
	
	
	

	
	
	

 
Department of Computer Science and Engineering 
UNIVERSITY OF GOTHENBURG 
CHALMERS UNIVERSITY OF TECHNOLOGY 
Gothenburg, Sweden 2017 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Cloudifying a legacy batch-processing 
system 
A Design Science Study 
Bachelor of Science Thesis in Software Engineering and Management	
	
ANDREAS ARONSSON 
LINHANG NIE 
 
  



	
	
	

	
	
	

 
Department of Computer Science and Engineering 
UNIVERSITY OF GOTHENBURG 
CHALMERS UNIVERSITY OF TECHNOLOGY 
Gothenburg, Sweden 2017 

	
The	Author	grants	to	University	of	Gothenburg	and	Chalmers	University	of	Technology	the	
non-exclusive	right	to	publish	the	Work	electronically	and	in	a	non-commercial	purpose	make	
it	accessible	on	the	Internet.		
The	Author	warrants	that	he/she	is	the	author	to	the	Work,	and	warrants	that	the	Work	does	
not	contain	text,	pictures	or	other	material	that	violates	copyright	law.		
	
The	Author	shall,	when	transferring	the	rights	of	the	Work	to	a	third	party	(for	example	a	
publisher	or	a	company),	acknowledge	the	third	party	about	this	agreement.	If	the	Author	has	
signed	a	copyright	agreement	with	a	third	party	regarding	the	Work,	the	Author	warrants	
hereby	that	he/she	has	obtained	any	necessary	permission	from	this	third	party	to	let	
University	of	Gothenburg	and	Chalmers	University	of	Technology	store	the	Work	
electronically	and	make	it	accessible	on	the	Internet.	
	
	
	
	
	
	
	
	
Cloudifying a legacy batch-processing system 
 
ANDREAS ARONSSON 
LINHANG NIE 
 
© Andreas Aronsson, June	2017. 
© Linhang Nie, June	2017. 
 
Supervisor: Imed Hammouda 
Supervisor: Michal Palka 
Examiner: Hang Yin 
 
University of Gothenburg 
Chalmers University of Technology 
Department of Computer Science and Engineering 
SE-412 96 Göteborg 
Sweden 
Telephone + 46 (0)31-772 1000 
 
 
 



Cloudifying a legacy batch-processing system
Andreas Aronsson

Gothenburg University
Gothenburg, Sweden

gusaroanc@student.gu.se

Linhang Nie
Gothenburg University
Gothenburg, Sweden

guslinhni@student.gu.se

Abstract—Cloud services have become increasingly popular
in the past years. The attractiveness of reduced operational
costs and elasticity to fluctuating loads are prompting more
organizations to migrate to the cloud. However, there exists
inertia when it comes to migrating business critical systems.
Often these legacy systems have been under development for
years and in many cases decades, which complicates the process.
This paper aims to investigate how to cloudify a legacy batch-
processing system. Subsequently, cross-cutting concerns of the
cloud migration are presented to be used as a foundation for
organizations deciding whether to migrate to the cloud.

Keywords-Cloud computing, cloud migration, software migra-
tion, legacy-to-cloud migration

I. INTRODUCTION

Legacy systems are core parts of many organizations and
with the increase in popularity of cloud computing, benefits
such as reduced cost, greater flexibility and efficiency are
tempting organizations to make the move to the cloud. These
systems, often built with now outdated technology, tend to be
hard to evolve and grow [1]. Moreover, they become difficult
to maintain as time passes [2].

The migration of legacy systems is a difficult process
because of the inherent complexity of the systems. The lack
of architectural adaptation guidance and migration plan [3]
further complicates the migration process.

A. Background and Problem domain

This thesis project is part of the study of migrating the
integrated production system, SPRINT, to the cloud in Volvo
Truck and Technology, with a special focus on improving its
scalability and performance. The work focuses on the order
breakdown system, which is a subsystem of the larger system
- SPRINT. The subject system takes in orders with highly
customized configurations and outputs all of the material used
in the product together with associated assembly instructions.
The target system consists of a series of monolithic batch-
processing systems that have been under development for the
past 15 years. Further descriptions of mentioned concepts
follows:

1) Monolithic system: Monolithic systems are software
systems that have monolithic architecture, which is a common
style used in legacy systems that are deployed on mainframe
computers. R. Stephens, [4] describes a monolithic architecture
as a single program that does everything. The benefit of a
monolithic architecture is that since the system is contained

in a single program there is no need to implement and
maintain communication protocols. The drawback of this type
of architecture is the inflexibility and tight coupling making it
difficult to change and adapt to changing business needs such
as the need for scalability.

2) Batch processing: Batch processing is a processing
mode where individual transactions are grouped or batched
and processed periodically as a job [5]. The time it takes
to process a job depends on the nature of the application,
transaction volume, simultaneous workload and the sequence
in which the processing occurs.

The order breakdown system is a good example of a batch
processing system since it has the following characteristics:

• The program runs unattended
• Input data is collected over some time
• Output of the system is not needed for use as soon as it

is produced
The system has a daily scheduled breakdown batch job to

process data. It is an appropriate object to investigate how to
migrate a legacy batch-processing system, as it processes large
enough amount of data and lack of architectural adaptability,
which presents the following issues:

• Low resource utilization. The daily breakdown jobs in
each instance only run in a specific time slot each day,
the resources are idle the rest of the day.

• Hard to scale-up. The system is hard to scale-up in an
optimal way, though it is possible for the current system
to partition the data and distribute the jobs among servers,
underlying synchronization and consensus risks regarding
may occur.

• Fail-over. Whenever a batch job fails the whole batch job
has to restart.

The main problems that we are trying to address are the
scalability of the batch-processing part and the adaptation of
the system to an architecture.

B. Potential solutions and Related Work

In this section, the concepts that are used in the migration
process are explained such as Service-Oriented Architecture
(SOA) and cloud computing.

1) Service-Oriented Architecture: Service Oriented Archi-
tecture, defined by K. Channabasavaiah et al, is an archi-
tecture within which functions are defined as services that
can be called via well-defined interfaces to form business



processes [6]. It enables the re-engineering and migration of
legacy software systems into loosely coupled and interoperable
sets of services [7]. S. Alahmari, proposes three different ways
of migrating legacy code to SOA [8]. One way is to reverse
engineer and to implement the code in another programming
language. Another way is by using wrapping and wrap the
legacy code and access it through the existing interface. The
third way is to transform the code by salvaging the legacy
code, wrapping it and making it available as a web service.
H.M. Sneed, has presented techniques of migrating COBOL
legacy systems to SOA [9] [10]. There have been plenty of
research conducted into the domain of SOA migration as
reflected in the systematic review by M. Razavian et al [11].
Colosimo et al, presented an experiment with the goal of
defining a systematic migration strategy to migrate COBOL
systems to the web [12].

2) Cloud computing: As described by M. Armbrust, et
al, cloud computing or the cloud refer both to the services
delivered over the Internet and the hardware that provides these
services [13]. Services belonging under the umbrella term of
the cloud are usually referred to as IaaS (Infrastructure as a
Service), PaaS (Platform as a Service) and SaaS (Software as
a Service). By utilizing the potential of the cloud, and dis-
tributing the software over a pool of resources, organizations
can benefit from the scalability, reliability and the “pay-as-
you-use” payment model of cloud services.

P. Jamshidi et al [3], identified, classified and comparied re-
search on cloud migration. They found that migration research
concerning the cloud is still in its early stages of maturity,
but is advancing. P. Jamshidi et al, also concluded that there
is a lack of tools to automate the cloud migration tasks, and
stressed the need for architectural adaptation when undertaking
a cloud migration task.

C. Research Goal and Research Questions

This research is conducted with the primary objective to
investigate how to cloudify a legacy batch-processing sys-
tem. More specifically, our vision is to cloudify the batch-
processing system using a cloud computing engine and inte-
grate the new system in a way such that it would be able to be
used by all interested parties. We aim to answer the following
questions:

• RQ1: What are the architectural implications of migrating
a legacy batch-processing system to the cloud?

By implication of the migration, we mean two perspectives:
the architectural design’s perspective and the action’s perspec-
tive. From architectural design perspectives, we want to know
what are the trade-offs related to specific quality attributes,
hence we ask the following sub-question:

• RQ1.1: What are the cross-cutting concerns regarding the
quality attributes when migrating to the cloud?

From the migration action perspective, we intended to learn
the transformation of the architectural elements from the old
system to the new system, therefore we ask the following sub-
question:

• RQ1.2: What architectural elements have been touched
during the migration?

We plan to conduct architectural analysis on the adopted
architecture to answer the first sub-question, and compare the
architectural elements of the old system and the new system.

D. Contribution

As suggested by Jamshidi et al, the cloud migration research
field is still in its early stages of maturity. Among the selected
papers reviewed in the systematic literature review, only two
focus on architectural adaptations [3]. Besides the architec-
tural adaptation support, challenges and lessons learned in
an industrial context are needed as well. Only five out of
23 papers report the experiences and lesson learned. Hence
the current body of research knowledge needs architectural
adaptation support and experience reports in an industrial
context.

This study will propose an architecture to cloudify an
industrial legacy batch-processing system and report the ar-
chitectural adaptations made to the target system to fit into
the proposed architecture. This study will report the archi-
tectural implications of cloudifying a legacy batch-processing
system using cloud computing engine with a special focus on
the cross-cutting concerns and transformation of architectural
elements.

The concrete architecture, CloudSOA, and its architectural
adaptation support, the migration plan, would be the scientific
contribution to the current body of literature. Both the archi-
tecture and the architectural implications will be useful for
further second hand studies. The technical contributions are
the proposed architecture, the prototype and the quality trade-
offs. These could be used by an organization as a reference to
migrate an industrial legacy system to the cloud.

E. Structure

The rest of this paper is structured as follows. Section II
outlines the background and problem domain of this paper.
Section III describes the methodology, design science, used
in this paper. In Section IV the CloudSOA architecture, the
prototype and the migration plan is described. Section V
presents the evaluation. Section VI discusses the cross-cutting
concerns regarding the quality attributes when migrating to
the cloud. Subsequently the challenges and lessons learned
are discussed. This paper concludes in Section VII.

II. BACKGROUND AND TARGET SYSTEM

The target system SPRINT is an integrated production
system that takes data from upstream applications and per-
forms computation upon the data and delivers the output
to downstream applications. As shown in Fig. 1, the data-
processing sub-system consists of three layers: integration
layer, application layer and the data layer. The integration layer
takes production data from multiple upstream sources and pre-
processes the data. One component in the application layer
constructs object model using the data and writes the objects



Fig. 1. Current system architecture

to a database via the data layer. Another batch-processing com-
ponent performs a mass matching job between the processed
production data and order data taken from another source, then
sends it to other interested parties. There are multiple pairs of
SPRINT deployed on a cluster of servers. Each pair has one
active instance and one back-up instance for redundancy. From
system level, the pairs are used separately to process different
batch jobs.

III. RESEARCH METHODOLOGY

The methodology used in the development of the solution is
Design Science, which addresses research through the building
and evaluation of artifacts designed to meet identified business
needs [14].

In order to answer research question 1, ”What are the archi-
tectural implications of migrating a legacy batch-processing
system to the cloud?”, and 1.1, ”What are the cross-cutting
concerns regarding the quality attributes when migrating to the
cloud?”, comparisons of the legacy system architecture with
the new architecture, referred to as CloudSOA were made.

A non-formal discussion about the current architecture of
SPRINT was undertaken with a software architect at the target
organization in order to be able to compare the current and
the proposed architecture.

An interview based on the ISO/IEC 25010 quality
model [15] was conducted in order to get the quality char-
acteristics that are most important to the organization. The
quality trade-offs are based on the answers from the interview
and related papers, in order to have an informed argument.

A. Artifacts
As seen in Fig. 2, the design science framework, we propose

an architecture and developed a prototype. The prototype is an
implementation of the order breakdown system that matches

restrictions associated with the orders, such as customer con-
figurations, geographical and business restrictions, with the
parts or components that go into the final product. Each part,
in turn, can have one or many restrictions of their own. The
output generated from this matching is the set of parts needed
to complete an order.

B. Evaluation
In design science, evaluation is a crucial component of the

research process [14]. We will demonstrate the utility of the
architecture by validating the prototype against the quality
criteria, which are scalability, viability, and performance. For
performance, we conduct a controlled experiment measuring
the time elapsed per batch of jobs.

The quality criteria mentioned above are derived from the
business needs of the stakeholder:

• Scalability - Must be able to easily expand the computing
resource pool to meet heavier loads of input.

• Viability - Must meet the stakeholder’s demands on
infrastructure and compatibility with existing systems.

• Performance - Must meet the stakeholders demands of
performance. A batch of jobs must be completed in less
than 8 hours.

IV. CLOUDSOA - A CONCRETE ARCHITECTURE

A. Architecture
1) Idea of CloudSOA: Fig. 3 shows the architecture in

different abstraction levels, from reference model to con-
crete architecture, and the implementation of the architecture.
CloudSOA is a concrete architecture that employs cloud com-
puting services in service-oriented architecture paradigm. The
goal of the architecture is to make both the data-processing
engine and the processing logic reusable for multiple interested
parties.

SOA and its essential elements are described in I-B1, the
SOA reference model defined the abstract conceptual model
of Service-oriented Architecture and its essential elements.
MacKenzie, C. Matthew, et al. suggested that Service-Oriented
Architecture provides a rather simple paradigm to reconcile
Internet-scale provisioning and consumption of capabilities
that may be within different ownership domains [16]. A
service is an approach to access the capabilities provided by
service provider via the prescribed interface. Services behave
as described in their specification and whose interfaces should
be accessed as the way specified in the service interface
specification [16]. Moreover, Service-Oriented Architecture
also provides a solid foundation for business agility and adapt-
ability [16]. One of the benefits of adopting Service-Oriented
Architecture is its inherent extensibility. Functionality could be
added to the system by connecting to the enterprise service bus
and providing a general invokable interface to the interested
parties.

2) Structure of CloudSOA: The proposed concrete archi-
tecture CloudSOA is derived from the SOA reference model
with special attention paid to integrating the cloud-computing
engine as a service to the enterprise application ecosystem.



Fig. 2. Design Science Framework adapted from A. Havner et al. [14].

As shown in Fig. 4, the concrete architecture CloudSOA
consists of three types of components, which are the service
provider, the enterprise service bus, and the service consumers.
A service provider in this concrete architecture is a cloud-
computing engine wrapped by an interface so that it can
be invoked through the service bus by service consumers.
The service consumers are other enterprise applications in the
ecosystem that need to use the service. Services, service bus
and service consumers communicate via protocols of choice.

B. Prototype

In this section, we introduce the implementation of the
proposed architecture. As seen in Fig. 5 the computation
component of the prototype is implemented using Apache
Spark, an engine for large-scale data processing providing
APIs in Scala, Python, Java, and R. By using Spark the ability
to easily scale the system by adding more nodes is supported
out of the box. Another advantage is that Spark is built around

the concept of RDDs (Resilient Distributed Datasets) allowing
the system to be fault tolerant [17]. For example, if the system
is running on 5 nodes and one node goes down, Spark will
automatically recompute the missing partitions from the node
that went down.

The bus, Kafka, connects the service consumers (order
module and product data modules) and the service provider
(Spark) as a distributed publish-subscribe messaging system.
The prototype also consists of two enterprise applications - the
order breakdown module and the product-data update module.
The order module takes upstream order data, which can come
from one or many different systems and prepares the data for
the computation. The product data module takes upstream data
and prepares it for further computation. Spark Streaming is an
extension to Spark that enables low-latency stream processing.
It has the added benefit of allowing queries to be run on
arriving streams or historical data using the same API [18].



Fig. 3. SOA reference model.

Fig. 4. CloudSOA Architecture.



Fig. 5. Architecture of Prototype implementing CloudSOA.

C. Migration plan

This section describes the architectural adaptions made to
the order breakdown system in order to fit the CloudSOA
architecture. Fig. 6 illustrates the current architecture of the
order breakdown system while Fig. 7 shows the proposed
architecture. The Integration- and Application-layer of the
old architecture are tasked with taking in upstream data and
creating data objects in the proper structure. The Breakdown
Application layer and Breakdown Data layer are responsible
for matching the order data with the product data and out-
putting the subset of parts from the product data that are valid
for an order.

In the proposed architecture this task is being accomplished
in the Application layer by two modules, the Order Breakdown
module and Product Update module. As the names suggest the
Order Breakdown creates the proper data objects for the order
data while Product Updater does the same for the product
data. The Mediator of the proposed architecture connects the
Application layer and Service layer together.

V. EVALUATION

We developed a prototype to evaluate the concrete archi-
tecture CloudSOA as it has to be put into a context. Since it
was developed in order to meet the identified business needs,
CloudSOA has to fulfill the quality criteria of scalability,
performance, and viability that are derived from these needs
in order to be considered a success.

A. Scalability

Spark is scalable due to the programming model where the
programmer creates acyclic data flow graphs to pass input

Fig. 6. Order breakdown system current architecture

data through a set of operators, allowing Spark to manage
scheduling without intervention from the developer [19]. This
also works across nodes making it trivial to add another node
to the cluster [17].



Fig. 7. Order breakdown system proposed architecture

Job amount: 1 10 20

run 1 (s): 19.42 234 450
run 2 (s): 19.36 234.6 451.2
run 3 (s): 19.47 236.4 456

Average time (s): 19.42 235 452.4

TABLE I
RUNTIME IN SECONDS FOR BATCHES OF JOBS

B. Viability

From discussions with the stakeholders, we can conclude
that the proposed solution could be viable since there is
nothing stopping upstream and downstream components to
interface with the proposed solution. However to test it out
in practice with the current upstream and downstream com-
ponents are out of scope for this thesis. There are potential
pitfalls and trade-offs that impact the viability that is further
discussed in the discussion part of this report.

C. Performance

The results of the throughput test are presented in Table 1.
The tests were conducted on a system with Intel i5-3570K
CPU @ 3.40GHz and 8GB main memory running the Ubuntu
operating system. One job contains one or many orders, each
order has around 600 different variants that are matched with
product and date restrictions.

VI. DISCUSSION

A. Cross-cutting concerns

While analyzing the concrete architecture and assessing it
against the ISO/IEC 25010 quality model, we noticed various
architectural implications, such as cross-cutting concerns with
regard to security, performance and maintainability.

1) Security: Moving the system to a public cloud could
cause some security concerns compared to owning the servers
as is the case for the organization today. Since the data is
transmitted via the Internet, and the computing service and
other related services, such as storage and logging service, are
deployed on the cloud infrastructure, the information security
is at risk. To mitigate the risk during the transmission, encryp-
tion could be taken into consideration. Encrypting sensitive
or business critical data, such as pricing information, would
ease the security concern for the data transmission process.
However, the security of the computing service relies on
other security services provided by the cloud service provider.
Another option could be deploying the computing service on
private cloud in a data center where the infrastructure is owned
by the enterprise. As the infrastructure is under the control of
the organization, the services deployed on it’s private cloud
could be protected by customized security systems. Another
compromise could be using a hybrid cloud for services with
different security levels. Services that dealing with business
critical data, such as data storage services, could be deployed
on a private cloud for security concerns. And CPU intensive
services could be deployed on a public cloud so that they are
capable to scale up elastically. Further more, the data sets
can be sectioned in order to only expose the computation
critical data to the external environment. The outcome could
be pieced together in a private cloud afterwards. This approach
reconciled the security and the need of scalability, but in turn,
brings extra complexity and challenge to data integrity.

2) Availability: Given that the services are deployed on the
cloud, the availability of the services rely on the availability
of the cloud. While adopting service from the provider, the
availability of the cloud should be taken into consideration
so that the critical services are available at the expected
availability level. Other than the choice of service provider,
tactics such as redundancy, which would add extra cost, could
also mitigate the availability concern.

3) Performance: Having the system in a public cloud
allows the hardware to be more easily scaled compared to
owning the hardware. If there is a requirement for more
processing power or memory this can instantly be added
on the more popular cloud services such as AWS (Amazon
Web Services) or Microsoft’s Azure platform. This allows the
system to more easily adapt to spikes in needed processing
power. This also impacts the cost of the system since with the
cloud services typically you only pay for what you use. Cost
associativity is another important benefit of cloud services
since paying for one server for 20 hours cost the same as
paying for 20 servers for one hour. This aspect is especially
important for batch related processing since if the results are
needed more promptly than usual the elasticity of the cloud can
be leveraged. Owning the hardware makes the adaptation to
fluctuating loads more complicated since then an organization
will have to over-provision its resource pool leading to idling
resources. On the other hand while using cloud services one
must take into account the cost and time of moving the data
to and from the cloud.



4) Maintainability: By using a public cloud service, an
organization does not have to make a big commitment for
the hardware. However there are negatives such as business
agility where a company might feel they are locked-in with
the service. Conflicts might arise if the service provider
changes its terms of service, increases the price or even
shuts down completely. Deploying the computation engine and
other services onto private cloud is an approach to relief the
concerns about business agility, but increasing in the cost from
maintaining hardware and re-deploying the computing engines
is foreseeable.

5) Cost: Lowered costs are one of the main temptations
associated with cloud migration. More specifically, the eco-
nomic benefits come from paying for resources usage and
operational costs separately, such as CPU time, memory usage,
power, cooling, and other physical plant costs. There are many
factors that need to be taken into account such as the system
infrastructure cost, cost of the actual migration and costs
associated with using the system. The skills of the developers
also have to be taken into account since it might be a new
platform that the developers have to learn which could cause
longer time-to-market.

B. Challenges and lesson learned
During the progress of implementing the architecture, chal-

lenges had been encountered. In this section we share two
main challenges, which are the segmentation of the system
and the transformation of components.

1) Segmentation of the system: To separate the concerns,
the monolithic system needs to be differentiated into smaller
segments with clear boundaries. According to the functional
coherent principle, we divided the components of the mono-
lithic system into the logic layers in accordance to their re-
sponsibilities. The components interfacing with other systems
were put into the integration layer, the components that do the
computation work were put into the application layer and the
components that handle the data storage were put into the data
layer.

2) Transformation of components: To adapt the system
into CloudSOA, components in the integration layer were
made into service-consumer applications that listen to the data
source and invoke the services accordingly. Data computing
components in the application layer were transformed into
reusable processing logic that can be used by the cloud
computing engine. The data layer components were omitted
since the data storage service will have to be accessed by its
own interface. The cloud computing engine is a new element
added to the system as a service, and the service bus acting as
the communication backbone is a newly introduced element
as well.

In general, service bus is the primary element in the
architecture, where communication style could be chosen from
messaging, publish-subscribe or others. Services in the archi-
tecture could be application platforms, such as the computing
engine in this case, other general-purpose systems, like logging
system, and other third-party services.

C. Threats to validity
The main threat to the validity of this report is the non-

exhaustive evaluation due to two factors. First being that
only a small part of the complex SPRINT system has been
implemented, and the limited amount of hard data gathered.
Therefore in-depth analysis and comparison of crucial factors
such as cost and performance have been left out of this
report. It is possible that there are requirements that have
not been taken into consideration that renders CloudSOA not
suitable. Finally, the basis of this report is to investigate how
to cloudify a batch processing system, taking special regards
to the systems scalability and viability. We have proposed one
way of accomplishing this, however, it is important to stress
that there are many alternative approaches.

VII. CONCLUSION

The primary objective of this study has been to investigate
how to cloudify a legacy batch-processing system. Cloudifying
is the process of moving a system to the cloud, this can bring
benefits for an organization such as reduced cost, increased
performance and faster results. The proposed architecture
CloudSOA and its migration plan could be referred to in
the case where an organization wishes to cloudify a legacy
batch-processing systems and the cross-cutting concerns are
appropriately addressed.

VIII. FUTURE WORK

Future works need to be performed on CloudSOA, such as
comparisons of performance running on the same hardware,
cost comparisons. General integration guidance with upstream
and downstream applications of the system could also be
further studied. And generic service interface specification will
also be valuable to interested audience.

IX. ACKNOWLEDGEMENTS

The authors would like to thank Mac Svan, Johan Axelsson,
Per-Arne Lövgren and Michael Voemel from AB Volvo for
their kind assistance. We would also like to thank Michal
Palka and Imed Hammouda of Chalmers University for their
invaluable guidance and feedback.

REFERENCES

[1] M. van Sinderen, “Challenges and solutions in enterprise computing,”
Enterprise Information Systems, vol. 2, no. 4, pp. 341–346, 2008.

[2] K. Bennett, “Legacy systems: coping with success,” IEEE Software,
vol. 12, no. 1, pp. 19–23, 1995.

[3] P. Jamshidi, A. Ahmad, and C. Pahl, “Cloud migration research: A
systematic review,” IEEE Transactions on Cloud Computing, vol. 1,
no. 2, pp. 142–157, 2013.

[4] R. Stephens and E. C. (e-book collection), Beginning software engineer-
ing, 1st ed. Indianapolis, Indiana: Wrox, 2015.

[5] J. Bingham, “Distributed systems,” in Mastering Data Processing.
Springer, 1983, pp. 235–245.

[6] K. Channabasavaiah, K. Holley, and E. Tuggle, “Migrating to a service-
oriented architecture,” IBM DeveloperWorks, vol. 16, 2003.

[7] S. Alahmari, E. Zaluska, and D. De Roure, “A service identification
framework for legacy system migration into soa,” 2010, pp. 614–617.

[8] H. M. Sneed, “Integrating legacy software into a service oriented
architecture.” IEEE, 2006, pp. 11 pp.–14.

[9] ——, “Migrating from cobol to java,” in Software Maintenance (ICSM),
2010 IEEE International Conference on. IEEE, 2010, pp. 1–7.



[10] ——, “A pilot project for migrating cobol code to web services,”
International Journal on Software Tools for Technology Transfer (STTT),
vol. 11, no. 6, pp. 441–451, 2009.

[11] M. Razavian and P. Lago, “A systematic literature review on soa
migration,” Journal of Software: Evolution and Process, vol. 27, no. 5,
pp. 337–372, 2015.

[12] M. Colosimo, A. D. Lucia, G. Scanniello, and G. Tortora, “Evaluating
legacy system migration technologies through empirical studies,” Infor-
mation and Software Technology, vol. 51, no. 2, pp. 433–447, 2009.

[13] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” pp. 50–58, 2010.

[14] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS Quarterly, vol. 28, no. 1, pp. 75–
105, 2004.

[15] I. IEC, “25010 (2011) systems and software engineering-systems and
software quality requirements and evaluation (square)-system and soft-
ware quality models,” International Organization for Standardization,
Geneva, Switzerland.

[16] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, and
B. A. Hamilton, “Reference model for service oriented architecture 1.0,”
OASIS standard, vol. 12, p. 18, 2006.

[17] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012, pp. 2–2.

[18] T. D. A. D. J. M. M. M. M. J. F. S. S. I. S. U. o. C. B. Matei Zaharia,
Mosharaf Chowdhury, “A fault-tolerant abstraction for inmemory cluster
computing,” Datasets, Resilient Distributed.

[19] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.


