
Understanding and Modelling Behavioural
Requirements: an Exploratory Study
Bachelor of Science Thesis in Software Engineering and Management

Marco Trifance
Ivo Vryashkov

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

The Author grants to University of Gothenburg and Chalmers University of
Technology the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that
the Work does not contain text, pictures or other material that violates
copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this
agreement. If the Author has signed a copyright agreement with a third party
regarding the Work, the Author warrants hereby that he/she has obtained any
necessary permission from this third party to let University of Gothenburg and
Chalmers University of Technology store the Work electronically and make it
accessible on the Internet.

Understanding and Modelling Behavioural Requirements: an Exploratory Study

Marco Trifance
Ivo Vryashkov

© Marco Trifance, June 2017.
© Ivo Vryashkov, June 2017.

Supervisor: Grischa Liebel
Examiner: Rodi Jolak

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Understanding and Modelling Behavioral
Requirements: an Exploratory Study

Marco Trifance and Ivo Vryashkov
Department of Computer Science and Engineering

University of Gothenburg and Chalmers University of Technology
Gothenburg, Sweden

marco.trifance@gmail.com, ivo.vryashkov@gmail.com

Abstract—Clear understanding of system requirements
is necessary to achieve quality in the architectural design
and in the development process of a software system.
Several studies focus on the comprehensibility of graph-
ical modelling languages. Contributions to other areas
in Software Engineering use empirical investigation to
explore how individuals approach collaborative learning
tasks in different phases of software development. This
paper describes an exploratory case study we conducted
with 10 undergraduate students to investigate how subjects
approach modelling of system requirements. We used
the method of constructive interaction to identify the
most common difficulties and to explore whether different
requirements specification formats affect the approach
of the subjects. We observed that the most common
difficulties were related to misuse of UML syntax elements.
Furthermore, our findings suggest that the approach of the
subjects is affected by the completeness of the requirements
specification they use.

Keywords-requirements understanding, requirements
modelling, constructive interaction

I. INTRODUCTION

Requirements Engineering (RE) is a fundamental
phase in Software Engineering (SE) [1]. SE is a complex
activity often involving a multiplicity of actors. Complete
and communicative specifications of requirements are
necessary to produce a good architectural design, which
in turn increases the quality of the development process
and of the system under development [2].

Academic literature has drawn particular attention to
the area of comprehensibility of different requirements
specification techniques. With the purpose of enhancing
the understanding and communication of requirements
among different stakeholders, a branch of research has
focused on the creation and improvement of require-
ments modelling languages [3], [4]. A number of studies
use controlled experiments to compare the comprehen-

sibility of different modelling languages [5], [6], [7].
In other areas of SE, e.g. program comprehension [8],
[9], recent studies have investigated how practitioners
approach learning tasks in different phases of software
development. However, there is to our knowledge no
related work exploring how individuals translate require-
ments into a model and how this affects their learning
about the requirements during the process.

The purpose of this study is to explore the process
of understanding and modelling requirements. Our
goal is to investigate how students proceed when
creating requirements models and which difficulties
they experience. We also explore the differences in
the modelling approach when using different levels of
details in the requirements specifications. To do so, we
address the following research questions (RQs):

R.Q. 1: How do student subjects approach require-
ments modelling?

R.Q. 2: Which difficulties do student subjects experi-
ence when creating requirements models?

R.Q. 3: What are the differences in the modelling
process depending on the input format and completeness
of the requirements?

To address our research questions we use analysis of
qualitative data collected from a controlled environment.
Our data collection and analysis procedures are based
on the method of constructive interaction [10], which
was introduced in the area of cognitive science to over-
come some of the limitations that existing literature has
associated with think-aloud protocols [11].

This study is designed as a replication study of an
ongoing research project conducted by Liebel [12], [13].
At the time we conducted this study, the parent project
was still undergoing data collection activities and data
analysis was not yet completely defined. In this perspec-

mailto:marco.trifance@gmail.com
mailto:ivo.vryashkov@gmail.com

tive, we provide three contributions. First, we provide a
description of the behaviour observed in subjects and a
list of the most common difficulties encountered while
performing modelling tasks. Our second contribution
consists of a list of codes to support the analysis of
textual data in the parent project. Our final contribu-
tion is represented by the instruments–i.e. requirements
specifications–we will create in our replication [12].

The remainder of this paper is structured as follows:
in Section II we present a literature review of the related
work to our study. We outline our research methodology
in Section III. In Section IV we present the results from
our study which are later discussed in Section V. In
Section VI we summarize the main threats to the validity
of this study. Finally, in Section VII, we present our
conclusions.

II. RELATED WORK

Over the past two decades, a number of studies have
contributed to the area of requirements modelling from
different perspectives. Some authors have suggested new
variations of requirements modelling languages with the
purpose of enhancing communication among stakehold-
ers with different areas of expertise, e.g. [3] and [4].
Helming et al. propose the Unified Requirements Mod-
elling Language (URML) to provide a homogeneous and
comprehensible representation of requirements aimed
to support interdisciplinary collaboration [3]. Jureta et
al. propose Techne, an abstract requirements modelling
language (RML) to serve as a basis on which other
RMLs can be built [4].

A number of experimental studies compare differ-
ent requirements specification languages with respect
to comprehensibility. Otero and Dolado conduct an ex-
periment over 31 undergraduate students to compare
the comprehensibility of UML state machine, sequence
and collaboration diagrams in real-time and manage-
ment information systems [7]. Their results suggest that
sequence diagrams display better comprehensibility for
real-time systems than for management information sys-
tems. Abrahão et al. run a series of experiments to show
that enhancing textual requirements specification with
UML sequence diagrams increases comprehensibility
[6]. Liebel and Tichy use a controlled experiment over
22 undergraduate students to compare Modal Sequence
Diagrams (MSD) and Timed Automata (TA) [5]. The
results show no significant difference with respect to
comprehensibility. However, the authors report how the
subjects provided with MSD answered significantly more
questions.

Recent studies in areas related to SE explore how
individuals approach learning tasks in activities related to
software design [14] and development [8], [9]. Stikkolo-
rum et al. use an online experiment with 120 student-
pairs to identify common problems encountered and
the main strategies adopted by students during class
diagrams design tasks [14]. The authors found that the
problems the students have are related to wrong use
of UML elements and adding unnecessary elements to
class diagrams. Sillito et al. conduct two studies to
identify the most common questions asked by developers
during programming change tasks [9]. Their contribution
includes a catalog of 44 types of questions classified in
four top-level categories, namely finding focus points,
expanding focus points, understanding a subgraph and
questions over groups of subgraphs. Duala-Ekoko and
Robillard use a controlled environment to investigate
how developers seek information when using unfamiliar
APIs [8]. They observe 20 graduate students approaching
programming tasks involving external APIs to identify
the most common questions and difficulties encountered
by the subjects.

To our knowledge, there is no related work investigat-
ing how practitioners understand and model behavioural
requirements. With a similar intent to Duala-Ekoko and
Robillard, in this study we use a controlled environment
to investigate how students approach requirements mod-
elling and to identify the main difficulties they encounter.

III. METHODOLOGY

A. Research Method

To address our research questions we conducted an
exploratory case study [15]. We follow a qualitative
approach based on the method of constructive interac-
tion [10]. Constructive interaction consists of observing
and analyzing the interactions between two individuals
while they cooperate in collaborative problem solving
activities. The basic idea is that the identification of
constructive interactions allows to gain information on
the reasoning process of the subjects [10].

Because of its convenience in terms of time and
cost of data collection procedures, we used a controlled
environment to observe the modelling activities of the
students. Although the use of a controlled environment
might appear in contrast with qualitative data analysis
driven by exploratory purposes, academic literature has
provided an increasing number of studies following this
type of approach [8], [16], [17].

B. Participants

We invited 10 students who performed the task of
modelling behavioural requirements in groups of two.
The students were 3rd year Software Engineering un-
dergraduates enrolled in the Software Engineering and
Management program at the University of Gothenburg.

We used convenience sampling for selecting the par-
ticipants in our study [18]. More specifically, all par-
ticipants were selected from the same university we
were enrolled at the time we conducted this study. This
allowed us to save time and effort in conducting the
necessary data collection activities.

C. Study Setup

We conducted the study in multiple sessions, each one
involving a group of two student subjects. In each session
the researchers observe the pair of students cooperate to
create UML (Unified Modeling Language [19]) state ma-
chines from a set of behavioural requirements specified
in a textual format.

UML state machines are utilized for modelling the
dynamic aspects of systems. In particular, they are best
suited for specifying the behaviour of real-time systems
[20]. UML state diagrams focus on the event-governed
behaviour of an object where flow of control transitions
from one state to another. In other words, state machines
describe the possible sequences of states that an object
can go through during its lifecycle in reaction to certain
events and what actions are taken when events occur
[21].

The choice of UML state machines was mainly driven
by two factors. First, UML is widely accepted as the
standard in SE [22]. Second, we knew that the par-
ticipants in our study were familiar with UML state
machines (i.e. the students have undertaken courses
covering the use and notation of UML state machines
as part of their university program).

Each subject was given a cheat sheet on UML state
machines one week before the scheduled study session
(available in Appendix D). The purpose of the cheat
sheet was for the students to refresh their knowledge
and memories about drawing state diagrams using UML
syntax. However, during the actual modelling iterations,
the participants were not allowed to use the cheat sheet
as reference. In addition, any other external help such
as laptops, mobile phones, was not allowed during the
study sessions.

We created both User Requirements Specifications
(URS) [23] and more detailed System Requirements
Specifications (SRS) [23] for two different systems:

an elevator and a drying machine (see Appendix A).
This gave us a total of four requirements specification
documents. We produced two different formats for each
system with the intent of creating requirements specifica-
tions that would present a different level of completeness.
We used these different requirements formats to inves-
tigate how students approach requirements modelling in
two different scenarios. In the first scenario (from now
on called iterative approach) the students are provided
with a vague description of the system requirements (the
URS), while in the second scenario (from now on called
specific approach) the students are provided with a more
detailed description of the intended behaviour of the
system (the SRS).

At the beginning of each session the subjects are given
a short introduction where they are explained the rules
defining the study. In order to avoid researcher bias, the
introduction is given as a video1. The remaining time
is articulated in two phases, each one dedicated to the
modelling of a different set of requirements.

We organized the two modelling phases to follow both
the iterative and the systematic approach. For example, if
the subjects are provided with URS (iterative approach)
for ”system A” in phase one, they receive SRS (specific
approach) for ”system B” in phase two. To be able to
compare the two approaches, the combination and order
of system and requirements specification format (URS
or SRS) is inverted each session [24].

During the modelling phases, the researcher acts as
the customer, meaning that the students can use the
time between the modelling iterations to ask for clarifi-
cations about the requirements specifications. However,
interactions between the subjects and the customer (re-
searcher) are not allowed during the modelling iterations.
When answering the questions, the researcher provides
information related to the system (i.e. problem domain),
without commenting on the quality or correctness of the
model (the solution) produced by the students. Also, the
researcher does not answer any question related to UML
syntax or modelling conventions. Concerning the syntax,
students are encouraged to use elements and notation
according to the rules defined within UML. However,
since measuring the UML knowledge of the students
is not the primary focus of this study, modelling at
a sketching level is also accepted. More specifically,
subjects are allowed to declare their own notation to
handle those cases where they do not remember the
correct use of a given state machine element.

1https://youtu.be/Kv87fKsH7p0

https://youtu.be/Kv87fKsH7p0

Fig. 1. Study session overview

The iterative approach consists of three iterations of
15 minutes each, while the specific approach has two
iterations of 20 minutes. The intention behind the differ-
ent number and length of the iterations is to make the
modelling phases more realistic. On the one hand, in the
iterative approach, the subjects receive a set of require-
ments (URS) that is lacking in details and completeness.
Hence, they have more iterations with a reduced time
frame which allows more frequent interactions with the
customer (researcher). On the other hand, in the specific
approach, the participants receive detailed and complete
specifications of the system. Because of this level of
detail of the requirements, the modelling iterations are
designed to be longer and less frequent. This gives the
subjects fewer opportunities to talk to the customer but
more time to model the system. We are aware that the
above mentioned differences lower the control of the
environment. However, we believe that the exploratory
nature of the study makes reduced control acceptable to
our purposes.

Figure 1 presents an overview of the session process

in our study. The scenario depicts the case where the
subjects begin in phase one with modelling the URS
following the iterative approach and then continue in
phase two with modelling the SRS following the specific
approach.

D. Data Collection

We used multiple data collection procedures to address
our research questions. Before each session the partic-
ipants fill in a pre-study questionnaire we use mainly
for demographic purposes [25]. We use the collected
data to show the general experience of the participants
in software engineering, requirements understanding and
requirements modelling. A copy of the questionnaire is
provided in Appendix B.

The main source of data consists of audio and video
recordings from the study sessions conducted with the
students. In addition to the recorded material, the re-
searchers also took notes of the process and interactions
during the modelling iterations [26].

After each session we conducted a semi-structured

Code Title Explanation/Usage

p Propose
1. Propose a concrete solution or procedure. - ex. “Let’s start with idle” or “Let’s read first,
then we draw”.
2. Suggest how the system or the model is working (indicating modal verbs: can, will, is able
to).
3. Subject draws part of the model. - ex. ”It goes from state X to state Y” while drawing
corresponding transition in the model.

q Question 1. Ask a question or request additional information. - ex. “What do you mean here?”

2. NOT when subject is questioning the validity of something (use “c” instead).

c Criticise
1. Question the current solution or the validity of something. - ex. “Do you think we should
really do like this?” or “I think this is not correct”
2. Includes realization that a previous statement is wrong - ex. “Ooohhh, this is wrong”
3. Use conservatively. Use “q” if interaction is not of type 1 or 2.

m Mediate 1. Recommend to ask something to the researcher/stakeholder. - ex. ”Maybe we should ask
this in the break” or ”I think this is something we need to ask”

a Acknowledge 1. Confirm or acknowledge something. - ex. ”Yeah.” or ”Yes, I think this is good.”

r Reason 1. Reason about how the system or the model should behave. - ex. ”And then when car comes
it should go to state X”. (Indicating modal verbs: should, could, might, may)
2. Use according to subject activity. If related to the model, use when the solution is already
existing (Use ”p” if the subject is drawing the solution). - ex. ”It goes from state X to state
Y” while pointing at transition in the model.

n Lack of knowledge 1. Subject declares lack of knowledge or information on a specific topic. - ex. “I don’t know
how this is supposed to work”
2. Use conservatively. Statements like “I don’t know” can be common in informal talk. Make
sure the intention of the subject can be reconducted to case 1.

n/a No code 1. Empty rows containing meta information. - ex. comment (Both subjects draw at the same
time)
2. Incomplete, unclear sentences. - ex. “mmm... we should...”

TABLE I
PROCESS CODES

interview with the students [27]. The purpose of the
interviews is to give us more insights on the approach
followed by the subjects and to support the findings from
the modelling sessions. The questions included in the
interview are provided in Appendix C.

E. Data Analysis

Data analysis was carried out iteratively and in parallel
with data collection activities. This allowed us to follow
an editing approach [27], i.e. we started with a small set
of themes which was updated and expanded according
to new information as data collection proceeded.

We used data from the pre-study questionnaire to
identify differences in the background and level of
experience of the participants. We addressed our RQs
mainly through the analysis of the recordings from the
study sessions and of the post-study interviews.

Here we briefly summarize the steps we followed
for the analysis of the recordings from each study
session. The remainder of this section provides a detailed
description of each of these steps. We created verbatim
transcriptions of the audio recordings from the modelling

sessions. We made use of the video recordings to enrich
the transcriptions with relevant information on the be-
haviour of the subjects, e.g. ”subject A starts drawing
state X” [26]. The resulting transcriptions were then
coded separately by both researchers.

With the intent of mitigating researcher bias and
improve the reliability of our data, we measured the
level of agreement between the codes assigned by the
two researchers. This means that the transcription of each
single modelling iteration has been coded iteratively until
the desired level of agreement was observed. Once the
data was validated, we randomly selected one of the two
coded transcriptions, we marked it as reliable data and
added it to the dataset for our final data analysis.

In the final step of our analysis we triangulated the
information extracted from coded transcriptions with
data from the post-study interviews and used inductive
category building [28] to answer our RQs.

Transcriptions
In Appendix E we provide an excerpt of one of our

Code Title Explanation/Usage

m Model
1. The interaction includes terms that identify elements that are present in the solution modeled
by the subjects. - ex. ”here this guard evaluates to true”, ”this transition needs a trigger”
2. Subject is drawing or pointing at the model.
3. NOT when subject is sketching the system on the whiteboard. Use ”s” instead.

s System
1. Subject is discussing the system behavior without mentioning model elements.

2. Subject is reading the requirements specification document.
3. USE conservatively. Use “m” unless it is clear that it is 1 or 2.

u UML Syntax
1. Subject is discussing UML state machine modelling elements without referring directly
to elements that are present in their specific solution. - ex. ”usually in state machines these
cases are handled with nested states and choice nodes”
2. Interaction focuses on UML modelling rules and conventions, without referring to elements
of the solution modeled by the subjects - ex. ”choice nodes are used to handle multiple
conditions”
3. USE conservatively. Use “m” unless it is clear it is 1 or 2.

e Environment Settings 1. The interaction is related to the study environment, rules, settings and tools. - ex. ”How
long do we have left before the end of the iteration?” or “Can I have another pen?”

p Procedure 1. Subject discusses the procedure, tasks and activities to complete to produce the model. -
ex. ”Ok, you draw, I read the requirements.”
2. NOT when the interaction refers to elements of to the model directly. Use ”m” instead.

n/a Other 1. None of the above.

2. Metadata.

TABLE II
TOPIC CODES

coded transcriptions. We used a spreadsheet to divide
the protocol in a sequence of interactions (column
three) between the two observed subjects (column
two). Single interactions were then split whenever the
transcriber noticed an interruption in the sentence, a
change in the topic (e.g. model, system requirements,
environment) or in the intentions of the subject (e.g.
proposing, criticizing). The first column was used to
mark the minute when the interaction was recorded.
Column number six displays the notes and comments
that were added by the transcriber with the use of
the video recordings. The transcriber notes are mainly
intended to describe the physical motions and actions
of the subjects (e.g. drawing, reading, mimicking), and
more generally to provide all the information that could
not be captured in the audio recordings [26].

Coding
During the coding of the observed interactions we

focused on two distinct dimensions: process and topic.
With process coding we attempt to capture the way
the subjects proceed, how they reason and cooperate to
model their solutions. With topic coding we intend to
identify the context discussed by the participants, e.g.
system requirements, study environment, model.

The idea behind process coding is to compare the

sample distributions of the process codes over different
groups to investigate whether they tended to display
common approaches and patterns to modelling of be-
havioural requirements (RQ1). In a similar perspec-
tive, the comparison of the distributions of the process
codes over the two alternative requirements specification
formats–iterative (URS) and specific (SRS) approaches–
allows us to explore how different levels of details in the
specification affects the approach of the students (RQ3).

In our analysis over the process dimension we made
use of a set of codes defined in the replicated study
[12]. These codes were inspired by the works by Soller
et.al [29], Miyake [10] and Baker [30]. Based on these
observations during data collection, we decided to ex-
tend this list by introducing a new category of process
interaction (”n” – lack of knowledge). Table I provides
the definitions of the codes we used to classify the
interactions over the process dimension.

Some of the process codes were relatively easy to
detect, and therefore less prone to create disagreement in
the interpretation by different researchers. For example,
it is safe to say that this was the case for interactions of
type ”m” (mediate) or ”n” (lack of knowledge). However,
some boundaries were less clear than others, especially
when the tone of the conversation tended to be more
informal. A valid example is the distinction between

Iterative Approach Specific Approach
Coding Iteration Iteration 1 Iteration 2 Iteration 3 Iteration 1 Iteration 2

1st 0.575 0.657 0.629 0.372 0.654
2nd 0.683 0.725 0.834 0.645 0.653
3rd - - - 0.676 0.674

TABLE III
CODING ITERATIONS

codes ”r” (reason) and ”p” (propose). To facilitate this
specific distinction, we created some rules of thumb
based on the physical actions of the participants which
were described in the researcher comments. For this
specific case, actions like drawing a state, declaring a
variable, writing a guard, and all concrete and active
contributions to the model were classified as ”p”. Con-
versely, all interactions where the subject was pointing
at the model discussing elements already present in the
solution were classified as ”r”.

Topic coding was introduced to identify the context
discussed in each interaction. The idea behind topic
coding is that its use in conjunction with process coding
would provide us with relevant details on the behaviour
of the subjects. For example, by knowing which topic is
being addressed in a specific interaction we could extract
information on the nature of the difficulties encountered
by the subjects (RQ2). Topic coding also allowed us to
measure the extent to which subjects discussed system
requirements (problem domain) or model design (solu-
tion domain). This information was later used to reflect
on how the approach of the subjects changed in relation
to the level of details in the requirements specifications
(RQ3).

Based on our observations, we identified five main
areas discussed by the subjects during the modelling
iterations. Table II provides the definitions of the codes
we used to classify the interactions over the topic
dimension. As in the case for process codes, some of
the topic categories were more easily identifiable than
others. The most difficult distinction in this case was in
determining whether the subjects were discussing the
model or the system. For this specific case we made
intensive use of the transcriber notes to consider the
physical actions of the subjects in our interpretation of
the interactions. For example, all interactions associated
with concrete modifications of the model (e.g. subjects
add or remove a state) were coded as ”m”.

Measuring the Level of Agreement
In order to measure the intercoder agreement on our

coded data we used the Krippendorff’s alpha [31]. The
Krippendorff’s alpha is an agreement coefficient that can
handle categorical data and small sample sizes, which
made it ideal for our case (two modelling iterations were
particularly shorter than the others, counting 33 and 30
interactions respectively). We set our minimum threshold
to an alpha on 0.667. This specific value was suggested
by Krippendorff as sufficient to infer reliability of data
within research studies where tentative conclusions are
acceptable [31].

As we mentioned above, we proceeded by coding the
transcriptions from each single modelling iteration in an
iterative manner until we observed a value of the alpha
above 0.667. Table III displays the coding iterations
and the obtained alpha levels for one of the early
sessions in our study (the cells marked with a hyphen
denote iterations not used as the alpha level was already
achieved). In cases, such as the specific approach, the
coding of the transcriptions were iterated three times
until the desired level of agreement was reached. This
phase of the data analysis was particularly helpful to
the identification of new codes to be included in our
analysis and in reshaping the definitions and boundaries
of those already in use. As a result, the coding process
of the later sessions in our study became more efficient
and coherent, and in certain cases the desired alpha
level was achieved from the first coding iteration.

Data Triangulation
In the final step of our analysis we triangulated the infor-
mation we extracted from our observations with the an-
swers the students provided in the post-study interviews.
Based on our observations, we tried to identify common
patterns in the approach followed by the participants
(RQ1). We also make use of the coded transcriptions
to support our answers to RQ2 and RQ3. The joint
analysis of both process and topic coding is also intended
to produce insights on the difficulties encountered by
the subjects (RQ2). We compare the frequencies of
the process and topic codes over different approaches
(iterative and specific approach) to investigate on how

Group Parti-
cipant

Industrial
Experience

UML
Knowledge2

FSM
Knowledge3

Modelling
Courses

Embedded
Systems

Vertical
Trans.

Systems

Modelling
Activities

G1 P1 0 years intermediate intermediate TAD4, SA5,
MDD6 basic intermediate weekly

P2 0 years intermediate intermediate TAD, SA basic intermediate weekly

G2 P3 0 years basic basic TAD, SA,
MDD intermediate no

knowledge yearly

P4 0 years basic basic TAD, SA basic basic yearly

G3 P5 0 years basic basic TAD, SA basic no
knowledge yearly

P6 6 months intermediate intermediate TAD, MDD,
SA basic basic yearly

G4 P7 0 years basic basic TAD, DP7,
SA, SP8 basic no

knowledge yearly

P8 0 years basic basic
TAD, SA,
SP, TAV9,
PPPM10

basic basic yearly

G5 P9 0 years intermediate basic TAD, MDD,
TAV basic basic yearly

P10 0 years basic basic TAV, SA basic basic monthly

TABLE IV
PRE-STUDY QUESTIONNAIRE RESULTS

different requirements specification formats affect the
modelling approach of the subjects (RQ3).

IV. RESULTS

This section includes the results we obtained during
this study. We first present the information we collected
from our pre-study questionnaire. In the second part we
present the data from our coded transcriptions and we
run statistical analysis on it to support our discussion in
Section V.

Pre-study Questionnaire
We conducted five study sessions, involving a total
of 10 students. Table IV summarizes the information
we collected from the pre-study questionnaires. All
participants were third year bachelor students within
the program Software Engineering and Management
at Gothenburg University. Two subjects were female.
Almost all the subjects had no industrial experience
in either software modelling, software development or

2Possible choices – no knowledge; basic; intermediate; expert
3FSM – Finite State Machines
4TAD – Technical Analysis and Design
5SA – Software Architecture
6MDD – Model Driven Development
7DP – Design Patterns
8SP – Software Processes
9TAV – Test and Verification
10PPPM – Product, Projects and People Management

requirements engineering. The only exception was one
subject with an experience of 6 months. The participants
have taken similar modelling courses, most of which are
given at the university program in which the students
are enrolled. Columns 4 and 5 show that subjects rated
their prior knowledge in state machines as similar to
their general knowledge of UML. One exception is a
student who has taken a stand alone course in Design
Patterns. Additionally, the knowledge of the subjects in
the domains related to our study (embedded systems
and vertical transportation systems) was diversified,
ranging from no knowledge to intermediate knowledge.
However, we stress that the information related to
subject ”knowledge” was given as personal rating by the
subjects and therefore any difference must be interpreted
with caution.

Study Sessions
During our sessions we collected a total of 331 minutes
of recorded material, 265 of which from the modelling
iterations and 66 from the post study interviews. Table V
shows the length in minutes of each modelling iteration,
divided per group and approach (specific and iterative).
Cells marked with a dash symbol denote iterations that
were not used by the subjects as they had already handed
in their solution. Table VI shows the requirements spec-
ification documents that were handed in to the groups
over the two phases.

Approach Specific Iterative
Iteration 1st 2nd Total Specific 1st 2nd 3rd Total Iterative Total
Group 1 20 18 38 15 12 - 27 65
Group 2 20 12 32 15 11 - 26 58
Group 3 20 15 35 12 8 - 20 55
Group 4 16 5 21 15 - - 15 36
Group 5 19 6 25 15 11 - 26 51

TABLE V
LENGTH OF THE MODELLING ITERATIONS IN MINUTES

Group Phase One Phase Two
G1 URS, Dryer SRS, Elevator
G2 URS, Elevator SRS, Dryer
G3 SRS, Dryer URS, Elevator
G4 SRS, Elevator URS, Dryer
G5 SRS, Dryer URS, Elevator

TABLE VI
REQUIREMENTS SPECIFICATIONS

The values displayed in Table V show how all groups
managed to submit their solutions within the time limita-
tions we set for the modelling sessions. This is reinforced
by the answers provided by the subjects to the post-study
interviews, where all groups stated that they felt they
had enough time to create their models. However, we
observed clear differences in the total effort invested by
different groups, ranging from a minimum of 36 to a
maximum of 65 minutes. This different effort resulted
in solutions displaying different levels of completeness
and functionality.

We used the audio and video recordings from the study
sessions to create written transcriptions of the interac-
tions between the subjects. This step was carried out
individually by one researcher. The transcriptions were
later coded by both researchers individually, and then
compared to measure the level of agreement between
the two interpretations. This process resulted in a total
of 3892 coded interactions, which were later reduced
to 3639 after the removal of 253 interactions that had
been classified as either non-constructive, incomplete
or unclear, i.e. code ”n/a” in both process and topic.
Figures 2 and 3 use bar charts to display the frequencies
of the observed interactions over the process and topic
dimensions respectively.

Figures 2 and 3 are given with the purpose of provid-
ing a general overview of the interactions we observed
during our study. By looking at both figures we see how
students spent considerable effort discussing–mainly rea-
soning (”r”), acknowledging (”a”) and proposing (”p”)–

Fig. 2. Process codes frequencies

about the model (”m”). More in details, Figure 2 displays
a clear unbalance between the number of confirmatory
(”a” – 852 cases, 23.41%) and critical interactions (”c”
– 214 cases, 5.88%). The low frequency of interactions
classified as ”environment” in the topic dimension (94
cases, 2.58% of the total) suggests that the study settings
had a marginal impact on the approach followed by the
subjects.

Fig. 3. Topic codes frequencies

We agree that aggregated data is hardly likely to
provide additional information on the approach followed

by the participants. However, we can focus on specific
subsamples in our data to support our answers to our
RQs. More specifically, we select those interactions that
have been classified as ”lack of knowledge” to identify
the topics discussed in those specific statements. This
provided us with information to support our answer
to RQ2. Also, the comparison of the frequencies of
both process and topic codes between the specific and
iterative approach can help to explain how different
requirements specifications affect the procedure followed
by the subjects and the topics they discuss. We follow
this approach to support our answer to RQ3.

We used the data from the coded transcriptions to get
a clearer understanding of the extent to which different
difficulties were present in the sessions we observed.
We narrowed our focus to the 75 interactions that were
classified as ”lack of knowledge” in the process coding.
According to the definitions we provided in Table I,
this category refers to those cases where the subjects
communicated the inability to proceed in their solution
because of the lack of a necessary piece of knowledge.
Figure 4 shows the frequencies of the topic codes we
observed in the subsample.

Fig. 4. Topic codes over Lack of Knowledge

The data displayed in Figure 4 is in line with the
description we provided earlier in this paragraph, show-
ing how UML syntax (40 cases) was by large the most
common topic discussed in interactions where the subject
admitted insufficient knowledge. Interactions related the
model (28 cases) were in most cases expressing the
inability to completely understand the runtime behavior
of the elements in the model.

Finally, to better understand the general intentions of
the students when discussing syntax rules, we looked at
the frequencies of the process codes over the subsample
containing the interactions related to UML syntax.

Fig. 5. Process codes in interactions related to UML syntax

Data in Figure 5 shows that when discussing syntax
rules the students were often asking questions (32.04%)
or expressing lack of knowledge (21.55%). Conversely,
the figure shows how constructive suggestions (”propos-
ing”) over this topic were limited to 7.18% of the
total. Interactions of type ”mediate” were absent in this
subsample as questions related to modelling or syntax
were not allowed by the rules of the study.

To further investigate the differences we observed
between the two scenarios, we compared the distribu-
tions of the interactions under the two scenarios we
recreated in the study. We first divided the sample in
two subsamples, one related to the iterative approach
(from now on called iterative sample) and one related the
specific approach (from now on called specific sample).
The size of the iterative and specific samples are 1534
and 2105 respectively.

We used the Pearson’s chi-squared test to determine
whether the differences between the distributions in
the two subsamples could be considered statistically
significant. The Pearson’s chi-squared test is a
nonparametric test for analysis of categorical data, i.e.
non-ordinal, that can be used for unpaired datasets from
large samples, which made it ideal for our purposes
[32]. Briefly, the Pearson’s chi-squared test (also called
”goodness-of-fit” test) is based on the assumption that
the observed categorical variable follows a known
distribution (reference distribution). This assumption
allows the tester to use the relative frequencies–i.e.
frequencies expressed as percentage of the total number
of cases–in the reference distribution to compute the
frequencies that are expected in samples that are
extracted from the same population. The test then uses

Process Code Pi Ei Oi Oi −Ei (Oi −Ei)
2 ÷Ei

p 24.13% 370.20 338 –32.20 2.80
q 14.16% 217.16 233 15.84 1.15
c 5.80% 88.91 92 3.09 0.11
r 29.17% 447.45 484 36.55 2.99
a 24.09% 369.47 345 –24.47 1.62
m 0.29% 4.37 17 12.63 36.47
n 2.38% 36.44 25 –11.44 3.59

χ2 48.73

TABLE VII
PEARSON CHI-SQUARED TEST STATISTICS FOR PROCESS DIMENSION

the differences between the observed and expected
frequencies to compute the value of the test χ2 statistic
and determine whether those differences are statistically
significant. The Pearson’s chi squared test is often
used to compare the distributions of a categorical
variable over two samples. In these cases, one of the
sample distributions act as the reference distribution.
We performed two tests, each one dedicated to a coding
dimension. In both tests we selected the distribution
of the codes over the specific sample as the reference
distribution.

Test 1: Specific vs Iterative approach – Process
dimension
The intent of the first test was to determine whether the
differences in the requirements specification documents
would imply significant differences in the process
followed by the subjects. In this case our observed
variable is the process code we assign to the interactions,
while the categories are all the codes we listed in Table
I with the exception of ”n/a”. Below we define our null
and alternative hypotheses:

H0 : Oi = Ei

H1 : Oi 6= Ei

where Oi is the frequency of the i-th category ob-
served in the iterative sample, while Ei is the expected
frequency of the same category. In common language,
H0 states that the number of observed frequencies in the
iterative sample matches the expected values that were
calculated based on the relative frequencies observed
in the specific sample. Conversely, H1 states that the
frequencies differ significantly, implying a difference in
the populations underlying the two samples.

The process codes includes 7 different categories,
which translates in 7 − 1 = 6 degrees of freedom (df).
We set our alpha to 0.01 and obtain a critical value of the

χ2 statistic equal to 16.81. This value is then compared
with the observed test statistic to determine whether the
differences in the distributions can be considered to be
statistically significant.

Table VII shows the values we obtained in our cal-
culation of the test χ2 statistic. With Pi we indicate
the relative frequencies observed in the specific sample,
while Ei represents the frequencies of each category that
we expect to observe in the iterative sample. The values
of Ei were obtained by multiplying the corresponding
relative frequency in the specific sample by the size of
the iterative sample (nit = 1534). Oi values indicate the
actual frequencies observed in the iterative sample. The
resulting value of the χ2 statistic is 48.73. Since the test
statistic is above the critical value of 16.81 we can reject
the null hypothesis at a 0.01 level of significance and
conclude that the distribution of the interactions over the
process dimension changes with the type of requirements
specifications provided to the subjects.

Values in Table VII, column 5 display the differences
between the observed and expected frequencies in the
iterative sample for each process code category. We
see that in the iterative approach we observed less
proposing, acknowledgement and lack of knowledge
than in the specific approach. Conversely, the iterative
sample displayed higher frequencies for categories like
questioning, criticising, reasoning and mediating. Values
in column 6 say that the discrepancy between the two
samples is mainly due to the differences observed in the
category ”mediate”. Because of the low frequency of
”mediate” we observed in the specific sample (6 cases,
0.29%), small deviations in this category have large
impact on the test statistics. Any interpretation of these
results should therefore take this factor into account,
especially in consideration of the nature of the data
composing the sample, i.e. subjective classifications of
verbal interactions.

Topic Code Pi Ei Oi Oi −Ei (Oi −Ei)
2 ÷Ei

m 77.29% 1185.66 1105 –80.66 5.49
s 12.54% 192.39 273 80.61 33.78
u 6.75% 103.48 50 –53.48 27.64
e 1.85% 28.42 55 26.58 24.86
p 1.57% 24.05 51 26.95 30.21

χ2 121.97

TABLE VIII
PEARSON CHI-SQUARED TEST STATISTICS FOR TOPIC DIMENSION

Test 2: Specific vs Iterative approach – Topic
dimension
With our second test we intend to check whether
different requirements specifications implied changes
in the topics discussed by the subjects. We proceed
following the same approach we used in our test over
the process codes. Again, our null and alternative
hypotheses are:

H0 : Oi = Ei

H1 : Oi 6= Ei

where Oi is the frequency of the i-th topic code
category observed in the iterative sample, while Ei

is the expected frequency of the same category. H0

states that the number of observed frequencies in the
iterative sample matches the expected values that were
calculated based on the relative frequencies observed
in the specific sample. Conversely, H1 states that the
frequencies differ significantly, meaning that the change
of scenario affected the topics discussed by the subjects.

The topic codes include 5 categories, which means the
degrees of freedom are equal to 5− 1 = 4. We select an
alpha of 0.01 and obtain a critical value of the χ2 statistic
equal to 13.28. Table VIII shows our calculation of the
test χ2 statistic.

The resulting value of the χ2 statistic is 121.97. Again,
the test statistic is clearly above the critical value of
13.28, meaning that we can reject the null hypothesis
at a 0.01 level of significance and conclude that the
distributions of the interactions over the topic dimension
over the two sub-samples are significantly different.

The values displayed in Table VIII show that in the
iterative approach subjects tended to focus their discus-
sion more on system requirements, procedure and study
environment, while interactions concerning the model or
UML syntax were less frequent than expected. Values
in column 6 show how all categories displayed large
deviations from their expected relative frequencies, with

categories ”s” (system) and ”p” (procedure) ranking first
and second respectively.

V. DISCUSSION

In Section IV we presented the data we collected
during this study. We used the frequencies of the
interactions over the process and topic dimensions to
investigate the approach of the students. In this section
we describe the common themes we identified over
different sessions. These descriptions are used together
with the answers from the post-study interviews to
provide an explanation of our findings.

Modelling Approach
During the study sessions we closely observed the activ-
ities of the students in a first attempt to identify common
themes among different groups. All groups displayed
a high level of participation and involvement. Subjects
used the time at their disposal to actively cooperate to
create the required models. We observed different groups
follow various types of approaches. For example, in one
particular case (G2) both subjects started by creating
two separate solutions and then produced a final model
by combining them. In some cases we observed only
one subject drawing on the board and the other reading
the requirement specifications (G1), while other groups
opted for more flexible roles.

The groups also followed a different sequence of steps
when it came to introducing UML elements in the state
machines they modeled. One group (G4) started by iden-
tifying all states, and then proceeded with the definition
of the necessary logic to handle the transitions between
them. Two groups (G2 and G5) seemed to follow a more
incremental approach, starting from the entry state and
then proceeding transition by transition. In the remaining
two cases (G1 and G3) we observed the subjects abandon
their solutions in more than one instance, which in some
cases made it hard for us to interpret their plans. One
thing that we found particularly curious in the post-
study interviews was that students could not describe

their own process or strategy correctly. When asked to
describe their approach to modelling during the sessions,
all groups agreed that they would first identify the states
and then define the transitions. As we mentioned, this
description contradicts the actual steps we observed
during the sessions.

Due to the discrepancies we just described, the
cases we observed in this study did not present enough
similarities to allow us to identify clear patterns in
terms of adopted strategy (RQ1).

Common difficulties
In order to present the common difficulties encountered
by the groups we first need to discuss their solutions. In
this discussion we distinguish between the functionality
of the model and the correctness of the UML syntax.
More specifically, in Section III we described how the
students were allowed to declare their own syntax when-
ever they would feel stuck in the design of their solution.
Therefore, when we refer to functionality we do not
primarily consider the correctness of the UML syntax
but we focus on the behaviour of the model as intended
by its designers.

We rated three out of ten models as completely func-
tional. Two of these models were delivered by the same
group (G4), which was also the fastest group in complet-
ing their solutions (see Table V). The other functional
solution was designed by G5 from the URS document
on the elevator system. Three of the remaining models
presented the same issue preventing their functionality,
which was related to a wrong use in the ”exit node”
included in their state machines. We judged the four
remaining models as non functional as they did not
include all the necessary elements to ensure the desired
behaviour in the model. The most common mistakes
in these solutions can be reconducted to either missing
transitions or failing in updating variable values when
transitioning between states.

The models also presented some issues related to
the use of UML elements. For example, two groups
made extensive use of boolean variables and guards,
which were used to handle cases where triggers and
events were required. More specifically, in these cases
the subjects defined a boolean variable for each function-
ality provided by the system. When the user requests a
functionality to start, the corresponding boolean variable
is set to true and all the others were set to false. This
specific anti-pattern generated the need of continuously
reset the variables values in the model, therefore making
the extensibility of the model heavier and more complex.

Other common mistakes were related to the use of choice
nodes, nested states and state behaviour. In this sense, our
results correlate with the findings of Stikkolorum et al.
[14], who found that student subjects experienced strug-
gles in using the correct UML class diagram elements
for a particular solution.

In addition to the flaws we found in the final solutions,
we identified two topics that drew considerable attention
during the modelling sessions. The first one concerned
the modelling of events that were required to affect the
operativity of the system only when it is in a specific
state. More in details, the SRS we created for the
elevator and the drying machine included a complete
description of the cases in which user input should be
handled or ignored by the system. An example from the
elevator SRS can provide a better understanding:

”3. If a passenger requests the emergency stop and the
elevator is moving, the elevator shall stop immediately.”

”4. If a passenger requests the emergency stop and
the elevator is not moving, nothing happens.”

We noticed that requirements specifying “nothing
happens” often raised questions and generally captured
the attention of the students. The following quote was
extracted from our transcriptions:

”So how do you model that? If the passenger requests
the emergency stop and the elevator is not moving,
nothing happens.”

In particular, the students were often discussing
whether it would be necessary to display ignored events
in the model by drawing reflexive transitions11 in those
states that were not affected. If on the one hand, the
inclusion of such transitions does not always compro-
mise the functionality of the model, on the other it
unnecessarily increases its complexity. During this study
we observed all groups, at least briefly, engage in this
type of discussion. However, this flaw was found in only
one of the five solutions provided to SRS specifications.

Another recurring theme in the discussions was
related to the scope of the model. For example, the
requirements specifications for the elevator system
described responses to events coming from different
external actors, namely users and an external control
system. Users were further classified as passengers (i.e.
users inside the elevator) or callers (i.e. users outside

11Transition from a state to itself

the elevators). In three different cases (G1, G2 and
G3) we observed the subjects discuss whether external
actors should be included in the scope of the model.
Again, we provide one example from our transcriptions:

”I mean, do we ... do we ... in a state machine do we
model different entities as like distinct objects?”

Regardless of the number and identity of the external
actors interacting with the system, a viable solution in
this type of requirements would consist in limiting the
scope of the model to the system (the elevator) and
in treating the interactions of the external actors as
events. We observed G1, G3 and G5 discuss this topic
extensively during the modelling sessions.

The difficulties related to UML syntax were also
a common theme in the post-study interviews. Six
out of ten participants indicated the selection of the
correct state machine element as their main difficulty.
According to the students, this often put them in the
position of not being able to express their thoughts. As
one participant described it:

”I felt like I was making a lot of mistakes. I was not
able to sometimes express what I was thinking.”

The frequencies displayed in Figure 4 and 5 provide
ulterior support to our findings. Figure 4 showed that
interactions classified as ”lack of knowledge” were the
most common in interactions concerning UML syntax
(53.33%). This number should also be interpreted by
taking into account the conservative definition of the
code ”u” we provided in Table II. More specifically,
interactions containing any reference to the model (or
any element within it) were coded as ”m”, while the
use of the code ”u” was limited to those cases where
syntax rules were described in a more abstract context.
As a consequence, many of the cases that are classified
as ”model” (37.77%) can still be interpreted as related
to syntax issues. As a fact, most of these interactions
reflected the inability of the subjects to completely un-
derstand the runtime behavior of the model they created.
Again, the most common elements discussed in these
interactions were related to reflexive transitions, choice
nodes, nested states and state behaviour.

The description we provided above reports difficulties
related to conventions (e.g. ignoring events, handling
interactions with external actors) and syntax rules of
UML state machines. Our interpretation is that these
difficulties were often related to specific cases, and

rarely reflecting a poor understanding of the overall
behaviour of the model or to state machines in general.
In addition, we observed that the subjects were often
able to identify and discuss the issues they were
encountering. This suggests that they would probably be
able to overcome these issues in a context where they
had access to the necessary piece of information (e.g.
the cheat sheet). Table IV shows that all participants
had academic experience in software modelling. At the
same time, the rightmost column shows that subjects
declared not to be frequently involved in activities such
as creating and reading models, with seven subjects out
of ten claiming they would engage in such activities on
a yearly basis. We believe that this can partially explain
the uncertainties we observed during the sessions.

Specific vs. Iterative approach
During this study we reproduced two distinct scenarios
with the intention to explore how different requirements
specification formats can affect the modelling process of
the students. On the one side we created vague URS
requirements and allowed for more frequent interactions
with the researchers (iterative approach), and on the other
we provided detailed SRS and limited the chances for
the students to request for additional details (specific
approach).

In Section IV we mentioned that none of the groups
took advantage of the second break in the iterative
approach, with Table V showing that all solutions were
completed within the first two modelling iterations. Table
IX shows the number of questions related to system
requirements that each group asked to the researchers
during the break between the two iterations. The cell
marked with the dash symbol denotes a break that did
not take place as G4 made only use of one iteration.

Approach
Group Specific Iterative

G1 1 4
G2 3 6
G3 1 2
G4 0 -
G5 1 1

Total 6 13

TABLE IX
QUESTIONS ASKED BETWEEN ITERATIONS

If on the one side Table IX displays a higher number
of total questions asked during the iterative approach, on
the other the values from G4 and G5 do not allow us to

make any sort of generalization. Also, during the iterative
sessions we observed all groups to make use of assump-
tions as a response to the vagueness of URS. Even if this
reaction was not completely unexpected, what we found
interesting was that in many cases students did not decide
to verify the correctness of these assumptions with the
researchers. This aspect was more pronounced in some
groups than others. G4 was definitely the clearest case,
with the subjects completing their model before the end
of the first iteration without recurring to any interaction
with the researchers. G5 followed a similar procedure,
asking only one question under both scenarios.

We report that the formulation of assumptions did
not always lead the subjects to a positive outcome.
More specifically, in different cases we observed the
subjects discuss aspects of the system that were outside
the scope of the requirements. Two clear examples are
G3 and G5, which spent considerable effort discussing
the design of the mechanism for opening and closing
the doors of the elevator system, while no door or any
related functionality was mentioned in the requirements
specifications. In these two cases the introduction of such
mechanism in the model did not compromise the func-
tionality of the solutions. A different example is provided
by G1, which initially assumed that the dryer system
could abort a preset ‘program’ while it was running.
We clarify that this specific assumption was incorrect
as it was contradicting the URS for the dryer system.
However, G1 addressed the researchers to verify this
specific assumption during the first break and eventually
modified their model according to the new information
they collected.

In Section IV we used the Pearson’s chi-squared test to
check whether the different settings in the two scenarios
affected the way subjects interacted with each other.
The use of the statistical tests on the frequencies of
the interactions is to be intended as complementary to
the qualitative description we provide in this paper. The
intent here is not to provide measurements or forecasts
for interactions outside our sample, but rather to check
whether the coded transcriptions would support our
understanding of the differences we observed between
the two scenarios. Our results reported significant dif-
ferences in the distributions of both process and topic
codes, suggesting that the use of different requirements
specification formats produced a change in both the
procedure and the topics discussed by the subjects. More
specifically, in Section IV we showed that the vague
URS affected the modelling approach of the students
by fostering more mediate, reasoning and questions

about the system. On the one side the higher frequency
of mediate reflects more frequent interactions with the
researchers, and on the other the higher frequencies of
reasoning and questioning about the system quantify the
additional effort spent by the subjects in formulating
assumptions on the system requirements.

The comparison of our observations with the
answers provided to the post-study interviews provides
relevant insight. More specifically, subjects seemed
to generally recognize the increased use of ”mediate”
under the iterative approach. When asked if the textual
requirements specifications were clear, all students
answered positively. However, when we asked at
which point in time they felt like they had a complete
understanding of the system, seven out of ten students
specified that SRS were clear from the very beginning,
while URS needed to be integrated with further details
elicited from the customer between modelling iterations.
The general idea was that the URS became completely
clear after the first break. Only subjects from G4 seemed
to recognize the use of assumptions that they made
under the iterative approach. As P7 stated:

”The thing is, when you get it in a more abstract
form, it’s more up to yourself to fill in the blanks.”

The fact that this aspect was mentioned only by one
student suggests that subjects did not always recognize
the relevance of the assumptions that were made and of
their consequent design decisions. This can explain why
we rarely observed the subjects verify the correctness of
such assumptions during the breaks.

VI. VALIDITY THREATS

Maxwell [33] discusses the main threats to validity
for qualitative research. According to this perspective,
we identify the following main threats to this study.

Descriptive validity concerns the veracity and the
completeness of the descriptions provided by the re-
searchers. Although we agree with Maxwell that “no
account can include everything” [33], in this paper we
tried to provide a complete discussion of the aspects that
we considered most relevant to our RQs. In addition,
the audio and video recordings from the study sessions
allow access to the necessary information to resolve any
potential disagreement on this specific aspect.

The use of the coded transcriptions constitutes a threat
to the interpretive validity [33] of this study. The concept
of interpretive validity is related to reliability. According
to Maxwell, interpretive validity is relevant to those

studies that aim to understand a phenomenon from the
perspective of the participants, and more specifically
when the researcher provides an interpretation of the in-
tentions behind the actions and statements of the subjects
[33]. In this sense, the validity of this study depends on
the extent to which different researchers provide different
interpretations of the recorded interactions. To mitigate
this risk we used the Krippendorff’s alpha to measure
the inter-rater agreement and proceeded iteratively until
reliability of the data was achieved.

Regarding generalizability [33], i.e. external validity,
the limited number of sessions we conducted do not
allow for a wide generalization of our findings. However,
regardless of the reduced scope and because of the
exploratory nature of the study, this paper provides a
contribution of ”rich insight” [34]. In other words, we
intend to contribute to the existing body of knowledge on
requirements modelling [15], and therefore, the conclu-
sions we draw should be considered as a starting point
for future research.

VII. CONCLUSIONS

In this paper we described a case study directed to
investigate the approach of students to modelling of
behavioural requirements. We followed an exploratory
approach, where data analysis was carried out in parallel
with data collection procedures. This allowed us to build
on our findings in an iterative manner. This process
resulted in a refinement and extension of the set of codes
originally inherited from the replicated study [12].

Although we could not identify a common strategy
over the five groups we observed, we were able to spot
patterns that resulted useful in explaining our answers
to RQ2 and RQ3. We observed that the most common
difficulties were related to misuse or missing knowledge
of specific elements of UML state machines, such as
choice nodes, nested states and state behaviour. Also,
we described how handling of external signals and
modelling of external actors represented two recurring
topics in the discussions and reasoning process of the
subjects.

Finally, we used both URS and SRS to investigate
whether different types of requirements specifications
affect the procedure of the subjects. Although we ob-
served the students seeking a higher customer involve-
ment when using vague specifications, we also report
a common use of assumptions in reaction to the in-
formational gap recreated in the URS. Our qualitative
description is supported by the statistical analysis of
the coded interactions, which shows how students spent

more effort in discussing system requirements under
the iterative approach. The analysis of the post-study
interviews showed that students rarely recognized the
relevance of the assumptions they used to overcome
the vagueness in the requirements specifications. As
a consequence, assumptions were rarely documented,
criticized or verified with the researchers.

In summary, the differences we observed under the
two approaches suggest that the use of vague require-
ments can lead to different outcomes in terms of require-
ments modelling. More specifically, vague requirements
can be beneficial as they stimulate the modeller to
formulate assumptions on relevant requirements that may
have not been considered by the customer. However,
our insight also highlights some related risks, especially
in those cases where assumptions are not questioned.
This suggests a need to somehow document, identify
and question the assumptions that are formulated when
modelling requirements specifications.

ACKNOWLEDGEMENT

We would like to thank our academic supervisor,
Grischa Liebel, for his help and guidance during this
thesis work. We would also like to thank all the students
who participated in our study.

REFERENCES

[1] F. Brooks, “No Silver Bullet: Essence and Accidents of Soft-
ware Engineering,” Computer, vol. 20, no. 4, pp. 10–19, Apr.
1987.

[2] B. W. Boehm et al., Software engineering economics. Prentice-
hall Englewood Cliffs (NJ), 1981, vol. 197.

[3] J. Helming, M. Koegel, F. Schneider, M. Haeger, C. Kaminski,
B. Bruegge, and B. Berenbach, “Towards a unified requirements
modeling language,” in Requirements Engineering Visualization
(REV), 2010 Fifth International Workshop on. IEEE, 2010, pp.
53–57.

[4] I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos,
“Techne: Towards a new generation of requirements modeling
languages with goals, preferences, and inconsistency handling,”
in Requirements Engineering Conference (RE), 2010 18th IEEE
International. IEEE, 2010, pp. 115–124.

[5] G. Liebel and M. Tichy, “Comparing Comprehensibility of
Modelling Languages for Specifying Behavioural Require-
ments.” in HuFaMo@ MoDELS, 2015, pp. 17–24.

[6] S. Abrahao, C. Gravino, E. Insfran, G. Scanniello, and G. Tor-
tora, “Assessing the effectiveness of sequence diagrams in
the comprehension of functional requirements: Results from a
family of five experiments,” IEEE Transactions on Software
Engineering, vol. 39, no. 3, pp. 327–342, 2013.

[7] M. C. Otero and J. J. Dolado, “Evaluation of the comprehension
of the dynamic modeling in UML,” Information and Software
Technology, vol. 46, no. 1, pp. 35–53, 2004.

[8] E. Duala-Ekoko and M. P. Robillard, “Asking and answering
questions about unfamiliar APIs: An exploratory study,” in
Proceedings of the 34th International Conference on Software
Engineering. IEEE Press, 2012, pp. 266–276.

[9] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and
answering questions during a programming change task,” IEEE
Transactions on Software Engineering, vol. 34, no. 4, pp. 434–
451, 2008.

[10] N. Miyake, “Constructive interaction and the iterative process of
understanding,” Cognitive science, vol. 10, no. 2, pp. 151–177,
1986.

[11] T. Boren and J. Ramey, “Thinking aloud: Reconciling theory
and practice,” IEEE transactions on professional communica-
tion, vol. 43, no. 3, pp. 261–278, 2000.

[12] G. Liebel, “Exploratory Quasi-Experiment: Requirements Mod-
elling,” 2017.

[13] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role
of replications in empirical software engineering,” Empirical
Software Engineering, vol. 13, no. 2, pp. 211–218, 2008.

[14] D. R. Stikkolorum, T. Ho-Quang, B. Karasneh, and M. R.
Chaudron, “Uncovering Students’ Common Difficulties and
Strategies During a Class Diagram Design Process: an Online
Experiment.” in EduSymp@ MoDELS, 2015, pp. 29–42.

[15] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Se-
lecting empirical methods for software engineering research,” in
Guide to advanced empirical software engineering. Springer,
2008, pp. 285–311.

[16] J. Sillito, K. De Voider, B. Fisher, and G. Murphy, “Managing
software change tasks: An exploratory study,” in Empirical
Software Engineering, 2005. 2005 International Symposium on.
IEEE, 2005, pp. 10–pp.

[17] D. E. Damian, A. Eberlein, M. L. Shaw, and B. R. Gaines,
“An exploratory study of facilitation in distributed requirements
engineering,” Requirements Engineering, vol. 8, no. 1, pp. 23–
41, 2003.

[18] M. N. Marshall, “Sampling for qualitative research,” Family
practice, vol. 13, no. 6, pp. 522–526, 1996.

[19] OMG, “Omg Unified Modeling Language Specification, version
1.3, june 1999,” http://www.omg.org, 1999.

[20] M. C. Otero and J. J. Dolado, “An initial experimental assess-
ment of the dynamic modelling in UML,” Empirical Software
Engineering, vol. 7, no. 1, pp. 27–47, 2002.

[21] S. Kuske, “A formal semantics of UML state machines based on
structured graph transformation,” in International Conference
on the Unified Modeling Language. Springer, 2001, pp. 241–
256.

[22] D. Budgen, A. J. Burn, O. P. Brereton, B. A. Kitchenham, and
R. Pretorius, “Empirical evidence about the UML: a systematic
literature review,” Software: Practice and Experience, vol. 41,
no. 4, pp. 363–392, 2011.

[23] I. Sommerville, Software Engineering: (Update) (8th Edi-
tion) (International Computer Science). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2006.

[24] J. R. Fraenkel, N. E. Wallen, and H. H. Hyun, How to design
and evaluate research in education. McGraw-Hill New York,
1993, vol. 7.

[25] J. Linaker, S. M. Sulaman, M. Höst, and R. M. de Mello,
“Guidelines for Conducting Surveys in Software Engineering
v. 1.1,” 2015.

[26] C. B. Seaman, “Qualitative methods in empirical studies of soft-
ware engineering,” IEEE Transactions on software engineering,
vol. 25, no. 4, pp. 557–572, 1999.

[27] P. Runeson and M. Höst, “Guidelines for conducting and re-
porting case study research in software engineering,” Empirical
software engineering, vol. 14, no. 2, p. 131, 2009.

[28] D. R. Thomas, “A general inductive approach for analyzing

qualitative evaluation data,” American journal of evaluation,
vol. 27, no. 2, pp. 237–246, 2006.

[29] A. Soller, “Supporting social interaction in an intelligent col-
laborative learning system,” International Journal of Artificial
Intelligence in Education (IJAIED), vol. 12, pp. 40–62, 2001.

[30] M. J. Baker, “Argumentation and constructive interaction,”
Foundations of argumentative text processing, vol. 5, pp. 179–
202, 1999.

[31] K. Krippendorff, “Reliability in content analysis,” Human com-
munication research, vol. 30, no. 3, pp. 411–433, 2004.

[32] A. Agresti and M. Kateri, Categorical data analysis. Springer,
2011.

[33] J. Maxwell, “Understanding and validity in qualitative re-
search,” Harvard educational review, vol. 62, no. 3, pp. 279–
301, 1992.

[34] G. Walsham, “Interpretive case studies in IS research: nature
and method,” European Journal of information systems, vol. 4,
no. 2, p. 74, 1995.

http://www.omg.org

Elevator System - Iterative Approach
We (as the customer) would like to have an elevator system for our office building.
Users inside the elevator should be able to select the floor they wish to go to. Also,
they should be able to stop the elevator in case of emergency. Users outside the
elevator can call the elevator to their current floor on the press of a button. All
requests different from the emergency-stop should be ignored while the elevator is
moving. Finally, maintenance personnel should be able to restart the elevator from
the external control system when the elevator is in emergency-stop.

APPENDIX A

Elevator System - Specific Approach
We use the terms passenger and caller to distinguish between users inside and
outside the elevator respectively.

1. If a passenger requests the elevator to move to a floor and the elevator is not
moving, the elevator shall move to the selected floor. If the passenger selects
the same floor she is on, nothing happens.

2. If a passenger requests the elevator to move to a floor and the elevator is
moving, nothing happens.

3. If a passenger requests the emergency stop and the elevator is moving, the
elevator shall stop immediately.

4. If a passenger requests the emergency stop and the elevator is not moving,
nothing happens.

5. If the elevator is in ‘emergency-stop’ and a reset request arrives from the
central elevator control system, the elevator will move to the next lower floor.

6. If a caller requests the elevator to move to her current floor and the elevator is
not moving, the elevator shall move to the caller’s floor.

7. If a caller requests the elevator to move to her current floor and the elevator is
moving, nothing happens.

8. If a caller requests the elevator to move to her current floor and the elevator is
in ‘emergency-stop’, nothing happens.

Tumble Dryer System - Iterative Approach
We (as the customer) would like to have a tumble dryer system that provides two
preset programs: ‘humidity’ and ‘timer’. The humidity program runs until the values of
the readings from a humidity sensor fall below a minimum threshold. The timer
program starts with a default duration and stops when the timer expires. Users
should be able to increase and decrease the value of the timer while the timer
program is running.
Users can pause a program that is currently running. Finally, users should also be
able to terminate or resume a paused program.

Tumble Dryer System - Specific Approach
1. If the user requests to start the humidity program while the dryer is ready , the 1

system starts operating in humidity mode.
2. If the user requests the dryer to start the humidity program while the dryer is

not ready, nothing happens.
3. If the humidity program is running and the sensor detects a level of humidity

below 1g/m3, the program is terminated.
4. If the user requests to start the timer program while the dryer is ready, the

system starts operating in timer mode with a duration of 30 minutes.
5. If the user requests the dryer to start the timer program while the dryer is not

ready, nothing happens.
6. If the timer program is running and the timer expires, the program shall be

terminated.
7. If the user requests to increase the timer and the timer program is running, the

timer shall be increased by 1 second.
8. If the user requests to decrease the timer and the timer program is running,

the timer shall be decreased by 1 second.
9. If the user presses the pause button while a program is running, the program

shall be paused.
10. If the user presses the pause button while the dryer is ready, nothing

happens.
11. If the user presses the resume button while a program is paused, the program

shall be resumed.
12. If the user presses the terminate button while a program is paused, the

program shall be terminated.

1 No program is currently running or paused.

Name/ID:

Exploratory Requirements Modelling
Pre-study Questionnaire

1. What is your gender? _____________

2. What is your highest degree?

a. High school diploma
b. Bachelor diploma
c. Master diploma
d. PhD diploma
e. Other (please specify):_____________

3. Please list relevant courses that you took in Requirements Engineering, Modelling or UML
diagrams. Please provide the institution and the name of the course!

a. ______________________________
b. ______________________________
c. ______________________________
d. ______________________________

4. How many years of industrial experience do you have in ...

a. … developing software/coding ___
b. … software modelling ___
c. … requirements engineering ___

5. How would you judge your knowledge on the following topics?

 No
Knowledge

Basic 1

Knowledge
Intermediate 2

Knowledge
Expert 3

Knowledge

UML ◯ ◯ ◯ ◯

State Machines ◯ ◯ ◯ ◯

1 I can understand and produce simple models with a few elements.
2 I can understand and produce models using advanced language concepts.
3 I can understand and produce highly complex models.

APPENDIX B

Name/ID:

6. How would you judge your knowledge on the following domains?

 No
 Knowledge

Basic 4

Knowledge
Intermediate 5

Knowledge
Expert 6

Knowledge

Embedded Systems ◯ ◯ ◯ ◯

Vertical
Transportation

Systems

◯

◯

◯

◯

Requirements
Engineering

◯ ◯ ◯ ◯

7. How often do you do the following tasks?

 Less than yearly Yearly Monthly Weekly or more

Programming ◯ ◯ ◯ ◯

Create Models ◯ ◯ ◯ ◯

Read Models ◯ ◯ ◯ ◯

4 I know the basic terminology, but do not have any practical experience.
5 I have advanced theoretical knowledge and/or limited practical experience.
6 I have extensive practical and theoretical knowledge of the subject.

Name/ID:

Exploratory Requirements Modelling
Post-study Questionnaire

 Strongly

Disagree
Disagree Neutral Agree Strongly Agree

I had enough time to model the
system.

◯ ◯ ◯ ◯ ◯

In the end, the requirements
were clear.

◯ ◯ ◯ ◯ ◯

In the beginning, the
requirements were clear.

◯ ◯ ◯ ◯ ◯

It was easy to model the
requirements (overall).

◯ ◯ ◯ ◯ ◯

I am confident in the functionality
of the model.

◯ ◯ ◯ ◯ ◯

1. What was easy in the modelling process?

2. What was difficult in the modelling process?

3. What kind of information were you lacking?

4. How did you approach the modelling process (how would you describe what you did)?

5. Were your difficulties mainly related to a lack of domain knowledge or a lack of modelling
knowledge?

6. What would you change to improve the quality of the models you produced?

7. From what point in time would it have been useful to use a CASE tool? For what purpose?

8. What are the positive and negative effects of pair modelling?

9. At what point in time did you fully understand the stakeholders need (requirements)?

10. Is there anything you would like to add?

APPENDIX C

Exploratory Requirements Modelling
UML Finite State Machines Notation Cheat Sheet

UML Finite State Machines (FSM) diagrams are used to model object behavior. FSM display
the lifecycle of an object: what events it experiences, its transitions and the states between
these events . 1

States, Events and Transitions
A state describes the behavior of the system at a point in time - i.e. between the occurrence
of events. FSM diagrams can specify an entry (initial) and exit (final) state.

A transition between two states A and B defines the conditions that must hold for the object
to move from state A to state B.

An event is a noteworthy occurrence, i.e. something that happens that may trigger a
transition. An event can be internal (e.g. system message), external (e.g. user action) or a
time event.

Figure 1 - States, Events and Transitions

 entry (initial) state

 exit (final) state

S1, S2 states

e1, e2, e3 events

1 Larman C, Applying UML and patterns. Upper Saddle River, N.J. Prentice Hall PTR, 2005.

APPENDIX D

Guards and Effects
A guard is a condition that must evaluate to true in order for the transition to happen. An
effect describes a behavior that is fired by a transition.

The notation for a transition including guards and effects is event [guard] / effect.

Figure 2 - Guards and Effects - Sliding doors system

FSM transitions can be defined in terms of variables. Variables can be used to define
guards, while effects can be used to update variable values.

Figure 3 - Variables in Guards and Effects

State Behavior
States can specify the behavior that is executed when the state is entered (entry/), while it is
active (do/) or when it is exited (exit/).

Figure 4 - State Behavior

Reflexive Transitions
Reflexive transitions connect a state to itself. When a reflective transition is taken, the state
behavior is executed.

Figure 5 - Reflective Transitions

Choice nodes
Choice nodes can be used to model cases where transitions are based on multiple
conditions.

Figure 6 - Choice nodes

Nested States
States are allowed to contain substates. Substates inherit the transitions of the parent state -
i.e. the container . 2

Figure 7 - Nested States

2 Larman C, Applying UML and patterns. Upper Saddle River, N.J. Prentice Hall PTR, 2005.

Minute Subject Statement Comment Process Topic

s2 But are you...? The timer program starts with a default duration r s
s1 Yeah, but we will have duration. p m
s1 Int or something? Minutes? q m
s2 Yeah, duration yeah. a m
s2 Seconds p m
s1 mmmm yeah... a m
s2 If you have seconds you could also use it to tick down p m
s1 Yeah, sure, seconds a m

s1
programming... assuming that programming languages are more
suitable for...

writes down variable
declaration on the whiteboard r m

03:00 s1
yeah sure, so we do not need to care about the default. We can
assume it will be coded somewhere p m

s2 But here mmmm... obviously you can return at some point?
mimics transition on the
board q m

s1 yeah a m
s2 but now we need some... draws n/a n/a
s2 So... what can we write here? q m
s2 We can write a trigger, "do_humidity_program" p m
s1 Yeah a m
s2 start_humidity_program p m
s1 Should there be a guard? q m
s1 If it is humidity or not? q m

s1 Doesn't say, it does not say it. That is why this is abstract.
Points at the requirements
specifications. r s

s2 If the tumbledryer... it always starts. r s
s2 It takes several minutes, even if it is dried. r s
s1 It's maybe our design decision r m

s2 I'll just say start...
declares trigger on the
whiteboard p m

04:00 s1 for now that's just start. a m
s1 And this is an event or a guard. p m

s1 It says... "sensor reading is under"
reading requirements
document r s

s2 Exactly so... a s
s2 So sensor value... drawing p m
s1 ...below minimum threshold p m
s1 and some method call maybe p m
s2 Finish, finish program... finish drawing p m
s2 There must be some stop sequence p m
s2 And here, start... p m
s1 and when duration sec p m
s2 is equal to... p m
s2 Duration is? drawing q s

05:00 s1 Zero p s
s2 Smaller-equal zero writing guard on transition p m
s1 then stop... timer... Finish drawing p m
s2 timer program... Awesome! drawing p m
s1 But here, did you do it? q m
s1 Mmmmm... increase and decrease. p m
s1 But there is nothing there r m
s2 No, there is nothing there. It's just here. r m
s2 Here we could just change the duration. p m

APPENDIX E

	Introduction
	Related Work
	Methodology
	Research Method
	Participants
	Study Setup
	Data Collection
	Data Analysis

	Results
	Discussion
	Validity Threats
	Conclusions
	References

