

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Visualisation of Test Failure Data to
Support Fault Localisation in Distributed
Embedded Systems within the
Automotive Industry

Bachelor of Science Thesis in Software Engineering and Management

MICHAEL JONES
RAFAEL DA SILVA MARTINS

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

The Author grants to University of Gothenburg and Chalmers University of Technology the

non-exclusive right to publish the Work electronically and in a non-commercial purpose make

it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does

not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author has

signed a copyright agreement with a third party regarding the Work, the Author warrants

hereby that he/she has obtained any necessary permission from this third party to let

University of Gothenburg and Chalmers University of Technology store the Work

electronically and make it accessible on the Internet.

Visualisation of Test Failure Data Using a Similarity Based Technique:

Supporting Fault Localisation in Distributed Embedded Systems within the Automotive Industry

MICHAEL JONES

RAFAEL DA SILVA MARTINS

© MICHAEL JONES, June 2017.

© RAFAEL DA SILVA MARTINS, June 2017.

Supervisor: FRANCISCO GOMES DE OLIVEIRA NETO

Examiner: JENNIFER HORKOFF

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:

Volvo XC 60 – hardware and software tested on the same test environment used for this thesis work.

SOFTWARE ENGINEERING AND MANAGEMENT BACHELOR THESIS, UNIVERSITY OF GOTHENBURG — MAY 2017 1

Visualisation of Test Failure Data to Support Fault
Localisation in Distributed Embedded Systems

Within the Automotive Industry
Michael Jones Rafael da Silva Martins

Department of Computer Science and Engineering Department of Computer Science and Engineering
University of Gothenburg University of Gothenburg
gusjonemi@student.gu.se gusdasra@student.gu.se

Abstract—In this thesis we present the design, development
and evaluation of a software tool with the purpose of assisting in
the localisation of root causes of test case failures in distributed
embedded systems, specifically vehicle systems controlled by a
network of electronic control units (ECUs). Fault localisation is
especially hard in such systems due to its distributed nature, and
often organisations rely on the knowledge of in-house specialists
for detecting and rectifying the underlying root cause of test
case failures. The study took place in-situ at the Research and
Development division of Volvo Car Corporation, a large automo-
tive manufacturer. Researchers had access to a vast number of
test execution logs from large-scale software integration testing
under a continuous integration process. The main objectives of
the research were to develop and evaluate a data visualisation
tool to support root-cause identification of failures in order
to foster a continuous feedback loop in the fault localisation
process. Our contributions encourage the improvement of testing
quality and supporting the development and adoption of test case
writing guidelines and test failure debugging procedures. The
research concludes that the use of data visualisation techniques
can considerably boost the failure debugging procedures by
presenting data in a clear and concise manner and making use
of test harnesses to directly assist in reducing possible causes of
failures. Additionally it encourages a systematic and continuous
analysis of the current state of testing by aggregating, categorising
and displaying large amounts of historical data in a concise
manner that allows stakeholders to identify patterns and trends
in test results.

Keywords—Fault localisation, distributed embedded systems, au-
tomotive systems, fault prediction support, continuous integration,
integration testing, failure data visualisation.

I. INTRODUCTION

The presence and significance of software within automotive
vehicles is becoming evermore essential. Nowadays an average
car is equipped with more than 70 distributed microcontrollers
- also known as electronic control units (ECUs). ECUs are
interconnected using five or more different communication
networks sharing real-time data from sensors and control
signals [1]. With the emergence of advanced functionalities
within modern vehicles such as adaptive cruise control and
advanced emergency braking [1], the degree of intricacy will
definitely increase in the upcoming years.

A major challenge that faces the automotive industry is that
of the integration testing of the distributed software. Proficient
vehicle performance can only be maintained by supervising
the convoluted interactions between a vehicles hardware (e.g.
sensors, batteries and motors) [2] and software components
and the algorithms they run on the embedded processors [3].

There are numerous potential faults that could be present in
an automotive system. These faults can vary from a hardware
or software fault on an individual subsystem, to a commu-
nication fault between numerous subsystems. The nature of
these faults can be dynamic; for example, a hardware fault
on one subsystem can cause a software fault on another. Two
faults can also be symptomatic of each other [4]. Software
fault localisation (diagnosing the root cause) can be a highly
complex and time consuming task as a result of the anomalous
nature and volume interactions between different components
[1]. These factors lead to software fault localisation techniques
being very expensive for automotive companies.

There is a very clear need for techniques that can reduce
the time required by programmers and engineers to identify
root causes of faults. Moreover, such techniques can have
a major positive impact on the cost and quality of software
development and maintenance [5].

Debugging tools and test execution reports normally use re-
sults of only one test execution instead of using the information
provided by many executions of the software [6]. Moreover,
test execution reports are mostly presented in textual form,
making them increasingly hard to interpret for larger software
and test suites.

Therefore, this study proposes using data visualisation tech-
niques and statistical analysis to assist in the localisation
of the root causes of failures. A better visualisation of test
case failure data, with selection and prioritisation of relevant
information can decrease the amount of time specialists spend
on looking through test logs. Additionally, visualisation of
statistics regarding type of failures and how often they happen
will foster a continuous feedback loop in the fault localisation
process, encouraging the improvement of testing quality by
pointing out test cases trends and relevance (failure/success
rates), consequently supporting the development and adoption
of test case writing guidelines and test failure debugging
procedures.

SOFTWARE ENGINEERING AND MANAGEMENT BACHELOR THESIS, UNIVERSITY OF GOTHENBURG — MAY 2017 2

Human fault localisation is reliant on the experience of the
person. The task can be very expensive and time consuming
due to the fact that the manifestation of the error (failure) and
its internal cause (fault) may have no obvious relationship [7].

A. Definitions
In order to keep consistency and being aware that some

companies may have specific terminology for distinct terms in
software/systems development, we present the terms used in
our Thesis and what they refer to in our context. The terms
and corresponding definitions are:

• Fault localisation - The process to find the location of
faults. It determines the root cause of the failure. It
identifies the causes of abnormal behaviour of a faulty
program. It identifies exactly where the bugs are.

• Continuous Integration - A development practice that
requires developers to integrate code into a shared
repository several times a day. Each check-in is then
verified by an automated build, allowing teams to detect
problems early.

• Test Case - A set of conditions or variables under which
a tester will determine whether a system under test
satisfies requirements or works correctly.

• Test Suite - A collection of test cases that are intended
to be used to test a software program to show that it has
some specified set of behaviours.

• Test Harness - A collection of software and test data
configured to test a program unit by running it under
varying conditions and monitoring its behaviour and
outputs.

• Build - A version of a program. As a rule, a build is a
pre-release version and as such is identified by a build
number, rather than by a release number. Reiterative
builds are an important part of the development process.
Throughout development, application components are
collected and repeatedly compiled for testing purposes,
to ensure a reliable final product.

• Theme - A theme captures something important about
the data in relation to the research question and repre-
sents some level of patterned response or meaning within
the data set.

• Thematic Coding - Thematic coding is a form of qual-
itative analysis which involves recording or identifying
passages of text or images that are linked by a common
theme or idea allowing you to index the text into cate-
gories and therefore establish a framework of thematic
ideas about it [8].

B. Research Questions
• Main question:

◦ RQ 1: How can we leverage fault localisation
procedures in automotive system testing?

• Sub questions:
◦ RQ 1.1: What information from automated inte-

gration testing is valuable in the fault localisation
process?

◦ RQ 1.2: How can we use test harnesses to support
continuous feedback of testing activities?

◦ RQ 1.3: How consistent are test case failures
throughout extensive periods of integration tests?

• Assumptions:
◦ Access to an automated test execution environment
◦ Test execution environments (test rigs) up-and-

running
◦ In-house testing specialists will provide enough

time to collaborate with the research

C. Structure of the Thesis
Section II discusses related work to our research and high-

lights how this research contrasts. Section III will outline
the environment that the research was conducted in and the
available resources. The motivation of the research and the
proposed solution is explained in this section as well as the
scientific and technical contributions that the research provides.
Section IV details the methodologies that were adopted to
conduct the data collection, and how the data would be utilised
and presented. Finally, the methodology for the evaluation
of our work is presented. Section V presents the artefacts
that were produced and details their functionality. Section VI
firstly analyses the evaluation of the artefacts by interpreting
the findings of the interviews and then provides graphs that
contribute to answering the research questions. The threats to
validity to the undertaken research are discussed in section VII.
Section VIII concludes the research by addressing the research
questions that were proposed. Finally, section IX discusses
potential continuations of our research and what more could
have been done during this research.

II. RELATED WORK

A. Relevant literature from the problem domain
There are a few references regarding fault localisation in

distributed embedded systems. Kodali et al. [1] introduces
an initial study on fault diagnosis for the Electric Power
Generation and Storage System in a car, where they developed
a multilevel scheme to diagnose hardware, software and their
interactions. They validated their approach using an automotive
simulation; on the other hand our research was evaluated in a
testing and production environment for vehicle level systems.

Chunduri [9] introduces a verification strategy for testing
distributed automotive embedded software functions and pro-
poses a promising approach focused on identifying test gaps
and redundancies. However they do not address identification
or prediction for root causes of test failures.

Regarding the identification of failure causes, Mariani and
Pastore [10] present a technique to analyze log files and
retrieve relevant information to identify the causes. Their
work on parsing, classifying and analyzing system logs for
automated identification of failure causes is very relevant to
our work, but it is not done within the higher complex context
of distributed embedded systems in the automotive industry.

Relevant studies also include Seth and Khare [11] anal-
ysis on automated continuous integration using Jenkins and

SOFTWARE ENGINEERING AND MANAGEMENT BACHELOR THESIS, UNIVERSITY OF GOTHENBURG — MAY 2017 3

Fig. 1: High Level View of the Problem Domain

Pattipati et al. [12], who proposes an integrated diagnostic
process composed of 6 steps: model, sense, develop and update
test procedures, infer adaptive learning and predict. Similar to
Kodali et al. [1], the researchers do not apply their proposals
to a real production environment.

B. Literature on potential solution approaches

Jones et al. [6] proposes a new technique that also uses
visualisation to assist in fault localisation. They propose the
use of colour to visually map the participation of each program
statement in the outcome of a program execution. Albeit their
solution is beneficial towards fault localisation, their scope
is much narrower as it focuses only on executed lines of
code. Therefore, the use of their approach would be limited
within a test execution where failures may emerge not only
from software issues, but also from the test environment, the
hardware and the communication links between the parts.

As far as the researchers are concerned, there is no published
literature on data visualisation of test execution data. Telea’s
book [13] is a valuable source of information regarding the
general principle and practices of data visualisation, but it is
not concerned with the specifics of software test execution
data.

The problem of diagnosing the root cause of a failure has
been addressed by most of the researchers cited in the previous

section. Kodali et al., Chunduri and Pattipati et al. [1, 9, 12]
discuss possible approaches and models to solve the issue -
mostly focusing on modelling. Mariani and Pastore [10] do
not focus on distributed embedded systems, but rather on
comparing successful test cases logs with failed ones and
inferring models from the discrepancies. Due to the limited
amount of information logging in VCCs test cases, we were
unable to reproduce Mariani and Pastores [10] approach.
Therefore, we focused on categorising the failure data by type
and test case using a similarity based approach.

III. RESEARCH CONTEXT AND SCOPE

The research takes place in-situ at the Research and Devel-
opment division of Volvo Car Corporation (VCC), a large auto-
motive manufacturer. The continuous integration team at VCC
is responsible for improving the automated testing process
of distributed embedded systems, specifically vehicle systems
controlled by a network of electronic control units (ECUs).
Jenkins 1 is being used as the integration server and the test
automation framework that is in place is AwesomeFramework
(in-house developed framework for test automation, based
on the Robot Framework 2). Researchers had access to a

1https://jenkins.io - Jenkins is a continuous integration software tool for
testing and reporting on isolated changes in a larger code base in real time.

2Robot Framework - Generic Test Automation Framework for Acceptance
Testing, http://robotframework.org/

SOFTWARE ENGINEERING AND MANAGEMENT BACHELOR THESIS, UNIVERSITY OF GOTHENBURG — MAY 2017 4

significant amount of test execution logs from large-scale
software integration testing under a continuous integration
process. The current testing consists of over 30 test suites
containing a total of over 250 test cases.

An overview of the current fault localisation process is
shown in Figure 1. The automation server (Jenkins) man-
ages the execution of test suites on new software deliveries.
Jenkins run those tests using the test framework on different
test environments. Test suite results are reported by the test
framework, while a high level summary of the test cases
successes/failures is displayed by the CI visualisation system.
Technical specialists use the test reports in order to identify
failed test cases and start the debugging processes, while the
management team monitors the overall statistics via the CI
visualisation system.

A. Problem Statement and Proposed Solution

The objective of the thesis is to investigate and implement
a test failure data visualisation tool to support the process of
fault localisation. Software fault localisation can be a highly
complex and time consuming task as a result of the anomalous
and distributive nature of the system, combined with the large
volume of interactions between different components. These
factors lead to software fault localisation being very expensive
for automotive companies [1].

Currently there are no guidelines or data visualisation sup-
port for fault localisation at VCC. The organisation currently
relies on in-house specialists who can diagnose the root cause
of failures based on their knowledge and experience of the
complex system. The current visualisation of test results is a
test report from Awesome Framework containing an enormous
amount of data regarding all test cases including those that
did not fail. There is no significant work on improving the
visualisation of these results, and finding relevant information
regarding a test case failure can be a lengthy process.

A better visualisation of test case failure data, with selection
and prioritization of relevant information can decrease the
amount of time specialists spend on looking through test
logs. Additionally, visualisation of statistics regarding type of
failures and how often they happen will foster a continuous
feedback loop in the fault localisation process, encouraging the
improvement of testing quality by pointing out test cases trends
and relevance (failure/success rates), consequently supporting
the development and adoption of test case writing guidelines
and test failure debugging procedures.

In summary, our contributions are:

1) Scientific:
a) Classification tree of test case failures
b) Systematic test log analysis

2) Technical:
a) Test case database
b) Scripts for automatically retrieving data and up-

dating the database
c) The visualisation platform

IV. METHODOLOGY

The thesis adopted a design science methodology for the
research project (Figure 2). The tool that was designed and
developed is a technology-based artefact that is a human and
computer interface. Because of the intention to improve the
performance of the artefact based on its relevant business
problems, this methodology was optimal.

Fig. 2: Design science research methodology used in this
work.

The prototype was designed and developed in an iterative
manner and demonstrated to stakeholders at regular intervals.
The artefact was evaluated rigorously and presented from both
a technology and management perspective. The use of graphs
and charts was effective in rendering the results of our artefact
to stakeholders of all backgrounds. The research conformed
to the guidelines of design sciences by providing clear re-
search contributions mentioned earlier, and communicating
the research to both technology-orientated and management-
orientated audiences.

The data visualisation tool consists of four modules: test
data collection, test data storage, querying of stored data and
visualisation. The tool is being implemented as part of the
existing CI chain.

A. Test Data Collection and Storage
The main source of information for this study are test

execution logs from integration testing within a Continuous
Integration system. Researchers had access to an extensive

SOFTWARE ENGINEERING AND MANAGEMENT BACHELOR THESIS, UNIVERSITY OF GOTHENBURG — MAY 2017 5

Fig. 3: Categorisation of types of failures.

dataset of past and present test results consisting of over 11,500
individual test case executions logs. The data represents tests
executed in one test rig over the last 6 months. Additionally,
researchers were able to trigger and collect new data from
testing when necessary. Specific data includes a list of passed
and failed test cases, console logs from tests and which
software deliveries triggered testing. Additionally, researchers
had access to specialists who have in-depth knowledge of
possible root-causes for specific test failures.

The current testing framework that is in use by Volvo Cars
Corporation is derived from the open-source Robot framework.
The framework outputs test execution logs that were the
primary source of data collection. The logs are generated in
both HyperText Markup Language (HTML) and Extensible
Markup Language (XML) format. The HTML format is more
appropriate for human use because of its readability. XML is
the format that is ideal for machine reading - because of this
the scripts written were tailored for the XML format. Such
scripts were responsible for automatically fetching, processing
and storing the data.

Initially, a python 3 script was written to fetch and store
past test results generated by the automated testing framework
AwesomeFramework. The XML tree was parsed for every
executed test case and data was extracted, categorised and
stored in a local SQLite 4 database. The database has been
designed, developed and implemented by the researchers.

B. Failure Categorisation
A failure classification tree was developed in order to

improve the visualisation of different test areas. The initial
tree design was created after careful analysis of all test case
failures. The failure type was used as the main classification
criteria, and was later subdivided regarding to different criteria,

3Python Software Foundation. Python Language Reference, version 2.7.
Available at http://www.python.org

4Hipp, D. R., Kennedy, D., Mistachkin, J., SQLite, version 3.8. Available
at https://www.sqlite.org

such as the functional area it affected or the ECU it was related
to.

After the failure categories were defined, they were used
to classify collected test case failure data. Test data parsing
and storing scripts were updated to include this information.
Failure categories were later validated with stakeholders during
the interview evaluation of the prototype.

C. Data visualisation
A prototype of the failure data visualisation tool has been

developed using an iterative-incremental approach. Key factors
were taken into consideration when developing the visualisa-
tion template:
• Initial focus on the last test build
• Clear presentation of the project and build number
• A quick summary of the test results using graphs based

on the failure categories
• A list containing information about failed test cases

which is considerably easier to read than the current test
logs

• Information on new failures (failed test cases that have
not failed before)

• Information on frequent failures in the form of a table
that allows filtering by number of builds and percentage
of failed runs.

D. Evaluation
A qualitative approach was adopted for the evaluation of

the visualisation tool. The purpose of the evaluation was to
assess how the produced artefact compares with the existing
visualisation; in order to do this it was necessary to have
participants familiar with the existing VCC environment.

Essentially a qualitative approach helps researchers to under-
stand a phenomenon from the point of view of the participants
and its particular social and institutional context [14]. This ap-
proach aided the researchers in understanding and interpreting
the perceptions that the participants have of the visualisation

SOFTWARE ENGINEERING AND MANAGEMENT BACHELOR THESIS, UNIVERSITY OF GOTHENBURG — MAY 2017 6

tool. This methodology was selected due to the precise context
of the research; relevant to VCC and its testing environment.
The limited number of relevant potential participants available
also restricted the potential use of statistical analysis to draw
any meaningful conclusions from the data that was collected.

By conducting semi-structured interviews with open ended
and follow up questions based on the topics that needed to
be covered, the researchers were enabled to probe beyond
the initial responses [15]. A list of questions was created
(see Appendix A) that would be asked, however, throughout
the interview process the researchers were granted freedom
to ask the interviewee impromptu questions based on their
responses and build a synergy between the interviewees and
the researchers.

The questions that were drawn up were done in an unbiased
manner which reduced the risk of influencing the participants
responses. The interviews were recorded to allow interpretation
to be undertaken after the interviewing process has finished.
The interviewees were selected to provide feedback from
multiple stakeholder groups. The following stakeholders were
selected:

• Test rig analysis team (2 members, 1 joint interview)
• Continuous integration team leader (1 member, 1 inter-

view)
These stakeholders provided both managerial and develop-

ing outlooks. The team leader provided the view point of how
the testing environment was performing, whilst the test rig
analyser showed more concerned with the aspects relevant to
each build and the fault localisation process.

The interviews were transcribed for the purpose of analysing
their feedback. Analysis of the data was done with the use of
thematic analysis. This is a method for identifying, analysing
and reporting patterns within data. [16]. It emphasises organi-
sation and rich description of the data set by identifying both
implicit and explicit ideas within data [8]. Themes from the
data are developed primarily through the use of coding; this
is the process of recognising important moments in the data
[17]. This method facilitated the researchers in interpreting the
participants feedback on the new visualisation techniques. Re-
sults from the thematic analysis were presented and discussed
with the stakeholders at the end of the study.

V. RESULTS

A. Failure Categorisation Tree

The classification tree was constructed by analysing the
database of test case failures from every build to date. The
warn and error messages that were output by the test cases
were investigated rigorously and categories and sub-categories
were established according to the dissimilarity of messages.
The failure classification tree created by the researchers is
visualised in Figure 3. Failures were classified using three
levels:

• Level 1 - Failure Category: differentiates types of fail-
ures by the main type of test execution failure. Examples
include Comparison Failure (when an assertion test for
a specific value fails), Diagnostic Tool Failure (when

the diagnostic software used reports a failure) and other
software execution specific failures.

• Level 2 - Failure Breakdown: categorises the types of
failure using common denominators between them. For
example, Comparison Failures are further categorised
in regard to the part of the system they belong to,
while Diagnostic Tool Failures are broken into the
specific ECU that signaled an error message and other
communication errors.

• Level 3 - Specific Failure: a more refined level of
classification, currently not in use by the visualisation
system. An example would be which type of gear was
tested (automatic or manual), or which defroster signal
has raised an error (rear or side mirror defroster).

B. Failure visualisation Tool
The visualisation takes the form of web pages that are

automatically generated by a script running in Jenkins. The
script was created and added to the test execution runs by
the researchers. A current prototype can be seen in Figures
4 and 5. The pages consist of interactive graphs and tables
that highlight the most relevant data needed to determine the
potential root cause(s) of test case failures.

A combination of test execution data, the failure classifica-
tion tree and statistics on previous builds is used to generate
the failure visualisation. Figure 4 displays the following data:
• Project name and build number on the top of the page
• A bar chart representing the count of each Failure

Category that was present in the build.
• A pie chart to portray the breakdown of a selected Fail-

ure Category by displaying counts of its sub-categories.
• A table of every test case failure that will display: i.)

Test suite name ii.) Test case ID iii.) Test case name iv.)
Failure Category v.) Warn message vi.) Fail message.

The bar chart offers interaction to the user so that when a
column is clicked, the pie chart and table of test case failures
will update with the data relevant to that category. The tool
will also provide summaries of how the testing process is
performing on a longer term basis. The following information
is also presented to the user (Figure 5):

• A table for test cases that have never failed.
• An interactive table of test cases that have been fre-

quently failing over the latest number of specified builds.
This includes a filter for the failure frequency (50%, 75%
or 100% occurrence).

A long term perspective of test result data in the context
of distributed embedded systems should highlight to both
developers and other stakeholders what area of the testing
rig needs to be improved to facilitate more stable testing
environments.

C. Failure Frequency Analysis
Data analysis has been performed in order to demonstrate

the potential of the proposed failure data collection and visuali-
sation system in improving different aspects of test quality. The
examples in this section are not yet implemented in the data

SOFTWARE ENGINEERING AND MANAGEMENT BACHELOR THESIS, UNIVERSITY OF GOTHENBURG — MAY 2017 7

Fig. 4: Failure data visualisation page, top of the page.

Fig. 5: Failure data visualisation page, new and frequent failures section.

SOFTWARE ENGINEERING AND MANAGEMENT BACHELOR THESIS, UNIVERSITY OF GOTHENBURG — MAY 2017 8

visualisation tool. One of the possible areas of improvement
is analysing the failure frequency of test case failures through
time. As an example, Figure 6 shows the average number of
test case failures in 10-build clusters for each test suite present
in the collection of Hardware-in-loop (HIL) Test Suites.

Fig. 6: Ratio of failed test cases per test suite for every 10
builds, HIL Tests

Figure 7 presents an example of visualisation of test case
results for a range of build executions. The test suite presented
runs a set of 7 test cases, executing the test set twice. Green
cells denote passed test cases, yellow cells represent test cases
that were not run and red cells display test case failures.

VI. ANALYSIS

A. Interview Feedback
The first stage of thematic analysis involves the familiarisa-

tion of the researchers with the collected data. The interview
evaluation was used to answer research questions 1, 1.1 and
1.2. Both researchers were present in the interviewing process,
and the following step was to parse the interview notes
for codes. Appendices B and C contain the notes from the
interviewers. Items in bold depict codes that were extracted
from the text. The codes were then refined, table 1 shows the
initial codes that were created from both data sets.

The codes that were most frequent and held significant
interest to the research questions were formed into themes
or sub-themes. After reviewing all codes and themes, some
of the codes were discarded as they did not fit into any of
the constructed themes or hold significance to the research
questions.

Figure 8 illustrates the relationship of themes, sub-themes
and the codes which they capture. The themes and sub-themes
are defined as the following:

• Themes:
◦ Visualisation - Refers to the web page that was

created and all data that is presented in the page.
◦ Fault localisation - Captures all aspects that can

contribute to the process of locating faults within
the automated testing.

Codes

Test Rig Analysers CI Team Leader

Previous Builds Starting point

Filters Expansion

Hyperlink to HTML log More Information

Build Comparison Investigation

Suite Setup Failure Automation

Tags Test Case Performance

AwesomeFramework Archive of Test Case Information

Category definitions Interaction

States Machine learning

Test case performance Never failed

Software / hardware versions Fault localisation

More Data / Information Statistical Analysis

New failures Logging

DTC

Trends

Archive

TABLE I: Initial codes from interview transcript

◦ Future Work - Highlights the potential additional
features that were identified in the interview.

• Sub-themes:
◦ Test Case Performance - Encapsulates all aspects

of how test cases are performing over one or more
builds.

◦ Comparison with Previous Builds - The use of
comparing the latest build with previously executed
builds with the purpose of highlighting similarities
or differences.

◦ Statistical Analysis - The application of statistical
methods to analyse a build with the means of
predicting or outlining data.

Figure 8 illustrates what the interviewees were concerned
with in regards to the fault localisation process, and what
features should be added in the future to contribute to this
process. The most important aspects of the current visuali-
sation were also identified - interactive filters for tables and
charts to be able to select only the relevant data that the user
is interested in. The significance of having a link to the HTML
AwesomeFramework report containing more context and detail
on the test case failure was also highlighted. The participants
were concerned with the fact that the visualisation may remove
too much information. The performance of test cases was a
major aspect of the interviewees concerns which was identified
through the use of thematic analysis.

The inclusion of categories for test case failures was dis-
cussed - the test rig analysis team indicated that the sub-
categories could be more well defined, even pointing out a
specific case involving the parking or electrical brake.

The managerial perspective showed interest in the never
failed test cases whereas the test rig analyser were more
concerned with the new failures feature. The central talking
point throughout both interviews was the ability to be able to
compare the latest build with previous builds. Although the

SOFTWARE ENGINEERING AND MANAGEMENT BACHELOR THESIS, UNIVERSITY OF GOTHENBURG — MAY 2017 9

Fig. 7: Visualisation of test case results from the Basic Driving Cycle test suite over several builds

current visualisation does this to an extent, the interviewees
identified that there was scope for improvement. By adding
functionality to compare software and hardware versions of
previous builds, this may indicate potential causes of test case
failures or what should be investigated.

The new failures feature was recognised as having a positive
impact and the never failed feature was great for identifying
issues that may need to be investigated.

The test rig analysis team proposed that visualising the
different states of test case failures as represented in the clas-
sification failure tree could help the fault localisation process,
by comparing states with previous test case failures.

Having an archive for each test case with information that
can be added and deleted multiple users would be beneficial in
the fault localisation process. This information could indicate
to a user that a test case might be repeatedly failing for a
specific reason and that it may not need to be investigated.

The inclusion of tags into the visualisation with filters would
be beneficial to users. Having the features to remove irrelevant
test case failures and only display the failures that they are
interested in is a features which would save vast amounts of
time compared with the existing visualisation at VCC.

The CI team leader indicated that statistical analysis of test
data could play a major role in the fault localisation process.
Along with the introduction of machine learning this would
facilitate a self-adapting fault localisation tool that would max-
imise its efficiency through iterative learning. This interview
indicated that the work here provided solid foundation for the
continuous transition towards fully automated testing and fault
localisation.

B. Failure Frequency Analysis
Figures 6 and 7 are visualisation proposals for test case

frequency analyses. These results are used to address research
question 1.3. Figure 6 is an example of how to present test
case data using a grouping convention against build execution
clusters containing data from a specified number of runs. In
this example, the tests are grouped by suites and each build
execution cluster contains data from 10 test runs. The test
case groups and build clustering can be modified for different
purposes. An idea would be to use the failure categories instead
of test suites, and to add interaction for data manipulation. An
example of interaction could be having a slider to change the
number of builds per cluster.

The example shown in Figure 6 gives a good overview
of how the test suites from the HIL Tests test package are
performing. In this case, it is visible that no test case from the
Start Condition suite has ever failed. Such result implies that
the executed tests are not able to detect failures at all, which
could imply that current tests are not effective in detecting
faults. On the other hand, over 40% of test case in the
Diagnostic trouble code (DTC) Readout Tests tend to always
fail. In this case, test cases are detecting faults - but somehow
those faults seem not to be addressed. With this information in
hand, managers and specialists should be able to better direct
their focus to solve these recurring issues.

Figure 7 provides an in-depth analysis of test case results
from the Basic Driving Cycle test suite. This type of visual-
isation allows stakeholders to pinpoint issues with individual
test cases. In this example, the test case named Simple drive
cycle - slow acceleration - soft braking has failed in all
but one execution build. Such results are a clear indication
that something is wrong. Possible causes could be a badly
written test case, or improper tear down of previous test case
conditions.

There is a plethora of additional information that can be
extracted from these two simple examples, which strengthens
the claim for the use of data visualisation techniques in failure
analysis.

VII. THREATS TO VALIDITY

Empirical research methods are prone to a number of
validity threats [18]. The primary types of validity for this
work were identified and are discussed in this section.

A. Construct Validity
Construct validity refers to which degree the studied opera-

tional actually measures what it claims to be measuring [19].
The main construct validity to this study was regarding to the
design of the interview questions that could lead to researchers
collecting irrelevant data to what was being studied. This risk
was mitigated by having a more experienced third party review
and revise the questions.

B. Internal Validity
Internal validity deals with the extent to which a causal

conclusion based on a study is warranted, which in turn is

SOFTWARE ENGINEERING AND MANAGEMENT BACHELOR THESIS, UNIVERSITY OF GOTHENBURG — MAY 2017 10

Fig. 8: Illustration of thematic analysis of interviews

determined by the degree to which a study minimises system-
atic error [19]. There was a risk of bias when analysing the
interview transcripts. This risk was mitigated by performing
the interview analysis based on scientific methods (thematic
analysis) and having those results discussed and validated by
the stakeholders in the study.

There is still a possible validity threat related to the limited
number of stakeholders and interviews during the evaluation
of the artefact. However, it was safer from the company’s
perspective to perform this initial study in a small scale. This
threat can still be mitigated in a future work consisting of more
robust evaluation methods on a more extensive time frame.

C. External Validity

External validity refers to the extent which the findings can
be generalised to other environments [19]. Since the research
was conducted at only one automotive company, results may
fail to be reproducible in other companies. This risk was
mitigated by having a very well defined context within which
the study was conducted. Additionally, the characteristics of
VCC’s specific case were properly outlined in this work.

Additionally, we were systematic when designing the fault
tree, but not general enough. This risk could be mitigated by
having access to additional sets of test suites and test cases,
which would help to determine more general patterns in the
failure data.

Nonetheless, this is a stepping stone towards a continuous
integration culture within Volvo, and it is safer from the
companys perspective to begin with a small study with lower
risks involving fewer people and limited scope within the
company itself.

VIII. CONCLUSION

In this thesis we have proposed a test case failure data
visualisation system that can support the fault localisation
procedures. The system combines a failure classification tree
and existing data from previous and current test builds to
generate a test report that includes both the status of the
latest test runs and archived information about previous runs.
The failures are categorised and summarised in charts for a
quick visualisation of the test results. Furthermore, a table
containing a list of failed test cases is displayed. This table can
be filtered by selecting the different categories on the charts.
The information is kept at the minimum necessary, but more
context is provided via hyperlinks to the complete failure logs.
Additional information is shown regarding the long term status
of the testing scope - a section containing a list of test cases
that failed for the first time ever, a list of test cases that have
never failed and an interactive table displaying test cases that
have been failing often in the last n builds.

The thesis also presented the results of two interviews with
main stakeholders that were used to evaluate the effect of
the visualisation technique. The results have shown that the
proposed data visualisation has a positive impact on the fault
localisation process - and suggests promising directions for
future work.

Answering our main research question, and according to our
findings, Fault localisation procedures can be leveraged in the
following ways:
• Categorising and displaying failures as charts allows the

test rig specialists to quickly identify areas that require
more immediate attention. Being able to filter failures
by those areas helps them to focus on what needs to be
addressed first.

SOFTWARE ENGINEERING AND MANAGEMENT BACHELOR THESIS, UNIVERSITY OF GOTHENBURG — MAY 2017 11

• Minimising the amount of data regarding each test case
and adding hyperlinks for additional context reduces the
excess of superfluous information.

• Information that combines data from multiple previous
runs in a single page saves the specialists’ time and
effort, as they do not need to crawl through multiple
previous logs to access information regarding test cases
results.

The interview also addressed the first research sub-question
by identifying what type of information from the automated
integration testing setup is valuable in the fault localisation
process. Test rig specialists considered that data regarding
new test case failures and the statistics including results from
several test builds had a positive effect on the fault localisation
process, as this information was not directly available before.
The presence of these features has also encouraged them to
suggest possible new additions to the visualisation page, such
as a build comparison tool so that two similar runs can be di-
rectly compared and their differences easily highlighted. Such
an addition would further improve their ability to pinpoint
faults.

Our second research sub-question was related to the use pre-
existing test harnesses to support continuous feedback in the
fault localisation process. When presented with our artefact,
all interviewees felt compelled to analyse the current fault
localisation process and encouraged to initiate discussions on
existing problems and how to use existing harnesses to provide
possible solutions.

Finally, the third research sub-question is answered by
our showcase of the possibilities to use such a system to
monitor test case failure consistency over extensive periods
of integration testing. This is only one in a myriad of possible
applications of statistical data analysis and visualisation uses
to boost the fault localisation procedures.

IX. FUTURE WORK

The research from this project outlined which data is sig-
nificant in the fault localisation process. The extra features
outlined in the interviewing process could be implemented
and then the tool could be re-evaluated to measure it’s new
effectiveness. The impact of statistical analysis and machine
learning on the fault localisation process is also something
that could prove to be very beneficial. Research undertaken
here provides the foundation for this work to commence, the
database that has been constructed is the necessary platform
and concept for the statistical approach to function on. One
of the difficulties faced to the researchers was the number of
participants available for the evaluation of the artefact. If the
research incorporated more participants with differing stake-
holding interests, that could contribute to a more thorough
evaluation. If test case developers or existing testing framework
developers provided their perspective of the product, this
would enable more feedback on what features could be added
or removed.

The visualisation tool that was produced was aimed at a
specific test rig at VCC. Future work from this project could
investigate the portability of the tool to other testing rigs within
VCC and the automotive industry.

APPENDIX A
INTERVIEW QUESTIONS

1) Is there sufficient information in the test case failures
table?

2) What information can be added or removed?
3) Are the bar and pie charts effecting in assisting with

fault localisation?
4) Are the categories / sub-categories well defined?
5) When compared to the existing visualisation, how does

this impact the fault localisation process?
6) How else could the visualisation be improved?
7) Would you expect the fault localisation process to be

improved?
8) Does the page offer an accurate perspective of how the

test rig and its test cases are performing?
9) What other information / features could be added to the

visualisation?

APPENDIX B
INTERVIEW NOTES - TEST RIG ANALYSIS TEAM

• Good to have a summary of a few runs. Filter for a
period range.

• Add a link the full html report. Able to remove certain
runs from statistics. Exception cases for setup failures.

• Good to have, might also be good to use the existing
tags from AwesomeFramework. Tags are specified per
team and it would be good for teams to be able to focus
on their failures.

• Sub-categories could be better defined, for example
braking could be distinguished into electrical or parking.
Check if some symbols have state machines.

• Easier in some aspects, but we cant do anything without
the existing AwesomeFramework report. No need to
go through several weeks of reports to see how test
cases have been failing / succeeding.

• Could differentiate between errors that arise from test
cases states for example. Delta between different
builds and the hardware and software versions as-
sociated with the rig clock module revision, Awesome-
Framework release, has test case been modified.

• Needs link to test report itself better categorisation
but it removes too much content. Access to extra logs if
its available. New failures visualisation is great, unlike
before.

• Doesnt show the criticality of the DTC failures. Better
visualisation of why a test case fails.

• Add information on the system under test. Good if all
tables have filters.

• More detail on being able to see trends for each specific
test case.

• Possible functionality to be able to add information
(archive) about each test case in a database.

• Functionality to be able to compare information be-
tween different builds.

• Never failed before is a great feature.
• Maybe differentiate why the test has failed.

SOFTWARE ENGINEERING AND MANAGEMENT BACHELOR THESIS, UNIVERSITY OF GOTHENBURG — MAY 2017 12

APPENDIX C
INTERVIEW NOTES - CI TEAM LEADER

• Very good starting point, some features need to be
expanded. The visualisation needs to be constantly
evolved to be effective in line with continuous integra-
tion.

• More details on the ECUs, which areas need to be
investigated.

• The visualisation improves the automation of the fault
localisation, therefore the whole process has been im-
proved.

• Provides an accurate perspective of how the test rig and
its test cases are performing.

• Flow issues should be visualised. Test cases could have
an archive of information, interactive with the user so
they can provide and receive information of previous
test case execution. This provides scope for machine
learning.

• Never failed shows which test cases which need to be
investigated as these test cases are dead and may not be
finding faults.

• This visualisation contributes a lot to areas which need
to be investigated.

• The tags should be visualised.
• The primary goal of fault localisation is to state whether

the fault lies in the environment or the software.
• Statistical analysis could play a part in the future with

improving the fault localisation but for now there isnt
enough logging of data.

ACKNOWLEDGEMENT

The authors would like to thank their supervisor Assistant
Professor Dr. Francisco Gomes de Oliveira Neto for his guid-
ance and support. Additionally, we would like to thank VCC
CI Implementation Leader Henrik Schreiber for proposing this
topic and allowing this work to be performed at VCC.

REFERENCES

[1] A. Kodali, Y. Zhang, C. Sankavaram, K. Pattipati and M.
Salman, Fault Diagnosis in the Automotive Electric Power
Generation and Storage System (EPGS), IEEE/ASME
Trans.Mechatronics, vol. 18, no. 6, pp. 1809-1817, Dec.
2013.

[2] J. Luo and K. R. Pattipati, An integrated diagnostic de-
velopment process for automotive engine control systems,
IEEE Trans. Syst., Man, Cybern.C, vol. 37, no. 6, pp.
11631173, Nov. 2007.

[3] V. N. Malepati, H. Li, K. R. Pattipati, S. Deb, and A.
Patterson-Hine, Verification and validation of high in-
tegrity software generated by automatic code generators,
in Proc. IEEE Int. Conf. Syst., Man, Cybern., Oct. 1998,
vol. 3, pp. 30043009.

[4] M. Trapp, B. Schurmann, and T. Tetteroo, Failure behavior
analysis for reliable distributed embedded systems, Int.
Parallel Distrib. Process. Symp., pp. 99-107, 2002.

[5] M. Steinder, A. S. Sethi, A survey of fault localization
techniques in computer networks, Science of Computer
Programming, Vol. 53, Issue 2, pp. 165-194, Nov. 2004.

[6] James A. Jones, Mary J. Harrold and John Stasko, Visu-
alization of Test Information to Assist Fault Localization,
Proceedings of the 24th International Conference on Soft-
ware Engineering, pp. 467-477, 2002.

[7] L. C. Ascari, L. Y. Araki, A. R. T. Pozo and S. R.
Vergilio Exploring Machine Learning Techniques for Fault
Localization, 10th Latin American Test Workshop, Buzios,
Rio de Janeiro, pp. 1-6, 2009.

[8] Guest, Greg; MacQueen, Namey, Introduction to Thematic
Analysis”. Applied Thematic Analysis., 2012

[9] A. Chunduri, A survey of fault localization techniques in
computer networks, Science of Computer Programming,
Aug. 2016.

[10] L. Mariani, and F. Pastore, Automated Identification of
Failure Causes in System Logs, 2008.

[11] N. Seth, R. Khare, ACI (Automated Continuous Integra-
tion) using Jenkins: Key for Successful Embedded Software
Development, 2015.

[12] K. R. Pattipati, et al. An Integrated Diagnostic Process
for Automotive Systems, Oct. 2008.

[13] A. Telea, Data Visualization: Principles and Practice,
2nd ed. Boca Ratn, FL: CRC Press, 2014.

[14] B. Kaplan and J. A. Maxwell, Qualitative Research
Methods for Evaluating Computer Information Systems,
Health Informatics. Springer-Verlag, pp. 3055.

[15] Hancock B., Windridge K., and Ockleford E, An Intro-
duction to Qualitative Research, The NIHR RDS EM /
YH, 2007

[16] Braun, V. and Clarke, V, Using thematic analysis in
psychology. Qualitative Research in Psychology, 3 (2). pp.
77-101. ISSN 1478-0887, 2006

[17] Richard Boyatzis, Transforming qualitative information:
Thematic analysis and code development, Thousand Oaks,
CA: Sage, 1998

[18] R. Feldt and A. Magazinius, Validity threats in empirical
software engineering research-an initial survey, in Pro-
ceedings of the Conference on Software Engineering and
Knowledge Engineering(SEKE), 2010, pp. 374379.

[19] P. Runeson and M. Hst, Guidelines for conducting and
reporting case study research in software engineering, Em-
pirical Software Engineering, vol. 14, no. 2, pp. 131164,
2008.

