CHALMERS |

UNIVERSITY OF TECHNOLOGY

(8%)) UNIVERSITY OF GOTHENBURG

APls as Digital Innovation Objects —
Implications on Requirements Elicitation

Bachelor of Science Thesis in Software Engineering and Management

Mikaela Tornlund
Mohammad Ahraz Asif

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

Presenting and analysing a method for requirement elicitation for strategic APIs

Mikagla Térnlund
Mohammad Ahraz Asif

© Mikada Tornlund, June 2017.
© Mohammad Ahraz Asif, June 2017.

Supervisor: Eric Knauss
Examiner: Jennifer Horkoff

University of Gothenburg

Chamers University of Technology

Department of Computer Science and Engineering
SE-412 96 Goéteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

APIs as Digital Innovation Objects - Implications
on Requirements Elicitation

Mikaela Tornlund
Software Engineering and Management BSc
Gothenburg University
Gothenburg, Sweden
tornlundmikaela@gmail.com

Abstract—APIs as a way to expose business assets have become
common across industry. Consequently insights into strategic API
development practices are becoming more and more relevant.
However domain specific knowledge for making strategic design
decisions for APIs is often lacking. In this study we present and
analyse a method for requirement elicitation for APIs created
through use of the design science methodology alongside careful
consideration of standard requirements elicitation practices and
API strategies - specifically insights from the ’API as Digital
Innovation Objects’ model on API strategy. We consider this due
to a lack of awareness about what information is significant for
such strategic design decisions, especially during requirements
elicitation. Our findings show that there are several aspects
of strategic API design that can be considered in order to
improve requirements elicitation. The results imply that strategic
API considerations change requirements elicitation by changing
how it is carried out - not necessarily the tasks and activities
conducted.

Keywords-API, API strategy, requirements elicitation, Digital
Innovation Object;

I. INTRODUCTION

Application Programming Interfaces (commonly referred to
as APIs) are interfaces designed to expose part(s) of, or wholly
expose business asset(s) controlled by an organization so that
others parties with an interest in that asset may utilize it.
These parties may range from internal departments to third
party developers developing a separate service. The usage &
benefits of APIs are well documented [1]- such as increasing
development speed [2], and they are more and more seen as
products of a business that need continuous enhancement [3]
during their lifecycle.

APIs are often considered normal ‘software artefacts’, of
which the development effort is often approached using gen-
eralized practices. However, as presented in the ’Software
Development Day’ [4] presentation held by Hammouda et al
on API development, APIs have a specific subset of issues and
nuances therefore it is important to develop and understand
approaches that are tailored for API design and development.
They suggested that there are some conceptual frameworks
regarding APIs that exist such as considering APIs as ’Digital
Innovation Objects’. However, these are emergent concepts
that are not yet fully established.

Consideration of APIs as ’Digital Innovation Objects’ is a
conceptual model for reasoning about API strategy. Due to

Mohammad Ahraz Asif
Software Engineering and Management BSc
Gothenburg University
Gothenburg, Sweden
ahraz.asif1994@gmail.com

how decoupled APIs are from other systems and their implied
layered architecture they exhibit digital object properties [5]
such as interactivity and editability. Hammouda et al motivate
that this loosely coupled layered architecture approach causes
the emergence of four layers relevant for strategic API rea-
soning.

It was our intent to build upon current solutions regarding
requirements elicitation by leveraging API strategy consid-
erations through the use of the APIs as Digital Innovation
Objects’ framework. In this study, using the design science re-
search methodology [6] we present and analyse an API specific
method for eliciting requirements. We define a requirements
elicitation method to be a collection of tools, techniques and
practices aggregated for use in a specific development domain.
With our study we aimed to propose an initial method for
requirements elicitation for APIs and investigate the relevance
of API strategy towards requirements elicitation.

During our study, SoftwareSkills AB, a small recruitment
agency and skill testing company specializing in the software
development industry intended on developing an internal API
for one of their core modules which was being transferred
to a micro-service. This presented a valuable opportunity
conducting research regarding API strategy during their API
development.

We participated in the development of their micro-service
API to obtain a better understanding of API requirements en-
gineering and how the ’Digital Innovation Object’ framework
can help drive requirements elicitation. The output requirement
elicitation method proposed was evaluated through a survey by
several industry API experts and students with relevant expe-
rience as part of an expert evaluation. Through our evaluation
we were able to determine the validity of the requirements
elicitation method produced and the coverage of API specific
needs.

II. BACKGROUND

Digital objects differ from physical items on several levels.
As explained by Kallinikos et al [5], digital objects have
an ambivalent ontology (i.e. hard to define) but can be dis-
tinguished from physical objects by their specific attributes.
There are two main attributes, the first of them being modular-
ity which is explained as the blocks of functionality that make

up a system. They are relatively independent with a loosely
coupled relationship between them. Second being granularity,
which is defined as the collection of items and subroutines of
which the blocks contain. From these two attributes, others can
be derived to further specify what constitutes a digital object.
Kallinikos et al state these derived attributes to be:

1) Editability, which is defined as the ability to change and
update the content of the digital object and the items
within the object .

2) Interactivity, which is defined as enabling plausible ac-
tions depending on the choice of the user.

3) Openess, which is explained as the ability to access and
modify the digital objects through the use of other digital
objects. Therefore controlling the behavior of the object.

4) Distributedness, which is explained in regards to digital
objects being borderless and unable to be bound to
distinct entities as they are rarely enclosed to a single
source.

Kallinikos et al also note the beneficial capacity of digital
objects alongside the problematic manageability that follows
their constantly fluctuating relationships.

As seen in the works of de Souza and Redmiles [1], APIs
provide a unique benefit when it comes to being able to
expose only sections of business assets, thereby maintain-
ing the principle of ‘information hiding’. APIs allow for
modularization of the over-arching software system and the
modularization of the tasks associated with its development.
Aitamurto and Lewis [3] motivate the widespread adoption
of APIs throughout industries by providing examples of news
organizations which use APIs to provide access to content
(business assets).

In the ’Software Development Day’ presentation about API
development [4] the authors describe how APIs can be viewed
as ’Digital Innovation Objects’, and how their modularity and
granularity lead to an implied layered architecture and what
the implications are of considering APIs through this lens.
They expose four specific layers with their results, as seen in
the snapshot of their presentation in figure 1: a domain layer,
app SW layer, API layer and business asset layer. They define
the layers as such:

a) Domain: The domain layer encapsulates needs or
events that are satisfied by application software implemented
on top of the API. An example of this would be use-cases con-
cerning voice-recognition based home assistant technologies.
Concerns regarding the domain layer could be: What are the
anticipated changes within the domain? What are the business
models within the domain?

b) App SW: The application software layer encapsulates
software systems that directly consume one or several APIs
for the purposes of meeting the domain needs. Following on
from the previous example, an example of application software
could be a voice-recognition application consuming natural
language processing APIs. Concerns regarding the application
software layer could be: Is it being developed internally or
externally? Does the app SW provide additional functionality?

c¢) API: The API layer encapsulates the entity which
enables access to one or more business assets. For our example
this would be the API which exposes features from the natural
language processing algorithm used. Concerns regarding the
API layer could be: How much control over the business asset
should be afforded to the API consumers (i.e. chatty vs chunky
endpoints)? What methods of authentication will be used?

d) Business Asset: The business asset layer covers in-
terests regarding any property of the business asset such as
the the implementation or the data exposed. For our example
this would encapsulate concerns regarding the natural language
processing algorithm itself. Concerns regarding the business
asset could be: What features of the business asset do we
want to expose? Are there new business assets that need to be
exposed?

Level Layer
Product, system,
4 services embed.ded in
Domain
3 App SW
2 API
1 Business
Asset

Fig. 1. Emergent layers from the *APIs as Digital Innovation Objects’
model. Taken from the presentation by Hammouda et al [4]

All layers are influenced directly by the layers they are
bound to. The layered approach leads to the definition of three
possible boundary objects: use cases (between the domain &
app SW layer), the API specification (between the app SW
& API layer) and the API model (between the API layer &
business asset layer). These boundary objects are influenced
by, and directly influence the adjacent layers.

Zowghi and Coulin [7] state in their exploratory analysis
of requirements elicitation that it is made up of the follow-
ing activities, which are to be conducted by a requirements
engineer:

1) Understanding the application domain

a) Examination of the real world environment in which
the system will be utilized.

b) Consideration of political, organizational and social
aspects of the project.

c) Consideration of the problems that need to be solved in
relation to the business goals and issues of the project

2) Identifying the source of requirements

a) Requirements may be spread across many sources and
exist in a variety of formats.
b) Possible sources include: stakeholders, users, subject
matter experts, existing systems and documentation.
3) Analyzing the stakeholders
a) Creation of a list of any potential parties who many
have an interest in the system.
b) Prioritization of all interested parties in regards to
whose interests are the most valuable
4) Selecting tools, techniques and approaches
a) Making the appropriate choices in regards to exactly
what techniques, tools and approaches the requirements
engineer will utilize
b) Choosing a variety of techniques and approaches to
achieve optimal results given the context of the soft-
ware project.
5) Eliciting requirements
a) After execution of all preceding activities, the elicita-
tion of requirements begins.
b) Establishing the scope of the project.
c) Investigate needs and wants of stakeholders.
d) Determining future processes of the current system.

The requirements elicitation is highly dependent within
the context it is performed. Zowghi and Coulin motivate
that organizational maturity and size all have an impact
on the process and the output (the requirements) alongside
the volatility of the project (the measure of how frequently
requirements change during software development). They state
the procedure is to be carried out by a requirements engineer,
whose responsibilities are defined as:

1) Exploring the problem domain
a) Obtain an understanding of the problem domain which
needs to be solved
2) Managing and communicating the elicitation process to
stakeholders
a) Plan, execute and communicate requirements elicita-
tion meetings between the stakeholders
3) Facilitate relevant conversation and involve all parties to
the intent of satisfying their participation requirement
a) Ensure all stakeholders feel they are contributing to
the requirements and maintain as much coverage of
stakeholder satisfaction as possible
4) Mediate conflicts between elicited requirements and
stakeholders
a) Conflicts may arise at several points in the require-
ments elicitation, such as when prioritizing require-
ments in regards to the source stakeholder
5) Documenting the requirements produced
a) As a record and the medium through which the re-
quirements may be validated.
6) Fulfill missing roles

a) Assuming the relevant ’developer community’ role
when such a stakeholder has not been assigned. For
example a requirements engineer may have to consider
the point of view of a tester when making decisions that
will impact the role in the future.

7) Validating the requirements

a) Through external validation - cross-referencing the
requirements against external documentation

b) Through internal validation - cross-referencing the re-
quirements against internal documentation

Zowghi and Coulin define 19 different techniques and
approaches available to requirements engineers to be utilized
during the requirements elicitation. While there are over
hundreds of techniques and approaches to choose from, they
motivate that the following core group of 8 are the most
representative of the ones currently most mentioned in modern
literature:

1) Interviews

2) Domain analysis

3) Group Work

4) Ethnography

5) Prototyping

6) Goals

7) Scenarios

8) Viewpoints

There are a subset of requirements can be characterised
as ’architecturally significant requirements’. These are re-
quirements that have a “measurable impact on a software
system’s architecture” and have a “high cost associated to
change” as defined by Chen et al in their characterisation of
architecturally significant requirements [8]. As a consequence
of these characteristics if they are incorrect or overlooked
an architecture informed by those requirements will likely
be flawed. There are several characteristics of architecturally
significant requirements:

a) Wide Impact: Architecturally significant requirements
typically have a big impact on the system.

b) Target trade-offs: The consideration of trade-offs (i.e.
making a compromise when all involved requirements cannot
be satisfied) for a requirement indicate that it is architecturally
significant.

c) Strictness: When a requirement imposes a design
option due to its non-negotiable nature it is typically an
architecturally significant requirement.

d) Assumption breaking: When a requirement breaks
pre-existing assumptions regarding a systems architecture (i.e.
a service needs to become available 24/7 due to expansion
into foreign markets) this indicates that it is an architecturally
significant requirement.

e) Difficult to achieve: In case a requirement is difficult
to meet or requires complex technical solutions it is likely to
be architecturally significant.

In order to identify these characteristics a requirements en-
gineer typically needs a solid foundation of knowledge within
the solution space, as defined by Chen et al. They motivate

that in order to identify the characteristics of architecturally
significant requirements where a requirements engineer might
not have solution space expertise a set of heuristics can be
utilised. These heuristics can guide the requirements engineer
towards questions and concerns that are architecturally signif-
icant:

a) Quality attributes: If a requirement specifies a quality
attribute for a given system it implies that the requirement is
architecturally significant.

b) Core features: A requirement regarding the core func-
tionality of a system (i.e. the problems the system is trying to
solve) is typically architecturally significant.

c) Constraints: Requirements that impose constraints on
the project due to organizational, process, technical or financial
reasons are usually architecturally significant.

d) Application Environment: In case a requirement spec-
ifies the environment the application is to be run (i.e. the
Internet, virtual machines, mobile devices, etc) it is indicative
of a architecturally significant requirement.

Due to the emergent nature of recent API strategy insights,
the body of work regarding systemic approaches and research
about appropriate practices and difficulties within API design,
development and management are lacking. Fortunately how-
ever, a large body of work exists in regards to requirements
elicitation as a general practice in software development. By
leveraging this large body work and the emerging insights into
API strategy we hope to address the lack of literature regard-
ing API design, development and management - specifically
requirements elicitation informed by API strategy.

III. RESEARCH QUESTIONS

Through reviewing standard requirements elicitation prac-
tices and then conducting a participant observation during ac-
tive strategic API development within industry, we intended on
learning about API specific needs in the area of requirements
elicitation. This allowed us to investigate our first research
question:

« R.Q.1: What is specific to requirements elicitation for
strategic design of APIs?

The results of the participant observation and literature anal-
ysis and the integration of those findings into the requirements
elicitation method were the basis of investigating R.Q.1, as
they informed us of deviations from the standard requirements
elicitation approaches when it comes to requirements elicita-
tion for strategic APIs.

During our investigation, we integrated API strategy consid-
erations into our requirements elicitation method by reasoning
about API strategy through the use of the APIs as Digital
Innovation Objects’ conceptual framework. This enabled us to
investigate our second research question:

« R.Q.2: How can insights from considering ’APIs as Dig-
ital Innovation Objects’ improve requirement elicitation
for APIs?

Through the previous investigations regarding how *APIs as

Digital Innovation Objects’ improve requirements elicitation

and what was specific towards requirements elicitation for
strategic API design, we were able to investigate our final
research question:

e R.Q.3: To what extent is it feasible to consider API
strategies for driving requirements elicitation?

By integrating API strategy concerns into the requirements
elicitation method, we were able to identify the areas of
requirements elicitation that were impacted and to what de-
gree. In turn this provided us with the results to reason
about the feasibility of considering API strategies for driving
requirements elicitation.

IV. METHODOLOGY

Our research can be classified as a design science re-
search [6], which is a solution generating model. Design
science research is conducted through the definition of ideas,
practices, technical capabilities or products (i.e. a design arte-
fact) and their analysis. The process utilised is an iterative cy-
cle named the ‘regulative cycle’, with five phases [9] [10] [11]:
problem investigation, design candidate, validation, implemen-
tation and evaluation. After conducting these five phases, the
cycle continues using the output from the previous iteration
as the input for the next.

A. Regulative Cycle

1) Problem Investigation: The first phase of the regulative
cycle is problem investigation. The purpose of this phase is to
obtain or deepen knowledge about the problem domain. This
phase generally consists of literature reviews, interviews or
other exploratory measures in order to investigate the problem.
In regards to our study, the problem domain is requirements
elicitation for strategic API development and emerging in-
sights into considering API strategy. The aim of this phase
in all our iterations was to obtain a deeper understanding of
’APIs as Digital Innovation Objects’, requirements elicitation
and other relevant areas that emerge.

2) Design Candidate: The second phase of the regulative
cycle is presenting a design candidate. This phase involved
finding potential ways of solving the problem identified in the
previous step. Multiple solutions can be generated, however
there is no guarantee that any one solution will be imple-
mented. Similar to the previous step, this is an exploratory
phase where all options are explored. For our study, this step
involved generating a abstract representation of the objectives
of our requirements elicitation method for validation in the
next step.

3) Validation: The third phase of the regulative cycle is val-
idating the different design candidates generated. The purpose
of this phase is to evaluate the design candidate in regards to
the problem criteria defined in the first step, and how well the
design candidate meets those goals. This can be done through
various means, however for our study this involved a review
of the design candidate by relevant experts in the field and a
literature review regarding coverage of standard requirements
elicitation practices by the requirements elicitation method.

4) Implementation: The fourth phase of the regulative cycle
involves implementing the validated design candidate from the
previous step. Typically this step can be conducted in many
different ways, and is very dependant on the complexity and
domain of the solution being created. In regards to our study
this step involved satisfying the abstract goals of the different
steps of the requirements elicitation method presented in step
two with specific tasks to meet those objectives.

5) Evaluation: The final phase of the regulative cycle is
evaluation of the implemented design candidate. The purpose
of this phase is to determine if the implemented solution solves
the problem identified. Through this evaluation, not only is the
design candidate analysed but typically a deeper understanding
the the problem area is obtained which acts as the input for
the first step of the next iteration of the regulative cycle. In
regards to our study, evaluation of the implementation was
done through review by relevant experts and a survey which
was circulated to industrial practitioners alongside students
with relevant experience.

B. Data Collection Methods

Data collected in this study was both quantitative and
qualitative.

1) Participant Observation: For our first iteration of the
regulative cycle, the primary method of data collection was
conducting participant observation at the company Soft-
wareSkills AB during the development of an internal API to
expose a business asset in the form of a black box code testing
service. Named the ’Evaluator’, it was designed to evaluate
submitted algorithms from several different languages.

Participant Observation, as defined by Lethbridge et al [12]
can be seen as the researcher essentially becoming a ’part of
the team’. This involves the researcher participating in the
entire development process as well as observing the other
actors present. This was chosen as often much work conducted
by developers occurs ’in their head’, as stated by Seaman [13]
in her breakdown of qualitative methods in empirical software
engineering research. By being active participants in the pro-
duction of a real, industrial API we were able to gain insights
into strategic API development that would have otherwise been
very difficult to obtain.

a) Case Company Description: The duration of the
participant observation at SoftwareSkills lasted eight weeks.
The company employed use of an agile software development
process, SCRUM. The sprints lasted one week, and after each
sprint there was a sprint retrospective and sprint planning
meeting. Additionally there were daily morning stand-ups
conducted by the development team. Throughout the entirety
of the participant observation, we were participating in de-
velopment of both the API, and the system consuming the
API The intent of the API was to expose the unique business
asset of SoftwareSkills, the ’Evaluator’. This evaluator acts
as a black box code testing service for candidates applying
to jobs. The purpose of the evaluator is to accept algorithm
submissions in five different programming languages (Csharp,

C++, Java, JavaScript & Python), execute them in a sand-
boxed testing environment where they receive different inputs
and then evaluate the outputs and the time taken for the
submission to run. Previous to our development, the Evaluator
was highly coupled to a separate application server hosted by
SoftwareSkills. The main application server would act as a
gateway to the secondary application server, each with their
separate clients and business logic. The intent making this API
was to consolidate their two different application servers into
one service.

2) Interviews: In order to conduct the validation of our
initial design candidate, the subsequent evaluation of the first
iteration of the regulative cycle and the problem investigation
for the second iteration of the regulative cycle we employed
the use of interviews with several experts. We identified
experts as researchers who have experience in the fields rel-
evant to our design candidates, i.e. requirements engineering,
APIs as Digital Innovation Objects’ and API strategy. This
can be classified as the use of ‘expert evaluation’ - Peffers
et al [14] state in their design science research evaluation,
expert evaluation is assessment of an artefact by experts with
knowledge in the relevant area.

The first set of interviews conducted for the purposes of
validating the initial design candidate of the first iteration was
of an unstructured form with a requirements elicitation expert.
During this interview, the expert was asked to evaluate and
provide suggestions upon the initial findings which created
the foundation of the requirements elicitation method. As this
interview was at a very early stage in the study an unstructured
approach was chosen as suitable as the means of evaluation of
the design candidate were unclear. By having an unstructured
interview, the expert was able to provide direct feedback on
what they considered was lacking within the design candidate.

The subsequent interviews conducted were of a semi-
structured nature. An interview guide containing the first
implementation of the requirements elicitation method was
sent out to three experts within the following fields: API strat-
egy, "APIs as Digital Innovation Objects’ and Requirements
Engineering. The experts were asked to read the implementa-
tion provided alongside the interview questions beforehand.
The interview questions was composed of three parts: one
section regarding evaluation of the requirements elicitation
method, the second section regarding problem investigations
for APIs and requirements engineering and finally a third
section regarding problem investigations for APIs as Dig-
ital Innovation Objects’. All of the evaluation and problem
investigation interviews were recorded. During the interview,
the interview subjects were taken through the implementation
of the design artefact with chances to make comments at
any time. Following the walk-through, the interview subjects
were then asked the questions from the interview guide. The
interview guide can seen in Appendix B.

3) Surveys: In order to conduct the final evaluation of
the design artefact we prepared a presentation and survey
presenting the intent and methodology of the study conducted,
a summarized version of the design artefact (as seen in table

IT of section V), the dependancy visualization (as seen in
figure 2) and the detailed implementation of the design artefact
attached (as seen in Appendix A). Following the presentation,
the participants were asked to conduct a survey evaluating:
the quality of the design artefact, it’s usefulness compared to
standard requirements elicitation practices, coverage of API
specific needs and other questions regarding the execution
of the design artefact within a company and whether the
method provided novel considerations regarding requirements
elicitation for APIs.

Developers with experience using, developing or managing
APIs from several companies (Bisnode AB, iCore Solutions
AB & VisitGroup AB) were approached to participate in the
survey. Additionally several student developers and hobbyists
with experience using APIs were approached. The survey
results can be seen in Appendix C, with the results explained
in VILB.

Based on the answers provided we were able to quantita-
tively and qualitatively evaluate the quality of the requirements
elicitation method in regards to coverage of API specific
concerns and the feasibility of considering API strategy within
requirements elicitation.

V. REQUIREMENTS ELICITATION METHOD

A. Requirements Elicitation Method Final Design Candidate

TABLE I

OBJECTIVES OF REQUIREMENTS ELICITATION FOR STRATEGIC DESIGN
OF APIs

Process Areas Objectives

Background Information Col-
lection

Identify business model

Identify stakeholders, their desires,
identify their unwanted features, iden-
tify their involvement

Identify project constraints: time, bud-
get and resources

Identify long-term plans from the or-
ganization that may have an impact on
the project

Identify the business problems caused
without the presence of the API
Identify process requirements

Technical Requirement Col- Determine technical constraints
lection
Determine

needs

parallel deployment

Determine the business asset to be ex-
posed

Determine the operations to be con-
ducted on the business asset
Determine the granularity of the API
endpoints

Functional Requirement Col-
lection

Non-Functional
Collection

Requirement ~ Determine appropriate levels of Perfor-
mance

Determine appropriate levels of Up-
time

Determine appropriate levels of Secu-
rity

Determine appropriate levels of Us-
ability

Determine form of documentation
Determine maintenance/update needs
Determine appropriate levels of Scala-
bility

Determine appropriate levels of test-
ing

The final design candidate achieved after both iterations is
presented in table I. The sections in bold represent findings
from the second iteration. This is an overview of the process
areas we have defined, with the goals of each process area
listed.

Many of the objectives are dependent on other objectives
within the method being finished - in order to easily identify
these, we initially present a dependency visualization in figure
two of the different objectives and then following that we
present our method with the objectives broken down into tasks
in detail. One important consideration to make is that while
we present some form of chronological order to the elicitation
activities, they are to be interpreted as loose guidelines. They
are by no means concrete and will have to be shifted on a case-
by-case basis. Requirements elicitation is an informal process
by nature and different projects will require different orders
of activities. Ideally the elicitor should employ the use of an

Background Technical
Information Requirement
Collection Collection

Identify business
model

Determine technical
constraints

Identify stakeholders

+| Determine parallel
71 deployment needs

Functional Non-Functional
Requirement Requirement
Collection Collection

Determine business N De.termlne
asset 10 be exposed »{ appropriate levels of
Performance
Determine

\ 4)

appropriate levels of
Determine the PP EJsabiIity
operations to be

conducted on the

Identify project
constraints

Identify risks

Identify business
problems without the
API

Identify process
requirements

Y

business asset

Determine form of
Documentation

Y

Determine the API

end-points Determine

appropriate levels of:
- Uptime
- Security
- Scalability
- Testing

Determine
maintenance and
updating needs

*Legend

Will provide input for

H

> Y

Fig. 2.

agile methodology, as many interviews will be repeated until
a final set of requirements has been realized.

B. Requirements Elicitation Method Final Implementation

This section presents a summarized version of the require-
ments elicitation method created as the design artefact of this
study, as seen in table II. Sections in bold represent findings
from the second iteration. The method provides four *process
areas’ identified for collecting requirements for strategic API
design. The process areas represent the collection of different
types of information. These process areas contain several
objectives which should be satisfied.

The objectives are broken down in to tasks which provide
useful artefacts or information in order to elicit requirements
for the API. The primary outputs of this elicitation method are
the API specification & the API model as seen as the boundary
objects of the API layer within the *APIs as Digital Innovation
Objects’ model [4].

Additionally the subjects of the interviews suggested are
merely guidelines - within organizations information is typ-
ically distributed and the elicitor will have to find valid
sources for the data to be collected within the tasks. In case
the guidelines provided do not direct the elicitor towards
the right source of information, the technique of ’snowball
sampling’ [15] should be utilised. The elicitor should question
the suggested subjects as to who they believe will have the

Rough chronology for conducting requirements elicitation objectives

information required - continuing to do so until an adequate
source has been found.

The detailed version of the requirements elicitation method
can be seen in Appendix A. We highly recommend reviewing
this version in order to gain a better understanding of the
requirments elicitation method.

TABLE I

OBJECTIVES & TASKS OF REQUIREMENTS ELICITATION FOR STRATEGIC DESIGN OF APIS

Background Information Collection

Objective

Task

Output

Identify business model

Interview senior management & product
owner

Description of the business model surround-
ing the business asset(s) to be exposed

Identify stakeholders

Create Personas for API consumers with prod-
uct owner

Identify other relevant stakeholders with prod-
uct owner

Prioritise stakeholders with product owner
and senior management

Personas encapsulating typical API consumers
List of stakeholders with their information

List of stakeholders priortised by their im-
portance to the project

Identify project constraints

Interview senior management about constraints

Deadline, budget, predicted resource usage (i.e.
employees, etc) of project

Identify risks

Interview senior management about long-term
plans

A list of prioritised risks, based on likelihood
as informed by management

Identify business problems caused without the
presence of the API

Interview product owner about the benefit of the
API to the business

Shadow a person whose work will be impacted
by the API

A list of business priorities to be satisfied by
the API
A list of technical priorities to be satisfied by
the API

Identify process requirements

Interview senior management about process
utilised

Considerations such as release schedule, pos-
sible requirement sources and team structure

Technical Requirement Collection

Determine technical constraints

Interview product owner & technical man-
agers about interoperability standards

Interview product owner & technical man-
agers about development standards

Whether or not the API is accessed inter-
nally/externally, the communication protocol
utilised and the data-structures used.
Implementation languages, style-guides that
have to be followed and other patterns that
have to be adhered to during the develop-
ment process

Determine parallel deployment needs

Review API consumer personas, team struc-
ture & project constraints

Whether or not parallel deployment is nec-
essary & its purpose

Functional Requirement Collection

Determine the business asset to be exposed

Interview product owner & lead developer(s)

Broad, abstract list of data (in case of data being
exposed) / functions (in case of logic being
exposed) exposed by the API

Determine the operations to be conducted on
the business asset

Interview product owner & lead developer(s)

List of user stories based on different functions
to be conducted by the API in the form of ”As
an App SW developer who is/has ... I want to
... because of ... 7. This represents the API
model.

Determine the granularity of the API endpoints

Review API consumer personas & user stories

List of endpoints with their arguments & re-
sponses. This represents the API specifica-
tion.

Non-Functional Requirement Collection

Determine appropriate levels of Performance

Workshop with all stakeholders present

A set of computational needs for the API (i.e.
hardware needs, resource needs)

Determine appropriate levels of Uptime

Workshop with all stakeholders present

The hours of the day the API should be avail-
able, and during which days

Determine appropriate levels of Security

Workshop with all stakeholders present

Security protocols & methods to be utilised

Determine appropriate levels of Usability

Workshop with all stakeholders present

The amount of control API consumers will
have over the business asset with the exposed
API

Determine form of documentation

Workshop with all stakeholders present

Form of documentation

Determine maintenance & update needs

Workshop with all stakeholders present

Time-frame for maintenance, means of testing
& risk of updates to the API

Determine appropriate levels of Scalability

Workshop with all stakeholders present

Projections for usage increase/decrease of the
API

Determine appropriate levels of testing

Workshop with all stakeholders present

Extent & means of testing in the form of
coverage & patterns utilised

VI. ITERATIONS

Our regulative cycle consists of two iterations. The first
iteration took place at SoftwareSkills AB, undergoing a par-
ticipant observation developing a strategic API in order to
gain insights into strategic API development and its relevance
towards requirements elicitation. The second iteration involved
the first implementation of the requirements elicitation method
being integrated with API strategy considerations that arise
from considering *APIs as Digital Innovation Objects’.

A. Iteration 1

For our first iteration, the goal was to primarily identify
issues commonly faced in strategic API development and
how these issues can be mitigated by effective requirements
elicitation.

1) Problem Investigation: During this phase of the reg-
ulative cycle we conducted participant observation and in
depth literature reviews. During the time at SoftwareSkills,
we kept observation sheets for recording relevant information.
We defined relevant as any activity or element that might
influence the requirement elicitation process or the quality
of the requirements produced. During this period, we gained
several insights into strategic API development such as:

o It is important to identify API consumer skill levels

« It is important to identify bottlenecks in underlying sys-
tems/conduct source code analysis of the business artefact

e Open APIs require open data structures (i.e. JSON)

« Important quality attributes: security, performance, up-
time, scalability

« Documentation is a high priority consideration for exter-
nal APIs (including sample code!)

« Means of testing is important to determine

« Stakeholder identification & involvement is vital

This information collected towards the participant observa-
tion consisted of good API development practices and con-
siderations to be made while developing. Due to the nature of
the API we were producing, we were able to collect data from
both the ’producer’ side of the API and the ’consumer’ side of
the APIL. This was vital as it allowed us to gather information
on API development practices which are lacking in existing
literature. After the collection of our data from the participant
observation, we analysed our review of standard requirements
elicitation practices and determined which observations were
relevant towards requirements elicitation for API development.

Parallel to the participant observation we conducted litera-
ture reviews regarding the following topics: APIs [1] [3] [4],
requirements elicitation [7], digital objects [5] & Digital
Innovation Objects [4].

2) Design Candidate: Based on the problem investigation
conducted, we were able to identify several *process areas’ of
requirements elicitation. While these areas do not necessarily
have to be conducted in a sequential manner, they represent
collection of similar types of information. Table 1 in section
V.A presents the three different areas identified, with their
primary objectives listed.

The initial/first process area we identified was the "back-
ground information collection’ area. The primary intent of
this area was to identify stakeholders and their needs, project
constraints, the business problem being addressed and any
other long-term plans that might influence the project planning.

The second process area identified was the ’functional
requirement collection’ area. This primary goals of this area
were to identify what the business asset being exposed by the
API is, what functions/operations might be conducted on the
business asset (i.e. in the case of an API serving images, the
user might be able to ask for a specific size when requesting an
image) and whether or not the API will be accessed externally
(i.e. HTTP) or internally (i.e. application hooks).

The final process area identified was the ’non-functional
requirement collection’ area. The intent of this area was to
collect information about quality attributes we found to be
important specifically for APIs while conducting the problem
investigation at SoftwareSkills AB.

3) Validation: To conduct validation of our design can-
didate, we approached our supervisor from University of
Gothenburg who has expertise in requirements elicitation.
While the design candidate was in a different format (i.e. not
pictoral) the content was consistent throughout both represen-
tations. Through our validation we were able to refine the
design candidate and begin implementation.

4) Implementation: In order to implement the design can-
didate, we assigned several tasks to each objective. The tasks
were motivated with guidelines and suggestions as to how to
conduct the task, types of questions to ask and what infor-
mation might be relevant. Additionally preliminary interview
subjects were suggested as a way to get started.

The tasks were typically interviews conducted with specific
goals in mind. Additionally there was also ’group work’ in the
form of a workshop with all high priority stakeholders. Finally
an ethnographic activity was added in the form of shadowing.

Zowghi and Coulin motivate that interviews are one of the
most commonly used practises within requirements elictation
[7]. They state that interviews are a efficient and enable large-
scale collection of data at a fast pace. They identify three types
of interviews: structured, unstructured and semi-structured.
For our implementation, we chose to use semi-structured
interviews by providing guidelines for how the interview is to
be conducted. We believe this is the best choice as it allows the
elicitor to adapt to real life situations and to gather information
the interviewer did not anticipate. Zowghi and Coulin also
state that interviews can be used for satisfying all of the
requirement elicitors goals (as seen in table 2.1 [7] of their
paper). We have chosen to use interviews for the following
activities conducted by a requirement elicitor as defined by
Zowghi and Coulin: understanding the domain, identifying
sources of requirements, analysing stakeholders and eliciting
requirements.

Zowghi and Coulin state that group work is useful as it
enables collaboration between a wide variety of stakeholders
[7]. We chose a workshop with all high-priority stakeholders
present as the means for eliciting non-functional requirements

since there is a high risk of conflicts between the desires of the
stakeholders in this regard. There was little purpose in having
one task per objective as they are quite granular, therefore
it was suited towards a large-scale collaborative activity.
Additionally it is resource intensive and time consuming to
host such large-scale collaborative events, therefore only one
workshop as suggested. We have chosen to use the workshop
for the activity of eliciting non-functional requirements.

Finally, Zowghi and Coulin write that ethnography is a use-
ful technique for understanding contextual factors [7]. They
motivate that it is particularly effective when a new system is
being built to address existing problems. Therefore we chose
shadowing as a method for understanding the domain.

Through our participant observation and additionally expert
opinion from a requirements elicitation expert, we were able
to determine that personas were a good way to categorize large
groups of users [16]. Typically API consumers (particularly for
open APIs) fall into groups, either due to design (i.e. pricing
tiers) or due to other contextual factors (i.e. beginner and
expert programmers using the API). Therefore personas are an
appropriate way to categorize users in regards to their expertise
and desired functionality. The knowledge in expertise can be
used to drive factors concerning usability and granularity of
the endpoints as described within the requirements elicitation
method.

User stories were chosen as they are an effective and concise
way to express functionality [17]. Written from the perspective
of application developers consuming the API, will help inform
concerns regarding the business asset, the features it exposes
and how it is done. This artefact can be used to predict and aid
in the determination of the end-points of the API as described
in the requirements elicitation method.

5) Evaluation: The evaluation of our first iteration of the
regulative cycle was conducted through the use of expert
evaluation [14]. The experts were chosen based on their
previous work within the field of strategic API design. We
conducted three recorded interviews, having given them the
design artefact and a set of interview questions beforehand.

B. Iteration 2

1) Problem Investigation: The three interviews conducted
for the evaluation of iteration one (as seen in section VIL.A)
also acted as our problem investigation for iteration two.
Alongside evaluation questions, the interview instrument sent
out to the experts also had questions regarding standard API
development practices, techniques and the influence the *APIs
as Digital Innovation Objects’ model has on requirements
elicitation practices.

One of our findings from the problem investigation indi-
cated that often sources of requirements are highly distributed
throughout a company - in regards to the business asset (specif-
ically the business model surrounding it) and additionally
functional requirements. One way to tackle this as an elicitor
is to simply ask interview subjects who they feel would be
able to best meet the objectives of the different tasks, similar
to “snowball sampling’ - an established statistical method [15].

Another finding was that API team size can largely affect the
process used which can have implications on the elicitation
process.

As mentioned in the evaluation of iteration one, parallel
deployment of multiple APIs was seen as a common method-
ology employed to address issues related to versioning, tiered
access, remote team access and many others. A finding from
our problem investigation was that the main factor when
considering the possibility of multiple APIs was the cost-
benefit analysis of deploying it. This simply means to measure
whether the cost of deploying, maintaining and hosting an
additional API will be outweighed by the profit of having
multiple APIs. This profit can be measured in several ways:
decrease in development time, the revenue from the users
of the API being greater than the cost of running it, the
benefit to consumers of the API being able to maintain use
of legacy versions and many others. We found this to be
difficult to determine, as the cost of maintaining multiple
systems (depending on the standards of testing & maintenance
involved) can grow exponentially.

One surprising finding during the interviews was that the
most common roadblock faced during API development is
the release time for an API. Often, companies are unable to
establish when exactly the API being developed is suitable
for external/production use. The problem factor seems to be
when companies are unable to determine when enough of their
business asset(s) are being exposed to be useful alongside
functionality concerns (i.e. do the endpoints behave correctly).
The interviews suggested company culture to be the largest
dictator of when releasing is appropriate - for example agile
companies might be more suited to release the API in its
smaller, earlier form while companies working with open-
source development might choose to release the API early
in order to get community feedback. Alternatively companies
developing critical APIs (such as for use in medical systems)
might choose to release the API in a much more complete
form.

In regards to 'APIs as Digital Innovation Objects’, we
found the domain layer to be the most important towards re-
quirements elicitation during the interviews. The implications
of this were that the end users of the application software
being implemented to consume the API become high priority
stakeholders within the elicitation process. This was seen as
difficult to achieve from the perspective of the API producers,
as the end users are separated by the App SW layer of the
’APIs as Digital Innovation Objects’ model. Therefore we
have determined that it is vital to include users as early as
possible within the elicitation process - and if not, at least
API consumers who will build applications with the API.
Additionally we found that the subsequent layers (App SW,
API & Business Asset) follow the same order of relevance
towards requirements elicitation.

One of the largest findings of the problem investigation was
the realization that the information being collected with our
requirements elicitation method lends itself directly towards
creating the boundary objects specified by the *APIs as Dig-

ital Innovation Objects’ model. For our method, this means
producing the API specification and the API model. One inter-
esting finding was that our method was already generating the
API model through objective two in the functional requirement
collection process area and generating the API specification
through objective three.

2) Design Candidate: In order to address the problems
identified in the evaluation of iteration one, many changes
were implemented on the design candidate. In the "Background
Information Collection’ process area the stakeholder investi-
gation objective was modified to encapsulate prioritization of
stakeholders in regards to their involvement with the business
and the cost associated with losing that stakeholder. Addition-
ally, identification of process requirements and business model
considerations were also added as additional objectives under
’Background Information Collection’.

An additional process area “Technical Requirement Collec-
tion” was added to cover technical needs such as implemen-
tation language, interoperability standards or other standards
that might have to be adhered to. Determining usability needs
was explicitly added as an objective of the *Non-functional
Requirement Collection’ process area. Additionally testing
concerns were explicitly stated as their own objective, while
before they were encapsulated under maintenance/updating
needs.

Furthermore a ’dependency visualization’ depicting a rough
chronology method was created. This visualization provides
suggestions towards objectives that should typically be com-
pleted before conducting other objectives, as often the outputs
of different objectives can be used for use in determining other
objectives.

3) Validation: Through examining the activities and re-
sponsibilities of a requirements engineer defined by Zowghi
and Coulin [7] we were able to validate our second design
candidate.

a) Understanding the application domain: We satisfied
coverage of understanding the application domain through
analysing the business model, identification of long-term plans
and risks and identification of business problems caused with-
out the presence of the API. While there are a large spectrum
of application domain concerns that differ from project to
project which cannot be addressed by a generalized method
(i.e. the problem domain the solution is being utilised within)
the API specific and generalized requirements elicitation con-
cerns were addressed.

b) Identifying the source of requirements: ldentifica-
tion of sources of requirements were conducted within the
method through identification of stakeholders and the business
problems caused without the API. This was encapsulated in
ethnographic activities such as shadowing or source code
analysis as well as interviews. All interviews had a suggested
subject, however snowball sampling was recommended as a
technique since typically requirement sources are not uniform
and can be highly distributed within an organization.

c) Analysing the stakeholders: Analysis of the stakehold-
ers was achieved through their identification and prioritization.

The personas generated represent API specific stakeholders,
while more typical stakeholder identification and analysis is
conducted through the identification and prioritization of non-
API-consuming stakeholders.

d) Selecting tools, techniques and approaches: For all
tasks of all objectives within the requirements elicitation
method activities to be conducted had guidelines as to what
information to collect, suggestions for questions to ask re-
garding interviews alongside suggestions on subjects of said
interviews. The guidelines and suggestions within the tasks
often covered API-specific needs and information that need
to be collected. The activities suggested by the requirement
elicitation method are: interviews, ethnography and group-
work.

e) Eliciting requirements: The majority of the objec-
tives and tasks proposed in the method deal with eliciting
requirements. The group workshop proposed for the purposes
of non-functional requirement collection is one example. All
of the outputs of the tasks within this process area can be
translated into requirements for the system. Furthermore the
functional requirement collection process area also involves
directly eliciting requirements. These requirements are rather
API-specific and involve considerations regarding the business
asset, the functions conducted upon the business asset and the
level of control over the business asset afforded to API con-
sumers. While the guidelines and suggestions within the tasks
of this process area were very API specific, the tasks conducted
to achieve the outputs were drawn from current practices
regarding requirements elicitation. The technical requirement
collection process area also involved conducting elicitation of
requirements regarding technical contextual factors.

In conclusion, the second design candidate for the re-
quirements elicitation method managed to cover the activities
specified by Zowghi and Coulin in their most generalized
form. While there are many project specific considerations to
be made which cannot be encapsulated within this generalized
method, API specific considerations were also motivated and
used to provide guidelines for the tasks to be conducted.

Furthermore the second design candidate had greater cover-
age than the first regarding requirements elicitation practices
and API specific needs through the integration of the findings
from the evaluation of iteration one alongside the problem
investigation of iteration two.

4) Implementation: Several tasks were added and modified
to the method in order to cover the changes within the design
candidate.

Identification of the business model, identifying process
requirements and determining technical constraints were all
chosen to be satisfied through the conduction of interviews.
The reasoning behind this was similar to the previous itera-
tions: these pieces of information are highly problem domain,
application domain or project specific. Therefore a high level
of flexibility was seen as important in order to collect these
pieces of information

Furthermore in order to address conflicting requirements
from different sources we chose to conduct a prioritization

of stakeholders through a cost-benefit analysis of rejecting
requests from a given stakeholder. This was chosen as it is a
concise way to rank stakeholders in regards to their importance
to the project. Addressing parallel deployment needs was
chosen to be satisfied through reviewing outputs of several
previous objectives. As there are several factors that go into
determining whether parallel deployment is appropriate for a
given project therefore the task conducted for this objective
was a review of several artefacts generated by the previous
objectives. These artefacts will directly inform the choice of
parallel deployment, as elaborated within the requirements
elicitation method.

Usability and testing were added as additional tasks of the
group workshop. They were chosen as they are, similar to
the other non-functional requirements, granular (i.e. target a
specific area) in nature and present great opportunities for con-
flicts between the stakeholders. By consolidating them within
the group workshop they can be addressed in a collaborative
fashion with all high priority stakeholders.

Additionally several of the pre-existing tasks were modified
to be more API specific or provide more guidelines regarding
how to meet the objective specified. Determining performance
within the ’Non-functional Requirement Collection’ process
area was augmented with explicit consideration of throughput.
Additionally source code analysis or database snapshots as
means to examine the business asset were also suggested.

In order to address feedback regarding the aims of the tasks
being confusing we chose to define the outputs into specific
forms or pieces of information in order to ensure the elicitor
obtains the correct information

5) Evaluation: The evaluation of our second iteration of
the regulative cycle was conducted through a survey (results
can be found in Appendix C) evaluating: the quality of the
design artefact, advantages over standard requirements elici-
tation practices, coverage of API specific concerns alongside
other qualitative factors regarding the requirements elictation
method. The survey was sent out to ten participants, five
of which were professional developers working with APIs
from Bisnode AB, iCore Solutions AB and VisitGroup AB
and the other five of which were students with API hobbyist
experience.

VII. RESULTS
A. Evaluation of Iteration 1

The evaluation of the first iteration of the regulative cycle
was conducted through the use of expert evaluations. Experts
were sent the initial implementation of the requirements elic-
itation method and design candidate before the interview.

Interviewee 1

The findings of this interview indicated that requirements
elicitation method lacked coverage of some aspects of re-
quirements elicitation. The first point mentioned was the lack
of validation and prioritization of requirements (i.e. ensuring
that requirements from different stakeholders do not contradict
each other).

Another concern that appeared was the lack of emphasis
on testing within the elicitation method. This implied that
maintenance needs within our method were not adequately
covered. We also found that versioning with respect to the
possibility of using several APIs in case of legacy support,
or new release strategies was lacking within our method. This
additionally led us to discover that the requirements elicitation
method lacked consideration of several contextual factors that
can affect the API and its evolution. Factors such as process
considerations (i.e. does the business employ use of an agile
methodology), technical considerations such as API design
patterns which might have to be followed (i.e. REST-ful APIs,
CRUD APIs), business model considerations such as pricing
tiers and international/company standards which might have
to be adhered to.

Additionally the elicitation method also failed to address
usability as a quality attribute important to APIs. Usability in
this context is how easily the developers consuming the API
feel it can be used.

Scalability was also found to be more important to address
for external APIs where usage might be inconsistent (i.e.
external, open APIs). The consideration of throughput (and
additional performance indicators) in regards to performance
was also lacking.

Interviewee 2

During the second interview, we found that three of the
points from the first interview were reiterated. Both intervie-
wee one and interviewee two stated that testing, versioning
and process related concerns were not covered sufficiently by
the elicitation method. Interviewee two provided an additional
usage scenarios for having multiple APIs outside of version-
ing: having different APIs for different groups of users or
distributed teams requiring an API per team.

Additionally interviewee two suggested analyzing the
source code/inner mechanisms underlying business asset being
exposed directly as a means to identify potential functional
requirements.

Interviewee 3

Interviewee 3 exposed several concerns within the presenta-
tion of the requirements elicitation method. The primary issue
was that the abstract view of the method failed to provide
indicators as to what exactly within the objectives of the
process areas was relevant towards requirements elicitation for
APIs. Secondly the language used to describe the method also
seemed to cause confusion. Words such as ’specification’ carry
significant meaning in the body of work of requirements elic-
itation - therefore when being presented the API specification
as an output of one of the tasks of the method the reader might
get confused as to what exactly the output might be.

Another finding was that the non-functional requirements
collection process area was lacking in regards to flexibility
when determining relevant quality attributes. Our initial im-
plementation provided several quality attributes we defined
as relevant for consideration, however it did not suggest
to consider project-specific quality attributes that may arise
during the elicitation process. For example, most APIs would

not consider distributedness as a relevant quality attribute,
however APIs exposing torrent downloading and uploading
functionality would.

Additionally, as interviewee two mentioned, source code
analysis was suggested as well, however this time as a means
to identify business problems caused without the presence of
the API. Additionally screen recording/sharing was suggested
as an alternative to shadowing in case the ’shadowed party’ is
unavailable.

B. Evaluation of Iteration 2

In order to conduct a final evaluation of the requirements
elicitation method, a survey was sent out to practitioners in in-
dustry, alongside students with relevant experience which con-
tained a presentation on the requirements elicitation method,
and several questions (results can be found in Appendix C).

The results from the survey indicated that most of the
participants found the requirements elicitation method useful
to some degree, with over 80 percent of the participants giving
it a rating greater than three from a scale of zero (low quality)
to five (high quality) when asked about its quality.

When asked to compare the requirements elicitation method
to standard requirements elicitation procedures, some partic-
ipants mentioned that they were unaware of how standard
requirements elicitation procedures were conducted and were
therefore unable to provide valuable feedback in regards to
deviations. However, other participants stated that the require-
ments elicitation method was useful in providing a structured
approach, covering appropriate areas and promoting explicit
consideration of the business asset.

Furthermore the survey indicated that the requirements
elicitation method provides some form of adequate coverage
of API needs and requirements, with over 80 percent of
participants rating the requirements elicitation method greater
than three from a scale of zero (no coverage) to five (full
coverage) regarding API specific considerations.

When asked if participants would use the requirements elici-
tation method within their own projects, participants provided
a wide range of answers. One replied that the requirements
elicitation method required a execution within a ’live project’
before it was suitable for implementation within a company.
Another motivated that it seemed time consuming to conduct
the requirements elicitation method in its whole. Additionally
one participant motivated that the requirements elicitation
method was unclear as to which use-cases the requirements
elicitation method is appropriate for (i.e. for a new API
strategy, or for every API developed) and finally another
participant stated they would implement it if it provided a
greater focus on the business use-cases of the APIL.

Regarding additional insights that the requirements elic-
itation method provided that elicitors would typically not
consider, participants mentioned: the use of a dependency
visualization between different objectives, the use of personas
to model API consumers and the consideration of the business
asset. Additionally another participant mentioned that the
requirements method was useful in regards to ensuring that

key factors are ’kept in mind’ when eliciting requirements
however this not necessarily an insight that was new.

Finally, when participants were asked if they had any
thoughts on how the requirements elicitation method could be
improved many participants stated changes that were already
covered by the method. This indicates that some parts of
the requirements elicitation method (particularly the summa-
rized version presented to participants) are unclear, the most
prominent one being the agile nature of the requirements
elictation method presented. Two participants motivated that
the method seemed to be ’waterfall’ in nature and lacked
agile principles. Secondly another participant mentioned that
considerations about future versioning were lacking within the
requirements elicitation method, however these considerations
were present within the detailed implementation. Furthermore
two participants stated that it was unclear for which size
and type of API project the requirements elicitation method
was to be used for. Finally, one participant mentioned that
the requirements elicitation method required an even simpler
summary for introduction.

Overall, the survey results indicated that the requirements
elictation method was adequate in providing a good quality,
structured, API-specific set of practices which provide an
acceptable level of coverage in relevant areas of requirements
elicitation. We were able to determine some ways in which the
requirements elicitation method provided greater utility over
standard requirements elicitation practices. Additionally we
were able to identify several areas in which the requirements
elicitation method was lacking, or unclear. While the results
are useful for qualitative and quantitative analysis, the survey
would have benefited from having more participants with
relevant experience within API development and requirements
engineering.

C. Differences from standard requirements elicitation

In this section we have listed what our findings from our
participant observations and expert interviews indicate were
specific to strategic API development.

o Background Information Collection

a) Identify business model: Our findings indicate that
while considering the business model is common within
requirements elicitation, strategic API design considera-
tions specifically typical API pricing strategies such as
tiered functionality access, pay-per-call or subscriptions
can lead to the generation of architecturally significant
requirements and enable consideration of parallel deploy-
ment needs.

b) Identify stakeholders: In regards to identifying stake-
holders, our findings indicated that the generation of
personas for consolidating large groups of API consumers
is useful technique to identify different levels of expertise
within the consumers in regards to their familiarity not
only with development but also the solution domain in
which the API is being utilised within. These personas
are used consistently in several other tasks within the

method to inform several decisions such as identifying
functional requirements.

c) Identify project constraints: Standard requirements
elicitation practices provide adequate coverage of this
objective in regards to APIs.

d) Identify risks: Our findings indicate that in order to
better identify risks, changes within the ’Digital Inno-
vation Object’ layers should be considered. While the
layers are not directly mentioned within the requirements
elicitation method, risks due to changes in the different
layers (i.e. changes in the business asset or changes in
the domain layer impacting API consumers) are stated
for consideration.

e) Identify the business problems caused without the
presence of the API: Standard ethnographic activities
alongside interviews provide adequate coverage of this
objective in regards to APIs.

f) Identify process requirements: Typical requirements
elicitation practices provide adequate coverage of this
objective in regards to APIs.

Technical Requirement Collection

a) Determine technical constraints: While technical con-
straints exist for all projects, there are several which have
a higher priority in regards to APIs. Our findings indicate
that interoperability standards regarding communication
protocols and whether or not the API is accessed inter-
nally or externally are key pieces of information to collect
as these are vital requirements for all APIs.

b) Determine parallel deployment needs: Parallel de-
ployment, while a possibility for several kinds of projects,
is explicitly important to consider for strategic API de-
sign. Our findings from our interviews indicate that there
are several factors which which can drive this decision.
These API specific factors have been encapsulated within
the method: versioning, pricing tiers/strategy, API con-
sumer groups and distributed API teams.

Functional Requirement Collection

a) Determine the business asset to be exposed: As all
APIs deal with exposing business assets, as expressed by
Hammouda et al [4], determination of a business asset
in the form of data or logic/functionality is a specific
practice in requirements elicitation for APIs. Our findings
indicate that as all functionality regarding the API is
directly tied to the business asset, concretely determining
what the business asset is a vital and critical step to
undertake for requirements elicitation for strategic API
design.

b) Determine the operations to be conducted on the
business asset: Our findings show that determining what
operations the business asset will undergo is specific to
requirements elicitation for strategic API development.
As many APIs not only expose a business asset but also
impose some form of functionality on them - particularly
for data driven APIs (i.e. image resizing for an image
requesting API) - it is important to determine what these
operations are in order to reason about how the API will

function. These conclusions also inform developers on
what functionality needs to remain inaccessible through
the API - something that typically is specific for strategic
API development.

c) Determine the API end-points: Alongside determining
the business asset and what functionality the business
asset is to expose, determining the end-points themselves
through considerations of how much control needs to
be afforded to the API consumers over the business
asset (by examining API consumer personas and usability
determinations) is also specific to requirements elicitation
for strategic design of APIs. This is unique to APIs as
often the interface for a system (i.e. exposed methods)
would not typically be so explicitly determined by the
elicitation process.

Non-Functional Requirement Collection

a) Determine appropriate levels of performance: While
performance is a consideration for almost all require-
ments elicitation’s, our findings indicate for APIs often
the main factor which determines appropriate levels of
performance and whether or not those are achievable
are the underlying business asset itself. Consideration of
the throughput of the business asset is vital as it allows
the elicitor to address concerns regarding appropriate
response times for the given business asset.

b) Determine appropriate levels of uptime: Our findings
indicated that the considerations regarding uptime were
not very specific for strategic design for APIs and stan-
dard elicitation practices provided adequate coverage.

c) Determine appropriate levels of security: Although
security is often considered as an important quality at-
tribute for most software projects, it is distinctly dif-
ferent for APIs. APIs can typically be divided into
two categories: internal or external, and importance of
security changes for each of those categories. Internal
APIs (i.e. accessed locally on the same machine, or on
the intranet, etc) do not require high levels of security,
whereas external APIs open to the internet definitely
require consideration of API access protocols such as
secret keys or OAuth, etc.

d) Determine appropriate levels of usability: While there
are not many specific concerns regarding strategic API
design in terms of usability, our findings indicate the
use of the API consumer personas for the purposes
of determining the ’ease of use’ of the different end-
points (i.e. the learning curve) to be specific towards
requirements elicitation for strategic development APIs.
e) Determine form of documentation: Our findings in-
dicated that there were considerations regarding docu-
mentation were not very specific for strategic design for
APIs and standard elicitation practices provided adequate
coverage.

f) Determine maintenance and updating needs: While
the means of updating and maintenance are important
for any software project, they are especially important
considerations to make for strategic API development.

As this section involves making determinations regarding
backwards-compatibility and versioning practices to be
utilised (i.e. the previous three versions of the API need
to be available) the findings here can further influence
requirements regarding parallel deployment and how the
different instances of the APIs will be maintained.

g) Determine appropriate levels of scalability: Our find-
ings indicated that there were considerations regarding
scalability were not very specific for strategic design for
APIs and standard elicitation practices provided adequate
coverage.

h) Determine appropriate levels of testing: Our findings
indicated that there were considerations regarding testing
were not very specific for strategic design for APIs and
standard elicitation practices provided adequate coverage.

VIII. DISCUSSION
A. Research Questions

1) What is specific to requirements elicitation for strategic
design of APIs?: Our findings from the participant observation
and subsequent interviews with experts indicate that there
are several considerations that need to be taken into account
when conducting requirements elicitation for strategic design
of APIs. Overall we found that considering API specific & API
strategy specific needs did not necessarily add new activities
or responsibilities for a requirements engineer outside of the
ones defined by Zowghi and Coulin [7], however in most tasks
conducted by an elicitor API strategy specific considerations
change the way in which these tasks are done and offer guide-
lines towards the information to be collected. The list provided
in VII.C iterates through all of the objectives identified within
the requirements elicitation method, and what is specific for
the strategic design of APIs in each objective.

Consideration of APIs strategy concerns also enabled the
requirements elicitation method to define and collect several
architecturally significant requirements for APIs. Firstly, the
potentially biggest architecturally significant requirement be-
ing whether or not the API is accessed internally or externally -
both have major implications on the communication protocols
utilised and the architecture of the overall system. Secondly
parallel deployment requirements as these can also have a big
impact on the architecture of the system and the way in which
it is hosted. Finally, all of the considerations within the func-
tional requirement collection process area of the requirements
elicitation method lead to the definition of architecturally
significant requirements as the business asset and the decisions
made regarding the way in which the business asset is used
by API consumers will be one of the major decisions to take
into account when designing the architecture of the system.

These findings are corroborated by results from the survey
conducted for the purposes of evaluating the final design arte-
fact in the second iteration of our regulative cycle. Most partic-
ipants indicated the requirements elicitation method provided
good coverage of API specific concerns. While the survey was
by no means conclusive with more empirical data required,
this is a good initial indicator towards the validity of the

API-specific needs identified by the requirements elicitation
method.

2) How can insights from considering APIs as Digital
Innovation Objects improve requirements elicitation for APIs?:
Our findings indicate that there are several improvements in
requirements elicitation for APIs when considering insights
derived from considering *APIs as Digital Innovation Objects’.
We have considered improvement in this context to aid in
achieving any of the activities or responsibilities for a require-
ments engineer and additionally leading towards correct and
valid requirements.

The primary benefit towards requirements elicitation by con-
sidering *APIs as Digital Innovation Objects’ are the impacts
the four emergent layers (business asset, API, App SW and
domain) have on the elicitation process. Considering the API
as a layer between the business asset and application soft-
ware developers allows for a clearer definition of functional
requirements and the means to represent them. By viewing
the data or functionality exposed by the API as a “business
asset”, the requirements engineer can analyse the business
model and potential changes surrounding the business asset to
better deliver a correct set of requirements which can support
these needs.

Outputting the boundary objects adjacent to the API layer
within the APIs as Digital Innovation Objects model within
the requirements elicitation method enabled a clearer definition
of functional requirements. By taking this ’double-sided’ ap-
proach to API development a requirements engineer can more
accurately map the functionality that the organization wishes
to expose from the business asset towards the way in which
API consumers will digest these features.

Aiming to create the API model, defined by Hammouda
et al [4] as the boundary object between the business asset
layer and the API layer, enables a requirements engineer to
better determine exactly what aspects of the business asset
are to be exposed. While the requirements elicitation method
proposed defines the API model to be in the form of user
stories from the an application software developer perspective,
this is not an established convention of representing an API
model by any means but more-so a concise way to represent
functionality through the same lens as the API model. The
primary reason for this was the lack of formal definition of
API model within the APIs as Digital Innovation Object’
model. Although application software developers exist on the
layer above APIs (App SW layer), it was chosen to use their
perspective when writing the user stories as they represent the
end-users of the API.

Similar to the API model, aiming to create the API spec-
ification, defined by Hammouda et al [4] as the boundary
object between the App SW layer and the API layer enables a
requirements engineer to explicitly state the contract regarding
the API towards API consuming stakeholders (i.e. App SW
developers). The contract, in this context, specifies the way in
which the relevant aspects of the business asset are utilised
(i.e. the API model). Similar to the previous boundary object
an API specification lacks a formal definition, however we

represented it through a form of documentation containing
the API end-points, the arguments they take and what the
responses are. This is useful for a requirements engineer as this
form of documentation is necessary to enable API consumers
to use the API effectively.

Alongside defining key formats for collecting functional
requirements, considering the layered view of APIs from the
’APIs as Digital Innovation Objects’ model put a greater
emphasis on considering risks regarding changes within the
layers. As Hammouda et al motivate, changes within boundary
objects lead to changes within adjacent layers [4]. By consid-
ering and continually refining these boundary objects as part
of the elicitation process, a requirements elicitor can be aware
of potential changes that might impact the APIL.

3) To what extent is it feasible to consider API strategies
for driving requirements elicitation?: By considering what is
specific to requirements elicitation for strategic design of APIs
as discussed in VIL.A.1, we can identify that there are a many
areas of requirements elicitation that can be affected by API
strategy considerations. The main impact on the elicitation
process of these considerations is the way in which tasks
are carried out by a requirements elicitor as opposed to
the tasks themselves. Our findings indicate that API strategy
considerations can promote respect for business, technical and
process related factors that are important for the project. By
considering these factors, a requirements engineer may be able
to ask more direct and appropriate questions in order to drive
the requirements elicitation. This in turn can lead towards the
definition of correct requirements in the sense that they align
with the goals of the organization, the constraints placed upon
the project and the technical domain within which the project
takes place.

As Chen et al [8] state, identification of architecturally
significant requirements typically necessitate some level of
solution space knowledge regarding the product. Considering
API strategies can expedite the acquisition of solution space
knowledge by providing a requirements engineer with key
considerations to be made regarding business, technical and
process related factors. Consideration of these factors will typ-
ically lead towards the definition of architecturally significant
requirements.

Furthermore, consideration of API strategies did not add
significant new areas for a requirements engineer to analyse
outside of those defined by standard practices. Consideration
of functional requirements, non-functional requirements and
quality attributes, identifying background information and
determining technical constraints are tasks that are typically
carried out for most software projects. However, API strate-
gies can enable a requirements engineer to directly acquire
necessary information as opposed to conducting investigations
to determine what the important factors are for a project and
then acquiring this information.

Throughout this study we have utilised the *APIs as Digital
Innovation Object’ model to inform concerns regarding API
strategy. By considering the layers that emerge from this view
(business asset, API, etc) we were able to conceptualise API

strategies through consideration of the concerns that arise
within these layers. Our findings indicate these concerns di-
rectly informed several aspects of the requirements elicitation
as discussed in VIILLA.1 and VIII.A.2. Therefore we can
determine that consideration of API strategies and even models
which are used to reason about API strategies can have some
impact on requirements elicitation.

The survey conducted for the evaluation of the requirements
elicitation method produced in this study indicated that most
participants found the model useful in some regard. Partici-
pants found API specific considerations to be covered to an
adequate extent with more than 80 percent of them giving it a
rating greater than three out of five. Additionally participants
wrote that the requirements elicitation method provided greater
structure, coverage of API specific needs and useful artefacts
to use during the elicitation. This implies that the consideration
of API strategies for driving requirements elicitation is indeed
feasible as it provides practitioners with some level of utility.
While our initial findings indicate positive results, there is a
need for testing the requirements elicitation method within
an industrial environment in order to better understand the
extent to which these strategic insights improve requirements
elicitation when compared to standard practices.

B. Threats to Validity

We utilise the definition of validity threats provided by
Runeson and Host [18].

1) Construct Validity: As the requirements elicitation
method contains detailed explanations of all the tasks pro-
vided, this makes it rather time-consuming to read. It is
possible that many participants in the survey (even in the
expert interviews) did not take the time to go through the
detailed implementation of the requirements elicitation method
before conducting their evaluation. This is reflected in some
of the survey answers, where participants asked for changes or
made suggestions that were already considered at some stage
within the requirements elicitation method.

Additionally survey participants were chosen by the authors
as they were required to have at least some knowledge
of one of the following: APIs, requirements engineering or
development in order to obtain meaningful results regarding
the evaluation for the requirements elicitation method. As they
were associated with the authors, they might have been biased
in their feedback based on what is acceptable or expected. In
order to alleviate this we ensured all the data collected was
anonymous and stated this to the survey participants.

2) Internal Validity: Due to time constraints, we were un-
able to conduct the requirements elicitation method produced
within a company. Although it has undergone evaluation by
several experts and practitioners within industry which indicate
the requirements elicitation method provides some level of
utility, it still remains to be fully concluded that the method is
appropriate for use within the real world and that it achieves
its purpose.

Additionally survey participants were chosen due to their
experience within the field of API development, requirements

engineering or strategic API design. There was a large skill
gap between the students approached for participation and
the industrial practitioners. This might influence the survey
results especially in regards to new insights the requirements
elicitation method provides as these individuals have likely
already gathered this knowledge, or lack basic knowledge in
the field of requirements elicitation. In order to mitigate this
we collected demographic data regarding experience with APIs
as part of the survey.

3) External Validity: The participant observation conducted
was only done within a single company. While the artefact
produced in this study is designed to be applied in any strategic
API development project, conducting participant observations
or case studies in other API development projects regarding
requirements elicitation for strategic API development will
greatly help in further generalizing the results and the require-
ments elicitation methodology produced.

Additionally all experts identified within the fields of re-
quirements engineering, *APIs as Digital Innovation Objects’
and API strategy were from the same institution. There might
be other schools of thought regarding conceptualization of
API strategies using models other than ’APIs as Digital
Innovation Objects’ that should be considered to provide a
more generalized method and results.

4) Reliability: The participant observation was conducted
within a company in which one of the researchers is employed.
This provides an advantage towards the researchers in terms of
familiarity with the company. While not a big factor, it enabled
direct and more efficient communication regarding the initial
problem investigation. However, other researchers aiming to
replicate the study can overcome this barrier by investing time
into becoming familiar with their case company.

As the participant observation involved working on a API
project, researchers with greater industrial experience with
development might be able to extract more insightful and
accurate information as they will have knowledge regarding
implementation and design issues to do with the API and be
able to focus more on the sections relevant towards require-
ments elicitation.

IX. CONCLUSION

This study examined the implications of considering API
strategies on requirements elicitation. The methodology used
was design science research with the design artefact being
a requirements elicitation method informed by stategic API
design considerations. During the study, a participant obser-
vation was conducted on a live API project being executed in
industry. The participant observation helped provide insights
regarding API development and what areas of strategic API
design are relevant towards requirements elicitation. Addi-
tionally interviews with experts were conducted in order to
further understand the problem and evaluate progress. In order
to determine how valid the requirements elicitation method
produced was, a survey was sent out to practitioners and
students with relevant experience. While the results of the
study indicate that the elicitation method produced is useful

to some extent and provides insights that practitioners would
not typically consider, further measures such as adding more
participants to the survey or testing it within a real project can
be taken to concretely confirm how the requirements elicitation
method provides greater utility than standard practices. Our
results indicate that API strategy considerations can aid in
requirements elicitation and consideration of *APIs as Digital
Innovation Objects’ provide a useful framework for reasoning
about API strategy.

A. Future Work

There is definitely a need for further research within this
area. Empirical studies gathering further quantitative data
to prove the applicability of API strategies in requirements
elicitation are required to draw concrete conclusions. Addition-
ally API strategy considerations should also be investigated
for their relevance towards other areas of the development
lifecycle, outside of requirements engineering. Other models
for reasoning about API strategy outside of *APIs as Digital
Innovation Objects’ should also be investigated as they might
prove to be more relevant towards requirements elicitation.
Regarding the design artefact produced within this study, there
is a need for executing and evaluating it within a industrial
setting in order to determine its practicality and confirm the
findings presented in this study.

ACKNOWLEDGMENT

We would like to thank Eric Knauss for his valuable
feedback, advice and insights he has given us. We would also
like to thank Imed Hammouda, Juho Lindman and Jennifer
Horkoff for letting us pick their brains. Additionally we would
like to thank SoftwareSkills AB, particularly Henrik Enstrom
for accommodating this study.

X. APPENDIX

A. Requirements Elicitation Method for strategic API design

Background Information Collection
1) Identify business model

a) Interview senior management & product owner

The intent of this task is to identify the business model
surrounding the business asset(s) exposed by the APIL.
It is important to discuss with senior management and
the product owner the ways in which the business asset
will generate value. This information will later inform
collection of all other requirements, as they must all
support these goals.

Typical business models surrounding APIs include
pricing tiers for different levels of access (i.e. rate
limitations) or different levels of functionality (i.e.
blocks of functionality require paid access). Factors
such as these can greatly influence the definition of
requirements. One example of where the business
model can impact requirements is the pricing strategy -
if the price is calculated on a per-call basis as opposed
to a subscription fee.

It is vital to obtain a wholesome view of the business
model as this is one of the primary ways to ensure con-
sistency throughout the requirements. All requirements
collected should support the business model identified.
Any requirements which oppose the business model
should be investigated as they contradict the companies
needs in regards to the API. The output of this task is
a description of the business model surrounding the
business asset(s) to be exposed.

2) Identify stakeholders

a) Create Personas for API consumers with product

owner
The intent of this task is to identify different groups of
API consumers that will use the API, for the purposes
of later dissecting how they might wish to use the
API. The personas should all encapsulate what the aim
of their usage of the API is, expertise and knowledge
of the consumer in both the development domain and
the problem domain (i.e. optics, if the API is for a
telescope), what they do and do not find important
while using an API and typical pain points for their
usage of the API. Typical groups of users for APIs that
should have personas are: enterprise-level consumers
(i.e. businesses) and hobbyist-level consumers (i.e.
hobbyists or small teams). If the API is only to be
accessed internally (i.e. within the business), the latter
group should not be considered. Otherwise, external
enterprise-level API consumers should additionally be
considered. The output of this task will be a list of
personas encapsulating the typical API consumers to
be expected.

b) Identify other relevant stakeholders with product owner

The intent of this task is to determine stakeholders who
are relevant outside of consuming the API. Relevance

a)

a)

is determined by the amount of control they have
over the project and by the amount of impact they
can exert on the development effort. For each of
these stakeholders, their desires, experience within the
company and relevance to requirements elicitation and
the API design should be identified. For high priority
stakeholders, it is advised to interview them directly for
collection of this information. Typical non-consuming
stakeholders include: developers who will produce
the API, parties funding the development, developers
working on the underlying logic being exposed by the
API, regulatory bodies such as governments and any
relevant activist groups. The output of this task will be
a list of names with important stakeholder information
identified.

Prioritise stakeholders with product owner and senior
management

The intent of this task is to prioritise identified stake-
holders from the previous steps for the purposes
of managing conflicting requirements. The primary
method of prioritization of stakeholders should be
based on a simple cost-benefit analysis of the cost to
the business for rejecting possible requests in case of
contradiction with other stakeholders. This is a vital
step to undertake, and while it may sound simple, it
is difficult to quantify the cost & benefit for differ-
ent stakeholders as they might impact the project in
unforeseen ways. The output of this task is a list of
prioritised stakeholders.

3) Identify project constraints

Interview senior management about constraints

The purpose of this task is to determine what business
constraints the project will operate under. The primary
properties to identify are the available time for develop-
ment, budget and resources at hand. This can be done
through interviewing senior management (or typically
any party managing the project). This information will
determine whether or not the project will be within
a reasonable scope. The output of this task is the
deadline, budget and predicted resource usage of the
project.

4) Identify risks

Interview senior management about long-term plans

The purpose of this task is to identify long-term plans
that might have an impact on the project. It is important
to identify, from anyone with the relevant information
and right position in the hierarchy, what the future
plans for the API are, what the plans for the business
asset being exposed by the API are, what the future
plans for product(s) using the API are, possibility of
the company pivoting the API (i.e. changing the core
functionality), possibility of disruptive technology re-
lease (i.e. a new compression algorithm which requires
a refactor to integrate) or employees leaving with
important knowledge. The output of this task should

be a prioritised list of risks, based on their likelihood
of occurrence as informed by the management.

5) Identify the business problems caused without the pres-
ence of the API

a)

b)

Interview product owner

The purpose of this task is to determine what the
benefit to the business is through the production of
this API. This will drive all functionality created and
is an important thing to keep in mind throughout
the requirements elicitation process as contradictions
might appear further into the process. In order to
achieve this, the product owner should be directly
interviewed. The output of this task is a list of business
priorities to be satisfied by the APIL.

Shadow a person who will be impacted by the API
In order to fully understand what business areas the
API will be impacting, it is also recommended to
shadow a person whose job will be influenced by the
release of the API, ideally someone who is the most
impacted. During this shadowing, notes about what
task(s) the API will influence should be recorded, what
the current biggest roadblocks of those task(s) are, any
structural changes that might have to be made during
integration with the API and quirky behaviour that
might have to be replicated. This is also a good chance
to gain domain knowledge on the consumer side of the
API. Alternatively if such a person is unavailable or
too far away for direct shadowing, the elicitor may
instead choose to view screen recordings / conduct
screen sharing or review source code if the API impacts
existing systems. The output of this task is a list of
technical priorities to be satisfied with the APL

6) Identify process requirements

a)

Interview senior management about process utilised
The purpose of this task is to identify requirements
imposed upon the project due to the process used by the
company. For instance, agile companies might have a
weekly release cycle which would have to be followed.
The size of the team working on the API alongside
can be used for determining quality attributes such as
the modularization. The number of teams working on
the API can aid in determining parallel deployment
factors such as providing the different teams with
their own instance of the API (however additional
factors have to be considered as seen in objective
2 of Technical Information Collection). Additionally
the organizational structure of the project can direct
the elicitor in regards to finding different sources of
requirements. The outputs are process related consider-
ations such as release schedules, possible requirement
sources and the team structure.

Technical Requirement Collection

1) Determine technical constraints

a)

Interview product owner & technical managers about

interoperability standards

The purpose of this task is to identify international or
company standards that dictate interoperability, along-
side technical constraints that might impose some form
of interoperability.

It is vital to determine interoperability standards to be
employed as typically these will dictate data formats
and communication protocols to be utilised. For ex-
ample, web-based APIs typically rely on the HTTP
protocol for communication. Often, they utilise JSON
or XML data formats for data exchange. Alternatively
framework APIs might depend on application hooks
and define their own custom data formats. It is impor-
tant as the elicitor to determine what protocol and data
formats are appropriate for the given project. Often,
companies might have their own custom protocols and
formats which might be mandatory to implement.

By interviewing employees involved in the technical
aspects of the API, the output of this task should
be whether or not the API is accessed internally or
externally, the communication protocol utilised by the
system and the data structures sent back and forth.

a) Interview product owner & technical managers about

development standards

The purpose of this task is to identify international or
company standards that dictate development practices
& process alongside technical constraints that might
impose some limitations.

Development standards are important to consider as
they might drive many of the architectural choices
made during development. For example, businesses
might have standards dictating how much responsi-
bility specific modules might be allowed to have.
Alternatively companies might have in place strict style
guides for programming which have to be adhered
to. Additionally implementation language should be
considered as the company might impose limitations in
that regard. It is important to identify these standards
early on as refactoring to meet them might be costly.
By interviewing employees involved in the technical
aspects of the API, the output of this task should be the
implementation language(s), style-guides that have to
be followed and other patterns that have to be adhered
to within the development process.

2) Determine parallel deployment needs
a) Review API consumer personas, API team structures

& project constraints

This is arguably one of the biggest factors an elicitor
has to decide for an API. Based on several factors,
the need for parallel deployment of multiple APIs
might be necessary. Typically for small APIs with
small teams, this is not a concern. However, for larger
teams developing large-scale APIs exposing popular
business assets (i.e. Google Maps API) it is important
to consider the possibility of having several APIs.

Factors such as the different types of API consumers,
the business model, development team structure and
project constraints such as resources available all im-
pact this decision.

In order to facilitate different groups of users and
their needs, parallel deployment might be considered.
A business might choose to have different APIs for
different experience levels of consumers (i.e. a simple
API for novice users and a more complex, flexible API
for expert users). The business model is also highly
relevant as businesses might choose to deploy different
APIs for different price tiers. In case of several teams
working on different parts of an API, the business
might choose to provide them with individual instances
of the API to develop. Additionally versioning is a big
factor: in the event of an API update that changes the
structure significantly, should a new instance of the API
be deployed to enable backwards-compatibility for API
consumers?

In the end, all of these factors come down to one
key metric: the cost-benefit analysis. Is the cost of
running a separate API greater than the value gained
from doing so? This is a difficult question to answer,
as often these costs and the value gained are very hard
to determine. For example, having separate APIs for
different pricing tiers might cost more in the short term,
however ensuring the stability of the API for paying
customers might provide more value than enabling
greater access to free users. The elicitor should consult
senior management on all these factors as they are
highly relevant in this decision.

The output of this task is the decision of whether or
not parallel deployment is appropriate for the project,
and if it is, what purposes the parallel deployment will
be used for (i.e. ensuring legacy user can operate the
API, etc). These artefacts will enable discussions with
senior management about the need for multiple API
instances.

utilised (i.e. NoSQL database, Redis, etc). The output
of this task is a description/model of the business asset
giving an overview of how it works and what it does.

2) Determine the operations to be conducted on the business
asset

a) Interview product owner and lead developer

The purpose of this task is to determine what oper-
ations the business asset might undergo when being
exposed by the API. In order to obtain a list of such op-
erations, the product owner and lead developer should
be questioned about what aspects of the business asset
need to be exposed. For example, an image requesting
API might allow for the consumer to request specific
sizes, in which case the API needs to be able to re size
the image being requested. It is important to determine
what scope of functionality the API will provide over
the underlying business asset exposed.

The information should be recorded in the form of user
stories. The output of this step is a list of user stories
based on the different functions of the API in the form
of ”As a ... who is/has ... I want to ... because of ...”.
The user stories generated in this step dictate the API
model of the system. The API model informs the API
developers of the relevant aspects of the business asset
to be exposed. This is key in ensuring that potential
use cases from the domain layer are satisfied by the
API and business asset exposed.

3) Determine the API end-points
a) Review the API-consumer personas and user stories

The intent of this task is to determine a list of end-
points for the system. For this purpose, the usability
evaluation in Non-functional Requirement Collection
task four must be completed. Based on the usability
evaluation & the user stories, a list of end-points
informed in: their granularity (i.e. amount of control)
by the usability evaluation and their functionality by
the user stories may be generated. In order to manage
conflicts in terms of granularity (i.e. different API con-

Functional Requirement Collection sumers want different levels of control) the prioritized

1) Determine the business asset to be exposed list of stakeholders should be leveraged. Addltlonally in

a) Interview product owner and lead developer case parallel deployment is being considered, different

The purpose of this task is to determine specifically
what business asset is being exposed. The business
asset will come in typically one of two forms: data (i.e.
images) or functionality/logic (i.e. natural language
processing algorithms) - it is important to know pre-
cisely which one as it might influence the architecture
of the API significantly. After obtaining this knowl-
edge, it is also important to know how the underlying
business asset is implemented. If possible, an instance
of the business artefact (i.e. source code, or database
snapshot) should be reviewed directly. This will greatly
help in understanding the business asset and what
functionality points are to be exposed. If it is data it
might be enough to know what data storage is being

APIs could cater to different granularity requirements.
The output of this task is a list of endpoints, with their
arguments and their responses per APL
The list of API endpoints, with their arguments and
output dictate the API specification of the system. This
specification, alongside documentation can be provided
to API consumers as their source for information about
usage of the APL
Non-functional Requirement Collection
The following tasks are to be conducted during a work-
shop with all stakeholders present. It is important to utilise
the stakeholder prioritization generated in Background Infor-
mation Collection task 2.C in order to manage conflicting
requirements. Additionally the quality attributes provided for

consideration are based off of general API practices - it
is important to additionally consider project specific quality
attributes that may arise as a result of this elicitation.

1y

2)

3)

Determine appropriate levels of performance

In order to determine appropriate levels of performance
for the API, several factors have to be considered. The
foremost is the the predicted request rate of the API -
how many requests a day does the business anticipate
on the API? Following this, the appropriate estimated
response time for a request should be determined. For
simple operations, this can typically be below 500ms. For
more complex functionality, it might take up to hours.
After the predicted request rate and an appropriate re-
sponse time is defined, the computational power/time
required to answer a request should be determined. If the
business asset being exposed is logic/functionality, how
much computational power/time does a typical execution
of this functionality use? Additionally how much is the
throughput of the system? Alternatively, if the business
asset being exposed is just data, how much computational
power/time does extracting the data from the storage
require?

Based on these two sets of data, the computational power
needs of the API can be determined. If there is a small
response time required and large computational power
required to formulate a response to a request, the API
should have access to large amounts of memory and CPU.
The output of this task should be a set of computational
resource needs by the APL

Determine appropriate levels of uptime

There are multiple factors that need to be considered
when reasoning about the uptime of the API, the largest
of which is predicted peak hours for the API. If the API
is an internal API only going to be used during working
hours, it does not need to be available outside of those.
However, if the API is critical to some businesses then it
might need 100 percent uptime. The output of this task
should be the hours of the day API should be available
and during which days of the year.

Determine appropriate levels of security

In order to reason about security, it is important to
consider the following factors: what security measures
the business already uses (they might be enough), and
whether or not the API is internal/external. If the API
is only going to be used within a local network (i.e.
intranet), security might not be such a great concern.
Otherwise, if the API is going to be exposed to the
internet, there must be a minimum standard of security
enforced.

In the event that the API is open to the Internet, but has
tiered access (i.e. users with different levels of authenti-
cation can access different endpoints) it is important to
determine an appropriate authentication protocol, such as
secret keys or OAuth, etc. The output of this task will be
the appropriate security in the form of protocols/methods

4)

5)

6)

to be utilised.

Determine appropriate levels of Usability

In regards to usability, the primary concern for the elicitor
is the amount of control afforded to API consumers
over the business asset and secondly how fast the API
consumers are expected to learn to use the API. In order
to achieve this, the API consumer personas and user
stories should already be generated.

By going through each user story generated covering the
operations to be conducted on the API, the skill level
and desires of each user in each user story should be
identified through the personas. Novice personas will
typically prefer simpler API designs, whereas expert users
will typically prefer having more control. This can be
referred to as the ’chattiness vs chunkiness’ of the API - a
chatty API will typically have more end-points allowing
finer control over the business asset at the expense of
increased complexity. Alternatively a chunky API will
provide a simpler and fewer endpoints for controlling the
business asset.

For example, given an API for controlling a surveillance
camera, a novice user might want to change the camera
mode to night mode by simply making a request asking
for night mode - however an advanced user might want to
change the camera mode through modifying specific cam-
era settings (i.e. red, green, blue levels being recorded).
The output of this task will be the amount of control API
consumers will have over the business asset with the ex-
posed APIL. Specific end-points should not be determined,
however the general level of control suitable for different
API consumers for the API should be established.
Determine form of documentation

As an API is a product for use by developers, it is
important that documentation takes an appropriate format
and is provided to the right people. If the API is an
external, open API it is likely that the most appropriate
form of documentation is web-based. If it is internal, it
is advised to use existing standards within the company
for documentation.

Determine maintenance and updating needs

In order to investigate maintenance needs the primary
property to identify is the expectation of how bugs will
be addressed (i.e. contractors/consultants will be hired to
fix them, the original development team will fix them,
etc.). To determine how long maintenance needs to be
available, it is important to ask how long the API will
be in use, how often the underlying data structures will
change and in case of an open API and does it have to
keep up with the latest technology being released (i.e.
image formats in the case of an image API).

As the API will act as a link within a chain of software
developed on top of it, it is important to address how and
when the API will be updated early on in order to inform
application software developers towards the strategy. This
will in turn impact the development process they utilise.
For critical APIs it might be important to maintain

7)

8)

backwards-compatibility in order to ensure new updates
do not break implementations that are no longer being up-
dated. For APIs exposing state-of-the-art technology re-
quiring frequent updates, backwards-compatiblity might
not be a concern. Additionally the point at which to
update the API is also vital (and difficult) to determine
- again, the API consumer personas and the list of
prioritized stakeholders should be consulted (i.e. would
making a big changes to features X, Y & Z impact high-
priority stakeholders negatively?).

The output of this step should be a time frame for
maintenance and the parties responsible for it alongside
a strategy for future updates which can be communicated
to API consumers.

Determine appropriate levels of scalability

The need for scalability is primarily determined by
whether or not the API is internal or external. In the event
of an external API, forecasts regarding customers/users
for the service should be asked for as they are likely the
most accurate predictors for API usage. Additionally the
likelihood of the API popularity exploding, resulting in a
exponential increase in users should be noted. The output
of this task is projections for usage increase/decrease of
the APL

Determine appropriate levels of testing

As with all software artefacts, it is important to consider
what level of testing will be implemented. Even software
project which have no specification for tests, are still
tested manually by developers. Therefore, it is important
to determine the extent to which the API should undergo
testing. There are many factors that can motivate this:
critically of the system (i.e. medical systems), project
constraints (i.e. budget available for testing) or whether
the API is external or internal. There are several means
of testing APIs, typical examples are unit test for end-
points, integration testing for components that make up
the API and regression testing to ensure that the system
behaves correctly after changes. The output of this step
should be the extent and means of testing in the form of
coverage and patterns utilised.

B. Interview Guide

Requirements Elicitation Method Evaluation

1. What is missing from our requirements generation model? In regards to:
o Coverage of potential requirements
o Coverage of standard R.E needs
o Coverage of API specific concerns
o Useful artefacts (such as personas, user stories, etc)
o Other..
What areas have we covered appropriately?
What can be expanded on/improved?
What do you think would be the greatest obstacle implementing this model?
Any other comments you would like to make?

a ks wnN

General API/R.E knowledge questions

1. How can we structure an API so that it it can adapt to future changes?
2. What are the most ‘generalized’ considerations that need to be (i.e. for ALL APIs
regardless of domain) made?
3. What different ‘categories/genres’ of API’s, if any, are prevalent in industry? If so, are
there any established considerations to make for these classifications?
4. Internal vs External API's: what are the different considerations to be made?
5. What are the high priority stakeholders to consider when it comes to API
development?
6. Which ‘R.E. activities’ do you feel are most relevant to API development?
o Prototyping, Interviews, Domain analysis, Etc .
7. Common API R.E/development roadblocks? (i.e. what do people often do wrong)
o Some development issues can be traced back to incorrect R.E. What are
common development issues you believe happen in the APl development due
to malformed requirements?

API as DIO knowledge questions

1. Rank the APIs as D.I.O layers in order of their relevance to requirements elicitation
o Domain
o App SW
o API Model
o Business
2. Rank the boundary objects of the layers in order of their relevance to requirements
elicitation:
o Use cases
o API specification
o API Model
3. What digital object attributes are most relevant to APIs? (most, to least)
o Is the ranking the same for every API project (for example external and
internal APIs)

C. Survey Results

Question 1

How many years experience do you have working with APIs?

® 0-1vyear
® 1-3vears
® 3-5years
® 5years +

Question 2

How would rate your expertise regarding APIs?

6 (66,7 %)

2
0(0 %) m 1(11,1 %) 1(11,1%)
9 |
1 2 3 4 5
Question 3

What is your role within API development?

@ APl producer
@ APl consumer

@ APl architect
@ APl strategist
@ Requirements Engineer

@ enterprise architect

Question 4

Rate the quality of the proposed requirements elicitation method

4 (44 4 %) 4 (44,4 %)

3

2

! 1(11,1%)

0(0 %) 0 (0 %)
o | \
1 2 3 4 5
Question 5

Would you find this more useful than a standard requirements elicitation
procedure? (Please motivate)

n/a
1 am net sure, it’'s a bit overwhelming in todays fast running werld.But it covers a lot of great areas.

In my experience there is not much more beyond ad hoc meetings with stakeholders surrounding API requirements.
This provides more structure

I'd use the most useful pieces from either of them for a particular situation

Due to the lack of knowledge concerning the "standard” requirements eliciation procedure, the question can not be
fully motivated

I don't know since I'm not familiar with a standard requirements elicitation.

This elicitation process allows a clear identification of the business asset, its consumers and how the asset should
be exposed to them.

Yes, as it covers most areas of concern without diverging from an agile way of working.

About the same

Question 6

To what extent are API specific considerations covered by the requirements
elicitation method?

5 (55.6%)

4
3(333%)
2
0(0%) 0(0%) QR
o | \
1 2 3 4 5
Question 7

Would you implement this requirement elicitation method in your company?
(Please motivate)

Before it can be implemented it has to be tested and proven in a live project.

Maybe a part of it, but it seams to be a little time consuming. The question is if it is for totally new API strategy
within a company or is it for every APl a company develops?

Perhaps a version with more focus on determining use cases and business needs. A big roadblock in implementing
APIs is providing a business case internally, they are typically a "cost" rather than a net source of revenue. It would
be useful to include mere on how an API could maximise business value.

I'm not in the positicn to do so.

Yes, in the "Non-functional requirement collection” - such as performance, usability, testing, scaling, security and
usability - | get a feeling that everything is covered in order to reach the end-goal of perfect API.

Sure, why not. I'm not familiar with any other method and this one looks solid so | would give it a try.
API consideration

Absolutely. Nowadays there are no standard elicitation methods in use, which makes the quality of APIs vary to a
great degree.

| would use this method or a similar methed to gain an overview of the requirements

Question 8

Did the requirements elicitation method provide you with insights that you
would not typically consider? (Please motivate)

Using a flowchart to support the elicitation process
No, | was aware of most of it.

The idea of using personas is an interesting and possibly valuable one. When not dogfooding the feedback loop is
limited in API delivery so using perscnas might be a good analogue for that

It's a very good guide for all things to keep in mind and consider when examining requirements
‘Yes, such as determining what business asset needs to be exposed.

| would say scalability. Since I've only been a student, the projects I've worked one have never required me te have
scalability in mind.

see above

‘Yes, as | would typically rely on my opinion as a developer for selecting the API functionality. It is good to expand
the scope and cover all possible stakeholders

not really, its all common sense (to an experienced developer)

Question 9

Do you have any suggestions on how to improve the requirements elicitation
method?

Maybe discuss future versioning of the API's. In bigger projects "all stakeholders” can be quite a few people, not
sure if all needad in all non-functional objectives

| belive that it should be more agile. Maybe more clearly how to be used in companies depending on size of
solution (multiple API och one new?)

Have an even simpler summary to open that lays out the stages with some idea of the flow as well as the focus on
business needs as above

It strikes me as being rather "waterfally”. | believe a more iterative method could be useful. It is a little like a
checklist. The method describes how (and with whom) information is gathered/elicited for each separate objective,
but there’s no process description how to coordinate actions, in which order to do it etc. Is the methed appropriate
for all types and sizes of projects, or should it be adjusted for large systems, small applications, internal systems,
commercial software etc? (Mote that | have not read the full version which may contain more information that |
have missed)

Unfortunately no.

Mot really,

| would suggest a simplification of the process with clear instructions on the stepsto b

nope, it seems to have covered all the important bits

[1]

[2

—

[3]

[4]
[5

[6]

[7

—

[8]
[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

C. R. de Souza and D. F. Redmiles, “On the roles of apis in the co-
ordination of collaborative software development,” Computer Supported
Cooperative Work (CSCW), vol. 18, no. 5-6, p. 445, 2009.

J. Stylos, S. Clarke, and B. Myers, “Comparing api design choices with
usability studies: A case study and future directions,” in Proceedings of
the 18th PPIG Workshop, 2006.

T. Aitamurto and S. C. Lewis, “Open innovation in digital journalism:
Examining the impact of open apis at four news organizations,” new
media & society, vol. 15, no. 2, pp. 314-331, 2013.

K. E. Hammouda Imed, Lindman Juho, “Api development.” [Online].
Available: http://softwareday.lindholmen.se/en

J. Kallinikos, A. Aaltonen, and A. Marton, “The ambivalent ontology
of digital artifacts.” Mis Quarterly, vol. 37, no. 2, pp. 357-370, 2013.
R. H. Von Alan, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS quarterly, vol. 28, no. 1, pp. 75-105,
2004.

D. Zowghi and C. Coulin, “Requirements elicitation: A survey of tech-
niques, approaches, and tools,” in Engineering and managing software
requirements. ~ Springer, 2005, pp. 19-46.

L. Chen, M. A. Babar, and B. Nuseibeh, “Characterizing architecturally
significant requirements,” IEEE software, vol. 30, no. 2, pp. 3845, 2013.
R. Wieringa, “Design science as nested problem solving,” in Proceedings
of the 4th international conference on design science research in
information systems and technology. ACM, 2009, p. 8.

V. K. Vaishnavi and W. Kuechler, Design science research methods and
patterns: innovating information and communication technology. Crc
Press, 2015.

A. Collins, D. Joseph, and K. Bielaczyc, “Design research: Theoretical
and methodological issues,” The Journal of the learning sciences,
vol. 13, no. 1, pp. 15-42, 2004.

T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engineers:
Data collection techniques for software field studies,” Empirical software
engineering, vol. 10, no. 3, pp. 311-341, 2005.

C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Transactions on software engineering, vol. 25, no. 4,
pp. 557-572, 1999.

K. Peffers, M. Rothenberger, T. Tuunanen, and R. Vaezi, “Design science
research evaluation,” in International Conference on Design Science
Research in Information Systems. Springer, 2012, pp. 398-410.

L. A. Goodman, “Snowball sampling,” The annals of mathematical
statistics, pp. 148-170, 1961.

J. Grudin and J. Pruitt, “Personas, participatory design and product
development: An infrastructure for engagement,” in PDC, 2002, pp.
144-152.

M. Cohn, User stories applied: For agile software development.
Addison-Wesley Professional, 2004.

P. Runeson and M. Host, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, p. 131, 2009.

