CHALMERS |

UNIVERSITY OF TECHNOLOGY

Children Learning Object Oriented
Programming
A Design Science Study

Bachelor of Science Thesis in Software Engineering and Management

Hampus Gunnrup
Pooriya Balavi

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

D

) CHALMERS |) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

The Author grants to University of Gothenburg and Chalmers University of Technology the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it
accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not
contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants hereby
that he/she has obtained any necessary permission from this third party to let University of
Gothenburg and Chalmers University of Technology store the Work electronically and make it
accessible on the Internet.

Children Learning Object Oriented Programming
A design science study about teaching the elementary concepts of object oriented programming to children
between seven and twelve years old.

Hampus Gunnrup
Pooriya Balavi

© Hampus Gunnrup, June 2017.
© Pooriya Balavi, June 2017.

Supervisor: Dave Stikkolorum
Examiner: Regina Hebig

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:
The image depicts an example view of the proposed artefact, it illustrates an early stage of the game.

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Children Learning Object Oriented Programming

A Design Science Study

Hampus Gunnrup
Department of Computer Science and Engineering
University of Gothenburg
Gothenburg, Sweden
gunnrup @gmail.com

Abstract—The discipline of teaching children is a topic that has
been explored extensively throughout history. There are known
theories about pedagogy which repeatedly have been proven to be
successful, and have been used in countless cases. One area that
remains unexplored, however, is teaching the concepts of object
oriented programming to children. The objective of this report
is to pinpoint the important characteristics of a game addressing
this matter. By the use of a design science approach, the develop-
ment of an artefact is presented. The artefact bases its design on
known theories about children’s learning and elementary notions
of object oriented programming. The evaluation of the artefact is
done by the means of experiments involving seventeen students,
and through analysis of observations, open-ended discussions and
a paper quiz. The results indicate that it is possible to teach
object oriented programming to younger children. The collected
data were categorised in themes that were identified as opinion,
learning outcome and inconclusive findings. Additionally, it is
concluded that incidental learning and traditional methods of
pedagogy are usable in games that teaches programming. The
results will be useful both for the development of similar games,
and for future research.

Keywords-Educational game, object oriented programming,
OOP, children, learning, design science.

I. INTRODUCTION

There are many existing ways for learning to program. They
exist for all experience levels. There are apps, toys and even
board games. The trend of teaching the fundamentals of pro-
gramming to children is rapidly expanding [1]. They focus on
conceptualising the main concepts of programming (e.g. loops,
conditions, if statements and commands). Visual programming
languages teach programming logic and concepts to children
even before they can read. Experiments have shown that often
a complex subject of computer programming is easier to grasp
at younger ages [2]. This notion can be compared to learning
how to ride a bike, learning the fundamental concepts of
programming is easier for children in younger ages.

However, there are very few solutions designed to specifi-
cally teach object oriented programming (OOP) to children.
In this study, there are three tools that are considered as
technological foundations. The first, Scratch [3], teaches pro-
gramming to children from the age of eight years old and up.
Although Scratch fails to introduce OOP, it is a highly popular
and effective tool for learning programming. The second tool,
Alice [4], is similar to Scratch, but introduces OOP. However,

Pooryia Balavi
Department of Computer Science and Engineering
University of Gothenburg
Gothenburg, Sweden
pooriya.balavi @gmail.com

Alice is targeted towards adolescents from twelve years old
and up. Finally, GreenFoot [5], also teaches OOP and is similar
to Alice. Although, GreenFoot uses actual Java code, but in
a simplified manner. GreenFoot targets adolescents fourteen
years old and up. As it is discussed later in the report, none
of the mentioned tools can be considered as games, due to a
lack of an effective feedback mechanisms, reward system and
sense of achievement for the player.

Thus, one fundamental aspect of programming remains
challenging, and partly unexplored, to teach children under
the age of twelve years old. The concept of OOP. This mixed
methods (although mostly qualitative) study, focuses on how to
teach the elementary concepts of object oriented programming
to children in the ages 7-12 years old, through the use of an
interactive game.

A. Purpose

It is argued [6] that conceptualising objects in the real world
and grasping them as components of a system is hard to
grasp, not only for children but also for adults. Object-oriented
systems are composed of objects that cooperate together under
provided regulations to perform the required functionality [7].
It allows the use of data modeling which is the procedure
of formalising a complex software system into manageable
pieces of code [8]. According to Kiczales [9], learning OOP
at a younger age allows a child to develop an abstract-thinking
mentality. That is, to be able to comprehend the concept
of designing components (objects) of a system. Furthermore,
comprehending that these objects may be altered depending
on different contexts, is an important concept that might be
grasped. This type of thinking leads to the skill of being able
to classify objects into groups, formulate their relationships,
comprehend their data types and understanding that a function
(method) is capable of solving a broad range of problems.
According to Krajnovi¢ [10], this would potentially allow
children to think in an algorithmic problem solving and object
oriented manner.

As mentioned, this study explores the feasibility of teaching
some concepts of OOP to children. More specifically, the study
tries to assess whether children in the ages 7-12 years old
can understand the concepts on an abstract level. Rather than

introducing actual programming, the design behind OOP is
taught.

Through the use of a design science approach, an artefact
(prototype of a game) was developed to be tested on a sample
group consisting of children between the ages seven and
twelve. The results were analysed and evaluated qualitatively
and partly quantitatively.

B. Research Question

¢ Main research question:

— RQ 1: How can the elementary concepts of object
oriented programming be taught to children at early
ages?

o Sub-questions

— Sub-RQ 1.1: How do young children react to the in-
troduction of object oriented programming concepts?

— Sub-RQ 1.2: Is incidental learning an effective ap-
proach to teach object oriented programming to
children?

II. BACKGROUND

In the domain of OOP, the metaphor of dwarfs standing on
the shoulders of giants becomes highly relevant, meaning that
going back to the very origin of the paradigm shows what
concepts are important to teach. The languages Simula and
Smalltalk can be seen as being the first adopters of the object
oriented paradigm [11]. As mentioned by Kay [12], the pioneer
of the concept of object orientation, the concept of classes and
instances can be found as early as the 1960s in the paper about
Sketchpad by Sutherland [13].

In this research the scope has been narrowed down to teach
the concepts of classes and instances (objects), due to the
origin of OOP being based on specifically that.

A. Literature Review

In this study, scientific foundations play a major role in
designing the artefact and collection of qualitative data. Chil-
dren’s learning, object oriented programming and game design
principles are the main scientific fields of study which each
are explored in detail throughout the report. Furthermore, the
literature regarding the technological foundations are a vital
part of this research.

B. Object Oriented Programming Paradigm

According to Britton [6], in comparison with procedural
programming, the OOP paradigm can be described as simply
privileging data over action that is in contrast to procedural
programming where a programmer approaches the problem
by decomposing the system into a series of actions often
refereed to as functions. Furthermore, Glasser [14] argues that
the traditional way of programming is looked upon as being
tedious and error prone. This can be due to an excessive
number of repeated code. In OOP, a programmer approaches
a problem by first trying to decompose it into subroutines
of reusable code to avoid writing the same code repeatedly.
This principle allows to dynamically customise the code which

potentially increases the usability, strengthens the maintenance
of the code, boosts the debugging process and improves the
efficiency of the designed software.

Many popular programming languages today are considered
object oriented because they include features which allow or
even encourage the programmer to design their code in an
object oriented style. A few examples of such programming
languages are; Java, C# and C++ which are statically typed
and Javascript, Python and Ruby which are dynamically
typed [15]. In a nutshell, OOP is a way of rationalising that
things can be classified by their attributes and behaviours.
Objects that act as building block of a software system. They
usually tend to represent something from the real world. For
instance, a cat, a car or a human. According to Wu [7], each
object has three main characteristics or properties; identity,
state and behaviour. The identity of an object records its unique
ID that distinguishes it from other objects of the same class
and it is used to invoke a specific object in the code. The state
of an object, also known as attributes, is a representation of
the object’s characteristics and specification (e.g. an object’s
colour, age, name, etc.). Behaviour or methods of an object
is defined as the actions the object can perform. While it is
beyond the scope of this paper to discuss all the features
of the OOP paradigm, other characteristics are; data hiding
(encapsulation), message passing, composition, polymorphism
and delegation.

Additionally, Britton mentions that when programmers use
OOP, they start by identifying the objects of the system,
and from that they are able to create classes that determine
the attributes and functionality. A class is a description for
objects with the same defined set of attributes, behaviours
and relationships. It is a blueprint for creating actual objects.
According to Glasser, an important concept of OOP is object
instantiation, where an instance is created from a class. That
instance gets its own separate fields compared to all other
instances of the same class.

C. Children’s Cognitive Science

Children’s cognitive science is an extensive field of study
where the learning skills and the factors that affect children’s
learning outcomes are analysed [16]. Jean Piaget, a psychol-
ogist who studied young children’s learning abilities [17],
introduced the theory of constructionism where he described
how children are capable of comprehending and forming their
own knowledge during a learning process and the knowledge
does not simply convey from one person to another. In
1980, another visionary educator, mathematician and computer
scientist, Papert [18], extends Piaget’s theory by proposing
the Piagetian learning method which simply means “learning
without being taught”. In this approach [19], Papert believed
that children in their early ages form an understanding of
the world surrounding them and they learn by experiencing
the dissimilarities and contrast of what they knew previously
and the new discoveries around them. Papert pioneered the
use of computers as an aid to learning and argued about the
positive effects of using computational technologies for edu-

cation. Therefore, it is believed that educational programming
games can be used as an invaluable tool to allow children
to think and solve problems in a methodical manner and
help to enhance their cognitive ability; which is the process
of thinking, perceiving and remembering. Additionally, an
effective programming game has to encourage the necessary
characteristics of cognitive development:

1) active engagement,

2) participation in groups,

3) frequent interaction and feedback, and
4) connection to real-world context.

In relation to this research, another important principle
is the Bloom’s hierarchy of cognition that acted as a con-
structive foundation on designing an effective educational
game. Bloom [20], an educational psychologist, established
a model that indicates the key levels of a learning process
into six cognitive levels categorised by their complexity. These
elements have created a solid basis for designing various
types of educational tools and assessment techniques [21].
Bloom’s six categories of educational objective are formed
from the most basic level to the most complex and each layer
is constructed based on the previous one: knowledge, compre-
hension, application, analysis, synthesis, and evaluation [22].
Following these fundamental objectives throughout the design
of the game and assessment methods, provided the foundation
to match the learning goals (OOP paradigm) to the game-play
(intellectual puzzle).

III. MOTIVATION
A. Existing Solutions and Problem Domain

There are many resources to learn programming from.
Various educational games in different platforms focus on pro-
viding this service to children, for instance; Scratch, Kodable,
CodeCombat, Box Island, Bit By Bit and Lightbot Hour are a
few examples of such educational applications. However they
mainly concentrate on the fundamental idea of programming
which is planning, testing, debugging, procedures, sequences,
loops and the overall logic of programming.

After a series of investigations, it was concluded that
there are only three educational tools that can be used as a
technological foundation; Scratch since it solves the issue of
teaching real programming to children eight to twelve years
old, GreenFoot since it teaches OOP and Alice that does the
same as GreenFoot.

The first solution, Scratch, solves the issue of teaching
imperative programming to children. This is done by the use
of colorful visual command blocks that control a 2D world.
The 2D world is composed of a background called the stage
and graphical objects called sprites. By allowing the user to
change the background, create new sprites, and manipulate
properties regarding position and presentation, they are in fact
experiencing programming while having fun. Scratch uses a
minimalistic interface and aims to be self explanatory. There
are no specific goals, hence it is not a game, but rather an

open environment for children of all ages to experiment and
understand the basics of programming. Scratch is not object
oriented (although there is an extensions which is discussed
later in the report, that brings object oriented concepts to
Scratch) and barely introduces procedures as a concept. It
focuses more on what Resnick and Rosenbaum [23] define
as tinkerability, “a playful, experimental, iterative style of
engagement, in which makers are continually reassessing their
goals, exploring new paths, and imagining new possibilities”.

GreenFoot, another existing solution, uses actual code but
simplifies the learning by eliminating the need to initially
write any. Users can easily create a scenario with minimal
functionality, yet still experience the concept of object orien-
tation. They can also experiment with existing scenarios, and
learn in a scaffolding manner. GreenFoot focuses on students
from around fourteen years old and, like Scratch, uses a
two dimensional environment that the students can interact
with. GreenFoot does not aim to create a gentle introduction
for younger children. Rather, it intends to remove the less
important administrative tasks, such as the need of a main
method, and puts the focus on OOP.

The final existing solution, Alice 3.3, is an open-source
game that is targeted towards middle school and up, as well
as university students who want to learn OOP fundamentals
through 3D animations. The game-play is designed in a
way that resembles the real world and how students interact
with the objects around them. The game’s interactive IDE
allows drag-and-dropping various objects into a scenario and
assigning properties and commands to each of them. The
player can run the animation they created and observe the
result by visualising the scenario. According to a research [24]
done on Alice, the tool’s incremental construction approach,
aims to not only illustrate the concepts of objects and classes
in an OOP manner but also contextualise the required pseudo-
code to develop designs via open-ended assignments [25].

B. Gap in the Existing Solutions

All of the mentioned technological foundations use an
intuitive visual approach. However, Scratch, which addresses
a younger audience (from eight years old) compared to the
other two technologies, lack the possibility of introducing OOP
concepts. One might argue that Scratch contains OOP since
the extension, Snap! [26], introduces it. While this is true, it
removes one of the key features of Scratch, its accessibility
towards younger children. According to Harvey et al., Snap!
targets ages of fourteen and above which overlaps with Alice
and GreenFoot.

GreenFoot tries to solve the problem of teaching OOP in a
more concise and comprehensible manner, but addresses older
teens instead of younger children. It is commonly used in
high school or college courses, or even introductory university
courses.

Even though Alice’s interactive environment makes it one
of the best available tools for learning OOP it still has a few
noticeable drawbacks. Complex style nature of Alice may not
be suitable for all students as not everyone has the same set

of knowledge and abilities. Alice 3.3 encourages the learner
to solve problems by exploring a simulated environment,
however this may bore the learner as there are no tasks to
achieve and the reward system is almost non existing which
may lead to a shorter attention span. Furthermore, despite its
unique context for understanding OOP paradigms, it cannot be
classified as a game. Alice’s lack of feedback, a reward system
and a sense of accomplishment diminishes its relation to the
category of educational games [27]. This could potentially
have a negative impact on the pedagogical contribution of the
game.

All three of these examples bring their part to the world
of teaching programming to beginners of all ages. Although,
there is a noticeable gap. Namely the problem of teaching
OOP to young children (younger than 12 years old). The
improvement would be to use the learning goals and outcomes
of the existing solutions that teaches OOP, but in a simplified
manner that can be understood by a previously unexplored
target group; children in the ages six to twelve. Moreover, the
existing solutions all present an environment where students
can can play around and become familiar with the concepts,
rather than solving specific tasks and getting feedback. There-
fore, a further improvement would be to implement tasks that
the user can complete and give rich feedback that clearly
shows what does and does not work in regards to teaching
OOP to children.

C. Characteristics of an Educational Game

Every individual has a different level of skills when it
comes to reading, thinking and absorbing information. It is
argued [16] that using a game as a learning tool does not
require the same level of cognitive skills. This is due to the
different experiences that each learner faces by playing the
game as well as the diverse learning outcomes that it brings.
Educational games have become a powerful way of learning.
According to numerous researchers [27], an effective educa-
tional game is capable of encouraging learners to solve tasks
through the exploration of simulated environments. While it is
argued [28] that having fun when playing an educational game
can lead to better learning outcomes, the characteristics of such
games strive for a balance between the learning objectives and
enjoyment. Furthermore, a competent educational game should
provide challenges, support and feedback throughout the game.
The presence of a reward system in the game for completion
of tasks can significantly increase the competitiveness of the
game and give a sense of motivation as the learners will
try to to beat the game or the previous high scores. Hence
implementing a challenging reward mechanism is an essential
feature of any game [22]. Another important aspect of educa-
tional games is the concept of incidental (indirect) learning.
In this context, incidental learning is described as when young
learners do not necessarily know they are obtaining knowledge
by playing a game [27].

Gee, a psycholinguistics educator, argues [16] the impor-
tance of connectionism (i.e. discovering patterns in our expe-
riences) in educational games. He strongly stresses that human

beings are great at recognising patterns and by following this
principle, even challenging concepts can be taught to learners.
According to Gee’s research and personal experience, people
often do not contemplate best when they try to reason via
theoretical (general abstract principles) learning and on the
other hand contemplate best when they reason via experimen-
tal learning (patterns they picked up from actual experiences).

In this research, the development of the game design
documentation (GDD) began at the early stages of the study
and its content gradually increased. GDD [28] is a scheme
for designing any type of game. Through the use of this
documentation technique, important aspects of the game were
planned and stored before developing the artefact. Aspects
such as; the game-play description, the game’s purpose and
its educational outcomes, the demographic (targeted group
of users), its software architecture, the requirements, use-
case scenarios and UML diagrams, audio requirements (voice
recordings and its analysis) and the overview of all levels of
the game.

Through the use of situated cognition and the adaptation of
connectionism theory and incidental learning, the elementary
concepts of OOP were illustrated in the game. By visualising
where young learners can understand and build the mental
model of the OOP paradigm [29]. Additionally, the designed
game is comprised of an interactive feedback mechanism, fun
game-play and a basic reward system which categorises the
game in the group of educational games.

D. Proposed Solution and its Disadvantage and Advantages

Despite three existing tools, there is still a notable lack of
resources on teaching OOP to children. One possible factor
could be the difficulty of the subject and the lack of research
within the field. The researchers of this study aimed to fill this
gap by attempting to create a prototype of a game that teaches
the elementary concepts of OOP. Although, it is important to
consider all advantages and drawbacks of the research. They
are defined as follows.

Advantages:

o The proposed game is considerably simpler to interact
with. It follows storytelling and task-based scenarios to
visualise the difficult notion of OOP to young children.
Compared with other solutions that use an open environ-
ment for the students to play around with and learn the
concepts from.

o The game’s interaction with the children will be through
visualisation of objects and classes in a fun and inter-
active manner. Additionally, the game largely relies on a
voice that narrates a story, defines the tasks for the players
and motivates them when they accomplish tasks.

o The existing solutions often require a supervisor/teacher
that aids the children in the process. Our solution may not
require an adult to the fullest extent as the voice guides
the child throughout the game.

o Through the use of the voice, a feedback mechanism was
implemented, notifying the users who do not follow the
defined tasks or click on the wrong section of the page.

o The game may increase female interest in computer
science, which ultimately improves the gender quotation
within the field.

e Such an educational game is capable of invoking chil-
dren’s critical and computational thinking, which im-
proves the overall cognitive abilities of children and
shape the essential way of reasoning and problem-solving
required to learn how to program [30].

o By introducing the concept of OOP to children, they are
familiarised with a widely-used programming method.
Compared to procedural programming, OOP is highly
valued in the industry [6] as it allows a stronger mainte-
nance, ease of documentating code, fastening the debug-
ging process and data hiding.

o The final game can be used as a tool in primary schools’
curriculum to conceptualise the paradigms of OOP.

o The conducted research assesses the effectiveness of
incidental learning on children, specifically in the realm
of OOP. This improves the knowledge base, and can be
used in future research and solutions.

Drawbacks:

o The proposed solution will not teach actual programming,
as other existing solutions do (GreenFoot and Alice).
However, this is the purpose of the game; to teach the
concepts of OOP in an indirect manner and focus on
helping children to think in an object oriented way of
thinking. Introducing real programming would be the next
step, ideally by suggesting Alice.

o The existing solutions teach more advanced features of
OOP such as polymorphism, public interfaces, delegation,
message passing, data hiding and inheritance.

« Some may argue that promoting such technological tools
to children may have negative effects, for example; en-
couraging the lack of group work.

o Due to a lack of resources for the development, the game
will most likely be in the form of a prototype. During
later stages, through the use of findings, the artefact can
be improved.

IV. METHODOLOGY
A. Definitions

This section is dedicated to the definition of the mentioned
concepts in the report. This is needed, since some concepts
that are used repeatedly needs to be clarified. Figure 1 shows
a table of these definitions with a brief description for each.

Furthermore, this study attempts to assess the feasibility of
creating a game for children that helps them comprehend the
elementary concepts of OOP, specifically understanding:

¢ Objects and classes (a class is referred in the study as a

group),

« Classification and instantiating of objects,

o Attributes or behaviour of a class and related objects

(referred in the research as description),

e Modifying the value an attribute, and

o Adding an attribute to an object or class.

oorp Object oriented programming

Game Referring to anything that is close to a game. Some of the
mentioned solutions, cannot be defined as games, butin a
few occasions we may refer to them as such

Artefact It is the designed game, used as a medium to teach the
elementary concepts of OOP to children

Participant Generally, refers to the samples or the children from the
age of 7-12 years old, who took part in testing the artefact

Paper quiz It addresses the objective test that was designed to gauge
the introduced concepts of OOP from participants. This test
was carried out in the form of traditional pen-and-paper

Fig. 1. Definitions of the mentioned concepts in the report

B. Research Design

This study uses a design science [31] approach together
with a mixed methods design [32]. Adopting a mixed methods
design provides the opportunity for using both qualitative and
quantitative data. Figure 2 indicates the main stages of the
research, in a chronological order starting from the top left
and ending in the bottom left. Furthermore, an important phase
that is not depicted in the figure is the literature review of the
related topics. This was due to the continuous research that
was carried out throughout the whole study.

Fig. 2. The overall framework of the research

Mixed methods(also called integrating, synthesis and mul-
timethod) was chosen in this study because of the strong
results that are gained when combining both qualitative and
quantitative analysis. Furthermore, using mixed methods al-
lows for a better understanding of experimental results, by
comparing the different perspectives from the quantitative and
qualitative data. However, during late phases of the study,
the researchers discovered that not much quantitative data
was retrieved. Thus, the main quantitative results is in the
form of statistics regarding the perception of the participants
(i.e. if the proposed artefact was fun to play, if it was
hard to use and if the participants learned anything). These
statistical results were later compared with the analysis of

the transcribed observations, interview data and qualitatively
analysed answers of the quizzes.

The type of mixed methods design in this study is defined
as convergent parallel, which means that the qualitative and
quantitative phases occur concurrently, or in no specific order.
This choice is due to the innovative approach of the research.
The required results are proof of if and how OOP can be taught
to young children, and the data is collected during closely
examined sessions with each participant, thus the data is
strongest when it is triangulated. For this, a convergent parallel
approach is ideal. The other two main options are explanatory
sequential and exploratory sequential, which means that either
the quantitative phase comes first or the qualitative phase
comes first, respectively. Since these approaches typically
require a stronger background and more time, they were
disregarded in this research.

There are, however, some downsides of using a mixed
approach. The need for both collecting and analysing the two
types of data is far more time consuming than only using
one type of data. In this research, as mentioned, we limit
the amount of quantitative data, as the innovative nature of
the topic does not fit the needs of the quantitative approach.
Furthermore, according to Shaw [33] the chosen samples
(children seven to twelve years old) are best studied in a open
and informal atmosphere, and children under twelve are not fit
to answer a self-completion questionnaire. Although, this does
not mean that quantitative methods cannot be used, qualitative
methods are a better fit.

The main question of the study is about feasibility - whether
it is possible to teach the notion of OOP to children and if
so, how can it be achieved? Therefore, the chosen strategy
falls under the category of constructing a system. Following
the construction, a validation phase was conducted in order to
evaluate the feasibility of the topic and argue about the results
of the study.

Following the evaluation methods proposed by Hevner [31],
this research uses a mix of observational, experimental and
descriptive evaluation by conducting a scheme for each par-
ticipant (i.e. testing the knowledge of the participant before
and after using the artefact) that is similar to controlled
experiments and conducting open-ended interviews. Addition-
ally, observations were transcribed during every step of the
collection.

C. Artefact

The development of the prototype followed what it aims
to teach, namely OOP. The prototype is built in a language
(Javascript) that supports object oriented design. The require-
ments and design of the prototype is documented by the use of
UML. A partial component diagram of the artefact can be seen
in Figure 3. This shows an overview of the main components
of the artefact.

1) The Game component acts as a controller for the main
core of the game, and provides and interface for handling
input/output, graphics, touch events (or click events) and
the dimensions of the game. Furthermore, the Game

«component»
=] Object

v

«Interface»
IObject
£} + Update(deltaTime)
4% + onClick()
£} + getProperties()
@
@

+ addProperty()
+ removeProperty()

A
|
'
| use
'
i
L
«component» «component» «component»
=] Game =] Screen =] TaskWindow
T 4 T ~< T
' use ' < use H
1 - 1 > 1
1 g ! S 1
e ' S
v L ; N v
«Interface» ! «Interface»
|Game : ITaskWindow
@ + getGraphics() ' §# + addTask(taskText, taskAudio)
@+ getWidth() I 4§ + completeTask()
&+ getHeight() ' @+ reset()
@k + getTouchEvents() !
&+ getCurrentScreen() |
@F + setTouchEvents(touchEvents) '
{ﬁ + setScreen(screen) '
i
i
i
i
'
T
! |
use 1 '
‘ v
«Interface»
@ IScreen
+ update(deltaTime)
&+ display()
Fig. 3. Component diagram of the artefact

component is responsible for calling the update and
display operations that the Screen component provides.

2) The TaskWindow component handles all tasks through-
out the game. It provides three main operations in
its interface, for adding tasks completing tasks and
resetting the whole TaskWindow (removes all of the
current tasks). When all of the tasks are completed, the
TaskWindow component presents a continue option to
the user. This starts the next scenario (or goes back to
the menu screen).

3) The Object component represents everything on the
screen that is not part of the TaskWindow or part of
the background. Most elements handled by the Object
component is clickable, which results in a window
appearing next to the element showing its properties (see
the owl in Figure 6).

4) Finally, The Screen component is responsible for putting
everything together. Every scenario of the game (and the
main menu) uses its own Screen. The Screen component
uses the Game, TaskWindow and Object components in
order to build each scenario of the artefact.

The artefact of this research is, as mentioned, a prototype

Description

Haic color

\ntroduction |

Fig. 4.

Job:
Umbrella:

T a£

To the 2odl

Fig. 5. The second scenario of the artefact (class and its properties)

of a game. It aims to show how the elementary concepts of
OOP could be taught to children. It uses the theories about
pedagogical learning, game design and OOP that is mentioned
in this report. The game introduces tasks that are explained
through a voice. When the voice is active the main character
(Kim) in the game displays a speech bubble, thus depicting
that Kim is speaking. Furthermore, the voice is implemented
to act as a feedback mechanism, alerting the users that do
not follow the provided instructions. It also encouraged the
users after completing specific tasks. The voice praises a
users performance by saying “good job!”, “nice choice of
colour!” or "woow, you have done a great job so far!”. In
addition to this, the users were rewarded by receiving stars
after completing a scenario in the game, which gave a sense
of accomplishment.

The game begins after the user selects the start option which
leads to the presentation of three consecutive scenarios, each
aiming to teach an OOP concept. The first scenario introduces
the concept of objects and properties (called description in
the game), by allowing the children to display and edit the
properties of some objects on the screen. Figure 4 shows one
task where the user is allowed to change the hair colour of
the main character. For each of the completed tasks, the voice
explains the concept that is being taught. For instance, when
the user has completed the task Description the voice suggests
that everything in the room can be called objects and all

Lan Hu €amily |
Hair color:
Mood:
—]
Urmbcella

Aoimals

Actions

i &

Fig. 6.
introduction to methods)

The third scenario of the artefact (objects from the same class and

of them have a specific set of attributes (called description).
This is described in a way that supports incidental learning,
by saying “let’s call these objects from now on” rather than
stating that “these are called objects”. This style of incidental
learning is used throughout all of the tasks in the game. The
second scenario introduces classes. The same principles of
teaching is applied as in the first scenario. The main task
involves adding a new property (umbrella hat) to the class of
human (see Figure 5), and viewing the related objects of that
class, in order to see that the property is added. This scenario
tries to show that all of the objects on the screen have a few
things in common and can be derived from the same class. By
allowing the child to add a property to the shared class, and
then visually showing that the property is added to all of the
instances of that class, the child could understand how classes
and objects are connected in an abstract level.

In the third and final scenario, the user is presented with a
zoo setting (see Figure 6), where there are different types of
animals that are clickable. In this scenario methods (actions)
are introduced. Compared to the other scenarios, the user does
not perform many tasks. The main learning outcome comes
from the voice that explains the concept of an object having
a set of actions (methods) and the difference between objects
of two different classes (classes of human and animals).

Appendix A shows a complete sequence of the game.

D. Data Collection

The samples that were used in this study are put in two
categories. Firstly, the largest group of samples were twelve
students aged between eleven and twelve years old. All of
the students are from a school near Gothenburg, Sweden.
The researchers spent one full day collecting data using the
same process for each participant. Each participant conducted
the experiment separately, and the process took around 15-20
minutes. The second group of samples are five students from
an international non-profit organisation called CoderDojo, that
teaches programming to children. These children were in the
ages seven to twelve. As with the school, the children con-
ducted the experiment separately. In both situations, a random
sampling approach was carried out in order to find participants.

The samples were randomly selected by the teachers of the
school based on a specific requested age range.

For each of the seventeen participants, the environment was
quiet and relaxed and the researchers aided the participant
when needed without affecting participant’s answers. Each
child was assured that there were no wrong answers. Finally,
the whole process was closely monitored, each discussion
session was recorded and every detail that the researchers
found to be worth noting was transcribed.

As the name of the mixed methods approach in this study
suggests, the collection of data was conducted in parallel. The
qualitative data was collected using open-ended interviews,
observations and a paper quiz. The quantitative data was
collected from a small subset of the questions in the paper
quiz. As Creswell [32] mentions, the main idea of using a this
type of mixed approach is to collect both types of data using
the same variables and concepts. This is achieved by using the
same quiz for both qualitative and quantitative data.

Measuring the learning outcomes of the artefact and evaluat-
ing whether the involved participants understand the concepts
of OOP is a decisive aspect of this research. Although both
quantitative and qualitative data was gathered, the evaluation
largely relies on qualitative data [32]. Primarily, informal
open-ended interviews were used in order to provide a broad
view on the children’s understanding of the introduced con-
cepts. It allowed the researchers to directly ask questions
such as; "What did you learn in the game?” or ask about
a specific introduced concept, for instance “How would you
describe an object or properties of an object?” or "Was the
game fun? Would you tell your friends about the game?” In
addition to this, observing participants, their reaction and body
language while playing the game was closely monitored and
recorded. Figure 7 visually presents the main stages of the
data collection.

Learning
— Pre-test through
the game
Participant
End _ Open-ended Post-test
discussion

Fig. 7. Main phases of data collection

As mentioned, a paper quiz was designed to test the OOP
knowledge of the participants. This test is used in the form

of traditional pen-and-paper style to evaluate the participant’s
understanding of the elementary concepts of OOP. When
designing the paper quiz, Bloom’s taxonomy of educational
objectives [22] was investigated in order to increase the quality
of the test and to be able to adequately measure the knowledge
of the participants. The learning objective of the paper quiz is
summarised below, according to Bloom’s six principles:

1) Knowledge: being able to recall a previously learnt

knowledge.

2) Comprehension: understanding or translation of the per-

ceived information in one’s own words.

3) Application: the ability to implement the learnt theories

and concepts in new situations.

4) Analysis: ability to break down and identify patterns.

5) Synthesis: generalisation of the perceived knowledge

and be able to use the information to build new ones.

6) Evaluation: refers to the ability of comparison and

discrimination between ideas.

The paper quiz follows the specifications of an objective
test [34]. This type of assessment is often used for evaluating
specific aspects of students learning and is considered to
be an effective tool for examining their recall of principles,
knowledge and practice of terms. The questions in the designed
quiz mostly consist of selecting the solution from a set of
options (multiple choice and matching choices) and brief
answering via the use of inputted text or number. Furthermore,
the paper quiz was used to conduct a think aloud method [35],
For example; the researchers pointed at a specific question in
the paper quiz and asked the participant to reason about the
principles they followed to solve that question, thus concluding
if they have used the concepts of OOP to solve the question
or not.

The paper quiz consist of two phases; a pre-quiz which was
carried out before a participant played the game and a post-
quiz that was conducted after playing the game. The questions
designed in both quizzes had the same structure but the content
of each question was different. The learning objectives of
each question in both paper quizzes and their relation to the
concepts of OOP is discussed and rationalised below:

1) The Pre-test: This paper quiz was designed to assess the
participants knowledge of OOP before playing the game. The
quiz consists of three questions (see Appendix B).

In the first question, the concepts of groups (classes) were
tested and later in the open ended discussion, each participant
were asked to reason about why they chose the selected
groups. In this question, the participant looked at the similar-
ities of the images/characters and categorised them according
to their appearance. This can be related to the definition of a
class in OOP terminology.

In the second question the notion of properties is illustrated
through a box that represents the description of an object. This
description box is similar to a class in a UML class diagram.
The goal of this question is to test the participants’ previous
understanding of what properties are. This helps the evaluation
of the similar questions in the post-quiz, by comparing the
answers.

Somewhat correct

Inconclusive
Not incidental

Improved answer

Incidental learning

Fig. 8. The codes and colours used in the analysis

In the last question of the paper quiz, the participant is
required to name the group of animals and circle the image
that could belong to that group. The concept of objects from
the same class are presented. As with the previous question,
the answers was compared with the post-quiz answers, which
allows the researchers to assess if the a participant has learnt
anything.

2) The Post-test: In this section the six questions from
the post-quiz are discussed. This quiz has three additional
questions (see Appendix C) compared to the pre-quiz due
to the fact that the participant had to play the game to be
able to answer some specific questions, for example object
instantiating or defining attributes of a class.

In the first question, similar to the pre-quiz, the participant
are asked to classify objects into different classes.

In the second question, the participants are required to
describe each image (object), in other words assign values for
each attribute of an object. Additionally, in the last part of the
question, the participant is required to add a new attribute for
the image of a little girl. This answer depicts if the participant
has understood the relation between objects and attributes.

The third question is related to objects from the same class
and the fact that each object share the same attributes only
with different values. Hence the participant’s answer could
be different depending on their creativity. The most expected
answers are: colour, the car’s model, plate number, number of
passengers and size. In addition to this question, the fourth
question asks the participant to circle the object that belongs
to the previous group (group of cars). The objective is to see if
the children can identify a group in a manner consistent with
the design of OOP.

Question 5 intended to evaluate how the participants differ-
entiate the images. In other words, whether they can see the
images as two objects that are from the same group and share
similar attributes, but with different values.

In the last question of the post-quiz, the concept of instan-
tiating objects from a class is tested. This task is designed
to assess whether a participant can understand the notion of
creating an object from a class. The participant is required
to use its imagination to instantiate a car and assign values
to its attributes. The goal of this question is to clarify if the
participants can see the relation between classes and objects.

E. Analysis

The collected data was mostly analysed qualitatively. Dur-
ing the collection phase, the researchers wrote down early
conclusions about a participant if it appeared. These early
conclusions were saved for future reference. An example of
such a conclusion is: a participant grasped the concept of
objects. These transcriptions alone does not justify the final
results of this research, but can be used when triangulating
the final conclusions.

The main part of the data analysis followed the structure
proposed by Creswell, where the data was organised and
coded. The codes were later collected and themes were defined
and labelled. Finally, the themes were compared and interre-
lated and the meaning of the results was discussed. Each step
was conducted as follows:

1) Organising and reading through the data: By putting
all of the collected data into one single file, an overview
of the gathered information was be gained. During the
process the parts of the collected data that was con-
sidered irrelevant was disregarded and most of the data
was summarised, thus leading to a more comprehensible
collection. As a final step, the organised data was read
thoroughly, and early conclusions were transcribed by
each of the researchers.

2) Coding the data: The sorted data was coded, through
the use of colours (see Figure 8). Each colour was as-
signed a label. For instance, one code, Fun was assigned
to any data that suggested that a participant enjoyed the
game. Another, Improved answer, was assigned to any
answer that was seen as an improvement in the post-quiz
compared to the answer in the pre-quiz.

3) Theming the codes: Three major themes were defined
in this study. Opinion, Learning outcome and Inconclu-
sive. Any result that explains an opinion of a participant
(e.g. the game was fun or the game was not fun) was
put under the opinion label. Any result concerning the
final learning outcome of a participant was put under
the learning outcome label. This may be a finding
that suggests a participant has not learned anything
(incorrect answer), or that the participant has learned
something (somewhat correct) or that the participant has
learned exactly what the game strives to teach (improved
answer). Lastly, any code that regarded data that was
inconclusive or odd, was put under the inconclusive
theme.

4) Interpreting the results: The final step of the analysis
was to interpret the results using the defined codes
and themes. The researchers individually evaluated the
learning outcomes of the concepts classes, objects and
properties for each sample. Each participant was given
either pass, fail or partial pass for each of the three
concepts. Following the individual evaluation, the re-
searchers discussed the reasoning behind the grade in
order to come to a final conclusion. The results that
were coded as inconclusive resulted in a fail. Where

the researchers agreed, that grade automatically became
the final conclusion. Finally, wherever the researchers
disagreed, a thorough discussion regarding the final
grade was held.
Furthermore, the relevant literature (i.e. books, articles, and
similar research papers) are compared against the findings, in
order to define conclusions about the results.

V. RESULTS

A total of 17 participants were examined, 4 were female and
13 were male. Figure 9 shows participants’ range of age and
the male to female ratio. Twelve out of seventeen participants
(70 percent) had experience of playing other programming
games such as Hour of code, CodeCombat and Scratch.

General information about the participants

Age range:

7 years old
M8 yearsold
™9 years old
M 10 yearsold
W11 yearsold

M 12 yearsold

Gender

HFemale

= Male

Fig. 9. General information about the participants - Distribution of age and
gender

Figure 10 represents the children’s perception of the game
(i.e. if it was fun or not and whether they had any additional
comments). Here it can be seen that a large percentage of the
children enjoyed something about the game. Figure 11 presents
the precise answers of the interviews when the participants
were asked “Did you have fun when you played the game?
What did you like or dislike about it?”. 47 percent of the
samples (eight participants), claimed they enjoyed playing the
game, while four of the participants did not enjoy and five
were partly entertained by the game. The result shows that all

the participants below the age of 10 enjoyed playing the game.

Artefact's Level of entertainment for Participants

Not fun
24%

Somewhat fun
29%

Fig. 10. Level of entertainment for participants while playing the game

Participant | Age Participant's answer to the question; "Did you have fun
Number when you played the game?"
1 11 | "Sort of! Fun to learn. You can play it from time to time and
keep learning. Maybe it should have had a higher level of
difficulty"
2 11 | "Yes! Because you get to choose the hair, shirt and mood
of a character and follow the instructions.”
3 11 | "Alittle! It felt like it's for younger kids and was kinda of
easy"
4 12 | "No! it wasn't very fun! You just click around and little
boring. | wanted to have more freedom in the game."
5 "Yeah! It wasn't the most fun game | have ever played, but
11 | it was still good. The story should have moved on a bit
faster. The voices took too long to explain the tasks."
6 11 | "It was a little fun!"
" It was a fun game. It was fun to listen to the instructions
7 11 | and see what you did wrong and then correct your
mistakes."
8 11 | "No, it was kinda of boring actually. Nothing happened. All
you did was listening to a girl explaining things."
9 11 | "sort of! It works! You learned things through the game.
Nothing that | did not like."
10 11 | "Sort of. It seemed to be for younger children. It was very
linear. It was good that you learned something."”
11 11 | "No! I would not go home and play it. The character was
funny and little weird."
12 11 | "It was pretty fun. It should be a bit longer and | wanted do
more stuff in the Zoo!"
13 7 "Yes, it was fun. Add more levels!"
14 12 | "Yes! It was fun to fix the character. | want the game to be
longer and | want to be able to do more things."
15 9 "Yes!"
16 9 "Yes! It was fun to see the properties."
17 8 "Yes, it was fun to decide the properties like the haircolor
and mood."
Fig. 11. Table of participants comments

As figure 12 depicts, 82 percent of the participants indicated
that they did not know what they were being taught. These
results are related to the participants answers in the open-ended
interviews to the question "Do you understand what we are
trying to teach in the game?” and ”Did you learn anything
from the game?”. When the researchers asked these questions,

10

14 of the participants either expressed that they did not know
what they had learnt, or gave an answer that did not follow
what they had learnt. This indicates the presence of incidental
learning. For instance, a few participants said; “the goal of
the game was to follow instructions”, another suggested "I
learned that there are more things to programming than to only
make them move. That you can make pretty complicated stuff
but still simple”. Only a few participants comprehended the
learning objective of the game. For instance, one participant
explained "The game tried to show that things or objects
can come from the same group. And they all have different
properties”.

Artifact's rate of success on applying
incidental learning

No signs of
incidental learning
12%

Signs of incidental
learning
82%

Fig. 12. Application of incidental learning in the game
Figure 13 demonstrates the researchers’ final evaluation of
each participant’s level of knowledge regarding the introduced
OOP concepts. The results of the paper quizzes, observations
and most importantly the open-ended interviews, were the
major data used in the evaluation. Additionally, the partici-
pants’ explanations when describing the concepts of objects,
classes and properties provided the basis for assessing whether
a participant can understand the concepts at an abstract level,
and think in an OOP manner. Specifically, comprehending
objects as instances that can be created from a class that
share the same properties, rather than describing an object
as a tangible thing. Some participants used exemplification to
describe these concepts while others attempted to describe the
terminology of each concept. Following are a set of quotes
from significant participants when describing the concepts of
objects, classes and properties (the used names are fictional):
o Matilda, 12 years old: “A group is something that has
something in common, for example trees. Properties of
a group might be size, colour or shape of the leaves.
Objects of the same group might share colour, size and
purpose. If tree is a group, an object is a pine tree”.
Matilda was chosen, since the final conclusion was that

11

she learnt everything that the game aimed to teach.
She shows a typical example of what the researchers
constituted as a correctly answered quiz, as she expressed
herself adequately through the use of exemplification.
Alex, 11 years old: "An object is part of a group. The
objects fish, crab and starfish are from the group fishes.
Properties are things that an object is or can do. I learned
that things have different properties”. It was shown that
this participant was not confident enough when describ-
ing the concepts of objects, classes and properties. His
answers in the paper quizzes and open-ended interview
showed that he had understood the concepts of classes
but only partly comprehended objects and properties.
Peter, 11 years old: ”Properties can be everything from
being able to write with it or eat with it. A group is many
things that are just a little different but still have most
things in common. For example, animals and humans.
Animals are in the wild and humans are in schools. An
object is everything that you can touch!”. This participant
showed correct results in the quizzes, though when he
tried explaining the concepts in the open-ended interview,
he appeared to think of objects as tangle things and
could not relate to objects of the same class. Hence his
knowledge of properties was assumed to be somewhat
sufficient (partly understood) but he did not grasp objects
and classes in an OOP manner.

Final results of the participants' level of knowledge

3
8
5 5
4
I 3

Objects

1

Classes

0
Properties
M Understood

Somewhat understood M Not understood

Fig. 13. Participants’ level of understanding about the concepts of OOP

A. Discussion

Studying children is always a difficult process. This be-
comes increasingly true when the topic is previously unex-
plored, as in this study. Therefore approaching the data col-
lection from a qualitative perspective, assures that no important
details are left out. Furthermore, creating collection tools, and
in this case an artefact, that is meant to be used by children
puts extra emphasis on the language and presentation. This was
solved by studying the mentioned technological foundations
and relevant literature and thoroughly discussing the tools with
our supervisor. The face-to-face interviews with the partici-
pants after they played the game allowed the researchers to ask
direct questions to the children about how they would describe

Participants results from the experiment

T~

Classes Objects Properties

Understood Somewhat Not

Fig. 14. Interpretation of the participants knowledge about the introduced
concepts of OOP

certain OOP concepts or how they answered a specific question
in the quiz. In the interviews, we expected the participants to
give answers that would not bring sufficient results, that would
allow us to triangulate the data with the results of the quiz.
However, the answers of these open-ended questions proved
to be the most valuable results, and allowed us to come to
much clearer conclusions. Additionally, paying close attention
to each participant’s body language while playing the game
helped us assume whether they enjoyed playing the game.
Figure 14 indicates the final results of the experiment. It
becomes clear that the concept of classes (groups) was the
most understood notion among the participants, where 82
percent of them proved to be able to think of classes in an
OOP manner, whereas the concept of properties were only
understood by 52 percent of the samples. The concepts of
objects was presumed to be the most easy notion for the
participants. But on the contrary this showed to be the most
difficult concept to understand, where 23 percent showed signs
of comprehending objects in an OOP manner. This is most
likely due to the fact that it was not showed well enough in
the game (a possible improvement would be to add tasks where
the user has the chance to instantiate an object from a class).
Therefore it became rather challenging for the researchers to
assess the participants knowledge about objects. The main
evaluation of the learning outcomes regarding objects, came
from the question "How would you describe an object?” in
the open-ended interview. more than half of the children (52
percent) seemed to consider an object as a tangible thing. This
resulted in a conclusion that they have not learned the concept.
The age gap in this study derives from the fact that no OOP
learning existed in that age range. However, this wide gap
affected the results greatly. Especially the results regarding the
entertainment level of the artefact. Although, most of the older
participants expressed that the game was at least somewhat
fun, many of them also suggested that it seemed more fit
for younger children or that it was simply not fun. On the
contrary, all of the children under the age of ten, experienced
the game to be fun. This has to be taken into consideration
when evaluating the quality of the proposed artefact - it was

12

fun even for most of the older children.

An interesting observation is that a lot of the participants
answers in the quizzes were similar. For instance, on the first
question of the second quiz, most children answered flowers,
trees and fruits. Additionally, almost all of them seemed to get
stuck, even after the researchers assured them that there are
no wrong answers. This was especially apparent in the second
question and in the last question of the post-quiz, where the
participants had to use their creativity. Furthermore, most of
the participants did not understand the concept of filling in
the name of the girl in the second question. This is a good
example of the limitations of working with children.

An important achievement that this study brought was
applicability of incidental learning to teach the concepts of
OOP to younger children. The researchers applied this theory
when designing the artefact and assumed that the participants
will not be able to understand the objective of the game
and rather think of it as just playing a fun game. When the
participants were asked what they thought they were being
taught in the game, approximately 82 percent of them said
”I don’t know”. This results clearly shows the presence of
incidental learning and represent that it is possible to teach
the concepts of OOP to children through this technique.

The worst kind of results are the ones that are inconclusive.
In this research there were a few occurrences of inconclusive
results. Firstly, we noticed that the last question of the post-
quiz did not give any valuable results. Even the answers that
were correct according to us, did not prove that the concept
of instantiating an object had been learnt. Additionally, there
were a few cases where the participants answered the questions
consistently between the two quizzes, meaning that they
seemed to answer with the same reasoning. In some cases the
children even answered correctly (according to us) in the first
quiz but not in the post-quiz. These type of situations resulted
in a inconclusive code during the analysis phase, since we
could not prove that anything had or had not been taught.

One interesting point that has not yet been discussed in this
report, is how the researchers evaluated the results. In other
words, what constitutes as a correct answer? As discussed
in the analysis section, the data that indicated any type of
improved answer was assigned the code Improved answer. A
common situation for this code’s appearance is:

o for classes, when a participant answered with a plural
noun for describing groups (classes) in the first quiz and
singular in the second quiz,

for objects, when a participant explained that an object is
a part of a group in any way (i.e. not a tangible thing),
and

for properties, when a participant both added the property
hair colour (for instance) and expressed that properties is
something that an object can do or is.

Following this coding procedure, the researchers thoroughly
went through these codes and read the data once more. Finally,
a conclusion was made by each of the researchers which was
later compared and discussed between the two.

It is worth mentioning that the narrative voice in the
artefact was an effective way of interacting with the users.
This was observed throughout the experiments when none of
the participants had any difficulties understanding the tasks
in the game. It also provided the opportunity to implement
a simple feedback mechanism to alert the player to follow
the tasks or click inside the selected areas. Additionally, the
voice mechanism was appraised by the school’s teachers and
organiser of CoderDojo, explaining it as being a creative way
of connecting with the children.

Something that proved to be difficult in this study was
to compare the quantitative and qualitative results with each
other, in order to come to stronger conclusions. Since the
only quantitative findings are the opinions of the participants
(i.e. whether the game was fun or hard and if they learned
anything), not much can be compared. But the researchers
still triangulated the entertainment levels of the game, by
comparing observation with the quantitative answers of the
interviews, which clearly showed an indication that the game
is entertaining for the majority of the participants. The conclu-
sion would not have been as strong, if both types of collections
would have existed for triangulation. The same applies for the
results regarding the difficulty of the game and whether or not
incidental learning was effectively implemented

B. Threats to Validity

The criteria used for evaluating validity are based on those
proposed by Easterbrook [36].

Construct validity is a threat when the research design
is vague and up for interpretation. After implementing the
experiment and interpretation of data, it became clear that the
artefact was not able to fully teach the concept of objects
to the participants. The concept is rather abstract and hard
to visually explain, especially to a child. The same goes
for the pre- and post-quiz, they may not fully evaluate the
participants knowledge about objects and how they are created.
This potentially limited the findings during the experiment,
where many participants showed signs of not understanding
the concept.

Internal validity in this research can be assumed as when the
participants become familiar with the outcomes of the ques-
tions in the experiment, or in other words, remember responses
for the upcoming questions. This becomes particularly relevant
when using a pre- and post-test. The solution in this study was
to make sure to change the content of the questions, while
keeping the same structure. Although, this does not remove the
risk of the participants remembering the way they answered
in the pre-test.

External validity in this study is mainly regarding the partic-
ipants and and their individual impact on the experiment. Since
the involved participants in the study were young children,
there is always a risk that they want to answer everything
correctly and therefore compromising the results by giving
answers they believe the researchers want, rather than answers
that represents their perception. This can potentially affect the
validity of the findings. Another threat is that not all of the

13

participants seem to have the same level of abilities, some may
have lower 1Q or lower level of skills of playing games. This
can affect the overall results of the experiment.

Another external threat may be participants different levels
of programming skills, since some of them had experience of
playing other programming games and some did not. However,
this risk did not seem to affect the answers of the tests, the
concept of OOP is rather different than learning to program.

Finally, the quantitative and qualitative results may not be
compatible for comparison. However, this risk was reduced by
carefully deciding what variables to use for each of the two
types of findings.

VI. CONCLUSION AND FUTURE WORK

The final results of this study indicates the positive feasi-
bility of teaching the elementary concepts of OOP to children
at the age of 7-12 years old. The findings also stated that
the concepts of classes and properties are easier to grasp for
children than the concept of objects. Thinking of objects in a
way that is consistent with OOP on an abstract level, rather
than thinking of them as tangible things seem to be rather
challenging for most of the involved participants.

A rather overlooked method of acquiring knowledge is
through incidental learning. This was achieved in most cases
in the experiment, as the involved participants expressed that
they did not know what was being taught. However, proving
that this helped the children learn better is not possible with
the current results. For this, a new study can be conducted that
tries to explore the different approaches of teaching in regards
to OOP that are mentioned in this report, this would lead to a
more narrow field of investigation. Moreover, other notions of
OOP such as inheritance, message passing and encapsulation
may be added to the game. Due to the short span of this
study, the artefact was not tested by many children. Hence a
new study could be carried out to continue this research by
experimenting with the artefact on a larger number of samples,
with an equal number of participants for each age, for more
solid results.

The final results indicates the artefact’s level of entertain-
ment. Only a few of the oldest participants found the game
to be a bit boring or too easy. This was due to the large age
gap of the participants. One of the goals of the study was to
be able grab the players attention while playing the game and
make sure they enjoy playing it. This aspect positively affected
the learning outcomes of the game.

It was concluded that the designed artefact proved its
capability and showed that after some minor upgrades, it
is capable of explaining the notions of OOP to children at
younger ages and provide the opportunity to let them think
in an object orient manner. Considering the popularity of
the object oriented style of programming in the industry, the
designed artefact can be used as a beneficial tool to teach the
basic concepts of OOP to children.

Some of the participants gave specific comments about how
they think the game could be improved. Some of the children
suggested that more freedom should be given to the user, thus

making the game more entertaining. Others stated that the
game should be extended with more scenarios and increasingly
harder tasks. These comments can be considered in future
work to improve the quality, performance and usability of
the game. Furthermore, not only can the game be improved
in various ways, but a completely new tool can be made
based on the results of this report. This derives from the
fact that the findings indicated that children can learn OOP
concepts, and since most of the children had learnt other
types of programming such as Scratch and Hour of Code,
they are capable of both actual programming and OOP design.
Therefore, we believe that it is possible to teach OOP in a
practical manner as well. This can be done, for instance, by
combining the approach of the artefact of this study with the
approach taken by the creators of Scratch.

ACKNOWLEDGEMENT

In this report we want to thank Dave Stikkolorum and
Michel Chaudron, our supervisors, for their help in this study.
Their guidance is crucial for the success of the research.

Additionally, we want to thank Kronaskolan, CoderDojo and
the children that participated in the experiments. Without them,
this study would have been lacking, and the results would not
be as strong.

Lastly, Ida Arstein, a bachelors student of art of pre-school
teaching at the university of Gothenburg aided this research
by commenting on the design of the artefact, and contributed
by narrating the story of the game.

REFERENCES
[1] C. Xiajian, W. Danli, and W. Hongan, “Design and implementation
of a graphical programming tool for children,” IEEE International
Conference on Computer Science and Automation Engineering, vol. 4,
pp. 572 — 576, 2011.
Y. B. Kafai, “Software by Kids for Kids,” Communications of the ACM,
vol. 4, pp. 38-39, April 1996.
May 2017. [Online]. Available: https://scratch.mit.edu
May 2017. [Online]. Available: http://www.alice.org
May 2017. [Online]. Available: https://www.greenfoot.org
C. Britton and J. Doak, A Student Guide to Object-Oriented Develop-
ment. Elsevier Ltd., 2005.
C. T. Wu, A Comprehensive Introduction to Object-Oriented Program-
ming with Java, 1st ed. New York, NY, USA: McGraw-Hill, Inc.,
2008.
B. Meyer, Object-Oriented Software Construction, 2nd ed. Interactive
Software Engineering Inc. (ISE) 270 Storke Road, Suite 7, Santa
Barbara, CA 93117, USA: ISE Inc., 1988.
G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopez, J. Lo-
ingtier, and J. Irwin, “Aspect-oriented programming,” ECOOP’97 —
Object-Oriented Programming programming, vol. 1241, pp. 220-242,
1997.
I. Krajnovi¢, L. Baki¢-Tomi¢, and V. Markovac, “Object oriented pro-
gramming in primary education,” The Faculty of Teacher Education,
University of Zagreb, Ulica kralja Zvonimira 8, 10000, Zagreb, Croatia,
Tech. Rep., 2007.
T. Rentsch, “Object oriented programming,” SIGPLAN Not., vol. 17,
no. 9, pp. 51-57, Sep. 1982.
A. C. Kay, “History of programming languages—ii,” T. J. Bergin,
Jr. and R. G. Gibson, Jr.,, Eds. New York, NY, USA: ACM, 1996,
ch. The Early History of Smalltalk, pp. 511-598. [Online]. Available:
http://doi.acm.org/10.1145/234286.1057828
I. E. Sutherland, “Sketchpad: Man-machine graphical communication
system,” 1963.

[3]
[4]
[5]
[6]
[7]
[8]

[9]

[10]

(11]

[12]

(13]

14

[14]

[15]
[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]

[28]
[29]

[30]
(31]

(32]

(33]
[34]

[35]

[36]

G. M., Open Verification Methodology Cookbook, 1st ed. Springer
Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA): Springer, 2008.

S. .D and M. Fayad, “Object-oriented application frameworks,” ACM,
vol. 40, no. 10, pp. 32-38, October-1997.

J. Paul Gee, What video games have to teach us about learning and
literacy. Palgrave Macmillan, 2002.

A. B. Begel, “Bongo: A Kids’ Programming Environment for Creating
Video Games on the Web,” Games on the Web. Electrical Engineering
and Computer Science Department, vol. 1, pp. 1-87, May-1997.

S. Papert, Mindstorms: children, computers, and powerful ideas, 14th ed.
New York, NY, USA: Basic Book, Inc., 1980.

D. H. Clements and D. F. Gullo, “Effects of computer programming on
young children’s cognition,” Journal of Educational Psychology, vol. 76,
p. 1051-1058, 1984.

B. S. Bloom, Taxonomy of educational objectives: The classification of
educational goals. Longmans, Green & Co, 1956.

L. Anderson, D. Krathwohl, P. Airasian, K. Cruikshank, E. R. Mayer,
P. Pintrich, J. Raths, and M. C. Wittrock, “A Taxonomy for Learning,
Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educa-
tional Objectives Complete ,” The Quest for Strengths: The Dawn of a
Talent-Based Approach to K-12 Education, vol. 83, no. 3, pp. 154-159,
2005.

J. L. Sherry and A. Pacheco, “Matching Computer Game Genres to
Educational Outcomes,” Electronic Journal of Communication, no. 1,
pp. 214-226, 2010.

M. Kolling, “The greenfoot programming environment,” Trans. Comput.
Educ., vol. 10, no. 4, pp. 14:1-14:21, Nov. 2010.

W. Dann, D. Cosgrove, D. Slater, D. Culyba, and S. Cooper, “Mediated
transfer: Alice 3 to java,” in Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, ser. SIGCSE *12, 2012,
pp. 141-146.

S. Cooper and R. Dann, W. Pausch, “Teaching Objects-first In Introduc-
tory Computer Science,” ACM, vol. 35, no. 1, pp. 191-195, January-
2003.

May 2017. [Online]. Available: http://snap.berkeley.edu

L. Laporte and B. Zaman, “Informing Content-driven Design of Com-
puter Programming Games: a Problems Analysis and a Game Review,”
ACM, no. 61, pp. 1-10, Oct-2016.

B. L. Mitchell, Game Design Essentials. Wiley, 2012.

C. Watson and F. Li, “Game-based concept visualization for learning
programming,” ACM - MTDL ’11 Proceedings of the third international
ACM workshop on Multimedia technologies for distance learning, no.
433117, pp. 37-42, Dec-2011.

J. M. Wing, “Computational thinking,” Communications of the ACM,
vol. 49, pp. 33-35, 2006.

A. R. Hevner, S. T. March, and S. Ram, “Design Science in Information
Systems Research,” MIS Quarterly, vol. 28, no. 1, pp. 75-105, 2004.
J. W. Creswell, Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches, 4th ed. Mathura Road, New Delhi 110 044, India:
Sage Publications, Inc., 2014.

C. Shaw, L.-M. Brady, and C. Davey, “Guidelines for research with
children and young people.”

B. D. Wright and M. H. Stone, “Best Test Design.Rasch Measurement.”
pp. 10-140, 1979.

D. R. Stikkolorum, M. Chaudron, and O. Bruin, “The Art of Software
Design, a Video Game for Learning Software Design Principles,” Insti-
tute of Advanced Computer Science, Leiden University Niels Bohrweg
1, Leiden, the Netherlands, pp. 1-4, 2014.

S. Easterbrook, J. Singer, M. Storey, and D. Damian, “Selecting empir-
ical methods for software engineering research,” in Guide to advanced
empirical software engineering, p. 285— 311, 2008.

APPENDIX

A. The game in a sequence

o fasks avaiable -

Fig. 15. Main menu of the artefact

\ntroduction |

'Dascrleﬂon

Hair color

Introduction |

'Descr'\eﬂon

Haic color

Fig. 17. Scenario 1 - second task: click on any object

—_—

5

\ntroduction |

\

Description

Hair color

colox: Green

Material:plastic

Q.

@, Moo

)

Fig. 18. Scenario 1 - second task: finished

\ntroduction |

'Descr'\gﬂon

Haic color

T-shirt

X
(e)
(9]
Qo

P

Fig. 19. Scenario | - third task: change hair color

Intreduction |1

’Descr'\eﬁon

Hair color

Fig. 20. Scenario 1 - third task: property chooser window

—_
@)

Fig. 23.

\ntroduction |

Description

\

Hair color

@

Introduction |

Description

Scenario 1 - fifth task: choosing mood (mouth)

\

Hair color

Introduction |

'Descrigﬂon

Hair color

—_
~

\ntroduction |

'Descr'\eﬂor\

Haic color

Fig. 24. Scenario 1 - scenario done

ame: Mom

To_the 2odl

{

© A oo e 7 —_—
ood: Happy
- jgob ¢ Chef % f
7 il
Fig. 25. Scenario 2 - first task: inspecting the family’s properties
H;: ?am\l?
Urmbrella
. D)
To the zool
(0 -~ P)Q '? G
< rY
p 7

Fig. 26. Scenario 2 - second task: playing

Hutian

Name:
Age:

Hair color:
Mood:

Job:

=N

Hu_£amil

Urmbrelia

To the 200!

Fig. 27. Scenario 2 - second task: adding a property

Human

Name:
Age:
Hair color:
Mood:
Job:

Umbrella: VX T
- & -
< iy
L
Fig. 28. Scenario 2 - second task: property added

Hutian

Name:
Age:

Hair color:
Mood:

Job:
Umbrella:

Continue

=N

\

Fig. 29. Scenario 2 - scenario done

Hu_£amil

Uumbrelia

\

To_the zod

Hu_£amil

Urmbrelia

\

To the 200!

—_—

9

Bnimals

Actions

L D)

AFat-Meat () :
o

& Wuovwl():

Fig. 32. Scenario 3 - scenario done

B. The Design of the Pre-quiz

1. Can you try to match the photos that belong together? Draw a line between all images in the same group. There
may be several groups. Can you also write the name of the groups in the green box?

, ; O
e %
‘e @ &

Fig. 33. Pre-quiz, question 1

2. Can you fill in the blank sections (the dotted lines) in the green box below by looking at the image? Follow the

example:
Description
Color: Yellow
Material: leather and
a)Example:

fabrix

Sport: Tennis

Shape: cirlce

Description

b)Test yourself:

Fig. 34. Pre-quiz, question 2

3. Can you write a name for the group of pictures below?

Group Name:

4. Which of the pictures below can alse be placed in the same group as in the above (last question)? Clrcle your
answer.

M

Fig. 35. Pre-quiz, question 3

21

C. The Design of the Post-quiz

1. Can you try to match the photos that belong together? Draw a line between all the images in the same group.
There may be several groups. Can you also write the name of the groups in the green box?

Fig. 36. Post-quiz, question 1

2. Can you fill in the blank section (dotted lines) in the green box below by looking at each image?

Description

' Name: .

a)
Taste: ..

[T —

Description

Sport: ..

b) Material:

Color: ...

Shape: ...

Fig. 37. Post-quiz, question 2

For the next task, can you fill in the green description box?
Can you also try to add a new line to the description of the image? write it on the empty line.

d)
Description

Name: ...

Age: ...

Mood: ...

Fig. 38. Post-quiz, question 3

22

3. Can you write a name for the group of images below?
Also fill in the green description box.

Group name:

1. Speed

Answer:

Fig. 39. Post-quiz, question 4

4. Which one/s the images below belong to the group in the last question? Circle your answer.

5. Can you think of three things that are different in the two images below? You can write your answer in the
green description box.

Fig. 40. Post-quiz, question 5

6. Description of a group "CAR" is shown in the blue box on the left. Can you, through the information from the
group CAR, make a new object (CAR 1). You can write your answer in the green description box.

Description for the
group CAR CAR 1

Name
Colour

Speed

Drive() Drive()
Break() Break()

Fig. 41. Post-quiz, question 6

23

