
Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Knowledge Integration In Self-Organizing
Teams
A Practice-Oriented Perspective
Bachelor of Science Thesis in Software Engineering and Management

Petroula Theodoridou



Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

Knowledge Integration In Self-Organizing Teams
A Practice-Oriented Perspective

PETROULA THEODORIDOU

© Petroula Theodoridou, June 2017.

Supervisor: Håkan Burden
Examiner: Francisco Gomes

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000



Knowledge Integration In Self-Organizing Teams:
A Practice-Oriented Perspective

Petroula Theodoridou
Department of Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden

petroulatheodoridou@gmail.com

Abstract—Self-organizing teams following agile ways of work-
ing are a common occurrence in the software engineering field.
Adopting such practices is considered essential for practicing
agile development as a whole [1][2]. This research, conducted
in close cooperation with a team of similar setup, is a proof
of concept for a proposed architectural solution and a step
towards the validation of the framework utilized in order to
produce said solution. Moreover, the study aims at enhancing this
framework by adding new elements in the process of designing
and developing software, that apply not only to experienced
software engineers but mainly to newcomers entering the field.

I. INTRODUCTION

Agile practices are nowadays becoming a common choice in
the industry for the purpose of software development [1][3][4].
One could claim that a big challenge for new approaches and
methodologies is their potential for being generalized solutions
applied to different teams with consistent results. In order to
test these methods from a validity perspective, there needs to
be a testing environment to facilitate the process, as well as
an objective.

Practicing agile can prove especially challenging when a
project is distributed in self-organizing teams [5] across mul-
tiple organizations with different areas and levels of expertise
[6]. There is no definite answer as to how the presence of the
aforementioned differences can affect the outcome of a project.
Tackling the diversity of knowledge within a team has been
a well-known issue in previous research, with most solutions
being time-consuming and focusing on an extensive dialogue
among the team members [6].

A. Definitions of terms

Definitions of terms used in this paper are provided in this
section.

• Artifact: the proof of concept for this research
• Implementation: the process followed in order to produce

the artifact
• Framework: Extended SARAD1 approach [7]
• Knowledge Base: The proposed architectural solution

based on the framework

1Structured Approach for Reviewing Architectural Documentation

B. Research Goals

This research consists an investigation regarding the fea-
sibility of a proposed architectural solution stemming from
a framework introduced by Sundgren [8]. Moreover, based
on the results of the aforementioned investigation, suggestions
on the process are provided in order to facilitate a potential
optimization of the framework.

In his paper, ”A structured approach to review and refine ar-
chitecture documentation”, the author introduces the TrustMe
scenario [8], a visualization of threats displayed on the screen
of a vehicle’s infotainment system. The aforementioned sce-
nario is part of the Second Road Fas 2 (SRF2) [9] research
project. By utilizing the action research method while incor-
porating elements from the design science approach, the study
results in a refined architectural solution for the overall SRF2
project and the scenario [8], including suggestions regarding
its implementation. The author uses the SARAD approach
in order to evaluate the project’s architectural documentation
against the scenario description. The results of this evaluation
are used in order to form an extension of SARAD that is
considered more fitting for the overall structure of the SRF2
project. The study focuses on the process and the way of
working from the perspective of a junior architect [8].

The proposed architectural solution regarding the TrustMe
scenario is realized in the current research with the imple-
mentation of a mobile application, which in this case consists
the artifact. Essentially, the produced artifact serves to point
out the differences in relation to its original design. Based on
those differences, the research aims at enhancing the extended
SARAD approach proposed by Sundgren.

For the purpose of accomplishing the aforementioned goals,
two research questions were formulated:

• RQ1: Which are the reasons for the differences between
the artifact and the proposed architectural solution?

• RQ2: How can the framework be improved given the
reasons found in RQ1?

The identified research questions address an existing prob-
lem within the software engineering (SE) domain: the gap
between initial designs and implemented solutions. There exist
prior efforts focusing on closing that gap by emphasizing
on the alignment between architectural elements and their
emerging source code and structure [10][11]. This implies that



said efforts take the feasibility of a project for granted and aim
at accomplishing a level of consistency. This research differs
mainly due to the fact that it approaches the gap between an
initial design and its implementation from the perspective of
organizational communication.

C. Expected Contributions

The contributions of the current research can be divided
into two interconnected parts, namely technical and process-
related.

1) Technical: From a technical point of view, the re-
search involves the implementation of the TrustMe application.
This process incorporates a variety of development tools and
frameworks utilized in order to develop said application. The
potential differences between the artifact and the proposed
architectural solution introduced earlier in the section, are
considered part of the technical aspect.

2) Process: The technical part of the research will be used
to evaluate the process leading to the initial design of the
application. Taking into consideration the current work as well
as previous related research, this paper will discuss potential
improvement points of the extended SARAD approach.

D. Structure of the current document

The study is mainly presented in an imperative way. That
being said, it begins by describing the context of this research,
the organizations involved and the theoretical background.
This is followed by a step-by-step guide about the process
of designing and implementing the artifact. The results of the
process are utilized in order to extract information about what
could potentially be improved in the suggested framework, for
the purpose of closing the gap between an initial design and its
produced artifact. The above is organized in different sections,
starting with section II, which provides the background of
this research including previous work on the subject. Section
III refers to the research methodology followed in order
to implement the artifact. In section IV, the study presents
the results in the form of tools and libraries utilized along
with the relevant design choices concerning the system. The
outcome of this research is discussed in section V, which
results in answering RQ1. This, in turn, consists the material
for answering RQ2, by providing suggestions for improving
the initial framework. The study concludes with a discussion
on how it contributes to the software engineering domain as
well as its potential for being a contributing element to future
work.

II. BACKGROUND

This section describes the context of this study as well
as the relevance to its scientific domain. The starting point
refers to the organizational context, namely the Second Road
Fas 2 project and is followed by the setup of the simulation
lab environment, where most of the tests for this research
were performed. Additionally, this section covers previous
related research on the subject, while in the end it provides an
introduction to the TrustMe scenario.

A. Second Road Fas 2 project

The basis of the current research stems from SRF2: a
joint research project scheduled to run from January 2014
until May 2017. The purpose of the aforementioned project
is to establish new and quicker ways of development within
the automotive sector. The use of simulation technology is
expected to assist in shortening the overall duration of the
development process [8]. Besides the technical aspect of the
project, this initiative is thought to be a step closer to the
creation of an open environment, where individuals outside of
the automotive industry will potentially be able to contribute to
its advancement [9]. The participants of SRF2 are the Swedish
National Road and Transport Research Institute (VTI), Volvo
Cars Corporation (VCC), Viktoria Swedish Information and
Communication Technology (Viktoria ICT) and SemCon. The
TrustMe application that this research is focusing on, is part
of the overall SRF2 project.

The aforementioned participants consist self-organizing dis-
joint teams. That being said, one can describe their way of
working as agile, with team meetings held every few weeks.
The meetings would usually involve a discussion about the
current status of the overall project, planning of next steps and
potential problems affecting the work progress. The different
participants of the SRF2 project have different levels and areas
of expertise. Even though the team shares knowledge and
engages into discussions that may overlap said expertise, each
participant is responsible for different tasks.

Fig. 1. HD 55” Screen, HP Workstation enclosed in the black frame, Steering
Wheel, Pedals and Infotainment unit

B. Open Innovation Lab

The Open Innovation Lab, hereinafter referred to as OIL,
is an environment equipped with a real-time simulator as
well as multiple different modules that facilitate development
and testing for the automotive sector. OIL’s technological
platform was used in order to bring the implementation part
of this research as close to a real-life scenario as possible.



Fig. 2. Scalexio and Network Router

The modules present in the lab consist an integral part of the
SRF2 project and consequently the realization of the TrustMe
scenario. As discussed by Sundgren [8], said modules are
deployed physically in the following way:

1) Environment Simulator: Deployed on an HP worksta-
tion. The visualization of the environment is displayed on a
55” screen.

2) Vehicle Simulator: Consists of a steering wheel, pedals,
gear and modules simulating the XC90 vehicle model by
Volvo. The core element of the vehicle simulator is the
Scalexio, a hardware-in-the-loop simulator by dSpace [12].

3) Secure Gateway: Deployed on a Beaglebone black,
the secure gateway module is handling the communication
between the safety and non-safety critical parts of the vehicle.

4) Infotainment Unit: A 9” touch screen display paired
with an Odroid C1+. The software running on the device
is developed with AGA, an open source software platform
providing the tools for developing in-vehicle applications [13].
Figures 1 and 2 illustrate OIL’s setup.

C. Previous Research

This section provides the theoretical background of this
research, by discussing previous work and approaches that
relate to this study. It is divided into two sections: the first

section reflects on the existing gap between architectural solu-
tions and implementations while the second section provides
a background of the SARAD approach and its extension.

1) Architectural solutions and Implementations: In an ef-
fort to address the issue of inconsistency between architectural
elements and their respective implementations, Woods and
Rozanski [10] suggest the creation of appropriate technologies
adhering to a set of specific requirements. The authors justify
the need for such tools by pointing out the weaknesses of exist-
ing ones, such as software architecture evaluation techniques,
code generation and architectural description languages. Even
though the aforementioned approaches relate to the identified
issue, they are not thought to be providing solutions regarding
the gap between an architecture and its implementation [10].
Moreover, the main problem with the aforementioned work
on the subject is the fact that it focuses on aligning the
architectures and their implemented solutions from a technical
point of view.

Originally introduced by North [14], Behaviour-Driven De-
velopment (BDD) was a result of recurring issues arising
from using Test-Driven Development (TDD) [15]. The use
of natural language within the testing process is an addi-
tion of BDD which implies that the approach is not purely
technical. Solis and Wang identify BDD as a blend of TDD,
automated acceptance testing and ubiquitous language [15].
After conducting a literature review, the authors found that
BDD toolkits emphasized more on the implementation stage
of a project, without any support for the initial planning stage
[15]. Essentially, this allows for an assertion that closing a
potential gap between an initial architectural solution and its
implementation cannot be accomplished with a standalone use
of BDD techniques.

Fig. 3. The SARAD approach and its extension



2) SARAD approach and extension: SARAD is a six-
step approach aiming at reviewing architectural documentation
(AD). It is not considered a method yet [7] mainly due to the
fact that it is not widely tested, but is considered by the authors
a valid first step towards that direction. Emphasis is given on
the difference between evaluating AD versus evaluating the
architecture of a system. According to Nord et al. the latter is
not the focus of the approach, since reviewing an architecture
is a subject well covered by previous research. The six steps
defining the SARAD approach are listed below [7]:

• Establish the purpose of the review
• Establish the subject of the review
• Build or adapt the appropriate question set(s)
• Plan the details of the review
• Perform review
• Analyze and summarize results

The aforementioned steps were extended by the addition of
the following elements [8]:

• Interviews with the developers for each module
• Final workshop for the validation of the refined design

By conducting interviews with the different stakeholders as
well as a final workshop, Sundgren proposed an extension of
the SARAD approach. In essence, by applying SARAD he
identified missing qualities in the system’s specification and
proceeded on a refinement of its architecture based on those
qualities. This lead to an alignment of the AD and the DS2

documents [8].
The starting point of the current research was to follow

the author’s proposed architectural solution for the TrustMe
concept all the way to its implementation. This process re-
sulted in a produced artifact but also in an evaluation of the
way of working in self-organized teams. Consequently, the
study provides insights and suggestions on how to improve the
extended SARAD approach proposed by the author and thus
assist in bridging the gap discussed in the previous section.

D. TrustMe

TrustMe is an AGA/android application that displays a
vehicle’s point of view. Essentially, it represents what a front
facing camera would capture in real-time. That being said, it
can be broken down into the following modules:

1) Video Streaming: The video streaming of this appli-
cation utilizes the GStreamer library [16], an open source
solution supporting the RTP protocol. The video stream is in
Mjpeg format and is sent over UDP.

2) Threat identification: The values of the threat elements,
namely the distance and the angle relative to the driver,
are acquired by using MQTT, a publish-subscribe messaging
transport protocol [17].

3) World to screen coordinates: The values received with
the use of the MQTT protocol, translate to world coordinates
and need to be transformed into screen coordinates in order
for the threat(s) to be accurately displayed on the screen of
the device.

2Demo-case Specification

Fig. 4. TrustMe application proof of concept

4) User Interface (UI) and Overlay: The video streaming
and the threat objects are independent of one another, as they
result from different sources and there is no image processing
in place. Both are displayed within the same window bounds,
with the layer for the threat objects being on top of the video
streaming layer.

The aforementioned breakdown structure is further analyzed
in the following section.

III. RESEARCH METHODOLOGY

This section describes the methodology of this research
step-by-step, as well as discusses the implementation of the
TrustMe application. The research is based on the Design
Science Research Methodology (DSRM), as introduced by
Peffers et al. [18], with the addition of an extra element: the
type of the study, discussed by Uysal [19]. The research is
driven by the following research questions:

• RQ1: Which are the reasons for the differences between
the artifact and the proposed architectural solution?

• RQ2: How can the framework be improved given the
reasons found in RQ1?

DSRM has often been presented with the notion of not
producing generalized knowledge but mere design artifacts
that solve problems [20]. This study aims at placing the
DSRM methodology by Peffers et al. in a practice-oriented
context. By abiding to concrete definitions, the study follows
the process of producing an artifact, in this case the TrustMe
application, as well as targets the connection of said artifact to
the organizational context of the SRF2 project. Thus, the goal
becomes two-fold: to describe the process of implementing the
TrustMe scenario and consequently discuss how the produced
artifact is linked to the way of working as a member of a self-
organizing agile team. The answer to RQ1 will stem from the
result of implementing the TrustMe application. RQ2 will be
answered based on the findings from RQ1 and will be analyzed
in a different section.



Fig. 5. Logical view of the application

A. DSRM

DSRM is a common framework introduced with the pur-
pose of applying the design science approach to information
systems. The current research utilizes the traditional DSRM
framework and adds an extra step of recognizing the type of re-
search. As discussed by Uysal, it is important for the research
to be identified as theory-oriented or practice-oriented, as this
distinction will affect its process. A practice-oriented research
differs from a theory-oriented one in the sense that the former
will result in an expansion regarding the knowledge of a
specific organization [19] or individual [21]. What is more, the
outcome of the study is not only expected to contribute to its
relevant scientific domain but also to apply to the stakeholders’
specific problem yielding clear improvements. On the other
hand, a theory-oriented SE research would not potentially
benefit an organization directly [19] but rather contribute with
new propositions to the theory itself [21].

Based on the above context, the TrustMe application was
implemented according to the following steps:

1) Type of Research: From the very first stages of this
work, it became apparent that there needed to be a clear
identification regarding the type of research to be conducted.
The primary reason behind it, was the fact that the overall
SRF2 project was focused mainly on implementation details
and hence it was necessary for this research to be focused on
the implementation of the TrustMe scenario as well. However,
the goal of this study was not only to produce an artifact that
would serve the needs of the organizations involved, but also
to identify the process of how to apply a practice-oriented
design science research methodology (PDSRM) in order to
evaluate a proposed architecture.

2) Problem identification and motivation: As mentioned in
a previous section, the problem and consequently the challenge
of this research was to bring together two parts often separated
from one another: the knowledge base and the artifact [20].

3) Defining the objectives of a solution: This step was
necessary in order to create a structure for solving the identi-
fied problem. This is due to the differences that characterize
the problem of the study and the objectives of a solution.
In this research the problem was generalized, yet its solution
specific. As discussed by Sundgren, the solution needed to

adhere to specific software design constraints, the description
of which was based on the author’s research and will be briefly
introduced here.

• GStreamer: An open-source library offering flexible and
extended manipulation of streaming media [8], while
offering the option of creating new plug-ins and filters
[16]. It supports the Mjpeg format, the display of video
stream with a screen grabber and allows for the use of
the RTP protocol.

• MQTT: A messaging transport protocol that follows the
publish-subscribe pattern. Essentially, a publisher broad-
casts a message with a specific topic, to which, one or
more subscribers can subscribe to. The publisher is not
aware and does not need to know about the subscribers
[22].

Figure 5 presents a high-level logical view of the application
in relation to the aforementioned elements.

Besides the use of the above software, additional restrictions
were imposed on the implementation of this project. Due to
the fact that a previous attempt on using GStreamer on android
resulted in a delay of approximately two seconds for the video
streaming, it was suggested that this work involved native
android, namely the use of the Android NDK. This translates
to the use of a native code language (C/C++) for part of the
application [23].

4) Design and development: This step involves the design
of the artifact, its intended functionality and its development.
In order for the solution to be easily understandable, the
code was initially divided in packages representing differ-
ent responsibilities. These packages served to the separation
of core application elements, user interface elements, graph
transformation functions and GStreamer libraries. The android
native code resided in a different package as well, by default.
The size of the initial application as far as classes used,
can be considered small (<10). However, due to the code’s
complexity and the nature of the project it was deemed
necessary to break it down from early on, based on content.

As mentioned in a previous section, the work was broken
down in different parts, namely the Video Streaming, the
Threat Identification, the World to Screen coordinates transfor-
mation and the UI Overlay. Process-wise and time-wise, this
structure followed the overall SRF2 project. The team had a
number of meetings every few weeks and discussed a specific
part of this work, as well as work developed by the other
team members under the SRF2 project. Since this process
involved the communication with different stakeholders, it
was necessary to, at times follow the overall schedule of the
SRF2 project without the option of potentially speeding up
the implementation of the TrustMe application. The different
parts of said implementation, the division of which follows the
aforementioned schedule, are extensively discussed below:

• Video Streaming: Following the initial requirement to
use GStreamer in order to handle the streaming part
of the application, as well as native android due to
previously identified delay issues, there was a suggestion



TABLE I
VIDEO STREAMING

Send stream gst-launch-1.0 -v -ximagesrc ! videoconvert ! clockoverlay ! videoscale ! video/x-raw, format=I420, width=800, height=600,
framerate=20/1 ! jpegenc ! rtpjpegpay ! udpsink host=ipAddress3 port=25000

Receive stream udpsrc port=25000 ! application/x-rtp, encoding-name=JPEG, payload=26 ! rtpjpegdepay ! jpegdec ! autovideosink

to skip the use of the android framework in favour of a
different one. Due to the fact that the attempt would be
experimental regardless of the choice of framework, the
research proceeded with what was already considered a
challenging task: utilizing the android framework in order
to setup the video streaming part of the application.
Instead of starting from scratch, the idea was to reuse
one of the existing android examples from the official
GStreamer documentation [24]. Then by modifying that
sample, one could possibly adjust it to the specific
needs of the application. Custom modifications as well
as further additions had to be made in both the C part
of the code and the Make files [23] in order to achieve
an acceptable solution for this part of the project. An
acceptable solution according to the initial specification
would be a video streaming application without any
significant human perceivable lag.
Even though the testing of the video streaming func-
tionality could be done outside of OIL by utilizing a
screen grabber and stream a computer’s GUI on the
mobile device, the application still needed to be tried
out with the simulation setup, in order to identify and
eliminate any potential performance issues. The initial
result showed that there was a network configuration
external to the TrustMe application that slowed down
the video streaming. This issue was resolved shortly
afterwards by SemCon.
The commands used in order to send the video stream
from the computer to the mobile device, are illustrated
in table I. While the statement used to send the stream is
run on the simulation computer, the receiving end resides
within the application, as part of building the required
pipeline [16].

• World to Screen coordinates transformation: Due to
the fact that the simulation environment represents the
real world, in order to accurately display coordinates from
the real world on a mobile device, a set of calculations
and matrix transformations has to be considered. The
details of this step are considered out of scope for the
purpose of this research. However, it is worth mentioning
that this process revealed errors in the matrix transfor-
mation setup that led to a small offset for the position
of the shapes on the screen. This was not considered
critical and did not impact the demonstration of the
application, but since it was resolved by the respective
organizations after the demonstration took place, it can

3IP address of the mobile device

be considered as a result that deviates from the proposed
architectural solution and thus will be discussed further in
the results section. The steps followed in order to manage
the world-to-screen coordinates transformation included
the following:

– Obtaining the world coordinates
– Translation by a given vector
– Rotation by a given angle
– Extending the rotation vector with a fourth element
– Multiplication with a projection matrix
– Normalization of the resulting x and y values
– Calculation of screen coordinates

• Threat Identification: As threat identification here is
considered the process of utilizing the MQTT framework
in order for the application to receive information re-
garding the current threats. The MQTT functionality was
implemented inside an asynchronous task, which provides
an efficient way of handling background operations and
updating the UI. Similarly to a previous step, an initial
implementation was tested with a computer and a mobile
device outside of OIL and it involved sending a message
from the computer to the phone, in order to make sure the
basic functionality exists. Further tests in the lab ensured
that the application was able to constantly receive values
for threats. Work on this step as well as the previous
one was done during the same period of time, mainly
due to the need for synchronization between the two.
Initially the application was able to successfully receive
the values of the threat objects, however signals of cars
that were not visible on the screen would also be sent to
the application. This issue was further investigated and
solved by the respective organization (Viktoria ICT).

• UI Overlay: Displaying both the video stream and the
threats on the screen required two layers: the drawing
of threats was performed on top of the video streaming
layer.

In order to test the overall functionality of the application,
static background images and fixed values were used at first
and the car in motion afterwards.

5) Demonstration: The demonstration of the artifact in-
volves all meetings that took place throughout the course of
this project, including the final demonstration that focused on
testing the overall functionality of the TrustMe application, as
well as work done by other members and organizations within
the SRF2 project.

This step can be thought as being interlinked with the
previous steps of the process. This is mainly due to the



Fig. 6. TrustMe implementation process

fact that the implementation part of this research was tightly
linked to the process of the overall SRF2 project. In other
words, each part of the application had its own iteration
cycle of Design/Development, Demonstration and Evaluation,
as depicted in figure 6.

6) Evaluation: The produced artifact was evaluated in two
ways discussed by Peffers et al. [18]: against the objectives of
the solution and the feedback from the involved organizations.
The application fulfilled the requirements set in the objectives
section for being a proof of concept artifact and successfully
met the performance standards set by the stakeholders.

7) Communication: Part of the topic was explored in A
structured approach to review and refine architecture docu-
mentation [8], where the author discusses the SARAD ap-
proach and introduces the TrustMe scenario. The current
study aims at presenting an overall view of the topic and its
connection to previous research.

IV. RESULTS

The design choices and the tools used for the implementa-
tion of the TrustMe scenario are the focus of this section. The
first two subsections discuss the design of the application and
the APIs that were utilized throughout the process. The third
subsection focuses on the produced artifact and introduces a
connection to the discussion part of this research.

A. Design

This section refers to the design of the application and
briefly provides a motivation behind some of the design
choices. The core aspects of the system are divided into differ-
ent categories as proposed by Bass et al. [22], depending on

the requirements they fulfill. This implies a division between
functional requirements, quality attributes and constraints.

1) Functional Requirements: The following requirements
are thought to be essential for the system to be considered
functional:

• Display video stream: The application should provide a
real-time representation of the vehicle simulator’s sur-
rounding environment.

• Display threats: The video stream should be combined
with colored boxes displayed on top of identified vehicles
(threats).

2) Quality Attributes: Since this application was not tai-
lored for commercial purposes or further adjustments but was
intended to be a proof of concept, most of the focus regarding
the desired qualities of the system was on performance,
reliability and simplicity. It was deemed necessary for the
application to be responsive and fast. This was due to the fact
that its main purpose was to represent a real-time scenario
as well as be demonstrated in front of multiple different
companies and interested parties. The experimental nature of
this project was a strong indicator that some parts of the system
should also be simplified. Since the SRF2 project consists of
various organizations specialized in different areas, it was clear
from the very beginning that different issues arising during the
process would be directed to and discussed with the respective
organizations. This led to a logical distinction between the
different parts of the application that were implemented mostly
sequentially. The reliability of the system was ensured by
conducting multiple repetitive tests, both with static images
and video stream.

3) Constraints: The constraints imposed on the develop-
ment of this application can be divided into timing and
technical ones. The project had a time-line of approximately
four months (May 2016 - August 2016). Even though a general
description of the desired system was known from early on,
further technical details and information for each step were
acquired during multiple meetings with the stakeholders of
the SRF2 project. On one hand this was a good way of
focusing only on a few things at a time and organizing a
logical sequence of the work that had to be done. On the other
hand, not having an overall picture of all the steps needed
from the beginning would occasionally not leave enough time
and room for more well thought design choices. The technical
constraints regarding the implementation, are considered to
be the use of GStreamer for the streaming of media and the
MQTT protocol in order to receive information about the on-
sight vehicles from the surrounding environment.

B. Tools

This section will describe the tools and plug-ins used for
implementing the application, as well as relevant implemen-
tation details. This information is divided into subsections in
order to accurately address each part.

1) Operating System: Due to the fact that GStreamer uses
google’s gold linker, which is not included in the android
ndk for windows [24], the application was not possible to



TABLE II
ANDROID FRAMEWORK

IDE Plugin Android SDK version Android NDK version

Eclipse Neon andmore plugin for Eclipse (suc-
cessor of ADT)

r24.4.1 r12b

Eclipse Juno ADT plugin for Eclipse r24.4.1 r12b

Android Studio - r24.4.1 r9d

build on windows. Following the guidelines from the official
GStreamer documentation that suggest the replacement of a
specific android toolchain file with an older version, did not
solve the issue. A 16.04 version of Ubuntu was used instead
for developing the TrustMe application and it proved smoother
for this purpose.

2) IDEs: Since the GStreamer documentation recommends
the use of Eclipse for building and running the tutorials, that
ended up being the default option in this case, as well as
the version delivered to the stakeholders. The online examples
are created for the purpose of working ”out-of-the-box” with
Eclipse, which is not the case with Android Studio. However,
in order to be able to extract useful information regarding the
development process and due to the fact that Android Studio is
the official IDE tailored for android development, the applica-
tion was implemented with both IDEs. Table II illustrates the
core differences between the IDEs regarding plug-ins, android
SDK and android NDK versions. As indicated by the table,
the latest NDK version did not work with android studio at
the time of testing, hence some investigation was needed in
order to find a version compatible for building GStreamer.
The biggest challenge in using android studio was the need
to setup a custom build.gradle file in order to properly read
the GStreamer libraries. The purpose of this file was to pack
those libraries into .jar so as to be included in the application.
It is in this file also that the automatic NDK-build call has to
be disabled. This allows for the use of a custom Android.mk
file which is essential for building a GStreamer application.

3) Libraries: The specific gstreamer version used in this
project is the gstreamer-1.0-android. The custom Android.mk
file mentioned earlier, includes elements necessary in order to
utilize the GStreamer library: the GStreamer root folder path,
the GStreamer NDK build path and the GStreamer plug-ins
required for the intended functionality of the application.

In order to implement the MQTT protocol functionality, the
mqttv3-1.1.0.jar library was used. This library provided the
means for an implementation of a publish-subscribe messaging
functionality that ran as an asynchronous task.

C. Proof of concept (POC)

Considering the functional requirements, quality attributes
and constraints established for this project, the application
consisted a successful proof of concept. In essence, the artifact
served to realize the proposed architectural solution and its

feasibility and was not considered an early version of a final
product.

V. DISCUSSION

This section discusses the outcome of this research. This
includes the results of the study in relation to the methodology
followed, the feasibility of the proposed architecture and the
way of working in disjoint teams. Answers to the research
questions and suggestions on future research are also part of
this section.

A. Process

The DSRM framework proved to be an appropriate method-
ology to be utilized in order to prove the feasibility of the
proposed architectural solution. DSRM provided a structure
for the implementation of the TrustMe scenario while it
assisted in gaining useful insights regarding the development
process, from a developer’s perspective. Consequently, in this
research the process of implementing the artifact is thought
to have provided useful information about the overall way of
working in a self-organizing team, as well as evaluated certain
practices adopted by other parties involved.

From the perspective of a junior member introduced to the
task of implementing the TrustMe scenario, it was clear that in
some steps during the development of the application there was
not enough information available or some of the information
was not as straightforward as expected. The slight offset of the
shapes drawn on screen, the threat level as referred to in the
proposed architecture, as well as a visual representation of the
scenario depicting more than one shape identifying one threat,
are considered minor deviations between the initial design and
the artifact.

Even though the above deviations did not impact the pur-
pose of the application, they consisted the basis to investigate
the reasons behind them. These reasons consist the answer
to RQ1 and are thought to be accurately represented by the
following:

1) Lack of information: Due to the fact that the different
parts of the application were implemented mainly sequentially,
access to new information was also acquired in a similar
way and thus it was not readily available. Furthermore, in
some cases during the development process, it seemed that
information about aspects of the application’s design was
missing. It is therefore thought that certain areas could have
been investigated more beforehand. For instance, the step



of transforming world to screen coordinates did not prove
as straightforward as initially suggested, hence there might
have been a misconception among the members of the SRF2
team about the effort and time needed in order for a devel-
oper to achieve the intended functionality. More information
gathered on the subject at the planning stage and during
the interviews performed as part of practicing the extended
SARAD approach, could have prevented issues arising during
the development. However, since the team members are mostly
working within different areas of expertise, it is considered
challenging to identify where more information might be
needed later on during the development.

Majchrzak et al. discuss the problem of knowledge in-
tegration within cross-functional teams, concluding that an
extensive dialogue among the different participants is not
necessary in order to overcome that problem [6]. Instead, the
authors suggest a set of practices to be followed by the team in
order to narrow down the knowledge gap. However, the above
implies the active participation of all team members during
the process, which may not be feasible at all times.

2) Lack of planning: As lack of planning in this case it is
meant the lack of initial structure and information about all
the different parts that consisted the application. That being
said, the requirements as well as the desired quality attributes
and constraints were set from early on. In essence, it was a
specific plan that was missing or was not documented. As
a result, most information was acquired unofficially through
discussions and meetings. One could argue that planning the
design and structure of an application is solely the job of
the developer implementing the software. However, breaking
down all the intended functionality of the software and creating
a mind-map is considered necessary, especially when a project
spans across multiple different organizations.

It is worth noting that the lack of information and planning
does not refer to potential false assumptions in the proposed
architecture but rather to a result of the team setup that this
project followed. Moreover, this information is thought to be
mainly derived from the process of implementing the software
and is not considered obtainable otherwise. Thus, this research
proposes suggestions on further optimizing the suggested
framework in order to bridge the existing gap between the
initial design and the implementation.

B. Suggestions

Taking into account the results of the current research and
the answer to RQ1, it is thought that there is enough infor-
mation at this point for a discussion on potential suggestions
regarding the extended SARAD approach. Since this study
refers to the context of working in self-organizing disjoint
teams, it is considered appropriate that the discussion covers
the following two aspects:

1) Work sequentially: In the case of the TrustMe scenario,
the work regarding the proposed architectural solution and the
creation of the artifact were done sequentially. Moreover, at the
time the refined architecture was introduced, the assumption
was that all developers were present during the interviews and

Fig. 7. The SARAD approach and its extension with the addition of a mind-
map for the TrustMe scenario

the final workshop. However, that plan was altered afterwards
as the implementation of the TrustMe application became part
of this research. Not participating in the process of refining the
architecture, resulted in the need to quickly acquire most of the
necessary information in order to develop the application. At
different stages during the process the information provided by
the team was slightly at a higher level and a bit general. Due
to the above and since it may not be considered realistic to
expect that a developer would always have access to all aspects
of defining a system’s architecture, this research suggests the
creation of a mind-map as a step preceding the iteration of
interviews introduced by Sundgren. The aforementioned mind-
map would in this case be a division of the different aspects
of the application, similar to the one described in the design
and development step of DSRM in the research methodology
section. Identifying the multiple aspects of the application this
way would provide more awareness regarding the resources
and effort needed in order to implement each part, as well as
influence the interviews towards a focus on all areas that are
part of the application. As a result this would provide any new
member with a structure of what needs to be implemented
and in turn make gathering information from the different
organizations easier and more efficient. Figure 7 provides
an updated representation of the SARAD approach and its
extension, with the addition of a proposed mind-map, in this
case for the TrustMe application.

As mentioned at an earlier section, the challenges encoun-
tered did not impact the purpose of the TrustMe application.
This however could be attributed to the fact that the application
was relatively small in size, or that individual efforts led to
successfully combining all pieces together in order to create
a functioning artifact. In any case, one has to eliminate any
indication of subjectivity as much as possible. In addition,
the suggestions do not only refer to a project similar to the
TrustMe scenario but aim at potentially scaling the solution to



larger projects. Having said that, a large project that consists
of multiple different parts is considered more risky, hence any
information that goes unnoticed or any false assumptions made
early on, will have a greater impact on the final artifact. It is
therefore suggested to make use of a mind-map in order to
tackle such issues.

2) Work in parallel: An alternative to working sequentially
would be that the extended SARAD approach is applied in
parallel with the development process. This essentially means
that each identified module of the system to be developed
would be subjected to an iteration of interviews, refined
design, implementation and evaluation. In case problems arise
or the evaluation results in an insufficient outcome for the
desired functionality, the iteration would be repeated taking
into account the problems that arose during the process. An
important advantage of this method is thought to be the
overall time and effort spent on the project. For instance, the
required information for each step of the development process
would be acquired during each iteration and thus unnecessary
repetition of steps in order to spread the information would be
eliminated, speeding up the overall time spent on the various
tasks. Moreover, considering the fact that the junior architect
in this case also acted as a coordinator of redefining the
architecture of the project [8], it is only reasonable to assume
that he acquired overall knowledge and understanding about
the different modules of the system rather than domain-only
knowledge. A combination of the architect’s work with the
developer of the application would in this case enhance the
process and the design of the application. That being said,
some of the design choices would potentially differ.

C. Contribution and future work

The objective of this research was to investigate the feasi-
bility of a proposed architectural solution resulting from an
extension of the SARAD approach. In order to achieve that,
the DSRM was utilized as the default methodology. The results
of the study prove that the proposed architecture was indeed
feasible. In addition, the study suggests improvements in order
to enhance the extended SARAD approach for use in similar
or larger projects.

Considering the above, the research at this stage is thought
to be contributing in two different ways. By designing and
implementing an artifact based on the suggested architecture,
it essentially validates in a way the author’s methods and
practices leading to that architectural solution. Moreover, the
suggestions deriving from the implementation can potentially
be utilized to form a complete methodology that will assist in
the development of larger projects.

VI. ACKNOWLEDGEMENTS

I would like to thank my supervisor, Håkan Burden, for
introducing me to the challenge of implementing the TrustMe
application, as well as his patience, motivation and assistance
throughout this research.

REFERENCES

[1] R. Hoda, J. Noble and S. Marshall, ”Organizing self-organizing teams,”
in ICSE ’10 Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1, Cape Town, South Africa,
2010, pp. 285-294.

[2] M. Fowler and J. Highsmith, ”The agile manifesto,” Software Develop-
ment, vol.9, no.8 , pp. 29-30, 2001.

[3] A. Begel and N. Nagappan, ”Usage and perceptions of agile software
development in an industrial context: An exploratory study,” in ESEM
’07 Proceedings of the First International Symposium on Empirical
Software Engineering and Measurement, 2007, pp. 255-264.

[4] R. Hoda, N. Salleh, J. Grundy and H. Tee, ”Systematic literature
reviews in agile software development: A tertiary study,” Information
and Software Technology, vol. 85, pp. 60-70, 2017.

[5] R. Hoda and L. Murugesan, ”Multi-level agile project management
challenges: A self-organizing team perspective,” Journal of Systems and
Software, vol. 117, pp. 245-257, 2016.

[6] A. Majchrzak, P. More and S. Faraj, ”Transcending Knowledge Differ-
ences in Cross-Functional Teams,” Organization Science, vol. 23, no. 4,
pp. 951-970, 2012.

[7] R. Nord, P. Clements, D. Emery and R. Hilliard, ”A structured ap-
proach for reviewing architecture documentation,” CMU/SEI- 2009-TN-
0302009, SEI-CMU, Tech. Rep., 2009.

[8] E. Sundgren, ”A structured approach to review and refine architecture
documentation,” Bachelor Thesis, Department of Computer Science and
Engineering, University of Gothenburg, Gothenburg, March 2016.

[9] E. Wallgren. (2013). Second Road fas 2 [Online]. Available:
https://www.vinnova.se/p/second-road-fas-2/

[10] E. Woods and N. Rozanski, ”Unifying software architecture with its
implementation”, in ECSA ’10 Proceedings of the Fourth European
Conference on Software Architecture: Companion Volume, Copenhagen,
Denmark, 2010, pp. 55-58.

[11] G. C. Murphy, D. Notkin and K. J. Sullivan, ”Software reflexion
models: Bridging the gap between design and implementation,” in IEEE
Transactions on Software Engineering, vol. 27, no. 4, pp. 364-380, 2001.

[12] dSpace Scalexio. (2017). Scalexio [Online]. Available:
https://www.dspace.com/en/ltd/home/products/hw/simulator hardware/
scalexio.cfm

[13] AGA Project. (2014) [Online]. Available:
https://developer.lindholmen.se/redmine/projects/aga/wiki

[14] D. North, (2006). Introducing BDD [Online]. Available:
http://dannorth.net/introducing-bdd.

[15] C. Solis and X. Wang, ”A Study of the Characteristics of Behaviour
Driven Development,” in SEAA ’11 Proceedings of the 2011 37th
EUROMICRO Conference on Software Engineering and Advanced Ap-
plications, 2011, pp. 383-387.

[16] GStreamer. (2015). Gstreamer framework [Online]. Available:
https://gstreamer.freedesktop.org/

[17] Oasis Open. (2015). Mqtt Version 3.1.1 Plus Errata 01 [Online].
Available: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-
v3.1.1-errata01-os-complete.pdf

[18] K. Peffers, T. Tuunanen, M. Rothenberger and S. Chatterjee, ”A Design
Science Research Methodology for Information Systems Research,”
Journal of Management Information Systems, vol. 24, no. 3, pp. 45-
77, 2007.

[19] M. P. Uysal, ”Towards a Software Engineering Research Framework:
Extending Design Science Research,” International Research Journal of
Engineering and Technology (IRJET), vol. 3, no. 2, pp. 22-26, 2016.

[20] K. A. Piirainen and R. O. Briggs, ”Design theory in practice - Making
design science research more transparent,” in Service-Oriented Perspec-
tives in Design Science Research - 6th International Conference, pp.
47-61, 2011.

[21] J. Dul and T. Hak, Case study methodology in business research. Great
Britain: Elsevier Ltd, 2008.

[22] L. Bass, P. Clements and R. Kazman, Software architecture in practice,
3rd ed. Addison-Wesley Proffesional, 2012.

[23] Android NDK [Online]. Available:
https://developer.android.com/ndk/index.html

[24] GStreamer documentation. (2013). Gstreamer SDK home [Online].
Available: https://gstreamer.freedesktop.org/documentation/


