

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

 Performance Analysis in Early Design
Stage of Software System
Bachelor of Science Thesis in Software Engineering and Management

Kai Fu
Darja Linkova

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

 Performance Analysis in Early Design Stage of Software System

Kai Fu

Darja Linkova

© Kai Fu, June 2017.

© Darja Linkova, June 2017.

Supervisor: Michel Chaudron, Rodi Jolak

Examiner: Salome Maro

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Performance Analysis in Early Design Stage of
Software System

Kai Fu
Gothenburg University
Gothenburg, Sweden

guskaifu@student.gu.se

Darja Linkova
Gothenburg University
Gothenburg, Sweden

guslinkda@student.gu.se

Abstract—This study aims to deliver a user-friendly envi-
ronment which allows architects to analyze the performance
of software systems during early design stages. Design science
method is used for developing the environment which consists of
a UML design tool and a component for performance analysis.
To evaluate the usability of the environment, a user study is
conducted. All users’ feedback was collected and analyzed. The
results show that the perceptions regarding the usability were
not that good as expected. Suggestions on future research and
implementation are also reported in this study.

I. INTRODUCTION

Systems become more and more complex and expensive
every day. As a result, system architecture becomes more
critical for the whole project and mistakes in it are too costly.
New tools that can evaluate early architectural decisions can
make a process of the system design more efficient. Smith
and Williams state that performance is a critical quality for the
success of today’s software system. They also give a definition
to performance as “the degree to which a system meets its
objectives for timeliness” [1] . Performance related decisions
that are made early can and should be evaluated in the early
design phase. [2]

A. Statement of the problem

Smith and Browne mention that performance engineering
has a quite unique problem since success in it is impossi-
ble to demonstrate and failure is obvious [2] . Concerning
performance problems “fix-it-later” approach was traditionally
chosen. The main emphasis is made on software correctness,
performance issues are postponed till later stages of the
software development, such as integration and testing [3] .
At the same time, one of the conclusions made in the study
“The Future of Software Performance Engineering” is that
performance problems are mainly caused by bad architecture
decisions, not by coding issues [4] . Neglecting performance
and postponing it to the later phases can be the reason of
increasing of the development costs and late deployment.
Moreover, such approach may affect not only performance
but other system qualities, such as understandability, main-
tainability, and reusability [3] . All mentioned works give
an understanding of the importance of approaching of per-
formance problems in the early stage. Smith and Williams
introduce Software Performance Engineering (SPE) modelling

process as a method which helps to identify potential per-
formance problems in the stage when they can be solved in
the less costly way. As a rule use cases are seen as systems’
requirements. In the scopes of SPE, use cases have a bigger
importance. They allow architects to identify the workloads,
which are groups of user requests [1] . This approach allows
to start performance analysis in the early design stage when
only important use cases are identified. Figure 1 shows use
case diagram with values required for performance evaluation
in SPE. [5]

There is a number of tools that allow developers to evaluate
system performance, they will be discussed in related work and
background part. However, these tools are aimed to be used
in later stages of software design or on already functioning
systems. As a result, it may lead to high costs due to late
problem recognition.

B. Purpose of the study

This thesis is a part of a project driven by Chalmers
and Gothenburg University researching a smartboard software
design environment [6] . The main goal of which is to create
a user-friendly UML environment to support an effective soft-
ware design process. The UML modeling tool is provided for
us. Our purpose is to integrate it with performance evaluation
algorithm and improve the usability of the whole system.

C. Research question

Our main research question: RQ1: Is it possible to accom-
plish a performance prediction system for the early software
design stage? Our sub-questions are: RQ1.1: How can we
integrate the performance prediction in the early design stage
into a smartboard UML design environment? RQ1.2: How
can we evaluate the usability of the performance prediction
system? The sub-questions aim to assist answering the main
research question.

D. Significance of the study

After successfully addressing all the research questions, the
result is a system which is able to get use case -, sequence-
, deployment diagrams as user input and introduce perfor-
mance evaluation results based on those diagrams. It can help
architects to predict possible performance bottlenecks at the
very beginning of the system design. The earlier performance

Fig. 1. Use case diagram with performance annotations

issues can be identified and addressed the fewer resources
are spent to solve them [7] . The authors of this study hope
that the users of the system can use it without any special
preparation and studying of the interface. Usability quality of
the system should allow architects to use the tool intuitively
based on their previous user experience and to be able to get
performance evaluation results without spending time trying
to get familiar with the system. Otherwise, there is a high
possibility that the users may prefer a whiteboard to UML
design tool even with wide range functionality. In the early
software development stage designers often use whiteboards to
create a system design. The project aims to provide designers
with the tool that allows them to get an early-vision of the
performance of the designed system. Standard whiteboards do
not provide means for data processing but Smartboards do.
That is why for purposes of our report we Smardboard is
needed.

E. Limitations and delimitation

Limitations: Development time in the scopes of this thesis
is quite short. Delimitation: At the beginning, it was decided
to use a Quality-driven optimization method for systems
architectures (AQOSA). Moreover, it is assumed that AQOSA
algorithm is correct based on (reference Ph.D.’s thesis). The
assumption is that provided results are correct and they are
never evaluated in the scopes of this research. [8]

F. Thesis structure

This thesis will include an introduction, related work part
where systems and literature that are important for our study
will be shortly reflected in chapter 2, chapter 3 contains
methodology description, chapter 4 describes results of the
study, chapter 5 contains discussion part, chapter 6 includes
conclusions, then comes bibliography and appendixes.

II. RELATED WORK AND BACKGROUND

A. SPE

In “Performance Solutions: A Practical Guide to Creat-
ing Responsive, Scalable Software”C.U. Smiths and L.G.
Williams provide straightforward techniques and strategies that
could manage performance in software development process,
especially regarding management in the software design stage.
In this book, they describe the solutions to such performance
issues as SPE, which is a systematic, quantitative method
to the cost-effective development of a software system to
meet performance requirements of software [9] . It starts in
the design stage of the software development lifecycle and
provides guidelines for applying performance modelling to
help the software product meet its performance requirements.
SPE usually uses quantitative methods to identify whether
the system satisfies performance as expected. There are sev-
eral SPE techniques including gathering data, coping with
uncertainty, constructing and evaluating performance models,
evaluating alternatives, verifying and validating results [9] .

B. Performance Analysis Method

Michel Chaudron introduced a scenario-based method for
predicting run-time resource consumption in multi-task com-
ponent based systems [10] . He also extends the method by
offering a system model that is tailored to the domain of
real-time applications. [11] In his papers, he explained the
logic of the algorithm which predicts the software performance
from architecture design. But all the mentioned solutions are
about the real-time of performance results, the performance
prediction in the early design stage is lacked.

C. Background

1) Performance Analysis Tool: Etemaadia et al. [8] created
a Quality-driven optimization method for systems architec-
tures: AQOSA, Figure 2 displays the architecture of AQOSA.

It provides the evaluation and optimization from different
aspects of software architecture. The evaluation sub-system
component from AQOSA provides the analysis function for
the design model. It can analyze the architecture from five
aspects:

1) Response time
2) Processor utilization
3) Communication line utilization
4) Safety
5) System cost

Fig. 2. AQOSA architecture

2) UML Design Environment: The smartboard UML de-
sign environment - OctoUML [12] will be used, which is
a UML creation tool that allows users to create diagram
elements with geometric UML notation or sketched drawings
of UML. [12] At present, it only supports class diagrams,
they can create a class diagram with OctoUML and save the
diagram in the image or XML format. In this research, authors
want to analyse the performance from the early design stage.
In the scopes of this research, functionality that enables users
to create use case-, sequence- and deployment diagrams will
be added. Use case diagrams will be used to describe the early
design of architecture, sequence- and deployment diagrams
will be used to show the details of the system.

D. Similar System

There is a number of tools that allow developers to evaluate
system performance, such as the Palladio Approach [13] , and
the SPE·ED [14] . They will be introduced as follows:

1) Palladio: Palladio [13] is a software architecture sim-
ulation approach, which allows users to analyse system at the
model level from the aspects of performance bottlenecks, scal-
ability issues, reliability threats, users can also do subsequent
optimisation with their works. Figure 3 shows the simulation
Palladio system.

Palladio supports a broad range of analysis scenarios, each
scenario can be analysed with performance, reliability, main-
tainability, and costs. Users can choose the most suitable
scenarios in different design cases.

2) SPE·ED: SPE·ED [14] is a performance analysis tool
which supports the SPE methods and model. It uses perfor-
mance models to provide data for the quantitative assessment
of the system performance. Users can easily construct software

performance models with SPE·ED and get the analytical re-
sults for these models which will include end-to-end response
time, the elapsed time for each processing step, the device
utilization, and the amount of time spent at each computer
device for each processing step. Figure 4 shows the simulation
SPE.ED system.

III. METHODOLOGY

The research method will be used in this paper is Design
Science Approach, Design Science tries to extend the bound-
aries of human and organisation capability by creating new
and innovative artifacts. [15] . Figure 5 shows a framework
of a research of an information system. An artifact will be
developed based on the business requirements and applicable
knowledge. After development, the artifact will be assessed by
the evaluation method, based on results of evaluation artifact
can be refined.

A. Artifact Design

An artifact is the result of Design Science Research which is
created to address an important organizational problem [15] .
It is the key factor of the method. In this research, the artifact
is a new architecture evaluation method, which integrates a
performance prediction method into the Smartboard UML de-
sign environment. Architects can get the result of performance
in the architecture design process much easier.

1) System Framework: Figure 6 describes the framework
of our solution. At first, OctoUML will be used to create
a Performance Diagram Model which will be introduced in
the following section. Then a Model Editor will translate the
Diagram Model to AQOSA Model as an XML data structure.
After that, the Evaluation System of AQOSA will evaluate the
Model and get the result data. At last, the result data will be
sent back to OctoUML and showed in diagram pane.

2) Software Engineering Performance Process: Figure 7
shows the general process of SPE [1] . This process consists
of 6 steps. The first two steps are not related to this research,
so they will not be discussed in this paper. The third step
identifies critical use cases which can be implemented in the
use case diagram. In the fourth step performance scenarios
can be implemented in the scenario diagrams (such as a
sequence diagram or a state machine diagram). In our case
sequence diagram will be used. The fifth step - resource
requirements can be implemented via giving the measurable
performance attribute to the components. The last step is to
design hardware infrastructure, it can be implemented with
deployment diagram. So in this research use case-, sequence-
and deployment diagram will be used. And the measurable
performance values will be added to each diagram for a
performance model.

3) Performance Model: One example of the performance
diagram model is showed in Figure 8. The steps of creating a
performance diagram are following:

1) Create a use case diagram, and give a frequency for each
use case.

Fig. 3. Palladio Simulation [13]

Fig. 4. SPE·ED Simulation [14]

2) Based on each use case, develop the related sequence
diagram, specify memory and CPU cycles for each
component and give a network bandwidth for each
message line.

3) Create a deployment diagram, and get the sum claims
per resource in both processor and network.

In our system, we make a performance model by creating
a new diagram view which is called “Performance Analysis
Diagram”, Figure 9 is an example of how performance model
can be implemented. Rectangle with images of sequence- and
deployment diagrams are used as links. The users create such
links in Performance analysis diagram and then load them

(Figure 10), as a result a new tab for a sequence or deployment
diagram is opened, the users need to save the diagram after
it is finished(Figure 11). When the users finish every diagram
in the performance model, they can analyse the performance
result for the whole system(Figure 12).

4) Model Translation: After creating of Performance
Model, our system will transfer the Performance Model into
an AQOSA Model to fulfill the requirements of AQOSA
evaluation system. AQOSA architecture modelling is defined
by the Eclipse EMF. Figure 13 represents a simplified view of
AQOSA metamodel. It consists of four major parts: Assembly,
Scenarios, Repository, and Objectives [8] .

Fig. 5. Information Systems Research Framework [15]

Fig. 6. Prediction System Framework

• Assembly: This part includes software components and
their assembly for delivering system functionalities. The
data for AQOSA model will come from input made for
activation boxes and messages in the sequence diagram.

• Scenarios: This part contains scenarios and use case data,
together with their input values. All this data is used for
the translation into AQOSA model.

• Repository: This part includes the information from the
software and hardware components, including processors,
buses, and components implementation. In this part data
required for AQOSA model is collected from the objects
and objects input from deployment diagram and sequence
diagram.

• Objectives: This part defines the objectives needed to be
evaluated. Since only performance is evaluated in the
scopes of this study, results will contain only Response
time, Processor utilization, Communication line utiliza-
tion.

Appendix D is an example of AQOSA model structure
which is created in the performance analysis process, illus-
trated in Appendix C.

Fig. 7. SPE Process [1]

B. Evaluation of the Artifact

Evaluation is a crucial component of the research process,
the research artifact must be rigorously demonstrated via well-
executed evaluation methods [15] . In this paper, the adopted
evaluation method is User Study [16] . User Study is an
evaluation method that focuses on user-centered design. By
focusing attention on the people themselves, user study gets
the result from learning about people’s activities, how they
perform them, and what they need in the way of support [16] .
Figure 14 shows the process of the User Study, the analysis
and model-building process after data collection.

The data which is used in the paper is qualitative data related
to the usability of the system. The User Study evaluation
approach collects data via three methods: interview, observa-
tion, and questionnaire [16] . All of them are implemented
in this work. The participants are required to have some
architecture design experience. 10 participants were engaged
in this research: 1 Lecturer with Ph.D. and 9 bachelor students.
All of the bachelor students have passed the course “Technical
analysis and design” and “Software architecture”. The whole
data collection process for each participant will take approx-
imately 30 mins, each method will take around 10 mins to
collect the data. The process of data collection are introduced
as follows:

1) Interview: During the interview the researchers ask
several questions related to the topic of the research and in-
terviewee’s experience. The dialogue between the researchers
and the participants is guided by the questions [17] , the
questions are designed by the researchers. There are three
kinds of interviews: unstructured, semi-structured and fully
structured interviews [17] . The semi-structured interview are
used in this study. Several fixed questions are asked at the
beginning of the interview as following:

1) Are you experienced in software architecture design?
(Scale: 1 Novice - 5 Expert)

2) Are you experienced with Software Performance Engi-
neering? (Scale: 1 Novice - 5 Expert)

3) Have you ever used Smartboard before?
4) In which stage of development you first evaluate perfor-

mance?
5) Do you have experience in developing systems where

Fig. 8. Performance Model

Fig. 9. Performance model view

performance was a critical quality?(if yes - What ar-
chitectural decisions and in what stage were made to
increase performance?)

6) What tools do you use to evaluate performance?
7) Do you think decisions made in the early design stage

significantly affect system performance results? (Scale:
1 Not important - 5 Important)

8) Do you think that performance evaluation functionality
within UML design environment will be helpful for
architects? (Scale: 1 Not help at all - 5 Helps a lot)

After the participants answered the prepared question, the
researchers would have an open discussion with them. the
content of the discussion depends on the participants’ answers.
For example, if the participants have totally no experience
in SPE some knowledge about SPE process will be given
first. Then the researchers introduce the whole system in a
very detailed way. If the participants already have some SPE
knowledge, the researchers can simply introduce the system.

2) Observation: Observation is used for investigating how
a certain task is accomplished by software engineers [17] .

Fig. 10. Loading a new diagram from Performance Model View

Fig. 11. Saving a Created diagram

In this study the task is to design a performance model
of a specific system and to get its performance result. The
participants get a paper with requirements of some system,
they should design the performance model based on the
requirements. They can input all the performance attributes.
Their whole process is recorded using a screen recording
programme. This videos are evaluated as our collected data.

3) Questionnaires: System Usability Scale(SUS) is imple-
mented in the questionnaire for testing the usability of our
system. SUS provides a “quick and dirty”, reliable tool for
measuring the usability [18] . It consists of a questionnaire

with 10 questions. The participants should give 1-5 credits for
each question from “strongly agree” to “strongly disagree”. 10
questions from the questionnaire are shown in Figure 15.

The result of SUS is calculated and collected to help the
researchers to evaluate the usability of the system and identify
changes that need to be done to improve it.

IV. RESULTS

A. Observation

Researchers observed participants during the task that was
assigned to them. All participants were interviewed separately

Fig. 12. Analysis in the system

Fig. 13. AQOSA model [8]

Fig. 14. The process of the user study and the analysis and model-building
[16]

The task was done by one participant at a time. It is important
to mention that there were no time restrictions to complete
the task. The reason for this is there are certain steps needed
to be done in the system to complete performance analysis.
Moreover, time spent on accomplishing the task was regarded

Fig. 15. System Usability Scale(SUS) [18]

as a usability metric. It was taking the users from 15 minutes
to a half an hour to finish the task.

All interviews started with questions about the experience.
The participants were asked about their experience in software
architecture (SA) and SPE, experience in evaluating perfor-
mance, tools that they used for it and practises they used to
improve it. Also, they were specifically asked whether they had
worked with the Smartboard before. After that presentation
about the system’s work was shown. The presentation was
preferred to live demonstration because there are a lot of
details important for work of the system that needed to be
explained. Our system requires a lot of data to input which
is essential for the performance analysis. It was possible to
add supplement text with explanation for the required input
in presentation materials There are several observations made
during interviews and after analysis of recordings made during
interviews. First of all, most of the participants are not familiar
with the Smartboard, and one of them had big difficulties to
work with the Smartboard. Secondly, almost all participants
had problems with the feature that allows you to select several
objects at the same time. Thirdly, it was difficult for all of the
participants to notice a new tab which is created after loading

sequence- or deployment diagram link. Creating an object for
the first time most of the users tried to drag it from the top bar.
At the beginning interviewees also had problems with creating
a connection between objects. Important to mention that after
figuring out the right way to create objects and connections
between them participants did not repeat this mistake again.
During observation of the user study, the most common
problems were multiple selection and loading of a new tab for
sequence- and deployment diagrams. The participants usually
did not notice that more than one object was selected. As a
result, when they wanted to relocate one object, all selected
objects were moved, and users were very confused. If they
wanted to load a link to sequence diagram and something
else was selected, loading of a new tab failed. In this case,
participants could not identify the reason without our help.

B. Results of the interviews

This section contains the data which is collected during
the interviews. There are two parts in this section. First, the
participants’ information, including participants’ SA and SPE
experience, and their experience in using Smartboards. Sec-
ond, the participants’ opinion about performance evaluation,
including the stage in which they first evaluate performance.
The participants were also asked about their view on the
importance of decisions made in the early design stage and
performance analysis functionality within UML design tool.

1) The participants’ experience: Figure 16 shows the par-
ticipants’ experience on SA, SPE, and Smartboard. All partic-
ipants have some experience in SA, average experience score
is 3.3 out of 5. Since most of the participants are bachelor
students, they do not have any SPE knowledge, only one
participant with Ph.D. has SPE experience. The situation is
similar with participants’ Smartboard experience, there are
only two persons who worked with smartboard before.

There are very few participants who used some performance
evaluation tools before. The most common method they used
was stopwatch while running a prototype, as well as simple ob-
servation. However, some participants used Yakindu [19] and
automated tests.

Fig. 16. Participants’ experience in SA and SPE

2) The Participants’ opinion: Figure 17 illustrates a com-
parison of the data collected during interviews. The blue bar
shows how important decisions made in the early design
stage for system performance results. And the red bar shows
how important performance evaluation within UML design
tool. All of the participants think the early stage performance
analysis and UML design environment are important for the
performance analysis. The lowest score on these two parts
is 3 out of 5. Four participants evaluated the importance of
performance analysis in the early stage with 5 out of 5, even
though most of the participants do not have any experience in
SPE. Most participants believe that the performance evaluation
analysis in the early design stage will be helpful for architects.
However, some of them still think it will depend on how the
method is implemented.

Fig. 17. The Participants’ responses on importance of decisions made in the
early design stage and importance of performance evaluation within UML
design tool

C. Users feedback

It is significant that participants gave very similar feedback
for the system. Most of the users mentioned that the system
was intuitive and easy to use. Several users used “not over-
complicated” to describe the system. Half of the participants
specifically said that they liked the overall look of the sys-
tem. Several people participants did not like to work with
Smartboard, they were sure that if they used the system on
a computer they will be more efficient. One person partic-
ipant liked the way of creation objects. Another participant
mentioned that he liked how edges were implemented since
objects are connected with the edge, it is bound to these
objects. Only one person participant thought that a multiple
selection option were useful, all other participants found it
very confusing. Moreover, all users participants were not
happy with selection feature. One of the participants even
mentioned that multiple selection was the biggest problem for
him. Most of the participants had offers on how to improve the
system’s usability. First of all, all participants mentioned that
there should be a way to get system’s feedback. Thus, users
wanted to see information messages if saving was successful,
as well as when a new tab was opened. Also, most of the
participants wanted to get tips, which could clarify requested

input. In addition, it would be useful to get tips on how to
work with a program (for the first session with the system).
Some participants noted that it would be useful to have some
template for input values, which can be used for several
projects. Most of the interviewees stated that icons should be
more descriptive, several people offered to add pop-up text
supplement for each icon, others thought that better icons
should be used. One of the participants advised us to add
snap to grid feature, which allows users to align all objects on
the diagram.

D. System Usability Scale results

All the participants filled in the SUS questionnaire after
the interview and the task. The results are calculated with
the grading system presented in ”SUS: a ’quick and dirty’
usability scale” by J. Brooke [18] . Based on this research, a
SUS result which is higher than 68 will be considered as above
average. That means that usability of this system fulfills the
users’ expectations. If the result is lower than 68, the system
needs to be improved. The highest SUS result we got is 82.5,
and the lowest score is 42.5, the average score is 63. The result
shows that some improvements. are needed. It is significant
that there is some dependency between SUS score and the
participants’ experience. Those who were more experienced
in SA and SPE also gave higher SUS score. Besides, we got
the lowest SUS score 42.5 from the participant who evaluated
his SA experience with 1.0 out of out of 5.0.

V. DISCUSSION

A. How performance analysis feature affected usability of
OctoUML

As it was mentioned earlier our thesis is a part of
Chalmers/Gothenburg University project which makes re-
search on UML designing tool. OctoUML tool was created in
the scopes of Master thesis “Combining Formal and Informal
Notations in software design” [12] . Our program is based
on OctoUML and developed as its part. In the Master thesis
researchers also conducted usability evaluation. They also used
SUS, that is why now it is possible to compare our SUS results
against their results. This is needed for better understanding
of performance analysis usability. Performance analysis part
gained 63 SUS points. Original UML creating tool gained
78.75 points. These results indicate that performance analysis
component within OctoUML has lower usability level than
general OctoUML. There were three aspects that could have
a significant impact on SUS results: the complexity of the
performance analysis, evaluation task issues, and participants
experience. First of all, the users are required to follow certain
fixed steps to accomplish performance analysis and get final
results. The users should create at least three diagrams and
make reasonable input. Moreover, they should not leave any
input field empty and save all diagrams, as well as not
to forget to create one of the diagrams. Secondly, the task
complexity, which is, of course, connected with performance
analysis complexity. The main difference between our usability
evaluation task and OctoUML usability task is that in our

case there is an expected outcome in performance analysis
task, which is performance result. In the scopes of our task
participants needed to create three diagrams, connect them and
make the required input. Of course, it took a lot of time and
that is why our task did not have time restrictions, as long as
the goal of the task was to complete performance analysis. On
the contrary, OctoUML evaluation task was time limited and
did not have any outcome. Moreover, the participants were
expected to create only one class diagram during 12 minutes.
Thirdly, experience of the participants may have had a huge
impact on results. In our research only 1 participant had Ph.D.,
while all others were Bachelor students. In OctoUML research
majority of the participants had Ph.D., others were Post-doc
and Master students. Moreover, in our research, some special
knowledge (for example, knowledge in SPE and SA) would be
very beneficial for the participants and lack of this knowledge
made understanding of the system and work with it more
difficult. For example, only one participant had experience in
SPE.

B. Smartboard usability

During the interview more than a half of the participants
mentioned that they did not think it is necessary to use a
Smartboard to work with the system. Some noted that if they
used it with computer it would be easier for them to work with
the system. One of the participants was quite experienced with
Smartboard and this affected usability score, he had one of the
highest results. For now, there is only one version of the sys-
tem, which can be used on both a Smartboard and a computer.
This may be one of the reasons of usability issues we have. In
the future, the system could be customized for computer and
Smartboard to fulfill different users’ requirements for usability
on both smartboard and computer side.

C. How software architecture experience affects usability re-
sults

The evaluation result shows that the users’ SA experience
could influence the system usability. The more experienced
user will evaluate systems usability higher. For those users
who are not so experienced in SA, it is difficult to understand
the operation process of the system, especially to define the
input values in performance model. Lack of SA knowledge
is a big problem for the system usability improvement. The
goal is to make this system user-friendly for a wide audience,
including junior architects. Most participants felt that they did
not really know what they were doing when they input the
values. The solution could be the system to auto-generate some
suitable values for AQOSA model depending on the architec-
ture design. For example, the system response time can be
generated depending on the amount of software components,
the processor and bus values. We can also provide some option
for input values. For example, we can give several options
for the processor and bus types (e.g. processor i7-6700, bus
100M). All the other values are predefined based on processor
and bus types. Users just need to choose the suitable processor
and bus type for their system’s design instead of inputting all

the requirement values. That could help people to work with
the system and save their time, as a result it would increase
usability.

D. Interview and evaluation task

Creating a questionnaire we were thinking about things
that could have impact on participants’ answers. For example,
users experienced in SA, SPE, and Smartboard are expected
to have fewer problems working with the system. Moreover,
it was sufficient to know how and in what stage participants
usually check system performance, what tools do they use for
it. It was important to know whether they have experience in
developing systems where performance was a critical quality.
It was sufficient to choose an appropriate task for evaluation.
While deciding on the task several aspects were taken into
account. First of all, the system needed to be not very complex.
The reason for this is we did not want participants to think
about how to design the system. Instead, we wanted them
to create a simple system design, as long as the purpose
of the user study was to check how difficult it is to work
with our system. Otherwise, complex task could have affected
observation results. Secondly, for testing performance analysis
functionality the system needs to use at least two physical tiers.
All participants were asked to perform SUS test and leave the
feedback about pluses and minuses of the system, as well as
suggestions on how to improve usability of the system. It was
important for us to know not only minuses but also sides of
the system that the users liked. For example, if the users liked
some aspect of our system, it could become a good pattern
for the system future improvement.

E. Threats to validity

AQOSA: AQOSA can affect our validity in several ways:
1) At the beginning of this research, we intended to cre-

ate a connection between physical tiers and software
components in deployment diagram. Different software
components would be allocated in different physical
tiers, depending on an architect’s decision. This would
help architects to analyze the performance of the system
in case it is distributed. However, for now, AQOSA
evaluates the whole system by processing data about
all available hardware resources and all software com-
ponents without any assigning.

2) AQOSA was initially developed under the guidance of
the mentor of this research. But it was never put into
practice in the industry and it did not have that many
users. Eventually, there are still potential risks to be
verified.

3) Instructions of AQOSA system are not very clear. We
could rely only on explanations and examples introduced
in the Ph.D. thesis. Thus, the way the system is utilized
now may differ from the initial intention of the AQOSA
creator.

OctoUML: As it was mentioned earlier performance analy-
sis component was developed as a part of OctoUML system.
It took some time to understand the structure of the system’s

code and the purpose of its classes and functions, as far as the
code was not very well commented. We also needed to follow
the MVC architecture style and to be consistent with backend
and frontend decisions made in OctoUML project before us.
Some of these decisions affected our work. For example,
the multiple selection feature was implemented in the scopes
of OctoUML project, and all participants of performance
analysis evaluation had problems with it. As a result, it affected
interviewees’ opinion about performance analysis usability.

The participants evaluated their experience themselves. The
first question to all participants was about their experience in
SA. They needed to scale their experience from 1 to 5. Some
Bachelor students evaluated their experience higher or on the
same level as Ph.D. with previous industrial experience in
software architecture. This example leads to a question about
validity of the users’ answers concerning their experience. It
would be more objective to ask participants to describe their
experience in SA, and based on their answers to scale them
ourselves.

F. Comparison with Palladio and SPE·ED

Our system satisfies the requirements for the performance
analysis, as well as Palladio and SPE·ED. Some advantages of
our system were identified while studying the documentations
of Palladio [13] and SPE·ED [14] and comparing our system
to those systems:

• It is easy to understand and use the system, not so
much SA experience required for a user to perform an
evaluation.

• The logic of our system follows steps of SPE process.
It is easy to understand how all required diagrams are
connected.

• Our system is open-sourced, and it has good extensibility.
If the users have some special requirements for the
system, it is easy to add new features.

There are also some disadvantages. It is designed to be used
in the early stage of software design. If the users need some
deeper functionality from the system. For example, to analyse
the performance of the system from class diagram level, they
have to choose Palladio and SPE·ED.

VI. CONCLUSION

A. Conclusion on results

There were several stages in the scopes of this research:
First, OctoUML was extended with diagrams, which are
essential for early performance evaluation. Functionality that
enables users to create use case diagram and deployment
diagram was created “from scratch”, some elements of the
sequence diagram were implemented before, so sequence
diagram functionality was completed. For all the diagrams
input windows were added for collection the data required
by performance evaluation algorithm. Second, OctoUML was
integrated with a performance prediction system. Based on
AQOSA performance model structure, the model editor was
built-in into OctoUML for creating file format which could be

analysed by AQOSA algorithm. A pop-up window was imple-
mented for demonstrating performance results in OctoUML.
Third, the User Study was conducted to evaluate usability of
the system. One of the participants of the OctoUML evaluation
mentioned that, if OctoUML had more functionality it would
be more complex for users. Results of our evaluation confirm
this assumption. Our SUS score is 63, which is considered to
be lower than average (68) . However, the system can perform
and almost all users got results of performance evaluation. It
is significant that the users left very similar feedback. Some
suggestions repeat in a half of all answers we got. As a result,
the plan for the future improvement of the system can be
prepared.

B. Future work

This section contains some aspects that can be considered
for a future research and development:

1) Simplify the analysis process: Firstly, one of the prob-
lems of our system is that performance analysis process is
too complex for the users. It takes too much time to decide
on the input value. In the future developing this process can
be simplified. Some input values could be auto-generated
depending on the architecture design. That would significantly
simplify the analysis process and improve the system usability.
Secondly, most of the participants of the study noted that they
needed some system feedback, such as information message
that the saving was successful, loading was successful and a
new tab is open, as well as error messages. Thirdly, there was
one very good suggestion from the users for the problem of
multiple selection - simply use control button in case when
multiple selection is needed, and forbid multiple selection by
default.

2) Debugging: Because of the limited time, there are still
some bugs in system. For example, if after saving the users
make changes, save them and analyze the performance model,
sometimes the system will break down with error message.
Some other small bugs influencing the usability should be
fixed in the future work.

3) Improve the evaluation of distributed-systems: In section
V subsection D ”Interview and evaluation task”, it was men-
tioned that we want to create a connection between physical
tiers and software components in deployment diagram. It could
evaluate distributed-systems in a more reasonable way. For this
purposes, more research on AQOSA is needed and some new
features should be added.

4) Develop a Smartboard version of the system: In section
V subsection A ”How performance analysis feature affected
usability of OctoUML” we discussed the usability of Smart-
board. Most of the participants of the use case did not
see any necessity to work with the system on Smartboard.
Some improvements can be made to customize the system for
Smartboards.

REFERENCES

[1] L. Lavagno, G. Martin, B. Selic, S. A. (e-book collection), and S. O.
service), UML for real: design of embedded real-time systems. Boston:
Kluwer Academic Publishers, 2003.

[2] C. U. Smith and J. C. Browne, “Performance engineering of software
systems: a case study,” in AFIPS National Computer Conference, 1982.

[3] C. U. Smith and L. G. Williams, “Software performance engineering: A
case study including performance comparison with design alternatives,”
IEEE Trans. Software Eng., vol. 19, pp. 720–741, 1993.

[4] C. M. Woodside, G. Franks, and D. C. Petriu, “The future of software
performance engineering,” in Future of Software Engineering (FOSE
’07), 2007.

[5] J. Merseguer and J. Campos, “Software performance modeling using
uml and petri nets,” in MASCOTS Tutorials, 2003.

[6] M. R. Chaudron and R. Jolak, “A vision on a new generation of software
design environments.” in HuFaMo@ MoDELS, 2015, pp. 11–16.

[7] L. G. Williams and C. U. Smith, “Making the business case for software
performance engineering,” in Int. CMG Conference, 2003.

[8] R. Etemaadi, K. Lind, R. Heldal, and M. R. V. Chaudron, “Quality-
driven optimization of system architecture: Industrial case study on an
automotive sub-system,” Journal of Systems and Software, vol. 86, pp.
2559–2573, 2013.

[9] C. Smiths and L. William, “Performance solutions: A practical guide to
creating responsive, scalable software.” Addison-Wesleys, 2003.

[10] J. Muskens and M. Chaudron, “Prediction of runtime consumption
in multi-task component-based systems,” in Proceedings of 7th ICSE
Symposium on Component Based Software Engineering, 2004.

[11] E. Bondarev, J. Muskens, P. H. N. de With, M. R. V. Chaudron, and
J. J. Lukkien, “Predicting real-time properties of component assemblies:
A scenario-simulation approach,” in EUROMICRO, 2004.

[12] C. V. B. Marcys Isaksson, “Combining formal and informal notations
in software design: Towards a one-stop software design environment.”

[13] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, H. Kozi-
olek, M. Kramer, and K. Krogmann, Modeling and Simulating Software
Architectures: The Palladio Approach. MIT Press, 2016.

[14] C. U. Smith and L. G. Williams, “Performance engineering evaluation
of object oriented systems with spe-ed,” in Int. CMG Conference, 1997.

[15] A. R. Hevner, J. Park, and S. Ram, “Design science in information
systems research 1,” 2004.

[16] W. M. Newman and M. Lamming, “Interactive system design,” 1995.
[17] P. Runeson and M. Höst, “Guidelines for conducting and reporting case

study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, p. 131, 2009.

[18] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability
evaluation in industry, vol. 189, no. 194, pp. 4–7, 1996.

[19] itemis, “Yakindu,” https://www.itemis.com/en/yakindu/state-machine/.

Appendix A. Interview Questions and User Study

Task

Questions for pre-user study interview:

1. Are you experienced in software architecture design? (Scale: 1 Novice - 5

Expert)

2. Are you experienced with Software Performance Engineering? (Scale: 1

Novice - 5 Expert)

3. Have you ever used Smartboard before?

4. In which stage of development you first evaluate performance?

5. Do you have experience in developing systems where performance was a

critical quality?(if yes - What architectural decisions and in what stage were

made to increase performance?)

6. What tools do you use to evaluate performance?

7. Do you think decisions made in the early design stage significantly affect

system performance results? (Scale: 1 Not important - 5 Important)

8. Do you think that performance evaluation functionality within UML design

environment will be helpful for architects? (Scale: 1 Not help at all - 5 Helps a

lot)

SUS questions:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this

system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

User case task

“You need to create a performance model for a self-driving car which will contain a

use case diagram, a sequence diagram, and a deployment diagram. Choose one of the

following use cases: follow the lane, park, overtake an obstacle. You need to create

only use case diagram for one of this use cases. The system should be allocated on

two boards: low level for controlling servo and ESC, and getting data from sensors;

high level board for processing.”

Post-user study interview:

1. Name the pluses of the system.

2. Name the minuses of the system.

3. Give us some suggestions for the future improvement of the system.

Appendix B. Users’ Answers

Table 1: Pre-users study interview Results from Participants

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Participant

1

3 1 “No” “The latest Stage” “Not prioritize

performance,

increase performance

at the last stage”

“Stopwatch,

manual tests”

5 5

Participant

2

4 1 “No” “Test on prototype” “Yes. designing

components, UML

designing.”

“Stopwatch

”

5 5

Participant

3

4 3 Yes “1st sprint release

development stage”

“No” “Metrics, Mongo

DB drivers

”

3 4

Participant

4

3.5 1 “No” “Software

architecture design

(State machine

diagram)

”

“Yes” “Yankindu” 4 3

Participant

5

4 1 “No” “Use case diagram” “Yes” “Yankindu” 4 4

Participant

6

3 1 “No” “Prototype, testing” “Yes, Design stage” “Timing programs,

stopwatch”

5 4

Participant

7

3 1 “Yes” “Prototyping” “Yes, prototype

stage”

“Observation” 4 5

Participant

8

4 1 “No” “Designing” “No” “Observation” 4 3

Participant

9

3 1 “No” “Prototype” “Yes, decoupling of

sub components

(design stage)”

“Stopwatch,

program to check

time complexity

(automated texts),

code observation”

5 4

Participant

10

1 1 “No” “Usually while

developing

prototype, I test

performance of part

of the prototype or

the whole thing.”

“Some experience.

The decision was

about removing and

simplifying

components in the

design stage of a new

system.

”

“No tools used.

”

5 3

Table 2: SUS score from Participants

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Participant 1 2 2 3 2 3 1 4 4 4 3

Participant 2 3 4 4 2 4 2 5 3 2 3

Participant 3 3 2 4 3 4 2 4 2 4 5

Participant 4 4 3 4 5 5 2 3 2 2 3

Participant 5 3 2 3 4 4 2 4 3 3 4

Participant 6 2 2 4 1 3 2 4 3 3 2

Participant 7 3 2 4 2 3 2 5 2 4 2

Participant 8 3 1 3 2 4 2 4 2 4 2

Participant 9 4 1 4 1 4 1 4 2 4 2

Participant 10 2 3 2 4 4 2 3 4 2 3

Participant 1.

Post-user study interview

Pluses:

 “GUI”

 “There is one performance model view with links to specific diagrams.”

 “Opening new tabs for creating sequence- and deployment diagrams with

loading”

Minuses:

 “Performance analysis process is complex”

Suggestions:

-

Participant 2.

Post-user study interview

Pluses:

 “Intuitive, easy to use”

 “Follows UML”

 “Easy to use with a Smartboard”

Minuses:

 “Multiple selection”

 “Have to press an icon to use selection feature”

 “Links to sequence and deployment diagrams”

Suggestions:

 “Add more features to make models more complex“

Participant 3.

Post-user study interview

Pluses:

 “Intuitive”

 “Overall look”

 “Easy to use”

Minuses:

 “Have to work with a Smartboard”

 “Saving and loading buttons location”

 “A lot of information to know”

Suggestions:

 “If it’s one person it’s smarter to do it on computer”

Participant 4.

Post-user study interview

Pluses:

 “Easy to navigate”

 “Intuitive”

Minuses:

 “Have to work with a Smartboard”

 “Saving and loading buttons location”

 “A lot of information to know”

Suggestions:

 “Tips for input needed”

 “Instructions needed”

 “Error messages needed”

Participant 5.

Post-user study interview

Pluses:

 “GUI”

 “The system is intuitive”

Minuses:

 “Wouldn’t use it just for performance analysis”

Suggestions:

 “Error messages needed”

Participant 6.

Post-user study interview

Pluses:

 “You always knew what you are doing”

Minuses:

 “Selection was inconsistent”

Suggestions:

 “Template for input values”

 “Feedback for the user while saving, loading”

Participant 7.

Post-user study interview

Pluses:

 “How connection works (if you move one of the objects connections are

reallocated with it)”

Minuses:

 “Loading part was not intuitive”

 “Selection”

Suggestions:

 “Pop up for saving”

 “Easier mechanism for opening a new tab for sequence-, deployment diagrams.

If you open a new tab the view should be switched to the new tab“

 “Icons need to be more descriptive (text supplement, create your own system

of icons)”

 “Snap to grid (for making it more aligned)”

 “Ability to save all diagrams of performance analysis model”

 “Info about input data (some clarification)”

 “System feedback to the user (while saving, loading)”

Participant 8.

Post-user study interview

Pluses:

 “System is very simple and not overcomplicated”

 “Each feature is very useful”

 “Possibility of selection of several objects”

 “Intuitive”

 “Board is good for group discussion”

Minuses:

 “Too easy for some people who need more formal diagrams”

 “Not specific enough about the input (some fields labels sound too

ambiguous)”

Suggestions:

 “Feedback while saving, loading, opening new tabs”

 “Tips for the user who first time uses the system”

 “Pop-up labels for icons”

Participant 9.

Post-user study interview

Pluses:

 “Tool bar was minimal and easy to use”

 “Don’t need to drag and drop to create an object”

 “Intuitive”

Minuses:

 “Selection of several objects”

 “The way how results were presented”

Suggestions:

 “Use ctrl button for multiple selection.”

 “Since you loading a new tab the view should switch to a new tab”

Participant 10.

Post-user study interview

Pluses:

 “Overall look”

Minuses:

 “Multiple selection”

Suggestions:

Appendix C. Performance Analysis Process

Software Github address: https://github.com/fk19841217/Performance-Analysis

1. Create a use case diagram

2. Input the frequency value for each use case

3. Create a link to a sequence diagram for each use case

4. Input value for the link to a sequence diagram

5.Connect the use case node and the link to a sequence diagram

6. Select the link to a sequence diagram “Sequence1” and click “Loading” in the Edit

menu

7. A new sequence diagram view named “Sequence1” will be opened for creating

sequence diagram

8. Create a sequence diagram, and input value for each node and edge.

9. After finishing the sequence diagram, click the “Saving” in Edit Menu

10. Go back to the Performance model view, do the same process for a node

“Sequence2”

11. Create a link to a deployment diagram and load this node

12. Create a deployment diagram in the new view, input value for each hardware node

and the bus connection between them

13. Save the diagram after finishing it

14, Go back to the Performance model and click “Analysis” in the Edit menu

15. After a while the performance result will open in a new window

Appendix D. AQOSA Model

<?xml version="1.0" encoding="UTF-8"?>

<aqosa.ir:AQOSAModel xmi:version="2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xmi="http://www.omg.org/XMI" xmlns:aqosa.ir="http://se.liacs.nl/aqosa/ir">

<assembly>

<component name="A">

<service name="as"/>

<inport name="as_inport"/>

<outport name="as_outport"/>

</component>

<component name="B">

 <service name="bs"/>

<inport name="bs_inport"/>

<outport name="bs_outport"/>

</component>

<component name="C">

<service name="cs"/>

<inport name="cs_inport"/>

<outport name="cs_outport"/>

</component>

<component name="D">

<service name="ds"/>

<inport name="ds_inport"/>

<outport name="ds_outport"/>

</component>

<flow name="Sequence1">

<action xsi:type="aqosa.ir:ComputeAction"

service="//@assembly/@component.0/@service.1"/>

<action xsi:type="aqosa.ir:CommunicateAction"

source="//@assembly/@component.0/@outport.1"

destination="//@assembly/@component.1/@inport.1"/>

<action xsi:type="aqosa.ir:ComputeAction"

service="//@assembly/@component.1/@service.1"/>

</flow>

<flow name="Sequence2">

<action xsi:type="aqosa.ir:ComputeAction"

service="//@assembly/@component.2/@service.0"/>

<action xsi:type="aqosa.ir:CommunicateAction"

source="//@assembly/@component.2/@outport.0"

destination="//@assembly/@component.3/@inport.0"/>

http://se.liacs.nl/aqosa/ir

<action xsi:type="aqosa.ir:ComputeAction"

service="//@assembly/@component.3/@service.0"/>

</flow>

</assembly>

<scenarios>

<flowset name="Average" missedPercentage="0.01" completionTime="10000">

<flowinstance trigger="200" start="50" instance="//@assembly/@flow.0"

deadline="20"/>

<flowinstance trigger="166" start="100" instance="//@assembly/@flow.1"

deadline="10"/>

</flowset>

</scenarios>

<repository>

<componentinstance variancePercentage="0.01" id="A_Instance"

compatible="//@assembly/@component.0">

<service instance="//@assembly/@component.0/@service.0" cycles="0">

<depend>

<require internal="//@assembly/@component.0/@inport.0"/>

</depend>

</service>

<service instance="//@assembly/@component.0/@service.1" cycles="500"

networkUsage="3000">

<provide connects="//@assembly/@component.0/@outport.1"/>

<depend>

<require external="//@repository/@externalport.0"/>

</depend>

</service>

</componentinstance>

<componentinstance variancePercentage="0.01" id="B_Instance"

compatible="//@assembly/@component.1">

<service instance="//@assembly/@component.1/@service.0" cycles="0">

<depend>

<require internal="//@assembly/@component.1/@inport.0"/>

</depend>

</service>

<service instance="//@assembly/@component.1/@service.1" cycles="600">

<depend>

<require internal="//@assembly/@component.1/@inport.1"/>

</depend>

</service>

</componentinstance>

<componentinstance variancePercentage="0.01" id="C_Instance"

compatible="//@assembly/@component.2">

<service instance="//@assembly/@component.2/@service.0" cycles="200"

networkUsage="2000">

<provide connects="//@assembly/@component.2/@outport.0"/>

<depend>

<require external="//@repository/@externalport.1"/>

</depend>

</service>

</componentinstance>

<componentinstance variancePercentage="0.01" id="D_Instance"

compatible="//@assembly/@component.3">

<service instance="//@assembly/@component.3/@service.0" cycles="100">

<depend>

<require internal="//@assembly/@component.3/@inport.0"/>

</depend>

</service>

</componentinstance>

<processor id="CD-h" upperFail="0.03" lowerFail="0.015" internalBusDelay="0.15"

internalBusBandwidth="2048" cost="100" clock="50"/>

<processor id="CD-l" upperFail="0.025" lowerFail="0.01" internalBusDelay="0.15"

internalBusBandwidth="2048" cost="140" clock="50"/>

<processor id="AB-h" upperFail="0.03" lowerFail="0.015" internalBusDelay="0.2"

internalBusBandwidth="1024" cost="100" clock="100"/>

<processor id="AB-l" upperFail="0.025" lowerFail="0.01" internalBusDelay="0.2"

internalBusBandwidth="1024" cost="140" clock="100"/>

<bus id="bus_connect" cost="100" delay="0.05" bandwidth="100"/>

<externalport id="export" upperFail="0.05" lowerFail="0.01"/>

<externalport id="new_ex_port" upperFail="0.05" lowerFail="0.01"/>

</repository>

<objectives>

<settings noSampling="50" noRun="3" noDuplicate="1" minCost="200" maxCost="10000">

<evaluations>ResponseTime</evaluations>

<evaluations>CPUUtilization</evaluations>

<evaluations>BusUtilization</evaluations>

<evaluations>Safety</evaluations>

<evaluations>Cost</evaluations>

</settings>

</objectives>

</aqosa.ir:AQOSAModel>

