

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Visualization of Software Architecture
based on stakeholders’ requirements
Empirical investigation based on 4 industrial
cases
Bachelor of Science Thesis in Software Engineering and Management

ANNA GRADULEVA
MARJAN ADIBI DAHAJ

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

Visualization of Software Architecture based on stakeholders’ requirements

An empirical investigation of stakeholders’ requirements towards Software Architecture Visualization

based on 4 industrial cases.

Anna Graduleva

Marjan Adibi Dahaj

© Anna Graduleva, June 2017.

©Marjan Adibi Dahaj, June 2017.

Supervisor: Truong Ho-Quang

Supervisor: Michel Chaudron

Examiner: Jan-Philipp Steghöfer

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

1

Visualization of Software Architecture based on

stakeholders’ requirements

Multiple case study

Anna Graduleva

Department of Computer Science and Engineering

University of Gothenburg

gusgraduan@student.gu.se

Marjan Adibi Dahaj

Department of Computer Science and Engineering

University of Gothenburg

gusadibma@student.gu.se

Abstract -- Considering the rapid growth of software

systems and consequential difficulties with development,

evaluation, maintenance and reengineering, there is an

emerging demand for effective means for communication

of software architecture. One of such techniques is

Software Architecture Visualization (SAV). However,

visualization of an entire architecture is overwhelming to

the user and thus possesses little value. Therefore, it is

essential to determine possible stakeholders and identify

what visualization is preferred by each. However, present

research lacks support from industry practitioners in

determining the relationship between stakeholders and

levels/types or visualization. In this study qualitative data

gathered from interviews with Volvo, Ericsson and Tetra

Pak is analyzed to determine information need, preferred

techniques, tools and levels of abstraction depending on a

stakeholder. Requirements of the stakeholders were

compared and contrasted to each other, as well as

literature results. Lastly, this paper presents

complementary or substitutionary visualization techniques

based on a stakeholder and lists practical implications that

could be useful to SAV practitioners and tool vendors.

Keywords – software architecture, software architecture

visualization, stakeholders.

I. INTRODUCTION

With a rapid growth of complexity of software system it

becomes more difficult to undertake development-related

activities that require a degree of system comprehension [1].

Consequently, this spiked an interest in techniques and tools

that would aid understanding and communication of system’s

structure, behavior, and evolution of the software [2].

Software Visualization (SV) attracted attention of researchers

and practitioners, due to the fact, that visual representation

supports more effective comprehension of large amount of

data than text-based descriptions [3]. Software Architecture

Visualization (SAV) in particular became central within SV

research since architecting process is prominent throughout

system’s lifecycle [4], including activities such as “analyzing,

synthesizing, evaluating, implementing, and evolving

architecture”[5] .

SAV is a well-established research field that has been growing

for the past two decades [2], with primary focus on benefits of

SAV, SAV techniques and supporting tools. Considering the

variation of interest in and purpose of employing SAV, the

research produced a vast number of different techniques,

ranging from industry standard, Unified Modelling Language

(UML), to innovative 3D metaphor-based visualizations.

Many of new techniques are proposed with complementing

visualization tools. Understandably, manual visualization of

Software Architecture (SA) may not be of interest to

practitioners due to the size and complexity of today’s

systems, and are generally substituted by automatic and semi-

automatic tools. The benefits of using SAV tool are

considerable, as they provide “significant value in

understanding large software architectures and supporting

architectural maintenance and evolution, quality assessment,

communication with stakeholders, and strategic product

planning”[5] as well as reduced costs associated with

development and evolution of software [7].

Existing research [1,2,5,6] overviews and evaluate a number

of tools and techniques that support different activities but

there is still an insufficient number of empirical research in

close co-operation with practitioners that would demonstrate

SAV application in the industry.

Besides application of SAV in the industry, the SV field lacks

research on the difference of techniques, tools, and abstraction

level of visualization depending on stakeholders involved in

software development process interests. Visualization of

software architecture alone does not provide a highly useful

overview of software architecture, since due to system’s

complexity, a single view covering all aspects of the system

can become quickly overwhelming. What is more, different

stakeholders, whose concerns are separated, rarely require

same visualization [5, 8]. Current research acknowledges the

difference in needs of stakeholders when it comes to SAV, but

it does not specify or advice on specific methods, types of

visualization, or levels of detail. For example, Telea et al. [5]

recognizes that non-technical stakeholders can be more

concerned with evolution of system over time than low-level

developers and require abstracted visualization, and then

assess to what extent current tools support these general needs.

2

The research does give a general understanding of difference

between different stakeholders’ requirements for SAV, but for

the most part, it is not demonstrated by examining its

application in the industry, that was also pointed out by a

number of studies [2, 6].

Therefore, visualization of software architecture without

targeting a specific stakeholder group provides reduced benefit

and poses a risk of negative effects associated with low system

comprehension. Carpendale and Ghanam [8] stress the

importance of defining stakeholders when it comes to SAV:

“defining the audience of the architecture visualization plays a

pivotal role in determining what to visualize and how to

visualize it”.

The structure of this paper is as follows: Section I introduces

the general concepts of SAV and defines a problem that is to

be addressed; Section II specifies purpose of the study and

lists research questions; Section III describes case companies;

Section IV discusses the method; Section V is a literature

review, and Section VI displays gathered interview results;

Section VII includes discussion of results; and conclusion in

Section VIII summarizes paper’s findings.

II. PURPOSE OF THE STUDY

Considering increasing interest in SAV of both researchers

and practitioners, and lack of empirical investigations of SAV

application within industry, the purpose of this study is:

1. To determine what is the state of SAV employment by

practitioners based on stakeholder type, including demand for

SAV, difference in techniques, tools, and, most importantly,

difference of required level of abstraction;

2. To provide practical implications of scientific findings that

could assist practitioners in adoption of SAV based on

stakeholder type, including appropriate techniques and, most

importantly, appropriate level of abstraction.

The results of this thesis is firstly: filling the gap in current

knowledge by investigating current SAV practices based on 4

studied cases, with focus of different stakeholders’

requirements for level of abstraction, tool support, and

appropriate techniques; and secondly: provide practical

implications for practitioners that seek to adopt SAV within

their projects, containing recommendation to which

techniques, tools, and, most importantly, level of abstraction

are demanded from different stakeholders. Both contributions

will be based on studying 4 industrial cases in conjunction

with existing literature on the subject. The industrial cases

include two separate series of interviews with Ericsson, a

series of interviews with Volvo Cars, and a series of

interviews with Tetra Pak.

Six research questions were defined that this paper aims to

answer:

RQ1. What is the current demand for SAV in the industry

depending on a stakeholder?

RQ2. What is the information need of different

stakeholders towards SAV?

RQ3. What techniques of SAV can be employed depending

on a stakeholder?

RQ4. What is the level of abstraction required from SAV

depending on a stakeholder?

RQ5. What type of tools are used for SAV depending on a

stakeholder? (automatic, semi-automatic, manual)

RQ6. What are the reasons for not employing SAV in the

industry?

III. CASE COMPANIES

A. Volvo (Case 1)

System designer, software developer, and a test engineer were

interviewed to mainly determine their information needs when

it comes to architectural description, which in this case, was

stored in “the database”. The study, these interviews were part

of, concentrated on information need and requirements

towards software architecture visualization, while omitting

information concerning current employment of SAV, structure

of teams and interviewees’ experience to a large extent. It was

briefly mentioned, that software developer worked as a part of

development team, consisting of 8 developers, and had at least

4 years of development experience while working with “the

database”. System designer did not provide information about

whether he works as a part of a team, and its composition, but

he had over 2 years of working experience with their

architecture description tool. Lastly, test engineer had at least

3 years of experience of working with “the database”, but

offered no information about his/her assignment to any teams.

B. Ericsson (Case 2)

Three design architects, a system architect and a designer were

interviewed for case 2 study, which concentrated on

information need of architects, with particular focus on what

constitutes a software entities vital to visualize.

 All of the interviewed stakeholders had over 10 years of

experience and were part of different teams, which ranged

from 6 to 10 people. Their experience with UML, on the other

hand, varied greatly, ranging from less than a year to over ten

years of experience. Lastly, it is important to note, that 2

interviewed architects also work as developers that can

influence their information need or level of abstraction

required.

C. Tetra Pak (Case 3)

Case 3 study contained interviews with 8 stakeholders: system

and software architects, design architect, two developers, team

and project managers, and a test engineer.

All the stakeholders, except for system architect and managers

are distributed between 2 teams, which consist out of 6 people

each. Majority of the stakeholders have over 10 years of

experience, except for test engineer, who has 2 years of

experience. Lastly, although 3 of stakeholders have

responsibilities that deal with architectural design, majority of

their time is occupied with development that can be reflected

in the data.

3

D. Ericsson (Case 4)

As part of this case, 5 stakeholders were interviewed,

including system and design architects, a manager, a

developer, and a function tester. All of these stakeholder work

as part of separate teams, except for system and design

architect, who work in a same team consisting of 3 architects.

The developer works in a cross-functional team, consisting of

7 people, the managers oversees several teams at the same

time, and function tester is not assigned to any particular team.

System architect and software developer have approximately

20 years of experience, while design architect and the manager

have 9 years of experience, and the tester has 5 years of

experience.

E. Additional Comments

Both cases of Volvo (case 1) and Ericsson (case 2), are special

cases, since case 1 concerns visualization of electrical

architectures in the automotive domain, while case 2 was

limited to interests of mainly system and design architects,

with no participating developers or managers. Additionally,

case 1 participants described their information needs and

possible improvements to visualizations, but did not cover

what were their current SAV practices, such as currently used

techniques and tools.

IV. METHODOLOGY

In this section, the process of defining research questions,

conducting literature review and interviews, data condensation

and data analysis will be described.

A. Why Case study?

A number of existing research [2, 6] recognized the need of

examining SAV in industrial setting, proposing controlled

Figure 1. Overview of the process of defining research questions,

gathering data and data analysis.

experiment or case study methods. However, it can be rather

difficult to assemble a group of highly motivated experiment

participants from the industry [9], as well as high resource and

effort cost [10], which are currently cannot be met.

Generally, a case study investigates “contemporary real-life

phenomenon through detailed contextual analysis of a limited

number of events or conditions, and their relationships” [14].

This can be a more light-weight process, compared to

controlled experiments, as it requires a smaller number of

participants. Case study also proved to be advantageous, when

a “holistic, in-depth investigation is required” [14].

Multiple Case study will allow us to critically analyze SAV

application in the industry in respect to the different contexts

presented in “Case Companies” section. Gathering and

analyzing data from multiple cases decreases bias and ensures

internal validity of the research [11]. Empirical qualitative

data can also give an opportunity to form new relationships

between pieces of the data, for example, SAV application in a

context of a specific company and maturity of development

practices of the company. In this case, qualitative data has an

obvious advantage due to the need of obtaining rich

information of the context in which SAV takes place. This

context can be related to social and human behaviors and

might require a flexible method of data gathering, such as an

interview.

This case study possesses characteristics of explorative study

as it attempts to investigate what is the current state of SAV in

the industry and determine what kind of visualization is

required based on a stakeholder type. However, it also

attempts to analyze the differences of requirements between

various stakeholders, as well as difference of requirements of

4

same stakeholders across different companies.

B. Process Outline

It is important to note, that the data set that was analyzed to

answer research questions consisted of 4 separate data sets, 3

of which are: 3 interviews conducted with Volvo Cars (case

1), by Florence Mayo and Nattapon Thathong [46], 5 done

with Ericsson (case 2) by Filip Brynfors [47], 8 interviews

done with Tetra Pak (case 3) by Truong Ho Quang in June

2016. The last data set comprised 5 interviews carried out by

authors of this paper with Ericsson employees in April 2017.

The process of problem elicitation, definition of research

questions, conducting literature review, and gathering of

qualitative data was divided into 5 steps. An overview of the

process is also displayed in figure 1.

Step 1: Problem elicitation by reviewing related literature.

Definition of research questions based on interview questions

from pre-existing dataset without knowledge of interview

results to avoid bias. Step 2: Conducting a literature review of

related research, which would later be compared with

interview results. Step 3: Composing a list of interview

questions based on research questions and conducting

interviews with participants of case 4. Step 4: Transcribing

and coding of the interviews. Step 5: comparing and

contrasting the results of interviews with similar and

conflicting literature.

C. Literature Review

Preliminary literature review was carried out with aims of

identifying research gap, formulating relevant research

questions and motivating the research. Once research

questions were identified, a more extensive literature review

was conducted, the results of which later on would be

compared with qualitative results of interviews.

Manual search of academic papers and sorting was performed,

resulting in 37 papers, mostly published between 2003 and

2016, with some earlier publications in 1990 and 2000.

Since literature review included 4 different subsections

(stakeholders, benefits, techniques, and tools) which were

based on reviewing different types of research, inclusion

criteria was broad. For “Tools” and “Techniques” subsections,

for instance, it was important that a presented tool or

technique was sufficiently evaluated. For “Techniques”

section it was particularly important to present contrasting

views on same techniques and approaches in order to display

advantages and disadvantages of their application. Overall,

most of the studies were published in last 15 years, with some

exceptions for taxonomies, which were published earlier on.

D. Data Collection

After a gap in research was identified, a set of research

questions were defined based on literature review and

interview questions of previous interviews. However, it was

important to avoid bias, and therefore, the research questions

were formulated without reading the interview transcripts.

Instead, the interview questions were carefully studied, after

which the research questions were defined. As a result,

definition of research questions was independent from

gathered data, which decreased likelihood of validity threats

emerging.

The final data set consists of 4 separate data sets, which will

be analyzed together: 3 interviews done with Volvo (case 1), 5

interviews done with Ericsson (case 2), 8 interviews done with

Tetra Pak (case 3), all of which were carried out in the year of

2016 by different researchers, other than authors of this paper.

The fourth dataset (case 4) consists of 5 interviews done with

Ericsson by the authors of this paper in 2017, April. These

companies were chosen because of difference in terms of

domains, team size and development practices. This gives an

opportunity to analyze the data in two layers: how SAV

application differs from one stakeholder to another in the same

context; and how SAV application differs for the same

stakeholder type in the different contexts. These companies’

domains, sizes and organizations may lead to vastly different

employment of SAV that would allow researchers to account

for different perspectives and make the results of the study

more generalizable. Selection of interviewees in cases 1, 3,

and 4 was required for the interviewees to operate within same

context but sharing different responsibilities or being involved

in different stages of a product’s lifecycle that, presumably,

affected their interest in SAV and desired level of abstraction

of SAV. Interviewees from case 2 were system and design

architects mostly from different projects in Ericsson that

allows us to compare and contrast different applications of

SAV and preferred abstraction level between different level

architects based on different projects within same company.

The 4th case, investigated by the authors of this paper,

includes a software designer, a system manager, a system

architect, a design architect, and a functional tester, all of

whom are involved in the same project. The advantage of the

final data set is access to data from 4 different cases, which

were never analyzed as one before. Interviewing is also a

lengthy process and it is difficult to obtain data from multiple

cases in course of a semester that can be avoided by

integrating newly conducted interviews (case 4) with

previously conducted interviews (cases 1-3). Further,

considering data from larger number of cases, provided by

preexisting data set, builds external validity, by including

cases of different backgrounds and development approaches.

Lastly, analyzing a preexisting dataset may be viewed as an

advantage, since possible perception based biases are

eliminated.

The interview questions were divided into 4 categories:

1. Background questions

2. Software Design Process

3. Existing SAV of the system

4. Different levels of abstraction

Category 1 included questions about interviewee’s position,

department, and experience with SV techniques. Category 2

was applicable to stakeholders that were involved into

5

development process, and were asked to describe it in detail.

Category 3 applied to all participants and consisted of

questions about current ways a stakeholder used SAV to

support his/her work and it which context it was done. It also

contains questions that aim at obtaining data about what

techniques, tools are being used, and what were the reasons

for doing it. The last category applied to all participants and

contained questions about comprehension of system at a

different level of abstraction and needs for visualization at

different levels of abstraction. Full list of questions is

presented in Appendix A.

E. Data Analysis

Once data gathering was completed, case 4 interviews and 4 of

case 3 interviews were transcribed. It was done in pairs to

avoid misunderstanding over 3 weeks of time. Next, all 21

interviews were coded in order to condense the data. However,

it is important to not excessively employ coding as it could

“destroy the meaning” of data [12].

Coding was performed in 4 stages:

1. Open coding

2. Coding scheme composition

3. Second cycle coding

4. Tabular display of results

Open coding was conducted with an aim of identifying codes

that could be used for second cycle coding. Then open codes

were sorted to eliminate similar codes for the same data, and

grouped by themes to produce a coding scheme. Once the

scheme was completed, the interviews were coded again.

Coding was done in a pair, first separately, and then cross-

examining the results to see whether there are any

considerable differences in how the interviews were coded.

This was done to decrease the possibility of misunderstanding

and tackle validity threats associated with this step, such as

bias.

In order to avoid excessive coding and diminishing of data,

produced coding scheme was rather simplistic and consisted

of general codes such as:

1. Personal Information

1.1. Name

1.2. Stakeholder type

1.3. Experience

1.4. Responsibilities

2. Software Design Process

2.1. Team Description

2.2. Process Description

2.3. Personal Involvement

3. Existing SAV Practices

3.1. Demand

3.2. Context

3.3. Reasons for not using SAV (if applies)

3.4. Information need

3.4.1. Relationship

3.4.2. Composition

3.4.3. Complimentary

3.5. Abstraction level

3.6. Methods

3.7. Tools

4. SAV practices improvement

4.1. Lacking Information

4.2. Other improvements

Gathered data about information need of different

stakeholders’ towards SAV was broad and requires further

categorization. Three categories of information need were

distinguished based on LaToza et al. [43], which included

“Relationships”, “Composition”, and “Complementary”

categories. “Composition” category included displaying static

aspects of a system, such as its structural composition, such as

method properties. “Relationships” category dealt with

dynamic behavior of a system, rather than its composition,

including control and data flows, and dependencies. Lastly,

“Complementary” category included information related to

change, such as history and intent of implementation, as well

as other information needs that were not directly related to 2

previous categories, such as metrics.

LaToza et al. [43] concentrated on needs of developers,

however, this categorization of information needs was general

to be applied to other stakeholders as well.

Besides information need, techniques, and tools used by

different stakeholders, level of abstraction is also a focus of

this paper. Based on Gallagher et al. [7], three levels of

abstraction are considered:

1. Low level, or code level, which is directly related to

an “underlying artifact” ;

2. Medium level, which is problem specific level of

visualization, such as sequence diagrams;

3. High level, or architectural level, which comprises

overview of structure of an architecture and relevant

metrics.

Based on this definition, levels of abstraction required for each

stakeholder type was derived based on recorded data about

level of detail and information need.

Additional data included stakeholder’s experience,

responsibilities, interests, improvements or limitations of

current tools, and team composition, which could help

motivating differences between different stakeholders or

cases.

Then the condensed data was presented in a tabular form, with

list of codes sorted from most to least important in a column

on the left, and related quotations from each interview in

columns on the right. This provided an effective scheme of

data condensation for further sorting and result display.

Due to large amount of data, it needed to be categorized

before it was to be analyzed. The main categories of data were

stakeholder type, information need, techniques used, level of

detail, type of tools used, level of demand, and reasons for not

employing SAV, if it applies.

6

Quantitative data is minimal in this paper, only representing

number of stakeholder exhibiting an interest in data that SAV

displays, specific techniques, or levels of abstraction. This

data could be converted into percentage, but considering, that

there is only 21 interviews, it could be misleading.

As it is, numbering stakeholders interested in different aspects

of SAV gives a general overview of their needs, displays

patterns and correlations more efficiently. This gives

“familiarity with data and preliminary theory generation” [12],

and prompts viewing data from different perspective via

employing “cross-case pattern search using divergent

techniques” [12].

Lastly, after the interview results were discussed in respect to

each other, they were also discussed in respect to literature

review results, comparing it to complementing literature and

contrasting with conflicting literature. This step does not only

aim at answering the research questions, but also builds

“internal validity, raises theoretical level, and sharpens

generalizability” [12].

V. LITERATURE REVIEW

A. Stakeholders

A number of reviewed studies [2, 6, 7, 8, 5, 21, 23, 24, 33]

from the field acknowledge the differences in requirements for

SAV depending on a stakeholder, however, very few mention

concrete techniques or levels of abstraction, appropriate for

each stakeholder.

 A list of stakeholders which may benefit from use of SAV

differs from study to study as well. According to Mattila et al.

[2], visualization is used mainly by developers, testers,

architects and project managers. IEEE-1471 proposes four

types of stakeholder, including users, acquirers, developers,

and maintainers, while Gallager et al.[7] expands this list by

adding architects, operators, testers, designers, development

managers, sales and field support, and system administrators.

Ghanam and Sheelagh [8] includes same stakeholders as

Mattila, but noting that customers might be another

stakeholder that would be interested in SAV. Both Panas et al.

[21] and Priya et al. [24] propose developers, architects and

project managers to be general stakeholders. Lastly, when

reviewing stakeholder for SAV tools, Telea et al. [5]

distinguishes three main stakeholders, which are technical

users, project managers and consultants. Considering these

examples, the most prominent stakeholders, which are

included in all reviewed papers are developers, architects, and

managers. These stakeholders encompass difference in

demand for visualization techniques, and level of abstraction,

and will be used as primary stakeholders in this paper.

According to Ghanam and and Carpendale [8] managers are

interested in monitoring “progress of the project and

determine the completion of the development goals”. In

addition, project managers could use visualization to

determine what components of a system have high

development or maintenance cost, as well solving problems

related to resource management and meeting deadlines [21].

High-level visualization may help managers to understand the

reasoning behind time estimates by developers and improve

overall communication between different stakeholders [2, 6,

33]. Overall, in case of project managers, SAV should support

monitoring of evolution of a system over extended period of

time, providing information about general trends, such as

“architectural erosion, rule violation, and quality decay” [5].

Considering that famously “20% of items that cause 80% of

the problems can be solved by looking at distributions, not

individual artifacts”, project managers require high level of

abstraction in conjunction with techniques that can

simultaneously display numerous attributes or metrics, such as

“treemaps and dense pixel charts”[5].

Architects, on the other hand, require lower level of

visualization, displaying attributes of a designed architecture,

such as complexity, coupling and cohesion [8]. Appropriate

visualization can also aid identifying components for reuse

[21], software architecture documentation [6, 22, 8], and

monitoring software architecture evolution [6, 22, 2]. Overall,

architects require visualizations that enable navigation of

“software structure, dependencies, and attributes such as

quality metrics [5]”.

While managers approach SAV with aim of monitoring

changes of the systems over time and completion of

milestones, developers concentrate on code changes and its

impact [8]. Generally, “developers require visual modelling

support to help them effectively design and reason about the

software components of complex applications” [35]. SAV aids

developers and maintainers in system comprehension [8, 33,

6], and monitoring recent changes [8] while testers can be

helped by SAV when exploring code for anomalies [33].

According to Telea et al.[5], stakeholders concerned with low

level of abstraction, such as developers, maintainers, and

testers, are interested in similar techniques as architects, such

as treemap techniques, and hierarchically bundled edges, that

produce “readable, clutter-free layouts of thousands of entities

and relationships with zero user intervention” [5].

However, regardless of benefits of employing SAV being

demonstrated by numerous studies, which are reviewed in the

next section, developers and other low-level stakeholder are

still not commonly adopting SAV to support their work [33].

Telea et al. [5] claims that needs of developers and architects

are satisfied the most comparing to other stakeholders, such as

managers and consultants. Gallagher et al. [7] complements

this view, claiming that majority of SAV tools cater to the

needs of developers and maintainers, and thus “has been

largely concerned with representing static and dynamic

aspects of software at the code level” [7]. Marino et al. [33],

on the other hand, claims that “developers have little support

for adopting a proper visualization for their needs”. Numerous

tools and techniques are proposed with an aim of aiding

developers [7, 5, 33], however, these “efforts in software

visualization are out of touch with the needs of developers”

[33] and developers are simply “unaware of existing

visualization techniques to adopt for their particular needs”

7

[33]. LaToza and Myers [48 from 33] problem domains that

developers deal with into three categories: “changes”,

“element”, and “element relationships”. While developers are

mostly concerned about “changes, “existing visualizations

distribute their attentions among all three categories”. As a

result, some problem domains that are particularly important

for the developers, such as rationale, intent, implementation

and refactoring, are lacking support, while other problem

domains, such as history, performance, concurrency and

dependencies, are well-supported.

Filtering visualization in order to display software architecture

entities that a stakeholder is interested in at an appropriate

level of detail is a process of abstraction. Gallagher et al. [7]

distinguishes three level of program visualization based on

level of abstraction: source code level, middle level and

architecture level. Source code level visualizations are

typically “low level” and relate directly to the “underlying

artifact”. Middle level visualizations are “problem-specific”

are aim to visualize problem area, that might include

“sequence diagrams, abstract syntax trees (AST), dominance

tree, concept lattices, control and data flow graphs“.

Architecture level is abstract architecture visualization that

aims to communicate design decisions and overall structure. In

combination with metrics, architecture visualizations may

satisfy needs of various stakeholders, such as visualizations of

most costly components for managers, or design erosion

visualizations for code designers.

B. Purposes and Benefits of SAV application

Most common categorization of SAV use cases are by

architecting activities [6], problem domains [33], and purposes

[6, 2, 7, 5, 25]. According to [45], “architecting is a process of

conceiving, defining, expressing, documenting,

communicating, certifying proper implementation of,

maintaining and improving an architecture throughout a

system’s life cycle”. Telea et al. [5] noted that SAV

techniques “can be used to support any stage of the software

architecting process, i.e., analyzing, synthesizing, evaluating,

implementing and evolving architecture”, while Li et al.

[FROM 6] defines architecting activities to be architecture

recovery, architectural evolution, architectural evaluation,

change impact analysis, architectural analysis, architectural

synthesis architectural implementation, and architecture reuse.

Shahin et al. [6] conducted a systematic literature review, and

determined, that 47% of reviewed studies were activity to use

SAV most frequently. To the large extent, SAV also supports

architectural evolution dedicated to SAV application within

context of architecture recovery, making it the architecting

(30%), architectural evaluation (20%), change impact analysis

(18%), and architectural analysis (18%). Less supported

activities, according to Shahin et al. [6] were architectural

synthesis, architectural implementation, and architectural

reuse.

LaToza et al. [43] categorized “hard-to-answer” questions

about code into categories, such as questions about changes

(debugging, implementing, policies, rationale, history,

implications, refactoring, testing, building and branching, and

teammates), questions about elements (intent and

implementation, method properties, location, performance,

concurrency), element relationships (contracts, control flow,

dependencies, data flow, type relationships, and architecture).

Problem domains of rational, intent and implementation,

debugging, refactoring, and history were distinguished as most

frequently asked questions categories from developers’ point

of view. Addressing this problem domains could be aided with

SAV tools and techniques, however, according to Marino et

al. [33] some of the most relevant problem domains are least

supported, such as rationale and refactoring, while least

relevant domains, such as dependencies and concurrency, and

are supported to a far larger extent.

Shahin et al. [6] reviewed related studies published between

1999 and 2011, and divided purposes of using SAV

techniques into 10 categories from most to least frequent.

Improving understanding of architecture evolution is the most

frequent context of using SAV with 26% of reviewed papers

reporting it. Improving understanding of static characteristics

of architecture and improving search, navigation and

exploration of architecture design are following with 24% of

studies. 21% of papers studied SAV application within context

of improving understanding of architecture design through

design decisions visualization. Less frequent purposes of SAV

employment are supporting architecture re-engineering and

reverse engineering (13%), detecting violations, flaws, and

faults in architecture design (11%), provide traceability

between architectural entities and software artifacts (11%),

improve understanding of behavioral characteristics or

architecture (6%), checking compatibility and synchronization

between architecture design and implementation (6%), and

supporting model-driven development using architecture

design (2%).

Besides Shahin [6], other numerous papers study SAV

application with purposes of system and code comprehension,

especially in context of software evolution. According to

Sharafi [17], “from 50% to 75% of the overall cost of the

system is dedicated to is maintenance”, while “during

maintenance developers spend at least half their time reading

system source code in order to understand it”. Similarly, Telea

et al. [5] claims that “software maintenance costs about 80%

of a software product’s total life-cycle costs, and 40 % of that

cost is software understanding”. Chikofsky and Cross [22]

supports these claims, stating that cost of maintenance ranges

from 50% to 90% of costs of software total life-cycle. The

authors add that “the cost of understanding software, while

rarely seen as a direct cost, is nonetheless very real” and ”it is

manifested in the time required to comprehend software,

which includes the time lost to misunderstanding”.

Additionally, Chikofsky and Cross [22] expresses a view, that

“graphical representation have long been accepted as

comprehension aids”, that was supported by other numerous

papers [2, 6, 5, 25, 31, 32, 33].

8

Further, SAV is frequently mentioned within context of

reverse engineering. According to Chikofsky and Cross [22],

its purpose is to “increase the overall comprehension of the

system for both maintenance and new development” that can

be done via generation of alternate views; while according to

Shanin [6], SAV “represents its software components and the

relationship between those components at different levels of

abstraction” within context of reverse engineering.

Redocumentation, as a part of reverse engineering, can also be

aided by SAV and is defined as “creation or revision of a

semantically equivalent representation within the same

relative abstraction level” [22]. Mattila et al. [2], Telea et al.

[5], and Balzer [25] also mention SAV within context of

reverse engineering.

Considering that system’s implementation evolves over time,

its “architecture design and implementation may not be

compatible” [6]. Architecture erosion, “as-implemented and

as-planned” architecture can be displayed and monitored with

aid of SAV, as well as identifying architectural violations [2,

6, 7, 5, 31, 22].

Besides maintenance, reverse engineering, and

comprehension, SAV supports “collaboration and

engagement, optimization, assessment and comparison” [2],

“highlighting architectural patterns or patterns extracted from

code bases, assessing architecture quality” [5], as well as

“providing guidance to software life cycle” [32]. Employment

of SAV to support management task and communication was

also mentioned in a number of studies [2, 5, 31], however,

Shanin et al. [6] noted that visualization is infrequently used to

aid management in comparison to other problem domains.

C. SAV Techniques

According to Koschke [37], “visualization techniques are

widely considered to be important for understanding large

scale software systems”. However, “knowing what to visualize

and how to present information are themselves daunting

issues” [21]. Not all visualizations are appropriate for a given

problem domains, information need of a user, or level of

abstraction. Many SAV techniques are inappropriate for

displaying diagrams generated from large code bases with

high number of entities. When employing an inappropriate

technique, there is a risk of displaying too much information

that would be difficult to comprehend even in a graphical

representation that is rooted in “visual complexity associated

with the limitations of human brain capabilities and short term

memory capacity” [8]. Samia and Leuschel [30] reinforce this

view, stating that “visualizing large amount of information as

a graph can be ineffective, even though it is accurate”.

Therefore, it is vital to determine what is the user’s

information need, required level of abstraction and detail, and

a problem domain that visualization targets. Furthermore,

different techniques might require different level of tool

support. Whether some high level abstract diagrams might be

drawn manually, some low level diagrams, such as node-to-

link, require fully automated tools.

One of the most common categorization of SAV techniques is

static versus dynamic visualization. Both Gallagher et al. [7]

and Grundy and Hosking [35] advocate for usage of both

dynamic and static visualizations during design and

development. According to Gallagher et al. [7], static

representations visualizes “information which can be extracted

before runtime, for example, source code, test plans, data

dictionaries, and other documentation”, while dynamic

representations display system’s behavior during runtime, that

is most appropriate for “relationships between components of

a system that will be formed only during execution due the

nature of late-binding mechanisms such as inheritance and

polymorphism”. Static visualizations can provide information

regarding overall structure of a system at different levels of

abstraction to cater to various stakeholders’ needs. Dynamic

visualizations, on the other hand, are particularly relevant to

developers’ needs, aiding understanding of system’s

correctness and high-level behavioral characteristics that

cannot be otherwise determined from static representations

[35]. Ideally, in order to achieve effective navigation between

static and dynamic representations, visualization structures

should be consistent [35]. According to Grundy and Hosking

[35], many visualization tools support separate dynamic and

static representations, but lack common visualization methods,

such as “modelling languages or views, and are thus difficult

to formulate and interpret”.

Another approach to categorization of SAV techniques is

described by Priya e al. [24] and Ghanam and Carpendale [8]

and includes multiplicity of view, dimensionality and

metaphor. Multiplicity of view is one of the most common

concepts within SAV, being mentioned in 52% of studies

related to SAV and being capable of supporting many

software engineering activities, except for requirements

engineering [2]. Ghanam and Carpendale [8] account two

“schools of thought” regarding multiplicity of view: first, that

visualization should contain a number of different views in

order to satisfy different audiences depending on required

level of abstraction; and second, that single view, carefully

designed, may provide information more effectively. Multiple

view caters to individual needs of stakeholders, playing on the

difference between them, while single view underlines

common purpose of visualization, “enhances communication

between the different stakeholders by allowing them to reach a

common understanding of the architecture” [8]. Panas et al.

[21] argues for use of single view visualizations, stating that

even though multiple view visualization are still widely

accepted, it disturbs communication between different

stakeholders as they refer to different visualizations and data,

difficult to navigate, and harms “mental picture” of system’s

architecture in user’s mind [21]. Further, multiple views

produce large volumes of different data that are difficult to

manage and store [21].

In SAV, dimensionality refers to distinction of visualization in

2D or 3D. Visualizations in 3D can be advantageous when it

comes to representing and comparing metrics of various

9

components, while attempts to visualize some metrics in form

of gradient or transparency in 2D failed to increase

comprehension [8]. Additionally, 3D visualization attracted a

lot of attention of the research community which reasons that

“only two dimensions to represent highly dimensional data

can be too overwhelming for the viewer to comprehend” [8].

Despite this advantages, a number of papers criticise 3D

visualization technique. Ghanam and Carpendale [8] argues

that “a carefully designed 2D representation of an architecture

should be capable of representing more than two dimensions

in the dataset”. Wettel and Lanza [19] states that 3D SAV is

not widely recognized due to issues with navigation and

interaction, lacking locality and casing disorientation.

According to Priya et al. [24] “this trend [of 3D visualizations]

has been most probably supported by the advancement in

related graphic technologies (software and hardware) rather

than empirical evidence of the advantages of using real

metaphor in software visualization”. Ghanam and Carpendale

[8] shares this view, stating that there is no concrete evidence

that an added dimension can aid comprehension better than 2D

visualization.

Both Ghanam and Carpendale [8] and Wetter and Lanza [19]

propose using 3D visualization in conjunction with metaphor-

based visualizations, which “allows the viewer to embed the

represented elements into familiar context, thus contrasting

disorientation”.

According to Shahin [6], metaphor-based visualization refers

to using familiar real-world objects to visualize architecture,

like cities, which makes it particularly intuitive and reduce

visual complexity. Carpendale and Ghanam [8] define

metaphor-based visualization as mapping SA and metrics to

metaphors, be it geometrical shapes, or real metaphors such as

Figure 1. Hierarchical edge bundles [39]

buildings, and state that this method can provide a user with

more intuitive understanding of architecture. Kobayashi et al.

[26] shares the same view, stating that “a city metaphor is

widely adopted in many studies, it is intuitive and navigable,

and it can represent various software structures and metrics at

the same time”.

Merino et al. [33] divides visualization techniques into two

different types: techniques, using geometric transformation,

that “explore structure and distribution” and pixel-oriented

techniques that are capable of representing large amount of

data. [25] Geometrically transformed visualizations are

“frequent because node-link techniques that belong to this

category are profusely used by visualizations that explore

relationships”, while Dense Pixel techniques are popular

because they “contain techniques suitable for depicting

massive data sets”.

Lastly, Shahin et al. [6] identifies four primary types of SAV

techniques that are: graph-, notation-, matrix-, and metaphor-

based visualizations. Graph-based visualization uses “nodes

and links to represent the structural relationship between

architecture elements and it puts more emphasis on the overall

properties of a structure then the types of nodes”. Graph-based

technique attracted the most of researchers attention in

comparison to other techniques, being reported in 49% of

reviewed literature, as well as being most frequently employed

technique in the industry due to its capability to visualize

“overall properties of a structure, which is useful for all types

of projects to get an overview of the architecture” [6]. This

technique category is the most supported by automatic tools,

since it requires to be generated from the code. Examples of

graph techniques are hierarchical edge bundles [39] and

clustered graph layout [40], displayed in fig 1 and 2

Figure 2. Clustered graph layout [40]

10

respectively.

Hierarchical edge bundle technique in figure 1 represents

nodes as segments of inner circle that are part of abstracted

layers. Links represent calls from a node to a node, with

callers in green and calee in red. This visualization can also be

adjusted in accordance to required level of detail, providing

both low level and high level information and thus catering to

various stakeholders’ needs. Similarly, clustered graph layout

in Figure 2, is an abstract visualization of clusters of edges or

parent edges that can be adjusted in level of detail to suit

user’s information need.

However, this techniques can produce large and difficult to

read graphs, with cluttered and omitted edges due to “high

interconnectivity between the large amount of components”

[38]. This disadvantage can be addressed by employing

matrix-based visualization, a complementary to graph-based

visualization, which is capable of displaying structural

information about a large system. However, it proves to be a

difficult to keep a mind map of a system’s hierarchy, and it is

less intuitive than other visualization techniques [38, 6].

Lungu and Lanza [41] present semantic dependency matrix for

“displaying details about dependency between two modules

which groups together classes with similar behavior” and edge

evolution filmtrip in figure 4, which visualizes “the evolution

of an inter-module relation through multiple versions of the

system“, with examples of both displayed in figure 3 and 4

respectively.

Another common technique category is notation-based

techniques, consisting of SysML, UML and other specifically

designed custom modelling and visualization notation-based

Figure 3. Semantic Dependency matrix for dependency

between 2 modules [41]

techniques [6]. According to Shahin et al. [6], 41% of

reviewed studies focused on notation-based visualization,

while 81% of notation-based SAV related studies were

published in last 5 years [2009-2014], signifying increase in

interest in this technique. Notation-based visualization is

second most frequently mentioned technique in related studies

(after graph-based) [6], and also became an industrial standard

[38]. According to Balzer et al. [25], Unified Modelling

Language (UML) is the most widely employed modelling

language, in which class diagrams are used to model “static

structure of the system”, that can be grouped into packages

and thus adjust level of abstraction. Khan et al. [38] states that

UML was firstly developed to display inter-class relationships,

portraying composition, aggregation, generalization, and

inheritance. Grundy and Hosking [35] mirrors this sentiment,

stating that UML sufficiently supports lower-level

visualizations, but adds, that it is limited when it comes to

displaying high-level views of architecture, considering that

deployment diagram, showing “machine and process

assignment and interconnection”, is the only option of

displaying high-level view of architecture. Balzer et al. [25]

states that UML notation do not include “advanced graphics

and visualization techniques” and prompts users draw

diagrams themselves, that, in turn, “ decreases information

density and control over the level of abstraction, which limits

scalability”[25]. Shahin et al. [6], on the other hand, states that

notation-based visualization are second best when it comes to

tool coverage (again, after graph-based), with semi-automatic

and automatic tools, however, Shahin’s work overviews

Figure 4. An example of edge evolution Filmstip [41]

11

scientific studies, and not SAV employment in the industrial

context, which could explain the contradiction. Khan et al.

[38] argues that generating UML diagrams from a large

codebase can lead to information overload due to ‘the amount

of textual information depicted by each component”, and adds

that “these graphs grow exponentially with each additional

component” added.

Previously mentioned metaphor-based visualization are the

least frequently mentioned in studies (13%), according to

Shahin et al. [6]. However, in recent years, an interest to

metaphor-based visualizations grew, with various new tools

being proposed, an example of which is Vizz3D tool by Panas

et al [21]. The tool presents an architecture in form of a city,

using metaphors such as buildings, textures, cities, pillars,

Figure 5. Vizz3D visualization of C++ program

Architecture [21]

water towers and landscapes representing functions, source

code metrics, source files, header files, and directories

respectively. The generated visualization (Fig. 5) is

Figure 6. Generated UML model with 12 areas of interest

[20]

predictable and keeps to a same layout patterns when run

multiple number of times which allows a user’s maintain a

common, unchanged mind map of the system. Generated

visualization is capable of displaying software complexity

information, oversized functions, unsafe functions and run-

time information.

A number of studies also employ different techniques such as

UML or metaphor-based embedded with visualization of

metrics or areas of interest, such as “design complexity,

resource usage, system stability” [38], “performance, trust,

reliability, or structural attributes, correspond to the system

architecture” [12], that are vital to understanding of complex

software systems, according to Byelas and Telea [20]. Wettel

and Lanza [19] use metaphor-based approach, while “mapping

source code metrics onto size and type of building”, color and

transparency in CodeCity tool. In figure 6, Byelas and Telea

[20] visualize architecture in conjunction with areas of

interest, such as performance, structural attributes, and

reliability, by grouping components by these properties and

coloring the encircled components’ area. Another tool,

combining UML and metrics is Metric View [42], which is

capable of visualizing metrics such as system cohesiveness,

quality, and component coupling, by adding metric icons on

each UML component.

D. Tools

Most of the studies (92%) reviewed in Shahin et al. [6]

included descriptions of, or proposed, a new visualization tool,

which signifies that tool support is a major concern for

researchers and practitioners. Further, 42% of proposed tools

were automatic, 47% were semi-automatic, and 11% were

manual. However, according to Merino et al. [33] even though

many tools are being proposed within research community,

“few prototypes were maintained and extended over time”,

with average lifespan of a tool being about 3.7 years.

Satisfying all stakeholder requirements remains to be a

problem as well. According to Gallagher et al. [6], none of the

reviewed tools supported all stakeholders’ demands for SAV

and thus, for a complete visualization, a team should use a

combination of tools, which, in turn, could be complicated.

However, it is unclear whether an “ideal” tool would be

possible to implement or whether it would even be desirable,

since there can be “a risk of introducing cognitive overload to

some stakeholders in the architecture”. The authors then

concluded: “It may be that one-fits-all-approach may increase

information overload and that a collection of small tools

appropriate to each stakeholder’s task may be preferable”.

However, adoption of a new visualization tool can also prove

to be problematic. According to Telea et al. [5], while

observing adoption of new tools, the researchers met with

“moderate to strong skepticism regarding innovative AVTs

[architecture visualization tools]”, while discerning

“significantly reduced understanding for time and cost and

improved results quality when projects that used no

12

visualizations adopted AVT” or “replaced an existing tool

with a better one”.

VI. RESULTS

This section presents coding results, organized by its relation

to research questions. Summary of each research question-

related subsection is presented by the end of the subsections

and denoted by boarders. Additionally, summary of interview

coding results can be found in tables 1-7 on pages 21-25.

Tables 1-3 present the results sorted by company or case for

easier comparison of different stakeholders within same case,

while tables 4-7 present same results, but sorted by

stakeholder type, for easier comparison of same stakeholders

from different companies. Lastly, table 8 on page 26 presents

most common information needs, techniques, tools and level

of abstraction, required by stakeholders.

RQ1: What is the current demand for SAV in the industry

depending on a stakeholder?

Results for this sub-sections mostly comprise stakeholders’

explicit statements regarding how useful SAV is or can be to

support their work.

Three out of four developers from cases 1 and 3 responded

that visualization is useful to some extent when it comes to

understanding of architecture and communication. These

developers stated, that “It could helpful while discussing

architecture”, and that “for a new developer coming in, it

would be beneficial to have something”, while it is being

automatically generated. Fourth developer, in contrast, stated

that it is definitely useful to support his work.

Design architects’ responses included “very useful” and

“useful” for understanding of architecture in cases 2 and 3;

“sometimes” for tracking dependencies and understanding

architecture in case 2, and “depends” on whether it is

automatically generated, which would be favorable.

Responses of system architects were more affirmative,

including “definitely useful” from two architects in case 3 and

one in case 4; “useful” in case 1; and “somewhat useful” in

case 2. Purposes of visualization for this stakeholder included

“communicating vision of architecture”, “overview of the

system”, “explaining architecture to other projects and non-

technical stakeholders”, “decision-making”, and

“communicating within a team”

Two managers from cases 4 and 3 found visualization useful

when communicating, making decisions and understanding

architecture. Another manager from case 3 implied that SAV

is useful when communicating as well.

Test engineers from cases 1 and 3 found visualization useful if

it is complemented with metrics. Case 4 function tester stated

that it can be very helpful for other stakeholders, such as

developers and architects, however, it is of limited use.

To summarize, based on this data, system architects found

visualization most useful followed by managers. Design

architects viewed visualization as mostly useful; while

developers responded that it aids communication and

introduction of new developers, and is useful if

automatically generated

RQ2: What is the information need of different stakeholders

towards SAV?

Stakeholders’ information needs were divided into 3

categories, based on LaRoza et al. [43]:

1. Relationships, concerning visualization of

relationships between different software entities at

different level of detail and includes dependencies,

control and data flow, i.e. dynamic aspects of the

software.

2. Composition, concerning structural composition at

different levels of detail, concerning intent,

implementation, and method properties, i.e. static

aspects of software.

3. Complementary, which includes additional

information that is not directly related to entities or

relationships between them, such as metrics,

corresponding requirements, history of change and

authors, and implications of new flows.

Information needs in Relationships category

Figure 7 presents a unified view on stakeholder needs in

relationships category for all 4 industrial cases, with

stakeholders from Volvo (case 1) colored green, Ericsson

(case 2) colored purple, Tetra Pak (case 3) colored yellow, and

Ericsson (case 4) colored blue. Middle column includes

entities, dependencies between which are information need for

the stakeholders. Figure 8 and 9, share the same data, but split

into 2, including data from Volvo and Ericsson, and Tetra Pak

and Ericsson respectively, to improve readability.

Based on figures 7 and 9, comparing stakeholders’ needs from

cases 3 and 4, System developer in case 3 is interested to see

relationships between classes and packages, while software

developer is interested in relationships between classes,

packages, and layers. Design architect is case 3 is interested in

relationships between classes, clusters of classes, and

components, while design architect in case 4, is limited to

components only. System architect in case 3 is interested in

seeing relationships between clusters of classes, modules, and

components, while system architect in case 4 is interested in

modules, layers, components and systems. Additionally, in

case 3, one of developers is not using SAV to support his

work, as well as test engineer. Function tester in case 4 is

interested in relationships between components, while

Management from both cases require information about

relationships of systems, subsystems and, in one case,

components.

13

Figure 7. Information need in relationships category for

cases 1-4.
In case 1, both system designer and software developer are

interested in relationships between software compositions

(SWC) and Electrical Control Units (ECUs), which in this

diagram are denoted as packages and systems respectively.

In case 2, members of the same stakeholder group show

different interests, for example,

1st design architect is concerned

with relationships between

classes and components; 2nd

design architect is interested in

relationships between classes,

subsystems, and systems; while

3rd design architect required

information about relationships

between classes, clusters of

classes, and components.

Designer is concerned with

relationships between classes

and components, and system

architect is interested in

viewing relationships between

subsystems and systems.

Based on figure 7, dependencies between components are the

most demanded, being mentioned by 10 stakeholders. Next is

dependency between systems, required by 9 stakeholders.

Dependency between classes is important to 6 stakeholders,

packages and subsystems were mentioned by 5 stakeholders

each. Lastly, relationships between modules and layers had

lowest demand, being mentioned only 3 times each.

Figure 8. Information need in relationships category for

cases 1 and 2.

14

Figure 9. Information need in relationships category for

cases 3 and 4.

Figure 10. Information need in composition category for

case 1-4.

15

Figure 11. Information need in composition category for

cases 1 and 2

Figure 12. Information need in composition category for

cases 3 and 4.

16

Information need in Composition category

Figures 10-12 display stakeholders’ needs when it comes to

composition of different software entities, which are listed in a

middle column. Similarly to figure 7, figure 10 presents a

unified view on stakeholder needs for all 4 industrial cases,

with stakeholders from Volvo (case 1) colored green, Ericsson

(case 2) colored purple, Tetra Pak (case 3) colored yellow, and

Ericsson (case 4) colored blue. Figure 11 and 12 show same

data, but divided, displaying 2 cases each, cases 1 and 2, and

cases 3 and 4 respectively. According to figure 12, a developer

in case 4 is interested in composition of classes, packages, and

layers, while one of developers from case 3 is interested in

classes, components, and assemblies, and another developer

did not use any visualization. Design architect in case 4 is

interested in composition of classes, packages, components,

and systems, while design architect in case 3 is concerned with

composition of classes, clusters of classes, components, and

systems. System architect in case 3 is interested in

Figure 13. Information need in Complementary category

for cases 1-4.

composition of systems, clusters of systems and layers, while

same stakeholder in case 3 is interested in composition of

packages, clusters of classes, components and clusters of

systems. System manager in case 4 and project manager and

team manager in case 3 are all interested in system

composition only.

In regards to figure 11, system designer in case 1 is concerned

with composition of packages (SWCs), components (LACs),

and systems (ECUs), while designer in case 2 in concerned

with classes and components. One of the design architects in

case 2 is not interested in composition, requiring dynamic

behavior visualizations only, which are expressed in

dependencies category. From other 2 design architects from

case 2, one is interested in composition of packages and

clusters of classes, and another in classes, clusters of classes

and components. System architects in case 2 are interested in

composition of systems, clusters of systems, and layers. In

case 1, software developer requires visualization of package,

17

package and system visualization, while

test engineer requires component

composition visualization.

Based on figure 10, Component and system

composition are most required, being

mentioned by 9 stakeholders each. Next is

class composition, mentioned by 7

stakeholders, and package composition,

mentioned by 6. Cluster of classes was

mentioned by 4, clusters of systems and

layers by 3 each, and assembly was the

least frequent, mentioned by one developer

only.

Information need in Complementary

category

Figure 13 displays additional information

need that is not related to relationships

between entities or structural composition of entities, or

concerns changes-related information need. Based on the

figure, test engineer requires the most complementary

information, such as test coverage, most used parts of the

code, implementation bottlenecks, and cyclamate number.

Team manager requires visualization of implemented

architecture in relation to requirements. 2 out of 3 software

architects and 2 out of 5 design architects require view of

“problematic” components, that have high maintenance cost or

low test coverage, and impact of new flows on the old ones.

One of the developers was interested Revision history and

most CPU-heavy parts of the code, while another was

interested in types of signals, ports and buses. Additionally,

system designer was interested in types of signals as well and

test engineer required information about revision history.

To summarize, for relationships category, relationships

between components were the most frequently asked,

following by systems and classes. On average, developers

were interested in relationships between classes and

packages; design architects – classes and components; system

architects – systems, subsystems, and components; managers

– systems and subsystems.

For composition category, component and system

composition were mentioned most frequently, while class and

composition to lesser extent. On average, developers were

interested in composition of classes and packages; design

architects – cluster of classes, classes, components; system

architect – system, cluster of systems, components; manager

– system.

For complementary category, developers are interested in

types of signals, CPU-heavy parts of code; design architects-

effect of a new flow on old flows, “problematic”

components; system architects – types of signals, effect of

Figure 14. Level of detail required by a stakeholder for

case 2-4.

new flow on old flows, “problematic” components,

implementation in relation to requirements, and test

coverage; managers – implementation in relation to

requirements.

RQ3: What is the level of abstraction required from SAV

depending on a stakeholder?

The data gathered during the interviews indicates level of

detail required for each stakeholder, which is displayed in

figure 14, however, level of detail will be determined in

Discussion section, based on level of detail and information

need. Case 1 did not provide information regarding their

current visualization, and thus, results for this section are

based on cases 2-4. According to the figure 14, both

developers, one design architect and a test engineer require all

levels of detail to support their work. Class level is required by

a designer, design architect, and a developer, while component

level was mostly requested by system and design architects.

System level was most demanded, being used by a developer,

design and system architects, function tester and management.

Sorting by a stakeholder type, both developers required all

levels of detail. Next, 3 out of 5 design architects required

class and component levels, 2 out of 5 required system level,

and one required all levels. All system architects required both

component and system levels, and lastly, all managers

required system level of detail.

To summarize, on average, developers required all levels of

detail, design architects – class and components level;

system architects, component and system levels; mangers –

system level.

18

Figure 15. SAV techniques used in cases 2-4.

RQ4: What techniques of SAV can be employed depending on

a stakeholder?

Figure 15 displays current SAV techniques employment by

different stakeholders in Ericsson (case 2), Tetra Pak (case 3)

and Ericsson (case 4). Interviewees from Volvo (case 1) did

not provide any data regarding current SAV practices. Based

on this figure, software developers most frequently employ

state machine, sequence and class diagrams, with more rare

instances of also employing activity and layer diagrams in

case 4, and component diagram in case 2, and swim lane

diagram in case 3. Design architects vary in techniques

employed even more, with most frequent choice being

Component diagram, being used by 3 design architects, state

machine, class, and sequence diagrams, used by 2 design

architects each. Less frequently used diagrams are package,

module, and signal flow, with one design architect per

diagram. All system architects in cases 2-4 used sequence

diagrams and 2 out of 3 used state and layer diagrams. Layer

diagrams were only used by system architects from Ericsson,

due to layered architecture of their product. Signal flow, class,

component, feature and dependency diagrams, and class tree

were used by only one system architect. System manager used

component and signal flow diagrams; team manager used

feature diagrams. Both team and project managers used

notation-based high-level abstract diagrams to communicate

overall structure of a system. Test engineer and function tester

used SAV techniques the least, with former using component

and sequence diagrams and latter opting to not using SAV at

all.

19

Figure 16. Types of SAV tools used by stakeholders in

cases 2-4.
Component diagram was the most used diagram, with 9

stakeholders mentioning using it; sequence, state, and class are

next most popular, with 6-7 users each; layer and signal flow

are less frequently used, being mentioned by 3 stakeholders

each. Least frequently used diagrams are activity, and module

diagrams as well as class tree, dependency graph and swim

lane diagram, being mentioned by one user each.

To summarize, components, state, sequence, and class

diagrams are most frequently used diagrams. On average,

developers used class diagrams the most; design architects –

component, state machine, and sequence diagrams; system

architects – state machine, sequence, and layer diagrams,

managers – informal notation-based diagram.

All of the stakeholders employed notation-based techniques,

majority of which was UML. System architect from case 3

was the only stakeholder to employ graph-based technique in

addition to UML.

RQ5: What type of tools are used for SAV depending on a

stakeholder? (Automatic, semi-automatic, manual)

According to Shahin et al. [6], automatic tools are capable of

generating diagrams from the source code with minimal input

from the user. Semi-automatic tools require user interference

to a greater extent in order to provide additional configurations

or alternative source for diagram generation, such as text-

based description. Manual tools are entirely dependent on user

input and usually are simple graphical tools, or tool features.

Similarly to previous section, case 1 dataset had no

information on current SAV practices and or data on tools

used, and therefore, only cases 2-4 are considered for this

section. Additionally, case 2 design architect provided no data

about tools he used; and case 3 developer and test engineer

used no visualization, and thus, have no links to tool types.

According to figure 16, Automatic tools were used by 8 out of

15 stakeholders: by 2 out of 3 software developers, 2 out of 5

design architects, and 2 out of 3 system architects. In contrast,

none of testers or managers used automatic tools. Semi-

automatic tool was used exclusively by case 4 participants,

specifically by design and system architect. Manual tools were

used by 11 out of 15 stakeholders: 1 out of 3 developers, 3 out

20

of 5 design architects, by a software architect, by all system

architects and managers. Lastly, hand-drawn diagrams were

used by 12 out of 15 participants, being used by 1 out of 3

developers, 4 out of 5 design architect, and 2 out of 3 system

architect, with addition of all the managers, software architect,

and function tester.

However, these results do not necessarily reflect actual

requirements of the stakeholders towards SAV tools, but only

provides an illustration of current practices. In fact, many of

the stakeholders noted that there is a gap in current tool

support and suggested possible improvements or lacking tools.

Most common suggestions and concerns were:

1. Low level diagrams are rarely maintained and get

quickly outdated, becoming unreliable and

incomplete. A solution for this can be, for example,

to automatically generate diagrams from source code

every time it is committed.

2. However, when generating low level diagrams, they

are often very difficult to read.

3. Manually created diagrams are generally unreliable

and should be avoided, which is also true for high

level diagrams. Even though high level diagrams do

not change as often as low level, they still should be

generated.

4. There is a very small number of automatic tools

available.

5. There is a need in a single tool that can substitute a

collection of tools and be capable of automatic

generation of different views and diagrams at a

different levels of abstraction.

6. Elements in a diagram should be filtered in respect to

stakeholder’s concerns, displaying different areas of

interest and metrics.

7. “Display-on-demand”: hide unnecessary information,

until it is requested.

8. Generate overlay diagrams: for example, sequence

diagrams, with components diagram, which includes

active components from sequence diagram.

To summarize, hand-drawn and manual tools were used the

most, being mentioned by 12 and 11 stakeholders

respectively; while automatic tools were used by 8, and

semi-automatic by 2. However, majority of the stakeholders

considered automatic tools support paramount.

On average, developers used automatic tools; design

architects – hand-drawn, manual and automatic; system

architects – manual, automatic, hand-drawn; managers –

manual, hand-drawn. As a conclusion, developers were

using more of automatic tools, while the rest of stakeholders

employed more of manual and hand-drawn diagrams to a

larger extent.

RQ6: What are the reasons for not employing SAV in the

industry?

Participants from case 1 expressed their need in architecture

visualization, but provided no information whether SAV was

currently used to support their work. Therefore, the data for

this research question was provided by cases 2-4. In these

cases, 16 out of 18 interviewed stakeholders used software

architecture to a various extent, with two exceptions being

developer and test engineer from case 3. The developer had

over 15 years of experience in development, was very familiar

with the system and preferred reading code to visualizations.

Test engineer, on the other hand, noted that he has a demand

for visualization, but only if it provided additional

information, such as test coverage and pointed at

implementation flaws. Function tester from case 4 used

visualization to a small extent, but stated that it was due to his

personal interest in how the system’s architecture is laid out.

While performing functional testing, there was no need in

knowledge of architecture, and thus, SAV was irrelevant to his

direct responsibilities.

To summarize, 3 of the stakeholder did not use SAV to

support their work. A developer did not see a need in it due

to having a lot of development experience and preferring to

read the code; test engineer did not use SAV because it was

incapable of mapping metrics onto diagrams; and function

tester did not use SAV because his responsibilities did not

require knowledge of system’s architecture.

VII. DISCUSSION

This section contains analysis of results described in the

previous section, and its comparison with results of literature

review. For most of research questions, the analysis will be

carried out in a following manner: 1) Compare different

stakeholders within same company; 2) Compare same

stakeholders from different companies; 3) Compare this

analysis with results of literature review. Firstly, this section

includes discussion by research question and secondly, it

includes discussion by stakeholder.

A. Discussion by Research Question

RQ1.What is the current demand for SAV in the industry

depending on a stakeholder?

According to interview results, most of system architects

found visualization useful when it comes to communication,

understanding of architecture and decision making. Similarly,

all managers found SAV useful in communication and

decision-making, adding that it could be of even more value if

it included mapped metrics. Design architects varied a little

more in of how much value SAV is, stating that it is valuable

as long as it kept up to date. Apart from one of the developers,

who opted to not use SAV, other developers stated that it was

21

Table 1. Information need, level of detail, techniques, type

of tools for stakeholders in cases 1, 2, sorted by cases.

Case Company
Stakeholder

s

Dependencie

s
Composition Additional

Level of

Detail
Techniques Type of tools

Volvo
System

Designer

Packages,

Systems

Package,

Component,

System

Types of

Signals
- - -

Volvo
Software

Developer

Packages,

Systems

Package,

System

Types of

Signals
- - -

Volvo
Test

Engineer
Systems Component

Revision

History,

Implemetati

on in

relation to

requirement

s

- - -

Ericsson Designer
Classes,

Components

Class,

Component
-

Class level,

Component

level

State

machine,

Class,

Component

diagrams

Automatic

Ericsson
Design

Architect

Classes,

Components
-

How new

flow affects

old flows

Class level,

Component

level

State

machine,

Class,

Component,

Package

diagrams

Automatic,

Hand-drawn

Ericsson
Design

Architect

Classes,

Subsystems,

Systems

Package,

Cluster of

Classes

-

Class level,

Component

level

Sequence,

Component

diagrams

Manua, hand-

drawn

Ericsson
Design

Architect

Classes,

Clusters of

classes,

Packages,

Components

Classes,

Cluster of

Classes,

Component

-

Component

level,

System

level

Sequence,

Module,

Signal flow

diagrams

-

Ericsson
System

Architect

Layers,

Sybsystems,

Systems

System,

Cluster of

Systems,

Layers

How new

flow affects

old flows

Component

level,

System

level

State

machine,

Sequence,

Signal Flow,

Layer

diagrams

Manua, hand-

drawn

Information Need

Case 1

Case 2

22

Table 2. Information need, level of detail, techniques, type

of tools for stakeholders in case 3.

Case Company
Stakeholder

s

Dependencie

s
Composition Additional

Level of

Detail
Techniques Type of tools

Tetra Pak Developer - - - - - -

Tetra Pak
System

Developer

Classes,

Packages

Class,

Component,

Assembly

Most CPU

heavy parts of

the code,

Revision

History

All levels

Class, Swim

lane

diagrams

Automatic

Tetra Pak
Design

Architect

Classes,

Clusters of

classes,

Components

Class,

Cluster of

classes,

Component,

System

"Problematic"

components

Class level,

Component

level,

System

level

Class,

Component

diagrams

Manua, hand-

drawn

Tetra Pak
Software

Architect

Modules,

Components,

Subsustems

Component,

System

"Problematic"

components
- -

Automatic,

Manua, hand-

drawn

Tetra Pak
System

Architect

Clusters of

classes,

Modules,

Components,

Systems

Package,

Cluster of

classes,

Component,

System,

Cluster of

Systems

Implementati

on in relation

to

requirements,

Test Coverage

Component

level,

System

level

Sequence,

Class,

Component,

Feature,

Class tree,

Dependency

graph

Automatic,

Manual

Tetra Pak
Test

Engineer
- -

Test coverage,

Most used

parts of the

code,

implementati

on

bottlenecks,

Cyclomatic

number

All levels - -

Tetra Pak
Project

Manager

Sybsystems,

Systems
System -

System

level

Informal

abstract

notation-

based

diagrams

Manua, hand-

drawn

Tetra Pak
Team

Manager
Systems System

Implementati

on in relation

to

requirements

System

level

Informal

abstract

notation-

based

diagrams,

feature

diagram

Manua, hand-

drawn

Information Need

Case 3

23

Table 3. Information need, level of detail, techniques, type

of tools for stakeholders in case 4.

Table 4. Information need, level of detail, techniques, type

of tools for developers.

Case Company
Stakeholder

s

Dependencie

s
Composition Additional

Level of

Detail
Techniques Type of tools

Ericsson
Software

Developer

Layers,

Classes,

Packages

Class,

Package,

Layers

- All levels

State

machine,

Sequence,

Activity,

Class, Layer

Automatic,

Manual,

Hand-drawn

Ericsson
Design

Architect
Components

Class,

Component,

System

- All levels

State

Macine,

Informal

high-level

notation-

based

diagrams

All

Ericsson
System

Architect

Layers,

Modules,

Components,

Systems

System,

Cluster of

systems,

Layer

-

Component

level,

System

level

State

Machine,

Sequence,

Layer

diagrams

All

Ericsson
Function

Tester
Components System -

System

level

Sequence,

Component

diagrams

Hand-drawn

Ericsson
System

Manager

Components,

Subsystems
System -

System

level

Component,

Signal flow

diagrams

Manua, hand-

drawn

Case 4

Information Need

Case Company Stakeholders
Depende

ncies
Composition Additional

Level of

Detail
Techniques

Type of

tools

1 Volvo
Software

Developer

Packages

, Systems

Package,

System

Types of

Signals
- - -

Tetra Pak Developer - - - - - -

Tetra Pak
System

Developer

Classes,

Packages

Class,

Component,

Assembly

Most CPU

heavy parts

of the code

All levels

Class, Swim

lane

diagrams

Automatic

4 Ericsson
Software

Developer

Layers,

Classes,

Packages

Class,

Package,

Layers

- All levels

State

machine,

Sequence,

Activity,

Class, Layer

Automatic,

Manual,

Hand-drawn

Information Need

2

24

Table 5. Information need, level of detail, techniques, type

of tools for design architects.

Case Company Stakeholders
Depende

ncies
Composition Additional

Level of

Detail
Techniques

Type of

tools

Ericsson
Design

Architect

Classes,

Compon

ents

-

How new

flow affects

old flows

Class

level,

Compon

ent level

State

machine,

Class,

Component,

Package

diagrams

Automatic,

Hand-drawn

Ericsson
Design

Architect

Classes,

Subsyste

ms,

Systems

Package,

Cluster of

Classes

-

Class

level,

Compon

ent level

Sequence,

Component

diagrams

Manua,

hand-drawn

Ericsson
Design

Architect

Classes,

Clusters

of

classes,

Packages

,

Compon

ents

Classes,

Cluster of

Classes,

Component

-

Compon

ent level,

System

level

Sequence,

Module,

Signal flow

diagrams

-

Ericsson Designer

Classes,

Compon

ents

Class,

Component
-

Class

level,

Compon

ent level

State

machine,

Class,

Component

diagrams

Automatic

3 Tetra Pak
Design

Architect

Classes,

Clusters

of

classes,

Compon

ents

Class, Cluster

of classes,

Component,

System

"Problemati

c"

component

s

Class

level,

Compon

ent level,

System

level

Class,

Component

diagrams

Manua,

hand-drawn

4 Ericsson
Design

Architect

Compon

ents

Class,

Component,

System

- All levels

State

Macine,

Informal

high-level

notation-

based

diagrams

All

2

Information Need

25

Table 6. Information need, level of detail, techniques, type

of tools for system architects.

Table 7. Information need, level of detail, techniques, type

of tools for managers.

Case Company Stakeholders
Dependenci

es
Composition Additional Level of Detail Techniques Type of tools

1 Volvo
System

Designer

Packages,

Systems

Package,

Component,

System

Types of

Signals
- - -

2 Ericsson
System

Architect

Layers,

Sybsystems,

Systems

System,

Cluster of

Systems,

Layers

How new flow

affects old

flows

Component

level, System

level

State machine,

Sequence,

Signal Flow,

Layer diagrams

Manua, hand-

drawn

Tetra Pak
Software

Architect

Modules,

Components

, Subsustems

Component,

System

"Problematic"

components
- -

Automatic,

Manua, hand-

drawn

Tetra Pak
System

Architect

Clusters of

classes,

Modules,

Components

, Systems

Package,

Cluster of

classes,

Component,

System,

Cluster of

Systems

Implementati

on in relation

to

requirements,

Test Coverage

Component

level, System

level

Sequence,

Class,

Component,

Feature, Class

tree,

Dependency

graph

Automatic,

Manual

4 Ericsson
System

Architect

Layers,

Modules,

Components

, Systems

System,

Cluster of

systems, Layer

-

Component

level, System

level

State Machine,

Sequence,

Layer diagrams

All

3

Information Need

Case Company Stakeholders
Dependenci

es
Composition Additional Level of Detail Techniques Type of tools

Tetra Pak
Project

Manager

Sybsystems,

Systems
System - System level

Informal

abstract

notation-based

diagrams

Manua, hand-

drawn

Tetra Pak
Team

Manager
Systems Team Manager

Implementati

on in relation

to

requirements

System level

Informal

abstract

notation-based

diagrams,

feature

diagram

Manua, hand-

drawn

4 Ericsson
System

Manager

Components

, Subsystems
System - System level

Component,

Signal flow

diagrams

Manua, hand-

drawn

Information Need

3

26

Table 8. Most common information need, level of detail,

techniques, type of tools for each stakeholder.

definitely useful to support their work mainly by aiding

understanding of architecture and communication.

To compare same stakeholders from different companies,

there was little difference for system architects, despite little

SAV employment in case 3. Similarly, system managers have

similar attitude towards SAV across different cases. Design

architects vary in their attitude even within same company,

however, the design architect that had lower demand in SAV

also shared developer’s responsibilities, which could affect his

view. Lastly, developer from case 4 stated that visualization

was definitely useful for him, while developers from case 3

stated that it was useful to some extent.

As a results, it was observed, that higher level stakeholders,

such as managers and system architects had higher demand for

SAV regardless the company; while developers found SAV

less useful in a case with less architectural guidance. Design

architects varied across different cases and within same cases

due to having additional individual requirements due to their

personal responsibilities and areas of interest.

To compare with reviewed literature, developers are primary

Stakeholders Dependencies Composition Additional
Level of

Detail
Techniques Type of tools

Developer
Classes,

Packages

Classes,

Packages

Types of

Signals, Most

CPU heavy

parts of the

code, Revision

History

All levels Class diagram Automatic

Design

Architect

Classes,

Components

Cluster of

classes,

classes,

components

How new flow

affects old

flows,

"Problematic"

components

Class level,

Component

Level

Component,

State Machine,

Sequence

diagrams

Hand-drawn,

manual,

automatic

System

architect

Systems,

Subsystems,

Components

System,

Cluster of

systems,

components

Types of

Signals, How

new flow

affects old

flows,

"Problematic"

components,

implementati

on in relation

to

requirements,

test coverage

Component,

system level

State machine,

sequence,

layer diagrams.

Manual,

automatic,

hand-drawn

Manager
Systems,

Subsystems
System

Implementati

on in relation

to

requirements

System level

Informal

abstract

notation-based

diagrams

Manua, hand-

drawn

Information Need

27

users of SAV, followed by testers, software architects and

managers according to Mattila et al. [2], however, this is not

observable in the data. Lowered interest in SAV from

developers can be explained by lack of appropriate tools and

techniques, which cater to their needs. This view is shared by

Merino et al. [33], who adds, that “efforts in software

visualization are out of touch with the needs of developers”,

which is discussed more in detail in later subsections, dealing

with tools support.

RQ2.What is the information need of different stakeholders

towards SAV?

Developers
As it was mentioned before, developers are interested in

visualization of code changes and their impact and aiding

system comprehension.
Based on the data in the tables 1-7, information needs of

developers are homogeneous to a great extent across different

companies when it comes to “Relationships” and

“Composition” categories. Former category included only a

small variety of needs, such as relationships between classes,

packages, systems and layers, with classes and packages being

mentioned most frequently. “Composition” needs were of

slightly greater variety, including Class, package, component,

assembly, system and layer, with classes and packages being

most frequently mentioned as well. The differences in

information need, particularly in “complimentary” category of

information needs, could be attributed to product’s domain, or

developers’ specific responsibilities. For example, a developer

from case 1 is interested in tracking signals between different

ECUs and viewing information about different types of

signals, which does not apply to case 3 system developer, who

is more concerned with performance and would like to

visualize parts of the code, which are most CPU-heavy.

Therefore, while developers’ needs in “Relationships” and

“Composition” categories are quite homogeneous with a

visible pattern of interest in composition of and relationships

between classes and packages, it is more difficult to find

common ground in “Complementary” category.

According to Gallagher et al. [7], developers are most

interested in static and dynamic visualizations at the code

level, which is confirmed by interview data. However, LaToza

and Myers [43] claim that developers require visualization in

“Change” category, with lesser interest in “Composition” and

“Relationships” categories, signifying that the some of the

most relevant questions for developers are:
1. Why was this done this way?

2. When, how and by whom was this code changed or

inserted?

3. How has it changed over time?

4. Have changes in another branch been integrated into

this branch?

5. What are implications of this change?

6. Is the existing design a good design?

7. Is this tested?

Considering LaToza and Myers point, there can be a

significant gap in the gathered data, that might indicate very

small sample size, which is not reflective of real information

need of developers; or this might be attributed to the method

of gathering information, since interviews might not allow

time for an interviewee to reflect.

Architects
According to reviewed studies, architects require higher level

of visualization, displaying attributes of a designed

architecture, such as complexity, coupling and cohesion [8].

Appropriate visualization can also aid identifying components

for reuse [21], software architecture documentation [6, 22, 8],

and monitoring software architecture evolution [6, 22, 2].

Overall, architects require visualizations that enable

navigation of “software structure, dependencies, and attributes

such as quality metrics [5]”.
According to the data in the tables 1-7, design architects have

relatively similar information needs in terms of relationships

between entities, including relationships between classes,

clusters of classes, packages, and components, with classes

and components being mentioned the most frequent. Similarly,

for “Composition” category, the most frequently mentioned

entities were classes, clusters of classes, and components,

while composition of systems was less frequently mentioned.

From the gathered data, it is visible that design architects are

somewhat a heterogeneous group in terms of their need

towards “Relationships” and “Composition”. Even though

there is common need for most of these stakeholders, some

requirements still vary, which could be attributed to difference

in domains, and task distributions. Some of the interviewees

that also took on responsibilities of developers had

requirements similar to those of developers, as well as

selecting automatic tools. For “Complementary” category,

only “problematic components” and “how new flow affects

the old flows” were mentioned. These requirements are similar

to LaToza and Myers [43] questions in “Change” category in

particularly question number 5. “What are implications of this

change?”
System architects were interested in looking at software

entities at a higher level, most frequently requiring

visualization of relationships between systems, subsystems,

and components, with lesser interest in layers (specific for

cases 2 and 4), and modules. For “Composition” category, the

primary interest was system, cluster of systems and

component, with lesser interest in packages, clusters of

classes, and layers. Variety in interest for this stakeholder

could be attributed to a number of things: 1) personal interest

and experience, as it was for one of the interviewee with an

interest in acquiring lower level understanding of the system;

2) task distribution and role separation issues: one of the

interviewees held title of system architect, but was mostly

involved in development, which explained his interest in lower

level visualizations. In general, across companies, this

stakeholder type was quite homogeneous in terms of

information need in “Relationships” category, and semi-

28

homogeneous in “Composition” category. In contrast to

previous stakeholders, system architects named more

requirements in “Complementary” category. This can be

explained by interest in quality attributes and metrics [8, 5] in

case of “Problematic components” visualization

requirements; identifying components for reuse [21] in case of

test coverage requirement; navigation of dependencies in case

of “how the new flow affects the old flows”, and

”implementation in relation to requirements” in case of

documentation and communication.

Managers
According to Ghanam and Carpendale [8]: managers monitor

progress and determine whether goals were completed; view

problematic components, that can have high costs associated

with development and maintenance; and understand time

estimates for implementation [6]. Overall, in case of project

managers, SAV should support monitoring of evolution of a

system over extended period of time, providing information

about general trends, such as “architectural erosion, rule

violation, and quality decay” [5].
Based on the results in the tables 1-7, most common

information need in “Relationship” category is relationships

between systems, and subsystems, with lesser interest in

components. For “Composition” category, all of interviewees

required visualization of system composition. Surprisingly,

only one interviewee mentioned need in third category, which

was not expected due to manager’s need in visualization of

metrics, such as cost and performance. Overall, this

stakeholder type was the most homogeneous in terms of

information need than others, which could be explained by

their distance from design and implementation, which is more

divisive due to differences in domain and practices.

Testers
Testers is most heterogeneous group, due to different stages of

testing they perform. Case 4 tester is performing function test

with no need of support of SAV, however, he still uses

abstract high-level visualization to improve understanding of

the system. Case 1 test engineer is requiring visualization of

dependencies between systems and composition of

components. Case 3 test engineer did not employ any

visualization at the moment of the interview, yet listing his

needs in “Complementary” category. This category seemed to

be particularly important for testers due to need in visualizing

metrics, such as test coverage and cyclomatic complexity, as

well as revision history, implementation bottlenecks, most

used parts of the code, and implementation in relation to

requirements.

RQ3.What techniques of SAV can be employed depending on a

stakeholder?

Developers
In terms of preferred techniques, developers are a

heterogeneous group to some extent, using a variety of

diagrams such as class, swim lane, state machine, sequence,

activity and layer diagrams, with class diagram being the only

explicit common ground. Swim lane, depending on how it is

used, can be similar to sequence, activity, and state diagram in

terms of information they provide, and thus, can be considered

another common technique. Both developers are concerned

with tracking dependencies, but in contract, case 4 developer

has a personal interest at viewing “how low level fits into the

system” and carry out maintenance tasks, which can explain

additional need in layer diagrams. Another explanation of the

difference could be general difference in practices between

two cases, since all stakeholders in case 3 employed less SAV

than case 2 and 4, and thus can be more prone to choosing

relatively informal swim lane diagram to more formal UML

alternatives. Another possible reason for differences in choices

of techniques, or number of techniques could be experience.

One of the developers in case 3, that did not use any

visualization linked it to experience and good understanding

of the system, which allowed him to build his knowledge

based on reading code only. Even though all of the

interviewed developers were experienced, relatively less

experienced developers employed more visualization. This

could be another link to explore further in, however, current

data sample is not substantial enough to arrive to any concrete

conclusions in this regard.

Despite graph-based techniques being the central focus of

research community in SV field and having highest automatic

tool support [6], majority of stakeholder used UML to support

their work. From developers’ perspective, UML is sufficient

for low-level visualizations, especially in case of inter-class

relationships and composition, for which it was first developed

[35, 38]. However, when generating diagrams from high

number of entities, resulting diagrams can be difficult to read,

due to “the amount of textual information depicted by each

component” [38]. This opinion was repeated by both

developers, stating that generated class diagrams should be

sorted or condensed.

Another solution a cluttered generated class diagrams are

treemap, clustered graph and hierarchically bundled edges

techniques, that are capable of automatically generating

readable visualizations from 1000 software entities [5], which

is paramount to developers’ interests, according to Telea et

al.[5]. Bundled edges and clustered graph techniques provide

information about composition and relationships between

entities, but are also complemented with metrics and

attributes, while offering intuitive navigation. Metrics and

attributes are confirmed to be of interest to developers by the

interview data and by Telea et al. [5], stating that “views of

code, metrics, structure, and dependencies” are indispensable

to this stakeholder group. Besides bundled edges and clustered

graph layout, there are techniques that combine familiar UML

diagrams with metrics or areas of interest, that are presented

with supporting tools by Byelas and Telea [20] and Termeer et

al. [42]. Another type of technique that can support

developers’ interest is metaphor based 3D visualizations that

29

offer a view on composition, relationships and metrics,

however, it is unclear if 3D techniques provide better

understanding and more intuitive navigation than other

techniques [24].
Architects
Design architects are heterogeneous in their employment of

SAV techniques, including class, package, components, state

machine, sequence, module, signal flow, and high level

notation based diagrams, with component, state machine, and

sequence diagrams being most frequently mentioned.

Considering differences between design architects from

different companies, there are no obvious patterns, except that

only case 2 design architects used sequence diagrams, and

generally had more variety in techniques. This can be

attributed to an established practices of documentation and

communication within a company. Another factor could be

domain or complexity of products, but there is no concrete

data available to compare complexity of products developed

by cases 2 and 3. Secondly, design architects that were also

involved in development, such as in case 3, preferred lower

level visualizations, such as class diagrams.

System architects were even more heterogeneous in terms of

techniques they preferred, including state machines, sequence,

signal flow layer, class, component, and feature diagrams,

with most frequently mentioned techniques being state

machine, sequence and layer diagrams. System architects from

cases 2 and 4 had the most similar demands, which can be

attributed that both cases belonged to the same company. Case

3 system architect, however, used bigger variety of techniques,

with some of them being at a class level, which could be

attributed to task distribution in case 3, in which many

interviewees were responsible for multiple stakeholders’ tasks.

In this example, case 3 system architect dealt more with

development, than architecture, and thus had “a developer’s

perspective”. With this in mind, if case 3 architect is not

considered, system architects use similar diagrams, such as

state machine, sequence, and layer (applies for case 2 and 4

only) diagrams.

All design and system architects, with an exception for one,

used UML or informal notation-based diagrams. Although

none of the interviewees expressed dissatisfaction with UML

visualization explicitly, some of reviewed papers [35, 38]

argued that UML offers insufficient support to higher level

diagrams. Based on the gathered data, higher level diagrams

are hand-drawn component diagrams, or abstract diagrams

using package or class notations, as “same notation can have a

wide range of semantics” [44]. However, close to a half of

stakeholders stressed out the importance of generation of

diagrams, even at a high level of abstraction, which is difficult

to do employing UML. Furthermore, UML is deficient to

display “general sequence of activities and dynamic aspects of

the structure” [44], which are relevant to architects’ interests.

Another need of this stakeholder group was visualization of

metrics, based on interview data and reviewed research [5, 8],

however, none of used techniques supported this need.

According to Carpendale and Ghanam [8], architects require

higher level of visualization than developers, complemented

by display of attributes, such as complexity, coupling and

cohesion [8]. Previously mentioned hierarchically bundled

edges and clustered graph techniques can satisfy needs of both

developers and architects, due to ability of “zooming in and

out”, producing diagrams at different level of detail. An

advantage of using same tool/techniques by different

stakeholders is providing a common set of diagrams that

different stakeholders can navigate easily, that improves

communication. Similar layout across different diagrams does

not distort user’s “mind map” and contributes to a more

complete understanding of a system from different points of

view [21].

Another technique, supporting needs of architects was

presented with accompanying tool by Lungu and Lanza [41].

This technique allows viewing clusters of classes or modules

with similar behaviors and relationships between them, as well

as visualizing “the evolution of an inter-module relation

through multiple versions of the system“.

Managers
Managers were the most homogeneous group, in terms of

information need, but had more variety in techniques they

used. The techniques included component, signal flow and

feature diagrams, but the most frequently mentioned were

informal abstract notation-based diagrams that conveyed

general structure of a system.

Since only case 3 and 4 provided data regarding needs of this

stakeholder group, it is difficult to generalize and compare

between different companies. Both case 3 managers used

abstract notation-based diagrams, while case 4 manager used

formal UML diagrams, which could be attributed to

differences communication and documentation standards and

processes between the two companies.

In comparison to other stakeholders, managers use more

abstract, informal diagrams that include visualizations of

relevant components to a specific requirement, due to

responsibility of in monitoring “progress of the project and

determine the completion of the development goals”[8].

However, none of the managers expressed a need in

visualization of architecture in conjunction with metrics,

which contradicts a statement, that managers require

visualization of cost-heavy components and some other

quality metrics [5, 21]. Additionally, none of used techniques

were supporting efficient visualization of architecture

evolution, which was stated as one of manager's’ concerns [5,

8]. To address this need, previously mentioned Langu and

Lanza’s [41] filmstrip displays “the evolution of an inter-

module relation through multiple versions of the system“.

Additionally, according to Telea et al.[5], managers are

interested in methods of visualization that display abstract

composition of a system, or distribution of artifacts, with

30

addition of relevant attributes and metrics, such as treemaps

and dense pixel charts, which are capable of displaying big set

of data [25].

Testers
Since only 1 out of 3 testers provided data about current

employment of SAV techniques, it is impossible to compare

and contrast different cases. Case 4 tester used sequence and

component diagrams, however, it was not necessarily to

support his work, as he dealt with function testing, but to

enhance his understanding of the system due to personal

interest.

RQ4.What is the level of abstraction required from SAV

depending on a stakeholder?

As it was mentioned earlier, in this paper, 3 levels of

abstraction are defined based on Gallagher et al. [7], which

are:
1. Low level of abstraction, which is source code level

visualization, that related directly to a software

artifact;

2. Middle level, which is problem-specific visualization

of a particular area of interest, such as a sequence

diagram of a particular flow;

3. High level, which communicates design decisions

and metrics in addition to overall structure of a

system.

Gathered interview data included level of detail, information

need, and techniques preferred by different stakeholder. These

data points in conjunction determine level of abstraction for

each stakeholder type.

Developers
Both developers, that provided data about current SAV

employment, required visualizations at all levels of detail,

while using class and sequence diagrams to a large extent.

Their information need in composition and relationships was

mostly related to classes and packages, with less frequent need

in metrics, CPU-heavy parts of the code. Based on this data,

developers require both low and medium levels of abstraction.

Need in high level of abstraction for developers might vary

greatly due to their background and interests. One of the

developers was interested in seeing “how low level fits into

the system”, while another was interested in metrics, provided

by high level visualization.

Architects
Design architects required mostly class and component level

of detail, with system level to a slightly lesser extent.

Component level was the most frequently mentioned, with

additional alternating between class or systems levels by 3 out

of 5 design architects; while 2 other design architects required

all levels of detail. Component, state machine, and sequence

diagrams were used the most, with greater need for metrics

display, than developers. Based on this data, design architects

require all 3 levels of abstraction, which was also stated

explicitly by 2 design architects during the interviews.

Need for lower level of abstraction and detail can be explained

by specific tasks performed by each design architects, as they

can assume responsibilities of development, or architectural

design closer to the system level. This pattern is traceable in

the data, as design architects that had development and testing

responsibilities preferred lower level of detail.

System architects were very homogeneous in terms of level of

detail required, choosing component and system levels.

Preferred techniques most commonly included state machine,

sequence and layer diagrams, in addition to highest demand

for metrics display. Therefore, system architects prefer high

and medium levels of abstraction. However, one of system

architects also required low level visualizations that could be

explained by his responsibilities of development in parallel to

architecture.

Managers
As it was mentioned before, this group was most

homogeneous with all requirements, and no outliers. Their

information need was concentrated on composition and

relationships between systems with mapped metrics, at a

system level of detail, communicated via informal notation-

based techniques. Based on this data, managers require high

level of abstraction.

RQ5.What type of tools are used for SAV depending on a

stakeholder? (automatic, semi-automatic, manual)

Developers
Interviewed developers used automatic, manual, and hand-

drawn diagrams, with automatic being the most frequent.

Many of the stakeholders, developers in particular, stressed

the importance of automatic tools. Whether hand-drawn

diagrams seem to be vital for most stakeholders to aid

communication, manual tools fill the gap where automatic

tools lack, and kept for purposes of documentation.

According to Telea et al. [5], developers are interested in

viewing automatically generated uncluttered diagrams of

“correlated structure, dependency, metrics”, by a tool that

requires minimal user intervention, and are IDE integrated.

Although developers’ requirements for tools are most satisfied

in comparison to other stakeholders [5,7], “developers have

little support for adopting a proper visualization for their

needs”, currently presented tools are “out of touch with the

needs of developers” or developers are simply “unaware of

existing visualization techniques to adopt for their particular

needs” [33]. It is possible, that commercial tools tend to

support well-established techniques of visualization, such as

UML, which is not necessarily suiting developers’, or higher

level stakeholders’ requirements. At the same time, majority

of innovative tools, that are not limited to UML and suitable

for supporting developers’ needs are developed as a part of

31

research community and are maintained for a limited period of

time, which might prevent companies from investing time into

these tools.

Architects

Design architects reported using all tool types, with hand-

drawn diagrams being mentioned most frequently, and manual

and automatic to a lesser extent. While using hand-drawn and

manual tools to similar extent as automatic, most design

architects considered manual methods of diagrams creation a

waste of time, as well as unreliable, and incomplete. This

stakeholder type emphasized the importance of automatic

generation of diagrams and continuous updating of diagrams

for them to be relevant. Another requirement was to supply a

single tool that would be able to generate different views

automatically, as well as show dependencies at different levels

of abstraction. Lastly, it was observed, that there are low-level

and high-level views available, but nothing of middle-level,

problem-specific.

System architects used manual, automatic and hand-drawn

diagrams to same extent. Similarly to design architects and

developers, system architects emphasized the importance of

automatic tool support and continuous diagram updating.

From their perspective, manually created diagrams are

unreliable, incomplete, take time, and get outdated very

quickly. The currently available automatic tool were few in

number and provided little support for generation of high-level

overview of a system. Another requirement was to visualize

metrics, such as complexity on lower level and dependency

count of higher level diagrams, among others. Lastly, it was

important to both design and system architects to view

automatically generated problem-specific diagrams, or enable

filtering and searching diagrams.

According to Telea et al. [5], lead architects require automatic

tools, that assist in discovering “evolution problems” and

display metrics as well as similar to developers’ tools, that

allow “high visual scalability”. Tools that would support

techniques appropriate for this stakeholder type, such as

hierarchically bundled edges, and clustered layout graph, that

are highly scalable and enable visualizations at different levels

of abstraction and displaying metrics. Additionally, Metric

View and a tool developed by Byelas and Telea [20] are

UML-based tools that group entities by metrics and areas of

interest, capable of displaying architecture at different level of

detail.

 Managers
All interviewed managers used manual and hand-drawn

diagrams. Although managers require high-level overview of a

system, which changes infrequently, and none mentioned an

interest in metrics, a need for automatically generated

visualization was still pointed out.

Another requirement, similarly to architects, was to support

middle-level of abstraction that would allow visualization of

problem-specific information.
According to Telea et al. [5], managers require a tool that

visualizes “multivariate plots of processes and product” with

minimal user input, performs automatic “fact extraction from

repositories” and maps it onto abstract architectural overview.

RQ6.What are the reasons for not employing SAV in the

industry?

Based on the data in tables 1-7, 3 out of 18 stakeholder, that

provided information about current SAV practices (cases 2-4),

did not use visualizations to support their work.

Two of these stakeholders were testers. One of the tester from

case 3 did not employ visualizations because currently used

tools did not support mapping metrics to architecture

diagrams, which were of particular interest to this tester.

However, she stated that if that was to be supported,

architecture diagrams with mapped metrics could be of great

value. Another tester from case 4 did not employ SAV to

support his work, because his responsibilities of function

testing required no knowledge of architecture.

Another stakeholder who did not use SAV to support his work

was a developer in case 3. He attributed his lack of need in

SAV to being experienced in development and having a good

understanding of the system he was working with, which

allowed him to base his knowledge on reading code only.

However, another developer, with greater experience both in

development and same experience with the system did use

SAV to support his work. Thus, based on this data, it is not

completely warranted to claim that there is a strong correlation

between level of experience and to what extent SAV is used

by a developer.

B. Discussion by Stakeholder type

Developers’ requirements towards software architecture

visualization

When studying requirements of developers, it was observed

that their information need in relationships and composition

categories concerned classes and packages. Additional

information need that was currently lacking or not supported

by employed techniques included types of signals, CPU heavy

parts of the code, and revision history. All developers used

UML, with class diagram being most preferred. This

stakeholder type required all levels of detail and low and

medium levels of abstraction. High level of abstraction was

mentioned as well, but varied from case to case and based on

personal interests. Automatic tool were used to a slightly

greater extent than hand-drawn diagrams, however, it was

most likely to lack of available IDE-integrated automatic tools

that are able to generate readable diagrams from large number

of entities quickly, and not to an actual preference to hand-

drawn and manual tools. Requirement of wider selection of

32

automatic tools was stressed by all developers, which used

SAV to support their work.

As a group, developers had somewhat varying concerns from

one another, which could be explained by domain or specifics

of the products they are working, for example, a developer

from case 4 was interested in viewing layer diagram, due to

layered architecture of the product; and a developer from case

1 was interested in viewing types of signals due to being

involved in work related to embedded systems. Furthermore, it

is important to distinguish between used and preferred

diagrams/techniques, since it is not clear whether choice of

diagrams was influenced by workplace practices or standards.

Based on these requirements, additionally to currently

employed methods of visualization, graph-based hierarchical

edge bundles and clustered graph layout can be used to

effectively communicate composition and relationships

between large numbers of entities at a different levels of

abstraction.

Design Architects’ requirements towards software

architecture visualization

It was observed, that design architects require information

about composition of clusters of classes, classes and

components most frequently and relationships between classes

and components. Additionally they are interested in

visualizing implications of new flows to old flows, and

“problematic” components. This stakeholder group was

mostly interested in class and component level of detail, while

requiring all levels of abstraction, which was stated explicitly

by two design architects. All of these stakeholders used UML,

mostly preferring component, state machine, and sequence

diagrams. Majority of design architects used hand-drawn

diagrams, then manual and automatic. However, similarly to

developers, this was most likely not done due to actual

preference for hand-drawn and manual tools, but lack of tools

that appropriately support their needs. In terms of tools, design

architects required automatic tools that would substitute a

collection of tools, and generate diagrams at different levels of

abstraction.

As a group, design architects are quite similar in their

information needs and needed level of detail/abstraction, only

sometimes requiring information about composition and

relationships between systems. Automatic tools were used by

all design architects except for 2 instances where design

architect was concerned with higher level visualizations or

belonged to case 3, which generally had very little automatic

tool employment.

Based on these needs, design architects could also employ

graph-based hierarchical edge bundles and clustered graph

layout techniques that can automatically generate diagrams at

different levels of abstraction with mapped metrics.

Additionally, more familiar UML-based technique/tool

MetricView is capable of automatic visualization of

architecture in conjunction with selected metrics. Semantic

dependency matrix can also be a useful technique/tool for

automatically visualizing dependencies at different levels of

abstraction.

System Architects’ requirements towards software

architecture visualization

When studying needs of system architects, it was observed,

that their information need encompassed composition of

systems, clusters of systems and components and relationships

between systems, subsystem, and components. This

stakeholder type had the highest demand for additional

information and metrics, including types of signals,

implications on a new flow to the old ones, “problematic”

components, implementation in relation to requirements and

test coverage. They required component and system level of

detail and medium and high level of abstraction. One of

system architects also required low level of abstraction, which

could be explained by his additional responsibilities as a

developer. This stakeholder level used a widest array of

techniques, most of which were UML diagrams such as state

machine, sequence, and layer diagrams and few graph-based

diagrams. Although, UML is still dominating techniques used

for SAV, use of graph techniques by system developers can be

explained by UML insufficiency when it comes to

visualization of high level architecture overviews. Manual

tools were used the most, with automatic and hand-drawn to a

lesser extent. However, it was explicitly stated by almost all

system architects that it is very important to have diagrams

automatically generated and that there are not enough

available automatic tools.

Other requirements were to show “details-on-demand” as a

method of compression and improving readability of

generated diagrams; and filtering and searching automatically

generated diagrams.

Considering these requirements, system architects require

tools that are able to automatically generate and display

scalable diagrams at different levels of abstraction, with

mapping of high number of metrics. Similarly to design

architects and developers, graph-based hierarchical edge

bundles and clustered graph layout techniques can be used for

these purposes, as well as improve communication between

different stakeholder due to basing communication on the

same layout and a common set of diagrams. Additionally

semantic dependency matrix can be used to track

dependencies between different software entities at different

level of abstraction. Lastly, edge evolution filmstrip can be

used to monitor dependencies across different versions of a

system.

Managers’ requirements towards software architecture

visualization

33

When studying managers’ requirements towards SAV, it was

observed, that composition of systems and relationships

between systems and subsystems were the most frequently

mentioned. Additionally, visualization of implementation in

relation to requirements was requested. System level of detail

and high level of abstraction was preferred. All managers used

manual and hand-drawn tools, but at the same time

emphasized the need for automatic tools and continuous

automatic update of diagrams.

As a group of stakeholders, they had the most similar interests

and request, with minimal variation. Only substantial

difference was that case 3 managers used informal notation-

based visualizations, while case 4 managers used UML, which

could be attributed to general lack of visualization practices in

case 3.

Based on this data, managers require automatically generated

visualization which is capable of integrating multiple quality-

related metrics and tracking systems’ evolution. For this

stakeholder, clustered graph layout is capable of visualizing

large systems in conjunction with multiple metrics at a high

level of abstraction.

VII. CONCLUSION

This paper examined requirements of stakeholder towards

software architecture visualization tool and techniques as well

as information need and required level of abstraction. For this

purpose, 21 interviews with stakeholders such as developers,

design architects, system architects, managers, and testers

were analyzed and compared to each other as well as to results

of literature review of related studies. As a result, this paper

contributes with knowledge of different stakeholders’

information need and required level of abstraction, which was

previously lacking in the current body of knowledge; and

provides practical implications that might be of use to tool

vendors, or practitioners that are looking to employ software

architecture visualization to support their work.

A. Summary of findings regarding stakeholders’ needs

There was an observable difference between stakeholders’

requirements in a same company due to separation of

concerns. However, there also were differences between same

stakeholders across different companies, possible reasons for

which are discussed below.

Overall, developers shared similar information needs, but

employed different techniques to satisfy them, generally

preferring automatic tools; design architects shared relatively

similar information needs in “composition” and “relationship”

categories, techniques and level of detail, but different needs

in “complimentary” category and used tools; system architects

have similar information needs and very similar level of

abstraction requirements, but use widely different techniques;

managers had the most similar requirements and practices,

with lesser similarity in techniques.

B. General observations

Majority of differences between stakeholders across different

cases could be attributed to the following:
1. Practices and standards: set practices to follow within

an organization can influence techniques or tools that

are used by stakeholders. For example, if it was

customary to use a specific diagram/technique for

documentation or communication, it is likely, that a

stakeholder would conform to these practices.

2. Position title vs. Responsibilities: different

companies can distribute responsibilities in a

different way. For example, in case 3 system

architect was mostly responsible for development,

rather than architecture design, while some

interviewees from the same case that were

responsible for development, also took part in

architectural design. Similarly, design architect from

case 2 had development responsibilities.

3. Personal interests: some stakeholders may have an

interests in parts of a system or a process which is not

directly linked to their responsibilities, which affects

their information needs. For example, a manager in

case 3 was more interested in architecture than

managers from other cases. A function tester, which

did not necessarily required knowledge of

architecture, still used architecture visualization for

personal interest.

4. Domain-specific information: stakeholders in from

different cases may have additional information

needs, such as CAN frames for case 1.

5. Complexity of a system: complex systems can

require more rigorous documentation and more visual

aid for communication, which prompts stakeholders

to use SAV to a greater extent.

Based on interview results and literature review results, the

main issues when adopting visualization is automatic tool

support. All stakeholder groups emphasized the importance of

automatic tools support, however, only developers use

automatic tools to a greater extent than other types of tools.

Many of automatic, innovative tools, which cater to various

needs of stakeholder, and might be more efficient than

currently employed tools/techniques are developed as part of

research community, but maintained for a short periods of

time.

C. Threats to Validity

It is acknowledged that case study has a number of

disadvantages, such as bias and difficulties when it comes to

generalization [15]. It is also required to address threats to

validity. From internal validity the following factors may

undermine validity:

34

1. History: factors outside of the study, such as personal

experience, company’s standards and procedures can

affect how stakeholders view and use SAV, An effect

of this can be that same stakeholder can have

different information needs, or preferred techniques.

However, such differences were accounted for and

analyzed, and thus, pose little threat to validity.

2. Interviewers change: the interviews were carried out

by different interviewers which could affect pace or

structure of the interview and thus produce

inconsistency in the results. A strategy to mitigate

this was to follow common interview guide as

previous interviews, with exceptions for a few

additional questions.

3. Selection bias: interviewees for case 4 were selected

by contact person in the company, and not the

authors of this paper. This eliminated bias from

researchers’ side, but it is unclear whether there were

unknown criteria of selection on the company’s side

besides stakeholder title. To some extent this can be

mitigated by considering interviewees’ background,

such as experience and interests and its relation to

SAV employment.

4. Effect of experimental arrangement, experimenter

effect: the interviewees may respond more favorably

towards SAV techniques due to effect of leading

questions from the interviewer. This may result in an

information need data which does not reflect actual

need. To counter this, the interview transcripts were

studied carefully to determine whether there were

leading questions.

5. Difference in treatment: since the data comes from

different researchers, it is possible, that there could

be a difference in treatment between different cases.

Possible external threats are as follows:

1. Population-related threats: a sample of each

stakeholder type is moderate and contains from 3 to 5

people. There is no expectation for these findings to

be generalized to describe requirements of a

population. However, to mitigate associate problems,

as much data as possible was analyzed in a short

period of time, to represent different stakeholders

from different cases.

In respect to construct validity, no considerable threats were

identified.

In terms of reliability:

1. Replicability: this study is not dependent on

particular researchers, and if a study was conducted

on the same group of participants, the results should

be the same.

2. Received data from cases 1-3: the received data from

other researchers could be of concern, which would

threated validity of results, however, it was received

from trustworthy sources that have been previously

validated.

D. Further research and Improvements

As it was mentioned before, a considerable improvement

would be to acquire more data, particularly about developers’

demands, in order to make the conclusions more

generalizable.

Another possible step would be to display visualizations of a

system using different techniques, such as graph-, notation-,

matrix-, and metaphor – based techniques to a variety of

stakeholders, and then conduct the interviews or distribute

surveys aiming to find which techniques were most

appropriate.

A possible further step could be to conduct cross-sectional

studies to investigate relationships between a case’s

development practices’ maturity, product’s domain and state

of SAV employment.

Lastly, effect of automatic tools employment on time required

for system comprehension, newcomers training,

communication, decision making and monitoring evolution of

a system could be investigated for a longer periods of time.

This would help to determine whether automatic SAV

visualization could improve costs and quality of a

development and demonstrate the value or lack of it of

automatic SAV.

ACKNOWLEDGEMENTS

The authors of this paper would like to thank our supervisors,

Truong Ho Quang and Michel Chaudron, as well as our

industrial partners, who participated in the interviews.

REFERENCES

[1] Jyotri Priya, Sharif S. KB, Badri HS., Software Architecture

Visualization, International Journal of Emerging Research in
Management&Technology, ISSN: 2278-9350, 2013.

[2] Mattila, A.L., Ihantola, P., Kilamo, T., Luoto, A., Nurminen, M. and
Väätäjä, H., 2016, October. Software visualization today: systematic

literature review. In Proceedings of the 20th International Academic

Mindtrek Conference (pp. 262-271). ACM.

[3] McGrath, M.B. and Brown, J.R., 2005. Visual learning for science and

engineering. IEEE Computer Graphics and Applications, 25(5), pp.56-

63.

[4] ISO, M., 2011. Systems and Software Engineering–Architecture

Description (pp. 1-46). ISO/IEC/IEEE 42010.

[5] Telea, A., Voinea, L. and Sassenburg, H., 2010. Visual tools for

software architecture understanding: A stakeholder perspective. IEEE

software, 27(6), pp.46-53.

[6] Shahin, M., Liang, P. and Babar, M.A., 2014. A systematic review of

software architecture visualization techniques. Journal of Systems and
Software, 94, pp.161-185.

35

[7] Gallagher, K., Hatch, A. and Munro, M., 2008. Software architecture

visualization: an evaluation framework and its application. IEEE
Transactions on Software Engineering, 34(2), pp.260-270.

[8] Carpendale, S. and Ghanam, Y., 2008. A survey paper on software
architecture visualization. University of Calgary.

[9] Cornelissen, B., Zaidman, A. and van Deursen, A., 2011. A controlled

experiment for program comprehension through trace visualization.
IEEE Transactions on Software Engineering, 37(3), pp.341-355.

[10] Sjøberg, D.I., Hannay, J.E., Hansen, O., Kampenes, V.B.,
Karahasanovic, A., Liborg, N.K. and Rekdal, A.C., 2005. A survey of

controlled experiments in software engineering. IEEE transactions on

software engineering, 31(9), pp.733-753.

[11] Sjoberg, D.I., Dyba, T. and Jorgensen, M., 2007, May. The future of

empirical methods in software engineering research. In Future of

Software Engineering, 2007. FOSE'07 (pp. 358-378). IEEE.

[12] Eisenhardt, K.M., 1989. Building theories from case study research.

Academy of management review, 14(4), pp.532-550.

[13] Clarke, V. and Braun, V., 2014. Thematic analysis. In Encyclopedia of

critical psychology (pp. 1947-1952). Springer New York.

[14] Zainal, Z., 2007. Case study as a research method. Jurnal Kemanusiaan,

9.

[15] Yin, R.K., (1984). Case Study Research: Design and Methods. Beverly
Hills, Calif: Sage Publications.

[16] Langelier, G., Sahraoui, H. and Poulin, P., 2005, November.
Visualization-based analysis of quality for large-scale software systems.

In Proceedings of the 20th IEEE/ACM international Conference on

Automated software engineering (pp. 214-223). ACM.

[17] Sharafi, Z., 2011, June. A systematic analysis of software architecture

visualization techniques. In Program Comprehension (ICPC), 2011
IEEE 19th International Conference on (pp. 254-257). IEEE.

[18] Condensation of class diagrams using machine learning by Filip Brynfor

[19] Wettel, R. and Lanza, M., 2007, June. Visualizing software systems as

cities. In Visualizing Software for Understanding and Analysis, 2007.

VISSOFT 2007. 4th IEEE International Workshop on (pp. 92-99). IEEE.

[20] Byelas, H. and Telea, A., 2006, September. Visualization of areas of

interest in software architecture diagrams. In Proceedings of the 2006

ACM symposium on Software visualization (pp. 105-114). ACM.

[21] Panas, T., Epperly, T., Quinlan, D., Saebjornsen, A. and Vuduc, R.,

2007, July. Communicating software architecture using a unified single-
view visualization. In Engineering Complex Computer Systems, 2007.

12th IEEE International Conference on (pp. 217-228). IEEE.

[22] Chikofsky, E.J. and Cross, J.H., 1990. Reverse engineering and design
recovery: A taxonomy. IEEE software, 7(1), pp.13-17.

[23] Burden, H., Heldal, R. and Whittle, J., 2014, September. Comparing and
contrasting model-driven engineering at three large companies. In

Proceedings of the 8th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement (p. 14). ACM.

[24] Priya, J. and HS, M.S.K.B., Software Architecture Visualization.

[25] Balzer, M., Noack, A., Deussen, O. and Lewerentz, C., 2004. Software
landscapes: Visualizing the structure of large software systems. In IEEE

TCVG.

[26] Poort, E.R. and van Vliet, H., 2011, June. Architecting as a risk-and cost
management discipline. In Software Architecture (WICSA), 2011 9th

Working IEEE/IFIP Conference on (pp. 2-11). IEEE.

[27] McNair, A., German, D.M. and Weber-Jahnke, J., 2007, October.

Visualizing software architecture evolution using change-sets. In

Reverse Engineering, 2007. WCRE 2007. 14th Working Conference on
(pp. 130-139). IEEE.

[28] Favre, J.M. and Cervantes, H., 2002. Visualization of component-based
software. In Visualizing Software for Understanding and Analysis, 2002.

Proceedings. First International Workshop on (pp. 51-60). IEEE.

[29] Hammad, M., Collard, M.L. and Maletic, J.I., 2010, June. Measuring
class importance in the context of design evolution. In Program

Comprehension (ICPC), 2010 IEEE 18th International Conference on

(pp. 148-151). IEEE.

[30] Samia, M. and Leuschel, M., 2009, May. Towards pie tree visualization

of graphs and large software architectures. In Program Comprehension,

2009. ICPC'09. IEEE 17th International Conference on (pp. 301-302).
IEEE.

[31] Duszynski, S., Knodel, J. and Lindvall, M., 2009, March. Save:
Software architecture visualization and evaluation. In Software

Maintenance and Reengineering, 2009. CSMR'09. 13th European

Conference on (pp. 323-324). IEEE.

[32] Wu, B.H., 2011, March. Let's enforce a simple visualization rule in

software architecture. In Information Science and Technology (ICIST),

2011 International Conference on (pp. 427-433). IEEE.

[33] Merino, L., Ghafari, M. and Nierstrasz, O., 2016, October. Towards

actionable visualisation in software development. In Software
Visualization (VISSOFT), 2016 IEEE Working Conference on (pp. 61-

70). IEEE.

[34] Kobayashi, K., Kamimura, M., Yano, K., Kato, K. and Matsuo, A.,
2013, May. SArF map: Visualizing software architecture from feature

and layer viewpoints. In Program Comprehension (ICPC), 2013 IEEE

21st International Conference on (pp. 43-52). IEEE.

[35] Grundy, J. and Hosking, J., 2000. High-level static and dynamic

visualisation of software architectures. In Visual Languages, 2000.
Proceedings. 2000 IEEE International Symposium on (pp. 5-12). IEEE.

[36] Knodel, J., Muthig, D. and Naab, M., 2006, October. Understanding

Software Architectures by Visualization--An Experiment with Graphical
Elements. In Reverse Engineering, 2006. WCRE'06. 13th Working

Conference on (pp. 39-50). IEEE.

[37] Koschke, R., 2003. Software visualization in software maintenance,

reverse engineering, and re-engineering: a research survey. Journal of

Software Maintenance and Evolution: Research and Practice, 15(2),
pp.87-109.

[38] Khan, T., Barthel, H., Ebert, A. and Liggesmeyer, P., 2012.
Visualization and evolution of software architectures. In OASIcs-

OpenAccess Series in Informatics (Vol. 27). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik.

[39] Holten, D., 2006. Hierarchical edge bundles: Visualization of adjacency

relations in hierarchical data. IEEE Transactions on visualization and

computer graphics, 12(5), pp.741-748.

[40] Balzer, M. and Deussen, O., 2007, February. Level-of-detail

visualization of clustered graph layouts. In Visualization, 2007.
APVIS'07. 2007 6th International Asia-Pacific Symposium on (pp. 133-

140). IEEE.

[41] Lungu, M. and Lanza, M., 2007, March. Exploring inter-module
relationships in evolving software systems. In Software Maintenance

and Reengineering, 2007. CSMR'07. 11th European Conference on (pp.

91-102). IEEE.

[42] Termeer, M., Lange, C.F., Telea, A. and Chaudron, M.R., 2005. Visual

exploration of combined architectural and metric information. In
Visualizing Software for Understanding and Analysis, 2005. VISSOFT

2005. 3rd IEEE International Workshop on (pp. 1-6). IEEE.

[43] LaToza, T.D. and Myers, B.A., 2010, October. Hard-to-answer
questions about code. In Evaluation and Usability of Programming

Languages and Tools (p. 8). ACM.

[44] Hofmeister, C., Nord, R.L. and Soni, D., 1999. Describing software

architecture with UML. In Software Architecture (pp. 145-159).

Springer US.

[45] ISO, I., 2011. IEEE: ISO/IEC/IEEE 42010: 2011: Systems and Software

Engineering, Architecture Description. Proceedings of Technical Report.

[46] Nattapon, T. and Florence, M., 2016. Visualization of Electrical

Architectures In the Automotive Domain Based on the Needs of

Stakeholders.

[47] Brynfors, F., 2016. Condensation of class diagrams using machine

learning.

36

APPENDIX

A. Interview Questions for Ericsson (Case 4)

1. Background questions

1.1. What is your name? Which Department?

How long have you been here?

1.2. Do you have a title for your position?

1.3. What are your main roles/tasks?

1.4. Do you work in a team? How many people

are there in your team? What role do you

usually play in your team?

1.5. Do you have any experiences with software

design (CASE tools? UML?)

1.6. How long have you been working with

software design?

2. Software Design Process

2.1. Can you briefly explain the software design

process in the system that you are working

with? Where are you involved in the

process?

2.2. Can you briefly describe one of your typical

working days?

3. Existing SAV of the system

3.1. Are you using any visualization about

software architecture to support your work?

3.1.1. If yes, please clarify in which

context, which specific tasks?

3.1.2. If yes, which do you like the most?

Why?

3.1.3. If no, what are the reasons for not

using it?

3.1.4. If no, do you have a mind map of

the system? How does it look like?

3.2. Do you find visualization useful?

3.3. What methods of visualization are used?

3.4. Does it provide the information that you

need? What kind of information is it?

3.5. What information is lacking? What is

missing complementary visualization that

could be used?

3.6. Do you use any tools for visualization?

What kind of tools? Are there lacking tools?

4. Different levels of abstraction

4.1. Do you comprehend the system at different

levels of details/abstractions? Can you

explain why?

4.1.1. If NOT, at which level of details

that you like to see the system the

most?

