
Identifying relevant change sets to
facilitate change impact analysis
Design Science Research
Bachelor of Science Thesis in Software Engineering and Management

Kristiyan Dimitrov
Marcus Nilsson

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose
make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

Identifying relevant change sets to facilitate change impact analysis
Design science research

Kristiyan Dimitrov
Marcus Nilsson

© Kristiyan Dimitrov, June 2017.
© Marcus Nilsson, June 2017.

Supervisor: Jan-Philipp Steghöfer & Salome Maro
Examiner: Francisco de Oliveira Neto

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Identifying relevant change sets to facilitate change
impact analysis
Design Science Research

Kristiyan Dimitrov
Gothenburg University
Gothenburg, Sweden

gusdimkr@student.gu.se

Marcus Nilsson
Gothenburg University
Gothenburg, Sweden

gusnilmaed@student.gu.se

Abstract—conducting a change impact analysis may prove to be a
difficult and costly endeavor. Estimating the potential effects a
change would have on the system is essential in nowadays
software development where the project budget and deadlines
are paying an important role. An inaccurate estimation could
lead to a potential failure in the project or delay in the release of
the software. But the process of change impact analysis itself also
costs resources to conduct. The study observes whether the
process of change impact analysis can be improved in terms of
time spent and errors made by using a traceability graphical
representation and hiding irrelevant trace links on a system level,
based on a cross-cutting approach proposed by [1].

Keywords—Traceability, change impact analysis, software
engineering.

I. INTRODUCTION

We live in a dynamically changing world, the area of
software engineering in particular is in a constant state of
change. Changes may occur in the user requirements, business
goals or be caused by technological advancement. As such
change management has become an essential part of producing
high-quality software. Identifying the artifacts affected by a
change within a system and estimating the cost is a key process
to cost-efficient development [1].

To understand the problem at hand, an understanding of the
impact of change needs to be made. Change Impact Analysis
(CIA) is a process of identification and estimation. Identifying
the consequences a change would have on the system and
estimating the resource cost that would be incurred by
conducting that change [2, 3]. For an accurate estimation to be
made, the artifacts affected by a change must be correctly
identified. A change could potentially affect large disjoints of
the system, hence the resource cost, such as time or money, for
conducting a change would raise significantly. Such a cost
increase, which may be above the project budget, would result
in a negative cost-to-budget ratio or unmet project deadlines
[3]. As a result, a significant amount of time has to be spent on
CIA. There are various ways of identifying affected artifacts by
a change [4]. One such way of identifying the affected artifacts

by a change is traceability. The process of identification, in the
case of this paper, shall be treated as the act of using
traceability to identify the affected artifacts [5]. Traceability is
used for tracking the connections between the various artifacts
within the system. It allows for a trace link between a source
and a target artifact to be established and stored [15]. Once
stored, the links can be graphically represented, hence giving a
visual description of the links in the system to the analyst.
Combined with CIA, traceability has become a vital part of the
development process in software companies and the subject of
other studies [7].

A. Motivation

 Complex systems are composed of many interconnected
artifacts. Traceability links of such systems result in complex
trace-link trees due to the number of traces that cover these
connections. As the complexity of such systems increases,
conducting a change becomes more difficult. Despite the
presence of several studies that present frameworks and
approaches for conducting a CIA [4, 5], the process remains
difficult due to the uncertainty involved in identifying the
affected artifacts, unless traceability has been a part of the
design process [6]. Through a case study it has been
established that traceability links reduce the difficulty of
identifying details which influence the change for
programmers, but fail to do so for the higher level decision
makers to understand the impact and make a wise decision [7].
The same conclusion has been reached about traceability on
requirements, where measurements for impact analysis are
made on the links between artifacts [8]. Other studies
observed how much time is spend per developer on CIA. The
end result varies significantly and the argumentation as of why
from different senior developers, is that it depends on the
complexity of the involved component while another says that
it also depends on the structure of the documentation [2]. Due
to this gap, we see the need to investigate how traceability
visualizations can be improved to better facilitate CIA.

B. Purpose statement

 The purpose of this design science research is to improve
change impact analysis by hiding less relevant traceability
links. For this process a software artifact shall be constructed
and quantitative analysis methods will be used. To construct
the artifact and fulfill the purpose the following research
questions have been determined:

RQ1: How can traceability links be enriched to better
support change set identification?

 RQ1.1: Would hiding less relevant trace links reduce
the time spent per developer on CIA?

 RQ1.2: Would hiding less relevant trace links reduce
the number of errors made during the process of
identification of affected artifacts?

II. RELATED WORK

 The body of literature for traceability and CIA is
considerably big. Some studies focused on the fundamentals
for traceability and its overall body [15], while others focused
on designing traceability as for it to be incorporated within the
system [6]. Likewise for CIA in software systems there can be
found studies that focus on the overall body [18], while others
focused on presenting different approaches as to conduct CIA
[4, 5].

A. State of the Art

 Nowadays trace links can be created manually, semi
automatically or fully automatically [17]. Studies have defined
different methods for creating traces between artifacts such as
trace links between documentation and source [9], model-
based traceability [14] and requirements traceability [7, 15].
Today, in the case of Capra, all trace-links are created without
displaying the relevance of the change sets. A change set is a
set of artifacts that are connected through some form of
connection, i.e. dependency, inheritance, shared variable, etc.
A relevant change set is the set of artifacts that will have an
impact when making a change to a part of a software system.

B. Potential for Improvement

 Different solutions have been observed from various points
of view. One such point of view is observing a single
component from traceability and designing a new artifact out
of its base. By observing traceability strategies and their
usability, a model-driven approach towards traceability was
established [14]. Another study focused on a goal-centric
approach towards requirements traceability, aims at long-term
maintenance [16]. Goal-Centric Traceability provides
developers with a means of handling functional changes
within non-functional requirements. This approach retrieves
traceability links from the non-functional requirements but is
highly dependent on the human factor [17]. Without a human
to filter out non-relevant traces when conducting a change,
this approach suffers from a great deal of imprecision.

 Both of these approaches are heavily focused on
requirements traceability and are subject to imprecision
without the human factor to filter out the relevant change sets.
While these approaches retrieve the traces from
documentation, the relevance of the trace in regards to the
change observed in the CIA is unreliable, thus increasing the
time spent per developer on CIA.

III. BACKGROUND

 In this section background information about traceability
and the tool that shall be used to test the solution shall be
given.

A. Traceability

 Traceability is the potential for traces to be established and
used. A trace is a triplet of elements: source artifact, target
artifact and a trace link [15]. For traceability to be effectively
used, every trace needs to be created, represented and stored.
For the creation, representation and storing of the traces, the
traceability tool Capra shall be used. Throughout the paper the
term ‘change set’ shall be used to represent all affected
artifacts by a change.

B. Capra

 Capra is a configurable and extendable traceability
management tool based on the Eclipse Modeling Framework
(EMF). It is an Eclipse plug-in and provides the ability to
create, visualize and maintain trace links between arbitrary
software artifacts like requirement documents, UML models,
source code, etc. with a simple drag-and-drop function [10].
Various organizations use diverse traceability methods, Capra
copes with such conditions by allowing the option of creating
Artifact Handlers which support the type of artifacts which the
user requires to be linked. Capra on its own provides handlers
for Java methods, classes, properties, etc. and C functions,
classes, properties etc., as well as Hudson builds and EMF
based models like the Papyrus UML models.

IV. METHODOLOGY

A. The Artifact

For traceability to be effectively used it must be part of the
design process of the system [6, 1]. Without the necessary
architectural structure that supports tracing, traceability may
prove to be an extensively difficult task. For the design of the
artifact several architectural assumption had to be made as to
both assert which traceability links are less relevant and to
automate the process of hiding such links and reducing the
complexity of the trace link trees.

1) Architectural Assumptions

 As stated by Antoniol et al. [9] traceability is a process
of information retrieval, when the links are created
automatically, and only a human analyst can make the final
decision of whether the information retrieved is actually
relevant. This leads us to the conclusion that absolute
calculation of relevance in any possible scenario is
unfeasible. This on the other hand does not necessarily
mean that the information retrieved is not relevant. Several
studies confirm that traceability needs to be essentially part
of the architectural design process [1, 6], as to allow more
efficent tracing. Similarly, other studies focus on tracing
between a set of arbitrary artifact, i.e. between code and
documentation as to improve the process of tracing [9]. The
artifact that is constructed as an addition to Capra structures
all of those arbitrary artifacts under a top-down architecture,
following a parent-child approach that accomodates the
source-target artifact methodology of traceability, explained
in more detail in the example below. This allows for several
assumptions to be made as to allow calculation of relevance
between the affected artifact and the other artifacts that
compose the system. The solution is inspired and follows
similar rules to those of van de Berg et al. [1], namely the
fact that the parent of the changed artifact is considered but
not the children of the parent.
 On figure 1 we can observe a traceability graphical
representation generated by Capra. In the example,
AAA.java is the parent node of BBB.java and CCC.java,
CCC.java is the parent node of DDD.java, EEE.java and
GGG.java, etc. If a change were to occur on artifact
CCC.java, the relevant artifacts would be the children and
distant children (FFF.java) of CCC.java, the parent of
CCC.java (AAA.java) but not BBB.java. Since we change
CCC.java, then the relation of {AAA.java, CCC.java},
{CCC.java, DDD.java}, {CCC.java, EEE.java}, {CCC.java,
GGG.java} and {EEE.java, FFF.java} would be affected by
the change but the relation {AAA.java, BBB.java} would
not change. Hence a change in CCC.java would result in
every artifact being affect except BBB.java.

On Figure 2 a realistic system view example can be seen.

Assuming a change happened in the ‘Requirement1.xml’ file
and we wish to see only the relevant to that file components of
the system. Applying the filter would give us a new graphical
representation which now lacks the files that do not affect the
‘Requirement1.xml’ as it can be seen on Figure 3.

2) Rules
 The system must be designed in a way as to follow the
rules below:

 The traces must be directional, i.e. a source

artifact cannot be a target artifact in relation to its
target artifact. Vice-versa a target artifact cannot
be a source artifact in relation to its source
artifact. This rule is necessary because the
approach cannot work unless the root, top-most
parent, is detectable.

 A change of an artifact would result in a change
of all of its children and distant children as well as
the parent and distant parent of the changed
artifact but not the children of the parent / distant
parent. The rule is based on the approach and
rules stated by van den Berg et al. [1] as to create
the architectural assumptions necessary for the
artifact to work.

B. Technical Details

 The algorithmic approach used is a Depth First Search
(DFS) to get all the child nodes of the selected artifact [13].
The decision was inspired from van den Berg et al. [1] and the
explanation they provide of which parts of a software system
is affected by a change of a certain node in a certain layer.
 The DFS will search for a new child along a path from the
selected node until there are no more child nodes before

considering the next path. This opposed to another alternative
that was considered, the breadth first search, which considers
all outgoing paths from a node (all child nodes owned by this
node) before continuing, saves memory and allows the
algorithm to run on larger systems.
 When all child nodes have been discovered the tree is
searched top – down until it finds a connection leading to the
selected node (the node suffering a change) and marking this
as the new selected one. After this the algorithm recursively
loops back and search for a connection to the new selected
node.
 Following this approach we end up with a complete tree
consisting of the node that was originally identified as the
source of the change, all the child nodes and all the direct
parent nodes but no new child of any of the parent nodes.

C. Implementation

An experiment has been conducted to assert if the findings
of this study can be used to make CIA efforts faster and more
accurate. This has been realized through the possibility of
hiding irrelevant trace links through the constructed artifact.
For the experiment, students and developers from field of
software development were used as sample groups. More in
information about the experiment is presented in Section IV.

D. Evaluation

 To evaluate the artifact hypothesis testing will be used.
First the statistical data gathered from the experiment will be
plotted in a box-plot to receive visual confirmation of the data
and define outliers [11]. If outliers are discovered, they will be
investigated in person separately and deemed whether they
should remain or be omitted from the data. This is due to the
fact that the outlier may be the result of an outside factor
unimportant to the study or is actually important to the end
result. Once the outliers have been handled, the data will be
ran through a normality test as to determine the type of
statistical test to be used. If the data is normally distributed, it
will be ran through a parametric test to ensure power [11], if
the data is not normally distributed, it will be ran through a
non-parametric test. Further information on the hypothesis is
presented in Section III.

V. EXPERIMENT DESIGN AND PREPARATION

A. Subjects

 The subjects selected are developers with hand-on practical
experience as well as students from Gothenburg University
bachelor level software engineering as well as from master
programs within the field of software engineering. None of the
participants have experience in conducting a change impact
analysis. The total sample consists of 12 subjects, divided
randomly between a control group and a treatment group. The
control group consists of 7 subjects, whereas the treatment
group consists of 5 subjects. The majority is in the control
group as a strong baseline for comparison was necessary that
is close to the population.

B. Role of Participants

 The participants will act as developers that are presented
with an unknown system to them. The participants will be
presented with a scenario of a change within one or more of
the components of the system. The objective is to conduct a
change impact analysis on the system and identify all affected
artifacts by the change using the Eclipse traceability tool
Capra.

C. Variables and Instruments

1) Variables:
- Independent Variables – as an independent variable

we have one factor which is the Capra installation.
For that that we have two levels: the standard Capra
or the modified Capra.

- Dependent Variables – as dependent variables we
have time spent per developer on CIA and the
number of false negatives and false positives made
while conducting CIA.

- Controlled Variables – As a controlled variable we
have the graphical traceability representation of the
system which is provided to us by the supervisor as
to ensure a real-life example of a system.

2) Instruments:
- The participants are provided with a personal

computer on which the experiment will be conducted.
- A standard out of the box Capra tool.
- A modified Capra installation that allows hiding less

relevant trace links depending on the selected artifact.
- A set of instructions consisting of general

information regarding the process of the experiment,
traceability, change impact analysis and the task to be
undertaken during the experiment.

- A Capra generated traceability model.
- A UML state diagram of the system [12].
- A file with C code related to the traceability model

via a traceability link to the UML diagram [12].
- A questionnaire about the general skill set that the

person possess relevant to the task. The questionnaire
(see appendix Questionnaire) was used in order to
determine that all participants had close to equal
experience with CIA and the tools they were going to
use.

D. Hypothesis

 The general hypothesis of the experiment is that reducing
the size and complexity of the trace link trees using the
modified Capra (MC) would both improve the time spent on
CIA and reduce the number of errors done while conducting a
CIA. The main null hypothesis and the alternative hypothesis
are stated as follows:

(i) H0 TPD: Time (SC) = Time (MC).
(i) H1 TPD: Time (SC) ≠ Time (MC).
(ii) H0 NFN: NumErrors (SC) = NumErrors (MC).
(ii) H1 NFN: NumErrors (SC) ≠ NumErrors (MC).
(iii) H0 NFP: NumErrors (SC) = NumErrors (MC).

(iii) H1 NFP: NumErrors (SC) ≠ NumErrors (MC).

 In the first set of hypothesis (i) the null hypothesis states
that the time per developer (TPD) while using the standard
Capra (SC) installation to conduct change impact analysis is
equal to the time per developer when conducting a CIA with
the modified Capra (MC) installation. The alternative
hypothesis in return rejects the null hypothesis by stating that
the time per developer on CIA with the standard Capra is
different from the time spent per developer on CIA with the
modified Capra.
 The second set of hypothesis (ii), is aimed at the number of
false negatives (NFN) while conducting the CIA. A false
negative is an artifact not included by the individual conducting
the analysis but is actually part of the change. The null
hypothesis states that the number of false negatives made
while conducting a CIA with the standard Capra installation is
equal to the number of false negatives made while conducting
CIA with the modified Capra. The alternative hypothesis
rejects the null hypothesis by stating that the number of false
negatives made during CIA with the standard Capra is
different from the number of false negatives made with the
modified Capra.
 Lastly, the third set of hypothesis (iii) is aimed at the
number of false positives (NFP), following the same principle
of hypothesis testing as the false negatives. A false positive is
an artifact included by the individual to be part of the change
set but should be excluded. Initially the number of errors were
looked as a whole but after a discussion the decision was made
to consider the NFN and NFP separately as to determine
whether there is a difference on a more specific level of error
making, hence leading to a more solid answer to RQ 1.2.

E. Design

 The experiment follows a standard design of one
independent variable with two values. The sample is randomly
split into two groups. The control group used the standard out
of the box Capra installation which serves as a baseline
comparison, whereas the treatment group was given the
modified Capra with the extra functionality of hiding less
relevant trace links. All participants were provided with a set
of instructions on how the experiment will be executed and a
lecture on CIA to ensure experience equality.
 The system that the subjects analyzed was the Emergency
Braking and Evading System (EBEAS). The traceability tree
for the system was reduced in size and did only contain 2
requirements. The requirements that were available contained
information about emergency braking and object detection. In
the requirements document there are also behaviors specified
for evading in the case that there is no time to brake.

F. Validity Threats

 We have defined three types of validity threats which were
relevant and important for the results of the study: conclusion,
internal and external validity. While running the four pilot
tests to confirm that most validity threats were defined, several
new ones became apparent. Below we will be discussing the

threats to validity identified both before and after the four pilot
tests that were conducted.
 Most of the threats lie within the external validity as to if
the findings are possible to generalize sufficiently due to the
low experience levels within the control and treatment groups
together with the small sizes of the groups. In order to
equalize the experience levels we provided the groups with a
set of instructions on what traceability and CIA is, what it is
used for and an explanation of how to navigate the different
artifacts to be considered in Capra.
 All participants had as much time as they wanted to read
the document and understand it as well as to ask questions to
ensure they understood what they read. The system they were
analyzing was a scaled down version of a real-life system
which concern us with the fact that it may be too small thus
rendering the algorithmic filter redundant.
The biggest concern is the threat to conclusion as the sample
size is so small. If a larger sample size was used there is a
possibility that the conclusion would be different than
presented and we would find that there is a significant
difference in the conclusion.
 Concerning the threat to internal validity we have the set of
instructions each participant was presented with. The
instruction document consist of a set of explanations in both
text and images to ensure the participant has numerous ways
of understanding what is presented. Not all information may
be presented in the most optimal way and the lengthy nature of
the document provide a challenge for readers to remember all
information within. Each participant had the option to go back
to the instructions at any time in case they had forgotten or
wanted to refresh their memory on a certain part of the
instruction. Scaling down the instruction document was
impossible as the system had to be understood and when
conducting a CIA effort, documentation of the system is
usually present. Other threats to internal validity include the
environment and time of day the participant performed the
analysis in the experiment. If an individual is affected by
stress from any outside factor or noisy environment this could
cause them to lack focus and perform worse than average and
therefore give inaccurate results. To mitigate this all
participants were asked to choose a time and place to perform
the experiment so that the environment was of best nature for
them to perform. Individuals who participated remotely had
the comfort of the home and outside of workhours to be able
to fully concentrate on the task at hand. Others chose times
where they had nothing else to focus on and a quiet place such
as a library. Another threat that was identified is related to
Eclipse and the technical aspects of the experiment. When
opening certain files Eclipse has a tendency to crash or take an
immense amount of time to open the file which could result in
corrupt data if the program needs to restart due to a crash or
freeze. This threat could not be mitigated as Capra is an
Eclipse plug-in and we are unaware of the cause of the crashes
and freezes and this was observed on different computers.

VI. STATISTICAL RESULTS

A. Statistical data

 The dependent variables observed are the time spent per
developer in minutes (TPD), average number of false
negatives made (NFN) and average number of false positives
made (NFP).

In figure 4 we observe the TPD and the following data:
 Mean(SC) - 27.71429
 Mean(MC) – 30
 Variance(SC) - 89.90476
 Variance(MC) - 91.33333
 Standard Deviation(SC) - 9.481812
 Standard Deviation(MC) - 9.556847

In figure 5 we observe the NFN and the following data:
 Mean(SC) - 4.857143
 Mean(MC) – 5
 Variance(SC) - 5.47619
 Variance(MC) – 2
 Standard Deviation(SC) - 2.340126
 Standard Deviation(MC) - 1.414214

In figure 6 we observe the NFP and the following data:
 Mean(SC) – 2
 Mean(MC) - 1.25
 Variance(SC) - 2.333333
 Variance(MC) - 2.25
 Standard Deviation(SC) - 1.527525
 Standard Deviation(MC) - 1.5

B. Outlier handling

 In figure 7 two outliers can be seen on the false negatives
boxplot. Both outliers were investigated and it was noted that
the first outlier on the bottom which performed exceptionally
well was due to special focus on the instruction document and
familiarization with the system, which we deeply encouraged
and gave sufficient time for. Due to this reason the decision
was made to keep the lower outlier as a valuable data point.
 The second outlier that did significantly worse than the rest
had a reason for that as well. The subject misunderstood how
the traceability graphical representation worked, subsequently

leading to incorrect results. Throughout the 4 pilot tests and all
other subjects, this is the only case of misunderstanding the
representation, hence the data point has been removed.
 After the removal of the second outlier the first outlier
disappeared as it can be seen on figure 3.

C. Statistical results

 Due to all data sets lacking a normal distribution, a non-
parametric test would give more accurate results. Additionally,
the sample size used is too small for it to have sufficient
power for a parametric test to give accurate results. To
confirm the distribution of the data, a normal QQ plot was
made together with a line of the distribution. The Man-
Whitney U test allows us to decide whether the population
distributions are identical without assuming normality. The
Man-Whitney U test itself complies with the hypothesis as it
tests for whether two dependent groups have identical
distributions, which is what we wish to discover. Additionally
non-parametric tests are more reliable than parametric tests
when the sample size is below 20. In the case of this study the
sample size is too low for a parametric test, hence the
conclusion was reached to use a non-parametric test. The only
downside with the Man-Whitney U test is that if there are
more ties in the ranks than acceptable, the accuracy of the test
would diminish.

D. Wilcox test results

a) TPD results

 P-value: 0.9273
 Level of significance: < 0.05

b) NFN results

 P-value: 0.3641
 Level of significance: < 0.05

c) NFP results

 P-value: 0.49
 Level of significance: < 0.05

 Since the TPD p-value is not less than 0.05 we do not reject
the null hypothesis. Likewise, both the NFN and NFP due to

the p-value being bigger than 0.05 we do not reject the null
hypothesis. The TPD, NFN and NFP did not show a
statistically significant difference between the Standard Capra
and the Modified Capra with the filtering of the less relevant
trace links.

VII. DISCUSSION

 The results of the experiment turned out not as expected
and the null hypothesis was not rejected. Overall the results
were quite similar but there is a considerable amount of room
for interpretation. Namely all subjects had no experience in
conducting a CIA effort, this could potentially have influenced
the results. The decision was made to use inexperienced in
CIA developers as to ensure experience equality and less
varying data. A relative level of experience equality could
have been achieved if all subjects had a set amount of time (in
experience) in conducting a CIA but we were unable to access
such people. Without experience in CIA the subjects had no
set approach to follow besides the information we provided
regarding traceability, hence leading to the subjects being
‘lost’, unable to properly make a connection between the
traceability graphical representation and the other artifacts (the
UML diagrams and C code). This situation occurred due to the
participants exploring the system (Capra) beyond the
necessary components despite being instructed otherwise in
the instruction document. This is proven further as the subjects
that spent their time wisely and properly examined the
instructions document with all the necessary information,
which we encouraged and gave sufficient time for, showed
overall better results. Furthermore, the experiment had low
power due to the limited sample size, with a sample of 20 or
greater we believe that the gap of the false positives and false
negatives would reduce significantly and encourage further
studies in the field of traceability and change impact analysis.
Nevertheless to answer RQ1, enriching traceability links with
the ability to hide less relevant trace links did not improve the
process of change set identification.

a) Control Group – 7 participants

ID Minutes False Negative False Positive
1 35 4 0
2 18 4 2
3 42 8 3
4 23 6 4
5 33 1 2
6 16 7 0
7 27 4 3

b) Treatment Group without outliers – 4 participants

ID Minutes False Negative False Positive
1 40 6 3
2 17 5 2
3 32 3 0
4 31 6 0

B. Time Per Developer

 The results show that the sample that used the standard
Capra installation did overall better time-wise. We believe that
using inexperienced analysts impacted the TDP results the
most. When having no experience with change impact analysis
or Capra, the issue regarding became quite apparent early on
while observing the pilot tests. While the subjects had the
luxury of hiding trace links, they were at the same time
burdened with handling more functionality. While the system
shows only the relevant trace links, the participants still had to
discover the parent and they spent a significant amount of time
doubting over which component would be the parent of the
change. This lead us to believe that we should make it ‘crystal
clear’ where the change is happening and at the same time we
didn’t not wish to make it too simple. The scenarios were
changed and the instruction document contained more system
information but that did surprisingly not solve the issue, the
participants still had doubts, in the sense of whether an artifact
is part of the change set or not, and were exposed to a new to
them system which they had to use to clear to those doubts,
ascertain whether an artifact is part of the change set or not.
We believe this to have caused the results regarding time to
have been influenced up to a diminishing point where the
modified Capra performed worse. To answer RQ 1.1, hiding
less relevant trace links did not reduce the time spent per
developer on CIA.

C. False Negatives and False Positive

 While the null hypothesis was not rejected yet again for
both dependent variable, we believe that a repeated study with
better sample size would give different results. The results
show a small decline in errors and we believe this decline to
increase as the sample would increase. A sufficient sample of
20 people should have enough power to show potentially
better results. Aside from that a further impact on these results
is the issue mentioned above that affected the time per
developer. As stated earlier the subjects that spent their time
wisely and paid sufficient attention and respect to the
instruction document that contained system information
performed better than the rest, this is due to the rest focusing
too much on the burden of the extra functionality and limiting
their view to the graphical representation, dismissing the
instruction document. Indeed documentation is not the most
compelling part when doing analysis and the bigger the
document the more repulsive it is and may have discouraged
the subjects from paying sufficient time to it, but it is an
essential part of any analysis activity and could not be
reduced. We also noted that the subjects did not always use
the filter in the way they were instructed to do. As opposed to
selecting the artifact in the artifact wrappers view and using
this view to find the related artifacts that could be affected by
the change they went into many different artifacts and made
guesses depending on the names of the artifacts. This was a
more common occurrence in the second scenario where the
subjects were analyzing an artifact further down in the

traceability tree. To answer RQ 1.2, hiding less relevant trace
links did not reduce the amount of errors made during the
process of identification of artifacts.

VIII. CONCLUSION AND FUTURE WORK

 Even though the results far from what was expected on a
sample of inexperienced analysts, we believe that the approach
could potentially reduce the time spent on CIA on the
condition that the system is sizeable enough and the analysts
using the system are experienced. Both the false negatives and
false positives had no statistically significant difference on the
results but we believe that the small decline we see in the
results would prove significant with a sample of experienced
analysts that provides sufficient power to represent the actual
population. This is leading us to believe that there is merit in
further studies on how reducing the links observed would
improve change impact analysis.
 A further study could be made that covers the gaps
discovered in this study and use the identified drawbacks to
provide more reliable results. Further studies in this area
should pay special attention to the sample picked as to
represent the actual population and possibly provide training
in using Capra as to reduce the level of unfamiliarity that
causes constant doubt in the subjects. While experienced
analysts are aware of how to approach the system that they
have to analyze, the feeling of unfamiliarity could even then
prove to be a considerable obstacle.

ACKNOWLEDGMENT

We would like to thank our supervisors Salome Maro and Jan-
Philipp Steghöfer for the consistent feedback and additional
support in setting up and learning Capra.

REFERENCES

[1] van den Berg, K.G., 2006. Change Impact Analysis of Crosscutting in
Software Architectural Design. In: Workshop on Architecture-Centric
Evolution (ACE 2006), 3-7 July 2006, Nantes, France. pp. 1-15.

[2] Borg, M., de la Vara, J.L. and Wnuk, K., 2016, September.
Practitioners’ Perspectives on Change Impact Analysis for Safety-
Critical Software–A Preliminary Analysis. In International Conference
on Computer Safety, Reliability, and Security (pp. 346-358). Springer
International Publishing.

[3] Ghosh, S.M., Sharma, H.R. and Mohabay, V., 2011. Study of Impact
Analysis of Software Requirement Change in SAP ERP. International
Journal of Advanced Science and Technology, 33, pp.95-100.

[4] Lehnert, S., 2011, September. A taxonomy for software change impact
analysis. In Proceedings of the 12th International Workshop on
Principles of Software Evolution and the 7th annual ERCIM Workshop
on Software Evolution (pp. 41-50). ACM.

[5] Arnold, R.S. and Bohner, S.A., 1993, September. Impact analysis-
towards a framework for comparison. In Software Maintenance, 1993.
CSM-93, Proceedings., Conference on (pp. 292-301). IEEE.

[6] Hughes, T. and Martin, C., 1998, March. Design traceability of complex
systems. In Human Interaction with Complex Systems, 1998.
Proceedings., Fourth Annual Symposium on (pp. 37-41). IEEE.

[7] Li, Y., Li, J., Yang, Y. and Li, M., 2008, May. Requirement-centric
traceability for change impact analysis: a case study. In International
conference on software process (pp. 100-111). Springer Berlin
Heidelberg.

[8] Z. Jianjun, H. Yang, L. Xiang, and B. Xu. “Change impact analysis to
support architectural evolution.” Journal of software maintenance and
evolution: research and practice, vol. 14, no 5, 2002, pp. 317-333.

[9] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A. and Merlo, E.,
2002. Recovering traceability links between code and documentation.
IEEE transactions on software engineering, 28(10), pp.970-983.

[10] Maro, S. and Steghöfer, J.P., 2016, September. Capra: A Configurable
and Extendable Traceability Management Tool. In Requirements
Engineering Conference (RE), 2016 IEEE 24th International (pp. 407-
408). IEEE.

[11] Wohlin, C. and Höst, M., 2001. Special section: controlled experiments
in software engineering.

[12] Becker, S., Dziwok, S., Gerking, C., Heinzemann, C., Thiele, S.,
Schäfer, W., Meyer, M., Pohlmann, U., Priesterjahn, C. and Tichy, M.,
2014. The MechatronicUML design method-process and language for
platform-independent modeling. Software Engineering Group, Heinz
Nixdorf Institute, University of Paderborn, 134.

[13] Tarjan, R., 1972. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2), pp.146-160.

[14] Cleland-Huang, J., Hayes, J.H. and Domel, J.M., 2009, May. Model-
based traceability. In Traceability in Emerging Forms of Software
Engineering, 2009. TEFSE'09. ICSE Workshop on (pp. 6-10). IEEE.

[15] Gotel, O., Cleland-Huang, J., Hayes, J.H., Zisman, A., Egyed, A.,
Grünbacher, P., Dekhtyar, A., Antoniol, G., Maletic, J. and Mäder, P.,
2012. Traceability fundamentals. In Software and Systems Traceability
(pp. 3-22). Springer London.

[16] Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E. and
Christina, S., 2005, May. Goal-centric traceability for managing non-
functional requirements. In Proceedings of the 27th international
conference on Software engineering (pp. 362-371). ACM.

[17] Hayes, J.H. and Dekhtyar, A., 2005, November. Humans in the
traceability loop: can't live with'em, can't live without'em. In
Proceedings of the 3rd international workshop on Traceability in
emerging forms of software engineering (pp. 20-23). ACM.

[18] Bohner, S.A. and Arnold, R.S., 1996. An introduction to software
change impact analysis. Software change impact analysis, pp.1-26.

APPENDIX I

Instructions

APPENDIX II

Questionnaire

APPENDIX III

Filtering algorithm

https://www.dropbox.com/sh/tz7ijctp6qdt7y0/AADMk8yjPhG-3ID-poQSnhRwa?dl=0

APPENDIX I

User manual:
Supervisors – Marcus Nilsson & Kristiyan Dimitrov
The process will be recorded using screencaption software!
If you have any questions do not hesitate to ask. There will be no trick questions in the experiment.

Abbreviation list & terminology explanations:
Artifact – Items/components/classes/diagrams within the project
Changeset – all artifacts affected
Child – A child is a node directly below another node. A -> B -> C. B is a child of A and C is a child of B.
CIA – Change Impact Analysis
EBEAS– Emergency Braking and Evading Assistance
Node – An item in the graph
Parent – A parent is a node directly above another node. A -> B -> C. A is the parent of B and B is the
parent of C.
SA – Situational Analysis
Trace / tracelink – the arrow between two nodes.
Transitive – Meaning any node that has any connection to a specific node.
V2V – Vehicle to Vehicle

Change Impact Analysis (CIA):
This is the process of analysing what artifacts are affected by a proposed change. CIA is used to help
understand and estimate how much effort will have to be put into a change. This change could be that the
customer wants to change the appearance of a certain part of a website or have an entirely new feature
added or have something removed as well.
This helps a programmer or management understand which parts of the project are going to be affected and
have to be considered when making this change or completely ignore the change as the impact would be too
costly in both time and funds.

Traceability:
In software systems we can use traceability to help with CIA. A trace link is a connection between two or
more nodes or artifacts indicating that they have a relationship. Examples of artifacts are:

• Requirements
• Models
• Code
• Tests

The traceability links are used to help understand from where an artifact originates. For example a piece of
code that has a traceability link from a requirement we know that this piece of code will realize a

requirement listed in that artifact. The requirement artifact can for instance be a PDF document handling
layout. Then we know that the piece of code will have something to do with layout.
Traceability can also be used outside of software projects. An example could be within the food industry
where traceability can be used to track the origin of certain products and who handled it in the process of
reaching the consumer.

EBEAS brief explanation:

The system you are to analyse handles emergency braking and evading.
Ego – this car. (your car).
Front – the car in front.
Rear – the car behind you.

If an obstacle is detected the car will check if it is safe to brake by sending messages backwards to see if the
distance and condition will be ok to perform a brake. This is a V2V message. The Ego car will check its
own speed etc to determine if it's safe for the car in front to brake and send back a reply. That car will also
do the same backwards and see if it can indeed brake as well as a result of the car in front braking. If it
cannot brake safely the car will see if it is possible to evade instead as the distance for evading is shorter
than braking. If nothing is safe there's a precrash system kicking in which raises seats and tighten seatbelts
etc.
Below you will see the decision making for the ego car in case you feel this may be helpful for your
understanding.

(decision making for the ego car)

Experiment information:
You will be presented with a set of instructions that a change has to be made to a part of the system.
Your task will be to find the artifact handling this scenario (see view 2 below), select this item and then in
view 3 find the related artifacts by following the tracelinks from the selected item (pink).
When you have found an item you think will be affected you shall note the name of the item on a piece of
paper.
(If you are doing this remotely either note down in a text document or pause the next trace until the
supervisor have noted down the name of the item)

There will be two parts of the program you need to use. Artifact wrappers if there is a change to anything
related to SA.
And under examples the main folders used will be <Package>ObstacleDetection and
<Package>EmergencyBraking.

Under these folders there will be different files etc. It is in your task to find the correct files based on the
naming and what we ask for in the questions.

Capra instructions:
Layout:

1 – This is the project that is going to be analyzed
2 – All artifacts in the project. Here you will select an item to show the connections associated with this
item in window 3. This is where you will look for an item we ask you to perform a change impact analysis
on.
3 – Traceability tree with directional connections. Pink is a selected item.
4 – The arrow button will allow you to change between transitive and filtered view. Depending on the
scenario you are presented with you will use either one. If you have the transitive scenario you should not
use this function.
If you are changing between transitive view and filtered view you will have to click on the artifact again to
update the diagram accordingly. If you wish to display only the direct connected nodes simply turn off
transitive view and click the node again in view 2.

An arrow in the diagram goes from a parent to a child. The node the arrow is pointing to is the child.

Rules:
You will write down any node names that you think will be part of the changeset. Use the diagram to see
what is connected together with the code to determine whether or not this file will actually be connected.
There are also statecharts which you may use to determine or verify behaviour in the system.
Tip:
Check the diagram first to find every artifact. Then check code to determine if the artifact will be changed or
not.
Tabelle1\::2 means table 1 row 2 in the requirements file.
Tabelle1\::3 means table 1 row 3 in the requirements file.

Scenarios realize requirements, behaviors realize scenarios and C code realize behaviors.

SEE NEXT PAGE FOR THE EXPERIMENT QUESTIONS:

Requirements can be found here:

Code can be found here:

Models can be found here:

Note that there are also statecharts under "realtimestatechart" and a component diagram under "component"
which may be of use to you.
(All are found in view 1)

file:///C:/Users/Marcus/Downloads/Req.PNG

Scenario:
• Tabelle1\::2 (requirement handling obstacle detection) has to change. This handles a situation where

the object is too close to the last point of brake so that there is no time to negotiate if braking is safe.
The change is that the leading vehicle should no longer warn the following vehicle about the
emergency braking that it's about to perform. Analyse which artifacts would be affected.
[changeset 1]

• When making the decision of emergency braking we want to consider the outdoor temperature in
order to be able to change the threshold of the time before the decision goes into evading instead of
braking. If it's cold the road might be slippery and braking distance increase etc. Analyse which
artifacts will be affected if we add this component in the
SituationAnalysisDecisionsSA_Decisions_PortStateChart_ProcessStep.
[changeset 2]

Appendix II

Appendix III
Code can be found here:

https://www.dropbox.com/sh/tz7ijctp6qdt7y0/AADMk8yjPhG-3ID-poQSnhRwa?dl=0

	I. Introduction
	A. Motivation
	B. Purpose statement
	RQ1: How can traceability links be enriched to better support change set identification?

	II. Related Work
	A. State of the Art
	B. Potential for Improvement

	III. Background
	A. Traceability
	B. Capra

	IV. Methodology
	A. The Artifact
	1) Architectural Assumptions
	As stated by Antoniol et al. [9] traceability is a process of information retrieval, when the links are created automatically, and only a human analyst can make the final decision of whether the information retrieved is actually relevant. This leads us to the conclusion that absolute calculation of relevance in any possible scenario is unfeasible. This on the other hand does not necessarily mean that the information retrieved is not relevant. Several studies confirm that traceability needs to be essentially part of the architectural design process [1, 6], as to allow more efficent tracing. Similarly, other studies focus on tracing between a set of arbitrary artifact, i.e. between code and documentation as to improve the process of tracing [9]. The artifact that is constructed as an addition to Capra structures all of those arbitrary artifacts under a top-down architecture, following a parent-child approach that accomodates the source-target artifact methodology of traceability, explained in more detail in the example below. This allows for several assumptions to be made as to allow calculation of relevance between the affected artifact and the other artifacts that compose the system. The solution is inspired and follows similar rules to those of van de Berg et al. [1], namely the fact that the parent of the changed artifact is considered but not the children of the parent.
	On figure 1 we can observe a traceability graphical representation generated by Capra. In the example, AAA.java is the parent node of BBB.java and CCC.java, CCC.java is the parent node of DDD.java, EEE.java and GGG.java, etc. If a change were to occur on artifact CCC.java, the relevant artifacts would be the children and distant children (FFF.java) of CCC.java, the parent of CCC.java (AAA.java) but not BBB.java. Since we change CCC.java, then the relation of {AAA.java, CCC.java}, {CCC.java, DDD.java}, {CCC.java, EEE.java}, {CCC.java, GGG.java} and {EEE.java, FFF.java} would be affected by the change but the relation {AAA.java, BBB.java} would not change. Hence a change in CCC.java would result in every artifact being affect except BBB.java.
	2) Rules
	

	B. Technical Details
	C. Implementation
	D. Evaluation

	V. Experiment design and preparation
	A. Subjects
	B. Role of Participants
	C. Variables and Instruments
	1) Variables:
	2) Instruments:

	D. Hypothesis
	E. Design
	F. Validity Threats

	VI. Statistical Results
	A. Statistical data
	B. Outlier handling
	C. Statistical results
	D. Wilcox test results
	a) TPD results
	b) NFN results
	c) NFP results

	VII. Discussion
	a) Control Group – 7 participants
	b) Treatment Group without outliers – 4 participants
	B. Time Per Developer
	C. False Negatives and False Positive

	VIII. Conclusion and Future Work

