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Abstract

I compare GARCH and MIDAS one-day-ahead forecasts of volatility using high frequency
data from the CRSP U.S. Mega Cap Index. The MIDAS models are estimated using high
frequency data sampled at 5, 15 and 30 minute intervals and estimated using both expo-
nential Almon and beta lag distributions with two shape parameters. The GARCH(1,1)
model with a skewed t-distribution is the benchmark model to which the MIDAS models are
compared. The study finds that MIDAS models have superior predictive ability in volatility
spikes due to its ability to incorporate high frequency data and that the GARCH model is
more prone to underestimate volatility but is able to produce smaller forecast errors during
calm periods. The MIDAS models using data sampled at a frequency of 5 minutes perform
poorly suggesting that high frequency noise plays an important role when sampling at this
frequency. Sampling frequency appears to be more important than lag length when deciding
on which MIDAS model to use.
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1 Introduction

The aim of this thesis is to test and compare GARCH and MIDAS one-day-ahead forecasts
of volatility using high frequency data from the CRSP U.S. Mega Cap Index. The MIDAS
models are estimated using high frequency data sampled at 5, 15 and 30 minute intervals
and estimated using both exponential Almon and beta lag distributions with two shape
parameters. Before estimating the models I employ the augmented Dickey-Fuller test to
check for the presence of a unit root in the data, Ljung-Box test to test for autocorrelation
and two CUSUM tests to test for structural breaks in mean and variance. The estimated
models are finally scored using several different measures to identify potential strengths and
weaknesses in the forecasts.

Volatility modeling is of interest to both academia and the practitioner given the key role
it plays in option pricing, hedging, VaR-calculations, other risk measures and asset pricing.
Testing the predictive ability of MIDAS models using high frequency data is especially in-
teresting given the relatively large literature on high frequency data that has emerged over
the last one or two decades. As GARCH is a common and well researched methodology
for forecasting volatility this is used as the benchmark model to which the MIDAS models
performance is compared.

Emre Alper et al (2012) evaluates weekly out of sample volatility forecasts using MIDAS and
GARCH(1,1) and find that MIDAS produces significantly smaller mean squared prediction
error during market stress due to its ability to incorporate additional information provided by
the high frequency data. They also find that shocks to volatility in weekly GARCH models
tend to persist for a longer time increasing the error after a volatility spike whereas the shocks
in the MIDAS models die out more quickly. Çelik and Ergin (2013) use high frequency data
from the Turkish stock market and find that MIDAS is superior at forecasting volatility
during financial crisis when compared to GARCH models.

This study adds to previous studies in that it is using a different dataset in combination
with high frequency data sampled at several frequencies for comparison. I also use a more
varied approach to forecast evaluation, previously used by Hansen and Lunde (2005), to
better identify the strengths and weaknesses of each model. The data used in this paper
is collected over the relatively calmer period between 2012 through 2016 whereas the above
studies include the turmoil generated by the 2007 to 2008 financial crisis. This study on the
other hand is affected by the flash crash of August 24th 2015 that generated a temporary spike
in volatility preceded and followed by periods of relatively low volatility. This temporary
increase in volatility is however much different from the protracted kind of volatility that
was present during the 2007 to 2008 financial crisis and presents a unique angle to this study.
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2 Method

2.1 MIDAS

Mixed frequency data is common in economics and many macroeconomic variables are re-
ported at different intervals. Employment for example is often reported monthly while GDP
is reported quarterly. In contrast stock prices are reported on an almost continuous basis
when the trading window is open. Even if variables are sampled at different frequencies
there can be a strong link between them and the more frequently sampled variable can pro-
vide important information when forecasting the less frequently sampled variable (Armesto,
Engemann and Owyang, 2010). Various techniques for dealing with this type of forecasting
exists. One way is to scale back the data, through for example averaging, so that the number
of observations in the dependent and independent variable match at the cost of informational
value in the high frequency data. Another approach can be to use some weighting scheme
that is either intuitive or has to be parametrized. Unfortunately, all of these approaches suffer
from either large estimation errors or require a large number of parameters to be estimated.
If the number of estimated parameters is too large the estimated model becomes useless.
This is what Ghysels, Santa-Clara and Valkanov (2004) refers to as parameter proliferation
and can be solved using the MIDAS methodology.

The MIDAS model was introduced by Ghysels, Santa-Clara and Valkanov (2004) and the
main area of application is generally within mixed frequency data. It is a model that has
been developed for the specific purpose of creating regression models where the input data
is sampled at a higher frequency than the examined variable. This makes MIDAS modeling
very useful in volatility forecasting when using high frequency data to forecast daily variance.
MIDAS does not use an autoregressive methodology which means that regressors different
than the regressand can be used and that variations of return other than volatility estimates
can be used as regressors. This makes for a more flexible model with regards to the indepen-
dent variable when compared to ARCH/GARCH models that require some lagged volatility
measure when forecasting volatility. Since the procedure is exactly the same independently
of the type of regressand the MIDAS methodology can easily be used to compare different
independent variables for predictive ability. (Ghysels et al, 2006)

The MIDAS model is in many ways similar to a distributed lag model but instead of having
fixed weights or weights that are individually estimated the weights are parameterized which
reduces the researchers need to know the theoretical weights while still being able to avoid
the problem of parameter proliferation. In other words, it allows for more information to
be accounted for in the model while retaining a relatively parsimonious model (Ghysels,
Santa-Clara and Valkanov, 2004).

Ghysels, Santa-Clara and Valkanov (2004) show that MIDAS can be used with multiple
regressors using a maximum likelihood approach. However, as the intention of this thesis
only is to work with security returns and high frequency data I consider this to be beyond
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the scope of this thesis.

There are several possible ways to parameterize the weights and Ghysels et al (2016) gives
examples such as U-MIDAS, normalized beta probability density function, normalized ex-
ponential Almon lag polynomial, and polynomial specification with step functions. They
further mention the Gompertz probability density function, Log-Cauchy probability den-
sity function and Nakagami probability density function. Armesto, Engemann and Owyang
(2010) write that “the desired function should achieve flexibility while maintaining parsi-
mony”. The methodology to use depends on the lag structure the researcher is trying to
model. Ghysels (2016) suggests a model selection process where all potential models are
estimated over the estimation window and the best model is then selected using a selection
criteria such as AIC (Akaike, 1973) or BIC (Schwarz, 1978).

Foroni et al (2015) assume a linear high frequency model and derive the Unrestricted-MIDAS
(U-MIDAS) that easily can be estimated by OLS using frequency alignment. This is com-
putationally the easiest MIDAS model to estimate. The downside to this approach is that it
is not as parsimonious as the beta or exponential Almon weighted approach and using OLS
does only work in a linear setting.

Andreou et al (2010) show that non-linear least squares (NLS) is able to parameterize the
models where the lag structure is not linear. This approach works well with both exponential
Almon and beta lags described below.

Ghysels et al. (2006) use a regression based method and using their original notation for a
daily volatility regression MIDAS can be written as:

V
(Hm)
t+H,t = µ+ ΦHΣkmax

k=0 bH(k.θ)X̃
(m)
t−k,t−k−1 + εHt (1)

Where bh(k, θ) is some polynomial that parameterizes the weights in the model. The weights
are normalized and add up to unity which allows for the estimation of the scale parameter
Φ. The parameterization of the weights is a key element in MIDAS modeling as it allows for
a parsimonious model that does not need the parameters to be estimated individually for
every lag.

Where kmax is the number of steps of high frequency data to be used when predicting the
steps in the forecasted series. This is also equivalent to the number of parameters that would
have been estimated using a regular distributed lag model. In a MIDAS setting Ghysels and
Valkanov (2012) write that the only downside to using a large kmax is the loss of data in
the beginning of the sample when the model is estimated. The strength being that the lag
structure might be able to detect correlation over longer periods of time. They suggest a
conservative approach using a relatively large kmax and let weights die out in the parameter
estimation.
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The variable k is a specific step in the high frequency data between t − 1 and t where t
measures the steps in the forecasted series.

Ghysels et al (2004) propose the same model as in the 2006 paper but also include a trend
function on the lagged dependent variable. Ghysels and Valkanov (2012) specifically focus
on MIDAS daily volatility forecasting using high frequency data.

From here on follows an introduction to two of the earliest and what appears to be the most
common weight parameterization polynomials in the literature; the exponential Almon and
beta functions. Note that both specifications are normalized to make sure weights sum to
one.

Ghysels et al. (2004) and Ghysels et al. (2006) use a beta function for the weight parametriza-
tion. Using a combination of the original notation and the notation of Armesto, Engemann
and Owyang (2010):

bH(k; θ) =
f( k

kmax , θ1; θ2)

Σkmax

j=1 f( j
kmax , θ1; θ2)

(2)

Where θ = [θ1; θ2] and θ1, θ2 are shape parameters of the beta weighting function:

f(i, θ) =
iθ1−1(1− i)θ2−1Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
(3)

And Γ is the regular gamma function:

Γ(θp) =

∫ ∞
0

e−iiθp−1di (4)

The beta function can take on a wide range of shapes depending on the specified parameters.
The beta function for a few different parameter values is plotted in figure 1 to illustrate the
flexibility of this specification.
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Figure 1: Various parameter values of the beta density function

Ghysels, Santa-Clara and Valkanov (2005) and Ghysels, Sinko and Valkanov (2007) use the
Almon lag for parametrization:

bh(k; θ) =
eθ1k+...+θQk

Q∑K
k=1 e

θ1k+...+θQkQ
(5)

Where k is a step in the explanatory high frequency series and Q is the number of param-
eters to be estimated. A common and simple approach, such as the one used by Armesto,
Engemann and Owyang (2010) is to only use two shape parameters θ.

Otherwise the notation is the same as in the beta function above. The exponential Almon
function with two shape parameters is also a flexible specification with similarities to the
beta function.
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The exponential Almon function for a few different parameter values is plotted in figure 2.

Figure 2: Various parameter values of the exponential Almon density function

Armesto, Engemann and Owyang (2010) compare different forecasting methods for mixed
frequency data and find that in some cases MIDAS provides an advantage but that in some
cases it does not improve the results compared to averaging the higher frequency data to
match that of the less frequently sampled dataset.

Ghysels et al (2009) find that MIDAS models perform better than GARCH models in 10-day
ahead forecasts of stock variance but that they are outperformed in 1-day ahead forecasts.

Ghysels et al (2006) use prediction horizons of 1 day and 1-4 weeks for their volatility
forecasts using S&P 500 data. They chose this forecast horizon as it captures most of the
relevant cases for practitioners and use 50 lags as this appears to be the optimal lag length
for capturing the variance structure. They find that using data sampled at 5 minutes does
not improve forecasts compared to data being sampled at a lower frequency. Emre Alper et
al (2012) also used a 50 day estimation window for their MIDAS model in their comparisons
against GARCH models.

I estimate the MIDAS models using the R plugin “rmidasr” developed by and well docu-
mented in Ghysels, Kvedaras and Zemlys (2016). I decide to use 1-day, 5-day, 20-day and
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50-day estimation windows. I chose these estimation windows as they correspond to a single
trading day, trading week and trading month. The 50-day estimation window is included as
is it is a lag length that has previously been used for the purpose of forecasting variance by
Ghysels et al (2006) and Emre Alper et al (2012) with favorable results. I estimate models
for each estimation window using intraday variance sampled at 5, 15 and 30 minutes as in-
dependent variables and the 15 minutes realized variance as dependent variable. All models
are estimated in two sets, one using a normalized beta lag structure and the other using a
normalized exponential Almon lag structure. This generates 18 models.

2.2 GARCH

In this paper GARCH(1,1) is used as the benchmark model to which the predictive ability
of the MIDAS model is compared.

The Autoregressive Conditional Heteroskedastic (ARCH) model was originally developed by
Engle (1982). Before the introduction of ARCH few methods were available for modelling
conditional heteroscedasticity and the methods that were available usually involved rolling
estimates or weighted averages of previous heteroscedasticity (Engle, 2001) or models where
the heteroscedasticity was modeled using an exogenous variable (Engle,1982).

By assuming that the dependent variable could be described by a linear combination xβ
and by assuming normality in the residuals Engle (1982) showed that an AR model could
be constructed to describe the variance and that the parameters for such an equation could
be found using a maximum likelihood methodology. The ARCH model was further devel-
oped by Bollerslev (1986) into what is called the Generalized Autoregressive Conditional
Heteroskedastic (GARCH) model. The difference from the ARCH model is that instead of
using solely an AR process to describe the conditional variance Bollerslev (1986) described
the conditional variance as an ARMA process. This gives the model more flexibility and
allows for a better fit to many processes observed in empirical work. The GARCH model
is usually best estimated using a maximum likelihood approach and just as in the ARCH
model the assumption of an identifiable mean process and normally distributed residuals
were made. The GARCH(1,1) process can be described as:

σ2
t = w + αε2

t−1 + βσ2
t−1 + v (6)

Where σ2
t is the conditional variance, w is an intercept, ε is a residual of a mean process

(typically an ARMA process), v is an error term, β is an estimated parameter and σ2
t−1 is

the conditional variance in the previous period.

Enders (2015, p. 129) states that the advantage of the GARCH model to an ARCH model is
that it can be modeled more parsimoniously and more exact depending on the lag structure.
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The original assumption of normality in the residuals was made to allow for the maximum
likelihood procedure but other distributions can also be used. As described by Rydberg
(2000) and others security returns have heavier tails than the normal distribution and are
often negatively skewed. To accommodate for this Engle and Bollerslev (1986) and Bollerslev
(1987) extend the ARCH and GARCH methodology to allow for conditionally t-distributed
errors rather than strictly assuming normality as had been done before. It also turns out that
the degrees of freedom and the skewness of the t-distribution can be estimated together with
the other parameters in the maximum likelihood procedure which has made the t-distribution
a very flexible approach in GARCH modeling.

GARCH models require the sum of the parameters α and β to be less than one and that
the model parameters are positive to ensure that the conditional variance is strictly positive.
Setting the parameter sum equal to one generates the more parsimonious IGARCH model
introduced by Engle and Bollerslev (1986). Nelson (1990) provides a detailed explanation of
the stationarity requirements and persistence of the GARCH(1,1) model.

A good way to test if the model has been correctly specified is to look at the remaining
autocorrelation within the squared residuals. If the autocorrelation has disappeared it can
be concluded that the ARCH or GARCH effect has been captured to a satisfying degree.
Formally this is usually done using a Ljung-Box test with 15 lags (Engle, 2001).

Given the importance the conditional mean plays in estimating the model it is important
that a researcher looks for structural breaks in the data according to Enders (2015).

Enders (2015) warn researchers of deciding on estimators purely using AIC (Akaike, 1973)
and BIC (Schwarz, 1978) as guidelines since there is a substantial risk of overfitting the model
to the data. AIC and BIC are two commonly used informational criteria used to evaluate
statistical models and additional information can be found in respective paper. Using an
informational criteria risks creating a model that does not match the data generating process
and is only representative of the sample at hand. Worse, if the model is used to forecast
out of sample the specification might be incorrect. The main focus should be on statistically
significant parameters and parameters that are consistent with theory describing the data.

Hansen and Lunde (2005) compared 16 different GARCH models and concluded that
GARCH(1,1) was the best model for forecasting out of sample conditional volatility in
datasets with deutsche mark - dollar exchange rates but that other models performed better
than GARCH(1,1) when forecasting the conditional volatility of IBM stocks out of sample.

Hwang and Pereira (2006) found that GARCH models need to be estimated on at least 500
data points or else the model is likely to be biased downwards.

A downside to the GARCH approach is that it is an autoregressive process meaning that it
solely relies on historical data from the same time series. This means that it cannot incor-
porate information from other independent variables or fully integrate information sampled
at a higher frequency.
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The models are estimated and the forecasts are created using the ruGARCH package for R.
I use this package as it has a good functionality when it comes to producing rolling forecasts
with a moving estimation window. For this modeling I use the daily return data to forecast
the conditional variance. I estimate three ARMA(0,0)-GARCH(1,1) models using Gaussian,
t-distributed and skewed t-distributed conditional distributions using ML-methodology.

2.3 Data processing methodology

2.3.1 Augmented Dickey-Fuller test

It is often considered that the efficient market hypothesis hold to some degree and that prices
follow some type of non-stationary process as explained by Enders (2015, p. 184-187). The
unit-root process will not allow itself to be modelled in a reliable way as the process is driven
by the sum of the errors that do not disperse over time. As time pass the variance will only
increase and the time series will never converge to a forecastable value. Luckily, the unit-root
process can easily be differenced into a stationary process as this cancels out the error terms
and makes the new process possible to model. If more than one unit root is present, the time
series should be differenced an equal number of times to the number of unit roots to become
stationary. The stationarity is essential if we are to be able to model the time series and this
is the rationale for using returns rather than the asset price itself. To test if we have any unit
root remaining we can use the Dickey-Fuller (DF) test, which is explained below. According
to Enders (2015, p. 189-192) the modern view is that macro-economic data generally contain
stochastic trends, meaning that the trend is best removed by differencing rather than some
other method (such as regression) to detrend the data. This is supported by Nelson and
Plosser (1982) who suggest that macroeconomics variables are difference stationary.

The DF test was introduced by Dickey and Fuller (1979) as a way to test for the presence
of a unit root. The problem with testing for a unit root lay in the characteristics of the
autocorrelation function of a non-stationary process that makes the test biased when using
the ordinary t or F-statistic (Enders, 2015).

The DF test is done by calculating one of three specified test statistics: τ1, τ2 or τ3. The test
statistic to be chosen depends on if we have a pure random walk process, a random walk
with drift or if we both have a drift and linear trend (Ender, 2015).

The test for a pure random walk process is performed as described by Engle (2015) based
on Dickey and Fuller (1979).

Regress:

∆yt = γyt−1 + εt (7)
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Where γ = a1 − 1 and a1 is the potential unit root under examination making the null
hypothesis γ = 0. As such, if γ is 0 we have a unit root present. The estimated value γ from
the regression is normalized by dividing it by the standard deviation similar to an ordinary
t-test. As the t-statistic here is biased Dickey and Fuller (1979) derived the unbiased DF
statistic that is used for diagnostics of this test. The DF statistics can be found in the
Dickey and Fuller (1979) paper. The null hypothesis of the DF test is that the process is
non-stationary, i.e. a unit root is present.

Above is the procedure for a pure random walk model. Enders (2015) explains that if the
examined data generating process has an intercept (called drift term) the model should be
defined as:

∆yt = a0 + γyt−1 + εt (8)

If there is a linear time trend in the data this should be accounted for and the model should
be specified as:

∆yt = a0 + γyt−1 + a2t+ εt (9)

Depending on the specification the test statistic will vary and it is therefore important to pick
the correct specification and corresponding test statistic. Díckey and Fuller (1981) show how
to use an F-test to select the appropriate specification using their own derived test statistic.

The F-test is simply constructed as:

Φi =
[SSR(restricted)− SSR(unrestricted)/r]

SSR(unrestricted)/(T − k)
(10)

Where SSR(restricted) is the sum of squared residuals in the restricted model, SSR(unrestricted)
is the sum of squared residuals in the unrestricted model, r is the number of restrictions
(the difference in independent variables), T is the number of observations in the data and k
is the number of parameters estimated in the unrestricted model.

Φi is the Dickey and Fuller (1981) derived test statistic for the specific models being com-
pared. Φ3 is for testing between trend and drift, Φ2 for testing between trend and random
walk and finally Φ1 is for testing between drift and random walk.
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The different null hypotheses are defined as:

H0 for Φ3 :γ = a2 = 0 (11)
H0 for Φ2 :a0 = γ = a2 = 0 (12)
H0 for Φ1 :a0 = γ = 0 (13)

The F-test tests the null hypothesis that the model only contains the parameters of the
restricted model.

A further development of the DF-test was done by Dickey (1984) to include more lags in an
autoregressive process. Using Enders (2015) notation the tests are calculated as:

∆yt = γyy−1 +

p∑
i=2

βi∆yt−i+1 + εt (14)

∆yt = a0 + γyy−1 +

p∑
i=2

βi∆yt−i+1 + εt (15)

∆yt = a0 + a2t+ γyy−1 +

p∑
i=2

βi∆yt−i+1 + εt (16)

Where

γ = −(1−
p∑
i=1

ai) and βi =

p∑
j=i

aj (17)

And p is the lag order of the autoregressive process and a are the autoregressive parameters.

All three tests use the same test statistic as the corresponding (random walk, drift or trend)
test statistic in the original Dickey-Fuller test. The F-statistics developed by Dickey and
Fuller (1981) for parameter selection also apply to this specification. Adding too many lags
reduce the power of the test while adding to few risks bias the test due to correlation between
the error term and dependent variables. Enders (2015, p. 216) suggests using a Ljung-Box
test and correlogram to examine the residuals when determining lag-length. He also suggests
that using AIC, SBC, F-tests or t-tests can be used as guidance to find the correct number of
lags. For non-seasonal data he suggests starting with a longer lag length and then reduce it
while checking for significance in the last lag. The t-tests and F-tests are possible due to the
fact that all the lags are t-distributed. According to Enders (2015) Monte Carlo experiments
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have shown that starting with a low number of lags and then increase them while checking
for significance is biased towards selecting a model with too few lags.

Enders (2015) points out that it is important to look for structural breaks as Dickey-Fuller
tests become biased toward the non-rejection of a unit root when structural breaks are
present. This was also shown by Perron (1989) using Monte Carlo simulations.

2.3.2 Ljung-Box test

The Ljung-Box test was proposed by Box and Ljung (1978) as a test of autocorrelation in
a time series. The test measures the autocorrelation over m lags and the result is then
compared against a predefined test statistics developed by Box and Ljung (1978).

The observed Q statistic is calculated as:

Q = n(n+ 2)
m∑
k=1

r2
k

n− k
(18)

Where n is the total amount of observations, r2 is the autocorrelation at lag k and m is the
number of lags tested.

2.3.3 Structural breaks

There exists many tests for testing for structural breaks. Many, such as the commonly
used Chow-test proposed by Chow (1960), has the drawback that it can only test for a
single known structural break in the time series and are not specifically constructed for
testing structural breaks in the variance. Many tests are also not able to test for endogenous
breaks. An endogenous break is a break that takes place at a time that is not pre-specified
by the researcher. (Enders, 2015)

To test for an endogenous break the cumulative sum of squares (CUSUM) methodology
developed by Brown, Durbin and Evans (1975) can be used. The idea is to create a model
of the mean and then see if the error structure changes or remain constant over time. If
the model is correctly specified and the error structure does not change we assume that the
underlying process is constant.

The CUSUM test of the mean is conducted by first estimating a model of the mean. The n
number of observations in the estimation window will vary depending on the model selected.
This model is then used to conduct one-step-ahead forecasts and the residuals are saved.
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Assuming that the model is correctly specified and the data generating process of the mean
has not changed the sum of the residuals should not change significantly as a function of
time.

Using the notation of Enders (2015, p 106) a five 5% confidence interval the confidence
boundary for the CUSUM test should be constructed as:

±0.948[(T − n)0.5 + 2(N − n)(T − n)−0.5] (19)

Where T is the total number of observations in the dataset
n is the first observation that is forecasted
N is the total number of forecasts made in the dataset

Inclan and Tiao (1994) introduced a CUSUM test for finding structural breaks in the variance
of time series. They derive the test statistic to be used and outline the procedure to detect
single and multiple structural breaks in the variance. An assumption of this test is that the
variance is i.i.d.

Kim et al (2000) further develop the Inclan and Tiao (1994) methodology by expanding
and adapting the test to detect a change in the conditional variance where the conditional
variance is described by a GARCH(1,1) model. This effectively means the process no longer
has to be i.i.d. Instead of focusing directly on the observed variance the Kim et al (2000)
test is focused on observing changes in the GARCH parameters ω, α and β over time. If the
parameters change this is a clear indication that there is a structural break present in the
data.

Kim et al (2000) specify their hypotheses as:

H0 : θ(ω, α, β) remain unchanged (20)
Ha : θ(ω, α, β) are not constant over the measured period (21)

Kim et al (2000) show that the test statistic will be a straight line that moves around zero
as long as the data generating process is unchanged. If the data generating process change
the test statistic have a “kink” in the straight line and the line will move away from zero.
This is the result of residuals after the kink no longer canceling out as they follow different
processes.

Lee et al (2004) show that this test has severe size distortions and low power. In response to
this Lee et al (2004) develop a CUSUM test for testing the squared residuals of a GARCH
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model rather than the GARCH parameters themselves which improved the problem with
size distortion. The null hypothesis is the same as in the Kim et al (2000) test.

The test statistic to be evaluated is the largest absolute value of the cumulative residuals.
The theoretical test statistic is defined, using the notation of Lee et al (2004), as:

Tn =
1√
nτ

max
1≤k≤n

∣∣∣∣ k∑
t=1

ε2
t −

(
k

n

) n∑
t=1

ε2
t

∣∣∣∣ (22)

Where n is the full sample size and k is the current observation to which the cumulative sum
is calculated.

However, as the real errors are unobservable one has to estimate them using the squared
prediction error divided by the conditional variance estimated:

ε̂2
t = (yt − ĉt)2/ĥ2

t (23)

Where yt is the observed return, ĉt is the conditional return and ĥ2
t is the conditional variance

estimated in the GARCH model.

Assuming that the model is correctly estimated and no structural break is present this should
generate a ε with zero mean and unit variance.

Where τ 2=Var(ε2) meaning that τ 2 simply can be estimated as:

τ̂ 2 =
1

n

n∑
t=1

ε̂4
t −

(
1

n

n∑
t=1

ε̂t

)2

(24)

Lee et al (2004) prove that the limiting distribution of this CUSUM test can be described by
the supremum of a Brownian bridge. Ploberger and Krämer (1992) show that the applicable
test statistic in this case can be calculated as:

Tcritical = 1− 2
∞∑
j=1

(−1)j+1exp(−2j2T 2) (25)

Andreou and Ghysels (2002) find that CUSUM type test perform well when examining
structural breaks in GARCH models.
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2.4 Forecast evaluation

Forecast evaluation is characterized by three large decisions that the researcher has to make.
The first one is over what period the evaluation should take place and if it should be in or out-
of-sample. In general out-of-sample forecasting is the most interesting for the practitioner
as the models designed are used to forecast the future rather than the next in sample data
point. The focus of this study is on out-of-sample forecasting.

Second, the researcher must also decide on what reference value to use. In volatility fore-
casting potential candidates are squared returns, realized volatility or implied volatility all
measured over the forecasted period. When selecting the reference variance I take three
primary concerns into consideration: The type of return, the measure of the return and the
frequency of the measure.

Third, the researcher must also decide on what loss function to use.

These three considerations are all elaborated on in this section.

2.4.1 Returns

Andersen and Bollerslev (1998) point out that a major problem with volatility modeling,
specifically in relation GARCH modelling, is that the squared returns provide a noisy proxy
for the true volatility. They also show that volatility can be predicted to a more satisfying
degree using realized volatility, which they define as the sum of intraday squared returns.

RV =
m∑
i=1

r2
i (26)

Where r is some return measure and m the number of observations per day. Ghysels and
Valkanov (2012) also use the same definition of realized variance when using high frequency
data to forecast daily conditional variance.

Hansen and Lunde (2005) also show that using squared returns for model evaluation rather
than realized returns might distort the model selection resulting in the researcher picking a
non-optimal model as the best performing model. This is in line with the findings of Andersen
and Bollerslev (1998) and highlights the importance of using the least noisy estimate of the
realized volatility as reference value when evaluating forecast performance.
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2.4.2 Log returns

Log returns, also known as compounded returns, are defined as the following in accordance
with Hansen and Lunde (2005), Meucchi (2010):

rt = log

(
St+1

St

)
(27)

Where S is the asset price and t is the observation number.

This measure is similar to ordinary linear returns if the time step is small and the volatility
is not too high. When the measured time span grow or volatility increase the two methods
of measuring returns will start to differ more and more with the implication that the means
will start to differ and the linear returns will start to deviate from zero in the case of security
returns (Meucchi (2010); Hudson and Gregoriou (2015).

Hudson and Gregoriou (2015) state several reasons why logarithmic returns are useful. The
most important are that they become additive, they prevent security prices from becom-
ing negative, provide better forecasts of future cumulative returns and they are normally
distributed under the assumption of Brownian motion.

Hudson and Gregoriou (2015) further points out that the way of measuring returns does
impact research and conclude that the theoretical mean calculated using log returns will be
smaller than the mean calculated by simple returns. They write that increasing volatility will
algebraically lower the expected return of log returns when compared to simple returns and
that simple returns will provide a more meaningful and interpretable result of the final wealth
in forecasting. They further write that either method is applicable for forecasting returns
but that one needs to be careful when comparing studies using different ways of measuring
returns and that the measure of return can have especially large impact on studies using
high frequency data.

Andersen et. al (2003) show that using logarithmic returns generate better out of sample
forecasts as extreme observations in the variance become smaller and thereby have a less
distortive effect.

2.4.3 High frequency data

When using high frequency data some of the problems with time discretization and lack of
information in between observations is reduced as the sampling frequency is increased. How-
ever, examining a financial time series using high frequency data also pose a new challenge
in what is called micro structure effects. This is caused by the bid-ask spread where prices
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are quoted in an interval with buyers and sellers giving different prices. This generates an
uncertainty and a “noise” in the measurement of the prices (Barndorff-Nielsen and Shephard,
2002). The microstructure problem is increased with higher sampling frequency. Awartani
et al (2009) find that microstructure noise is statistically significant in realized volatility
measures sampled more frequently than 2-3 minutes when examining the Dow-Jones Indus-
trial Index. Barndorff-Nielsen and Shephard (2002) found that the microstructure problem
increase with volatility. Ait-sahila et al (2005) suggest that the optimal sampling frequency
for a 1 day sample without accounting for the noise structure would be around 20 minutes.
This is in line with the findings of Barndorff-Nielsen and Shephard (2002). Hansen and
Lunde (2006) find that in a 20 minutes sample frequency the microstructure effects can be
completely ignored.

Hansen and Lunde (2005) stress the importance of having a good estimate of the volatility
in forecast evaluation as a noisy estimate can distort the model evaluation. This was also
highlighted in Andersen and Bollerslev (1998) where they conclud that much of the critique
against GARCH models poor out of sample performance had its roots in the noisy volatility
estimate of squared returns. One has to be careful using previous estimates of optimal
sampling frequency as Hansen and Lunde (2006) show that the properties of the noise has
changed significantly over time.

Another downside to using high frequency data is that the datasets are large and hard to come
by. In addition, large historical datasets are often prohibitively expensive for researchers to
access when available.

2.4.4 The selected reference measure

I use the logarithmic value of the realized returns sampled at a 15 minute frequency as
reference variance in the study. I chose this value as it strikes a good balance between
high sample frequency and micro structure noise while incorporating the benefits of using
logarithmic values. The fact that the standard trading day of 6 hours and 30 minutes easily
can be divided into 15 minute segments also contributed to the selection. Using logarithmic
returns also make the study more comparable to previous research.
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2.4.5 Scoring the models

Variance forecast evaluation is not trivial. Hansen and Lunde (2005) highlights the difficulty
of evaluating volatility models out of sample. They conclude that it is not obvious which loss
function is more appropriate over others and as such decide to use six different loss functions
defined as:

MSE1 = n−1Σn
t=1(σt − ht)2

QLIKE = n−1Σn
t=1(log(h2

t ) + σ2
t h
−2
t )

MAE1 = n−1Σn
t=1|σt − ht|

MSE2 = n−1Σn
t=1(σ2

t − h2
t )

2

R2LOG = n−1Σn
t=1[log(σ2h−2

t )]2

MAE2 = n−1Σn
t=1|σ2

t − h2
t |

(28)

Where ht is the realized volatility and σt is the forecasted volatility estimate conditional on
the previous time period, n is the number of forecasts made and t is the time subscript for
each forecast.

MSE1 is commonly used to evaluate linear regression models but can also be used to evaluate
variance models. MSE2 is a variant of MSE1 that is more sensitive to large outliers. A
problem with this loss function, depending on forecasting methodology, is that it does not
penalize models for creating negative variance forecasts which are obviously unrealistic as
explained by Bollerslev et al (1994)

QLIKE is what Bollerslev et al (1994) call the percentage of absolute errors and is the loss
function implied by a Gaussian likelihood. This type of scoring penalizes negative forecast
errors in variance more heavily. This can be valuable in financial forecasting where large
unexpected volatility can be very costly

R2LOG enhances the weight of the really good forecasts where the estimation error is close
to zero.

MAE1 and MAE2 are more robust against outliers compared to MSE1 and MSE2, as
explained by Bollerslev et al (1994).

However, as Bollerslev et al (1994) points out, the best loss function depends on what the
estimated model is intended to do. In a financial setting this could for example mean that
some profit based loss function would be optimal. The optimal model will ultimately be
selected depending on what loss function the researcher decides to use. In this study I
employ all of the above measures to illustrate the different characteristics of the examined
models.
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2.4.6 Diebold-Mariano test

The Diebold-Mariano (DM) test originally developed by Diebold and Mariano (1995) is used
to compare the statistical significance of difference in forecast performance.

The test statistic is calculated as, using the notation of Diebold (2015):

DM12 =
d̄12

σ̂d̄12
(29)

Where the mean of the loss differential d12 between the compared models is calculated as:

d̄12 = n−1

n∑
t=1

L(e1t)− L(e2t) (30)

Where n is the number of forecasts, t is a time subscript, L() is a loss function and e1t and e2t

are the forecast errors of the compared models. The parameter σd̄12 is the standard deviation
of the mean loss differential d̄12. As the population of the test statistic has a standard normal
distriubtion the examined DM statistic should be compared against an ordinary t-statistic.

The null hypothesis of the test is that the compared models have equal predictive ability
while the alternative hypothesis is that one of the models is superior. The hypotheses are
stated as:

H0 : E(d12t) = E[L(e1t)− L(e2t)] = 0 (31)
Ha : E(d12t) = E[L(e1t)− L(e2t)] 6= 0 (32)

In this paper I compare all the estimated MIDAS models against the best performing
GARCH(1,1) model. As it is not clear from the outset which model is superior in which
measure I use two-sided confidence intervals.
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3 Data

3.1 Theoretical data considerations

Poon and Granger (2003) do an overview of 93 papers published about volatility forecasting.
They state that it is well documented that financial time series have “..fat tail distributions
of risky asset returns, volatility clustering, asymmetry and mean reversion, and movements
of volatilities across assets and financial markets”.

Empirical work by Rydberg (2000) and others show that security returns tend to have
heavier tails than the Gaussian distribution, that distributions sometimes are skewed, exhibit
volatility clustering, there exists a leverage effect and returns show some seasonality. The
heavier tail in practice means that extreme events are more common than what we would
expect under a normal distribution. Rydberg (2000) shows that the skew of the return
distribution is slightly negative meaning that large negative returns are more prevalent than
large positive returns. One stated reason for this could be that investors are more influenced
to negative information. She also states that the negative skew is prevalent in high frequency
data. Volatility clustering, as the name alludes, refers to the property of larger changes in
returns to appear in clusters in the data. This property is also called a long memory and
is what makes the absolute returns and squared returns correlated over time. According to
Rydberg (2000) the persistence of the long memory is stronger in absolute returns than it is
in squared returns. The seasonality she refers to mainly stem from the fact that exchange
traded securities only trade in a specified time window each day and that the exchange
generally is closed in between which generates so called overnight effects in the data.

The leverage effect describes that volatility is negatively correlated with returns and was
initially described by (Black 1976 and Christie 1982). The reason for this effect is that when
asset prices decline the assets decrease but the loans do not, thus increasing the leverage.
Leverage is generally perceived as risky meaning that as the leverage increase so does the
risk. This is then directly translated to an increase in variance.

3.2 The collected data

The data used is the CRSP U.S. Mega cap Index collected from the Wharton Research
Data Services (WRDS). The dataset is a second by second intraday dataset measuring the
total return of the top 70% publicly investable US equity market as measured by market
capitalization. The quotes that make up the index are collected from NYSE, NYSE MKT,
NASDAQ, and NYSE Arca stock exchanges and include common stock, certificates and
ADRs. The index measures total value and is adjusted for dividends. The data set collected
stretch from 2012-12-07 to 2016-06-30 and the trading data is collected between 9:30 and
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16:00 every trading day with the exception of 9 trading days where the exchange closed at
13:00. These dates are: 2012-12-24, 2013-07-03, 2013-11-29, 2013-12-24, 2014-07-03, 2014-
11-28, 2014-12-24, 2015-11-27, and 2015-12-24. This means that they are spread out widely
across the sample and should have a fairly small impact on the study as a whole. There
are two alternatives with regards to how to deal with these missing values. The first is to
drop them and proceed without them as including them would generate problems with the
MIDAS forecasting. However, removing them will also obviously affect the autocorrelation
function and I will therefore include them in the sample. When calculating the intraday high
frequency returns I sample the data from these dates at a higher frequency to make sure
that I have the same number of intraday observations as the other days. For example, in
the 5 minute case the data would be sampled 78 times in an ordinary day. This means that
for the shorter trading day I divide the 9:30 to 13:00 trading window into 78 segments and
sample at this higher frequency of 2 minutes and 42 seconds between observations. Some
observations are rounded and thus sampled at 2 minutes and 41 seconds to make sure that
the trading day sums up to exactly 3 hours, 30 minutes.

The dataset contains 897 daily observations. From here on in the data section I will refer to
observations rather than dates as they are of little importance for the statistical tests.

I begin by plotting the asset value over time. As can be seen in figure 3 the observed period
saw a large increase in index price. The process appears to have some positive trend. If
the trend is stochastic, as I suspect it to be due to the nature of financial time series as
explained by Enders (2015), differencing should be able to solve this problem. There are
also some very large swings in asset prices towards the later part of the time series which
possibly could indicate a structural break in the data. This will be examined further in the
results section.
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Figure 3: The CRSP mega cap returns

I then create three new datasets using the intraday data. All observations between 09:30 and
16:00 in an interval of 5, 15 and 30 minutes are collected and split of into the new datasets.
A fourth time series including the daily observations is also kept.

Using a lagged vector I calculate the log returns for all four time series using the methodology
described earlier. At this point I also calculate the realized variance using squared intraday
returns sampled at 15 minutes. These will be used as my reference variance when evaluating
the different models.

Next I look at the daily logarithmic returns. They are plotted as a time series in figure 4.
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Figure 4: Logarithmic returns plotted over time

The daily log-returns look a lot more like a stationary time series than the original asset
prices. The mean appears to be approximately zero and no linear trend can be visually
identified in the data. Perhaps there is a structural break in the time series with the later
part having higher variance but this will have to be tested before any conclusions can be
drawn.

4 Results

4.1 Results of data processing

I begin by testing the data series for the presence of a unit root using the ADF methodology.
The model is estimated using trend with drift and 10 lags. I reduce the lags until all the lags
are significant which reduces the model to a total of 3 lags. Next I calculate the values of φ2

and φ3 to determine if I should proceed using the random walk, drift or trend specification.
With this sample the significant values at the 1% level are:

φ2, 1% = 6.09 (33)
φ3, 1% = 8.27 (34)
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The observed values are:

φ2, Obeserved = 88.55 (35)
φ3, Obeserved = 132.82 (36)

I am thus able to reject the null hypothesis of both no trend and no drift and I continue
proceed to test for τ3 using the trend model.

The observed τ3, Obeserved is -16.32 which is to be compared against the critical τ3, 1% = −3.96.

The test is highly significant and I am able to reject the null hypothesis of a unit root being
present. The process appears to be stationary.

I create a QQ-plot which can be seen in figure 5 to check the normality of the data. I do this
in order to determine what type of error structure I should use in my GARCH modeling.

Figure 5: QQ-plot of the logarithmic returns

The daily log returns appear to be approximately normal but with somewhat heavy tails
and a little skew to the right. This suggests that using a skewed t-distribution might be
valuable when estimating a GARCH model for this dataset.

28



Figure 6: Histogram of the logarithmic returns

Looking at the histogram in figure 6 it is hard to tell if the data is skewed. The mean is
0.0517 and the median is 0.068 indicating that the data is slightly skewed to the left. The
non-zero mean also indicates that an intercept might prove useful when modeling the mean.

There is a huge outlier where the asset prices fell dramatically between 09:30 and 10:00 on
the 24th of august 2015. The outlier is due to what is called the “flash crash” of 2015. The
effect of this crash is less prominent in the daily data than in the high frequency data and
corresponds to observation 682.

I continue by examining the autocorrelation in the data by plotting the autocorrelation
function (ACF) and partial autocorrelation function (PACF) in figure 7.
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Figure 7: ACF and PACF of the logarithmic returns

Neither ACF nor PACF show any indication of autocorrelation which is expected for the
return series given the assumption of returns following a random walk. One observation in
the ACF and PACF is outside the confidence interval but this is likely due to chance given
that the lags before the observation are insignificant. This suggests that the mean process
will be modeled well with only an intercept.

I use auto.arima function in R to confirm my choice. In doing this I am aware that the model
can become over fitted but I think that it is good to see it agrees with my model selection.
Auto.arima also picks a model with only an intercept (meaning that it is the model with
lowest AIC).

Next I model the mean process with only an intercept; which is equal to an ARMA(0,0)
process. The estimated model has an intercept of 0.0517.

I check the ACF and PACF in the ARMA(0,0) residuals and it again shows no indication
of autocorrelation or that they have changed. The ACF and PACF plots have not changed
since I have not directly touched the autocorrelation process but only slightly adjusted the
mean of the process through adding the intercept.

I now run three Ljung-Box tests to confirm there is no autocorrelation left. I test 12, 8 and
4 lags. They are all insignificant which confirms what was seen in the diagnostic plots. The
result of the Ljung-Box test can be seen in table 1.
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Lags Q statistic P-value
4 4.376 0.375
8 4.947 0.7633
12 7.632 0.8132

Table 1: Significance of the Ljung-Box test

4.1.1 Checking for structural breaks in the mean

Using the ARMA(0,0) model that appear to be correctly specified I will check for structural
breaks in the mean using a CUSUM test. I start by splitting of the first 30 observations in
the dataset and use these as my estimation window. The data in the estimation window is
used to estimate the parameters of an ARMA(0,0) process with an intercept of 0.1798.

Next I plot ACF and PACF on the model residuals in figure 8.

Figure 8: ACF and PACF of the ARMA(0,0) residuals

The ACF and PACF show no autocorrelation and the model appears to be correctly fitted
to the data.

Next I conduct a Ljung-box test that generates the same results, plotted in table 2.
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Lags Q statistic P-value
4 1.914 0.7515
8 6.324 0.611
12 10.217 0.597

Table 2: Significance of the Ljung-Box test on the ARMA(0,0) residuals

I now use the fitted model to create one step ahead forecasts of the asset returns. Using
the actual returns and the fitted values I calculate an estimation error. Next I calculate
the cumulative sum of the errors and divide it by the standard deviation of the errors to
obtain the CUSUM test statistic. Using the formula provided by Enders (2015) I calculate
the corresponding 5% confidence boundaries. The result is plotted below in figure 9, with
the black series being the cumulative sum of residuals and the red lines being the confidence
intervals.

Figure 9: CUSUM test of the ARMA(0,0) residuals to check for a structural break in the
mean. The black line is the cumulative residuals is the red lines are the 95% confidence
intervals of break being present.

The CUSUM test clearly indicates that there is a structural break in the mean present. I
examine a few different breakpoints and conclude that splitting the data between point 174
and 175 generates the best results. Consequently I split the dataset into two parts. I discard
the first 174 observations as the sample does not contain enough data points to adequately

32



fit a GARCH model, hence no comparison can be made using this sample. This leaves 723
observations.

I redo the all the above tests up to the CUSUM test for the remaining data and all the
characteristics of the dataset are unchanged.

Next I redo the CUSUM test to check for a structural break in the mean. The result is no
longer significant meaning that no structural break in the mean can be found. The test is
plotted in figure 10.

Figure 10: CUSUM test of the ARMA(0,0) residuals in the reduced sample to check for a
structural break in the mean. The black line is the cumulative residuals and the red lines
are the 95% confidence intervals of break being present.

4.1.2 Checking for structural breaks in the variance

I start by estimating an ARMA(0,0) model using all the remaining data. I then square the
residuals and check for any GARCH effects. The GARCH effects are examined by looking
for significance in the ACF and PACF of the squared residuals in figure 11.
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Figure 11: ACF and PACF of the squared residuals. No GARCH effect is present.

There appears to be a significant GARCH effect in the squared residuals. I now try to model
these GARCH effects with a GARCH(1,1) model. I use the GARCH(1,1) as this is the most
parsimonious model and the model most easily modeled.

I collect the conditional squared residuals of the mean process and the conditional variance
of the ARMA(0,0)-GARCH(1,1) process using a skewed t-distribution as the conditional
distribution. Next I subtract the conditional variance from the squared residuals and check
if there is any unaccounted GARCH effect left in the sample by checking ACF and PACF in
figure 12.
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Figure 12: ACF and PACF of the squared residuals, also known as the GARCH effect.

The procedure appears to have removed most of the significant GARCH effects. At lag 5
some autocorrelation remains and I try a few different model specifications but it does not
improve upon the selected model.

Next I divide the squared residuals by the conditional variance. From here on I will call
these the estimation error.

Using the estimation error I calculate the Lee et al (2004) test statistic and corresponding
p-value of the hypothesis of no structural break. The CUSUM of the GARCH(1,1) residuals
is plotted in figure 13.
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Figure 13: The cumulative sum of the GARCH(1,1) residuals.

The observed test statistic and corresponding confidence level of the Lee et al (2004) test
for a structural break in the variance is listed in table 3.

Observed T 1.062
P-value 0.209
Suggested break point 461

Table 3: The result of the Lee et al (2004) test for structural breaks in the mean

The result is not significant at the 10% level. I therefore conclude that the null hypothesis
of no structural break cannot be rejected, meaning that there is no evidence of structural
break in the variance and no further action is needed.
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4.2 Results of model estimation

The evaluated GARCH models can be found in table 4.
G
A
R
C
H
(1
,1
)

MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Normal 2.85 964.8 9.50 3.60 0.74 4.34
t 2.82 963.4 9.71 3.61 0.74 4.34

Skewed t 2.81 963.0 9.46 3.58 0.74 4.34

Table 4: The scoring of the GARCH(1,1) models

The skewed t-distribution generate the smallest errors among the GARCH models but the
difference is relatively small and the models perform relatively similar. It is worth noting
that the QLIKE statistic is especially high when compared against the MIDAS models
below. The high QLIKE loss function indicates that the model is underestimating the
risk (volatility) of the assets compared to the MIDAS model. The high R2LOG function
indicates that it has fewer really good estimates compared to the MIDAS regression. The
GARCH model on the other hand scores comparatively well in MSE1 and MSE2 indicating
that the model on average is more accurate than most of the MIDAS models. The skewed t-
distribution generates the best results out of the three tested specifications. This is expected
given the observed data distribution presented earlier.

Lag Frequency MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Tw
o
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1 Day 5 min 9.53 21065.6 5.95** 3.82 0.91 13.65
15 min 5.99 6378.9 4.70** 3.18 0.81 9.29
30 min 3.47 1141.2 4.40* 3.33 0.79 5.43

5 Day 5 min 10.16 24465.7 6.00** 3.83 0.92 14.42
15 min 4.95 3633.2 5.89*** 3.50 0.82 7.87
30 min 3.47 1142.4 4.43* 3.33 0.79 5.43

20 Day 5 min 10.64 27247.2 6.25** 3.86 0.92 15.02
15 min 2.81 948.5 5.68*** 3.33 0.72 4.20
30 min 3.43 1124.4 4.59* 3.35 0.79 5.34

50 Day 5 min 13.03 43034.0 6.74* 3.92 0.96 17.91
15 min 5.27 4514.2 5.97*** 3.45 0.83 8.41
30 min 3.46 1138.7 4.88* 3.41 0.80 5.38

Significance level: *p < 0.05, **p < 0.01, ***p < 0.001

Table 5: The scoring of the MIDAS models using exponential Almon distrbuted lag functions
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The MIDAS models using the two parameter exponential Almon distributed lag structure
performed better than the GARCH model when looking at the QLIKE loss function indi-
cating that the MIDAS models do not underestimate the variance to the same extent as the
GARCH model. InMSE1,MSE2,MAE1 andMAE2 the GARCH models performed better
than 8 out of the 12 tested MIDAS models using exponential Almon distributed lag struc-
tures. The MIDAS model with exponential Almon lag appears to work best with the data
sampled at 30 minutes in this sample with the exception of the 20 day lag length sampled in
intervals of 15 minutes that perform very well. Other than this 15 minute data appears to
perform somewhat worse than the 30 minute data. In both cases the 20 day estimation win-
dow performs best. The 5 minute data performs worst out of the three sample frequencies.
In fact, the 5 minute data does not improve on the GARCH models in any of the measured
areas. All in all sample frequency appears to be much more important than the length of
the lag structure when it comes to predictive performance.

Lag Frequency MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Tw
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1 Day 5 min 16.40 70993.6 5.96** 3.67 0.97 21.86
15 min 3.12 955.9 6.09 4.01 0.77 4.27
30 min 3.09 956.6 6.10 3.96 0.74 4.11

5 Day 5 min 10.16 24465.7 6.00** 3.83 0.92 14.42
15 min 4.86 3621.9 5.31** 3.69 0.85 7.94
30 min 4.06 1488.2 6.36*** 4.04 0.83 5.83

20 Day 5 min 10.64 27247.2 6.25** 3.86 0.92 15.02
15 min 4.89 3683.8 5.51** 3.71 0.85 7.98
30 min 4.06 1494.3 6.61*** 4.07* 0.84 5.84

50 Day 5 min 13.03 43034.0 6.74* 3.92 0.96 17.91
15 min 5.22 4503.3 5.89** 3.77 0.87 8.49
30 min 4.10 1535.5 7.08** 4.13* 0.85* 5.91

Significance level: *p < 0.05, **p < 0.01, ***p < 0.001

Table 6: The scoring of the MIDAS models using beta distrbuted lag functions

The normalized beta lag distribution performs similar to the exponential Almon distributed
lags. The main difference being that the best forecasts are done in the 1 day estimation
window using data sampled at 30 minutes and that the 20 day lag length sampled at 15
minutes does not perform as well.

Located in Appendix in tables 7 and 8 are the DM statistics where the MIDAS forecast
errors are compared against the GARCH(1,1) model with skewed t-distribution across all
loss functions. Only the QLIKE loss function is significantly better among the MIDAS
models when measured over the whole sample of forecast errors. In no other loss function

38



are the MIDAS models predictive ability significantly different from the GARCH model.

To extend the analysis I drop the first 50 forecast errors and recalculate the DM statistic.
I do this to create a sample that is less affected by the initial jump in variance caused by
the flash crash. The new DM statistics can be found in table 9 and 10 located in Appendix.
When measuring across this new calmer period it is clear that the GARCH model performed
significantly better than the MIDAS models in MSE1 and MSE2 but that it still performed
worse when using the QLIKE loss function.

Plotted below in figure 14 are the forecast errors from the GARCH model using the skewed
t-distribution and the 20 day exponential Almon distributed MIDAS lag model sampled at
the 15 minute frequency for comparison.

Figure 14: Forecast error generated by the GARCH(1,1) model estimated using a skewed t
distribution

Much of the total error in the GARCH model comes from the first few observations surround-
ing the flash crash. When measuring in MSE1 about 72% of the total squared errors arise
in the first 15 observations. The GARCH models poor ability to account for the persistence
of the volatility shock is what makes the GARCH model perform so much worse compared
to the other models in the QLIKE scoring.

In comparison the MIDAS model is much quicker to adjust to the shock and has a shorter
period of negative forecasting errors following the shock. This is well illustrated by the
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forecast errors produced by the 20-day lag exponential Almon model using data sampled at
15 minutes plotted in figure 15

Figure 15: Forecast error generated by the MIDAS model estimated using exponential Almon
distributed lags

The 15 minute realized variance and the squared returns plotted around the volatility shock
can be found in figure 16 located in appendix.

5 Conclusions

The strength of the GARCH model lies in its ability to produce a small mean square error.
However, the nature of the GARCH model also makes it prone to underestimate the persis-
tence of a temporary volatility shock. Since the GARCH model relies on squared returns for
estimating the variance it is able to capture intraday volatility which puts it at a disadvan-
tage in cases where the intraday volatility is high but the difference in open and close price
is small.

This can have important economic consequences in for example value at risk estimations.
However, as long as the practitioner is aware of this it is a weakness that is fairly easy to
compensate for given that the poor estimates only happen after the fact of a large volatility
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spike which gives time to adjust. Although slightly different studies the general result that
the MIDAS model performs better in periods of high volatility is in line with the findings of
Emre Alper et al (2012) and Çelik and Ergin (2013).

Another important weakness of the GARCH model is the requirement of a long estimation
window. First, this can produce problems in datasets with limited data. Second, it is also
much less flexible to potential parameter changes that can be difficult to detect in real time.
This is especially troubling when forecasting volatility as it is a historic measure that only
can be observed after the fact, meaning that a structural break only can be found after some
time has passed. A model using a shorter estimation window is much more able to adjust
to parameter changes.

The GARCH problem of requiring a long estimation window of course has to be set in
relation to the MIDAS models problem of requiring a data series that is sampled at a higher
frequency. Although the high cost might not be a very large obstacle for practitioners at
financial insinuations it is considerable for the academic researcher.

A difficulty in the MIDAS methodology is picking the correct lag length. The result of this
study is somewhat of a mixed message. In this study the beta distributed lag function per-
formed well with shorter estimation window (1-day) while the exponential Almon distributed
lag function performed better with longer estimation windows (5 and 20 days). It is hard
to know if this is general property of the MIDAS model or if it originates from some sample
property.

I believe this study has shown that MIDAS modeling of variance using data sampled at a
frequency of 30 minutes can produce fairly good forecasts using a wide range of lag structures.
At the same time the 15 minute 20-day exponential Almon model does also show how superior
a model can perform if the lag-length and lag distribution is correctly specified.

Further, the poor performance of the models using data sampled at the 5 minute frequency
indicates that this is too high a sampling frequency and that there is microstructure noise
present or that the lag structure follow some specification that cannot be modeled by two
parameter exponential Almon or beta distributions.

The sample frequency appears to be the most important factor when deciding on what model
to use in MIDAS modeling as this appears to dictate the predictive performance more than
any other factor.

In this sample the 20 day lagged and 5 day lagged models performed better forecasts than
the longer 50 day estimation window. This is in contrast with what other researchers such
as Ghysels et al (2006) and of Emre Alper et al (2012) have found. This could possibly be
due to the large spike in variance following the flash crash that favors models with shorter
estimation windows that are quicker to adapt to changing circumstances.
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6 Further research

A natural extension of this study would be to include absolute returns to see how they
perform in the MIDAS setting. This would be interesting given the that several sources state
that absolute returns have more explanatory power than the squared returns used in this
study. Forsberg and Ghysels (2007) show that “absolute return-based volatility measures
have the most desirable population prediction properties” in a MIDAS setting. Further,
Ghysels et al. (2006) find that intra-daily absolute returns are the best predictors over all
horizons and thereby contain the most information to be utilized by the MIDAS model.

Another interesting research idea would be to further compare model properties using a
Monte Carlo study with simulated shocks in the variance. This would help to further illus-
trate the abilities and disadvantages of the different approaches in several settings.

7 References

Articles

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle.
In B. N. Petrov & F. Caski (Eds.),Proceedings of the Second International Symposium on
Information Theory (pp. 267–281). Budapest: Akademiai Kiado.

Andersen, Bollerslev, Diebold, & Ebens. (2001). The distribution of realized stock return
volatility. Journal of Financial Economics, 61(1), 43-76.

Andersen, T., Bollerslev, T., Diebold, F., & Labys, P. (2003). Modeling and Forecasting
Realized Volatility. Econometrica, 71(2), 579-625.

Andersen, Bollerslev, & Meddahi. (2011). Realized volatility forecasting and market mi-
crostructure noise. Journal of Econometrics, 160(1), 220-234.

Andersen, Torben G., & Bollerslev, Tim. (1998). Answering the skeptics: Yes, standard
volatility models do provide accurate forecasts.(Symposium on Forecasting and Empirical
Methods in Macroeconomics and Finance). International Economic Review, 39(4), 885.

Andreou, E., Ghysels, E., Franses, Philip Hans, & Mcaleer, Michael. (2002). Detecting
multiple breaks in financial market volatility dynamics. Journal of Applied Econometrics,
17(5), 579-600.

Andreou, Ghysels, & Kourtellos. (2010). Regression models with mixed sampling frequen-

42



cies. Journal of Econometrics, 158(2), 246-261.

Armesto, M., Engemann, Kristie M, & Owyang, Michael T. (2010). Forecasting with mixed
frequencies. Review // Federal Reserve Bank of St. Louis, 92(6), 521-536

At-Sahalia, Y. (2005). How Often to Sample a Continuous-Time Process in the Presence of
Market Microstructure Noise. The Review of Financial Studies, 18(2), 351-416.

Awartani, B., Corradi, V., & Distaso, W. (2009). Assessing Market Microstructure Effects
via Realized Volatility Measures with an Application to the Dow Jones Industrial Average
Stocks. Journal of Business & Economic Statistics, 27(2), 251-265.

Barndorff-Nielsen, O., & Shephard, N. (2002). Econometric analysis of realized volatility and
its use in estimating stochastic volatility models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 64(2), 253-280.

Brown, R., Durbin, J., & Evans, J. (1975). Techniques for Testing the Constancy of Regres-
sion Relationships over Time. Journal of the Royal Statistical Society. Series B (Method-
ological), 37(2), 149-192.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of
Econometrics, 31(3), 307-327.

Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices
and rates of return. The Review of Economics and Statistics, 69(3), 542-547.

Black, F., (1976). Studies of stock price volatility changes. In: Proceedings of the 1976
Meeting of the American Statistical Association. pp. 171–181.

Çelik, & Ergin. (2014). Volatility forecasting using high frequency data: Evidence from
stock markets. Economic Modelling, 36, 176-190.

Christie, A. A., (1982). The stochastic behavior of common stock variances: Value, leverage
and interest rate effects. Journal of Financial Economics 10, 407–432.

Chow, G. (1960). Tests of Equality Between Sets of Coefficients in Two Linear Regressions.
Econometrica, 28(3), 591-605.

Day, T., & Lewis, C. (1992). Stock Market Volatility and the Information Content of Stock
Index Options. Journal of Econometrics, 51(1,2), 267.

Dickey, D. (1984). Testing for Unit Roots in Autoregressive-Moving Average Models of
Unknown Order. Biometrika, 71(3), 599-607.

Dickey, D., & Fuller, W. (1979). "Distribution of the Estimators for Autoregressive Time

43



Series With a Unit Root" (T&M). Journal of the American Statistical Association, 74(365),
427.

Dickey, D., & Fuller, Wayne A. (1981). Likelihood ratio statistics for autoregressive time
series with a unit root. Econometrica : Journal of the Econometric Society, an Internat. So-
ciety for the Advancement of Economic Theory in Its Relation to Statistics and Mathematics,
49(4), 1057-1072.

Diebold, F., & Mariano, R. (1995). Comparing Predictive Accuracy. Journal of Business &
Economic Statistics, 13(3), 253-263.

Diebold, F. (2015). Comparing Predictive Accuracy, Twenty Years Later: A Personal Per-
spective on the Use and Abuse of Diebold–Mariano Tests. Journal of Business & Economic
Statistics, 33(1), 1.

Emre Alper, Fendoglu, & Saltoglu. (2012). MIDAS volatility forecast performance under
market stress: Evidence from emerging stock markets. Economics Letters, 117(2), 528-532.

Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the vari-
ance of United Kingdom inflation. Econometrica : Journal of the Econometric Society, an
Internat. Society for the Advancement of Economic Theory in Its Relation to Statistics and
Mathematics, 50(4), 987-1007.

Engle, R., & Bollerslev, T. (1986). Modelling the persistence of conditional variances. Econo-
metric Reviews, 5(1), 1-50.

Engle, R. (2001). GARCH 101: The Use of ARCH/GARCH Models in Applied Economet-
rics. Journal of Economic Perspectives, 15(4), 157-168.

Fama, E. (1971). Efficient capital markets: A review of theory and empirical work. Frontiers
of Quantitative Economics, 309-361.

Foroni, C., Marcellino, M., & Schumacher, C. (2015). Unrestricted mixed data sampling
(MIDAS): MIDAS regressions with unrestricted lag polynomials. Journal of the Royal Sta-
tistical Society: Series A (Statistics in Society), 178(1), 57-82.

Forsberg, L., & Ghysels, E. (2007). Why Do Absolute Returns Predict Volatility So Well?
Journal of Financial Econometrics, 5(1), 31-67.

Ghysels, E., Santa-Clara, P., & Valkanov, R. (2004). The MIDAS Touch: Mixed Data
Sampling Regression Models. IDEAS Working Paper Series from RePEc, IDEAS Working
Paper Series from RePEc, 2004.

Ghysels, Santa-Clara, & Valkanov. (2006). Predicting volatility: Getting the most out of
return data sampled at different frequencies. Journal of Econometrics, 131(1), 59-95.

44



Ghysels, E.; Kvedaras, V.; Zemlys, (2016) V. Mixed Frequency Data Sampling Regression
Models: The R Package midasr. Journal of Statistical Software, Volume 72, Issue 4.

Ghysels, E., Valkanov, R. and Serrano, A.R., Multi-Period Forecasts of Volatility: Direct, It-
erated, and Mixed-Data Approaches (February 16, 2009). EFA 2009 Bergen Meetings Paper.
Available at SSRN: https://ssrn.com/abstract=1344742 or http://dx.doi.org/10.2139/ssrn.1344742

Hansen, P., & Lunde, A. (2005). A forecast comparison of volatility models: Does anything
beat a GARCH(1,1)? Journal of Applied Econometrics, 20(7), 873-889.

Hansen, P., & Lunde, A. (2006). Realized Variance and Market Microstructure Noise. Jour-
nal of Business & Economic Statistics, 24(2), 127-161.

Hudson, & Gregoriou. (2015). Calculating and comparing security returns is harder than
you think: A comparison between logarithmic and simple returns. International Review of
Financial Analysis, 38, 151-162.

Hwang, S., & Valls Pereira, P. (2006). Small sample properties of GARCH estimates and
persistence. The European Journal of Finance, 12(6-7), 473-494.

Inclán, C., & Tiao, G. (1994). Use of Cumulative Sums of Squares for Retrospective De-
tection of Changes of Variance. Journal of the American Statistical Association, 89(427),
913-923.

Kim, S., Cho, S., & Lee, S. (2000). On the Cusum test for parameter changes in garch(1,1)
Models. Communications in Statistics - Theory and Methods, 29(2), 445-462.

Lee, S., Tokutsu, Y., & Maekawa, K. (2004). The Cusum Test for Parameter Change
in Regression Models with ARCH Errors. JOURNAL OF THE JAPAN STATISTICAL
SOCIETY, 34(2), 173-188.

Ljung, G., & Box, G. (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika,
65(2), 297-303.

Meucci, A. (May 1, 2010). Quant Nugget 2: Linear vs. Compounded Returns – Common
Pitfalls in Portfolio Management GARP Risk Professional, pp. 49-51, April 2010 . Available
at SSRN: https://ssrn.com/abstract=1586656

Nelson, & Plosser. (1982). Trends and random walks in macroeconmic time series: Some
evidence and implications. Journal of Monetary Economics, 10(2), 139-162.

Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis. Econo-
metrica : Journal of the Econometric Society, an Internat. Society for the Advancement of
Economic Theory in Its Relation to Statistics and Mathematics, 57(6), 1361-1401.

45



Ploberger, Werner, & Kramer, Walter. (1992). The CUSUM test with OLS residuals.
(ordinary least squares). Econometrica, 60(2), 271.

Poon, S., & Granger, C. (2003). Forecasting Volatility in Financial Markets: A Review.
Journal of Economic Literature, 41(2), 478-539.

Rydberg, T. (2000). Realistic Statistical Modelling of Financial Data. International Statis-
tical Review, 68(3), 233-258.

Rydberg, T., & Shephard, Neil G. (1998). Dynamics of trade-by-trade price movements
: Decomposition and models (Working paper series / Centre for Analytical Finance 21).
Aarhus.

Schwarz, G. Statist. 6 (1978). Estimating the Dimension of a Model. The Annals of Statistics
no. 2, 461-464. doi:10.1214/aos/1176344136. http://projecteuclid.org/euclid.aos/1176344136.

Books

Bauwens, L. (2012) (Authored by Ghysels et al). Forecasting Volatility with MIDAS. In
Wiley Handbooks in Financial Engineering and Econometrics (pp. 383-401). Hoboken, NJ,
USA: John Wiley & Sons.

Bollerslev, Engle, & Nelson. (1994). Chapter 49 Arch models. Handbook of Econometrics,
4, 2959-3038.

Enders, W. (2015). Applied econometric time series (Applied econometric time series).
Hoboken, NJ: Wiley. 184-192,

46



8 Appendix

Figure 16: The 15-minute realized variance and the squared returns plotted around the
volatility shock
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Lag Frequency MSE1 MSE2 QLIKE R2LOG MAE1 MAE2
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1 Day 5 min 1.05 1.00 -2.98 1.06 1.14 1.01
15 min 1.15 1.01 -2.94 -1.79 0.74 1.07
30 min 1.68 1.07 -2.43 -1.03 1.06 1.34

5 Day 5 min 1.05 1.00 -2.94 1.11 1.14 1.01
15 min 1.26 1.02 -3.89 -0.36 1.16 1.12
30 min 1.68 1.07 -2.42 -1.00 1.07 1.34

20 Day 5 min 1.04 1.00 -2.89 1.25 1.15 1.01
15 min -0.01 -0.91 -4.19 -1.29 -0.72 -0.79
30 min 1.65 1.06 -2.38 -0.96 0.97 1.25

50 Day 5 min 1.03 1.00 -2.58 1.56 1.16 1.01
15 min 1.19 1.02 -4.31 -0.60 1.13 1.11
30 min 1.63 1.06 -2.26 -0.72 1.08 1.25

Table 7: The t-statistic from the DM tests when comparing the exponential Almon dis-
tributed lag functions against the GARCH model with skewed t-distribution using the full
sample. Positive values indicate that GARCH performed better while negative values indi-
cate that the compared MIDAS model performed better.

Lag Frequency MSE1 MSE2 QLIKE R2LOG MAE1 MAE2
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1 Day 5 min 1.02 1.00 -2.72 0.44 1.04 1.01
15 min 1.13 -0.30 -1.71 1.60 0.78 -0.22
30 min 0.96 -0.27 -1.96 1.46 0.11 -0.74

5 Day 5 min 1.05 1.00 -2.94 1.11 1.14 1.01
15 min 1.21 1.02 -2.97 0.46 1.60 1.15
30 min 1.70 1.03 -3.44 1.89 1.91 1.09

20 Day 5 min 1.04 1.00 -2.89 1.25 1.15 1.01
15 min 1.20 1.02 -2.95 0.57 1.63 1.15
30 min 1.69 1.03 -3.42 2.04 1.96 1.09

50 Day 5 min 1.03 1.00 -2.58 1.56 1.16 1.01
15 min 1.16 1.02 -2.77 0.80 1.63 1.13
30 min 1.65 1.03 -3.09 2.37 2.08 1.10

Table 8: The t-statistic from the DM tests when comparing the beta distributed lag functions
against the GARCH model with skewed t-distribution using the full sample. Positive values
indicate that GARCH performed better while negative values indicate that the compared
MIDAS model performed better.
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1 Day 5 min 2.64 2.38 -2.52 0.29 0.54 0.41
15 min 1.56 2.11 -2.62 -3.22 -1.97 -1.06
30 min 1.69 1.11 -2.21 -1.76 0.76 1.45

5 Day 5 min 2.64 2.37 -2.49 0.34 0.57 0.43
15 min 1.96 2.21 -3.44 -1.81 -0.66 -0.15
30 min 1.68 1.10 -2.20 -1.74 0.77 1.45

20 Day 5 min 2.64 2.36 -2.44 0.52 0.69 0.50
15 min 2.38 2.28 -3.70 -1.10 0.05 0.59
30 min 1.67 1.10 -2.17 -1.64 0.83 1.46

50 Day 5 min 2.68 2.31 -2.16 1.00 1.03 0.72
15 min 2.00 2.19 -3.89 -1.71 -0.69 -0.37
30 min 1.66 1.09 -2.06 -1.36 0.99 1.47

Table 9: The t-statistic from the DM tests when comparing the exponential Almon dis-
tributed lag functions against the GARCH model with skewed t-distribution after the first
50 forecast errors have been removed. Positive values indicate that GARCH performed better
while negative values indicate that the compared MIDAS model performed better.

Lag Frequency MSE1 MSE2 QLIKE R2LOG MAE1 MAE2
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1 Day 5 min 2.57 2.44 -2.41 -0.08 0.27 0.31
15 min 3.01 2.50 -1.39 1.09 1.66 1.91
30 min 3.00 2.48 -1.54 1.32 1.31 1.35

5 Day 5 min 2.64 2.37 -2.49 0.34 0.57 0.43
15 min 2.71 2.32 -2.53 0.09 1.11 1.55
30 min 2.79 2.30 -2.77 0.94 1.27 1.29

20 Day 5 min 2.64 2.36 -2.44 0.52 0.69 0.50
15 min 2.71 2.30 -2.49 0.23 1.21 1.61
30 min 2.79 2.28 -2.71 1.14 1.39 1.37

50 Day 5 min 2.68 2.31 -2.16 1.00 1.03 0.72
15 min 2.73 2.27 -2.31 0.60 1.49 1.79
30 min 2.83 2.25 -2.34 1.63 1.77 1.62

Table 10: The t-statistic from the DM tests when comparing the beta distributed lag func-
tions against the GARCH model with skewed t-distribution after the first 50 forecast errors
have been removed. Positive values indicate that GARCH performed better while negative
values indicate that the compared MIDAS model performed better.
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