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Materials that provide real-time control of the fundamental properties of light at visible 
and near-infrared frequencies enable the essential components for future optical devices. 
Metal nanostructures that couple electromagnetic (EM) radiation on a sub-wavelength 
length scale to free electrons, forming propagating or localized surface plasmons, provide 
many exciting functionalities due to their ability to manipulate light via the local EM field 
shaping and enhancement. Magnetoplasmonics is an emerging field within nano-optics that 
operates with the combination of propagating or localized surface plasmons and magnetism. 
Active and adaptive magnetoplasmonic components capable of controlling light on the 
nanoscale with externally applied magnetic fields are envisioned to push the development of 
integrated photonic circuits, high-density data storage, or the advanced schemes for bio- and 
chemo-sensing. In these components plasmon-enhanced and controlled magneto-optical 
activity creates a new way of control for plasmonic devices, which is explored in this thesis. 

Another focus of this thesis are chiral plasmonic materials that exhibit an enhanced 
chiroptical response due to the nanoconfinement of light and strong near-field coupling. 
These have benefits in applications like chiral sensing. Fundamentally, they offer an 
additional degree of freedom to control the phase and polarization of light on the sub-
wavelength scale via interaction with its helicity, i.e., angular momentum. Adaptive chiral 
materials provide a new pathway for real-time control of chiral light’s scattering and 
absorption by weak magnetic fields. Engineering of chiral materials that can manipulate 
the helicity of light is decisive for angular momentum-controlled nanophotonics.  

A general topic of this thesis is the design and fabrication of advanced optical 

nanoantennas, used to dynamically manipulate light. Among applications are nanorulers, 

adaptive magneto-chiral and highly transparent magneto-dielectric surfaces.  

 
Keywords: Photonics, magnetoplasmonics, magneto-optics, magneto-optical Kerr effect 

(MOKE), plasmon ruler, nickel, cobalt, gold, silicon, localized surface plasmon resonance, 
dimer, trimer, chiroptics, chiral transmission, 2D nanoantennas, dynamic tuning, metal-

dielectric, 3D nanoantennas, metasurface, magnetic modulation, perpendicular magnetic 
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“Nothing is too wonderful to be true, if it be consistent with the laws of nature” 
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Surface plasmons are electromagnetic waves coupled to the collective oscillations of the 
free surface charges, strongly localized at an interface between two media with 
permittivities with opposite sign, typically a dielectric and a metal. They can exist either 
in the form of localized surface plasmons in nanoparticles, or as surface plasmon 
polaritons, also known as propagating plasmons, supported by planar interfaces. 
Plasmonics, being a major part of nanophotonics, is a research field that studies the 
phenomena and applications associated with surface plasmons [1-3], which was 
established around the turn of 20th century. Magnetoplasmonics is a relatively young but 
extensively growing field, which merges plasmonics and magnetism to devise conceptually 
new functionalities [4, 5]. The investigation of the phenomena arising from the mutual 
interplay of magnetism and light-matter interactions in spatially confined geometries 
became a hot topic owing to the recent advances in nanotechnology. The research route of 
magnetoplasmonics is twofold: controlling the plasmon properties with magnetic field on 
one hand and controlling the magneto-optical properties with plasmons on the other hand. 
The first route mainly focuses on the modulation of propagating surface plasmons with 
magnetic field. It was in early ’70s when the effect of magnetic field on plasmons was first 
analyzed on structures made of highly doped semiconductors and metals supporting 
propagating plasmons in far-infrared region. The idea to control the properties of 
plasmons, such as propagation and localization, became very appealing for the 
development of new active devices; however, too high magnetic fields, required for the 
proper control of the plasmon wave vector, hindered it from realization in real 
applications. Nanoengineering of new systems made from ferromagnetic materials and 
noble metals made it possible to control the plasmon wave vector with weak external 
magnetic field [6, 7] and generate ultrashort surface plasmon polariton pulses [8, 9]. 
Magnetic manipulation of propagating plasmons in magnetoplasmonic crystals, leading to 
the enhancement of magneto-optical activity and magneto-optical transparency [10], 
makes these systems suitable for applications in telecommunications, magnetic sensing 
and all-optical magnetic data storage. The recent review [11] highlights recent advances in 
the field of non-linear interactions in magneto- and acousto-plasmonic multilayers as well 
as non-linear magneto-plasmonics, and explains the role of the external magnetic field in 
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ultrafast magnetization dynamics and second harmonic generation in systems that 
support propagating plasmons. Another topic in magnetoplasmonics is the localized 
surface plasmons in purely magnetic or combined magnetic-noble metal systems. In 
contrast to heavily damped propagating plasmons in magnetic materials, localized 
plasmons have strong effects on magneto-optical activity due to the huge local field 
enhancement in spatially confined nanostructures. As a consequence, strongly enhanced 
magneto-optical activity [12] and tunability of magneto-optical response [13, 14] can be 
achieved with localized plasmons. Plasmon-enhanced and controlled magneto-optical 
activity creates a new way of active control of plasmonic devices by the weak magnetic 
fields. Because of that, magnetoplasmonic nanoparticles, or antennas, offer more flexibility 
than their non-magnetic counterparts, which has now been proved by their applications as 
rulers [15] and biosensors [16], non-reciprocal and one-way devices, and as contrast agents 
in magneto-photo-acoustic imaging [17]. Hybrid systems like core-shell particles, 
dumbbell-like dimers and cross-linked pairs based on magnetite and gold nanoparticles 
manifest an improved tunability, enhanced scattering efficiency and enhanced local field 
at the interface between magnetic and noble-metal components [18]. Recent report 
demonstrates a magnetic modulation of transmission approaching 100% by suspensions of 
superparamagnetic and plasmonic nanorod particles [19]. A further practical application, 
where magnetoplasmonics becomes eminent, is thermally-assisted magnetic recording, 
where the integration of a plasmonic antenna into a magnetic recording head shows to 
dramatically improve the storage density up to ~1 Tb/inch2 [20].  

 
In this thesis, I explore two routes leading to implementation of optical 

magnetoplasmonic nanoantennas as the future components in active and adaptive 
photonic devices that bring about a real-time control of light transmission, scattering and 
absorption by weak magnetic fields. The first route is realized through plasmon-enhanced 
and controlled magneto-optical activity and described in Paper 1 and Paper 2. The second 
route is tackled via magnetically manipulated interactions with light helicity in magneto-
chiral antennas and discussed in Paper 3 and Paper 4.  
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This chapter is focusing on plasmonics and describes the physics behind localized surface 
plasmon resonances in nanoparticles, making them antennas for light (nanoantennas). 
Antennas are electrical transducers that convert propagating electromagnetic waves 
(microwaves and radio frequency (RF) waves) into electric current or, radiate the 
electromagnetic waves from the current in a specific pattern. In direct analogy with low-
frequency RF antennas, optical nanoantennas operate with light – electromagnetic waves 
in visible and near-infrared regions of the electromagnetic spectrum.  

 
In section 2.1 I describe the optical properties of metals and provide the theoretical 

background of electromagnetics of metals in terms of classical electrodynamics based on 
Maxwell’s equations. The role of dielectric function in optical properties of metals is 
explained. In section 2.2 I introduce localized plasmons in metal nanoparticles and provide 
the analytical expressions for the polarizability of sub-wavelength nanoparticles and also 
beyond the quasi-static approximation. I close this chapter by describing the effects of 
plasmon coupling on optical properties of nanoparticle dimers. 

2.1 Optical properties of metals 

The interaction of metals with electromagnetic fields is frequency-dependent. At 
microwave and far-infrared frequencies metals are highly reflective and do not allow the 
propagation of electromagnetic waves. The field penetration increases significantly at 
higher frequencies in near-infrared and visible parts of the spectrum. Electromagnetic 
fields with frequencies in ultraviolet region of the spectrum can penetrate into and 
propagate through the metals. Frequency-dependent character of optical response is 
closely related to the dispersive properties of the complex dielectric function 𝜀(𝜔) and 
conductivity 𝜎(𝜔).  
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2.1.1 Theoretical foundations of macroscopic electrodynamics 

The optical properties of metals can be described in terms of classical electrodynamics 
based on Maxwell’s equations. Maxwell’s equations together with the Lorentz force law 
summarize the entire theoretical contest of classical electrodynamics and optics and tell 
how charges and currents generate fields and, reciprocally, how fields affect charges [21-
23]:  

𝛻 ∙  𝐸 =
1
𝜀!
𝜌!"#                                         (𝐺𝑎𝑢𝑠𝑠’𝑠 𝑙𝑎𝑤)                                                     (1) 

𝛻 ∙  𝐵 = 0                                                                                                                                   (2)  

𝛻 × 𝐸 = −
𝜕𝐵
𝜕𝑡

                                         (𝐹𝑎𝑟𝑎𝑑𝑎𝑦’𝑠 𝑙𝑎𝑤)                                                 (3) 

 

∇ × B= µ0 𝐽!"# + µ0 ε0
∂E
∂t

                 𝐴𝑚𝑝è𝑟𝑒’𝑠 𝑙𝑎𝑤 𝑤𝑖𝑡ℎ 𝑀𝑎𝑥𝑤𝑒𝑙𝑙’𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛     (4) 

 

𝐹 = 𝑞 𝐸 + 𝜐 × 𝐵 ,                                 𝐿𝑜𝑟𝑒𝑛𝑡𝑧 𝑓𝑜𝑟𝑐𝑒 𝑙𝑎𝑤                                         5  
 

where E denotes the electric field, B is the magnetic induction or magnetic flux density, 

𝐽𝑒𝑥𝑡 and 𝜌!"# are the external current and charge densities, q is the electric charge, 𝜐 is the 

velocity, ε0 and  µ0  are the dielectric permittivity and the magnetic permeability of 

vacuum1. The continuity equation 

 
𝛻 ∙ 𝐽 = −

𝜕𝜌
𝜕𝑡

                                            (𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛)                                         (6) 

 
 

is the mathematical expression of conservation of charge and is built in Maxwell’s 
equation. It can be derived by taking the divergence of Ampère’s law [21],[22].  

 
Constitutive relations display the material properties and show how it behaves under the 

influence of the fields. For non-dispersive linear2 and isotropic3 medium 

 
 

                                                
1   ε0 ≈ 8.854 x 10!!" 𝐹/𝑚 and µ0 ≈ 1.257 x 10!! 𝐻/𝑚 
2 In non-linear medium the polarization P is described by a Taylor series expansion and include the terms of 
higher power of E 
3 In anisotropic media 𝜀 and 𝜇 together with 𝜒! and 𝜒! are second-rank tensors: 
 𝜀 = 𝜀!(𝐼 + 𝜒!)  and 𝜇 = 𝜇!(𝐼 + 𝜒!), 𝐼 is identity matrix 
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𝐷 = 𝜀𝜀!𝐸          𝑃 = 𝜀!𝜒!  𝐸                                                                               (7) 

 

𝐻 =
1
𝜇𝜇!

𝐵         𝑀 = 𝜒!𝐻                                                                                (8) 

 
𝐽 = 𝜎𝐸,                                                                                                                      (9) 

 
where the dielectric displacement D, polarization P, the internal conduction current 
density J induced by the magnetization M, and the magnetic field H are expressed in 
terms of E and B with the conductivity 𝜎 and dielectric permittivity 𝜀 and magnetic 
permeability 𝜇, which depend on the nature of the material and connected with electric 
and magnetic susceptibility 𝜒! and 𝜒! through the relations: 

 
 

𝜀 = 𝜀! 1 + 𝜒!                                                                                                      (10) 
 

𝜇 = 𝜇! 1 + 𝜒! .                                                                                                    (11) 
 

Importantly, Maxwell’s and other equations in this section are written in their 
macroscopic form, which uses charge densities and current densities instead of total 
charge and total current. The microscopic properties of matter and microscopic fields can 
be included in Maxwell’s equations by considering charges and currents at the atomic 
scale.  

 
An electromagnetic time-dependent field in a linear medium can be written as a 

superposition of monochromatic plane-wave components [1, 22]  
 

𝐸 𝑟, 𝑡 = 𝐸(𝑘,𝜔) cos 𝑘 ∙ 𝑟 − 𝜔𝑡 .                                                                   (12) 

 
Therefore the induced dielectric displacement 𝐷 𝑟, 𝑡  and the internal conduction current 
𝐽(𝑟, 𝑡) can be rewritten as [1, 22] 

 
𝐷 𝑘,𝜔 = 𝜀!𝜀(𝑘,𝜔)𝐸(𝑘,𝜔)                                                                             (13) 

 
𝐽 𝑘,𝜔 = 𝜎 𝑘,𝜔 𝐸 𝑘,𝜔 ,                                                                                  (14) 
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were 𝑘 and 𝜔 are the wavevector and the angular frequency. Since 𝐸(𝑘,𝜔) is equivalent to 

the Fourier transform 𝐸 of the time-dependent field 𝐸(𝑟, 𝑡), the inverse Fourier transform 
can be applied to equations (13) and (14) and the constitutive relations (7) and (9) can be 
rewritten in a general form taking into account the non-locality of the medium in time and 
space [22]: 

 

𝐷 𝑟, 𝑡 = 𝜀! 𝜀(𝑟 − 𝑟!, 𝑡 − 𝑡!)𝐸(𝑟!, 𝑡!)𝑑𝑟!𝑑𝑡!                                          (15) 

 

𝐽! 𝑟, 𝑡 = 𝜎 𝑟 − 𝑟!, 𝑡 − 𝑡! 𝐸 𝑟!, 𝑡! 𝑑𝑟!𝑑𝑡!.                                              (16) 

 
In a non-local medium the displacement 𝐷 and the conduction current 𝐽!  at time 𝑡 depend 

on the electric field 𝐸 at all times 𝑡! previous to time 𝑡, which referred to as temporal 
dispersion. Similarly, if the displacement 𝐷 and the conduction current 𝐽!  at a point 𝑟 
depend on the electric field 𝐸 at all neighboring points 𝑟!, the medium is called spatially 
dispersive or non-local. While spatial dispersion is a very weak effect, the temporal 
dispersion is a widely encountered phenomenon and should be taken into account.  

 
Spectral representation of time-dependent fields is given by Fourier transform and the 

spectrum 𝐸(𝑟,𝜔) of a time-dependent field 𝐸(𝑟, 𝑡) is defined as 
 

𝐸 𝑟,𝜔 =
1
2𝜋

𝐸 𝑟, 𝑡 𝑒!"#𝑑𝑡.
!!

!
                                                                     (17) 

 
The solution of Maxwell’s equations in Fourier (frequency) domain 𝐸 𝑟,𝜔  can be found 

by applying  Fourier transform to Maxwell’s equations in time domain and making a 

substitution !
!"
→ −𝑖𝜔. Together with constitutive relations (7) and (8) the substitution 

Maxwell’s equations in Fourier domain will have a form:  
 

𝛻 ∙  𝐷 𝑟,𝜔 = 𝜌!"# 𝑟,𝜔                                                                                   (18) 

𝛻 ∙  𝐵 𝑟,𝜔 = 0                                                                                                       (19) 
 

𝛻 × 𝐸 𝑟,𝜔 = 𝑖𝜔𝐵 𝑟,𝜔                                                                                   (20) 
 

∇ × 𝐻(𝑟,𝜔)=  𝐽!"#( 𝑟,𝜔) − 𝜔𝐷 𝑟,𝜔 ,                                                              (21) 
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where the solution 𝐸(𝑟,𝜔) in frequency domain and the solution 𝐸(𝑟, 𝑡) in time 
domain are related through the inverse Fourier transform as 

 

𝐸 𝑟, 𝑡 = 𝐸(𝑟,𝜔)𝑒!!"#𝑑𝑡
!!

!
.                                                                         (22) 

 
 
We rewrite the equations (13) and (14) by replacing 𝐷 𝑘,𝜔  and 𝐽 𝑘,𝜔  with 𝐷 = 𝜀!𝐸 + 𝑃 

and 𝐽 = !"
!"

, where the latter comes from the relationships ∇ ∙ 𝑃 = −𝜌 and the conservation 

of charge 𝛻 ∙ 𝐽 = − !"
!"

 : 

 
𝜀!𝐸 𝑘,𝜔 + 𝑃 = 𝜀!𝜀 𝑘,𝜔 𝐸 𝑘,𝜔                                                                (23) 

 
𝜕𝑃
𝜕𝑡

= 𝜎 𝑘,𝜔 𝐸 𝑘,𝜔 .                                                                                      (24) 

 
Finally, the fundamental relationship between the dielectric permittivity (dielectric 

function) 𝜀 𝑘,𝜔  and the conductivity 𝜎 𝑘,𝜔  can be found by making a replacement 
!
!"
→ −𝑖𝜔 and expressing 𝜀 𝑘,𝜔  through 𝜎 𝑘,𝜔  [1]: 

 

𝜀 𝑘,𝜔 = 1 +
𝑖𝜎(𝑘,𝜔)
𝜀!𝜔

.                                                                                    (25) 

 
This relationship can be simplified by assuming that 𝜀 is only the function of the 

frequency and not the wavevector, i.e. 𝜀 𝑘 = 0,𝜔 = 𝜀 𝜔 , which is true for up to ultraviolet 
frequencies [1]: 

 

𝜀 𝜔 = 1 +
𝑖𝜎(𝜔)
𝜀!𝜔

.                                                                                            (26) 

 
Both the dielectric function 

𝜀 𝜔 = 𝜀! + 𝑖𝜀! 

and the conductivity 
𝜎 𝜔 = 𝜎! + 𝑖𝜎! 
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have their real and imaginary parts and are complex functions of the frequency 𝜔. The 
optical properties of metals are described by the complex dielectric function 𝜀 𝜔  with 
imaginary part 𝜀! 𝜔  that is responsible for light absorption and energy dissipation 
associated with the motion of free electrons in metals. 
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2.1.2 Dielectric function of metals  

Plasma model can be used over a wide range of frequencies to describe the optical 
properties of metals. According to the free-electron model, free conduction electrons 
oscillate against the fixed ion lattice 180o out of phase relative to the driving 
electromagnetic field. The motion of free electrons is damped via collisions that occur with 

characteristic collision frequency 𝛾 = 1 𝜏, where 𝜏 is relaxation time of free electron gas. At 
room temperature 𝜏~10!!", which results in 𝛾~100 THz. According to Drude-Sommerfeld 
theory, the equation of motion of a free electron with mass m and charge e in external 
electric field E can be written as [1] 

 
𝑚𝑥 +𝑚𝛾𝑥 = −𝑒𝐸.                                                                                                 (1) 

 

For harmonic time dependence of the driving field 𝐸(𝑡) = 𝐸!𝑒!!"# a particular solution of 

the equation describing the oscillation of the electron 𝑥(𝑡) = 𝑥!𝑒!!"! is used to find that 
 

𝑥 𝑡 =
𝑒

𝑚 𝜔! − 𝑖𝛾𝜔
𝐸 𝑡 .                                                                                   (2) 

 
The displaced electrons of density n contribute to a macroscopic polarization 𝑃 = −𝑛𝑒𝑥, or  

𝑃 𝑡 = −
𝑛𝑒!

𝑚 𝜔! − 𝑖𝛾𝜔
𝐸 𝑡 .                                                                              (3) 

    
We insert this expression into 𝐷 = 𝜀!𝐸 + 𝑃 and obtain that 
 
 

𝐷 = 𝜀! 1 −
𝜔!!

𝜔! + 𝑖𝛾𝜔
𝐸,                                                                                   (4) 

 

where 

𝜔!! =
𝑛𝑒!

𝜀!𝑚
 

 
is the plasma frequency of the free-electron gas. Since 𝐷 = 𝜀𝜀!𝐸, the dielectric function of 
the free electron gas is given by: 

 

𝜀 𝜔 = 1 −
𝜔!!

𝜔! + 𝑖𝛾𝜔
.                                                                                        (5) 
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The complex dielectric function 𝜀 consists of real and imaginary parts: 

 

𝜀! 𝜔 = 1 −
𝜔!!𝜏!

1 + 𝜔!𝜏!
                                                                                        (6) 

 

𝜀! 𝜔 = 1 −
𝜔!!𝜏

𝜔 1 + 𝜔!𝜏!
,                                                                                 (7) 

 
where 𝛾 = 1 𝜏 indicates damping due to the collisions. For large frequencies close to 𝜔!, 

the product 𝜔𝜏 ≫ 1 resulting in predominantly real dielectric function 

 

𝜀 𝜔 = 1 −
𝜔!!

𝜔! ,                                                                                                     (8) 

 
which is known as the dielectric function of undamped free electron plasma [1]. In reality the 
optical response of noble metals (e.g. Au, Ag, Cu) in frequency region 𝜔 > 𝜔! is highly affected 

by interband transitions, which are not included in Drude-Sommerfeld model and will be 
discussed in the next section. In low frequency regime, 𝜔 ≪ 𝜏!! which results in 𝜀! 𝜔 ≫ 𝜀! 𝜔  
and metals are mainly absorbing [1].  

2.1.3 Interband transitions in noble metals  

At visible and higher frequencies the optical response of noble metals is determined by 
the transitions between the electronic bands. Interband transitions occur if photon energy 
exceeds the bandgap energy and bound electrons from lower-lying bands get into the 
conduction band. The dielectric function of interband transitions describing the 
contribution of bound electrons is given by [22]: 

 

𝜀!"#$%&'"( 𝜔 = 1 +
𝜔!!

𝜔!! − 𝜔! − 𝑖𝛾𝜔
,                                                 1  

 
where 𝛾 describes radiative damping in case of bound electrons. Here the frequency 

𝜔! =
𝑛𝑒!

𝑚𝜀!
 

has a different physical meaning than plasma frequency in plasma model with 𝑛 and m being 
the density and the effective mass of the bound electrons, and  
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𝜔! =
𝛼
𝑚
, 

where 𝛼 is the spring constant of the potential which keeps the electrons tied to the ion cores.  
 
For visible and higher frequencies, the imaginary part of this dielectric function 𝜀!"#$%&'"( 𝜔  

does not follow the Drude-Sommerfeld model in noble metals and resonantly increases due to 
interband transitions, which results in strong absorption [24]. As an alternative, the optical 
response of real metals in the frequency region 𝜔 > 𝜔! can be described by a dielectric 

function, which accounts for the effect of all higher-energy interband transitions via a 
constant offset 𝜀! and given by: 

 

𝜀 𝜔 = 𝜀! −
𝜔!!

𝜔! + 𝑖𝛾𝜔
.                                                                                       2  

 
The dielectric constant 𝜀! (usually 1 ≤ 𝜀! ≤ 10) describes highly polarized environment 
created by the filled d band located close to the Fermi level [1]. 
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2.2 Localized surface plasmons 

Localized surface plasmons are collective oscillations of free electrons in metallic 
nanostructures at the interface between a metal and a dielectric. According to the simple 
Drude model, the electron cloud of free conduction electrons oscillates 180º out of phase 
relative to the driving electric field (Fig. 2.1c). The effective restoring force, originating 
from the positively charged ion lattice, is exerted on the conduction electrons so that a 
resonance can arise, leading to field enhancement both inside and in the near-field zone 
outside the particle [1].  

 
Resonantly enhanced absorption and scattering in gold and silver nanoparticles falls into 

the visible region of the electromagnetic spectrum, which explains bright colors observed 
in transmitted and reflected light. This phenomenon found applications in the staining of 
glass for windows (Fig.2.1a) and ornamental cups two thousand years ago (Fig.2.1b) but 
did not have a clear explanation for a long time. Now we know that the colors are due to 
the interplay of absorption and scattering in nanometer-sized gold particles embedded in 
glass [1, 22]. Michael Faraday was the first in history to study the interactions of light and 
matter in the mid 1850s. For his experiments, he prepared several hundred transparent 
thin gold slides and shined light through them. To make the films thin enough to be 
transparent, Faraday used a chemical process that involved washing of the films, which 
Faraday noticed produced a faint ruby color fluid. He kept the samples of the fluids in 
bottles and when he was shining a beam of light through the liquid in 1856, Faraday 
observed that the light was scattered due to the presence of suspended gold particles that 
were too small to be observed with scientific apparatus of the time. Remarkably, after 
more than 150 years the Faraday’s colloids are still optically active (Figure 2.1 d), when 
most of the colloidal solutions nowadays last for only few months and eventually aggregate 
and/or produce sediments. Because Faraday’s bottles can’t be unsealed without being 
damaged, it will remain a mystery.  
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Figure 2.1. a) Kingfisher stained glass window, Worcester, UK. b) The Lycurgus Cup, 1700 
years old. c) Illustration of dipole polarizability and oscillations of free electron density during 
localized plasmon resonance in metal nanoparticle. d) Gold colloids prepared by Michael 
Faraday more than 150 years ago, The Royal Institution of Great Britain, UK.  

2.2.1 Polarizability of a sub-wavelength metal nanoparticle 

To analyze the interaction of a particle of size d with electromagnetic field one assumes 
that the size of the particle d is much smaller that the wavelength of light 𝑑 ≪ 𝜆, and 
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harmonically oscillating electric field 𝐸 𝜔 = 𝐸!𝑒!!"# is constant over the particle volume. 
This approach is known as quasi-static approximation and describes well the optical 
response of nanoparticles of dimensions around 100 nm and below. The harmonic time 

dependence 𝑒!!"# is added later when the field distribution is found. When a homogeneous 
metallic sphere of radius 𝑎 is placed into a uniform electrostatic field (Fig. 2.2), the field 
induces a dipole moment inside the sphere, which is given by [1, 22] 

 

𝑝 = 4𝜋𝜀!𝜀!𝑎!
𝜀 − 𝜀!
𝜀 + 2𝜀!

𝐸!,                                                                        1  

 
where 𝜀 and 𝜀! are the dielectric constants of the particle and the surrounding medium, 𝐸! is 
the amplitude of the external electric field.  
 

The polarizability 𝛼 of a metallic sphere in quasi-static approximation is defined via 
 

𝑝 = 𝜀!𝜀!𝛼𝐸!                                                                                                2  
 
and given by 

𝛼 = 4𝜋𝑎!
𝜀 − 𝜀!
𝜀 + 2𝜀!

 .                                                                                    3  

 
It is clear that the polarizability in (3) experiences a resonant enhancement when 𝜀 + 2𝜀!  

is minimal, which in the case of small or slowly-varying 𝐼𝑚 𝜀 𝜔  simplifies to [1] 
 

𝑅𝑒 𝜀 𝜔 = −2𝜀! .                                                                                     4  
 
The relationship (4) is called the Fröhlich criterion and describes a dipole surface plasmon 

mode of the metal nanoparticle in a harmonically oscillating electric field 𝐸 𝜔 = 𝐸!𝑒!!"# . For 
a sphere consisted of Drude metal with a dielectric function 

 

𝜀 𝜔 = 1 −
𝜔!!

𝜔! + 𝑖𝛾𝜔
,                    

 

located in air, the Fröhlich criterion is met at 𝜔! =
𝜔!

3
. The resonance frequency 𝜔! 

depends on the dielectric constant of the surrounding medium 𝜀! and the resonance redshifts 
as 𝜀! increases. Based on that fact, metal nanoparticles are perfectly suited for optical 
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sensing of changes in refractive index [1]. 

 
Figure 2.2. Schematics of a metal sphere in the electrostatic field 𝐸!. 

 
For harmonically oscillating electric field which excites a dipole moment 

𝑝 𝑡 = 𝜀!𝜀!𝛼𝐸!𝑒!!"# the polarizability is given by the same expression (3) as in quasi-
electrostatic approximation. A metal nanoparticle of spherical shape at its plasmon 
resonance can be seen as a point dipole located in the center of the sphere. The radiation of 
this dipole leads to re-radiation and dissipation of the electromagnetic plane wave by the 
sphere [22], known as scattering and absorption, with corresponding scattering and 
absorption cross-sections given by [1]: 

 

𝐶!"# =
𝑘!

6𝜋
𝛼 ! =

8𝜋
3
𝑘!𝑎!

𝜀 − 𝜀!
𝜀 + 2𝜀!

! 
                                                                 5  

 

𝐶!"# = 𝑘𝐼𝑚 𝛼 = 4𝜋𝑘𝑎!𝐼𝑚
𝜀 − 𝜀!
𝜀 + 2𝜀!

.                                                                6  

  
The important consequence of resonantly enhanced polarizability of a sub-wavelength metal 

nanoparticle, acting as an electric dipole, is that the nanoparticle resonantly absorbs and 
scatters electromagnetic fields at the dipole plasmon resonance. Extinction, being the sum of 
absorption and scattering, depends on the particle size (Fig. 2.3), shape and the dielectric 
function of the surrounding medium. 
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Figure 2.3. Extinction measured at around localized surface plasmon resonance in gold 
nanodisks with diameters 100, 150, 170 nm and thicknesses 20 and 30 nm fabricated with 
hole-mask colloidal lithography. Inset: SEM micrograph of nanodisks with diameter 150 nm.   

 
Although the basic physics of localized surface plasmon resonance is described on the 

assumption of spherical shape of the nanoparticle, the polarizability can be derived for 
nanoparticles with more general ellipsoidal shape and is given by [1, 25] 

 

𝛼! = 4𝜋𝑎!𝑎!𝑎!
𝜀 𝜔 − 𝜀!

3𝜀! + 3𝐿! 𝜀 𝜔 − 𝜀!
,                                                                        7  

 
where the semiaxes 𝑎! ≤ 𝑎! ≤ 𝑎! are specified by 

 
𝑥!

𝑎!!
+
𝑦!

𝑎!!
+
𝑧!

𝑎!!
= 1. 

 
𝛼! (𝑖 = 1,2,3) define the polarizabilities along the principal axes of the ellipsoid. 𝐿! are 
elements defined by the geometry and given by 
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𝐿! =
𝑎!𝑎!𝑎!
2

𝑑𝑞
𝑎!! + 𝑞 𝑓 𝑞

,                                                                                 8
!

!
 

 

where 𝑓 𝑞 = 𝑞 + 𝑎!! 𝑞 + 𝑎!! 𝑞 + 𝑎!! . The elements 𝐿! satisfy the condition 𝐿! = 1 , and for 

a sphere 𝐿! = 𝐿! = 𝐿! = 1
3. Alternatively, the polarizability of ellipsoids can be expressed in 

terms of depolarization factors 𝐿!, defined via 𝐸!! = 𝐸!! − 𝐿!𝑃!!, where 𝐸!!and 𝑃!! are the 
electric field and polarization induced inside the particle by the external field 𝐸!! along the 

principal axis 𝑖. 𝐿! and 𝐿! are connected by the relationship 
 

𝐿! =
𝜀 − 𝜀!
𝜀 − 1

𝐿!
𝜀!𝜀!

.                                                                                                          9  

 
Nanoparticles used in this work can be classified as a special case of ellipsoids with two 

major axes of the same size 𝑎! = 𝑎!, called oblate spheroids. Nanoparticles of this shape 
exhibit two spectrally separated plasmon resonances corresponded to the oscillations of 
the conduction electrons along the major or the minor axes, respectively. The resonance 
along the major axis is significantly red-shifted compared to the resonance of a sphere of 
the same volume [1]. 

 
An important class of nanoparticles, which recently gained a great amount of attention 

in plasmonics due to their wide tunability of the resonance, is core-shell nanoparticles. 
The polarizability of a core-shell nanoparticle consisting of a dielectric core with 𝜀! 𝜔  and 
a metallic shell with 𝜀! 𝜔  is given by [25] 

 

𝛼 = 4𝜋𝑎!!
𝜀! − 𝜀! 𝜀! + 2𝜀! + 𝑓 𝜀! − 𝜀! 𝜀! + 2𝜀!

𝜀! + 2𝜀! 𝜀! + 2𝜀! + 𝑓 2𝜀! − 2𝜀! 𝜀! − 𝜀!
,                                           10  

where 𝑓 = 𝑎!!
𝑎!!

, 𝑎! and 𝑎! are the inner and the outer radii, respectively.  

2.2.2 Plasmons beyond quasi-electrostatic limit 

The results for resonantly enhanced polarizability, absorption and scattering by a sub-
wavelength nanoparticle obtained in quasi-electrostatic approximation, where the 
nanoparticle is seen as an electric dipole, which absorbs and scatters light, is no longer 
valid for nanoparticles with dimensions compared to the wavelength of light. In practice, 
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the quasi-electrostatic approximation gives reasonably good results for spherical and 
ellipsoidal nanoparticles with dimensions below 100 nm, illuminated by visible or near-
infrared light. For larger nanoparticles, where the driving electromagnetic field is not 
constant over the nanoparticle volume due to the phase-changes, one uses an approach 
known as Mie theory where internal and scattered fields are expanded into a set of normal 
modes. The expansion of the first TM mode of Mie theory gives an expression for the 
polarizability of a sphere with volume 𝑉, given by [1]: 

 

𝛼!"!!"! =
1 − 1

10 𝜀 + 𝜀! 𝑥! + 𝑂(𝑥!)

1
3 +

𝜀!
𝜀 − 𝜀!

− 1
30 𝜀 + 10𝜀! 𝑥! − 𝑖

4𝜋!𝜀!
!
!

3
𝑉
𝜆!!
+ 𝑂(𝑥!)

 ,                             (1) 

 
where 𝑥 = !"

!!
 is the size parameter, relating the radius 𝑎 to the free-space wavelength. 

Formula for the polarizability (1) can be generalized for ellipsoid structures, giving the 
polarizability along the principal axis with geometrical factor 𝐿 [1]: 

 

𝛼!""#$%&#' ≈
𝑉

𝐿 + 𝜀!
𝜀 − 𝜀!

+ 𝐴𝜀!𝑥! + 𝐵𝜀!! 𝑥! − 𝑖
4𝜋!𝜀!

!
!

3
𝑉
𝜆!!

 ,                                  (2) 

 

where the parameters 𝐴 and 𝐵 are the functions of 𝐿 and obtained using empirical data. 
The term quadratic in 𝑥 in the numerator includes the effect of retardation of the exciting 
field over the volume of the sphere. Another quadratic term in the denominator describes 
the effect of the retardation of the depolarization field inside the particle. Both effects lead 
to a red-shift of the resonance as the size of the particle increases, which also means that 
the influence of the interband transitions gets limited as the resonance shifts towards 
lower energies. The imaginary term in the denominator accounts for radiation damping, 
caused by a direct radiative decay route of the coherent electron oscillations into photons 
[1].  

 

There are two main mechanisms of plasmon damping beyond the electrostatic 
approximation in nanoparticles made of noble metals: a radiative decay into photons, 
dominating for larger particles, and non-radiative decay (absorption) due to 
thermalization or the creation of short-lived electron-hole pairs via either intraband or 
interband transitions [1]. In ferromagnetic nanoparticles, plasmons in addition are heavily 
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damped via thermal decay due to ohmic losses. Damping processes are responsible for a 
significant broadening of the plasmon resonance linewidth. 

2.2.3 Plasmon coupling 

The interaction between localized surface plasmon resonances of individual 
nanoparticles in complex structures, referred to as plasmon coupling, leads to the 
hybridization of individual plasmon modes [26]. In arrays of small nanoparticles, the 
electromagnetic interactions between the localized modes can in first approximation be 
treated as an interaction between point dipoles. This interaction is strongly dependent on 
the interparticle distance. For closely spaced particles with 𝑑 ≪ 𝜆, near-field interactions 
with a distance dependence 𝑑!! dominate, and the particle array can be seen as an array 
of point dipoles interacting via their near-field. Near-field coupling results in strongly 
enhanced local field in the nano-gaps between or at the intersection points of adjacent 
particles [1, 22], which decays as 𝑑!! with distance (see Fig. 2.4). For larger particle 
separations, far-field dipolar coupling with a distance dependence 𝑑!! dominates. 

 

Figure 2.4. Near-field plots of longitudinal (a) and transverse (b) plasmon modes in Ni 
nanodimer particles with separations 10 nm, 20 nm and 30 nm, respectively, analytically 
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calculated for the wavelength 800 nm, employed in Paper 2. Image courtesy of Nicolò 
Maccaferri.  

 
When individual plasmon modes interact, a low-energy (red-shifted) hybrid mode is 

obtained for in-phase oscillations with the incoming electric field of the charges of 
elementary nanoparticles whereas the out-of-phase oscillations represent the higher-
energy mode that is blue-shifted. These in-phase and out-of-phase plasmon modes are also 
known as bonding and anti-bonding modes [27].  

 
Multiple plasmon resonances occur for asymmetric particles such as pairs of metal 

nanoparticles, e.g. dimers, for different directions of light polarization. Depending on the 
direction of light polarization, longitudinal and transverse plasmon modes can be excited 
in a dimer particle (Fig. 2.4 and Fig. 2.5). For longitudinal light polarization the low-
energy mode, or bonding mode, and the higher-energy mode, or antibonding mode, are 
accessible optically. At the same time, the anti-bonding mode for transversal light 
polarization is dark and can not be optically excited for a pair of identical nanodisks.   

 

 

 

Figure 2.5. Illustration of electric dipole and plasma oscillations excited by localized 
plasmon resonance in a nanoparticle dimer for (a) bonding longitudinal and (b) optically 
accessible bonding transverse mode (following the definition given in [26]). 

 
The restoring force, acting on the oscillating electrons is decreased due to Coulomb 

attraction between the opposite charges of neighboring particles for longitudinal light 
polarization when the bonding mode is excited (Fig. 2.5a), and increased due to Coulomb 
repulsion for transverse light polarization (Fig. 2.5b). Since the overall energy of the 
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configuration is decreased, there is a red-shift of the plasmon resonance for the excitation 
of longitudinal mode. Oppositely, the increase in energy results in a blue-shift of the 
transverse mode [1, 22, 28]. Consequently, the longitudinal resonance redshifts as the 
interparticle distance get smaller (Fig. 2.6a) whereas the transverse resonance is much 
less sensitive to distance change between the particles (Fig. 2.6b).  

 

 

Figure 2.6. Longitudinal (a) and transverse (b) modes of localized plasmon resonances 
excited in Au nanodimers with interparticle separations 20 nm, 30 nm and 40 nm. The 
single disk diameter is 150 nm and the thickness is 30 nm.  

  

E

E
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2.3 Plasmon rulers  

Accurate measurements of distances on the nanoscale are decisive in many aspects of the 
materials and life sciences. Prominent examples include studies of various biochemical 
processes via conformational changes in biomolecules. Previously, the optical tools used to 
obtain spatial information on the nanoscale, and down to the single-molecule level, focused 
on Förster resonance energy transfer (FRET) spectroscopy and the use of organic 
fluorophores in so-called molecular rulers. Dynamic processes, such as DNA bending and 
cleavage, and RNA catalysis and folding, as well as protein–protein interactions, were all 
first explored by FRET. However, the limitation of fluorophores due to their photo 
bleaching and degradation over time led to the emergence of noble-metal nanoparticle-
based plasmon rulers [29-32]. The operation of plasmon rulers relies on localized collective 
electronic oscillations (localized plasmons) in nanometal assemblies and on the near-field 
coupling (i.e., hybridization) between the plasmon modes of the adjacent nanoparticles, 
which strongly depends on the interparticle distance [26, 33]. Plasmon local 
electromagnetic near-fields exponentially decay over distance and as such, at small 
separations, the near-field enhancement and coupling effects increase dramatically. The 
underlying idea of a plasmon ruler, which consists of two or more noble metals or elements 
of core–shell structures, is then the extreme sensitivity of the light scattering to the 
interparticle gap size [26, 27, 33-38]. This was first explored with nanoplasmonic dimer 
antennas almost a decade ago for monitoring the kinetics of single DNA hybridization 
events in solution (Fig. 2.7 that also explains the working principle of a plasmon ruler) [29].  

 
In later realizations, plasmon rulers with sub-nm resolution consisted of thin-film coupled 

single-particle nanoantennas that utilized thiol monolayers with an adjustable chain length 
[30]. The principles of plasmon ruler design are typically refined with lithographically 
fabricated nanoantennas that are implemented to investigate the distance dependence of 
plasmon-coupling effects and to derive a plasmon ruler equation [31]. This includes the 
concept of a multielement three-dimensional plasmon ruler [32] to track the complex 
conformational changes that have also been recently realized in solution [39].  
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Figure 2.7. Spectral shift between a gold particle pair connected with ssDNA (red) and 
dsDNA (blue) also explaining the working principle of a plasmon ruler. The figure is taken 
from the reference [39]. 

 
In Paper 2 we introduce a conceptually new active plasmon ruler that employs 

magnetoplasmonic coupling instead of purely plasmonic coupling and allows optical 

detection of nanoscale distances. The ruler optimizes its own spatial orientation due to 

active operation and provides a figure-of-merit substantially exceeding the traditional 

plasmon rulers based on noble metals.  

1.2 
 
1.0 
 
0.8 
 
0.6 
 
0.4 
 
0.2 
 
0.0 
 

I sc
a 

(n
or

m
al

iz
ed

) 

450              500            550            600            650        700 

                                             

Au 

Au 

Au 

Au 

s 

dsDNA s 
ssDNA 

Spectral shift 

Wavelength (nm) 



 24 

 
 
 
 
 
 
 
 
 
 
 

  



 25 

 

 

 

 

 

“Thus is established, I think for the first time, a true, direct relation and 

dependence between light and the magnetic and electric forces; and thus a 

great addition made to the facts and considerations which tend to prove that 

all natural forces are tied together, and have one common origin. It is, no 

doubt, difficult in the present state of our knowledge to express our expectation 

in exact terms; and, though I have said that another of the powers of nature is, 

in these experiments, directly related to the rest, I ought, perhaps, rather to say 

that another form of the great power is distinctly and directly related to the 

other forms; or, that the great power manifested by particular phenomena in 

particular forms, is here further identified and recognized, by the direct 

relation of its form of light to its forms of electricity and magnetism.” 

 

 

Michael Faraday on observation of the polarization rotation in polarized ray sent through 

a magnetized optical glass, 1845 
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Chapter 3 is focusing on magneto-optics and magnetoplasmonics with optical 

nanoantennas. In section 3.1 I give a short introduction to magneto-optics and classification 

of different magneto-optical phenomena. Thereafter, I focus on the magneto-optical Kerr 

effect and provide the analytical description of optical properties of gyrotropic medium. In 

section 3.2 I describe the role of localized plasmons and spin-orbit coupling on magneto-

optical activity, and derive the analytical expressions for the Kerr ellipticity and Kerr 

rotation. I close this chapter by explaining the fundamental property of localized plasmons 

to enhance and tailor the magneto-optical activity. 

3.1 Magneto-optical effects 

Magneto-optical effects appear when light interacts with matter subjected to a magnetic 
field. The origin of these effects is system energy splitting, known as Zeeman effect, which 
occurs in external magnetic field. The presence of a magnetic field is not necessary if a 
matter is magnetically ordered (ferromagnetic, ferrimagnetic, etc.), so magneto-optic effects 
appear in the absence of external magnetic field as well. In a magnetized matter, the 
magnetic field breaks the spatial and time-reversal symmetries leading to optical 
anisotropy, which manifests itself as dichroism, i.e. difference in the absorption coefficients 
for two orthogonal polarizations. Dichroism is defined as the difference between absorptions 
of the right-hand and left-hand circularly polarized components (𝑘! − 𝑘!) in the Faraday 
geometry (when 𝑘 ∥ 𝐻), so-called magnetic circular dichroism (MCD). In Voigt geometry, 
when 𝑘 ⊥ 𝐻, it is known as magnetic linear dichroism (MLD), or the difference between 
absorptions of components polarized parallel and perpendicular to the magnetic field. The 
splitting in dispersion curves of the absorption coefficient is related to the splitting in 
dispersion curves of the refractive index via Kramers-Kroning relations. It is observed as 
the difference between the refractive indices for the two circularly polarized components 
(also known as magnetic circular birefringence or Faraday effect) and for the two linearly 
polarized components (magnetic linear birefringence) in the Faraday and Voigt geometry, 
respectively [40].  
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The origin of dichroism and birefringence lies in symmetry breaking induced by a 
magnetic field. Magnetic field is an axial vector and has symmetry of circular current set 
out in a plane perpendicular to the vector of the magnetic field. Therefore, if a medium is 
placed in a magnetic field, the rotation directions in the plane perpendicular to the magnetic 
field are different. This means that in a magnetized medium the optical properties of light 
propagating along the magnetic field direction with right-hand and left-hand circular 
polarizations are different too. The interesting analogy is symmetry breaking in a rotating 
medium along its rotational axis, which is explained by the fact that angular velocity, like 
magnetic field, is an axial vector [21, 40]. 

3.1.1 The Faraday effect 

In 1845 Michael Faraday discovered that if a block of optical quality (heavy) glass, 
borosilicate of lead, is placed in a magnetic field, it becomes optically active [41]. When 
linearly polarized light passes through glass in a direction parallel to the applied magnetic 
field, the polarization plane is rotated by an angle Θ, which is proportional to the magnitude 
of the magnetic field 𝐻 and the distance 𝐿, travelled by light: 

 
Θ = 𝑉𝐻𝐿.                                                                                                              (1) 

 
The proportionality constant 𝑉, called the Verdet constant, is defined as the rotation per unit 

path, per unit field strength and depends on the material properties, photon energy and the 
temperature.  

 
The Faraday effect originates from the difference in refractive indices of right-hand and 

left-hand circularly polarized components, 𝑛! − 𝑛!, induced by the magnetic field. Linearly 
polarized light can be seen as a superposition of left- and right-hand circular waves with a 
defined phase difference. As a result of the difference between 𝑛! and 𝑛!, the circular waves 
will propagate with different velocities 𝑐 𝑛! and 𝑐 𝑛! when a magnetic field is applied, 

which causes the rotation of the polarization plane of the linearly polarized light by the 
angle [40] 

 

Θ =
𝜔
2𝑐

𝑛! − 𝑛! 𝐿,                                                                                                 2  
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where 𝜔 is angular frequency, 𝑐 is the velocity of light and 𝐿 is the path of the beam in the 
medium. The phenomenological distinction of Faraday effect from natural optical activity 
(chirality) is non-reciprocity of the Faraday effect: the value of Θ will be doubled if light 
travels back along the same path through the magnetized medium (e.g. after reflection from 
a mirror). In case of natural optical activity, when light travels back after normal reflection, 
Θ = 0. 

3.1.2 Magneto-optical Kerr effect (MOKE) 

Along with magneto-optical effects arising during transmission of light through a 
magnetized medium, there are a number of effects, which manifest themselves when the 
light is reflected from a surface of a magnetized material. These phenomena are 
conventionally referred to as magneto-optical Kerr effects, discovered in 1877 by a Scottish 
physicist John Kerr, and can be classified to longitudinal (meridional), polar and transverse 
(equatorial) Kerr effects according to the orientation of the magnetization vector relative to 
the reflective surface, or the plane of incidence of the incoming beam. Faraday and Kerr 
effects are odd effects, i.e. change sign when the sample is remagnetized [40]. 

 

 

 
Figure 3.1. Geometry of the magneto-optical Kerr effect, showing the orientation of the 

vector of magnetization M with respect to the plane of light incidence in three 
configurations: (a) longitudinal, (b) polar and (c) transverse. 

 
L-MOKE: In the longitudinal magneto-optical Kerr effect (L-MOKE) (Fig. 3.1a), the 

magnetization vector 𝑀 lies both in the plane of the sample and in the plane of light 
incidence. In this effect, the polarization plane of the linearly polarized light is rotated and 
an ellipticity is introduced after the reflection from a magnetized surface (Fig. 3.2a).  

 

M 

M 
M 

a b c 
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Figure 3.2. (a) Illustration of the rotation of the polarization plane and appearance of the 
elliptical component in L-MOKE. (b) Geometrical representation of the complex Kerr angle.  

 
Kerr rotation and Kerr ellipticity compose the complex Kerr angle Φ! (Fig. 3.2b) with Kerr 

rotation being its real part, ℜ Φ! , and Kerr ellipticity being its imaginary part, ℑ Φ! : 

 
Φ! = 𝜃! + 𝑖𝜖! .                                                                                                             (1) 

 
Similar to the Faraday effect, L-MOKE is proportional to the magnetization and is 

primarily used to probe the magnetization of the sample being one of the most sensitive and 
simplest methods (Fig. 3.3). It is the main experimental technique used in this thesis to 
explore the magneto-plasmonic properties.  

a b 
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Figure 3.3. Magnetization hysteresis loops measured in permalloy (Ni0.8Fe0.2) film of the 
thickness 30 nm at wavelengths 450 nm, 500 nm, 550 nm, 600 nm, 650 nm, 700 nm, 750 nm 
and 800 nm by L-MOKE. The loops (apart from the one measured at 450 nm) are shifted 
from zero vertically for clarity of presentation and have the same scale.  

 
P-MOKE: In the polar magneto-optical Kerr effect (P-MOKE), the magnetization vector 𝑀 

is oriented perpendicularly to the reflective surface and parallel to the plane of light 
incidence (Fig. 3.1b). Similarly to L-MOKE, this effect results in a rotation of the 
polarization plane and the appearance of ellipticity, though, giving values about one order of 
magnitude higher than L-MOKE. A common feature of the longitudinal and the polar 
MOKE is a presence of non-zero projection of the wave vector 𝑘 on the magnetization plane. 
Polar Kerr effect is of great importance for optical data storage since it is used for reading 
the information from magneto-optical disks [40].  

 
T-MOKE: In the transverse Kerr effect (T-MOKE), the magnetization vector is oriented 

perpendicularly to the plane of light incidence (Fig. 3.1c). It can only be observed for 
absorbing materials and results in intensity variation and phase shift of linearly polarized 
light reflected from a magnetized material. This effect is employed in observations of 
magnetic domains at the surface of a magnetized sample and in design of non-reciprocal 



 32 

optical devices, such as transversely magnetized mirrors [40]. 

3.1.3 Dielectric tensor of gyrotropic medium  

The dielectric permittivity tensor of an isotropic material is given by: 
 

𝜀 =
𝜀!! 0 0
0 𝜀!! 0
0 0 𝜀!!

,                                                                             (1) 

 
where the diagonal elements 𝜀!! = 𝜀!! = 𝜀!! = 𝜀 and non-diagonal elements 𝜀!" = 0, 𝑖 ≠ 𝑗. In 

the medium which exhibits magneto-optical (MO) effects (gyrotropic medium), the dielectric 
tensor becomes non-diagonal [42]: 

 

𝜀 =
𝜀!! 𝜀!" 𝜀!"
𝜀!" 𝜀!! 𝜀!"
𝜀!" 𝜀!" 𝜀!!

=
𝜀 −𝑖𝑄𝑚! 𝑖𝑄𝑚!

𝑖𝑄𝑚! 𝜀 −𝑖𝑄𝑚!
−𝑖𝑄𝑚! 𝑖𝑄𝑚!  𝜀

.                                         (2) 

 
Here 𝑄 is the magneto-optical Voigt parameter and 𝑚! is the magnetization in  
𝑖-direction. The appearance of non-diagonal terms in the dielectric tensor is defined by the 
direction, in which the magnetic field is applied. If 𝑧 is the direction of light propagation, 𝑥𝑦 
is the sample plane, and the magnetic field or magnetization is aligned in 𝑧-direction (the 
case of P-MOKE), the dielectric tensor takes form: 

  

𝜀!!!"#$ =
𝜀 −𝑖𝑄𝑚! 0

𝑖𝑄𝑚! 𝜀 0
0 0 𝜀

.                                                                                (3) 

 
Similarly, when the magnetic field is applied in 𝑥-direction (L-MOKE) and in 𝑦-direction (T-
MOKE), the tensor is given by (4) and (5): 

 

𝜀!!!"#$ =
𝜀 0 0
0 𝜀 −𝑖𝑄𝑚!
0 𝑖𝑄𝑚!  𝜀

,                                                                                (4) 

 

𝜀!!!"#$ =
𝜀 0 𝑖𝑄𝑚!
0 𝜀 0

−𝑖𝑄𝑚!  0 𝜀
.                                                                              (5) 
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The presence of non-diagonal elements in the dielectric tensor means that the respective 
components of the electromagnetic field become coupled by the spin-orbit (SO) interaction. 
MO is a result of SO interaction that couples transverse magnetic (TM or 𝑝) and transverse 
electric (TE or 𝑠) in a material and induces the change in the polarization state of the light. 
Specifically, when s-polarized (p-polarized) light reflects from the magnetized surface, it 
acquires a small p-polarized (s-polarized) component (Fig. 2a). The change in polarization 
state is described by non-diagonal Fresnel coefficients 𝑟!" and 𝑟!", accounting for the 

polarization conversion, while the diagonal elements 𝑟!! and 𝑟!! are the reflection 

coefficients for p-polarized and s-polarized electromagnetic waves. One can express the 
complex Kerr angle, Kerr rotation 𝜃! and Kerr ellipticity 𝜖!, as follows: 

 

Φ! = 𝜃! + 𝑖𝜖! =
𝑟!"
𝑟!!

,                                                                                                             (6) 

 

𝜃! = ℜ 
𝑟!"
𝑟!!

,                                                                                                                          (7) 

 

𝜖! = ℑ 
𝑟!"
𝑟!!

.                                                                                                                          (8) 

 
The non-diagonal Fresnel coefficients 𝑟!" are responsible for polarization conversion and 

represent pure magneto-optical contribution to magneto-optical activity of the system, 
whereas the diagonal elements 𝑟!! represent pure optical contribution to MO. Therefore, the 

overall MO response of the system may be enhanced by either increasing the MO 
contribution or reducing the optical contribution. An important property of localized surface 
plasmon resonance, namely strongly enhanced local fields, gives the enhancement in MO 
activity [43].  

3.2 Effects of plasmons on magneto-optical activity  

Localized plasmon resonances, due to the local field confinement at the nanoscale, result 
in greatly enhanced EM near-fields. Strongly enhanced local electric fields results in the 
enhanced interaction with magnetic fields, leading to the enhancement of the MO activity. 
Despite the decreased amount of the active material, which is the consequence of 



 34 

nanopatterning, the Kerr rotation values become greatly enhanced due to the excitation of 
localized surface plasmons, and may, like in Ni, at some wavelengths exceed the values 
measured for continuous films of the same thickness (Fig. 3.4). 

  

 

Figure 3.4. Kerr rotation measured by L-MOKE in continuous films and nanodisks of the 
same thickness made of (a) Ni; (b) Co; (c) Permalloy (Ni0.8Fe0.2). (d) Scanning electron 
micrograph of permalloy nanodisks with diameter 170 nm and thickness 30 nm.  

 
In addition to strong enhancement of the magneto-optical activity by plasmons, a 

broadband tunability can be achieved in magnetoplasmonic nanostructures. Localized 
plasmon resonances can be supported by purely ferromagnetic nanostructures; however, 
they exhibit a much stronger damping due to a large imaginary part of the dielectric 
constant [44]. It has been recently demonstrated that plasmon excitations in ferromagnetic 
nanoparticles induce the sign reversal of Kerr rotation and ellipticity [14], and allow the 
tuning of MO activity [13, 14], which, being an intrinsic property of matter, in principle, can 
not be freely manipulated. In noble metals the MO response is much weaker than in 
ferromagnetic materials and has to be accessed with very strong magnetic fields of several 
Tesla, compared to (0.5-1) Tesla in ferromagnetic materials. However, due to the huge near-
fields induced by plasmon resonance excitation in noble metals, they can exhibit a sizable 
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MO activity at low magnetic fields (of the order of 1 Tesla) [45, 46]. Unfortunately, localized 
plasmon resonances in ferromagnetic materials are strongly damped and broadened due to 
high absorption and do not produce as high local fields as in noble metals (Fig. 3.5). A 
promising route in magnetoplasmonics is a design of hybrid nanostructures, combining a 
ferromagnetic and a noble material [12, 47], where the MO response can be boosted due to 
strong electromagnetic field enhancement. Moreover, by proper stacking the magnetic and 
plasmonic components it is possible to generate the MO activity in a non-magnetic element, 
with overall MO response exceeding the MO response of pure magnetic system [48-50] and 
significantly reduced optical losses [47]. 

 

 
Figure 3.5. Localized plasmon resonances in Ni nanodisks with diameters 100 nm, 150 nm 
and 170 nm and thickness 30 nm. 

3.2.1 Spin-orbit coupling effects on the magneto-optical activity 

The interaction between plasmon resonances and MO activity can be understood from the 
derivation of polarizabilities of a single nanodisk, located in a magnetic field [51]. In L-
MOKE geometry (Fig. 3.6a), the incident electric field 𝐸! along the 𝑦-axis induces an electric 
dipole along this axis, given by: 

 
𝑝! = 𝛼!!𝐸!! .                                                                                                                       (1) 
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The electron oscillations along the 𝑦-axis are coupled via the spin-orbit (SO) interaction 

with the magnetization M, which is oriented along the 𝑥-axis. This coupling results in a 
dipole oscillation in the transverse direction along the 𝑧-axis. The expression for this dipole 
can be written in terms of non-diagonal elements of the polarizability tensor, as [51]: 

 
𝑝! = 𝛼!"𝐸!! .                                                                                                                       (2) 

 

 
 

Figure 3.6. Longitudinal (a) and polar (b) MOKE configurations for an isolated nanodisk 
with 𝑥𝑧 being the scattering plane. In L-MOKE (left), the incident electric field 𝐸!! induces a 

direct dipole 𝑝!, which generates a dipole 𝑝! through the spin-orbit coupling. In P-MOKE 

(right), the incident electric field 𝐸!! is exciting 𝑝! and spin –orbit induced dipole 𝑝!. The 

figure is adapted from [51].  
 
As it is explicitly shown in [51], the general expression for the non-diagonal elements of 

the polarizability tensor is given by: 
 

𝛼!" =
𝜀!"𝛼!!𝛼!!
(𝜀 − 𝜀!)!

,                                                                                                               (3) 

 
with 𝜀! being the dielectric permittivity of the surrounding medium and 𝜀!", the non-

diagonal elements of the dielectric tensor 

a b 

L-MOKE P-MOKE 
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𝜀 =
𝜀!! 𝜀!" 𝜀!"
𝜀!" 𝜀!! 𝜀!"
𝜀!" 𝜀!" 𝜀!!

.                                                                                                   (4) 

 
The diagonal elements of polarizability tensor 𝛼!!  of a single nanodisks are defined by the 
expression [52]: 

 

𝛼!! =
𝜀!(𝜀 − 𝜀!)

𝜀! + 𝑁!!(𝜀 − 𝜀!)
,                                                                                                   (5) 

 
were 𝑁!! is depolarizing factor along 𝑖-direction. 
By setting 𝑘 = 𝑧 and 𝑗 = 𝑦 in formula (2), the expression for the electric dipole, induced by 
SO coupling is obtained as follows: 

 

𝑝! = 𝛼!"𝐸!! =
𝜀!"𝛼!!𝛼!!
(𝜀 − 𝜀!)!

 𝐸!! .                                                                                  (6) 

  
In P-MOKE geometry illustrated in Fig. 3.6b, the electric field 𝐸!! at normal incidence 

induces an electric dipole 𝑝! = 𝛼!!𝐸!!, which now is coupled through SO coupling with 

magnetization M in 𝑥-direction. This coupling results in a transverse dipole along 𝑥-axis, 
according to (3): 

 

𝑝! = 𝛼!"𝐸!! =
𝜀!"𝛼!!𝛼!!
(𝜀 − 𝜀!)!

 𝐸!! .                                                                                  (7) 

 
The MO activity is completely determined by the transverse localized plasmon resonances 

induced by the spin-orbit coupling and is not influenced by the plasmon resonances excited 
by direct illumination. This will be discussed in the next section.  
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3.2.2 Tailoring the magneto-optical activity with plasmons  

In analogy with formula (6) in 3.1.3 and using the expressions for 𝑝! and 𝑝! in 3.2.2, the 

complex Kerr angle in L-MOKE configuration (as it is presented in Fig. 3.6a in previous 
section 3.2.1) can be extracted: 

 

Φ!
! =

𝑝!
𝑝!

=
𝜀!"𝛼!!𝛼!! sin 𝜃!"#

𝜀 − 𝜀! !𝛼!!
,                                                                                1  

 

where sin 𝜃!"# accounts for the angular dependence of spin-orbit induced dipole 𝑝!, when 𝜃!"# 
is the incidence angle of the incoming electric field. Similarly, the expression for the 
complex Kerr angle in P-MOKE configuration is presented by: 

 

Φ!
! =

𝑝!
𝑝!

=
𝜀!"𝛼!!𝛼!!
𝜀 − 𝜀! !𝛼!!

.                                                                                        2  

 

As we can notice, the terms 𝛼!! related to the polarizabilities of directly excited dipole in the 

expression (1) and (2) cancel out. The fundamental consequence of these equations is that 
plasmon-induced enhancement and phase tuning of MO response occur due to the 
transverse resonance excited due to the SO coupling. From these expressions it follows that 
the non-diagonal terms in permittivity tensor are the key elements in broadband tunability 
of both Kerr rotation and Kerr ellipticity, composing the complex Kerr angle. This 
fundamental property motivates the engineering of complex 2D and 3D nanostructures 
where several spectrally separated plasmon resonances allow the broadband control of MO 
activity and the polarizabilities can be tailored at will [53]. As it is explicitly demonstrated 
in [13] and [53], controlling the shape and the size of magnetoplasmonic nanostructures 
opens up a possibility to tailor the polarization state of the reflected light and obtain hugely 
enhanced values of the Kerr rotation. Paper 1 explores the tunability of Kerr MO effect in 
3D magnetoplasmonic antennas for all three MOKE configurations, namely L-MOKE, P-
MOKE and T-MOKE. 
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4.1 Chirality and chiroptical effects 

The life is fundamentally asymmetric and chirality can be found in all its forms, from 
proteins and DNA to macroscopic chirality in animal and plant kingdoms. In biology and 
organic chemistry, the two forms of a chiral molecule with different handedness are called 
right-handed and left-handed enantiomers with common notations D (dextro)- and L (levo)- 

enantiomers (coming from Latin dexter, ‘right’, and laevus, ‘left’) used in chemistry, or R - 
and S- enantiomers (from Latin rectus meaning ‘straight’ or ‘clockwise’ and sinister 
meaning ‘left’ or ‘counterclockwise’) used in biology. In fact many biomolecules display only 
one handedness and are stereo-selective, which means that chemical reactions with 
molecules of similar handedness are more favorable. Life is largely made of molecules that 
have only one handedness – most of amino acids, the building blocks of proteins, including 9 
essential amino acids, are L-enantiomers, whereas carbohydrates, or sugars, are D-
enantiomers.  

 

The light is circularly polarized when the electric field vector 𝐸 is rotating with constant 

amplitude. It is common to define right circularly polarized light (RCP) and left circularly 

polarized light (LCP) when the E field rotates clockwise or counter-clockwise, respectively, 

looking at the light coming from the source (see figure 4.1) [23]. Linearly polarized light can 

be represented as a superposition of RCP and LCP with equal amplitudes.  
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Figure 4.1. Illustrations of right circularly polarized light (RCP) (on the right) and left 

circularly polarized light (LCP) (on the left). The orange errors are showing the direction of 

light propagation, or the 𝑘 vector of light, and the blue errors are showing a random 

orientation of the electric vector 𝐸.  

 

In general, the presence of chirality in the symmetry of a material will always lead to 

chiroptical effects– circular birefringence (CB) and circular dichroism (CD). Circular 

birefringence, which is also referred to as natural optical activity, or optical rotatory 

dispersion (ORD), is a result of different propagation speeds, and thus refractive indices 𝑛, 

for left- and right circularly polarized light (Fig.4.2a). When linearly polarized light travels 

through a medium with circular birefringence, its left- and right circularly polarized 

components, LCP and RCP, will travel with different velocities, resulting in the rotation of 

light polarization plane. The CB, or ORD, is characterized by the rotation angle 𝜃 that can 

be expressed as follows: 

 

𝜃 =
𝜋 𝑛!"# − 𝑛!"#  𝑙

𝜆
,                                                                      1  

 

where  𝑛!"# and 𝑛!"# are the refractive indices for LCP and RCP, respectively, 𝜆 is the 

wavelength and 𝑙 is the path length through the material.  

 

Materials display circular dichroism (CD) when they absorb and/or scatter right- and left 

circularly polarized light differently due to different extinction coefficients 𝑘 for left- and 

right circularly polarized light (Fig. 4.2b). When linearly polarized light propagates through 

a medium with circular dichroism, the amplitudes of its left- and right circularly polarized 
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components, LCP and RCP, will be altered and will no longer be equal (Fig. 4.2b) resulting 

in elliptical polarization state. This ellipticity is a direct measure of CD that can be 

expressed as follows: 

 

𝐶𝐷 𝑟𝑎𝑑 = tan 𝜀 =
𝑇!"#
! ! − 𝑇!"#

! !

𝑇!"#
! ! + 𝑇!"#

! !  ,                                                         (2) 

 

where 𝑇!"# and 𝑇!"# are transmitted trough the medium intensities of RCP and LCP. 

Similarly to 𝑛 (𝜆) and 𝑘 (𝜆), 𝑂𝑅𝐷 (𝜆) and 𝐶𝐷 𝜆  spectra are Kramers-Kroning related and 

one can be mathematically derived from the other. 

 

 

Figure 4.2. (a) Circular birefringence in a medium with different refractive indices 𝑛 for 

RCP and LCP when 𝑛!"# < 𝑛!"# and LCP propagates faster than RCP. (b) Circular 

dichroism in a medium with different extinction coefficients 𝑘 for RCP and LCP when 

𝑘!"# < 𝑘!"# and LCP is less absorbed than RCP. 

 

a 
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Naturally chiral materials like sugars, quartz and liquid crystals display optical activity 

and circular dichroism due to chiral symmetry of their molecules or, like liquid crystals, due 

to the arrangement of the achiral molecules in a helix. Chiroptical effects always emerge in 
the presence of chirality that can be categorized in two-dimensional (2D) planar chirality 
and tree-dimensional (3D) chirality. A 2D planar chiral object can’t be superimposed on its 
mirror image by any in-plane rotation or translation, whereas a 3D chiral object preserves 
its handedness irrespective of the angle of observation, even if the object is rotated in 3D 
space. A helix (Figure 4.3a) and a spiral (Figure 4.3b) are the examples of 3D and 2D chiral 
objects.  

 
Figure 4.3. (a) 3D chiral object. (b) 2D planar chiral object. 

 
The origin of chirality can be either intrinsic or extrinsic. The intrinsic chirality is created 

when the individual elements lack twofold rotational symmetry, or, when non-chiral 

elements are arranged in chiral geometry, like a double helix of DNA. The extrinsic chirality 

is formed when the mutual orientation of non-chiral elements and the wave propagation 

vector 𝑘 lack mirror symmetry. For oblique light incidence case, the 𝑘 vector breaks the 

time-reversal symmetry and its mutual arrangement with the normal to the surface lacks 

the symmetry, which leads to extrinsic chirality.  

4.2 Chiral plasmonics: chirality on the nanoscale  

In direct analogy with biochemical molecules, the term circular dichroism is widely used in 
plasmonics when one talks about plasmonic nanostructures that respond differently to 

a b



 43 

right- handed and left-handed circular polarized light. Artificial chiral materials have 
drawn an enormous attention in recent years where solid-state chiral materials based on 
plasmonic nanoantennas became potential candidates for new devices that can control light 
on the nanoscale. The reason why chiral plasmonic nanostructures became so attractive is 
that chiroptical effects become strongly enhanced due to the nanoconfinement of local 
electric fields and strong near-field coupling, which is of great benefit to chiral sensing [54]. 
Chiral plasmonic materials also provide a new route of controlling light on a sub-
wavelength scale through the interaction with its helicity or the spin angular momentum 
[55]. Engineering of new chiral optical materials and surfaces that can manipulate the 
helicity of light would be decisive for the future optical spin-controlled nanophotonic devices 
that manipulate the transmission, absorption and scattering of light in helicity-dependent 
manner [56, 57].  

 
In recent years many research groups focused on design and fabrication of chiral 

plasmonic geometries aiming at enhanced chiroptical effects [58]. The reports on plasmonic 
materials with 3D chiral geometry, such as plasmonic helix, demonstrate not only the 
presence of circular dichroism in chiral nanoantenna arrays [59] (Figure 4.4a), but also the 
possibility to obtain a huge CD signal of several degrees [60] (Figure 4.4b) and tailor the 
chiroptical response [60, 61] (Figure 4.4b, c). 

 
It is worth to mention that the 3D optical nanoantennas geometry is not necessary for 

chiroptical response to emerge, and very recently Khanikaev et al. reported [62] that 
macroscopic CD does exist in 2D plasmonic systems due to Ohmic losses and can be detected 
in transmission experiment (Figure 4.5a). The work of Schnell et al. [63] shows the 
existence of optical chirality in 2D chiral Archimedean spiral nanoantennas by near-field 
mapping experiments (Figure 4.5b). Also recently it was shown that the chiral optical 
response can be generated in structurally symmetric nanoantennas due to materials 
asymmetry (i.e., using the combination of the materials with different optical properties – 
Au and Si in this particular case) instead [64] (Figure 4.5c). This fundamentally new 
concept of symmetric chiroptical materials is developed and employed in Papers 3 and 4 
presented in this thesis.  
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Figure 4.4. 3D chiral plasmonic materials. (a) 3D chiral plasmonic arrays from reference 
[59]. (b) Plasmonic nanohelices from reference [60]. (c) Helical nanoparticle superstructures 
from reference [61]. 

 

 
Figure 4.5. 2D chiral plasmonic materials. (a) Planar chiral plasmonic nanoantennas from 
reference [62]. (b) 2D chiral Archimedean spiral nanoantennas from reference [63]. (c) 2D 
chiral symmetric nanoantennas enabled by heteromaterial selection from reference [64]. 
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“But still try, for who knows what is possible? ” 
 
 

Michael Faraday 
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In this chapter, I will introduce nanofabrication methods that are fundamental in all 
works in this thesis and are based on hole-mask colloidal lithography (HCL). HCL is a 
technique that was developed at Chalmers University of technology in 2007 and since then 
many groups in the fields of nanoplasmonics, plasmonic sensing and bio-sensing have been 
employed it worldwide. In contrast to electron-beam lithography, which is rather expensive, 
time consuming and has a limited scale of ∼ 𝜇m2, one can produce nanostructures with cm2-
scale by affordable and highly parallel HCL method. HCL method is used to fabricate an 
evaporation mask and is always followed by physical vapor deposition (PVD), which is a 
thin film deposition technique and uses a high-energy electron beam to create a physical 
vapor that is evaporated onto the substrate.  

5.1 Standard protocol for hole-mask colloidal lithography 
(HCL) 

Hole–mask colloidal lithography (HCL) [65] is a bottom-up nanofabrication method 
utilizing the self-assembly of negatively charged sulfate latex microspheres also referred to 
as polystyrene (PS) beads.  

1. We use microscope slide glass (VWR International) of dimensions 10 mm × 10 mm × 1 
mm as a substrate. The substrate is cleaned by ultrasonication in acetone and exposed to 
reactive ion etching (RIE) by oxygen O2 plasma (5 s, 50 W, 250 mTorr, Plasma Therm 
BatchTop PE/RIE m/95) in order to increase polymer adhesion to the glass (Figure 5.1a).  

2. The layer of polymethyl methacrylate (950PMMA 4% diluted in anisole, MW = 950000, 
MicroChem), 235 nm thick, is spin-coated on the substrate and baked at 180 °C in a 
convection oven for 10 min (Figure 5.1b).  

3. After baking, O2 plasma is applied for 5 s to make the PMMA hydrophilic.  
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Figure 5.1. Hole-mask colloidal lithography step by step. (a) Glass substrate after cleaning 
and O2 plasma treatment. (b) Spin-coating of PMMA. (c) Treatment of PMMA layer with 
PDDA. (d) Deposition of polystyrene beads. (e) Evaporation of the Cr mask. (f) Tape 
stripping of the polystyrene beads. (g) O2 plasma etching (left panel) and SEM micrograph 
of the final hole-mask (right panel). (h) Evaporation of metallic layer through the hole-
mask. (i) Lift-off in acetone (left panel) and SEM micrograph of single nanodisk antennas 

(right panel). 
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4. In the next step, the substrate with the PMMA layer residing on it is functionalized 
with polydiallyldimethylammonium chloride (PDDA, MW = 200000–350000, 0.2% solution 
in deionized (DI) water), and then rinsed with DI water and finally dried using nitrogen N2 

gun applied normally to the sample surface (Figure 5.1c).  

5. Negatively charged polystyrene beads (sulfate latex beads, 0.2% suspended in DI water, 
Invitrogen) are pipetted onto the substrate and kept there for ~120 s. After careful rinsing 
with DI water, the substrate is immediately dried with the N2 gun at normal flow incidence 
to avoid bead removal or aggregation (Figure 5.1d).  

6. As a next step, a physical vapor deposition (PVD) is used for evaporation of a very thin 
Cr layer of 10nm (Figure 5.1e), which is then followed by tape stripping of the spheres 
(SWT-10 tape, Nitto Scandinavia AB) resulting in a hole-mask, which resides on the top of 
PMMA layer (Figure 5.1f).  

7. Reactive ion etching (RIE) by O2 plasma is applied to etch through the entire thickness 
of the PMAA layer resulting in final evaporation mask (Figure 5.1g).  

8. The evaporation mask can be used to fabricate a variety of nanostructures [65] such as 
single nanodisks when a metallic layer of a desired thickness is deposited through the mask 
by PVD at very low pressure ~5 ∙ 10!! Torr (Figure 5.1h) and the process is finished by a 
lift-off in acetone (Figure 5.1i).  

Next, I describe some important details that one needs to consider for producing 

homogeneous and aggregation-free samples with a nice particle distribution.  

 

Note 1: It is very important to avoid the formation of air bubbles in the step 2 while 

pipetting PMMA onto the glass substrate. Therefore the substrate should be carefully 

cleaned in step 1 and the pipette should be brought very close with a small droplet of PMMA 

pipetted onto the glass. Small dust particles and air bubbles would make a spin-coated 

PMMA layer ununiform and would result in ununiform samples.  

 

Note 2: The PS bead removal after rinsing in Step 5 is the most challenging in whole HCL 

process and, if not performed correctly, may result in formation of defects. The N2 flow 
should be strong and should applied normally to the surface to remove most of the water. 
After that, there will still be some small amount of water left due to the capillary forces and 
one should be very careful while removing that with N2 gun. This water is easily moved 
across the sample surface by the strong N2 flow, which will destroy the electrostatic balance 



 50 

between PS beads forming “tracks” and other defects. To avoid that, one should apply a 
weak N2 flow, gradually increasing the flow until the water is completely evaporated.  

 

Note 3: Typically, time needed to etch through a PMMA layer with 250nm thickness is 

around 3 minutes. However in order to get a sufficient undercut for dimers, the typical time 

required is around 6-7 minutes for particle sizes 100-170 nm. For trimers, the time should 

be increased to 8-9 minutes for particle sizes 100-150 nm. For bigger particle sizes 170-200 

nm and even larger sizes up to 250 nm, the etching time should be increased up to 10-12 

minutes.  

5.2 Fabrication of nanoelliptical antennas. 

Elliptical nanostructures with different aspect ratios (AR) between the symmetry axes can 
be fabricated by simply applying the steps (a-d) in figure 5.1 for PS beads deposition 
followed by angular evaporation of Cr mask. When the substrate is tilted during mask 
evaporation process, the PS bead will create an elliptical shadow (Figure 5.2a), which then 
will result in an elliptical mask. 

 

Figure 5.2. (a) Angular deposition of elliptical mask. (b) Nanoellipses fabricated by using 

elliptical mask. (c) SEM micrograph of Au ellipses with short axis 170 nm and aspect ratio 

2.0.  

a

b

c
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After mask deposition, the process is similar to standard HCL procedure when the steps  
 (f-i) in figure 5.1 are applied and the final structure will be a nanoellips (Figure 5.2b). The 
length of the short axis of this ellipse will always be equal to the diameter of the PS beads 
used in HCL process whereas the length of the long axis of the ellipse will be given by the 
degree of ellipticity, or AR, which is defined by the tilt angle and does not depend on the size 
of PS beads. For any size of PS beads, tilting the substrate by 45 degrees will result in 
aspect ration 1.4 meaning that the long axis of the ellipse is 1.4 times longer than the short 
axis, being 100 nm and 140 nm respectively for 100 nm PS beads. Tilting the substrate by 
60 degrees will result in aspect ratio 2.0 (see SEM image on figure 5.2c), which is the 
highest AR that can be practically achieved by using this using method. Tilting at higher 
than 45 degrees angles is realized by using a tilted holder additionally to the tilt of the 
substrate. 

5.3 Fabrication of nanodimer antennas.  

Nanofabrication of more complex nanostructures such as dimers and trimers requires 
modification of the processes described in figure 5.1 but the steps (a-f) in figure 5.1 remain 
unmodified. When the PS beads are removed, O2 plasma etching (Fig. 5.1g) needs to be 
applied for longer time to create a sufficient undercut in the PMMA layer (Figures 6.3a and 
5.3b), which is facilitated by the anisotropic nature of dry etching. This undercut is crucial 
for angular evaporation, which is used to fabricate a nanoparticle dimer (Figure 5.3f) and a 
nanoparticle trimer (Figure 5.3h).  

During evaporation of a metallic layer for the first nanoparticle, the substrate is kept 
normal to the direction of evaporation (Figure 5.3c) to produce a single nanoparticle 
(Figures 5.3c and 5.3d) and then tilted to produce a binary nanoparticle (Figures 5.3e and 
5.3f). Alternatively, tilting the substrate to produce the first particle and then tilting the 
substrate in the opposite direction to produce the second particle gives the same result, 
which sometimes can be preferred because such a process requires a smaller tilt and thus a 
smaller undercut in PMMA. This protocol was used to produce the dimer nanorulers. The 
tilt and rotation are repeated 3 times with small increments in thickness (10 nm) to 
minimize the difference in particle sizes. Finally, lift-off of PMMA completes the fabrication 
procedure of a dimer nanoparticle (Figure 5.3f). The gap between the particles is tuned by 
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varying the evaporation angle, which in its turn depends on the size of the PS beads used in 
the process. 

 
Figure 5.3. Nanofabrication of single nanodisks, nanodisk dimers and nanodisk trimers with 
HCL. (a) Hole-mask residing on PMMA layer. (b) Anisotropic O2 plasma etching. (c) 
Deposition of single nanoparticle. (d) Single nanodisk. (e) Deposition of binary nanoparticle. 
(f) Nanodisk dimer. (g) Deposition of third nanoparticle. (h) Nanodisk trimer. 

a

e

b

c d

g

f
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We use Ni and Co to fabricate magnetoplasmonic dimer nanorulers and Au to fabricate 
purely plasmonic reference nanorulers in Paper II. For the nanorulers with 150nm in 
diameter, the set of angles (+160 and -190) was used to achieve a 10 nm gap; (+190 and -190) 
was used to achieve a 20 nm gap and (+210 and -210) was used to achieve a 30 nm gap. HCL 
method combined with angular electron beam evaporation allows producing nanoparticle 
dimers with nicely controlled nanogap size. The micrographs of the nanorulers with several 
nanogap sizes are provided in Fig. 5.4. The limitation of HCL in producing dimer rulers 
with exceedingly large nanogaps (i.e., at 50 nm and above for nanoparticles with 150 nm in 
diameter) stems from the fact that the model nanofabricated rulers in our case can only be 
separated by the distance roughly twice the nanodisk diameter in the ruler. That is, at large 
nanogap sizes the inter-ruler distance becomes smaller than the nanogap itself. To bypass 
that effect, nanorulers with lower particle concentration can be used, however that will have 
a negative effect on the signals.  

 

 

Figure 5.4. Scanning electron micrographs of magnetoplasmonic nanorulers made of Ni with 
(a) 10 nm nanogap, (b) 20 nm nanogap and (c) 30 nm nanogap fabricated with HCL.  

5.4 Fabrication of nanotrimer antennas. 

During evaporation of a metallic layer for the first nanoparticle in a trimer the substrate is 
first kept normal to the direction of evaporation (Fig. 5.3c), then tilted to produce a binary 
nanoparticle (Fig. 5.3e), and finally rotated by 90 degrees to deposit the third nanoparticle 
in the trimer (Figs. 5.3g and 5.3h). Trimer nanoantennas in Paper 3 were fabricated by 
using Au for the first and second nanoparticles and Ni for the third nanoparticle.  

 

a c b 
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Due to the mask shrinking during the material deposition, the particles are produced with 
slightly different sizes so that the first particle is always bigger that the second, and the 
second particle is always bigger than the third particle. This also affects the gap in the Au-
Ni pair but can be controlled by adjusting the tilt manually before the deposition starts. The 
cycle is repeated 3 times with small increments in thickness (10 nm steps at one cycle) in 
order to minimize the difference in particle size for some of the samples. The gap between 
the particles is tuned by varying the evaporation angle and can be controlled for any of the 
two pairs of particles in a trimer (Au-Au and Au-Ni, or both) with a high precision of ~5-10 
nm. The micrographs of the trimer antennas with different structural parameters are 
provided in Fig. 5.5. In one of the samples (Figure 5.5a), the effect of hole-mask shrinking 
was intentionally used to produce a highly anisotropic sample with different particle sizes.  

 

 
 

Figure 5.5. Scanning electron micrographs of magneto-chiral trimer nanoantennas with 
different structural parameters fabricated with HCL. (a) Nanoantennas with the highest 
variation in nanodisks sizes (diameters): Ni 70-90 nm, Au 100-126nm. Nanogap sizes in Au-
Au pairs (Au particles have higher contrast) are 12 nm - 0 nm (overlapping), gap sizes in Ni-
Au pairs are 16-21 nm. (b) Nanoantennas with nanodisks sizes Au 75- 115 nm, Au 85- 121 
nm, Ni 87- 116 nm. Average gap sizes in Au-Au pairs are 10 nm - 0 nm (overlapping) and 5-
10 nm- 0 nm (overlapping) in Ni-Au pairs. (c) Nanoantennas with nanodisks sizes Au 65-70 



 55 

nm, Au 74-80 nm, Ni 85-90 nm. Average gap sizes in Au-Au pairs are 20 nm and 10-20 nm 
in Ni-Au pairs.  

 
In principle, any choice of materials that can be deposited by PVD is possible to produce 

any other type of trimers. We demonstrate that in Paper 4, where we produced hybrid 
magneto-dielectric trimer surfaces made of two Si nanoparticles and the third nanoparticle 
made of ultrathin magnetic multilayers of Co and Au (Figure 5.6). In this work, the 
deposition of the two Si nanoparticles was done at much lower pressure below ~2 ∙ 10!! Torr 
to ensure that Si is pure and no oxides of Si has formed. The deposition of the third 
nanoparticle started with a bottom Au layer of 1.5 nm thickness. In the next step, a 
multilayer sandwiches (Co0.5nm/Au1.5nm) were repeatedly deposited with total number of 
multilayers (Co/Au) N=18. As the last step, a top layer of Au with 1.5 nm thickness was 
deposited.  

 
 

Figure 5.6 Hybrid magneto-dielectric nanotrimer surfaces. (a) A model of hybrid magneto-
dielectric trimer surface. (b) Close-up of a single nanotrimer made of two Si nanoparticles 
and the third nanoparticle made of ultrathin magnetic multilayers of Co and Au. (c) SEM 
micrograph of a magneto-dielectric trimer surface. 

 

 
 

b 

a c 
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6.1 Spectroscopic L-MOKE technique 

A full description of Kerr effect requires measurement of both rotation 𝜃! and ellipticity 
𝜖!. The experimental set-up used in Paper 1 and Paper 2 is based on the polarization-
modulation technique [66] and includes a photo-elastic modulator (PEM). The spectroscopic 
magneto-optic response of the magnetoplasmonic nanorulers is measured with a home-built 
L-MOKE set-up at an angle of light incidence of 25º, sketched in Figure 6.1.  

 

 

 

Figure 6.1. Schematic representation of spectroscopic L-MOKE set-up, where a straight line 
shows the light path. 

 
The light is generated by ultra-broadband supercontinuum laser source (Fianium, Ltd.), 

which can potentially emit a radiation in the wavelength range from 450 nm to 2000 nm 
with a maximum power output about 5W. The output from the laser is connected to dual 
acousto-optic tunable filter (AOTF), which is used to filter-out a particular wavelength. 
AOTF consists of two piezoelectric crystals, designed to work in two optical regions: the 
visible range 450 nm- 600 nm and visible- near-infrared range 600 nm-1100 nm. A 

InGaAs  
photodedector 

Analyzer, 45° PEM, 0°  Electromagnet 

Polarizer, 0° 

Sample 

Supercontinuum  
laser  

AOTF 
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monochromatic laser beam from AOTF is sent through a multimode optical fiber with a 
collimating lens. This laser beam passes a rotatable Glan-Thompson polarizer (Newport), 
which can be set to provide either p-polarized or s-polarized light. The sample is placed 
between in a gap of the ferrite electromagnet so that the magnetization is induced in the 
sample plane and parallel to the plane of light incidence. The magnetic field of 2500 kOe of 
both polarities is applied in order to ensure the complete magnetization saturation of the 
samples. When linearly polarized laser beam reflects from a magnetized sample surface, the 
rotation 𝜃! and ellipticity 𝜖! are introduced. The reflected beam passes through a photo-
elastic modulator (PEM-90, Hinds instruments) which provides a polarization modulation at 
frequency 𝜔 = 50 𝑘𝐻𝑧. After passing a second Glan-Thompson polarizer, or analyzer, set to 
45º, the light is detected by InGaAs avalanche photodetector (Thorlabs). The signal from the 
photodetector is sent to two lock-in amplifiers (Standford Research Systems, SR830DSP), 
which measure the components of the signal modulated at the 𝜔 (1𝑓) and 2𝜔 (2𝑓) [66] [67]. 
The DC component of the signal is measured by highly sensitive digital multimeter 
(Keithley, 2400). 

 

The analytical description of the operation of L-MOKE technique is presented below. The 
intensity of light arriving at the photodetector may be written as [68]: 

 

𝐼 𝑡 = 𝐼! 1 + 2𝜃! cos 𝐴!𝜔𝑡 − 2𝜖! sin 𝐴!𝜔𝑡 ,                                 (1) 

 

where 𝐼! represents the DC intensity, 𝜔 = 2𝜋𝑓 is the angular frequency of PEM oscillations, 
𝐴! is the retardation amplitude of the PEM, 𝜃! is Kerr rotation and 𝜖! is Kerr ellipticity. 
Using a Fourier series expansion and keeping only the first three terms gives: 

 

𝐼 𝑡 ≅ 𝐼! 1 + 2𝜃!𝐽! 𝐴!

!!"

−  4𝜖!𝐽! 𝐴! sin𝜔𝑡

!!!

+  4𝜃!𝐽! 𝐴! cos 2𝜔𝑡

!!!

,                   (2) 

 

with 𝐽 being Bessel functions. Here the first two terms are the parts of DC signal, when the 
second term can be neglected if the retardation 𝐴! is set to 2.405 radians, in which case 
𝐽!=0. There are three voltages measured in the L-MOKE experiment: 𝑉!", 𝑉!! and 𝑉!!. It is 

convenient to express Kerr rotation 𝜃! and Kerr ellipticity 𝜖! as a ratio of the AC term to 
the DC term in order to avoid the influence of fluctuations in the light intensity during the 
experiment. The final expressions are, therefore, given by: 
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𝜃! =
2

4𝐽!

𝑉!!
𝑉!"

                                                                                                                                    (3) 

 

𝜖! =
2

4𝐽!

𝑉!!
𝑉!"

                                                                                                                                    (4) 

6.2 Circular differential transmission and its magnetic 
modulation  

6.2.1 Experimental set-up 

The experimental set-up used to measure the circular differential transmission (CDT) in 

Paper 3 is schematically presented in Figure 6.2. We use a supercontinuum white laser 
source (Fianium®) in optical wavelength region 450-1100 nm to perform the spectroscopic 
measurements of CDT. The output from the laser is supplied by multimode optical fiber and 
collimated in a 5 mm beam that is sent then to Glan-Thompson polarizer set at -45 degrees. 
The beam polarization is further controlled by a photoelastic modulator (PEM) with a peak 
retardation set to 0.25 wavelengths, modulating the light polarization between LCP and 
RCP at PEM frequency (1f) 50kHz. The transmitted intensity is recorded by a photodetector 
and the signal is fed to a lock-in amplifier locked to the PEM frequency 50kHz.  

 
The magnetically tunable CDT spectra are recorded via an externally applied DC magnetic 

field at magnetic saturation H and –H with the magnitude 3kOe (~0.3T). The experimental 
set-up is equivalent to the set-up used in CDT measurements presented in Fig. 6.2 with only 
difference that now the sample is positioned between the poles of the electromagnet (Fig. 
6.3) where the magnetic field is homogeneous. Because the circulating currents generate 
heat, it is important that the magnet is supplied with water-cooling system during the 
measurements. 
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Figure 6.2. Schematic representation of the experimental set-up used in measurements of 

circular differential transmission.  

 

 

 

 

Figure 6.3. Experimental set-up for measurements of magnetically modulated circular 

differential transmission. 

 

After the PEM, the light beam is modulated between right- (RCP) and left circular 
polarization (LCP) at the modulator frequency (1f) (Figure 6.4). When the sample is 
optically chiral, i.e. absorbs and scatters right- and left circular polarization differently, the 
signal coming from the detector will have an AC component at 1f that is related to 
differential transmission of RCP and LCP, or CDT. Another method of measuring the CDT 
is to separately record the transmission spectra with RCP and LCP and make a subtraction. 
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However, the CDT is normally several orders of magnitude smaller than the transmission of 
RCP and LCP and it is extremely difficult to obtain pure circular light experimentally by 
using a quarter-wave plate, a Fresnel rhomb or other optical components that create light 
phase retardation. In such experiments one can not guarantee that the light becomes purely 
circular mainly for the reason that the phase retardation is not constant over a wide 
wavelength region, and also due to the difficulties of the alignment. The stability and 
dynamic range of these components cannot meet such a requirement of precise and constant 
phase retardation over big wavelength regions, therefore, PEM modulation is preferred in 
spectroscopic CDT measurements. 

 

 
 

Figure 6.4. Modulation of light retardation and polarization between RCP and LCP at 
frequency 1f in photoelastic modulator. Adapted from the reference [69]  

6.2.2 Introduction of Stokes vector  

A common representation of Stokes vector is 
 

𝑆 =
𝑆
𝑄
𝑈
𝑉

= 𝑆 𝑄 𝑈 𝑉 ,                                                                                               (1)  

 
where the elements of the Stokes vector are defined as: 

 
𝑆 ≡ Total intensity 
 
𝑄 ≡ 𝐼! − 𝐼!" = Difference in intensities between horizontally and vertically linearly 

polarized components 
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𝑈 ≡ 𝐼!!" − 𝐼!!" = Difference in intensities between linearly polarized components oriented 

at +450 and -450. 
 
𝑉 ≡ 𝐼!"# − 𝐼!"#= Difference in intensities between right and left circularly polarized 

components. 
 

6.2.3 Derivation of CDT from the time-varying intensity arriving at the 

photodetector with Stokes-Muller approach 

The light from the fiber output becomes linearly polarized at -450 after the polarizer with 

the Stokes vector 

𝑆!!" =
1
0
−1
0

.                                                                                  1  

 

The linearly polarized light at -450 is then sent to PEM at 00 (Fig. 6.2), which is described by 

the Muller matrix 

 

𝑀 𝛿 =

1 0 0 0
0 1 0 0
0 0 cos 𝛿 sin 𝛿
0 0 − sin 𝛿 cos 𝛿

,                                                         2  

 

where 𝛿 = 𝛿! sin𝜔𝑡 is a retardation in radians generated on the PEM at a particular 

moment with angular velocity 𝜔 = 2𝜋𝑓, and 𝑓 = 50 𝑘𝐻𝑧.  

 

When the linearly polarized at -450 light passes through the PEM with time-modulated 

retardation, the resulting Stokes vector of the beam emerging after PEM and incident on 

the sample will be 

 

𝑆!"# = 𝑀 𝐴  ×  𝑆!!" =

1 0 0 0
0 1 0 0
0 0 cos 𝛿 sin 𝛿
0 0 − sin 𝛿 cos 𝛿

×  
1
0
−1
0

=

1
0

−cos 𝛿
sin 𝛿

.                        3  
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As expected, if the amplitude of the retardation of the PEM is chosen to be 0.25 

wavelengths, that is equivalent to 1.57 radians, or 𝜋/2, the light becomes right-hand 

circularly polarized.  

 

In order to determine the effect of a material exhibiting differential transmission of right 

and left circularly polarized light, the actual intensities 𝐼!"# and 𝐼!"# are needed. From the 

obtained Stokes vector we know that 

 

𝐼!"# + 𝐼!"# = 𝐼!,                                                                           4  

 

𝐼!"# − 𝐼!"# = 𝐼! sin 𝛿 ,                                                                        5  

which yields the values 

𝐼!"#
!"#

=
𝐼!
2
1 ∓ 𝑠𝑖𝑛 𝛿                                                                      6  

and 

𝐼!
!"
=
𝐼!
2
1 ± 𝑐𝑜𝑠𝛿 .                                                                       7  

 

In direct analogy with circular dichroism (CD) in biochemical chiral systems, where CD is 

determined as a differential absorption for left- and right circularly polarized light, we 

define here the circular differential transmission (which accounts for both absorption and 
scattering) as ∆𝔈!"#  = 𝔈!"# − 𝔈!"# with 𝔈!"# and 𝔈!"# being the extinctions for left- and 

right circularly polarized light and corresponding Eulerian extinctions 𝜖!"# and 𝜖!"# for our 

plasmonic chiral system.  

 

The transmitted intensity after an optically chiral sample is related to the incident 

intensity as [70] 

 

𝐼 = 𝐼!10!𝔈 = 𝐼!𝑒!!                ⟹              𝜖 = 𝔈 𝑙𝑛10 ≈ 2.303 𝔈.                                     (8) 

 

Eulerian differential extinctions are defined as 𝜖!"#/!"# = 𝜖 ± !
!
∆𝜖, where ∆𝜖 is the average 

of the two and ∆𝜖 is their difference.  

 

The total intensity leaving an optically chiral sample and arriving at the photodetector is 

given by the sum of attenuated intensities of left- and right circularly polarized components 

[70]: 
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𝐼 𝑡 = 𝐼!"#𝑒!!!"# + 𝐼!"#𝑒!!!"# =                                                                                                    

 

=
𝐼!
2
1 − 𝑠𝑖𝑛 𝛿! 𝑠𝑖𝑛𝜔𝑡 𝑒!!

!
!∆! +

𝐼!
2
1 + 𝑠𝑖𝑛 𝛿! 𝑠𝑖𝑛𝜔𝑡 𝑒!!

!
!∆! =                                          

 

                                         ⟹ 𝐼 𝑡 = 𝐼!𝑒!! 1 + ∆𝜖𝐽! 𝛿! sin𝜔𝑡 +⋯ ,                                                         (9) 

 

where the sine function was replaced by the lowest frequency term in the Bessel function 

expansion Fourier series 

 

sin 𝛿! sin𝜔𝑡 = 2𝐽! 𝛿! sin𝜔𝑡 + 2𝐽! 𝛿! 𝑠𝑖𝑛3𝜔𝑡 +⋯                  (10) 

 

and each exponential term containing ∆𝜖 was expanded in Tailor series and only lowest 

order term was retained.  

6.2.4 Measurement of CDT and magnetically modulated CDT 

The intensity arriving at the photodetector (Eq. 9 in 6.2.3) in a form of photon count 
generates a photocurrent, which is converted to time-varying AC voltage 𝑉 𝑡 . This voltage 
consists of a constant DC component 𝑉!" and components modulated at the frequency of 

PEM 𝑉! ,𝑉!! ,…  ∶ 

V t = 𝑉! + 𝑉! sin𝜔𝑡 +𝑉!! sin 2𝜔𝑡 +⋯ .                                        11  

 

The actual CDT, defined as circular differential transmission is proportional to the ratio of 

the AC term to the DC term:  

𝑉!
𝑉!"

= ∆𝜖 𝐽! 𝛿! ,                                                                                 11  

 

Finally, the CDT can be obtained experimentally as follows: 

 

⟹  ∆𝔈!"#  = 𝔈!"# − 𝔈!"# =
2

𝑙𝑛10 𝐽!(𝛿!)
𝑉!
𝑉!"

=
2

2.303 𝐽! 𝛿!
𝑉!
𝑉!"

,                                     12  
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where the voltage 𝑉!" is a DC component of the signal and 𝑉! is a component measured at 

the fundamental first harmonic 𝜔. The factor of 2 accounts for rms voltage in the lock-in 

amplifier whereas the theory is written in terms of peak voltage or voltage amplitude.  

 

The retardation we use in our experiment is a quarter wavelength, 0.25𝜆, or 1.57 rad with 

the Bessel function 𝐽! 1.57 = 0.567. 

 

As it can be seen from the Equation 12, the choice of the PEM phase is not necessary 0.25𝜆 

and can any phase retardation 𝛿! of the PEM, except for the one that causes 𝐽! 𝛿!  to equal 

zero, can be used to extract the CD signal. For example, the maximal experimental signal 

can be obtained for the phase 𝛿! = 0.587 𝜋 (106∘) for which the Bessel function 𝐽! 𝛿! =0.582 

reaches its maximum [70]. This flexibility in the choice of PEM phase is important for the 

design of measurements when many parameters can be extracted from the same 

experiment.  

 



 66 

 



 67 

In this last chapter I will give a brief summary of the most important findings presented in 
the papers included in this thesis and end this chapter with a brief outlook.  

 
In Paper 1, we introduce magnetoplasmonics, the combination of nanomagnetism and 

plasmonics, as a promising route for bringing future active photonic devices to the 
nanoscale. We produce highly tunable active magnetoplasmonic elements that enable active 
polarization control via magneto-optical Kerr and Faraday rotation. We demonstrate the 
role of spin-orbit coupling in magneto-optical response and further introduce the generalized 
analytical expressions via polarizabilities of magneto-optical Kerr effect (MOKE) in three 
commonly employed configurations, such as longitudinal (L-MOKE), polar (P-MOKE) and 
transverse (T-MOKE). These expressions, or the ‘design rules’, are necessary to engineer 2D 
and 3D magnetoplasmonic nanoantennas with highest tunability and broadband control of 
light polarization over the visible and near-infrared spectral regions in future magneto-
optical active devices.  

 
In Paper 2, we add magnetoplasmonics to the ultrasensitive optical measurements of the 

nanoscale distances. Plasmon rulers are an emerging concept in which the strong near-field 
coupling of plasmon nanoantenna elements is employed to obtain structural information at 
the nanoscale. We develop a new type of a magnetic field-activated plasmon ruler that 
reports nanogap distances via Kerr polarization rotation. We combine nanoplasmonics and 
nanomagnetism to conceptualize a magnetoplasmonic dimer nanoantenna that would be 
able to report nanoscale distances while optimizing its own spatial orientation with the 
figure-of-merit substantially exceeding the one of traditional plasmon rulers. The latter 
constitutes an active operation, in which a dynamically optimized optical response per 
measured unit length allows for the measurement of small and large nanoscale distances 
with about two orders of magnitude higher precision than current state-of-the-art plasmon 
rulers.  

 
Paper 3 shows how magnetoplasmonics can be successfully combined with chiroptics. We 

produce a novel type of ultra-thin surface that delivers the dynamic magnetic modulation of 
the far-field chiroptical response, exceeding 100% in the tunability, in the visible and near-
infrared spectral ranges. In this work, we design and nanofabricate optically chiral 2D 
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composite nanotrimer antennas consisting of noble and ferromagnetic materials, where, 
despite of structural symmetry, the chiroptical response is achieved via materials 
combination. We demonstrate a large magnetic tunability of chiral differential transmission 
that is a result of the interplay between the phases of dipoles, excited in a bimetallic 
nanotrimer nanoantenna. We theoretically describe the origin of chiroptical effects in terms 
of simple coupled-dipole model and perform the detailed analysis of this new type of chiral 
systems via numerically calculated near-field and far-field response with and without 
applied magnetic field. Finally, we propose that, by adding small design modifications, the 
developed here magnetoplasmonic surfaces would readily reach the speed for the 
magnetically induced switching up to 10 GHz over the visible and near-IR spectral ranges 
while maintaining the exceptionally large tunability range of up to 100-150%. 

 
Paper 4 has the ambition to demonstrate that a GHz magnetic modulation of far-field 

optical response can be practically realized in hybrid magneto-dielectric nanoantennas. 
Here we produced optically chiral highly transparent magneto-dielectric nanotrimer 
antennas consisting of silicon nanodisks and a combination of ferromagnetic (Co) and noble 
(Au) metals as a multilayer nanodisk stack. We use the same strategy as in Paper 3 (the 
materials asymmetry) to produce the chiroptical response in a close-to-symmetric 
nanotrimer. On the one side, silicon nanoantenna elements provide distinct Mie optical 
resonances with low losses and with high compatibility with existing complementary 
metal−  oxide−semiconductor (CMOS) technology. On the other side, the geometry of 
metallic multilayer is motivated by a requirement of very low magnetic saturation field, 
needed for the GHz modulation, and is enabled by a perpendicular magnetic anisotropy, a 
well-studied phenomenon in magnetism. These hybrid nanoantennas, operating in visible 
spectrum and allowing a real-time and fast control of the fundamental properties of light, 
are envisioned to become the future elements for high-speed nanophotonic devices. 

  



 69 

Outlook 
 

We are now moving towards planar optical elements that operate beyond the diffraction 
limit and are built on single layer of phase shifting nanoantennas [71]. Plasmonic and all-
dielectric optical materials, structured at the nanoscale, prove the capacity to replace the 
conventional refractive optics and offer all functionalities, required for practical realization 
of planar optical devices, e.g. lenses [72], holograms, beam deflectors [73] and polarizing 
interfaces [71]. Reconfigurable optical devices based on transition-metal oxides [74], [75] 
and silicon devices that control the phase of light [76] and convert linearly polarized light 
into circularly polarized light [77] are now very active topics in photonics. 
Magnetoplasmonic antennas with customized design would provide a valuable functionality 
for such applications, provided that the absorption losses are minimized and the 

compatibility with existing CMOS technology is assured. For that, one needs to build a 
hybrid system where low-loss efficient light scatterers are combined with elements that are 
responsive to magnetic fields.  

 
One of the critical parameters for the real-time tunable plasmonic surfaces is the speed of 

operation. So far reported the slow-tuned systems reach significant changes of the tuned 
parameter (c.f., tuning the transmission [78-82], absorption [79], reflection [78, 79, 82] or 
CD [39, 80, 83]) at the expense of the operation speed and the prospect of integration and 
manufacturing simplicity. The fast-tuned plasmonic systems at MHz[80, 82] or the all-
optically (i.e., THz) tuned systems [78, 79], conversely, suffer from the small tunability 
range. With the present nanoantennas the operation speed, in practice, is solely limited by 
the field-induced magnetization switching in a ferromagnetic element. Generally, the 
magnetization process is described by Landau-Lifshitz-Gilbert dynamic equation [84] where 
the damping factor, being large for ferromagnets, sets the fundamental limit for 
magnetization switching speed, which is typically in the order of 1 ns. However, the 

application of specifically shaped magnetic field pulses allows reaching time scales of ∼100 
ps [85]. Thereby, with the currently commercially available sources of the fast-modulated 
magnetic fields [86] we foresee that the developed here magnetoplasmonic surfaces would 
readily reach the ultimate speed for magnetically induced switching up to 10 GHz over the 
visible and near-IR spectral ranges while maintaining the exceptionally large tunability 
range of up to 100-150%. 
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Our group has been growing and evolving since I started my PhD on the 1st of August, 2012 
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reflection of my growth as a scientist.  

 
I am grateful to meet many good people during my journey and here I would like to thank the 

ones who have made this thesis possible:  
 
First of all, my supervisor and the group leader, Alexander Dmitriev- thank you for providing 

me the opportunity to be a PhD student in your small but powerful group, for all inspiring and 
daring ideas and passion in science you always share, for your valuable guidance and always 
being available no matter where you are.  

 
Esteban - I am very happy that we became colleagues during last 1.5 years of my PhD! Thank 

you for teaching me Spanish and Lumerical, and for all nice discussions about physics and life 
J Thank you for being my best office mate and my friend.  

 
Tua- You are such a nice person to work together, thank you for all your precious advices, help 

with LabView, amazing discussions and all lunches we ate together J  
 
Paolo Vavassori and Nicolò Maccaferri- thank you for our nice collaboration and teamwork 

and for sharing your huge knowledge in magnetism and magneto-optics. Nicolò- thank you for 
kindly providing all analytical models and numerical calculations used in this thesis, and for 
your help with setting up the experiments for the measurement of chiroptical transmission 
during your visit here in Göteborg.  

 
Clean room engineers Henrik Frederiksen and Mats Hagberg- I am grateful for all your help 

with evaporation tools in the cleanroom and always being nice and helpful. I am hugely 
thankful to Henrik, who helped me to practically realize all challenging nanofabrication ideas, 
for his patience, being always available and for sharing his knowledge in material science. 

 



 72 

Kristof Lodewijks- thank you for introducing me to MOKE and helping out with ellipsometry 
measurements, and also for sharing your huge experience on nanofabrication, optics and 
plasmonics.  

 
Randy K. Dumas- thank you for introducing me to alternating gradient magnetometry (AGM), 

for providing me high-quality magnetic films and for sharing your broad knowledge on 
nanomagnetism and magnetic materials. 

 
Addis Mekonnen –thank you for all exciting discussions and sharing your passion in physics, 

for helping me out with measurements and for sharing your expertise in magnetism and optics. 
 
Vladimir Miljković- thank you for introducing me to HCL and nanofabrication of dimers. Gülis 

Zengin-thank you for introducing me to scanning electron microscopy. Virginia Claudio- thank 
you for introducing me to ion beam milling. Mojtaba, Yuli, Masoumeh, Martina, Mohammad 
and Afshin in Johan Åkerman’s group for being nice lab mates and floor neighbors. 

 
My family: my parents for their endless love, care and support through my life, and my 

parents-in law, Ann-Marie and Hasse - it’s a great pleasure in being a part of your family; 
Jakob for always being by my side.  

  
Finally, I would like to acknowledge the Swedish Foundation for Strategic Research (SSF) 

Future Research Leader Grant. 



 73 

1. Maier, S.A., Plasmonics : fundamentals and applications. 2007, New York: Springer. 
xxiv, 223 p. 

 
2. Maier, S.A., Plasmonics: Fundamentals and Applications. 2007. 
 
3. Gaponenko, S.V., Introduction to nanophotonics. 2010, Cambridge: Cambridge 

University Press. xviii, 463 s. 
 
4. Armelles, G., et al., Magnetoplasmonics: Combining Magnetic and Plasmonic 

Functionalities. Advanced Optical Materials, 2013. 1(1): p. 10-35. 
 
5. Armelles, G. and A. Dmitriev, Focus on magnetoplasmonics. New Journal of Physics, 

2014. 16(4): p. 045012. 
 
6. Temnov, V.V., et al., Active magneto-plasmonics in hybrid metal–ferromagnet 

structures. Nature Photonics, 2010. 4(2): p. 107-111. 
 
7. Belotelov, V.I., et al., On surface plasmon polariton wavepacket dynamics in metal-

dielectric heterostructures. J Phys Condens Matter, 2010. 22(39): p. 395301. 
 
8. Temnov, V.V., Ultrafast acousto-magneto-plasmonics. Nature Photonics, 2012. 6(11): 

p. 728-736. 
 
9. Temnov, V.V., et al., Femtosecond nonlinear ultrasonics in gold probed with 

ultrashort surface plasmons. Nat Commun, 2013. 4: p. 1468. 
 
10. Pohl, M., et al., Tuning of the transverse magneto-optical Kerr effect in magneto-

plasmonic crystals. New Journal of Physics, 2013. 15(7): p. 075024. 
 
11. Vasily V Temnov, I.R., Thomas Pezeril, Denys Makarov, Denis Seletskiy, Alexey 

Melnikov and Keith A Nelson, Towards the nonlinear acousto-magneto-plasmonics. 
            Journal of Optics, 2016. 18(9). 
 
12. Gonzalez-Diaz, J.B., et al., Plasmonic Au/Co/Au nanosandwiches with enhanced 

magneto-optical activity. Small, 2008. 4(2): p. 202-5. 
 
13. Maccaferri, N., et al., Tuning the Magneto-Optical Response of Nanosize 

Ferromagnetic Ni Disks Using the Phase of Localized Plasmons. Physical Review 
Letters, 2013. 111(16). 

 
14. Bonanni, V., et al., Designer magnetoplasmonics with nickel nanoferromagnets. 

Nano Lett, 2011. 11(12): p. 5333-8. 
 
15. Zubritskaya, I., et al., Active magnetoplasmonic ruler. Nano Lett, 2015. 15(5): p. 

3204-11. 



 74 

16. Maccaferri, N., et al., Ultrasensitive and label-free molecular-level detection enabled 
by light phase control in magnetoplasmonic nanoantennas. Nat Commun, 2015. 6: p. 
6150. 

 
17. Maksymov, I.S., Magneto-plasmonic nanoantennas: Basics and applications. Reviews 

in Physics, 2016. 1: p. 36-51. 
 
18. Canet-Ferrer, J., et al., Hybrid magnetite–gold nanoparticles as bifunctional 

magnetic–plasmonic systems: three representative cases. Nanoscale Horiz., 2017. 
2(4): p. 205-216. 

 
19. Zhang, M., et al., High-strength magnetically switchable plasmonic nanorods 

assembled from a binary nanocrystal mixture. Nat Nanotechnol, 2017. 12(3): p. 228-
232. 

 
20. Stipe, B.C., et al., Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic 

antenna. Nature Photonics, 2010. 4(7): p. 484-488. 
 
21. Griffiths, D.J., Introduction to electrodynamics. 3rd ed. 1999, Upper Saddle River, 

N.J.: Prentice Hall. xv, 576 p. 
 
22. Novotny, L. and B. Hecht, Principles of nano-optics. 2006, Cambridge ; New York: 

Cambridge University Press. xvii, 539 p. 
 
23. Hecht, E., Optics. 4. ed. 2002, San Francisco, Calif.: Addison Wesley. 698 s. 
 
24. Johnson, P.B. and R.W. Christy, Optical Constants of the Noble Metals. Physical 

Review B, 1972. 6(12): p. 4370-4379. 
 
25. Bohren, C.F. and D.R. Huffman, Absorption and scattering of light by small 

particles. 1983, New York: Wiley. xiv, 530 p. 
 
26. Nordlander, P.O., C.; Prodan, E.; Li, K.; Stockman, M. I. , Plasmon Hybridization in 

Nanoparticle Dimers. Nano Letters, 2004. 4: p. 899–903. 
 
27. Prodan, E., et al., A hybridization model for the plasmon response of complex 

nanostructures. Science, 2003. 302(5644): p. 419-22. 
 
28. Reinhard, B.M., et al., Use of plasmon coupling to reveal the dynamics of DNA 

bending and cleavage by single EcoRV restriction enzymes. Proc Natl Acad Sci U S 
A, 2007. 104(8): p. 2667-72. 

 
29. Sonnichsen, C., et al., A molecular ruler based on plasmon coupling of single gold 

and silver nanoparticles. Nat Biotechnol, 2005. 23(6): p. 741-5. 
 
30. Hill, R.T.M., J. J.; Hucknall, A.; Wolter, S. D.; Jokerst, N. M.; Smith, D. R.; Chilkoti, 

A., Plasmon Ruler with Angström Length Resolution. ACS Nano 2012. 6: p. 9237–
9246. 

 
31. Prashant, K.J.H., W.; A. El-Sayed, M. , On the Universal Scaling Behavior of the 

Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler 
Equation. Nano Letters, 2007. 7: p. 2080–2088. 



 75 

32. Na Liu, L.H., M.; Weiss, T.; Alivasatos, A. P.; Giessen, H., Three-Dimensional 
Plasmon Rulers. Science, 2011. 332: p. 1407–1410. 

 
33. Rechberger, W., et al., Optical properties of two interacting gold nanoparticles. 

Optics Communications, 2003. 220(1-3): p. 137-141. 
 
34. Wang, J.B., S. V.; Wang, H.; Reinhard, B. M., Illuminating Epidermal Growth Factor 
            Receptor Densities on Filopodia through Plasmon Coupling. ACS Nano 2011. 5 p. 

6619–6628. 
 
35. Anker, J.N.H., W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. , 

Biosensing with plasmonic nanosensors. Nature Materials, 2008. 7 p. 442–452. 
 
36. Sheikholeslami, S., et al., Coupling of optical resonances in a compositionally 

asymmetric plasmonic nanoparticle dimer. Nano Lett, 2010. 10(7): p. 2655-60. 
 
37. Acimovic, S.S.K., M. P.; González, M. U.; Quidant, R. , Plasmon Near-Field Coupling 

in Metal Dimers as a Step toward Single-Molecule Sensing. ACS Nano 2009. 3: p. 
1231–1237. 

 
38. Gunnarsson, L.R., T.; Prikulis, J.; Kasemo, B.; Käll, M.; Zou, S.; Schatz, G. C. , 

Confined Plasmons in Nanofabricated Single Silver Particle Pairs: Experimental 
            Observations of Strong Interparticle Interactions. J. Phys. Chem. B. , 2005. 109 p. 

1079–1087. 
 
39. Kuzyk, A., et al., Reconfigurable 3D plasmonic metamolecules. Nat Mater, 2014. 

13(9): p. 862-6. 
 
40. Zvezdin, A.K. and V.A. Kotov, Modern magnetooptics and magnetooptical materials. 

Studies in condensed matter physics. 1997, Philadelphia, Pa.: Institute of Physics 
Pub. xviii, 386 s. 

 
41. Faraday, M., Experimental Researches in Electricity. Nineteenth Series. 

Philosophical Transactions Royal Society London, 1846. 136. 
 
42. Smith, D.A. and K.L. Stokes, Discrete dipole approximation for magneto-

opticalscattering calculations. Optics Express, 2006. 14(12): p. 5746-5754. 
 
43. Xia, T.K., P.M. Hui, and D. Stroud, Theory of Faraday rotation in granular magnetic 

materials. Journal of Applied Physics, 1990. 67(6): p. 2736. 
 
44. Chen, J., et al., Plasmonic nickel nanoantennas. Small, 2011. 7(16): p. 2341-7. 
 
45. Sepúlveda, B., et al., Plasmon-Induced Magneto-Optical Activity in Nanosized Gold 

Disks. Physical Review Letters, 2010. 104(14). 
 
46. Pineider, F., et al., Circular magnetoplasmonic modes in gold nanoparticles. Nano 

Lett, 2013. 13(10): p. 4785-9. 
 
47. Banthi, J.C., et al., High magneto-optical activity and low optical losses in metal-

dielectric Au/Co/Au-SiO(2) magnetoplasmonic nanodisks. Adv Mater, 2012. 24(10): p. 
OP36-41. 



 76 

48. de Sousa, N., et al., Interaction effects on the magneto-optical response of 
magnetoplasmonic dimers. Physical Review B, 2014. 89(20). 

 
49. Armelles, G., et al., Mimicking electromagnetically induced transparency in the 

magneto-optical activity of magnetoplasmonic nanoresonators. Optics Express, 2013. 
21(22): p. 27356. 

 
50. Gonzalez-Diaz, J.B., et al., Cobalt dependence of the magneto-optical response in 

magnetoplasmonic nanodisks. Applied Physics Letters, 2010. 97(4): p. 043114. 
 
51. Maccaferri, N., et al., Effects of a non-absorbing substrate on the magneto-optical 

Kerr response of plasmonic ferromagnetic nanodisks. physica status solidi (a), 2014. 
211(5): p. 1067-1075. 

 
52. Maccaferri, N., et al., Polarizability and magnetoplasmonic properties of magnetic 

general nanoellipsoids. Opt Express, 2013. 21(8): p. 9875-89. 
 
53. Lodewijks, K., et al., Magnetoplasmonic design rules for active magneto-optics. Nano 

Lett, 2014. 14(12): p. 7207-14. 
 
54. Maoz, B.M., et al., Amplification of chiroptical activity of chiral biomolecules by 

surface plasmons. Nano Lett, 2013. 13(3): p. 1203-9. 
 
55. Bliokh, K.Y., et al., Spin–orbit interactions of light. Nature Photonics, 2015. 9(12): p. 

796-808. 
 
56. Nir Shitrit, I.Y., Elhanan Maguid, Dror Ozeri, Dekel Veksler, Vladimir Kleiner, Erez 

Hasman, Spin-Optical Metamaterial Route to Spin-Controlled Photonics. Science, 
2013. 340. 

 
57. Xiao, S., et al., Helicity-Preserving Omnidirectional Plasmonic Mirror. Advanced 

Optical Materials, 2016. 4(5): p. 654-658. 
 
58. Valev, V.K., et al., Chirality and chiroptical effects in plasmonic nanostructures: 

fundamentals, recent progress, and outlook. Adv Mater, 2013. 25(18): p. 2517-34. 
 
59. Bettina Frank, X.Y., Martin Schäferling, Jun Zhao, Sven M. Hein, Paul V. Braun 

and Harald Giessen, Large-Area 3D Chiral Plasmonic Structures. ACS Nano, 2013. 
7(7): p. 6321–6329. 

 
60. Gibbs, J.G., et al., Plasmonic nanohelix metamaterials with tailorable giant circular 

dichroism. Applied Physics Letters, 2013. 103(21): p. 213101. 
 
61. Song, C., et al., Tailorable plasmonic circular dichroism properties of helical 

nanoparticle superstructures. Nano Lett, 2013. 13(7): p. 3256-61. 
 
62. Khanikaev, A.B., et al., Experimental demonstration of the microscopic origin of 

circular dichroism in two-dimensional metamaterials. Nat Commun, 2016. 7: p. 
12045. 

 
63. Schnell, M., et al., Real-Space Mapping of the Chiral Near-Field Distributions in 

Spiral Antennas and Planar Metasurfaces. Nano Lett, 2016. 16(1): p. 663-70. 



 77 

64. Banzer, P., et al., Chiral optical response of planar and symmetric nanotrimers 
enabled by heteromaterial selection. Nat Commun, 2016. 7: p. 13117. 

 
65. Fredriksson, H., et al., Hole–Mask Colloidal Lithography. Advanced Materials, 2007. 

19(23): p. 4297-4302. 
 
66. Vavassori, P., Polarization modulation technique for magneto-optical quantitative 

vector magnetometry. Applied Physics Letters, 2000. 77(11): p. 1605. 
 
67. Kemp, J.C., Polarized Light and its Interaction with Modulating Devices. HINDS 

International, Inc., 1987. 
 
68. Oakberg, T., Magneto-optic Kerr Effect application note, in Hinds Instruments. 2010. 
 
69. Oakberg, T., Linear and Circular Dichroism. Hinds Instruments. 
 
70. B.A Wallace and R.W. Janes, Modern Techniques for Circular Dichroism and 

Synchrotron Radiation Circular Dichroism Spectroscopy. 2009: IOS Press 243. 
 
71. Genevet, P., et al., Recent advances in planar optics: from plasmonic to dielectric 

metasurfaces. Optica, 2017. 4(1): p. 139. 
 
72. Mohammadreza Khorasaninejad, W.T.C., Robert C. Devlin, Jaewon Oh, Alexander 

Y. Zhu, Federico Capasso, Metalenses at visible wavelengths: Diffraction-limited 
focusing and subwavelength resolution imaging. Science, 2016. 352(6290). 

 
73. Zhou, Z., et al., Efficient Silicon Metasurfaces for Visible Light. ACS Photonics, 2017. 

4(3): p. 544-551. 
 
74. Zanotto, S., et al., Metasurface Reconfiguration through Lithium-Ion Intercalation in 

a Transition Metal Oxide. Advanced Optical Materials, 2017. 5(2): p. 1600732. 
 
75. Xiong, C., et al., Active silicon integrated nanophotonics: ferroelectric BaTiO(3) 

devices. Nano Lett, 2014. 14(3): p. 1419-25. 
 
76. Shalaev, M.I., et al., High-Efficiency All-Dielectric Metasurfaces for Ultracompact 

Beam Manipulation in Transmission Mode. Nano Lett, 2015. 15(9): p. 6261-6. 
 
77. Zia, R., Dielectric metasurfaces: Transparent design. Nat Nanotechnol, 2015. 10(11): 

p. 913-4. 
 
78. Wang, Q., et al., Optically reconfigurable metasurfaces and photonic devices based 

on phase change materials. Nature Photonics, 2015. 10(1): p. 60-65. 
 
79. Maria Papaioannou, E.P., João Valente, Edward TF Rogers and Nikolay I. Zheludev, 

Two-dimensional control of light with light on metasurfaces. Nature, 2016. 
 
80. Valente, J., et al., Reconfiguring photonic metamaterials with currents and magnetic 

fields. Applied Physics Letters, 2015. 106(11): p. 111905. 
 
81. Ou, J.Y., et al., Reconfigurable photonic metamaterials. Nano Lett, 2011. 11(5): p. 

2142-4. 



 78 

82. Ou, J.Y., et al., An electromechanically reconfigurable plasmonic metamaterial 
operating in the near-infrared. Nat Nanotechnol, 2013. 8(4): p. 252-5. 

 
83. Kim, Y., et al., Reconfigurable chiroptical nanocomposites with chirality transfer 

from the macro- to the nanoscale. Nat Mater, 2016. 15(4): p. 461-8. 
 
84. Landau, L.L., E, On the theory of the dispersion of magnetic permeability in 

ferromagnetic bodies. Phys. Z. Sowjetunion 1935. 8: p. 153-169. 
 
85. Gerrits, T.a.v.d.B., H. A. M. and Hohlfeld, J. and Bar, L. and Rasing, Th., Ultrafast 

precessional magnetization reversal by picosecond magnetic field pulse shaping. 
Nature, 2002. 418(6897): p. 509--512. 

 
86. Subkhangulov, R.R., et al., Terahertz modulation of the Faraday rotation by laser 

pulses via the optical Kerr effect. Nature Photonics, 2016. 10(2): p. 111-114. 
 


