

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

An Empirical Investigation of the Use of
Goal and Process Modelling to Analyze
API Ecosystem Design and Usage
Workflow
Bachelor of Science Thesis in Software Engineering and Management

FEKI MUNIR BEDRU
MARTINA FREIHOLTZ
STEPHEN MENSAH

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

An Empirical Investigation of the Use of Goal and Process Modelling to Analyze API Ecosystem Design

and Workflow

FEKI M. BEDRU

MARTINA FREIHOLTZ

STEPHEN MENSAH

© FEKI M. BEDRU, August 2017.

© MARTINA FREIHOLTZ, August 2017.

© STEPHEN MENSAH, August 2017.

Supervisor: JENNIFER HORKOFF

Examiner: SALOME MARO

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

An Empirical Investigation of the Use of Goal and
Process Modelling to Analyze API Ecosystem

Design and Usage Workflow

Feki Munir Bedru
Department of Computer Science

and Engineering
University of Gothenburg

Email: gusbedfe@student.gu.se

Martina Freiholtz
Department of Computer Science

and Engineering
University of Gothenburg

Email: m@rtina.be

Stephen Mensah
Department of Computer Science

and Engineering
University of Gothenburg

Email: gusmenst@student.gu.se

Abstract—The case company in this study develops differ-
ent mechatronic devices for its customers around the world.
Customers who use these products, do so with an application
software to access the business assets of the company through an
API (Application Programming Interface). The company wants
to improve on its API management strategy which is expected to
solve some of the bottlenecks they have in their current workflow.

Our focus is to investigate how goal- and process models
can be used to effectively capture dynamic and static aspects
of an API ecosystem. We also investigate how the models can
be improved for the purpose of analyzing an API ecosystem
design. Four models were created, modelling the current and
future workflow and API ecosystem design of the case company
(one goal model and one process model for each scenario). To
help answering the research questions, the models were analyzed
using systematic forward goal model analysis. An evaluation of
the models in terms of effectiveness and expressiveness was also
addressed.

Keywords—software ecosystem, goal model, process model, API
design, workflow

I. INTRODUCTION

The thesis is part of a larger research project in the domain
of ecosystem-driven development, conducted at University of
Gothenburg and Chalmers Software Center by I. Hammouda et
al [1].The aim of the research project is to provide companies
with an analytical framework for designing and managing API
ecosystems effectively and efficiently [2].

We conducted a case study with a company in the embed-
ded systems industry. The case company is currently moving
towards the implementation of a new suggested API ecosystem
workflow, which is expected to solve some of the bottlenecks
they have in their current business process. The company wants
to be able to analyze the effects these changes have on their
API ecosystem design.

To that end, this thesis investigates how goal modelling and
process modelling can be used together to capture both the
static and dynamic aspects of an API ecosystem. In addition,
to find out how these models can be improved for the purpose
of analyzing an API ecosystem design. We aim to answer the
following questions:

RQ1 Can goal modelling and process modelling be used
together to effectively capture the static and dynamic
aspects of API ecosystems?

RQ1.1 How well can goal modelling be used to capture the
static aspects of API ecosystems?

RQ1.2 How well can process modelling be used to capture
the dynamic aspects of API ecosystems?

RQ2 How can goal models and process models be improved
for the purpose of API ecosystem design and workflow
analysis?

RQ2.1 How can goal models be improved for the purpose of
API ecosystem design analysis?

RQ2.2 How can process models be improved for the purpose
of API workflow analysis?

To answer these questions, we modeled an API ecosystem
using goal- and process modelling. The choice for goal and
process model is the fact that, goal models have the capa-
bility of capturing and helping the viewer understand early
requirements of a system [3]. The goal model expresses the
relationship between actors and dependencies between goals
and tasks in a static state, while process models are used to
capture the activities of the workflow in the dynamic state [3].

To answer the first research question, we tested how well
the models worked for the designated purpose by evaluating
the models based on criteria of expressiveness and effective-
ness. By expressiveness, we refer to the models’ ability to
capture the aspects of the software ecosystem which we want
to capture. Effectiveness here refers to the ease of which these
aspects can be captured [4].

To answer the second research question, we combined
the results of the expressiveness and effectiveness analysis
(uncovering uncaptured aspects and modelling challenges)
with observations from the model iterations and the feedback
received from the case company.

Creating visualizations of the API system and the work-
flows through a combination of goal modelling and process
modelling,could lay the groundwork for a better understanding
of the current (as-is) and proposed (to-be) API ecosystem

design. By making it easier to discover possible flaws (failures
to meet requirements, bottlenecks, etc.), such models could
potentially assist in improving the design of API ecosystems.

Goal models and process models have been used earlier
to visualize software ecosystems, but not for the visualization
of API ecosystems specifically. An API enables actors in the
domain to access business assets [2], which means that it has
to be both reliable and secure. Our contribution to the existing
body of literature will be an example of how goal modelling
and process modelling can be used together to capture the static
and dynamic aspects of API ecosystems, with the ambition of
ecosystem analysis and improvement.

Throughout the report we refer to a number of technical
terms, which are discussed in more detail below.

1) Workflow: The workflow refers to actions, a sequence
of activities, or tasks set in a certain order enabling a system
to serve its purpose [5]. The workflow focuses on the use of
entities (e. g. actors and activities) to explain the sequence of
operation or work procedure.

Fig. 1. Example of API Framework.

2) API: An Application Programming Interface (API), is
defined as a multi-layered digital innovation object (Fig. 1) that
allows developers to access business assets [2]. This differs
from the typical technical use of the term. Four layers are
defined: Business assets, API, API Software/User, and the
Domain.

Boundary objects are instruments that are used to manage
or govern communication between adjacent layers and deter-
mine the way that communication is established. For example,
a use case indicates how actors in the domain (users) can
communicate or access the API layer to fetch information from
the business asset (BA) layer based on an API specification.
The API specification in turn determines or provides business
asset information to the user based on an agreement between
stakeholders and BA provider. An API model, a boundary
object between the API and business asset layer, manages the
amount of assets that can accessible by the API layer [2].

To limit the scope of this study, we are not consciously
attempting to model boundary objects shown in Fig. 1. The
framework is presented and discussed in detail in the paper by
Hammouda et al [2].

3) Software Ecosystem: A software ecosystem can be
defined as a software system characterized by continuous

evolution and independence with other systems [6]. Software
ecosystems can support the development of large systems
using components developed by actors [6]. This phenomenon
includes software development activities outside traditional
boundaries [7]. A large software ecosystem provides diversity
and this diversity is also used to implement different techniques
such as service-oriented architecture enabling a user add more
features or configurable systems [6].

4) Static and Dynamic Aspects: In our analysis of the goal-
and process models, we talk about static and dynamic aspects
of the API design and workflow. To clarify what we mean with
these terms, we define them in the context of this report.

Goal models are static, that is, they present “what things
exist, their attributes and interrelationships [8]”. We think of
them as system snapshots, which in our case show how the
API ecosystem is structured. By comparing two snapshots in
the context of this study (the as-is goal model and to-be goal
model) we analyze the changes between the two scenarios.
Since the model is static, it does not give the viewer any direct
information about the underlying processes. In order to get
a more complete picture of the system, a dynamic model is
needed.

Dynamic models show the states, state transitions, and
processes of a system [8]. We use process models in the form
of UML activity diagrams to visualize the workflow of the
case company. Just as with the goal models, we compare the
differences between the as-is and to-be process models by
analyzing the effect of change on the workflow, goals, system
requirements, and bottlenecks.

II. BACKGROUND

A. API Design

In an empirical study conducted at Software Center as a
part of this project, the researchers aim to provide companies
with an analytic framework for designing and managing API
systems. The paper [2] (under submission) presents APIs as
one layer within a context of other layers relevant to API
management and design: domain, app software/API user, and
business assets. Each layer has a separate set of concerns.
The advantages with loosely coupled separate layers are the
ability to innovate at layer level, and the decoupling of design
decisions made for a specific layer. In this paper, we use the
layered framework to think about the different actors’ role in
the API - especially in the context of the goal models, where
the actors are visually sorted into the defined layers.

The authors also identify three kinds of artifacts in the layer
boundaries: Use cases (between the domain and API user),
API specification (between API user and API), and API model
(between the API and the business assets). In the scope of this
study, these boundary objects were not identified.

B. Goal Modelling

The i* framework was selected for the goal modelling
effort in this study. Yu [9] provides an outline for the i*
framework for modelling of requirements in the early phases
of requirements engineering. An overview of the basic i* goal
model syntax can be found in Fig. 2.

The framework is presented as an effort to make require-
ments “precise, complete and consistent [9]”, and increase the
understanding of a domain to decrease the risk of failure. It
also serves the purpose of helping the stakeholders get a better
understanding of various design possibilities.

Fig. 2. i* Goal Model Syntax

C. Using Goal- and Process Models Together

J. L. de la Vara et al. [10] write about the use of goal models
and process models as complements, and draw a connection
between the two different perspectives by providing guidelines
on how to derive goal models from process models. They
discuss how one perspective supports the another, and how they
can be equivalent in some aspects. For part of the development
of our goal models, the derivation method has been used to
achieve a level of consistency between the goal models and
the process models.

The authors [10] argue that goal models and process
models should be combined when “organizational procedures
are (more or less) well-defined, but an organization expects a
change in them as a result of the development of an [Informa-
tion System] and the system must also support fulfillment of
some strategic goal”. We judge that this situation corresponds
to the one at the case company.

D. Systematic Analysis of Goal Models

Horkoff et al. [11] describe three different methodologies
of systematic goal model analysis: Alternative effects (forward
analysis), achievement possibilities (backward analysis), and
domain-driven analysis (mixed). In forward analysis, the leaf
intentions in the model are first identified. Different implemen-
tation alternatives are evaluated by first attempting to satisfy
all leaves, then none of them, and evaluate both situations. The
elements in the models are given labels based on their level
of satisfaction. The label notation can be found in Fig. 3.

In backward analysis, the roots of the model is looked at.
It is checked if and how it is possible for all roots to be fully
satisfied, and if and how minimum targets can be achieved.
From the latter part of the analysis, the targets can be increased
gradually to find the maximum targets which will still allow

Fig. 3. Label descriptions.

a solution. The mixed approach uses the model to attempt
to answer questions about the domain. If the model cannot
be used as such, the possibility of expanding the model is
considered.

In our case study, we use forward analysis as described by
Horkoff et al. [11] to analyze the two different implementation
alternatives (as-is and to-be) of the goal models.

E. Evaluation of Modelling Languages

Horkoff et al. [4] conduct case studies where they evaluate
the expressiveness and effectiveness of a requirements model-
ing language, and discuss evaluation of modelling languages
in general. In their study, they find several challenges relating
to both expressiveness and effectiveness of the modelling
language. Since we refer to this paper to evaluate our models
and answer our research questions, the procedure is explained
in more detail in section 4: Methodology.

III. RELATED WORK

A. API Ecosystems

An API is a communication channel that provides business
assets and services to the end user through application software
based on the given specification to boundary objects[2] [12]
and supports third party to participate in the development of
application software. Therefore, APIs have ability to attract
new actors to the existing platform. The architecture of APIs
depends on the platform, and relies on continuous development
based on technology and API usage [2] [12]. The goals
of developers and other stakeholders have to be considered
during the development of an API architecture. Actors need
to receive continuous value from the API in order for the
software ecosystem to be said to be suitable and successful.
An inefficient API design may reduce efficiency of the existing
platform and impede its service provision [12].

Considering the importance of the API ecosystem design, a
good analytic tool such as a model or a combination of models
could be highly valuable when developing or making changes
to an API.

Knauss et al. [13] discuss trade-offs caused by the openness
in software ecosystems: the trade-off of keeping communica-
tion open and transparent while keeping some things confiden-
tial, and the trade-off between acting globally (on a long-term
strategy) and locally (answer current context specific needs).

Architectural ecosystem platform openness is characterized
by the ability to provide customer access to business assets
and get free technical service [6]. Extreme openness facilitates
users to modify and enhance the platform to use and run

their instants, while closed openness has limited and carefully
controlled instances that can be run on the platform [6].

A systematic literature review conducted by Manikas et
al. [7] describe that a software ecosystem have an advantage
when constructing large software systems. The paper analyses
the different definitions of an ecosystem and how they behave
on a different platform.

Berger et al. explain a conceptual framework about vari-
ability mechanism across the ecosystem [6]. The paper mainly
focuses on framework using data for each ecosystem, static
analysis of data and the existing dynamic and static variability
mechanisms.

B. Goal Models and Software Design

There are many papers available discussing the use of
goal modelling in the context of requirements engineering.
In addition to the paper by Yu [9], Lamsweerde [14] shows
an example of goal-oriented requirements engineering in his
case study from 2001. In the paper, he defines goals as the
objectives a system should achieve. He argues for how goal
modelling can help with verification, validation and elaboration
of goals, as well as with elicitation of requirements.

There are also a number of papers discussing modelling
and design of software ecosystems. Yu and Deng [15] use a
strategic modelling approach based on the i* framework with
the purpose of the understanding of software ecosystems. Their
models are based on examples taken from earlier work by
Jansen et al. [16], Bosch [17], Popp and Meyer [18], and Popp
[19], and are not meant to be an accurate reflection of an
existing ecosystem. The authors state that the quality of the
models can be improved by applying a “systematic method for
knowledge acquisition and validation with domain experts”.

In a paper by Yu and Mylopoulos [20], the authors illustrate
how the i* framework for goal modelling can be used in a
design context, though for software process design.

In a recent paper, Sadi and Yu [21] propose a goal-
oriented approach for designing open software platforms. The
authors’ outlined approach to model and analyze requirements
focuses on requirement trade-offs, and aims to help with the
decision of which platform design is the preferred one, based
on a compromise between the assessed trade-offs. This paper
outlines a series of steps for describing design decisions,
modelling, and evaluation of the models (provided by the non-
functional requirements framework) which were useful to us.

In a systematic literature review, Horkoff et al. [3] provide
a detailed overview of the literature discussing the use of goal
models downstream. The approaches of using goal models
throughout the entire life cycle (e. g. for elaboration and
validation of requirements) are discussed, and the authors point
out the tendency to focus on new solutions instead of validating
previously proposed solutions. In our thesis, we propose to
apply previously discussed solutions (e. g. the i* framework)
on a new domain (an API ecosystem).

IV. METHODOLOGY

A. Research Context

In this case study, we are looking at the case of one
company’s API ecosystem. The case is a company in the em-

bedded systems industry, which manufactures and distributes
mechatronic devices. Annually, the company is estimated to
manufacture more than sixteen million units. The company
develops profiles for the devices, which are unique for each
model. The profiles can be described as sets of detailed data
which decide the functionality of each device, and how they
will interact with the communication protocol.

The communication protocol is used to transfer data be-
tween devices. It establishes communication among the appli-
cations of different devices and allows the end-user to manage
their system (a number of mechatronic devices controlled by
one or several control units).

B. Data Collection Procedure

The investigation of the company’s current and proposed
API ecosystem design and workflow was done through qualita-
tive data collection through interviews. The initial contact with
the company generated data in the form of system architecture
documentation, technical specification documents, and audio
recordings from two workshops at the location of the company.
The workshops sum up to nearly five hours of collected audio.
These recordings were partly transcribed manually to provide
us with an overview of the information given at the workshops.
As the dialogue was not noted down word for word, time
stamps were added to information with high relevance for the
scope of this paper, making it easy to go back to the original
recording as needed.

From the qualitative data, first drafts of the as-is and to-be
goal models and process models were created. The as-is goal-
and process model were developed to capture the challenges
and bottlenecks identified through communication with the
case company and discussions with the senior researchers.
The improved goal- and process model describing the possible
future API design and workflow (the to-be models) should
capture suggested solutions to the challenges we defined in
the as-is models, as well as their effects.

The i* framework [9], [15] is used to create the goal
models. The i* goal model notation is summarized in Fig 2.

UML activity diagrams (with swimlanes for actors) is used
to model the workflow of interest for the analysis, e. g. the
device profile development process. We used the layered API
modelling framework defined by Hammouda et al. [2] to sort
the actors within the goal models (see Fig. 8 and 10 for high-
level views of the finished models). As seen in the models,
the actors are arranged in four rows, each row representing a
layer. The business assets are modelled at the bottom of the
model, followed by the API layer, API SW layer, and Domain
layer at the top.

Our intention for structuring the goal models this way is
to provide a comprehensive overview of the current and future
suggested API design, and to test the application of the layered
API framework as an analytic tool for API design analysis.

The models were shown to the senior researchers as
well as our contact person at the company, who is one of
the case company’s API owners and involved in the profile
development process. From the feedback received from the
supervisors on these initial models, we corrected and refined
them to better capture the design and workflow of the API

ecosystem. Meetings with the senior researchers were held
weekly, and additional meetings with the supervisors were
planned as needed. Our contact person at the company was
notified of our progress after each model iteration (four in
total) in order to create an opportunity for feedback through
written communication or remote meetings.

At the end of the study, a remote meeting through video
was held with the researchers and our contact person at the
company. The aim of the meeting was to verify the models in
order to create the final versions. The data collection activities
have been listed below and summarized in Fig. 4.

1 Investigate objectives of the company during the cross
company workshop. The workshop was held with the
different organizations and senior researchers involved
in the research project conducted at Software Center
[1].

2 Investigate previous work from research project from
the software centre at Gteborgs universitet.

3 Analyze technical specification documents from the
company.

4 Collect qualitative data to understand companys pro-
file development workflow with company represen-
tative and senior researcher. This was done at a
workshop at the location of the company.

5 Collect related literature to understand modeling de-
sign in relation to API ecosystems.

6 Communicate with companys representative through
email for validation of the first draft as is models.

7 Sent questions for further clarification of previous
answers.

8 Held cross company workshop with the company
representative and the senior researchers.

9 Received a feedback on the second draft of models
from the company representative.

10 Online video meeting with the company representative
and the senior researchers to validate the final models.

C. Analysis Procedure

For the analysis of the goal models, we used the method of
forward systematic goal model analysis as defined by Horkoff
et al. [11]. Each goal and softgoal in the model is given a label
showing its satisfaction level, which is dependant on how the
tasks in the model contribute to each goal. Using this form
of systematic goal model analysis helps us to understand what
effects different goals and interrelations have on the ecosystem,
as well as revealing previously unidentified issues with the
models. Part of the analysis is automatic depending on the
various types of contribution links, but human judgment is
sometimes necessary when a goal has several contribution links
- sometimes contradictory - leading to it.

The initial question to be asked for the forward analysis, as
proposed by Horkoff et. al [11], is of the form ”How effective
is an alternative with respect to goals in the model?” After
labeling the as-is and to-be models’ goals, tasks and softgoals

Fig. 4. Data collection procedure.

somewhere on the spectrum between fully satisfied and fully
denied, the two different alternatives can be compared and the
original question answered.

In summary, we check if the changes made in the to-
be API ecosystem design and workflow provide solutions to
the challenges and unmet criteria from the case company’s
previous system design, and if any additional bottlenecks,
unmet goals or new challenges can be elicited from the models.

In order to evaluate the ability of our models to capture
static and dynamic aspects of the API ecosystem, we refer
to the work of Horkoff et al. [4] on evaluation of modelling
languages. Keeping our first research question in mind, we
want to investigate how goal models and process models
respectively can be used to capture static and dynamic aspects
of the API ecosystem, and if they can effectively be used
together. We evaluate the following attributes:

1) Expressiveness: The ability of the models to capture
aspects of interest in the API ecosystem. As we model, we
take note of if we are able to model everything we want to
model. We take note of

• aspects we are able to capture in either the goal models
or the process models but not both, indicating that the
models work as complements,

• aspects we are able to capture in both the goal models

and the process models, indicating an overlap between
the models, and

• aspects we want to model but cannot find a way to
capture in the goal models or the process models.

2) Effectiveness: Effectiveness in this case refers to the
simplicity with which the models can be used to capture the
aspects of the ecosystem. We take note of

• how easily information can be captured in the models
using the syntax of i* and UML respectively, and

• how easily the information corresponding to model
concepts can be elicited.

In order to answer the second research question (aimed at
exploring how the models can be improved for the purpose
of API ecosystem design analysis), we complement the above
evaluation with other relevant observations made throughout
the model iterations. What changes did we make to the models,
and why? How did they improve the models? Did they help
us discover any previously unmentioned challenges?

V. RESULTS

A. Overview

With the information gathered from the company at the
workshops (see Appendix for interview questions and partial
answers), we created four models visualizing our understand-
ing of the current and future API ecosystem design and
workflow at the case company:

• As-is goal model, visualizing the current API ecosys-
tem design sorted in layers (Fig. 8)

• As-is process model, visualizing the current API work-
flow (Fig. 7)

• To-be goal model, visualizing the API ecosystem
design sorted in layers with implemented suggested
changes (Fig. 10)

• To-be process model, visualizing the API workflow
with implemented suggested changes (Fig. 9)

The identified actors in each goal model have been sorted
into layers as shown in Fig. 5. Descriptions of the actors in
each layer can be found in the Appendix, and the reasoning
for their placement in the API ecosystem is discussed in more
detail later in this paper.

The models have been iterated with the feedback we
received from the senior researchers and the company rep-
resentative to more correctly and clearly display the different
aspects in the API ecosystem and the relationships between
them.

B. Iterations of Models

It is interesting to note that throughout the study, the
models were used at different points in time. More focus
was put into the development of the process models at the
start. This enabled us to gain an understanding of the actors
involved in the profile development process and their different
actions. While the goal models were developed in parallel to

Fig. 5. Company-Specific API Ecosystem Layers.

the process models, these were initially incomplete and largely
independent from the process models. The main focus from the
goal models at the start was to identify actors, sort them into
layers, and reason around possible softgoals for each actor.

Fig. 6 provides a high-level view of an early version of
the as-is goal model (legend can be found in Fig. 2). The
details in the model are not important for this section, but the
relative lack of detail (compared to the later version) should
be obvious. The process models were made more complete
from the start, although these were also iterated with re-
ceived feedback from the senior researchers (concerning visual
representation) and the contact person at the case company
(concerning workflow validity).

As our models work as visual representations of the API
ecosystem design and workflow, it is important how they look.
Our initial goal models (e. g. Fig. 6) were created using
Creative Leaf [22], a free online i* modelling tool. As seen in
the high-level view, Creative Leaf makes it easy to distinguish
between softgoals, goals and tasks at a glance by giving them
vastly different colours by default.

As the goal models became more complex, we moved over
to another tool, OpenOME [23]. OpenOME is an open-source
requirements engineering tool which allows for more refined
shaping of dependency-, contribution-, and decomposition
links, giving the opportunity to make the models more readable
even as they grow more complex. This became important as
the actors and the dependencies between them increased with
each iteration, threatening the readability of the goal models.

C. As-Is Workflow and API Design

The workflow model (Fig 7) shows the current process
which is followed in order to develop the device profiles,
which work as the API for the units in a mechatronic device
system. The process starts with a profile specialist, who works
in a team of developers to create a profile model. The model
presents an idea of what the profile is going to look like, and
its creation involves several steps. After the requirements of
the physical product the profile is going to be used by have
been defined, corresponding data points have to be selected
and sorted into appropriate classes.

When the model has been developed, it is sent to an actor
called the Profile Owner (PO), who verifies the model. The PO
checks that the positions of the data points make sense, and

Fig. 6. Goal model: First draft. High-level view.

that their positions are consistent with the placement of similar
data points in previously developed profiles. If the PO does
not approve of the profile model, they communicate suggested
changes using Git, and the development team reworks the
model. The PO also keeps a record of these changes in a
system. Up until recently, the PO and development team would
have a physical meeting instead of handling change requests
and change tracking digitally. We have chosen to model the
older process in order to analyze the effects of these newer
changes to the workflow.

When the model is approved, the profile is implemented
and a profile specification is written. The specification is an
extensive document which can take months to complete, but
the implementation is only dependant on the finalization of
the data points and their position, and can start as soon as
that part of the specification document is ready. It is the PO’s
responsibility to describe the functionality of the implemented
profile. Product ID’s and serial numbers are hard-coded into
the profile, and the completed specification document is saved
as a PDF in a file-folder structure. The profiles are not publicly
available, but neither are they confidential; a costumer can
request a specific profile, even though it’s not a common

occurrence.

The as-is goal model is partly derived from the process
model since the actors involved in profile development play
a vital role for the API design, and are affected by most
of the proposed changes. Fig. 8 is a high-level view of the
model, and is not meant to be read in detail. Fig. 5 shows
which actors are present in each layer, while detailed overviews
of selected actors can be found later where we analyze the
difference between the models. The PO, profile specialist and
other developers can be found in the domain layer of the
model together with the end-users of the product and other
stakeholders.

The API Software layer contains a cellphone application,
which enables the end user to manage the devices and collect
data. We also consider the controller, which is a control unit
used to manage a network of mechatronic devices, to be part
of the API SW layer. The devices and their control until is
referred to as a mechatronic device system (MD system). The
controller contains a special profile which is a subset of all the
device profiles in the system. The controller profile is produced
by another department within the company.

The API layer has two actors: The communication protocol
(a static communication protocol used to convey data between
devices) and the profiles. The controller in the API Software
layer depends on the profiles to work, and has two-way
dependencies to the communication protocol.

Lastly, the business asset layer in the as-is goal model
contains the aforementioned MD system. Data, which is stored
on the cloud, is also considered a business asset.

D. Challenges and Proposed Changes

In the current workflow, the main challenges we elicited
from the data are to:

1) Limit the time spent on creating a profile model.
2) Limit the time it takes to approve a profile model.
3) Keep a level of consistency between different profiles.
4) Limit the time spent on documentation.
5) Limit maintenance costs.

Since much of the process is done though manual work
(defining data points, sorting them into classes, checking
consistency, writing the specification), the development of a
profile is time-consuming. The profile is validated by one
person, and controlling the position for a thousand data points
and making sure they are consistent with previously developed
profiles is not a simple task. Occasionally (by coincidence), the
PO have several profile models lining up for validation at once,
creating a queue.

After a profile has been validated, the profile specification
has to be written from scratch and the profile needs to be
implemented before being utilized. If a profile needs to be
changed, it goes through much of the same process again
(although more reuse oriented).

To at least partially overcome these challenges, the im-
plementation of profile feature modeling has been proposed.
This would allow the profile specialist to select features rather
than defining the data points, and having much of the artifacts

Fig. 7. As-is activity diagram.

(profile model, profile, specification) generated automatically.
In its initial stage, this solution would only include the most
common features. In an ideal future however, minimal manual
labour would be required to develop and maintain the profiles.

E. Benefits and Drawbacks of Proposed Changes

The to-be workflow (Fig. 9) shows the changed process
after the implementation of feature modelling and digital
profile model change tracking.

After the profile specialist has selected the desired product
features, the profile model is generated through feature mod-
elling. The verification process of the PO remains the same, but
the reporting of the results is as previously mentioned handled
differently (Git, changes stored in system).

The feature model system has taken over the Profile Inte-
grator role, as well as creating the profile specification. With
the Profile Specialist’s role made simpler, there is a possibility
that the PO could take over the activities of requirement
specification and feature selection. This would eliminate the
need for communication between these roles, and remove
potential bottlenecks tied to the interaction.

The to-be goal model was analyzed using forward sys-
tematic goal model analysis as described in the Methodology
section in this paper. Fig. 10 shows a high-level view of the
model. (More detailed views are presented later in this paper.)
Special attention was paid to softgoal satisfaction in the to-be
model compared to the as-is model.

Fig. 11 gives an overview of how the softgoals in the goal
models are affected when the changes are implemented. The
table only includes the actors affected by the changes made to
the models. The initialisms stand for:

D Denied
PD Partially Denied

C Conflict
PS Partially Satisfied

S Satisfied
U Unknown

In the remaining part of this section, we explore the to-
be alternative API ecosystem design and its implication on
softgoals. The softgoals represent the qualitative goals for the
different actors in the API ecosystem. In our collected data,
most of the desired changes in the API ecosystem design was
phrased in a form which could easily be modelled as softgoals
(e. g. “[A development activity] should be as fast as possible”).
Therefore, we chose to focus on the affect on softgoals for
the two alternative API ecosystem designs. To compare the
models, we focus on the actors in which the softgoals are
contained, included in Fig. 11.

1) Profile Specialist: The team of profile developers, the
profile specialist included, wants the profile modeling process
to be as fast and easy as possible. In the as-is model, this goal
is hurt by the manual work of defining data points and sorting
them into classes (Fig. 12). If the profile is built upon earlier
work, and does not have to be developed from scratch, this
helps the goal of fast profile modeling. Since its not uncommon
for profiles to be developed from scratch, the goal is considered
partially denied in the as-is model.

In the to-be model (Fig. 13), the profile specialist simply
selects the desired device features, and feature modelling is
used to generate the data points and the profile model (Fig.
14). This saves time for the profile specialist, and the goal is
at least partially satisfied.

In addition to the modeling of new profiles being fast,

Fig. 8. As-is goal model, high-level view.

updating existing profiles should not be resource-intensive.
The goal to minimize maintenance costs depends on the
maintainability of the profile itself. In the as-is goal model,
the degree of satisfaction of this goal is unknown. In the to-
be model however, the devices profile should be automatically
extended to include new modules when needed, helping profile
maintainability and decreasing maintenance costs.

2) Profile owner: Profile verification: When the profile
owner (Fig. 15) verifies a profile model, they should check
that the data points are consistent with previous models. This
is done to help consistency, but doing so manually could hurt
consistency due to different profile owners having different
ideas of in which class a specific data point belongs, unclear
sorting standards, etc. Accuracy is hurt for the same reason,
and the large number of data points which needs to be checked
means the verification process takes time. Therefore, accuracy
and fast approval are at least partially denied in the as-is model,
while there is a conflict in consistency.

In the to-be model (Fig. 16), the verification process is
left unchanged. However, since feature modeling is used to
generate the model automatically, a smaller effort is required
by the profile owner. Consistency is helped by the feature

model making consistent choices when sorting data points
into classes, indicating the profile owner no longer needs to
check all data points if the feature modelling system works.
Consistency is therefore marked partially satisfied in the to-
be model, while theres now a conflict in fast approval; the
satisfaction rate depends on how much in detail the profile
owner checks the data points. Accuracy remains unchanged in
the model, though it can be argued that theres less of a need
for the profile owner to be accurate if feature modeling can
accurately sort the data points into classes.

To minimize human interaction in the verification process,
the use of Git is introduced in the to-be model (in practice this
has recently been implemented at the case company, but not
included in the as-is model in order to analyze the benefits).
When suggesting changes to the profile model, the product
owner would previously call for a meeting. The possibility
of a meeting depends on the availability of the stakeholders
(profile owner and profile specialist), which can slow down
the verification process. Suggesting the changes in Git instead
helps to minimize human interaction in the to-be model. As
a part of the changed routine, the model changes are also
reported in a system which makes it possible to trace the

Fig. 9. To-be activity diagram.

changes to the profile.

3) Profile owner: Profile specification documentation: The
profile specification is an extensive document which takes a
long time to write if written from scratch, as is the case in
the as-is model (Fig. 15). The goal of fast documentation is
partially denied. In the to-be model, the specification is at least
partially generated together with the profile model (Fig. 14),
which helps the goal of fast documentation (Fig. 16). The goal
is also partially satisfied in the to-be model by an improved
way of storing the profiles. The addition of a database (Fig. 17)
makes it easy to access and change specific profile specification
information by querying the database. In the as-is model, the
specifications are stored as PDF-files in a folder system, which
hurts the goal of effectively accessing the information needed
to update an existing profile.

4) Controller: The controller should be able to manage
large systems, which is currently a limited ability. The con-
trollers profile is a subset of all the profiles of the mechatronic
devices in the system, which means the system can only
contain as many devices per controller as the controller profile
allows. If the profile can be extended past its current limits
it would partially satisfy the goal (Fig. 18), although there is
likely to always be an upper limit for how large a system one
controller can handle.

5) Profile: In the as-is model, serial numbers are hard-
coded into the profile (Fig. 19). This hurts security, so in
the to-be model, serial numbers are accessed from an external
source (Fig. 20). It is unclear how the current API system

affects maintainability and extendability. In the to-be model,
the profile can be automatically extended to include additional
functionality of new modules, which satisfies the extendability
goal. Maintainability are also helped by this change.

VI. DISCUSSION

We divide the discussion into two sections. First, we
attempt to answer the research questions with the help of the
insight gained during the model development process. After
that, we discuss the different concepts which led to the answers
in more detail.

A. Answers to the Research Questions

1) RQ 1.1: How well can goal modelling be used to capture
the static aspects of API ecosystems?: The goal models in
this study captured most of the relevant aspects elicited from
the data, were received well by the case company because of
their level of detail. The contribution links to softgoals and the
dependencies between actors in the API ecosystem provided
especially valuable information to the company.

2) RQ 1.2: How well can process modelling be used to
capture the dynamic aspects of API ecosystems?: The process
models were important tools for the researchers to understand
and get an overview of the current and planned workflow.
The models, which are UML activity diagrams, effectively
communicated how different actors in the API ecosystem
interact. However, they were not frequently used in the analysis
of the ecosystem once the workflow was understood by the

Fig. 10. To-be goal model, high-level view.

Fig. 11. Softgoal Analysis.

researchers. The aspects captured by the models did not
provide new insight for the case company, i. e., the activity
diagrams were less expressive than the goal models.

3) RQ 2.1: How can goal models be improved for the
purpose of API ecosystem design analysis?: The main chal-
lenge in the analysis of the ecosystem using goal models was
instances of conflicting contribution links between tasks and
softgoals. In many cases, the level of fulfillment of a softgoal
is not clear to the researcher. For the analysis to be accurate,
more qualitative data is required from the modelled actors in
order to make an appropriate judgment and compare two API
ecosystem design alternatives.

4) RQ 2.2: How can process models be improved for the
purpose of API workflow analysis?: In our process models,
action duration (the time it takes to complete an action) is not
modelled. Many of the softgoals modelled in the goal models
concern time efficiency, and being able to elicit potential
bottlenecks causing time inefficiency from the process models
could improve the analysis of the workflow. As previously
mentioned, the order of events is something which can not be
captured in a goal model (as the latter shows static aspects), but
once the goal models had been finalized, the process models
as they are designed in our study did not offer much valuable
information for the analysis of the company’s API ecosystem.

Fig. 12. Profile Specialist in the as-is goal model.

Fig. 13. Profile Specialist in the to-be goal model.

B. General Discussion

1) Expressiveness of Models: The goal models can be
partially derived from process models [10], and have therefore
some aspects in common, providing a way to check the
consistency between the models. The tasks in the goal models
correspond to the actions in the process models, and the actors
in the goal models are represented as swimlanes in the process
models. De la Vara et al. propose that the process (or sub-
process) itself denotes a goal in the goal model (e. g. ’Profile
Verification’ in the process diagrams can be found in the goal
models as a goal decomposed into tasks). Softgoals, however,
are only found in the goal models.

Modelling the different actors in the API ecosystem using
i* goal modelling was occasionally challenging. While we
found it easier to show the structure of the API ecosystem
using goal modelling rather than using process modelling, it

Fig. 14. Profile Feature Model in to-be goal model.

Fig. 15. Profile Owner in the as-is goal model.

was not always obvious where in the layered API framework
a specific actor belongs. A mechatronic device, for example,
can be a business asset. It can also belong to the API Software
layer, if we look at it from the perspective of its software which
is accessing the API layer. In our final goal models, it has been
included in the Domain layer since it is communicating with
the Controller, which in turn is using the API.

The decision of where in the API ecosystem an actor
belongs could be discussed at length (and in fact has been), and
would benefit from several models where the actors are placed
in different layers depending on perspective and different
ways of reasoning about their most important function in the
ecosystem. Only one set of final as-is and to-be models was
developed within the scope of this study.

We believe that using the layered API framework to model
the API ecosystem as a goal model increased the readability
of the models. Extensive goal models tend to spread out like
a web, sometimes making it difficult to get an overview of the
models. By structuring the actors into clearly defined layers,
actors and shared resources are easy to locate, both while

Fig. 16. Profile Owner in the to-be goal model.

Fig. 17. Database in the to-be goal model.

communicating about the models and during the modelling
effort itself - if we know what role an actor has in the API
ecosystem, we know where to look for it.

However, the layered structure provides limitations for the
direction of dependency- and contribution links. This is made
especially clear in the to-be goal model (Fig. 10) where there
are many links between the Domain and the Business Asset
layers. Links running too close in parallel and sometimes
crossing each other might decrease readability of the models.
If we did not care about the layers, we might have been able
to get around that problem by placing connected actors closer
to one another, making the links easier to follow. Respecting
the layers, this is not an option.

Fig. 18. Controller in the to-be goal model.

Fig. 19. Profile in the as-is goal model.

For the sake of comparison between the as-is and the
to-be goal model, it was tempting to model aspects in the
system as actors, even though they are not particularly ’active’.
The database in the to-be model replaces the current file-
folder system. While the database can perform an action (e.
g. respond to a search query), the file system is passive. This
results in the database showing up as an additional actor in the
to-be model, and the notion that it’s replacing another form
of file-storing system is not clear, which gives the as-is goal
model a sense of incompleteness.

As we iterated the models to make them more accurate
and detailed by accounting for elicited data, we sometimes
had to make design decisions based on a trade-off between
completeness and simplicity. This is especially true for the

Fig. 20. Profile in the to-be goal model.

goal models. The models should be complete enough to be
useful for analysis, e. g. we should be able to infer challenges
and bottlenecks from them. At the same time, they should be
understandable. As we add more tasks or find more softgoals
and goals for an actor, and add more actors to the API ecosys-
tem model, the models became more difficult to understand
(possibly without gaining much in terms of usefulness of the
models in an analysis), which has a negative impact on the
effectiveness of the model.

We have limited the scope of the goal models by excluding
actors which are judged to be too far from the actors in the
API layer and the changes implemented in the to-be model.
An example of such an actor is the Mechatronic Device
Manufacturer. Within the actor boundary, the number of goals
and tasks are limited by not showing more than one or two
levels of abstraction (a task can have subtasks, but the subtasks
do not have subtasks themselves). The softgoals derived from
the data is included in the models, while highly probable but
unmentioned ones are excluded unless the changes in the to-
be model are expected to have a considerable effect on the
softgoals.

In general, human judgment was frequently used both
while developing the goal models and when analyzing the
models using systematic forward goal model analysis [11]. As
previously mentioned, the contribution links tells us (and the
semi-automatic analysis software) how a task contributes to a
softgoal, but not how much. Does several “hurt” contribution
links make a softgoal denied, or partially denied? Does several
“help” contribution links tip the scale to “partially satisfied”
even with an active “hurt” link present? These decisions can
only be made subjectively, and is up to the actor to judge (in
the case where the actor is a person) rather than the person
doing the modelling. In the more uncertain cases, we chose to
use the ”Conflict” label.

2) Effectiveness of Process Models: The layered API
framework [2] introduced in the first section of this paper
has only been applied to the goal models developed in this
study. Using the layers in the process models as well was
found to be more tricky, especially since we chose to only

model the workflow for part of the API ecosystem (namely,
the development of a mechatronic device profile). The process
models involve at most two layers - the Domain (developers
and PO) and the Business Asset layer (the profile feature
model).

Since we were mainly interested in the differences between
the as-is and to-be models, other workflows were not modelled
as these are expected to remain largely unaffected by the
changes in the profile development workflow. However, had
we had time to develop another process model spanning over
all the layers in the ecosystem (e. g. how the user accesses data
using the mobile app) a possible solution for displaying the
layers in a UML Activity Diagram could be to use swimlanes.
This would likely happen at the cost of displaying the actors
as swimlanes, as creating a grid (with actors on vertical
swimlanes and API layers on horizontal swimlanes) seems
unnecessary as an actor only perform its role in one layer.

3) Compatibility of Models: The use of the process models
and goal models together provided some value for the analysis
of the API ecosystem. The models essentially represent two
different ways to look at the same thing (the API ecosystem
in terms of goal fulfillment and the API ecosystem in terms of
activities), and share similarities as discussed by de la Vara et
al. [10]. Even so, the use of process models in addition to the
goal models made it possible to gain an initial understanding
of the underlying process of profile(/API) development of the
company. In other words, the natural tendency within the study
was to use the two types of models sequentially rather than
together.

If the vocabulary is kept consistent between the models
(i.e. tasks in the goal models being phrased exactly the same as
actions in the process models) the different models can be used
together to infer different information about the same aspect of
an API ecosystem. For example, one of the goals of the Profile
Owner is to verify the profile. The swimlane representation of
the PO in the process diagram shows the actions they have
to take in order to meet this goal, and in which order. In the
goal model, we can see how these actions (or tasks) affect the
qualitative aspects important to the PO (or softgoals). If the
vocabulary is inconsistent between the models, this becomes
much harder, which works as an argument in favour of using
derivation techniques (such as the one suggested by de la Vara
et al. [10]) to increase model consistency.

Dependencies are explicitly modeled in the goal models,
which means that the necessary sequence of actions can be
implied in the from the dependencies of shared resources cre-
ated by an action. For example, the action ”Check consistency
of data point positions” (undertaken by the Profile Owner)
depends on the development of the profile model, which in turn
depends on the task ”Sort data points into classes” (undertaken
by the Profile Specialist or Feature Model).

4) Value of the Models to the Case Company: By creating
the models based on the needs of a real company, we have
been able to experience and evaluate the usefulness of the
models as analytic tools. The models provide an overview of
the ecosystem which makes it possible to identify the important
actors and how they are connected.

In addition, the clear overview of the softgoals in the goal
models provides an opportunity to develop a goal-oriented API

ecosystem design. The presence of unfulfilled softgoals helps
us ask relevant questions which enables us to start thinking
about ways to resolve unfulfilled requirements. Though the
goal models were initially perceived as difficult to read by
the company representative, the details in these models got a
positive response and could serve as a foundation for further
investigation into a different perspective of the API ecosystem
design in the long run.

At the latter half of the study, most of the attention of the
group of researchers and the company went to the goal models.
The process models worked largely as an initial one-way
communication tool between the company representative and
the researchers: We modelled the current and suggested future
profile development processes based on the data, and verified
our understanding of the workflow by asking for feedback. The
process models did not tell the company anything they did not
already know, but served as a way for the researchers to get a
clear idea of what is done when, and by who.

5) Suggested Improvements to the Models: To further im-
prove the models for the purpose of API ecosystem analysis,
they could benefit from a way to quantify the effect of tasks
on goals (goal model) and a validity check of the goals
with the concerned actors. At the same time, the level of
complexity should not be so high that the models are difficult
to understand, while still providing necessary information for
an ecosystem analysis. A too simple or abstract model shows
an incomplete picture, and is not enough to analyze the effect
a change might have.

A complex model, such as our to-be goal model (Fig.
10) shows a number of actors which remain unaffected after
the changes in the system has been implemented. Their lack
of softgoals make them unimportant to the analysis unless
their tasks influence the softgoals of other actors, which might
imply that these actors should have either been excluded from
the model (adding complexity without providing considerable
analytic value) or have been researched more in detail to find
out their softgoals, and how these are affected (if at all) by the
implemented changes.

There are some aspects which were not modelled in either
of the selected model types. An example of that is the
challenge of the PO having many profile models to verify
at one point in time. This is an important challenge which
should be addressed when coming up with an alternative
workflow. Modelling the many-to-one relationship between the
“profile model” (i*-)resource/(UML-)object and “model profile
verification” task/action could increase the models’ potential
to be used as an analytic tool for discovering bottlenecks in
the API ecosystem design.

We think that displaying the duration of a task/action would
also increase the ability to use the models to analyze the API
workflow. In the goal models, time is an important factor (as
shown by softgoals such as ”fast documentation” and ”fast
approval”). We believe that the ability to tell at a glance
where the time is spent would assist in the development of an
improved workflow, by making it easier to find the bottlenecks.
Rather than (or in addition to) using a UML Activity Diagram,
which has the primary purpose of showing in which order
activities happen, an alternative process diagram could be used
to allow for activity duration to be showed. It could also be

displayed via annotation over the model, as a way of getting
around the limited modelling language grammar. In addition to
time, the models do also not display other quantitative aspects.
The goal models show in which direction a task influences a
softgoal, but not by how much.

VII. THREATS TO VALIDITY

A. Internal Threats to Validity

Most of the company-specific data used to create the
models were collected from one person at the company, which
implies that there could be some bias. However, at the very first
workshop, where most of the challenges in the API ecosystem
design were discussed, several people from the company were
present. After that point, the feedback on the models has come
mostly from our contact person at the case company.

Even so, our main focus in this study was to explore how
two kinds of models can be used together as complements, and
how they can be improved. We believe this is unaffected by
the potential bias in the company-specific data. The research
process and the resulting models have been reviewed in
each iteration by other researchers in the project group. The
implications of the models (individually and as complements)
have been discussed openly among the researchers (students
and senior researchers).

B. External Threats to Validity

There are some threats in the validity of study in order to
come up with concrete and generalized conclusion to make
a study workable to other company. One of the most and
crucial validity threats in the study is data originates from
a single source, there was no any additional data source
for using a triangulation methodology to see how this study
workable in similar situation in other company. One senior
research and a student made a face-to-face interview with a
company representative, who is profile specification specialist.
The interview did not include profile developers to find other
relevant information to this thesis.

C. Construct Validity

In order to find out how well goal and process models
can be used together to analyze an API ecosystem design,
we evaluated the models in terms of expressiveness and
effectiveness. We believe that the analysis of these qualities
are able to capture some of the traits which make the models
suitable to use as analytic tools for an API ecosystem design
purpose. However, expressiveness and effectiveness does not
capture everything. For example, while the ability to easily
capture relevant information in a model per definition means
it is effective [4], it does not capture how well they can be
understood. As more details are added to the model, the more
expressive it becomes while also becoming more complicated
to understand.

In addition, effectiveness in particular is used as a sub-
jective measurement in this study. No form of quantifiable
information was used to justify the ease of which an aspect in
the API ecosystem was modelled. It is therefore possible that
another researcher could formulate a different answer to the
question of effectiveness of the models (and by extension how

well they can be used to capture aspects of an API ecosystem)
based on the same data.

VIII. CONCLUSION

In this case study, we tested the application of goal and
process models as analytic tools to discover and mitigate
the challenges and bottlenecks associated with the change
in the API ecosystem design at the investigated company.
We investigated whether goal and process models can be
used individually or as complements to effectively capture the
dynamic and static aspects of an API ecosystem using two
snapshots (the as-is and to-be models). The goal models were
used to analyze the static aspects of the API ecosystem, while
process models were used to analyze the activities of the case
company’s profile development workflow.

From our evaluation, the goal models worked especially
well as communication tools for the redesign of an API
ecosystem. Due to the expressiveness of the i* framework,
they exposed challenges in the form of unfulfilled softgoals and
enabled the viewer to understand how different actors depend
on each other. They provided an opportunity to develop a goal-
oriented ecosystem design by working as a base for discussion
of how to satisfy denied softgoals. Sorting the actors into layers
gave a structured overview of which role each actor has in
the API ecosystem. On the other hand, the models quickly
became more complex and difficult to understand as they were
becoming more complete, and eliciting information about how
task affect softgoals is a challenge.

The activity diagrams were mainly used at the beginning
of the study to allow the researchers to get familiarized with
the case company’s workflow, and the company showed a
greater interest in the goal models. The process models are
believed by the researchers to have worked better as analytic
tools to discover bottlenecks in the API ecosystem workflow
if action duration (i. e. the time it takes for an action to be
completed) would have been modelled. Limiting the amount of
time spent on different areas of the API development process
was an important goal of the API ecosystem change, and we
believe that quantitative information in the models would help
to discover and address more challenges and bottlenecks.

IX. FUTURE WORK

For future research, we propose to further explore the
possibility of adding quantitative measures to the fulfillment
of goals. We would like to see a way to analyze the degree of
satisfaction of a softgoal without having to rely as much on
human judgment.

There is also a potential of experimenting more with the
placement of actors in the different layers. If we were to create
additional goal models from different perspectives, this would
potentially affect the outcome of the analysis, and enable us
to make more discoveries in terms of positive effects and/or
new challenges of implemented changes.

The boundary objects between layers, identified by Ham-
mouda et al. [2], were not considered in the scope of this study.
The artefacts (use cases, API specification, and API model)
affect adjacent layers when they change, and the research
has found that most problems in API management “come

from unilateral change of the boundary objects. It is therefore
important that these artifacts are known by the company
in order to use them in API strategy. We propose that the
boundary objects are defined and analyzed in future work.

We would also like to see a similar approach using other
modelling languages to model an API ecosystem design and
workflow. A sequence diagram allows for duration constraints,
and there are also other process diagrams which offers a
simple and grammatically correct way to denote time. The
development of such a model could make the process model
more valuable as an analytic tool for API ecosystem design.

ACKNOWLEDGMENT

We would like to thank the senior researchers Imed Ham-
mouda, Jennifer Horkoff, and Juho Lindman for their guidance
and support in completing this study.

Finally, we express our profound gratitude to our partners
for their continuous encouragement and countless support
throughout the period of writing this thesis.

REFERENCES

[1] Software Center. http://www.software-center.se/research-
themes/technology-themes/customer-data-ecosystem-driven-
development.

[2] Imed Hammouda, Jennifer Horkoff, Eric Knauss, and Juho Lindman.
Emerging perspectives to api strategy (in submission). 2017.

[3] Jennifer Horkoff, Tong Li, Feng-Lin Li, Mattia Salnitri, Evellin Car-
doso, Paolo Giorgini, and John Mulopoulus. Using goal models
downstream: A systematic roadmap and literature review. 2015.

[4] Feng-Lin Li Tong Li Jennifer Horkoff, Fatma Basak Aydemir and John
Mylopoulus. Evaluating modeling languages: An exampleffrom the
requirements domain. Lecture Notes in Computer Science, (8824):260–
274, 2014.

[5] Rik Eshuis and Roel Wieringa. A formal semantics for uml activity
diagrams - formalising workflow models.

[6] Thorsten Berger, Rolf-Helge Pfeiffer, Reinhard Tartler, Steffen Dienst,
Krzysztof Czarnecki, Andrzej Wasowski, and Steven She. Variability
mechanisms in software ecosystems. Information and Software Tech-
nology, 56(11):1520–1535, 2014.

[7] Konstantinos Manikas and Klaus Marius Hansen. Software ecosystems–
a systematic literature review. Journal of Systems and Software,
86(5):1294–1306, 2013.

[8] John Mylopoulus. Information modeling in the time of the revolution.
Information Systems, (23(3-4)), 1998.

[9] Eric S. K. Yu. Towards modelling and reasoning support for early-phase
requirements engineering.

[10] Jose Luis de la Vara, Juan Snchez, and Oscar Pastor. On the use
of goal models and business process models for elicitation of system
requirements. 2013.

[11] Eric Yu Jennifer Horkoff and Arup Ghose. Interactive goal model
analysis applied–systematic procedures versus ad hoc analysis. In IFIP
Working Conference on The Practice of Enterprise Modeling, pages
130–144. Springer, 2010.

[12] Imed Hammouda, Eric Knauss, and Leonardo Costantini. Continuous
api design for software ecosystems. In Rapid Continuous Software
Engineering (RCoSE), 2015 IEEE/ACM 2nd International Workshop
on, pages 30–33. IEEE, 2015.

[13] Eric Knauss, Daniela Damian, Alessia Knauss, and Arber Boricia.
Openness and requirements: Opportunities and tradeoffs in software
ecosystems. 2014.

[14] Axel van Lamsweerde. Goal-oriented requirements engineering: A
guided tour. 2001.

[15] Eric Yu and Stephanie Deng. Understanding software ecosystems: A
strategic modeling approach. 2011.

[16] S. Jansen, A. Finkelstein, and S. Brinkkemper. A sense of community:
A research agenda for software ecosystems. ICSE Companion 2009,
pages 187–190, 2009.

[17] Jan Bosch. From software product lines to software ecosystems. In
Proceedings of the 13th international software product line conference,
pages 111–119. Carnegie Mellon University, 2009.

[18] K. Popp and R. Meyer. Profit from software ecosystems. 2010.
[19] K. Popp. Definition of supplier relationships in software.

http://www.drkarlpopp.com/resources/ICSOBSubmission2.pdf.
[20] Eric S. K. Yu and John Mylopoulus.
[21] Masha H. Sadi and Eric Yu. Modeling and analyzing openness trade-

offs in software platforms: A goal-oriented approach. 2017.
[22] Creative Leaf. http://creativeleaf.city.ac.uk.
[23] OpenOME. https://se.cs.toronto.edu/trac/ome/wiki.

APPENDIX

A. Goal Models: Actors

1) Level 4: Domain

• Mechatronic device: A device produced by the com-
pany to perform a specific task.

• End User: Refers to users of the product (mechatronic
device, MD system).

• App Developer: A to develop mobile application used
for operating the device/system.

• Profile Specialist: A person who are develops the
device profile.

• API Consumer: System which utilises the API.

• Profile Owner: A person who verifies a profile.

• Communication Device Stakeholder: A person devel-
oping special profile for the control unit (controller
profile).

2) Level 3: App SW

• Mobile App: A mobile phone application used to
access the device/system data.

• Controller: A device used to control the mechatronic
devices in a system.

3) Level 2: API

• Communication Protocol: A static communication
protocol used to convey data to between devices.

• Profile: This refers to the set of detailed device data.

4) Level 1: Business Asset

• Mechatronic Device (MD) Data: Refers to data gen-
erated when the device is in operation.

• MD System: Refers to a system of mechatronic units,
controlled by a controller.

• Database: Refers to an electronic filing system.

• Feature Model: A model that capture the systems
relevant for a stakeholder of a product line.

