammars were selected based on availability
and having been published scientifically. Furthermore, they
seemed to support the expression of the requirements in this
study.

Marko: Marko et al. used a state-based language. This
language was used in order to specify conditions on what
must happen depending on what state a system is in. An
example of a requirement expressed in the grammar used
by Marko et al., henceforth referred to as CNL Marko, is
seen in Figure 4.2.

Vierhauser: Vierhauser et al. used a constraint-based lan-
guage. This language was used in order to specify temporal
and events-with-data constraints to express what must hap-
pen in a system. An example of a requirement expressed in
the grammar used by Vierhauser et al., henceforth referred
to as CNL Vierhauser, is seen in Figure 4.3.

CNL Marko and CNL Vierhauser are rather different in
terms of what they can express. While they both can express
requirements for safety-critical systems, their approach in
doing so differs significantly in terms of the concepts they
have used. One is the state-based approach adopted in CNL
Marko, i.e. the system is modelled as a set of states with a
set of transitions between them and the other is the event-
based approach adopted in CNL Vierhauser, i.e. the system
is modelled as a set of trigger events with a set of adjacent
future and past occurrences of events which may contain
data attachments and invariants on data. Please remem-
ber, however, from Section 2, that the distinction between a
state-based and an event-based specification approach is not
relevant for this study. Particularly, we said that MSDs are
a form of MSCs, which can also be expressed in automaton
models. There is thus no real barrier to express MSDs with
either approach. This is in line with the research study con-
ducted by Liebel and Tichy, who performed an experiment
with a sample of requirements which they found to be pos-
sible to model with either a state-based or an event-based
approach [2015]. Of course, these results are only an indi-
cation and not necessarily generalizable to other settings.
However, we are of the opinion that this study gives us a ra-
tional and logical explanation as to why we should not prefer
one approach over the other—that is, the two CNLs in our
study are judged solely based on their ability to express the
requirements.

The essence of play-out simulation is that it depends on
being able to exactly specify the expected behaviour of a
system. It is thus a formal language. A CNL, on the other
hand, is a language which mainly contains a set of keywords
and operators which does suit the need of expressing re-
quirements in order to reduce ambiguity in specifications,
but does not have a framework that defines the executable
semantics of a requirement.

The CNLs are found in Appendix B.

ID RO1_ acceleration: While state: standstill and if parameter:
clutch is constant: disengaged, the system: transmission shall
action: select parameter: gear quantity: 1 within time: 1 s before
system: transmission starts state: acceleration.

Fig. 4.4. Requirement R1 expressed in CNL Marko.

trigger = if event "clutch_ disengaged" with key ("transmission",
"clutch__disengaged") == true occurs condition = future events
"gear_selected" with key ("transmission", "active gear") ==
1, "acceleration_phase" with key ("transmission", "accelera-
tion_phase") == true do occur within 1 seconds.

Fig. 4.5. Requirement R1 is expressed in CNL Vierhauser.

4.4 Realizing the CNL grammars in Xtext

There is a conceptual overview of the platform in Section 2.5.
In this section, we describe how we went about realizing the
CNLs in Xtext. For CNL Marko, we had access to a copy of
their Xtext project, so no realization process was performed.
For CNL Vierhauser, however, we did not have access to
such a project and we therefore decide to realize the gram-
mar of CNL Vierhauser in Xtext based on their description
of their grammar in the report by Vierhauser et al. [2015].
CNL Vierhauser was realized as follows: First, we created an
Xtext grammar project in EMF (having installed the Xtext
SDK plugin from the Eclipse Marketplace) and then a de-
fault (unrelated) grammar was given. We then progressively
defined (and refined) until the grammar was fully realized
in accordance with the paper by Vierhauser et al. Further-
more, we attempted to specify the example requirements
that were given in that paper with success. A revision of
the original CNL Vierhauser was made, which we describe
in the next section, and that we give the name of "Revised
CNL Vierhauser".

4.5 Expressing the requirements in CNL

Since the behaviour requirements were expressed in natural
language, we needed to express the requirements in CNL.
This is done by first expressing the grammars of a CNL in
Xtext, as we described in Section 4.4 and then generating a
model editor in EMF. Then, we start an instance of Eclipse
and load the model. Then, we are able to create a new file
where we can express requirements in the given CNL.

Based on our understanding of the controlled natural lan-
guage and the requirement, we specified the requirement
how we thought the requirement should be expressed in
CNL. Based on this approach, we found that the first re-
quirement from the WLTP gear shift requirements should
look like that in Figures 4.4 and 4.5.

The requirements in CNL are described in Section 5.2.

A couple of changes were needed in order to fully express
the WLTP gear shift requirements in CNL Vierhauser. The
revised grammar can be found in Section C.3. These changes
were:

Ability to express conditions. Examples:
future events A, B do not occur
future events A with a or b, B do occur
future events A with a and b, B do occur
Ability to express multiple occurrences of events with data.

Example: future events eventl with dataiteml, event2
with dataitem2 do occur

Ability to express events with no restriction on time. Exam-
ple: future events A, B do occur
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Ability to express addition and subtraction of data items.
Example: future events A with a + 1, B with b - 1 do
occur

In addition, changes were performed to make the distinc-
tion between past and future occurrences more clear.

Examples:
future event A occurs

future events A, B do occur
past event B has occurred
past events A, B, C have occurred

Changes were also made to make the expression of cold
and hot events possible.

Examples:
future event A may sometimes occur (cold)

future events A, B may sometimes not occur
future event B must always occur
future events A, B, C must sometimes not occur

The interpretation of "may sometimes" is that it is en-
tirely possible to occur, but not enforced, i.e. it does not
necessarily follow from a sequence of precedent events that
this must occur every time. However, it is required that it
happens at least once. Note that trigger events are always
considered to be in cold mode.

Multiple trigger events were also added to make the dis-
tinction between precedent events and antecedent events,
something which was needed in order to properly handle
the timing of events in the transformation.

Examples:
if A AND B occurs then future event B may occur
if A AND B AND C occurs future events D, E must occur

Currently, only ’AND’ is supported. It is of course not
possible to transform past to future constraints with multi-
ple trigger events. Instead a past constraint will always be
transformed into a future constraint with one (and only one)
trigger event.

4.6 Expressing the requirements in SML

ScenarioTools comes with an editor for Scenario Markup
Language (SML). In this study, this editor was used to spec-
ify play-out scenarios. To execute the scenarios, you need to
define a number of models, which we explain in Section 2.6.

Like we saw in Figure 2.4, MSDs can be expressed in au-
tomatons. A requirement can be expressed in an MSD if
(and only if) it can be expressed in a deterministic Co-Biichi
automaton. Figure 4.6 shows the first WLTP gear shift re-
quirement expressed in an automaton model. A description
follows:

State 1. Requirement Scenario Deactivated. The state is
final, because a scenario does not need to become active.
Self-transition M \ {disengage clutch} is omitted from this
figure.

State 2. First Message. The state is final, i.e. if nothing
else happens, the scenario is fulfilled, because the next mes-
sage is optional, i.e. in cold mode. The transition M \ {se-
lect_gear(1)} from State 2 to State 1 is omitted in the figure.

State 3. Second Message + Start Clock. The state is final,
because the driver does not need to accelerate after having
selected the first gear. For instance, the driver might want to
select neutral gear. In that case, the scenario is deactivated
(the transition M \ {accelerate} from State 3 to State 1 is
omitted in the figure).

States 4-6. The Third Message is received. The driver ac-
celerates. The fourth state is not final, because there is a

Requirement Scenario Deactivated

disengage_clutch

First Message

select_gear(1)

Second Message + Start Clock

accelerate

€ [clock > 1]

Third Message

Violation
€ [clock <=1]

Success

Fig. 4.6. An automaton showing the first requirement from the
WLTP.

time condition involved. Either the transition to State 5
(Success) or State 6 (Violation) must be triggered. State
5 is final, i.e. accepting and State 6 is non-accepting. To en-
ter State 5, the acceleration must have occurred within one
second after shifting to the first gear, i.e. after having en-
tered State 3. From State 5, the scenario is deactivated (the
transition e to State 1 is omitted in the figure).

Based on the automaton depicted in Figure 4.6, we can de-
rive how the scenario should be expressed. That is, it follows
that the MSD (in SML) should look like that of Figure 4.7.

Firstly, the scenario assumes the existence of the envi-
ronment and system actors. However, additional mapping
and/or further breakdown might be needed to properly re-
flect the actual simulation model.

Secondly, environment must be uncontrollable for the
messages to be activated in the console.
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requirement scenario R1 {

message environment -> system . setClutchDisengaged (true)
message requested environment -> system . selectGear (1)

var Elnt clock = 0

message requested environment -> system . setAccPhase (true)
violation if [ clock > 1]

}

Fig. 4.7. Requirement R1 expressed in SML.

Thirdly, all messages are requested (but not strictly, i.e.
in hot mode). The first message is not allowed to specified as
requested, however it is still viewed as being requested; a sce-
nario can only become activated when its first message has
occurred, hence the first message is requested. ScenarioTools
is clever enough to know that a requested message should
be enabled in the console, that is, there is no requirement
to have one more scenario with the same messages without
being marked as requested.

The requirements in SML are described in Section 5.3.

4.7 Writing the model transformation

Due to time limitation, we decided to go with the trans-
formation of requirements expressed in revised CNL Vier-
hauser to an SML specification. In this section, we describe
the conceptual overview of the model transformation.

Figure 4.8 shows that the CNL requirements are trans-
formed in two steps into a simulation model. The first step
is to derive the basic sequence of interaction between two
quasi-actors, one being named environment and the other
being named system. What happens is that the require-
ments are transformed into an incomplete SML specifica-
tion where these quasi-actors communicate with each other,
specifying what is communicated and when the interaction
may occur, as well as the constraints on the interaction, i.e.
the post conditions (what must hold after a given message
has been communicated). However, because everything is
derived from the requirements, it is not possible (yet) to
simulate the output model. That is why we need to create
a mapping between the quasi-actors and actual actors in
the complete transformation. In the second step, we iterate
through each construct in the incomplete model and link it
to an existing actor, domain, operation or concept if present
in the mapping definition.

Initial transformation: The initial transformation tries to
achieve one thing and is guided by one question: What in-
formation can we derive from the requirements themselves?

Complete transformation: Because the initial transforma-
tion is unable to derive everything needed in order to simu-
late the requirements with ScenarioTools, we write another
transformation, which is guided by one question: What in-
formation do we need to add to the incomplete model?. This
leads to a mapping definition.

Mapping definition: The mapping definition consists of
the information which is required to facilitate simulation in
ScenarioTools.

The initial and the complete transformations are de-
scribed with more detail in Section 5.4.

5. ARTIFACT
5.1 CNL grammars expressed in Xtext

Marko: The grammar of CNL Marko is implemented in
Xtext by Marko et al [2015]. To acquire an official copy of
this language, please contact the authors of that study. We
do not include it in the report as to encourage readers to
acquire an official copy of the language.

CNL
require-
ments

Initial
transfor-
mation

Complete
transfor-
mation

Play-out
simulation

Fig. 4.8. How the behaviour requirements expressed in CNL get
transformed into play-out scenarios.

Vierhauser: CNL Vierhauser was implemented in Xtext
and can be found in Section C.

5.2 Requirements expressed in CNL

Figure 4.4 shows the first requirement from the WLTP gear
shift requirements expressed in CNL Marko.

Figure 4.5 shows the first requirement from the WLTP
gear shift requirements expressed in revised CNL Vier-
hauser.

The remaining WLTP gear shift and DC instrument clus-
ter requirements expressed in CNL can be found in Sec-
tion D.

5.3 Requirements expressed in SML

Figure 4.7 shows the first requirement from the WLTP gear
shift requirements expressed in SML.
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import "MMA .ecore"

system specification Specification {

domain Domain

define System as controllable

define Environment as uncontrollable

collaboration Collaboration {

static role Environment environment

static role Environment system

requirement scenario R1 {

message environment -> system.clutch_ disengaged ( true )
violation if [ clutch_ disengaged != true |

message environment -> system.gear_selected ( 1)
violation if [ active_gear != 1]

var Elnt clock = 0

message strict requested system -> system.acceleration_phase (
true )

violation if [ acceleration_ phase != true |

violation if [ clock >= 1]

}

}

}

Fig. 5.1. Initial play-out scenario for R1.

The remaining WLTP gear shift and DC instrument clus-
ter requirements expressed in SML can be found in Sec-
tion E.

5.4 Model transformation expressed in Xtend

For the evaluation of the transformation, we refer to Sec-
tion 6.

Initial transformation: The transformation works mainly
in terms of future constraints, i.e. constraints with future
occurrences. A past constraint is transformed into a future
constraint. For instance, the constraint A then B, C, D, E
have occurred is semantically equal to the constraint B then
C, D, E, A occur (We group B, C, D, E as an ordered se-
quence of events, take B as our first event in the future
constraint and lastly append A as the last occurring event).

The future constraints are transformed in the following
way:

One constraint corresponds to exactly one scenario of type
REQUIREMENT, i.e. a requirement scenario, in the initial
transformation. The name of a scenario is automatically gen-
erated by the transformation, e.g. a scenario with at least
one constraint will have at least one requirement scenario
with the name "R1". We will have messages between two
quasi-actors, as we describe in Section 4.7. ScenarioTools can
not use this information to simulate requirements. We must
provide domain-specific information, such as actors, opera-
tions and parameter types. Therefore, we suggest another
transformation can provide domain-specific information.

The outcome of the intial transformation is an initial play-
out scenario. This is incomplete and can not be simulated by
ScenarioTools. The initial play-out scenario for R1 is shown
in Figure 5.1.

Complete transformation: The complete transformation
takes the incomplete play-out scenario given by the initial
transformation and a mapping definition to derive a com-
plete play-out scenario.

Mapping definition: Figure 5.2 shows the mapping defi-
nition for the first requirement from the WLTP gear shift
requirements. The mapping definition is defined once and
used for all requirements.

The implementation of the model transformation can be
found in Section F.

domain transmission {

import__uri = "Transmission.ecore"
roles {

role GearSelector gs as controllable,
role Environment env as uncontrollable,
role GearController gc as controllable

}

}

mapping{

messages {

message ’clutch_ disengaged’ from ’environment’ to env ->
gs.setClutchDisengaged

message ’'clutch_disengaged’ from
gs.setClutchDisengaged

message ’gear_selected’ from ’environment’ to env ->
ge.set ActiveGear

message 'gear_selected’ from ’system’ to gs -> gc.setActiveGear
message 'gearshift’ from ’environment’ to env -> gc.set ActiveGear
message 'gearshift’ from ’system’ to gs -> gc.setActiveGear
message ’acceleration_ phase’ from ’environment’ to env ->
gs.set AccPhase

message ’acceleration_ phase’ from ’system’ to gs ->
gs.set AccPhase

}

parameters {

parameter ’clutch_ disengaged’ to gs.clutchDisengaged
parameter ’active_ gear’ to gc.activeGear

parameter ’acceleration_ phase’ to gs.accPhase

}

kinds {

kind EBoolean ’selected__acceleration_ phase’

}

}

'system’  to gs ->

Fig. 5.2. Mapping definition for R1.

6. EVALUATION

In this chapter, we will report on our evaluation. We first
present our self-assessed understanding of the requirements
in this study. Then, we discuss the expressiveness of CNL
Marko, CNL Vierhauser (standard and revised) and MSD.
Finally, we discuss the suitability of our transformation to
transform the CNL requirements into MSD.

6.1 Material

The evaluation is based on the material referenced in Sec-
tion 4 and 5.

We introduced the requirement numbering in Section 4.2.
We would also like to clarify that R2 is essentially three
requirements in one and for the purpose of keeping track of
these three requirements, each sub-requirement is given a
suffix a, b, ¢ and explained below. Requirement R2a refers
to "Gears shall not be skipped during acceleration phases',
R2b refers to "Gears used during accelerations [...] must be
used for a period of at least three seconds" and R2c refers
to "Gears used during [...] decelerations must be used for a
period of at least three seconds" [United Nations Economic
and Social Council 2013, p. 72].

Furthermore, a few requirements were skipped:

—Part of requirement R1 was skipped, because we argue
that the second sentence stating that we should be stand-
ing still if the speed is less than 1 KM /h was a clarification
and not a requirement. As such, this sentence was skipped
from our evaluation.

—We argue that, apart from the condition of being in an
acceleration or a deceleration phase, requirement R2c is
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Table II. Summary of the evaluation of the expressed and transformed requirements in this study.
Requirement RQ1IM RQ1V RQ1 RV RQ 2 RQ 3
R1 N N Y Y Y
R2 Y N Y Y N
R3 N/A N/A N/A N/A N/A
R4 Y N Y Y Y
R5 N N Y Y Y
R6 N N N/A N/A N/A
R7 N N N Y N/A
R8 Y Y Y Y Y
R9 Y Y Y Y Y
R10 Y Y Y Y Y
R11 Y Y Y Y Y
R12 Y Y Y Y Y
R13 Y Y Y Y Y
R14 Y Y Y Y Y
R15 N/A N/A N/A N/A N/A
R16 N/A N/A N/A N/A N/A

A summary of the requirements in this study.

identical to what is already stated in requirement R2b.
Therefore, we treat requirement R2c in the same way as
requirement R2b.

—Requirement R3 was skipped, because it states that some-
thing may happen. We argue this is a clarification of
behaviour instead of a requirement. Based on our mo-
tivation for expressing R1 and R2 in CNL Marko and
CNL Vierhauser, we believe that it is possible to express
this requirement in revised CNL Vierhauser. Because we
can not distinguish between universal and mandatory be-
haviour in CNL Vierhauser and CNL Marko, we can not
express this requirement in respective CNL. We further-
more believe that it is possible to express this requirement
in MSD, for the same reason as in R1 and R2. We also
think that our transformation will transform this require-
ment into a complete play-out scenario correctly.

—We can say that for the second part of requirement R7,
we do not need to re-check the sequences because this
is covered by other scenarios. If a violation is going to
happen, it will be detected by the other scenarios (R1-
R6).

—We also present our evaluation of one requirement in the
Daimler-Chrysler instrument cluster requirement set. We
argue that requirements R9-R14 are variants of require-
ment R8. They do not give additional requirements, which
we do not already handle in the WLTP requirement set.
For instance, requirement R9 introduces timing of events.
We addressed this concern in the WLTP requirement set.

—We argue that requirement R15 is identical to what is
already stated in requirements R9-R10.

—We argue that requirement R16 is identical to what is
already stated in requirement R12.

6.2 Self-assessed understanding of the requirements

‘We think that most of the requirements were unambiguously
specified and it was easy to understand the intention and
meaning of the requirements in this study. However, there
were some exceptions:

R1 says "one second before" [United Nations Economic
and Social Council 2013, p. 72] and some may argue that this
is ambiguously specified. This could be interpreted in two
ways, either as exact comparison i.e. it occurs exactly one
second before or as similar comparison, i.e. it occurs within
one second before. We interpreted the requirement as the
latter, since we are talking about behaviour and we argue
that it is possible to satisfy this requirement if we shift the

gear within one second. As for what the requirement really
says, we bear in mind that the WLTP requirement set talks
about seconds as integers, and thus, it would seem to favour
the first and the second interpretation of this requirement.
The reasoning behind this requirement is that we have the
first gear being selected at most one second before entering
the acceleration phase.

R7 was not easy to understand because we do not think
it was unambiguously specified. Instead of saying "a lower
gear is required at a higher vehicle speed" [United Nations
Economic and Social Council 2013, p. 73], we think it would
have been better if it said "while the speed is increasing". In
this case, we can identify that there is a parameter named
speed (or vehicle speed) that is increasing, whereas "higher
vehicle speed" is possibly misunderstood as a categorization
of speed (lower, low, medium, high, higher). Even there is a
possibility to interpret this in a different way. Does it mean
that a lower gear is required to accelerate and get an even
higher vehicle speed? However, by reading the whole require-
ment, we could understand the intention and think that we
understood requirement.

6.3 Summary

A description of how well the requirements were expressed
in CNL Marko, CNL Vierhauser, revised CNL Vierhauser
and MSD and then transformed into MSD by the transfor-
mation is found in Table II. The table uses the following
characteristics:

RQ1: No — Not expressed in CNL, because it was not
possible, Yes — Expressed and represents the information
of the requirement in natural language correctly.

RQ2: No — Not expressed in MSD, because it was not
possible, Yes — Expressed, represents the information of the
requirement in natural language and interpreted correctly by
ScenarioTools.

RQ3: No — Not transformed correctly, Yes — Trans-
formed, represents the information of the requirement in
natural language and interpreted correctly by ScenarioTools.

6.4 Expressing the requirements in CNL Marko

We could express some of the requirements of the WLTP
requirement set in CNL Marko. We could express all of the
requirements of the Daimler-Chrysler instrument cluster re-
quirement set in CNL Marko.

We argue that it is not possible to express requirement
R1 in CNL Marko. If you read the requirement, it says that
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every time we stand still and the first gear has been selected,
we have to start acceleration within one second, if the clutch
is disengaged. However, this requirement is strictly not true.
There may be instances where you would like to engage the
clutch or even turn off the engine for example. That is not
what the requirement in NL says. It does not follow that,
based on disengaging the clutch, that you have to switch to
the first gear.

Another way to specify requirement R1 in CNL Marko
is "if we enter the acceleration phase, the system shall not
switch gear after 1 second". This is semantically equivalent
to it is forbidden to switch gear after 1 seconds. While this
is true, it does not say anything about what the user must
do. The user can simply neglect to switch gear at all and
still satisfy the requirement. It captures only part of the
information in the required behaviour. If the user selects the
first gear after 1 second, then it is a violation, but it does
not follow from the CNL requirement that the user needs to
select the first gear at all. Simply saying that the user must
not do something is not the same as saying that the user
must do something.

We argue that requirement R2a is possible to express in
CNL Marko. It is slightly harder to take into account this
negated behaviour in CNL Marko. We can say that the gear
shall not be selected, but we have to introduce a new variable
and say that this new variable is unequal (not equal) to i +
1. This is a slightly more complicated specification than for
revised CNL Vierhauser, where we could simply state that
the active gear is not equal to ¢ & 1 without introducing a
different variable.

We argue that it is possible to express requirement R2b
in CNL Marko. In CNL Marko, we say that whenever we
go into an acceleration phase and the gear is changed, we
can not change gear to another gear for at least 3 seconds,
which is true. This was slightly more tricky to express than
in revised CNL Vierhauser, because we have to introduce
another variable and the possibility to simply state "system:
transmission shall action: use parameter: gear for at least
time: 3 s" is a serious limitation of CNL Marko. The se-
mantics of this specification is ambiguous. Does this mean
that we shall use the same gear for at least three seconds,
or does it mean that we shall repeat the action of selecting
any gear for three seconds? It is thus less formal than revised
CNL Vierhauser or even the "right" CNL Marko in that sense
and leaves room for interpretation. There is another concern
with CNL Marko. We can express the requirement in a simi-
lar way as we expressed the requirement in CNL Vierhauser,
but in CNL Marko we talk about states and actions, which
do not allow us to talk about timing of events as we can
do with CNL Vierhauser. Here we want to talk about not
switching a gear until after three seconds. This is both an
action (CNL Marko) and event (CNL Vierhauser). In CNL
Marko, we have no ability to express an action as a pre-
condition, instead we must use parameters and states. In
CNL Vierhauser, we have the ability to express events and
events with data as pre-conditions and we argue that this
can be viewed as one of the benefits of using revised CNL
Vierhauser instead of CNL Marko to express this behaviour
requirement.

We argue that it is possible to express requirement R4 in
CNL Marko. In CNL Marko, we simply state if there is a
transition between an acceleration phase and an deceleration
phase (with an intermittent state acceleration_stop), then
we can not change gear.

We argue that it is not possible to express requirement R5
in CNL Marko. In CNL Marko, we express this constraint
directly on the requirement. We say that a gear is not al-
lowed to change from i to i - 1 and from i - 1 to i within

five seconds. This is true. But it is also unhelpful. Consider
the sequence (¢;, g;) where t¢; is the time and g¢; is the gear
value): (1, 1), (2, 2), (3, 3), (5, 1). It is ambiguous if the
requirement captured this scenario as a violation correctly.
When we change the gear a second time (3, 3), we will not
have violated the scenario. The requirement says this is not
a violation. But when we change the gear again (5, 1), it
is not clear if the requirement in CNL has captured this
violation. We reason that (1, 1), (2, 2), (3, 3), (5, 1) is a
violation according to the requirement in NL, because ¢ = 1
within five seconds, but not according to the CNL require-
ment, because (2, 2) is the second gear shift, and it is am-
biguous whether the subsequent gearshifts (3, 3) and (5, 1)
are handled by the requirement with only two variables. An
alternative could be to specify multiple requirements, each
dealing with a sequence between one and five gearshifts, but
this is impractical.

We argue that it is not possible to express requirement R6
in CNL Marko. The first part of the requirement is compara-
ble to requirement R5. This means that we can not express
this requirement in CNL Marko.

We argue that it is not possible to express requirement R7
in CNL Marko. In CNL Marko, we can express the constraint
that the speed should be higher than the previous speed for
at least two seconds. But consider this sequence (ti, ¢i, S;)
where ¢; is the time, g; is the gear value and s; is the speed:
(1, 1, 30), (2, 2, 35), (3, 2, 40), (4, 1, 35). What is the
previous speed and speed in this sequence? According to
the requirement, it is all of them. But in CNL Marko, we
have only one speed and previous speed. Which one do we
select? Is it 307 357 407 357 We do not know.

We argue that requirement R8 can be expressed in CNL
Marko. As we do not distinguish between hot and cold
events, i.e. we assume that all events are in hot mode, the
CNLs are able to express this requirement. Furthermore, we
think it is trivial to express this requirement in CNL Marko.

In summary, the main limitations of CNL Marko are that:

—it is not possible to identify the person or system who
initiates the interaction, e.g. the user performs an ac-
tion. Rather, the language describes that a parameter has
changed or that a state is triggered. In MSD, we use actors
to identify who initiates and responds to interaction.

—it is not possible to describe multimodal behaviour, i.e. to
distinguish between mandatory and optional behaviour.
Instead every action is described as mandatory. In MSD,
we can describe multimodal behaviour.

—it is ambiguous with respect to how the binding of multiple
variables are to be interpreted. If we take a scenario with
two gearshifts during a period of five seconds, we have two
variables, one for each gear shift, e.g. in requirement R5.
When we first make a gear shift, we can store it in the
first variable. We call the value of the first gearshift i. But
if the second gear shift is not i - 1, and it happens after
two seconds, we satisfy the requirement. The problem is,
how do we handle a third gear shift, which could occur
between three and five seconds after the first gear shift?
Since the requirement is satisfied, it would not be possible
to detect a violation if indeed a third gearshift is i - 1.
One workaround solution would be to specify five different
scenarios to describe the behaviour of two, three, four, five
and six gear shifts, respectively. This is impractical.

6.5 Expressing the requirements in CNL Vierhauser

We could not express any requirement of the WLTP require-
ment set in CNL Vierhauser. We could express all of the
requirements of the Daimler-Chrysler instrument cluster re-
quirement set in CNL Vierhauser.
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We argue that it is not possible to express requirement
R1 in CNL Vierhauser, because it does not support multiple
trigger events and the distinction between mandatory and
optional behaviour. We need to say that you may sometimes
enter an acceleration phase within one second after disen-
gaging the clutch and selecting the first gear, because we
do not want to enforce the user to enter acceleration phase
when the first gear is selected. Another way we could ex-
press requirement R1 in CNL Vierhauser is using past occur-
rences, e.g. "if acceleration_ phase then clutch_ disengaged,
first_ gear_ shift must have occurred previously in the last 1
seconds". However, this is also incorrect because requirement
R1 says "with the clutch disengaged" [United Nations Eco-
nomic and Social Council 2013, p. 72|, not that the events
clutch_disengaged and first_ gearshift happen within one
second before acceleration__phase. We could disengage the
clutch at any time. Also, we do not think that using past
occurrences is a good approach to specify requirements if
we aim to transform them into MSD. MSD is not capable of
expressing that if some events occur, then some other events
have occurred previously, as far as we know. Instead, we say
that if some events occur, then some other events will occur.
Therefore, we would prefer to use only future occurrences for
expressing requirements in CNL Vierhauser.

We argue that requirement R2a is not possible to express
in CNL Vierhauser because you can not express addition
and it also says that whenever you enter acceleration phase,
you must change gear.

We argue that it is not possible to express requirement
R2b in CNL Vierhauser because it says that whenever you
enter acceleration phase, you have to switch gear. This does
not capture the requirement.

We argue that it is not possible to express requirement R4
in CNL Vierhauser because we can not negate a sequence.

We argue that it is not possible to express requirement
R5 in CNL Vierhauser, because it does not allow the spec-
ification of arithmetic expressions and negated sequences.
The violation of never changing gear to a gear less than the
minimum gear can be expressed in a data constraint which
would say that "any gear is changed such that the gear is
above the minimum possible gear". We have seen an exam-
ple of a data constraint in Section D.3, where we say that if
the speed is less than 1 km/h, then we are standing still.

We argue that it is not possible to express requirement
R6 in CNL Vierhauser. The first part of the requirement
is comparable to requirement R5. This means that we can
not express this requirement in CNL Vierhauser. The engine
speed does not drop below the minimum possible engine
speed is possible to express with a data constraint, similar
to our discussion of specifying requirement R5.

We argue that it is not possible to express requirement
R7 in CNL Vierhauser, because we cannot express multiple
events with data. Since this requirement cannot be expressed
with a single event, we need to use multiple events.

We argue that requirement R8 can be expressed in CNL
Vierhauser. As we do not distinguish between hot and cold
events, i.e. we assume that all events are in hot mode, the
CNL is able to express the requirement. Furthermore, we
think it is trivial to express this requirement in CNL Vier-
hauser.

In summary, the main limitations of CNL Vierhauser are
that:

—it is not possible to identify the person or system who
initiates the interaction, e.g. the user performs an ac-
tion. Rather, the language describes that a parameter has
changed or that a state is triggered. In MSD, we use actors
to identify who initiates and responds to interaction.

—it is not possible to describe multimodal behaviour, i.e. to
distinguish between mandatory and optional behaviour.
Instead every action is described as mandatory. In MSD,
we can describe multimodal behaviour.

—it is not possible to specify basic arithmetical expressions,
e.g. ¢+ 1 in CNL Vierhauser.

—1it is not possible to negate sequences of events.

—it is not possible to distinguish between events and con-
straints in CNL Vierhauser, which would be useful to
model which events must not occur during an event se-
quence. We could furthermore use constraints to specify
which events will interrupt a sequence if they occur in a
negated event sequence. However, this would drastically
change the semantics of CNL Vierhauser, since such con-
straints would be a whole new construct of CNL Vier-
hauser. Furthermore, CNL Vierhauser is a language for
modelling constraints on a sequence of events. Constraints
on constraints on sequence of events is a whole new lan-
guage which would not correspond with the semantics of
CNL Vierhauser.

6.6 Expressing the requirements in revised CNL
Vierhauser

We could express some of the WLTP gear shift require-
ments in revised CNL Vierhauser. We could express all of
the Daimler-Chrysler instrument cluster requirements in re-
vised CNL Vierhauser. Below we have a discussion on each
one of the requirements:

We argue that it is possible to express requirement R1
in revised CNL Vierhauser. Because we changed CNL Vier-
hauser to allow multiple trigger events and distinguish be-
tween mandatory and optional behaviour, we can say that
you may sometimes enter acceleration phase within one sec-
ond after disengaging the clutch and selecting the first gear.
While this is true, it still leaves room for interpretation of
what happens if we decide to first select the first gear and
then disengage the clutch. In that case, we have not com-
pletely captured the behaviour. However, we still feel that
the captured CNL requirement is reasonable and has par-
tially captured the intended behaviour. Since the interaction
is existential, i.e. you must have switched gear at most one
second before beginning acceleration phase and this must
happen at least once, it is believed that revised CNL Vier-
hauser is able to express this requirement correctly.

We argue that requirement R2a is possible to express in
revised CNL Vierhauser. Because revised CNL Vierhauser
makes a distinction between mandatory and optional be-
haviour and supports arithmetic expressions and negated
sequences, we can now specify that a gear may sometimes
change and when it does, we must never change gear if the
selected gear is not equal to the previous gear i + 1, because
this is a violation of the scenario. We read "may sometimes
not occur" as a negation in cold mode (existential mode),
this is the same as asserting that something does not exist.

We argue that it is possible to express requirement R2b
in revised CNL Vierhauser, because we may say that if we
enter acceleration phase and the gear is changed, then we
must never change to another gear if there is less than 3
seconds since the last time the gear has changed.

We argue that it is possible to express requirement R4
in revised CNL Vierhauser, because we may use a negated
sequence in cold mode to specify that we may never stop
acceleration, change gear and then go into deceleration.

We argue that it is possible to express requirement R5
in revised CNL Vierhauser, because we may say that if we
change gear to i, then change the gear to ¢ + 1 and change
the gear to i, if this happens in less than five seconds, we
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have violated the scenario. The violation of never changing
gear to a gear less than the minimum gear can be expressed
in a data constraint, which is similar to our discussion on
specifying requirement R5 for CNL Vierhauser.

We argue that it is possible to express requirement R6 in
CNL Vierhauser. The first part of the requirement is compa-
rable to requirement R5. This means that we can express this
requirement in revised CNL Vierhauser. The second part of
this requirement is a bit more tricky and requires specifi-
cation of negation of limited recurring behaviour. The CNL
does not allow for the expression of such recurring behaviour
in a straight forward way. We could theoretically state that
if we enter the extra high speed phase, change the gear to i,
then i - 1 and change the gear to i, in 3 seconds and repeat
this statement three times, then the scenario is violated.
However, we would need to specify that for low, medium and
high speed cycle as well, making it very inefficient. We argue
that it is possible, but impractical to specify requirement R6
in revised CNL Vierhauser. The engine speed does not drop
below the minimum possible engine speed is possible to ex-
press with a data constraint, similar to our discussion on
specifying requirement R6 for CNL Vierhauser.

We argue that it is not possible to express requirement R7
in revised CNL Vierhauser. Since this requirement cannot be
expressed with a single event, we need to use multiple events.
In revised CNL Vierhauser, we come close to expressing the
requirement correctly. Here it is much more clear that we
have multiple instances of speed and previous speed, but we
cannot say that the entire sequence of first switching gear,
then increasing the speed, switching gear to i 4+ 1, increasing
the speed, switching gear back to i and increasing the speed
takes two seconds. We cannot say that a gear shall be used
for at least two seconds in revised CNL Vierhauser and at the
same time negate this sequence and expect to get meaningful
results.

We argue that requirement R8 can be expressed in revised
CNL Vierhauser, because we specify events in hot mode.

In summary, Revised CNL Vierhauser was a great im-
provement in terms of expressing the WLTP requirements
in CNL. It added expressions, the ability to distinguish be-
tween hot and cold events and negation. What it does not
solve, however, is the ability to identify the origin of events,
to distinguish between messages and constraints, to negate
individual events in a sequence, which would have been use-
ful to express requirement R7 and to express recurring, inter-
event, i.e. recurring sequences within a sequence, behaviour
in a meaningful way, which we discussed when specifying
requirement R6 in Revised CNL Vierhauser. We motivated
why we did not add the ability to make a distinction between
messages and constraints in the last section.

6.7 Expressing the requirements in MSD

We could express most of the requirements of the WLTP
requirement set in MSD. We could express all of the re-
quirements of the Daimler-Chrysler instrument cluster re-
quirement set in MSD.

We think it is possible to express requirement R1 in MSD.
We simply have to make messages between two actors and
add a timer to ensure that the interaction is performed in one
second after selecting first gear and disengaging the clutch.
Just as we stated in the previous paragraph, the order is im-
portant, you first disengage the clutch and then select the
first gear, not the other way around. We also place a con-
straint on the scenario, saying that if the clutch is engaged,
we abandon the scenario. If we abandon a scenario, there
will not be a violation. It is allowed to engage the clutch
in the scenario, and this should not be a violation of the
requirements.

We argue that requirement R2a is possible to express in
MSD. The tricky part is that it is not required that a gear
is switched because we enter the acceleration phase. This
means that all messages are in cold mode. Another problem
is to express that it is only possible to change gear to ¢ + 1.
In MSD, we can only specify behaviour that must always or
sometimes happen. We have to use a negated sequence to
specify that some message must not happen. We say that
gear may be changed after initiating the acceleration phase,
and having changed gear again, we expect that the new gear
is equal to 7 + 1. Otherwise, the scenario will be violated.

We argue that requirement R2b is possible to express in
MSD. For this to work properly, you need to use multiple
trigger events or pre-conditions. Otherwise, the scenario will
be wrong. If we do not use multiple trigger events, the sce-
nario will set the clock to zero after the scenario goes from
being deactivated to becoming active, which is after the ac-
celeration phase begins. This is not what the requirement
says as it should happen after acceleration has started and
the gear has been selected. Furthermore, the interaction is
non-mandatory, as we do not have to switch gear at all. But,
if we change gear, then there is a violation if the clock is less
than 3 seconds.

We argue that it is possible to express requirement R4
in MSD. It is a trivial task to do that. We simply state
that if we stop the acceleration phase, switch gear and enter
deceleration phase, this is a violation.

We argue that it is possible to express requirement R5 in
MSD. We express this scenario as saying if we switch gear to
i, then change the gear to j and change the gear to i, we see
if this happens in less than five seconds, we have violated
the scenario.

We argue that it is possible to express requirement R6 in
MSD, because we can state that if we enter extra high speed
phase, change the gear to i, then i - 1 and change the gear to
i, in 3 seconds and repeat this statement three times, then
the scenario is violated. We would need to specify this for
low, medium and high speed cycle as well.

We argue that requirement R7 is possible to express in
MSD. For the sequence of increasing speed and switching
the gear, we simply state that the speed must increase after
every gear shift and the gears should be changed from i to
i+ 1 and from i 4+ 1 to i. We start the timer between the
second and third gear shift to establish whether the gear is
needed for at least 2 seconds. If we consider the sequence
(1, 1, 30), (2, 2, 35), (4, 1, 36). This sequence will violate
the scenario. However, (1, 1, 30), (2, 2, 35), (3, 2, 40), (4,
1, 41) will not violate this scenario. Because we execute the
third gear shift (3, 2, 40), we will conclude the scenario with
saying that no violation will occur. When (4, 1, 41) occurs,
we enter another scenario. For this to work, we thus need
two scenarios, not one. In this case, we need to specify four
gear shifts instead of three.

We argue that it is possible to express requirement R8 in
MSD. This is trivial. We simply state that if the ignition is
activated, we must enable the instrument cluster.

Transformation

We argue that the transformation works correctly for some
of the requirements in the WLTP gear shift requirement set.
For some requirements, we could not express them in MSD
and/or in CNL. We argue that the transformation works
correctly for all of the requirements in the Daimler-Chrysler
instrument cluster requirement set.

We argue that the transformation works correctly for re-
quirement R1. The generated scenario is identical to the
scenario we just described, but we could not derive that a
constraint should be placed on the scenario (interrupt if |
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gs.clutchDisengaged != true ]). We do not think it is rea-
sonable to have a deterministic transformation make an as-
sumption that this should be the case for every event in the
CNL. Without distinguishing between messages and con-
straints in the CNL, we do not think there is any way a de-
terministic transformation can derive the difference between
these types of model elements (constraint and message). We
believe this can be addressed by manual intervention.

We argue that the transformation does not transform re-
quirement R2a into a scenario correctly. It says if the gear
is changed, we bind the current gear to i and if the gear is
changed, we have to check that the new gear equals ¢ £ 1.
However, there is no interruption if the gear is changed to
i+1, thereby forcing the violation to be triggered. Otherwise,
with a small (manual) correction, this is handled correctly.

We argue that the transformation handles requirement
R2b correctly, with the interpretation that no gear shift is al-
lowed at all during three seconds after the first time the gear
has changed. If we decide to select gear, even if it is the same
gear, we will violate this scenario. We do not have an invari-
ant that says selected__gear != selected_ gear_ 2, because
we do not think that it makes sense to allow changing the
gear to the same gear. However, if we need to do that, then
we could place a constraint saying that selected_ gear != se-
lected__gear_ 2 is forbidden. This will be manually added, as
we can not derive this constraint based on the information
in the requirements.

We argue that the transformation transforms requirement
R4 into a play-out scenario correctly. The generated scenario
states that if we stop an acceleration phase, switch gear and
enter a deceleration phase, this is a violation.

We argue that the transformation transforms requirement
Rb5 into a complete play-out scenario correctly. The gener-
ated scenario says that if we change gear to i, then change
the gear to i + 1 and change the gear to i, we see if this hap-
pens in less than five seconds, we have violated the scenario.
We can also change the CNL requirement to say change the
gear to j instead of i + 1.

We are not sure if our transformation would allow us to
transform requirement R6 correctly. We think that it would
produce a correct scenario, but because we argue that the
specification of the requirement is impractical, we did not
specify this requirement in CNL.

As we could not express requirement R7 in CNL, we do
not know if the transformation transforms this requirement
correctly. But, based on our understanding, we argue that
this requirement would not possible to transform into MSD,
because we need to define two scenarios, not one. We do
not think there is any way to deterministically transform a
requirement into two scenarios based on revised CNL Vier-
hauser, since we have to do it for every requirement and
the former requirements did not require us to create two
scenarios. We would also not be able to derive that only a
subset of events in the requirement should be performed for
at least two seconds, as opposed to the entire set of events,
in revised CNL Vierhauser.

We argue that the transformation transforms requirement
R8 into a play-out scenario correctly. The generated scenario
says that if the ignition is activated, we must enable the
instrument cluster.

In summary, we discuss the main limitations of the trans-
formation. Firstly, it requires manual intervention, e.g. in
R1 and R2. In R1, we need to specify a restriction on the
events which may not occur during the activated scenario
and will interrupt the scenario if they do. In R1, we have
to interrupt the scenario if the gear is engaged. In R2, we
want to specify that we want to interrupt the scenario if
the gear is shifted to 4 &+ 1. This is handled by adding in-

terrupt if [true] inside the if clauses in the scenario (which
are generated by the transformation) in R2a. Also in R2, we
want to specify that the second gearshift is different from
the first. We do this by adding a constraint on the scenario
stating that "selected_ gear != selected_gear 2" is not al-
lowed in the activated scenario. Secondly, it is required to
add domain-specific information. This is related to the first
limitation, as it is also a form of intervention, but on a much
larger scale. We described this in Section 5.

7. DISCUSSION

7.1 RQ1: To what extent can behaviour requirements
be expressed in selected controlled natural
languages?

Based on our evaluation, we have found that the CNLs allow
the expression of some behaviour requirements in this study.
In this section, we will discuss the benefits and limitations
of the CNLs.

CNL Marko seems to be a very potent language. It is a
DSL with many constructs and an amazingly sophisticated
array of model elements available. It seems to be applica-
ble to modelling state-based systems very well. Clearly, its
applicability does not extend well to finite recurrences and
the distinction between universal and existential behaviour.
Furthermore, it also does not support the specification of ac-
tions in a list of pre-conditions, so we always consider state
and parameter input. That means we can not identify who
has interacted, e.g. the user. This would have to be added
later on if we were to transform the requirements. Since it
does not support the difference between universal and exis-
tential behaviour, as our evaluation shows, it is not useful
to try to convert the requirements expressed in CNL into
play-out scenarios.

CNL Vierhauser was a very plain language and it was a
surprising finding that it was this basic, because it had been
used in practice to model monitoring of events. We found
that it was not possible to express any of the WLTP require-
ments in CNL Vierhauser. We thus had to make changes to
CNL Vierhauser and give it a bit more expressiveness to be
able to express these requirements. This amount of expres-
siveness was not available in CNL Marko, e.g. we could not
accurately represent the required behaviour of the require-
ments in this study without a distinction between manda-
tory and optional behaviour and furthermore, a significant
improvement of revised CNL Vierhauser over both CNL
Marko and CNL Vierhauser is the ability to specify mul-
tiple events with data. For instance, we could specify that
we shall switch gear and to begin an acceleration phase in
the same scenario. In CNL Marko, multiple actions can only
appear in the pre-condition list, not in the part which states
what the system shall do if all of the pre-conditions of a
requirement are matched. However, we did not change the
overall specification approach with revised CNL Vierhauser.
For instance, CNL Vierhauser can specify multiple events,
without data. The semantics of CNL Vierhauser are largely
preserved. We prefer the event-based approach in modelling
MSD specifications. This was a natural approach to describe
interaction and forces explicit specification of the timing of
interaction. This restriction is a very good thing if we want
to use it for transformation, as it allows no room for in-
terpretation as to when something must happen, because
we specify events that happen in relation to other events.
CNL Marko was very expressive and did not impose any re-
strictions on how to specify timing of events, so there are a
number of different ways we could do that.
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Based on the number of changes needed in order to specify
requirements in CNL Vierhauser, as described in Section 4.4,
we might have done better to begin with a slightly better
choice of CNL. But we still prefer the overall specification
approach of using constraints on sequences of events. DSLs
are designed to be changed and evolved in order to fit the
needs of a particular domain [Bettini 2013]. This is in line
with Vierhauser et al. [2015]. I would stress that the changes
are not to the extent that we changed the overall meaning of
the language, and its applicability to its intended domain,
but we managed to adapt it to our domain as well.

Furthermore, with CNL Marko, we get the perspective
that requirements are written from the perspective to specify
unambiguous requirements that both the customer and the
development company can understand. CNL Marko allows
for many different ways of specifying a requirement. Which
is good if you are specifying unambiguous requirements. We
want to be a bit flexible. We want to be a bit unspecific
at times. We want to leave out things which we do not care
about. With CNL Marko, we believe that there are many dif-
ferent ways in which we could express a requirement. But it
is not good if we need this information for the transformation
to transform the requirements correctly. For the transforma-
tion to transform requirements correctly, we somehow have
to define a mapping between model input element to another
model output element. Therefore, some model elements are
used for creating variables, for instance. If we do not need
to specify this in CNL Marko, there is no way we can de-
rive a complete play-out scenario with our transformation.
Therefore, when specifying requirements, we need to make
sure that they look like a specific format, with a defined
meaning on the model elements. Therefore, CNL Marko al-
lows requirements to be incompletely specified, while still
correct, they miss important details and that does not facil-
itate transformation into platform independent models cor-
rectly. We need to be precise about what information we
give to our transformation. We can not simply say "we will
do this for at least 3 seconds", we need to be much more
precise. We need to say that if some thing happens, then
another thing happens in three seconds at some times but
other times it does not happen. CNL Marko does not sup-
port such unambiguity in the timing of events and how often
a thing happens.

CNL Marko supports expressing arithmetic expressions
and conditions. We think that CNL Marko would be useful
to model MSC specifications. We also think that the dis-
tinction between actions and conditions would allow us to
distinguish between messages and constraints. This is some-
thing we could not manage with CNL Vierhauser.

In conclusion, using either CNL is an improvement over
natural language requirement specification as a process be-
cause we reduce underspecification and ambiguity while
we increase the representational consistency of the require-
ments, since syntactically correct CNL requirements must
have certain elements specified, in a certain order, and with a
well defined meaning of each element that is specified. Based
on our understanding of the CNLs and the behavioural re-
quirements, CNL Marko seems to an apt choice for struc-
ture and organization, enforcing each requirement to pos-
sess a unique requirement identifier. In CNL Vierhauser,
there is no possibility to label a requirement at all. From
a requirement engineer’s viewpoint, this is a significant ad-
vantage of CNL Marko over CNL Vierhauser, especially if
there are many requirements to keep track of. For instance,
we could imagine that there would be a significant strain
of using CNL Vierhauser, for this reason, in a large-scale
requirement engineering process. Furthermore, CNL Marko
supports arithmetical expressions. We have for instance seen

that we want to be able to specify gearshift increments for
our behavioural requirements, which CNL Vierhauser does
not support without modification. Not all systems need to
be specified with arithmetical expressions, e.g. traffic lights
are modelled with categorical variables of "red", "yellow"
and "green". In vehicular systems, however, we use numer-
ical variables such as speed and gearshift and without the
ability to specify arithmetical expressions, CNL Vierhauser
is inadequate for modeling behaviour in systems where nu-
merical variables shall change. There are many examples of
such systems, e.g. a global positioning system measuring the
speed and direction of traffic, a weather forecasting system,
a missile defense system etc. CNL Vierhauser is designed
for monitoring events, and for that domain, it seems to be
apt, e.g. it would be able to describe the behaviour of a traf-
fic light system, including modeling the switching of traffic
lights within a specific time and the arrival of vehicles and
pedestrians which shall trigger a suitable response from the
system. In such a system, we argue that it would be cumber-
some to use CNL Marko, which nevertheless would be able to
model the same behaviour. CNL Marko would be suitable
for describing the decomposition of a system into subsys-
tems, the interface descriptions of each subsystem and the
internal behaviour in a subsystem, e.g. it would be possible
to describe a requirement specification such as Fockel and
Holtmann’s illustrative application [2014] with CNL Marko.

7.2 RQ2: To what extent can behaviour requirements
be expressed in modal sequence diagrams?

When we selected the behaviour requirements in this study,
we did not know whether they were possible to express in
MSD. We were interested to know which requirements we
could not express in MSD so we could explain why we did
not transform some requirements into MSD. It was impor-
tant to establish this fact to reduce the ambiguity in the
analysis step of this thesis. In case a requirement was not
transformed into MSD, we would like to find out whether
it was because it was not possible to express the require-
ment in MSD or if the transformation could not transform
the requirement into MSD. Therefore, we tried to express
every requirement in MSD. We had assumptions that every
requirement would be possible to express in MSD, because
the scenario language is use case-based and we assume that
behaviour is naturally possible to express in a scenario, e.g.
you do something and something else must happen. You
must not do something until another thing happens. etc.
Furthermore, there are many constructs in an MSD, includ-
ing support for boolean operators and arithmetic expres-
sions. We know that it is possible to express complicated
conditions in MSD, as well as trivial arithmetic expressions.

We are pleased that our assumptions hold for most of the
requirements. We found that modal sequence diagrams are
able to express most of the requirements in this study. Only
a few requirements were not possible to express in MSD. The
problems of expressing these requirements are that they are
not easily externalized into a formula, which we did not know
how to exactly specify as a condition that this event must
happen. When you make time frequencies, like a set of events
must not have occurred in the last five seconds, it is not well
documented how to express this in MSD. Our understanding
is that MSD cannot explicitly express requirements like this.

We can only say that we argue that they are correct and
what cannot be expressed in MSD, based on the interpreta-
tion of the requirements. This does not mean we have a right
interpretation. However, since we publish our requirements
in MSD, such misunderstanding can be identified.
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Because the behaviour requirements are not representa-
tive, we can not say that a behaviour requirement is always
possible to express in MSD. We have seen examples where
we argue behaviour requirements can not be expressed in
MSD.

7.3 RQ3: To what extent can a deterministic
transformation facilitate transformation of the
behaviour requirements expressed in controlled
natural language into modal sequence diagrams?

In the background, we discussed different transformation
approaches. We did not find any other comparable work.
But we did find a study which addressed a similar prob-
lem. Somé [2006] transformed use cases into MSC. The main
difference between his work and this thesis is that the re-
quirements contained enough information by themselves to
derive a complete simulation model. Furthermore, MSC is
extremely different from MSD. For instance, MSC does not
have liveness conditions.

In this study, we were not able to convert all require-
ments into MSD. However, we are able to convert some
requirements. These requirements follow pretty much the
same standard form: If some antecedent events occur, some
consequent set of events occur within some period of time
(or infinite time). We added hot and cold events (difference
between may sometimes and must always occur) in order
to distinguish between the safety and liveness properties in
MSD. But, the antecedent-consequent specification of re-
quirements differs slightly from a use case scenario. A use
case scenario lists pre- and postconditions, and each step
can have alternative interaction, which means that there is
enough information to derive complete sequences of inter-
actions much more easily than what we could achieve with
CNL Vierhauser. A scenario also has an actor identifying the
origin of an event. We say that because CNL Vierhauser was
unable to express this kind of information, we were unable to
deterministically transform the requirements based only on
the requirements. Instead, we need to use a domain-specific
information, saying where the events come from, and what
message in the domain model a specific event corresponds
to.

Furthermore, we can make no difference between hot and
cold without somehow specifying that a constraint is in a
mode. Without this specification, one can transform all re-
quirements into events in either cold or hot mode. In the
transformation, we decided to use events in cold mode by de-
fault. We did argue in the beginning that the default would
be the hot mode because it takes advantage of the manda-
tory characteristics of requirement, i.e. a requirement spec-
ifies what a system does in certain circumstances. However
this is not always correct in MSD, because e.g. as semanti-
cally was realized in requirement R1. If some event happens,
another could (but not strictly all the time, i.e. in hot mode)
happen. The problem with CNL Vierhauser was that it can
not express this information, and there is nothing we can
do about this in the transformation. Nonetheless, even cold
events are required to be satisfied at one point. The differ-
ence between hot and cold events has important semantics.
We therefore decided to add the ability to express require-
ments as must always and may sometimes occur. The latter
in revised CNL Vierhauser is non-optional, it still must hap-
pen, just not every time.

We use a built-in logic in the transformation to distinguish
between a variable binding and reference. The first time a
data item is encountered in the requirement, a parameter
binding is created (i.e. bind to). The second (to n') time
a data item with the same path name is encountered, e.g.

selected_ gear in requirement R2, a reference to the variable
is used instead. This is the logic that you can’t define mul-
tiple variables without getting the semantics wrong. This
is the case for R2, but not necessarily everywhere. The al-
ternative would be to somehow specify this information in
the requirements, and it is possible to do so, regardless of
the logic built in the transformation. To do so, one might
write (the rather ugly) data item + 0 which will produce
a reference to variable + 0. The transformation here works
because a variable must exist in order to be able to conduct
arithmetic expressions, i.e. you can not sum the binding of a
variable and e.g. a number in MSDs, so the transformation
works under the assumption that the data item is a reference
(which of course can be used in arithmetics), that the vari-
able reference is valid, i.e. the variable has been defined and
initialized with proper data before and thus references that
variable instead of making a binding (which would make the
output invalid as a simulation model).

8. CONCLUSION

Based on our discussion, we can conclude that there are a
number of desirable features of a DSL that should be pos-
sible to specify in order to support the transformation of
semi-formal requirements into MSD:

—Distinguish between universal and existential behaviour.
—Distinguish between messages and constraints.
—Use a pre-condition list.

—Use a future approach. Looking at the events that have
happened in the past is not going to be suitable for trans-
forming the requirements into MSD.

We say a list of desirable features of a DSL, but this list is
a bare minimum in order to facilitate a deterministic trans-
formation approach into MSD.

RQ1: To what extent can behaviour requirements be
expressed in selected controlled natural languages?

Based on the discussion, we found that it is possible to spec-
ify most of our requirements in revised CNL Vierhauser. We
found that it is possible to express some of the WLTP gear
shift requirements in CNL Marko. We found that it is possi-
ble to specify all of the DC instrument cluster requirements
in CNL Marko and CNL Vierhauser (standard and revised).

RQ2: To what extent can behaviour requirements be
expressed in modal sequence diagrams?

Based on the discussion, we found that it is possible to spec-
ify most of our requirements in MSD.

RQ3: To what extent can a deterministic transformation
facilitate transformation of the behaviour requirements
expressed in controlled natural language into modal
sequence diagrams?

Based on the discussion, we found that it is possible to trans-
form most of the WLTP gear shift requirements. We found
that it is possible to transform all of the DC instrument
cluster requirements.

Maturity

Gregor and Hevner have classified the maturity of a re-
search contribution in design science research according to
the level of maturity of the (i) solution and (ii) application
domain [2013, p. 345]. The authors talk about invention,
improvement, exaptation and routine design.
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Invention: Inventions are novel and involve studying an
area where existing research is rather limited. Problems may
not be properly defined and researched in earlier studies
etc. Gregor and Hevner state that "a key contribution is
the conceptualization of the problem itself." [2013, p. 346].
Often, according to the authors, innovations are on the ar-
tifact level. The authors state that no innovations have ever
(to their knowledge) started out as a theory, and argue that
theories can only develop once we have gathered enough in-
formation about the problem: "such theories have to build
on an accumulation of knowledge about a range of artifacts
all addressing the same problem domain — which means
that the problem is known and, thus, not in the invention
quadrant." [Gregor and Hevner 2013, p. 346].

Improvement: Improvements are novel in the sense that
they improve on existing solutions to a design problem. The
problem is defined and well-known. Often, according to the
authors, improvements are on the artifact level.

Exaptation: Exaptations are novel in the sense that the
application of a solution is known (from one domain), but
transferred into a new situation where problems may or may
not be prevalent.

Routine design: Routine designs are, as the name implies,
familiar solutions to familiar problems. The authors suggest
that routine designs may sometimes identify potential re-
search problems, which one can explore further and then it
ideally becomes one of invention, improvement and exapta-
tion.

One thing to bear in mind of the above scheme is that
it organizes contributions into exactly one out of four cat-
egories. On philosophical grounds, we would argue that a
research contribution could be in one of the four quadrants
(in the 2x2 matrix) and gravitate towards another quad-
rant. For instance, routine designs are a good example of
this. Initially, they may be classified as routine designs, but
later on, as the research moves on, depending on their di-
rections, they need to move into one of the other quadrants,
i.e. invention, improvement or exaptation. Also, a research
contribution may well be within the boundary of two or
more quadrants at the same time, because the definition of
maturity, i.e. when does novel becomes familiar? and vice
versa can become rather difficult to sort out. With this said,
we believe the research contribution in this study may be
classified as a kind of exaptation, with progression towards
innovation, as the conceptualization of the problem defined
in the study is by itself a contribution. In addition, since the
problem is novel and interesting, searching for relevant liter-
ature is naturally difficult. That adds further support to our
claim that this study is progressing towards being an inno-
vation — but not necessarily. We therefore make the more
lenient and humble claim that the study is in the exaptation
quadrant.

General challenges of model-driven engineering

Van Der Straeten et al. have identified challenges of model-
driven engineering (MDE) [2009]. There are mainly three
research challenges which are relevant to this study:

—Requirements modelling

—How can we model requirements?

—How can we bridge the gap between informal (tex-
tual) requirement specifications and formal requirement
models?

—How can we integrate the activity of requirement spec-
ifications into traditional modelling? [Van Der Straeten
et al. 2009, p. 39]

Firstly, "How can we model requirements?" is a chal-
lenge which is covered in a related work by Harel and

Marelly [2003], Damm and Westphal [2005], Harel and
Maoz [2007], Brenner et al. [2014] and outlined in Sec-
tion 2.1. Secondly, "How can we bridge the gap between
informal (textual) requirement specifications and formal
requirement models?" is a challenge which is covered in
a related work by de Almeida Ferreira and Rodrigues
da Silva [2009], Baudry et al. [2007], Fockel and Holt-
mann [2014] and Marko et al. [2015] and is outlined in
Section 2.3. Thirdly, "How can we integrate the activity
of requirement specifications into traditional modelling?" is
a challenge which is covered in a related work by Fockel
and Holtmann [2014] and is outlined in sections 2.3 and 2.4.
The main contribution of this study is to derive a platform-
independent model according to the definition of a play-out
simulation model based on the information which is stored
by behaviour requirements. This contribution is central to
alleviate the progress towards '"integrating the activity of
requirement specification into traditional modelling".

8.1 Concluding remarks

By specifying requirements in a semi-formal notation, and
then translating them into a formal notation, we can ease
the adoption of requirement simulation in organisations that
would otherwise not be able to adopt formal methods in soft-
ware engineering. We propose that the approach can be used
in different organisations in industry and adopted to differ-
ent contexts and ways of working in industry. For instance,
one can select a CNL that is apt to model the behaviour of a
global positioning system for tracking vehicles on the street
for companies specializing in this field. Being able to detect
inconsistency in a specification early on allows to minimize
waste, i.e. nonessential efforts and also helps to correct the
requirement specification. Because we can now learn what
scenarios contradict each other and in what way do they
end up being unsatisfiable as a unit. It increases the abil-
ity of requirement engineers to find inconsistency. With this
ability, problems can be detected and remedied. This is espe-
cially useful for large-scale requirement engineering, where
a manual process of detecting inconsistency is unfeasible. It
is particularly important for safety-critical domains, where
there could be serious consequences of an anomalous speci-
fication, such as a loss of life, a loss of reputation or a class
action civil lawsuit.

8.2 Research directions

We elaborate on potential research directions we think are
beneficial to future research based on the results of this
study.

It would be useful to validate this research in industry. For
this reason, we argue that future researchers should attempt
to use the transformation approach (or write their own based
on a similar approach) and validate the results of this study
in industry. Figure 8.1 depicts a simple version of a model for
industry research collaboration by Gorschek et al. [2006]. We
use it to describe where we are at this time in the research.

Right now, we are in a position where we consider a Can-
didate solution of a transformation, which we have tried
in academia. We are not yet convinced that the results of
this study allow for further exploration into a real, industry-
type project. The point here is that the research is not
yet validated in a real industrial setting. Having performed
an evaluation with a toy example is called Validation in
academia. This should be done with some research-oriented
direction from industry, e.g. by formulating realistic require-
ments on the research. This we have already described in the
section 3. If we were convinced of the suitability of the trans-
formation, the next step would be to try the solution in a real
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Dynamic
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Problem
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solution Static
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in
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Fig. 8.1. A simplified version of a model for technology transfer
advocated by Gorschek et al. [2006, p. 5].

setting, which is called Static & Dynamic Validation.
This could for instance be interviews with project members
and trying the transformation on more requirements (which
are representative of an industrial setting). By doing so, we
would gain knowledge and insights on the suitability of the
approach in real practice. Finally, we would release the ap-
proach to the industry, i.e. introduce it as a viable option for
requirements engineers in practice. This is what Gorschek et
al. mean when they say to transfer technology to industry.
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(a) First gear shall be selected one second before beginning an acceleration phase from
standstill with the clutch disengaged. Vehicle speeds below 1 km/h imply that the vehicle
is standing still;

[(b) Gears shall not be skipped during acceleration phases. Gears used during accelera-
tions and decelerations must be used for a period of at least three seconds (e.g. a gear
sequence 1, 1, 2, 2, 3, 3, 3, 3, 3 shall be replaced by 1, 1, 1, 2, 2, 2, 3, 3, 3);]

[(c) Gears may be skipped during deceleration phases. For the last phase of a deceleration
to a stop, the clutch may be either disengaged or the gear lever placed in neutral and
the clutch left engaged;]

(d) There shall be no gearshift during transition from an acceleration phase to a decel-
eration phase. E.g., if v(j) < v(j+1) > v(j+2) and the gear for the time sequence j and
j + lis i, gear i is also kept for the time j 4+ 2, even if the initial gear for j + 2 would
bei + 1;
(e) If a gear i is used for a time sequence of 1 to 5 s and the gear before this sequence is
the same as the gear after this sequence, e.g. i - 1, the gear use for this sequence shall
be corrected to i - 1.
Example:

(i) a gear sequence i - 1,1,1- 1isreplaced by i-1,i-1,1i-1;

(ii) a gear sequence i- 1,1, 1,1~ 1isreplaced by i-1,i-1,i-1,i-1;

(iii) a gear sequence i - 1,1, 1,1, i- 1 isreplaced by i-1,i-1,i-1,i-1,i-1;

1,i- 1.
(f) a gear sequence i, i - 1, i, shall be replaced by i, i, i, if the following conditions are
fulfilled:
(i) engine speed does not drop below n(min); and
(ii) the sequence does not occur more often than four times each for the low, medium
and high speed cycle phases and not more than three times for the extra high speed
phase.
Requirement (ii) is necessary as the available power will drop below the required power
when the gear i - 1, is replaced by i;
(g) If, during an acceleration phase, a lower gear is required at a higher vehicle speed,
the higher gears before shall be corrected to the lower gear, if the lower gear is required
for at least 2 s.
Example: v(j) < v(j + 1) <v(j+2) <v(i+3) <v(i+4) <v(i+5) <v(—+6).
The originally calculated gear use is 2, 3, 3, 3, 2, 2, 3. In this case the gear use will be
corrected to 2, 2, 2, 2, 2, 2, 2, 3.
Since the above modifications may create new gear use sequences which are in conflict
with these requirements, the gear sequences shall be checked twice.

Fig. A.1. WLTP gear shift requirements [United Nations Economic and Social Council 2013, p. 72-73].

APPENDIX

A. REQUIREMENTS USED IN THIS STUDY
A.1 UN WLTP gear shift requirements

The Worldwide harmonised Light Vehicle Test Procedures (WLTP) is a UN proposal to create a standard test procedure
for different classes of vehicles, mainly American class 1 (e.g. Dodge Dakota), class 2 (e.g. Ford F-150) and 3 (e.g. Ford
E-350) [United Nations Economic and Social Council 2013]. In Annex 2 of the WLTP, there are requirements for shifting
gears in manual transmission systems which are used in this study. These requirements are found in Figure A.1.

A.2  Daimler-Chrysler instrument cluster requirements

The Daimler-Chrysler Instrument Cluster Requirements, referred to as the DC instrument cluster requirements from this point
on, describe the behaviour of the instrument cluster in a vehicle, including the rev meter, the speedometer, the indicator lights
and the display [Buhr et al. 2003]. The DC instrument cluster requirements encompass a number of different perspectives,
or viewpoints, including business requirements, user requirements and system requirements. Of particular interest to this
study are the user requirements as they are documented in use case scenarios. In addition, the requirements documented as
features seem to be possible to be included. Because of the vast amount of information expressed in the features and the
use case scenarios of the DC instrument cluster requirements, only some of these requirements are used in study, namely the
requirements listed under the three subsections in section 1.1.3. Figure A.2 show features 1-7 and UCs 1-2 from the report by
Buhr et al. [2003]. For the interested reader, he or she may refer to the remaining requirements in sections 1.2.3, 1.3.3, 1.4.3,
1.5.1.3, 1.5.2.3 and 1.5.3.3 in the technical report by Buhr et al. [2003].
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F-1 Permanent activation when ignition on
After the ignition has been switched on the instrument cluster is activated.
F-2 Deactivation by switching off ignition
Half a minute after the ignition has been switched off the instrument cluster is deac-
tivated and all (warning) lights dim out.
F-3 Permanent activation by setting ignition key in position radio
After the ignition key is set in position radio, the instrument cluster is activated.
F-4 Temporal activation by opening driver’s door
After the driver’s door has been opened the instrument cluster is activated for half a
mainute.
F-5 Temporal activation by closing driver’s door
After the driver’s door has been closed the instrument cluster is activated for half a
minute.
F-6 Temporal activation by switching on headlights
After the headlights have been switched on the instrument cluster is activated for half
a minute.
F-7 Temporal activation with the push-button
After the instrument cluster push button has been applied the instrument cluster is
activated for half a minute.

[UC1]
The driver starts the car and the instrument cluster is turned on.

Basic flow:
1. The use case begins when a driver sits in the car and the instrument cluster is
deactivated. The ignition is turned off.
2. The driver switches on the car (ignition key in position ignition on).
3. The instrument cluster is turned on and stays active.
4. After the trip the driver switches off the ignition.
5. The instrument cluster stays active for 30 seconds and then turns itself off.
6. The driver leaves the car.

[UC2]
The instrument cluster is turned on temporarily by the driver.

Basic flow:
1. The use case begins when a driver enters the car. The ignition is turned off.
2. The driver opens the door.
3. The instrument cluster is activated temporarily.
4. The instrument cluster turns itself off after 30 seconds.
5. The driver leaves the car.

]

Fig. A.2. Daimler-Chrysler instrument cluster requirements [Buhr et al. 2003, p. 3—4].

B. CNL GRAMMARS USED IN THIS STUDY
B.1 Grammar of CNL Marko

The grammar of CNL Marko is implemented in Xtext by Marko et al [2015]. To acquire an official copy of this language,
please contact the authors of that study. We do not include it in the report as to encourage readers to acquire an official copy
of the language.

B.2 Grammar of CNL Vierhauser
Figure B.1 shows the grammar of CNL Vierhauser.

C. CNL GRAMMARS EXPRESSED IN XTEXT
C.1 Grammar of CNL Marko expressed in Xtext

For legal reasons, the grammar of CNL Marko expressed in Xtext could not be included in this report.

C.2  Grammar of CNL Vierhauser expressed in Xtext

Figure C.1 shows CNL Vierhauser expressed in Xtext.

C.3  Grammar of revised CNL Vierhauser expressed in Xtext

Figures C.2 and C.3 show the revised CNL Vierhauser expressed in Xtext.
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Listing 1: Grammar of our constraint DSL for specifying past
occurrence, future occurrence, and data constraints

Constraint:

trigger = if event ’trigger_event’ [with Data] occurs
(PastOccurrence | FutureOccurrence | DataCheck).
PastOccurrence:
condition = (event ’event_name’ [source=’source’]

has occurred [with Data {,Data}])
|(events “event_name’{, event_name’}
occurred [consecutively])
previously in the last Time
FutureOccurrence :
condition = (event ’event_name’ [source=’source’]
occurs [with Data {,Data}])
|(events ’“event_name’{, event_name’}
occur [consecutively]) within Time
DataCheck:
condition = data Data {,Data}

Data:

Dataltem Operator Dataltem | Value
Dataltem:

key (’itemname’, itempath’, [Function])
Function:

contains | size
Time:

int milliseconds | seconds | minutes | hours
Operator:

> >= < <=1=11!
Value :

double | int | boolean | String

Fig. B.1. Grammar of the constraint-based DSL used by Vierhauser et al. [2015, p. 717].

D. REQUIREMENTS EXPRESSED IN CONTROLLED NATURAL LANGUAGE
D.1 WLTP gear shift requirements expressed in CNL Marko
Figures D.1 and D.2 show the WLTP gear shift requirements expressed in CNL Marko.

D.2 DC instrument cluster requirements expressed in CNL Marko

Figures D.3 and D.4 show the DC instrument cluster requirements expressed in CNL Marko.

D.3 WLTP gear shift requirements expressed in CNL Vierhauser
Figures D.5 and D.6 show the WLTP gear shift requirements expressed in CNL Vierhauser.

D.4 WLTP gear shift requirements expressed in revised CNL Vierhauser
Figures D.7, D.8 and D.9 show the WLTP gear shift requirements expressed in revised CNL Vierhauser.

D.5 DC instrument cluster requirements expressed in revised CNL Vierhauser

Figures D.10 and D.11 show the DC instrument cluster requirements expressed in revised CNL Vierhauser.

E. REQUIREMENTS EXPRESSED IN SML
E.1 WLTP gear shift requirements expressed in SML
Figures E.1, E.2 and E.3 show the WLTP gear shift requirements expressed in SML.
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grammar de.ase.vierhauser.language.ConstraintDSL with org.eclipse.xtext.common.Terminals
generate constraintDSL "http://www.ase.de/vierhauser/language/ConstraintDSL"

Model:
constraints+=Constraint*;

Constraint:

‘trigger' '=' 'if' 'event' trigger_event=STRING ('with' data=Data)? 'occurs'
occurrence=(PastOccurrence |

FutureOccurrence | DataCheck) '.';

PastOccurrence:

‘condition' '='

('event' event name=STRING ('source' '=' source=STRING)? 'has occurred' ('with'
data+=Data (',

data+=Data)*)?

('events' event names+=STRING (',' event names+=STRING)* 'occurred'
('consecutively')?))
‘previously in the last' time=Time;

FutureOccurrence:

‘condition' '=' ('event' event name=STRING ('source' '=' source=STRING)? 'occurs
('with' data+=Data (','

data+=Data)*)?

('events' event names+=STRING (',' event_names+=STRING)* 'occur'
('consecutively')?))
'‘within' time=Time;

DataCheck:

‘condition' '=' ‘'data' data+=Data (',' data+=Data)*;
Data:

source=Dataltem operator=Operator target=(DataItem | Value);
DataItem:

‘key' '(' itemname=STRING ',' itempath=STRING (',' function=Function)? ')';
Function returns Function:

{Function}

('contains' | 'size');
Time:

value=INT ('milliseconds' | 'seconds' | 'minutes' | 'hours');

Operator returns Operator:
{Operator}

St =t |

<' | '<= == =t
Value returns Value:

{Value}

DOUBLE | INT | BOOLEAN | STRING;

terminal BOOLEAN:
‘true' | 'false';

/* https://eclipse.org/Xtext/documentation/301_grammarlanguage.html */
terminal DOUBLE:
INT '.' INT;

Fig. C.1. CNL Vierhauser expressed in Xtext.
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grammar de.ase.vierhauser.language.ConstraintDSL with
org.eclipse.xtext.common.Terminals

generate constraintDSL "http://www.ase.de/vierhauser/language/ConstraintDSL"

Model:
constraints+=Constraint*;
Constraint:
‘trigger' '=' 'if' 'event' trigger event=Event 'occurs'

occurrence=0ccurrence '.';

Occurrence:
PastOccurrence | FutureOccurrence | DataCheck;

PastOccurrence:
‘condition' '='
('past event' events+=Event (negated?='has not occurred' | 'has occurred')
('past events' events+=Event (',' events+=Event)*
(negated?="have not occurred' | 'have occurred') ('consecutively')?))

('previously in the last' time=Time)?;

FutureOccurrence:
‘condition' '='
('future event' events+=Event (negated?='does not occur' | 'occurs')
('future events' events+=Event (',' events+=Event)*
(negated?="do not occur' | 'do occur') ('consecutively')?))

('within' time=Time)?;

DataCheck:

‘condition' '=' 'data' data+=Data (',' data+=Data)*;
Event:

name=STRING ('source' '=' source=STRING)? ('with' data+=Data (','
data+=Data)*)?;
Data:

ComparisonExpression | BinaryExpression;
BinaryExpression:

'{"' source=Data operator=BinaryOperator target=Data '}';
ComparisonExpression:

source=TargetExpression operator=ComparisonOperator
target=TargetExpression;

TargetExpression:
ArithmeticExpression | DataItemExpression | ValueExpression;

ArithmeticExpression:
'(' left=TargetExpression operator=ArithmeticOperator
right=PlainTargetExpression ')';

PlainTargetExpression:
PlainArithmeticExpression | DataltemExpression | ValueExpression;

PlainArithmeticExpression:

source=DataltemOrValueExpression operator=ArithmeticOperator
target=PlainTargetExpression;

Fig. C.2. Revised CNL Vierhauser expressed in Xtext.
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DataItemOrValueExpression:
DataItemExpression | ValueExpression;

DataltemExpression:
dataitem=Dataltem;

ValueExpression:
value=Value;

Dataltem:
'key' '(' itemname=STRING ',' itempath=STRING (',' function=FunctionType)?
e

Time:
value=INT format=TimeFormat;

Value:
DoubleValue | IntegerValue | BooleanValue | StringValue;

DoubleValue:
value=DOUBLE;

IntegerValue:
value=INT;

BooleanValue:
value=BOOLEAN;

StringValue:
value=STRING;

enum FunctionType:
NONE="'none' | CONTAINS='contains' | SIZE='size';

enum TimeFormat:
MILLISECONDS='milliseconds' | SECONDS='seconds' | MINUTES='minutes' |
HOURS="hours"';

enum ComparisonOperator:

GREATER THAN='>' | GREATER THAN OR EQUALS='>=' | LESS THAN='<'
LESS_THAN_OR_EQUALS='<='
| EQUALS='==' | NOT EQUALS='!=';

enum ArithmeticOperator:
ADDITION='+' | SUBTRACTION='-"';

enum BinaryOperator:
AND='and' | OR='or';

terminal BOOLEAN:
'true' | 'false';

terminal DOUBLE:
INT '."' INT;

Fig. C.3. Revised CNL Vierhauser expressed in Xtext (cont’d).
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/*

* (a) First gear shall be selected one second before beginning an
acceleration phase from standstill with the clutch disengaged. Vehicle
speeds below 1 km/h imply that the vehicle is standing still;

*/

// First gear shall be selected one second before beginning an

// acceleration phase from standstill with the clutch disengaged.

ID ROl acceleration: While state: standstill and if parameter: gear is quantity:
1,

the system: transmission shall action: start state: acceleration within time: 1
s

dependent on parameter: clutch equal to constant: disengaged.

//Vehicle speeds below 1 km/h imply that the vehicle is standing still;
ID RO1 standstill: if parameter: speed decreases below quantity: 1 unit: KM H,
the system: transmission shall action: start state: standstill.

/*

* [(b) Gears shall not be skipped during acceleration phases. Gears used
during accelerations and decelerations must be used for a period of at

least three seconds (e.g. a gear sequence 1, 1, 2, 2, 3, 3, 3, 3, 3 shall be
replaced by 1, 1, 1, 2, 2, 2, 3, 3, 3);]

*/

// Gears shall not be skipped during acceleration phases.

ID RO2 not skipped: While state: acceleration,

the system: transmission shall not action: select parameter: gear
from variable: i to variable: j unequal to variable: i + 1 or
from variable: i to variable: j unequal to variable: i - 1.

// Gears used during accelerations and decelerations must be used for a

// period of at least three seconds (e.g. a gear sequence 1, 1, 2, 2, 3,

// 3, 3, 3, 3 shall be replaced by 1, 1, 1, 2, 2, 2, 3, 3, 3);

ID RO2 gear used : While state: acceleration or While state: deceleration and if
parameter: gear is variable: i, the system: transmission shall not action:
select parameter: gear

to variable: j unequal to variable: i for at least time: 3 s.

/*
* [(c) Gears may be skipped during deceleration phases. For the last phase
of a deceleration to a stop, the clutch may be either disengaged or the

gear lever placed in neutral and the clutch left engaged;]

*/

// Skipped, because it not a requirement. A requirement is "The system shall..."
/*

* (d) There shall be no gearshift during transition from an acceleration

phase to a deceleration phase. E.g., if v(j) < v(j+1) > v(j+2) and the gear

for the time sequence j and j + 1 is i, gear i is also kept for the time

j + 2, even if the initial gear for j + 2 would be i + 1;
*/

// There shall be no gearshift during transition from an acceleration

// phase to a deceleration phase.

ID RO4 no gear shift: While state: acceleration

and if system: transmission starts state: deceleration,

the system: transmission shall not action: select parameter: gear to variable: i
dependent on parameter: acceleration stop equal to constant: true.

/*

Fig. D.1. The WLTP gear shift requirements expressed in CNL Marko.
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* (e) If a gear i is used for a time sequence of 1 to 5 s and the gear before
this sequence is the same as the gear after this sequence, e.g. i - 1, the
gear use for this sequence shall be corrected to i - 1.

* Example:

* [

* For all cases (i) to (v), g(min) <= i must be fulfilled;

*/

ID RO5 gear used: the system: transmission shall not action: select
parameter: gear from variable: i to variable: i - 1

and from variable: i - 1 to variable: i

within time: 5 s dependent on parameter: gear

greater or equal to constant: minimum gear.

/*

* (f) a gear sequence i, i - 1, i, shall be replaced by i, i, i, if the
following conditions are fulfilled:

* (i) engine speed does not drop below n(min); and

(ii) the sequence does not occur more often than four times each

for the low, medium and high speed cycle phases and not more

than three times for the extra high speed phase.

Requirement (ii) is necessary as the available power will drop below
the required power when the gear i - 1, is replaced by i;

S I S

*/

ID RO6 gear used: While state: acceleration,

the system: transmission shall not action: select parameter: gear

to variable: i and from variable: i - 1 to variable: i within time: 3 s
dependent on parameter: engine speed greater or equal to constant:
min_engine speed.

// the sequence does not occur more often than four times each

/*
* (g) If, during an acceleration phase, a lower gear is required at a higher
vehicle speed, the higher gears before shall be corrected to the lower
gear, if the lower gear is required for at least 2 s.
* Example: [...]
* Since the above modifications may create new gear use sequences
which are in conflict with these requirements, the gear sequences shall
be checked twice
*/

ID RO7 gear used: While state: acceleration,

the system: transmission shall not action: select parameter: gear

from variable: i to variable: i + 1 and from variable: i + 1 to variable: i
dependent on parameter: speed greater than variable: previous speed for at least
time: 2 s.

Fig. D.2. The WLTP gear shift requirements expressed in CNL Marko (cont’d).
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/*

* F-1 Permanent activation when ignition on

* After the ignition has been switched on the instrument cluster is activated.
*/

ID RO9 _permanent activation: the system: instrument_cluster shall action: select
parameter: instrument cluster to constant: on after parameter: ignition reaches
constant: on.

/*

* F-2 Deactivation by switching off ignition

* Half a minute after the ignition has been switched off the

* instrument cluster is deactivated and all (warning) lights dim out.
*/

ID R10 deactivation: the system: instrument cluster shall action: select
parameter: instrument cluster to constant: off within time: 30 s
after parameter: ignition reaches constant: off.

/*

* F-3 Permanent activation by setting ignition key in position radio

* After the ignition key is set in position radio, the instrument cluster is
activated.

*/

ID R11 permanent activation: the system: instrument cluster shall action: select
parameter: instrument cluster to constant: on after parameter: ignition reaches
constant: radio.

/*

* F-4 Temporal activation by opening driver's door

* After the driver's door has been opened the instrument cluster is activated
for half a minute.

*/

ID R12 temporal activation: the system: instrument cluster shall action: select
parameter: instrument cluster to constant: on for time: 30 s
after parameter: driver door reaches constant: open.

/*

* F-5 Temporal activation by closing driver's door

* After the driver's door has been closed the instrument cluster is activated
for half a minute.

*/

ID R13 temporal activation: the system: instrument cluster shall action: select
parameter: instrument cluster to constant: on for time: 30 s
after parameter: driver door reaches constant: closed.

/*

* F-6 Temporal activation by switching on headlights

* After the headlights have been switched on the instrument cluster is
activated for half a minute.

*/

ID R14 temporal activation: the system: instrument cluster shall action: select
parameter: instrument cluster to constant: on for time: 30 s
after parameter: headlights reaches constant: on.

/*

* F-7 Temporal activation with the push-button

* After the instrument cluster push button has been applied the instrument
cluster is activated for half a minute.

Fig. D.3. The DC instrument cluster requirements expressed in CNL Marko.
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*/

ID R14 temporal activation: the system: instrument cluster shall action: select
parameter: instrument cluster to constant: on for time: 30 s
after parameter: push button reaches constant: on.

/*

* UC1

* The driver starts the car and the instrument cluster is turned on.

* Basic flow:

* 1. The use case begins when a driver sits in the car and the instrument
cluster is deactivated. The ignition is turned off.

* 2. The driver switches on the car (ignition key in position ignition on).

* 3. The instrument cluster is turned on and stays active.

* 4, After the trip the driver switches off the ignition.

* 5. The instrument cluster stays active for 30 seconds and then turns itself
off.

* 6. The driver leaves the car.

*/

// Already supported by R9-R10.

/*

* UC2

* The instrument cluster is turned on temporarily by the driver.

* Basic flow:

* 1. The use case begins when a driver enters the car. The ignition is turned

. The driver opens the door.
. The instrument cluster is activated temporarily.

2
3
4. The instrument cluster turns itself off after 30 seconds.
5. The driver leaves the car.

// Already supported by R12.

Fig. D.4. The DC instrument cluster requirements expressed in CNL Marko (cont’d).
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/*

* (a) First gear shall be selected one second before beginning an
acceleration phase from standstill with the clutch disengaged. Vehicle
speeds below 1 km/h imply that the vehicle is standing still;

*/

// First gear shall be selected one second before beginning an
// acceleration phase from standstill with the clutch disengaged.

trigger = if event

"gearshift _acceleration" occurs

condition = event "gear selected" has occurred with
key ("transmission", "gear") == 1,
key ("transmission", "clutch") == "disengaged" previously in the last 1 seconds.

// Vehicle speeds below 1 km/h imply that the vehicle is standing still;

trigger = if event

"standstill" occurs

condition = data key("transmission", "speed") < 1 .

/*

* [(b) Gears shall not be skipped during acceleration phases. Gears used
during accelerations and decelerations must be used for a period of at

least three seconds (e.g. a gear sequence 1, 1, 2, 2, 3, 3, 3, 3, 3 shall be
replaced by 1, 1, 1, 2, 2, 2, 3, 3, 3);]

*/

// Gears shall not be skipped during acceleration phases.
// TODO: Would be nice if possible to gear + 1

trigger = if event

"gearshift_acceleration" occurs

condition = data key("transmission", "gear") ==
key("transmission", "previous gear plus_one").

// Gears shall not be skipped during acceleration phases.
// TODO: Would be nice if possible to gear - 1

trigger = if event

"gearshift acceleration" occurs

condition = data key("transmission", "gear") ==

key("transmission",

"previous _gear minus _one").

// Gears used during accelerations and decelerations must be used for a period

of at

// least three seconds

// TODO: Wrong, should say not occurred

// ... What is gearshift? Should say gearshift acceleration,
gearshift deceleration.

trigger = if event
condition = events
seconds.
trigger = if event
condition = events
seconds.

/*

"gearshift acceleration" occurs
"acceleration", "gearshift" occurred previously in the last 3

"gearshift_deceleration" occurs
"acceleration", "gearshift" occurred previously in the last 3

* [(c) Gears may be skipped during deceleration phases. For the last phase
of a deceleration to a stop, the clutch may be either disengaged or the
gear lever placed in neutral and the clutch left engaged;]

*/

// Skipped, because it not a requirement. A requirement is "The system shall..."

/*

* (d) There shall be no gearshift during transition from an acceleration
phase to a deceleration phase. E.g., if v(j) < v(j+1) > v(j+2) and the gear
for the time sequence j and j + 1 is i, gear i is also kept for the time

j + 2, even if the initial gear for j + 2 would be i + 1;

Fig. D.5. The WLTP gear shift requirements expressed in CNL Vierhauser.



A Transformation of CNL Behavioural Requirements into MSD Simulation Models for Requirement Conflict Detection

*/

// TODO: Wrong, should say not occurred previously

trigger = if event "gearshift deceleration" occurs

condition = events "acceleration stop", "gearshift acceleration"
occurred previously in the last 2 seconds.

/*
* (e) If a gear i is used for a time sequence of 1 to 5 s and the gear before
this sequence is the same as the gear after this sequence, e.g. i - 1, the
gear use for this sequence shall be corrected to i - 1.
* Example:
* [
* For all cases (i) to (v), g(min) <= i must be fulfilled;
*/

// TODO: Still wrong, because event "gearshift" must not occur,

trigger = if event "gearshift acceleration" occurs

condition = event "gearshift" occurs with

key("transmission", "gear") != key("transmission", "previous_gear_min_one")
within 5 seconds.

/*

* (f) a gear sequence i, i - 1, i, shall be replaced by i, i, i, if the
following conditions are fulfilled:

* (i) engine speed does not drop below n(min); and

(ii) the sequence does not occur more often than four times each

for the low, medium and high speed cycle phases and not more

than three times for the extra high speed phase.

Requirement (ii) is necessary as the available power will drop below
the required power when the gear i - 1, is replaced by i;

* ¥ X ¥ X

*/

// TODO: Still wrong, because event "gearshift" must not occur

trigger = if event "gearshift deceleration" occurs

condition = event "gearshift" occurs with

key("transmission", "gear") != key("transmission", "previous gear min_one"),
key("transmission", "engine speed") > key("transmission", "min_engine speed")
within 3 seconds.

/*
* (g) If, during an acceleration phase, a lower gear is required at a higher
vehicle speed, the higher gears before shall be corrected to the lower
gear, if the lower gear is required for at least 2 s.
* Example: [...]
* Since the above modifications may create new gear use sequences
which are in conflict with these requirements, the gear sequences shall
be checked twice
*/

// TODO: Wrong, the event must not necessarily occur.

// TODO: Would be nice to know what gearshift speed means.

// Would be nice if i - 1 could be used.

trigger = if event "gearshift acceleration" occurs

condition = events "gearshift speed", "gearshift speed" occur
within 2 seconds.

Fig. D.6. The WLTP gear shift requirements expressed in CNL Vierhauser (cont’d).
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/*

* (a) First gear shall be selected one second before beginning an
acceleration phase from standstill with the clutch disengaged. Vehicle
speeds below 1 km/h imply that the vehicle is standing still;

*/
trigger = if events "clutch disengaged"
with key ("transmission", "clutch disengaged") == true AND "gear selected" with
key ("transmission", "active gear") == 1 occur

condition = future event "acceleration phase" with key ("transmission",
"acceleration phase") == true
may sometimes occur within 1 seconds.

// Vehicle speeds below 1 km/h imply that the vehicle is standing still;
trigger = if event "standstill" occurs
condition = data key("transmission", "speed") < 1

/*

* [(b) Gears shall not be skipped during acceleration phases. Gears used
during accelerations and decelerations must be used for a period of at

least three seconds (e.g. a gear sequence 1, 1, 2, 2, 3, 3, 3, 3, 3 shall be
replaced by 1, 1, 1, 2, 2, 2, 3, 3, 3);]

*/

trigger = if event "acceleration phase" with key("transmission",
"acceleration phase") == true occurs
condition = future events "gearshift" with key("transmission", "active gear") ==
key ("prompt", "current"),
"gearshift" with {
key("transmission", "active gear") !

= ( key("prompt", "current") + 1)
or key("transmission", "active gear") != (

key("prompt", "current") - 1)
¥

may sometimes not occur.

trigger = if events "acceleration phase" with key("transmission",

"acceleration phase") == true AND

"gearshift" with key("transmission", "active gear") == key("prompt",

"selected gear") occur

condition = future event "gearshift" with key("transmission", "active gear") ==

key("prompt", "selected gear")
may sometimes not occur within 3 seconds.

trigger = if events "deceleration phase" with key("transmission",

"deceleration phase") == true AND

"gearshift" with key("transmission", "active gear") == key("prompt",

"selected gear") occur

condition = future event "gearshift" with key("transmission", "active gear") ==

key("prompt", "selected gear")
may sometimes not occur within 3 seconds.

/*
* [(c) Gears may be skipped during deceleration phases. For the last phase
of a deceleration to a stop, the clutch may be either disengaged or the

gear lever placed in neutral and the clutch left engaged;]

*/

// Skipped, because it not a requirement. A requirement is "The system shall..."
/*

* (d) There shall be no gearshift during transition from an acceleration

phase to a deceleration phase. E.g., if v(j) < v(j+1) > v(j+2) and the gear
for the time sequence j and j + 1 is i, gear i is also kept for the time

Fig. D.7. The WLTP gear shift requirements expressed in revised CNL Vierhauser.
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j + 2, even if the initial gear for j + 2 would be i + 1;

*/
trigger = if event "acceleration phase" with key("transmission",
"acceleration phase") == false occurs

condition = future events "acceleration stop" with key("transmission",
"acceleration stop") == true,

"gearshift" with key("transmission", "active gear") == key("transmission",
"selected gear"),

"deceleration phase" with key("transmission", "deceleration phase") == true

may sometimes not occur consecutively.

/*

* (e) If a gear i is used for a time sequence of 1 to 5 s and the gear before
this sequence is the same as the gear after this sequence, e.g. i - 1, the
gear use for this sequence shall be corrected to i - 1.

* Example:

* [

* For all cases (i) to (v), g(min) <= i must be fulfilled;

*/
trigger = if event "gearshift" with

key("transmission", "active gear") == key("transmission", "requested gear")
occurs

condition = future events "gearshift" with

key("transmission", "active gear") == ( key("transmission", "requested gear") +
1)

"gearshift" with
key("transmission", "active gear") == key("transmission", "requested gear")
may sometimes not occur within 5 seconds.

/*

* (f) a gear sequence i, i - 1, i, shall be replaced by i, i, i, if the
following conditions are fulfilled:

* (i) engine speed does not drop below n(min); and

* (ii) the sequence does not occur more often than four times each

* for the low, medium and high speed cycle phases and not more

* than three times for the extra high speed phase.

* Requirement (ii) is necessary as the available power will drop below

* the required power when the gear i - 1, is replaced by i;

*/
trigger = if event "gearshift" with key("transmission", "active gear") ==
key("transmission", "requested gear") occurs

condition = future events "gearshift" with key("transmission", "active gear") ==
( key("transmission", "requested gear") - 1),

"gearshift" with key("transmission", "active gear") == key("transmission",
"requested gear"),

"engine speed below minimum" with key("transmission", "min engine speed") >
key("transmission", "engine speed")

may sometimes not occur within 3 seconds.

/*
* (g) If, during an acceleration phase, a lower gear is required at a higher
vehicle speed, the higher gears before shall be corrected to the lower
gear, if the lower gear is required for at least 2 s.
* Example: [...]
* Since the above modifications may create new gear use sequences
which are in conflict with these requirements, the gear sequences shall
be checked twice
*/

Fig. D.8. The WLTP gear shift requirements expressed in revised CNL Vierhauser (cont’d).



40 i Alexander Styre

trigger = if event "acceleration phase" with key("transmission",

"acceleration_phase") == true occurs

condition = future events "gearshift" with

key("transmission", "active gear") == key("transmission", "requested gear"),
"accelerate" with key("transmission", "speed") > key("transmission",
"previous_speed"),

"gearshift" with key("transmission", "active gear") == ( key("transmission",
"requested gear") + 1),

"accelerate" with key("transmission", "speed") > key("transmission",
"previous speed"),

"gearshift" with key("transmission", "active gear") == key("transmission",
"requested gear"),

"accelerate" with key("transmission", "speed") > key("transmission",

"previous_ speed")
may sometimes not occur within 2 seconds.

Fig. D.9. The WLTP gear shift requirements expressed in revised CNL Vierhauser (cont’d).
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/*
* F-1 Permanent activation when ignition on
* After the ignition has been switched on the instrument cluster is activated.

*/
trigger = if event "ignition on"
with key ("instrument", "ignition") == true occurs
condition = future event "activated"
with key ("instrument", "instrument cluster") == true

must always occur.

/*

* F-2 Deactivation by switching off ignition

* Half a minute after the ignition has been switched off the

* instrument cluster is deactivated and all (warning) lights dim out.

*/
trigger = if event "ignition off"
with key ("instrument", "ignition") == false occurs
condition = future event "deactivated" with
key ("instrument", "instrument cluster") == false

must always occur within 30 seconds.

/*
* F-3 Permanent activation by setting ignition key in position radio
* After the ignition key is set in position radio, the instrument cluster is

activated.
*/
trigger = if event "ignition radio"
with key ("instrument", "ignition radio") == true occurs
condition = future event "activated"
with key ("instrument", "instrument cluster") == true

must always occur.

/*

* F-4 Temporal activation by opening driver's door

* After the driver's door has been opened the instrument cluster is activated
for half a minute.

*/
trigger = if event "door opened"
with key ("instrument", "door opened") == true occurs
condition = future events "activated" with
key ("instrument", "instrument cluster") == true, "deactivated" with
key ("instrument", "instrument cluster") == false

must always occur within 30 seconds.

/*

* F-5 Temporal activation by closing driver's door

* After the driver's door has been closed the instrument cluster is activated
for half a minute.

*/
trigger = if event "door closed"
with key ("instrument", "door opened") == false occurs
condition = future events "activated" with
key ("instrument", "instrument cluster") == true, "deactivated" with
key ("instrument", "instrument cluster") == false

must always occur within 30 seconds.

/*

Fig. D.10. The DC instrument cluster requirements expressed in revised CNL Vierhauser.
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* F-6 Temporal activation by switching on headlights
* After the headlights have been switched on the instrument cluster is
activated for half a minute.

*/
trigger = if event "headlights on"
with key ("instrument", "headlights") == true occurs
condition = future events "activated" with
key ("instrument", "instrument cluster") == true, "deactivated" with
key ("instrument", "instrument cluster") == false

must always occur within 30 seconds.

/*

* F-7 Temporal activation with the push-button

* After the instrument cluster push button has been applied the instrument
cluster is activated for half a minute.

*/
trigger = if event "push button applied"
with key ("instrument", "push button") == true occurs
condition = future events "activated" with
key ("instrument", "instrument cluster") == true, "deactivated" with
key ("instrument", "instrument cluster") == false
must always occur within 30 seconds.
/*
* UC1

* The driver starts the car and the instrument cluster is turned on.

* Basic flow:

* 1. The use case begins when a driver sits in the car and the instrument
cluster is deactivated. The ignition is turned off.

* 2. The driver switches on the car (ignition key in position ignition on).

* 3. The instrument cluster is turned on and stays active.

* 4. After the trip the driver switches off the ignition.

* 5, The instrument cluster stays active for 30 seconds and then turns itself
off.

* 6. The driver leaves the car.

*/

// Already supported by R9-R10.

/*

* UC2

* The instrument cluster is turned on temporarily by the driver.

* Basic flow:

* 1. The use case begins when a driver enters the car. The ignition is turned

off.

* 2. The driver opens the door.

* 3. The instrument cluster is activated temporarily.

* 4, The instrument cluster turns itself off after 30 seconds.
* 5. The driver leaves the car.

*/

// Already supported by R12.

Fig. D.11. The DC instrument cluster requirements expressed in revised CNL Vierhauser (cont’d).
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import "Transmission.ecore"
system specification Gearshifts {

domain Transmission

define Environment as uncontrollable
define GearSelector as controllable
define GearController as controllable

collaboration Gearshiftsl {

static role Environment env
static role GearSelector gs
static role GearController gc

/*
* (a) First gear shall be selected one second before beginning an
acceleration phase from standstill with the clutch disengaged.
Vehicle
speeds below 1 km/h imply that the vehicle is standing still;
*/
requirement scenario RO1 firstGearAfterClutchDisengaged {
message env -> gs.setClutchDisengaged(true)
message requested env -> gc.setActiveGear(1)
// Clock
var EInt ¢ = 0
message requested env -> gs.setAccPhase(true)
violation if [ ¢ >= 1 | ! gs.clutchDisengaged ]
} constraints [
interrupt message env -> gs.setClutchDisengaged(false)
1

/*
* [(b) Gears shall not be skipped during acceleration phases. Gears
used
during accelerations and decelerations must be used for a period of
at
least three seconds (e.g. a gear sequence 1, 1, 2, 2, 3, 3, 3, 3, 3
shall be
replaced by 1, 1, 1, 2, 2, 2, 3, 3, 3);]
*/
requirement scenario R02 NextGearAfterAccPhaseBegins {
message env -> gs.setAccPhase(true)
var EInt cur = gc.activeGear
alternative {
message requested gs -> gc.setActiveGear(cur + 1)
interrupt if [ true ]
}or{
message requested gs -> gc.setActiveGear(cur - 1)
interrupt if [ true ]
}
violation if [ true ]
} constraints [
interrupt message env -> gs.setAccPhase(false)
1

requirement scenario R02 MinGearUse {
message gs -> gc.setActiveGear(bind to cur)

var EInt cur = -1
interrupt if [ ! gs.accPhase & ! gs.decPhase ]
// Clock

var EInt ¢ = 0

Fig. E.1. The WLTP gear shift requirements expressed in SML.
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var EInt new = -1

message gs -> gc.setActiveGear(bind to new)
// Cannot be other than violated.
//violation if [ ¢ < 3 ]

} constraints [
interrupt message env -> gs.setAccPhase(false)
interrupt message env -> gs.setDecPhase(false)

1

/*
* (d) There shall be no gearshift during transition from an
acceleration
phase to a deceleration phase. E.g., if v(j) < v(j+1) > v(j+2) and
the gear
for the time sequence j and j + 1 is i, gear i is also kept for the
time

j + 2, even if the initial gear for j + 2 would be i + 1;
*/
requirement scenario R04 GearUseBetweenAccToDec {

message env -> gs.setAccPhase(false)

var EInt new = -1

message gs -> gc.setActiveGear(bind to new)

message env -> gs.setDecPhase(true)

violation if [ true ]

}

/*
* (e) If a gear i is used for a time sequence of 1 to 5 s and the
gear before
this sequence is the same as the gear after this sequence, e.g. i -
1, the
gear use for this sequence shall be corrected to i - 1.
* Example:
* [
* For all cases (i) to (v), g(min) <= i must be fulfilled;
*/
requirement scenario RO5 GearUseBetweenOneAndFiveSec {
message gs -> gc.setActiveGear(bind to gl)
var EInt gl = -1
// Clock
var EInt c = 0
message gs -> gc.setActiveGear(bind to g2)
var EInt g2 = -1
message gs -> gc.setActiveGear(bind to g3)
var EInt g3 = -1
violation if [ ¢ <5 & gl == g3 ]
}

/*
* (f) a gear sequence i, i - 1, i, shall be replaced by i, i, i, if
the following
conditions are fulfilled:
* (i) engine speed does not drop below n(min); and
* (ii) the sequence does not occur more often than four times each
* for the low, medium and high speed cycle phases and not more
* than three times for the extra high speed phase.
* Requirement (ii) is necessary as the available power will drop
below
* the required power when the gear i - 1, is replaced by i;
*/
requirement scenario R06 GearUseBetweenOneAndThreeSec {

Fig. E.2. The WLTP gear shift requirements expressed in SML (cont’d).
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a higher

lower

shall

message gs -> gc.setActiveGear(bind to gl)

var EInt gl = 1

message gs -> gc.setActiveGear(bind to g2)
var EInt g2 = 2

interrupt if [ gl == g2 ]

// Clock

var EInt c = 0

var EInt g3 = -1

message gs -> gc.setActiveGear(bind to g3)
violation if [(c >= 1 & ¢ <= 3) ]

// engine speed

//(sequence does not occur more than three times)]

}

/*
* (g) If, during an acceleration phase, a lower gear is required at

vehicle speed, the higher gears before shall be corrected to the

gear, if the lower gear is required for at least 2 s.

* Example: [...]

* Since the above modifications may create new gear use sequences
which are in conflict with these requirements, the gear sequences

be checked twice
*/
requirement scenario RO7 HigherGear {
message env -> gs.setAccPhase(true)
message gs -> gc.setActiveGear(bind to gl)
var EInt g1 = 1
var EInt gl speed = gs.speed
interrupt if [ ! gs.accPhase |
// Clock
var EInt c = 0
var EInt g2 = 2
message gs -> gc.setActiveGear(bind to g2)
var EInt g2 speed = gs.speed
interrupt if [ g2 speed <= gl speed | g2 !'= gl + 1 ]
var EInt g3 = -1
message gs -> gc.setActiveGear(bind to g3)
interrupt if [ c <2 ]
var EInt g3 speed = gs.speed
interrupt if [ g3 speed <= g2 speed | g3 != gl ]
violation if [ true ]

Fig. E.3. The WLTP gear shift requirements expressed in SML (cont’d).
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E.2 DC cluster instrument requirements expressed in SML

Figures E.4, E.5 and E.6 show the DC cluster instrument requirements expressed in SML.

F. TRANSFORMATION EXPRESSED IN XTEND

The implementation of the model transformation can be found online.
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import "InstrumentCluster.ecore"
system specification Specification {
domain InstrumentCluster

define InstrumentClusterSelector as controllable
define InstrumentClusterController as controllable
define Environment as uncontrollable

collaboration Collaboration {

static role InstrumentClusterSelector ics
static role Environment env
static role InstrumentClusterController icc

/*
* F-1 Permanent activation when ignition on
* After the ignition has been switched on the instrument cluster is
activated
*/
requirement scenario R1 {
message env -> icc.setIgnition(true)
message strict requested ics -> icc.setInstrumentCluster(true)

}

/*
* F-2 Deactivation by switching off ignition
* Half a minute after the ignition has been switched off the
instrument cluster is deactivated
and all (warning) lights dim out.
*/
requirement scenario R2 {
message env -> icc.setIgnition(false)
// Clock
var EInt c = 0
message strict requested ics -> icc.setInstrumentCluster(true)
violation if [ c > 30 ]

/*
* F-3 Permanent activation by setting ignition key in position
radio
* After the ignition key is set in position radio, the instrument
cluster is activated.
*/
requirement scenario R3 {
message env -> icc.setIgnitionRadio(true)
message strict requested ics -> icc.setInstrumentCluster(true)

/*
* F-4 Temporal activation by opening driver’s door
* After the driver’s door has been opened the instrument cluster is
activated for half a
minute
*/
requirement scenario R4 {
message env -> icc.setDoorOpen(true)
message strict requested ics -> icc.setInstrumentCluster(true)
// Clock
var EInt ¢ = 0

Fig. E.4. The DC cluster instrument requirements expressed in SML.
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message strict requested ics ->
icc.setInstrumentCluster(false)
violation if [ c < 30 ]
}

/*
* F-5 Temporal activation by closing driver’s door
* After the driver’s door has been closed the instrument cluster is
activated for half a
minute.
*/
requirement scenario R5 {
message env -> icc.setDoorOpen(false)
message strict requested ics -> icc.setInstrumentCluster(true)
// Clock
var EInt ¢ = 0
message strict requested ics ->
icc.setInstrumentCluster(false)
violation if [ c < 30 ]
}

/*
* F-6 Temporal activation by switching on headlights
* After the headlights have been switched on the instrument cluster
is activated for half
a minute.
*/
requirement scenario R6 {
message env -> icc.setHeadlights(true)
message strict requested ics -> icc.setInstrumentCluster(true)
// Clock
var EInt c = 0
message strict requested ics ->
icc.setInstrumentCluster(false)
violation if [ c < 30 ]
}

/*
* F-7 Temporal activation with the push-button
* After the instrument cluster push button has been applied the
instrument cluster is
activated for half a minute.
*/
requirement scenario R7 {
message env -> icc.setPushButton(true)
message strict requested ics -> icc.setInstrumentCluster(true)
// Clock
var EInt c = 0
message strict requested ics ->
icc.setInstrumentCluster(false)
violation if [ c < 30 ]
}

/*

* UC1

* The driver starts the car and the instrument cluster is turned
on.

* Basic flow:

* 1. The use case begins when a driver sits in the car and the
instrument cluster is deactivated. The ignition is turned off.

* 2. The driver switches on the car (ignition key in position
ignition on).

Fig. E.5. The DC cluster instrument requirements expressed in SML (cont’d).
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* 3. The instrument cluster is turned on and stays active.
* 4, After the trip the driver switches off the ignition.
* 5. The instrument cluster stays active for 30 seconds and then
turns itself
off.
* 6. The driver leaves the car.
*/
// Already supported by R1-R2.
/*
* UC2
* The instrument cluster is turned on temporarily by the driver.
* Basic flow:
* 1. The use case begins when a driver enters the car. The ignition
is turned off.
* 2. The driver opens the door.
* 3. The instrument cluster is activated temporarily.
* 4, The instrument cluster turns itself off after 30 seconds.
* 5. The driver leaves the car.
*/

// Already supported by R4.

Fig. E.6. The DC cluster instrument requirements expressed in SML (cont’d).
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