
Automated Assessment of Imperative Programs
Bachelor of Science Thesis in Computer Science Engineering

MAXIMILIAN ALGEHED
SIMON BOIJ
MAZDAK FARROKHZAD
JOEL HULTIN
ALEKSANDER STERN KAAR

Chamers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden

Bachelor of Science Thesis

Javista

A tool for Automated Assessment of Programming Exercises

MAXIMILIAN ALGEHED

SIMON BOIJ

MAZDAK FARROKHZAD

JOEL HULTIN

ALEKSANDER STERN KAAR

Department of Computer Science and Engineering

CǤȳǟȨǚǙ UǞǣǖȨǚǙǣǘǓ ǝǦ TȨȱǤǞǝǠǝǥǓ

UǞǣǖȨǚǙǣǘǓ ǝǦ GǝǘǤȨǞȲǗǚǥ

Göteborg, Sweden, 2017

Javista

A tool for Automated Assessment of Programming Exercises

MAXIMILIAN ALGEHED

SIMON BOIJ

MAZDAK FARROKHZAD

JOEL HULTIN

ALEKSANDER STERN KAAR

© MAXIMILIAN ALGEHED, SIMON BOIJ, MAZDAK FARROKHZAD, JOEL HULTIN, ALEKSANDER STERN KAAR, 2017

Examiner: Niklas Broberg

Supervisor: Alex Gerdes

Department of Computer Science and Engineering

Chamers University of Technology

University of Gothenburg

SE-412 96 Göteborg

Sweden

Telephone +46 (0)31-772 1000

The Author grants to Chalmers University of Technology and University of Gothenburg the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it acces-
sible on the Internet. The Author warrants that he/she is the author to the Work, and warrants
that the Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a pub-
lisher or a company), acknowledge the third party about this agreement. If the Author has signed
a copyright agreement with a third party regarding the Work, the Author warrants hereby that
he/she has obtained any necessary permission from this third party to let Chalmers University of
Technology and University of Gothenburg store the Work electronically and make it accessible on
the Internet.

Department of Computer Science and Engineering

Göteborg 2017

Javista

A tool for Automated Assessment of Programming Exercises

MAXIMILIAN ALGEHED

SIMON BOIJ

MAZDAK FARROKHZAD

JOEL HULTIN

ALEKSANDER STERN KAAR

Department of Computer Science and Engineering

Chamers University of Technology

University of Gothenburg

Bachelor of Science Thesis

Abstract

This thesis presents a methodology and a tool for automated assessment of programming exercises,
with the purpose of reducing the workload of teachers. Our aim is for the tool to provide accurate
and useful assessment given an exercise specification. Using the tool could allow teachers to spend
more time helping students. The tool, implemented in Haskell, is intended to be used by teachers
through a command line interface and targets a subset of Java. Assessment is achieved by using
semantic and behavioural analysis. Semantic analysis consists of normalisation and prefix trees,
while behavioural analysis consists of testing including integrated shrinking. The presented tool is
evaluated using a data set from the course TDA450 at Chalmers University of Technology. The
tool managed to classify 60% of the solutions as either correct or incorrect with no false positives.
The result shows that it is possible to automatically assess student solutions and suggests that
more solutions can be classified given further development.

Keywords: Automated Assessment, Normalisation, Strategies, Property Based Testing, Program-
ming Language Technology, Java

Sammanfattning

Rapporten presenterar en metod och ett verktyg för automatisk rättning av programmeringsövningar,
med syftet att minska lärarnas arbetsbelastning. Vårt mål är att verktyget ska ge en korrekt och
användbar bedömning, givet en problembeskrivning. Genom att använda verktyget skulle lärare
kunna spendera mer tid med att hjälpa studenter. Verktyget, implementerat i Haskell, är avsett
att användas av lärare via ett kommandoradsgränssnitt och hanterar en delmängd av Java. För att
rätta används analys av både semantik och beteende. Semantisk analys består av normalisering
och prefix-träd, medan beteendeanalys innefattar testning och integrerad krympning. Det presen-
terade verktyget utvärderas med hjälp av ett dataset från kursen TDA450 vid Chalmers tekniska
högskola. Verktyget lyckades klassificera 60% av lösningarna som antingen korrekta eller felaktiga
utan felaktiga klassificeringar. Resultatet visar att automatisk rättning är möjlig och indikerar att
fler lösningar kan klassificeras givet fortsatt utveckling.

Acknowledgements

We would like to extend a special thanks to our supervisor Alex Gerdes, for giving us the oppor-
tunity of working on this bachelor thesis and for all his help.

We would also like to thank Thomas Hallgren, Michal Palka, Christian Persson, Jacob Holmgren,
and Rickard Hjort for their constructive feedback in opposition to our thesis.

Contents
1 Introduction 1

1.1 Purpose . 1
1.2 Problem Description . 1
1.3 Scope . 2
1.4 Contributions . 2

2 Theoretical Background 3
2.1 Equivalence . 3
2.2 Static Analysis . 3
2.3 Behavioural Testing . 4

3 Conceptual Solutions 5
3.1 Normalisation . 6

3.1.1 Normalisation EDSL . 7
3.1.2 Ordering of Composition and Execution 7

3.2 Matching . 8
3.2.1 Prefix Trees . 9
3.2.2 Matching Using Prefix Trees . 10

3.3 Testing . 12

4 Implementation 13
4.1 Overview . 13
4.2 Normalisation . 14

4.2.1 Bottom-up Traversals . 15
4.2.2 Using the EDSL . 16
4.2.3 Naming Normalisers . 18

4.3 Matching . 18
4.3.1 Generating Prefix Trees . 18
4.3.2 Matching Using Prefix Trees . 20

4.4 Testing . 20
4.4.1 Generation of Input . 20
4.4.2 The Testing EDSL . 21
4.4.3 Shrinking . 22

5 The Javista Tool 23

6 Results 25

7 Discussion 25
7.1 Normalisation . 26
7.2 Matching . 26
7.3 Testing . 26
7.4 Javista in Society . 27

8 Conclusion and Future Work 27

A Exercise 12 - Translated from Swedish 31

B Implemented Normalisation Rules 32

C AST Definition 33

1 Introduction

Teaching programming at university level requires much effort to assess the quality of student
solutions to programming exercises. This problem has given rise to the research area of automated
assessment. Approaches to automatically assessing the quality of student solutions to programming
exercises include: testing [1], using Embedded Domain Specific Languages (EDSLs) to express de-
sirable properties of student solutions [2], and using programming strategies [3] to identify student
solutions as variants of predefined model solutions [4]. Much work has gone into automated assess-
ment for the functional programming language Haskell using strategies and model solutions [5].
While this work has been successful, attempts to transfer it to object oriented languages have
seen limited success [4], focusing on solutions written in the context of a programming tutoring
tool rather than grading student submissions to assignments and hand-ins. Programming tutoring
tools usually constrain the way students write their programs and offer hints to help students. This
means that student programs written in the context of a programming tutor can be expected to
vary less than student submissions to programming assignments.

There are many possible ways to reduce the work required to grade student solutions. Some different
aspects of grading student solutions may not be simple to automate, such as assessing the relevance
of comments or the quality of variable names. While this is an interesting area of research, this
report is not concerned with such assessment. Instead this report focuses on assertions about
program correctness in the context of students solutions to well defined programming exercises in
early university level programming courses on imperative and object oriented programming. While
automatically assessing the correctness of arbitrary computer programs is a difficult problem, the
limited domain of assessing programming exercises greatly reduces the complexity. In the context
of automated assessment, specifications can be made very detailed and correct reference, or model,
programs generally exist.

1.1 Purpose

The aim of this project is to create a tool for objective and consistent automated assessment of
programming exercises written in a subset of Java [6]. The tool is meant as an aid in assessing
solutions in order to reduce the workload for the teacher. The tool initially targets an introductory
course in imperative and object oriented programming at Chalmers university of technology [7] to
provide teachers with assistance in assessing student solutions to programming exercises. In order
for the tool to provide relevant assessment there needs to be a way for a teacher to provide it with
an exercise specification. The goal is to provide accurate and useful assessment with as simple an
exercise specification as possible. While initially targeted at an introductory course, the tool should
be sufficiently extensible that it may, in the future, be used in more advanced courses also taught
in Java.

1.2 Problem Description

The main problem is to classify student solutions to programming exercises as either correct or
incorrect. If the tool classifies a solution as correct that should be an indication that the solution
should be accepted without further inspection, if the solution is classified as incorrect it should be
rejected. The tool must also be able to indicate when the student solution is unclassifiable in the
case where the student solution can not be classified as either correct or incorrect.

The tool needs to accept an exercise specification from a teacher, called model solution, which is
used to assess student solutions as either correct, incorrect, or unclassifiable. Such a specification
should include one or more model solutions as well as a specification of valid program input formats.

An important sub-problem addressed in this report is to find a useful definition of correctness.
Such a definition must express what it mean for a student solution to be correct with respect to
a programming exercise specification. The notion of correctness should be irrespective of syntactic

1

and stylistic choices on behalf of the student. Examples of such stylistic choices include using
for-loops instead of while-loops, ordering independent program statements in different ways, using
different variables names etc. Similarly, a useful definition of incorrectness is necessary.

The final problem addressed in this report is to combine the notions of correctness, incorrectness,
and unclassifiability to implement a tool for automated assessment. It is important that the tool is
reliable, never assessing incorrect solutions as correct and vice verse. However, it is also important
that the tool is useful, a tool which always assesses a student solution as unclassifiable is not a
useful tool.

1.3 Scope

While the tool presented in this report is aimed at the Java programming language, it does not
support the entire language. The focus is on a small subset of the language, including:

• Conditional statements

• Primitive types and the String class

• Arrays

• Loops

• Input and output

• Static methods

• Object instantiation and object types

The tool provides a command line interface (CLI) for assisting teachers and providing them with
automated assessment of student programs. The functionality of the tool is limited in the following
way:

• The tool does not provide an interface for students.

• The tool does not provide a Graphical User Interface (GUI).

• The tool does not provide a way of assessing incomplete student solutions. As such the tool
does not act as a programming tutor.

In conclusion, the scope is limited to an assessment tool, for use by teachers, and targets a subset
of the Java programming language.

1.4 Contributions

We present a methodology and a tool for objective automated assessment of programming exercises
in a course for basic imperative programming using a subset of the Java [6] programming language.
By providing such assessments, the workload for teaching assistants could be reduced and shifted
from manual assessment into one-time setup costs for a specific exercise. This cost is to provide
model solutions [4] to programming exercises and input format specifications. This leaves teachers
with more time to assist and teach students.

This report presents the following contributions

• A conceptual architecture for automated assessment of student solutions to programming
exercises, presented in Section 3. This section presents solutions to general problems with
automatic assessment as well as more specific problems for the chosen domain.

• Several Haskell EDSLs, presented in Section 4, which implement the individual conceptual
solutions from Section 3.

2

• A tool, written in Haskell, for automated assessment of Java programming exercises based
on the architecture presented in Section 3. The implementation of the tool is presented in
Section 4 and example usage is presented in Section 5.

2 Theoretical Background

This section presents the theoretical background necessary to understand the rest of the report.
The reader is assumed to be familiar with basic concepts from programming language theory and
practise as well as the Java programming language.

Model Solution A pre-defined solution to a programming exercise provided by a teacher. A
model solution is a guaranteed correct solution to an exercise.

Embedded Domain Specific Language A domain specific language (DSL) is a language
specialised for some particular purpose. Writing a specialised DSL has the advantages of making it
easier to create solutions for some specific problem. Furthermore, an Embedded Domain Specific
Language (EDSL) is a DSL which is embedded in some host language, EDSLs are very similar to
libraries but generally provide an entire programming model rather than a set of library functions
[8].

Abstract Syntax Tree An abstract syntax tree (AST) is a tree representation of a term, such
as a mathematical expression, in some language. ASTs are data structures which formal-language
based tools such as compilers can work with. They are initially produced by using a parser on source
code the programmer has written. After parsing a .java file to an AST, syntactic differences such
as white-space becomes insignificant [9].

2.1 Equivalence

There are many different ways of defining equivalence. This section presents some of these ways.

Syntactic Equivalence Comparing two programs syntactically can be done once they are parsed
into ASTs. If their respective ASTs are equivalent after having been parsed with the same parser,
then the programs are considered syntactically equivalent.

Semantic Equivalence Semantic equivalence is when two programs have the same meaning.
This implies that two solutions might be written in different ways, although they describe the same
procedure. This means that for all inputs, the semantically equivalent programs would produce
the same output.

Behavioural Equivalence Behavioural equivalence [10], [11] is when two programs have the
same behaviour. The same behaviour means that two programs produce the same output.

2.2 Static Analysis

Static analysis is analysis that is performed on program text. This means that the analysis is
not performed during runtime [12]. Static analysis can be performed to determine the syntactic
equivalence of two programs, which implies semantic equivalence. Thus, there is no input space
to search. If static analysis determines that a solution is recognised to be equivalent to a model

3

solution, it provides certainty that the solution is correct. When recognition fails, it is not possible
to state that the student solution is incorrect. In this case, correctness is unknown.

Fixed Point A value x is a fixed point of a function f if and only if f(x) = x [13]. This means
that applying a function to one of its fixed points returns the same value. Not all functions have
fix-points, for example f(x) = x− 1. Some functions have more than one, for example f(x) = |x|,
which computes the absolute value, has all positive numbers and zero as its fixed points.

(Unique) Normal Form All terms that are semantically equivalent have the same normal form.
This normal form represents a standardised way to express all semantically equivalent terms [4]. A
normal form is defined according to the semantics in a given context. If there only exists one normal
form for a term, it is called an unique normal form. An example of a normal form is disjunctive
normal form (DNF) in first order logic (FOL). All such expressions have a unique normal form
and two expressions with the same truth tables, that is to say the same semantics, have the same
DNFs.

Normalisation Normalisation rules are functions that transform semantically equivalent terms
into syntactically equivalent terms [14]. The core idea of normalisation is that semantically equiv-
alent terms, for some definition of equivalent, have the same normal form [4]. Thus normalisation
must preserve semantics. A term in some language is in normal form when a fix-point has been
reached [14].

Consider the process of eliminating double negation from an expression in FOL, given ¬¬p, it can
be transformed to p [15]. The expression can not be transformed any further and is thus in normal
form. In this paper, this normalisation rule is denoted as, ¬¬p ⇓ p, which reads as: ”¬¬p rewrites
to p”.

2.3 Behavioural Testing

Behavioural testing is the process of testing if two programs have the same behaviour during
runtime. This is usually done by checking if, given a command, a program displays the correct
behaviour. While this method may provide some certainty that a program is correct, though it can
not prove correctness. Some bugs can be difficult to find and arise only for very specific inputs.
Assuming deterministic behaviour, unless the entirety of the input space is tested, it is impossible
to state that a programs is correct. Since the input space is likely to be large it is unlikely that
such evidence can be found in a practical amount of time [16]. Therefore, testing may at best give
concrete evidence that a program is incorrect [17].

Property A property, P , of a program f is a judgement on the form of given some input X, the
statement P (f,X) is true [18]. As an example, consider a program which, given a list of numbers,
produces the same list of numbers in a sorted order. A property of this program is that the output
of the program given any list, is ordered in ascending order. That is, P (sort,X) = ordered(sortX).

Test Case Testing is the act of checking if a given property holds for some input. Each set of
input for testing a property is called a test case. In the case that a test case fails, a program is
guaranteed to be incorrect.

QuickCheck The Haskell library QuickCheck [18] can generate random input and use it to test if
a property holds. It provides functionality for specification of inputs and properties. Some common
functions for specifying the generation of inputs are:

• arbitrary which generates any value of a specific type.

4

• suchThat which specifies constraints for the generated value.

• listOf which generates a list of a specific type.

Generating a list of even Int is illustrated by the example shown in Snippet 2.1.

listOfEven ^:: Gen [Int]
listOfEven = listOf $ arbitrary `suchThat` even

Snippet 2.1: Function for generating a list of even Int.

QuickCheck Generator Input values can be generated by using a QuickCheck Generator. The
generator is used by calling the function generate which returns a random value with a specified
type. Random values can be large if there are no upper or lower bound specified in the generation.
A way to make the value smaller is called shrinking. Shrinking is only done when a test case fails
for a specific input. That input is then used to find a smaller test case that fails. An example of
this is a list of length 10 fails a test case, by splitting the list in two the input is smaller and can
be tested again. If it fails, the list can be split again to see if a smaller list fails, if not the last
test case that fails is the 1-minimal failing test case. In QuickCheck every type has an associated
shrink function. This means that every type shrinks in different ways.

1-minimal failing test A 1-minimal failing test [19] is when the input does not fail if the input
is shrunk. For example, an array the 1-minimal failing test is; any one element is removed from the
array and the test passes, then the previous input is the 1-minimal failing test, thus every element
matters.

Integrated Shrinking A method, used in the disorder-jack tool [20] among others, is to
integrate the shrinking with the generation of test data. Integrating the shrinking with the gener-
ation work by generating the test case as well as the ways of shrinking that test case at the same
time. This is in contrast to the method used in QuickCheck, where shrinking is independent of the
generator in use.

3 Conceptual Solutions

This section gives a conceptual overview of how normalisation, matching and testing are used
in this project to automatically assess student solutions. It also gives a definition of correctness,
incorrectness, and unclassifiability.

If a student solution is semantically equivalent to a correct model solution, the student solution
is correct since they have the same meaning. Static analysis can be performed to determine the
syntactic equivalence of two programs, which implies semantic equivalence. Correctness of a student
solution in this context is therefore defined as semantic equivalence to a model solution. This
guarantees that a student solution is correct if the static analysis, used to determine semantically
equivalence, deems two solutions to be equal. When a solution can not be recognised to be equal,
correctness is unknown.

A student solution that has a different behaviour than all model solutions is incorrect. This can
be found using behavioural testing. Incorrectness or in-equivalence in this context means that
a student solution does not behave the same way as a model solution. Testing the behavioural
equivalence is used to determine the inequality of two solutions which guarantees that a student
solution is incorrect. If this method fails to determine incorrectness it may at best give an indication
that a student solution and a model solution is equal.

Unclassifiable may also be a result of the combination of these two methods. At least, if many
different tests are done, the indication that the student solution is correct may be stronger and the

5

result is not entirely unknown. The process of recognising student solutions as correct or incorrect
is divided in to stages as shown in Figure 3.1. First the student solution and all model solutions
are parsed to ASTs. Then semantic analysis is done with the two methods, normalisation and
matching, if semantic equality can not be guaranteed, testing is used to determine behavioural
in-equality. Finally, information about the solution is provided to the teacher using the tool.

Parse
solution Normalise Match Found

match?
Generate
output

Test
solution

yes

no

Figure 3.1: An outline of the pipeline.

3.1 Normalisation

Consider an assignment where a student has to solve the problem of summing up all numbers from
1 to n, where n ∈ N. This can be solved in many different ways. One way is to implement a for
loop going from i to n, using i to add to a sum variable. However if a student were to use a while
loop instead of a for loop, then the ASTs would not be syntactically equivalent, even though the
semantics would be the same.

Student
int sum = 0;
for (int i = 1; i ^<= n; i^++)

sum = sum + i;

Model
int sum = 0;
int i = 1;
while (i ^<= n) {

sum = sum + i;
i^++;

}

Snippet 3.1: A student solution containing a for loop and its equivalent model solution containing a while
loop.

In this case, normalisation can be used to minimise the amount of variations. Thus, equivalence is
redefined such that normalisation is applied to both ASTs before doing a strict identity check. As
a consequence, more solutions will be recognised which can be seen in Snippet 3.2.

equiv ^:: AST ^-> AST ^-> Bool
equiv l r = normalise l ^== normalise r

Snippet 3.2: Function for equivalence defined by applying normalisation first

To provide a certainty of correctness, preserving the semantics is also important for automated
assessment. The semantics of Java are defined by the Java Language Specification (JLS) [21]. Thus,
normalisation rules must adhere to the JLS in order to be semantic preserving.

6

3.1.1 Normalisation EDSL

An imperative language such as Java has many complicated constructs and is a language in which
it is possible to write the same thing in many different ways [22]. This requires writing a large
amount of normalisation rules to recognise all ways.

To this end the normalisation EDSL, used while constructing rules, should make it easy to write
rules which satisfy the following properties:

• Simplicity: Rules should be simple, allowing them to be easily tested and maintained.

• Composability: Rules must compose well with others, making it possible to construct com-
plicated rules from simpler ones.

• Performance: Rules must be fast to execute since there are many of them and they are
executed many times.

• Usability: It must be easy to define rules. For terms consisting of sub-terms, normalisation
must have the property that: a change in any sub-term implies a change in the parent. By
induction, a change in any term at any depth implies a change in the root term. Manually
tracking whether change occurred in any branch or sub-term makes normalisers hard to write.

In order to recognise a student solution as equivalent to a model solution, their respective variable
names must be the same. Consider the task of adding two variables encoded in the solutions given
in Snippet 3.3. These solutions are semantically equivalent, up to the variable names, causing
recognition to fail. The example in Snippet 3.3 is also one of shadowing, wherein variables in Java
may be in different scopes and still have the same name.

Student
{

int y = 0;
int x = 1;

}
int x = 2;

Model
{

int right = 0;
int sum = 1;

}
int left = 2;

Snippet 3.3: A student solution and a model solution with varying variable names.

To remedy these issues, variable names are renamed with new and unique names. This process is
called α-renaming [23] and can be used as a normalisation rule. After applying α-renaming to the
solutions in Snippet 3.3, they will, look as in Snippet 3.4.

Student
{

int var1 = 0;
int var2 = 1;

}
int var3 = 2;

Model
{

int var1 = 0;
int var2 = 1;

}
int var3 = 2;

Snippet 3.4: Syntactic equivalence of a student solution and a model solution after α-renaming.

3.1.2 Ordering of Composition and Execution

Many normalisation rules depend on variables having unique and predictable names, and having
no shadowing occur. By definition, unique variable names implies that there is no shadowing. An
example of such a rule is one which first splits declaration and initialisation and then moves all
declarations to the top. If this rule is applied before α-renaming is done, the student solution in
Snippet 3.3 will look as in Snippet 3.5.

7

int y; y = 0;
int x; x = 1;
int x; x = 2;
{}

Snippet 3.5: Moving variables to top before α-renaming causes a scoping error due to redeclaring x.

Since normalisation must be semantic preserving, type correctness must also be preserved, which
the normalised snippet in Snippet 3.5 does not. Applying α-renaming is therefore crucial for en-
suring that rules are truly semantic preserving. Assuming an AST has been α-renamed is also
reasonable because the rule would have to check if the AST has shadowing otherwise.

Now consider the following rules, running in the following order:

1. alpha.var - which α-renames variables,

2. do.to.while - which transforms do-while loops into while loops,

3. decl.top - which moves declarations to the top,

on the statement do { int x; } while (true);. The statement is rewritten as follows:

start

do {
int x;

}
while (true);

⇒

alpha.var

do {
int v1;

}
while (true);

⇒

do.to.while

{
int v1;

}
while (true) {
int v1;

}

⇒

decl.top

int v1;
int v1; ^// SCOPING ERROR
{}
while (true) {}

Snippet 3.6: Normalisation breaks the Java scoping rules by declaring two variables with the same name.

The examples Snippet 3.5 and Snippet 3.6 demonstrate that the order in which normalisations
are run matter. They can not be run in an arbitrary order since it might result in a non semantic
preserving . A method of defining dependencies, or at least an order between normalisations is
therefore necessary. In this case, alpha.var must be applied again before applying decl.top to make
the reduction semantic preserving.

3.2 Matching

Finding a unique normal form for all equivalent programs is, if at all possible, very difficult.
Particularly, when two statements are independent of each other, reordering them with respect to
each other does not change the semantics of the program. It is infeasible to define a total order
on the statements of a program which guarantees that two semantically equivalent programs are
ordered the same way. Therefore, to correctly recognise all variants of a correct solution they need
to matched against every valid reordering of that solution. However, even just the three statements
in Snippet 3.7 can be reordered in three different ways without affecting the semantics. In the worst
case, the number of permutations grows factorially with respect to the number of statements.

Model solution
int j;
i = 0;
j = 1;

Alt. solution 1
int j;
j = 1;
i = 0;

Alt. solution 2
i = 0;
int j
j = 1;

Snippet 3.7: Permutations of a model solution.

The high number of possible permutations makes it impractical to create individual model solutions
for each permutation. All semantically equivalent permutations of a model solution should instead

8

be generated from that model solution. This creates the problem of recognising in which ways it
is possible to reorder statements without changing the semantics of the program.

Keuning et. al. [24] describes four scenarios in which a statement a may depend on a previous
statement b. These rules are all demonstrated in Snippet 3.8.

• If a uses a variable that is changed in b, then a is dependent on b.

• If a changes or uses a variable which is changed in b, then a is dependent on b.

• No statement can be guaranteed to be independent of a statement for which it is impossible
to identify its side-effects, a so called impure statement. If b is impure, a is dependent on b.

• It is impossible to change the placement of a statement which dictates if successive statements
are executed or not. If b is such a statement, a is dependent on b.

A)
x = x + 1;
int y = x;

B)
int y = x;
x = x + 1;

C)
int y = impure();
x = x + 1;

D)
break;
x = x + 1;

Snippet 3.8: Examples where the second statement depends on the first.

3.2.1 Prefix Trees

In order to efficiently compare a student solution to all permutations of a model solution without
needlessly generating a possibly large number of permutations we create a data structure we call a
prefix tree. A prefix tree is a tree where each edge represents one step in the generation of a complete
solution. Each node represents a state of the solution and contains either a complete solution or a
prefix with one or more holes. A hole represents a part of a solution that still needs to be defined
or expanded upon in order to reach a finished solution. A prefix tree is a representation of the steps
required to create a correct solution. An example of a model solution and its corresponding prefix
tree is shown in Figure 3.2. While the use of holes to incrementally refine programs is inspired by
Gerdes et al. [14], the prefix-tree construction is novel.

Model Solution
int j;
i = 0;
j = 1;

?

int j;
?

int j;
i = 0;
?

int j;
i = 0;
j = 1;

int j;
j = 1;
?

int j;
j = 1;
i = 0;

i = 0;
?

i = 0;
int j;
?

i = 0;
int j;
j = 1;

Figure 3.2: A model solution and its prefix tree.

The construction of a prefix tree begins with the root. The root contains only a hole, denoted by a
question mark. The children will be the possible states of the solution after one step of generation is
done. This generation is done by replacing a hole with a single step required to reach the solution,
as well as new holes representing parts of the solution that still need to be added. The process
is repeated for each successive node, making each level in the tree another step towards a final
solution. When a node is created that has no holes, which means there is no way to extend it

9

further, it will be a leaf of the tree and represent a finished permutation of the original solution.
Each leaf in the tree will contain a permutation of the original solution.

3.2.2 Matching Using Prefix Trees

Simply generating all semantically equivalent permutations of a model solution and checking if the
student solution is equal to any of them is computationally unfeasible. Therefore a faster solution
is needed. Matching the student solution to the right in Snippet 3.9 with the model solution to
the left requires comparing the student solution to the three different permutations of the model
solution.

Model
int j;
i = 0;
j = 1;

Student
i = 0;
int j;
j = 1;

Snippet 3.9: Semantically equivalent student and model solution.

It is possible to instead match the solution while generating the prefix tree. This matching can be
done during the generation of the tree, by checking if the student solution is still possible to achieve
from any given node. The matching of the solutions in Snippet 3.9 would start by generating the
left child of the root as shown in Figure 3.3. Since the node does not match any prefix of the
student solution, the traversal will not continue through that node. In the next step the matching
process will instead generate the right node and continue the matching from there. The matching
succeeds if it reaches a leaf that is equivalent to the student solution. If it never does, the matching
fails. In Figure 3.3 the example succeeds once it reaches the rightmost leaf.

10

?

^^... ^^...
? `isPrefixOf`

i = 0;
int j;
j = 1;

⇓
?

int j;
?

^^... ^^...

^^...
int j;
?

`isPrefixOf`
i = 0;
int j;
j = 1;

⇓
?

int j;
?

^^... ^^...

i = 0;
?

^^...

i = 0;
?

`isPrefixOf`
i = 0;
int j;
j = 1;

⇓
^^...

⇓
i = 0;
int j;
j = 1;

^==
i = 0;
int j;
j = 1;

Figure 3.3: The process of matching during tree generation using depth first search and a function
isPrefixOf which determines if a partial program is a prefix of a complete program.

In the worst case, this method of matching will still require traversal through each leaf before it is
known whether or not the two solutions match. This means that this method, in the worst case,
needs to check solutions for equality O(n!) times. The big gain of the method is the ability to ignore
paths in the tree, which is done in two main ways. The first is the aforementioned discarding of
paths where the prefix does not match the student solution. Consider for example the two programs
in Snippet 3.10. While there exists multiple permutations of the model solution matching will fail
immediately when comparing if and while, without generating any of the permutations. The other
way to discard paths is to terminate the traversal upon reaching a matching leaf, making a depth
first approach appropriate.

Model
if (true) {

int j;
i = 0;
j = 1;

}

Student
while (true) {

int j;
i = 0;
j = 1;

}

Snippet 3.10: A student and a model solution that are not equivalent.

It is, in theory, possible to solve other identification-problems using prefix trees, by from each

11

node generating each possible node that have the same normal form as that node. This mean
that given an infinite amount of memory, computing power or time, there would be no need for
normalisation at all. In contrast to normalisation rules which reduces the search space this would
instead make the number of possible nodes substantially higher. The matching should therefore
not be used separately, but the solutions wanted to be matched should first be normalised. Since
the prefix-tree is used to create solutions that have different unique normal form is it sometimes
required to renormalise each term that is to be checked for equivalence.

3.3 Testing

Testing is used to determine the incorrectness of a student solution and provide a good indication
that it is correct without guaranteeing it. Consider the example exercise specification: read a
number n from stdin then read n numbers and print their sum. A student and model solution
pair for this exercise can be seen in Snippet 3.11. If all the tests pass it can at best give an indication
that the solution is correct, but if a failing test case is found the student solution is guaranteed to
be incorrect.

Student
Scanner sc =

new Scanner(System.in);
int x = sc.nextInt();
int sum;
for(int i = 1; i < x; i^++) {

sum += sc.nextInt();
}
System.out.println(sum);

Model
Scanner sc =

new Scanner(System.in);
int x = sc.nextInt();
int sum;
for(int i = 0; i < x; i^++) {

sum += sc.nextInt();
}
System.out.println(sum);

Snippet 3.11: Student solution does not sum the numbers, instead it subtracts.

The input of the test case needs to be valid, satisfy the pre-condition of the solution. If it does
not, test cases might determine a solution to be correct when it is not and incorrect when it is
correct. Thus only valid input should be tested. Automating the process of testing many different
valid inputs is done by random input generation. Then feeding it to both the student solution and
a model solution. The output of both solutions should be equal if the test is to pass and not equal
if it fails.

Generating random input needs to be specified in a way such that it is valid. The input for the
example in Snippet 3.11 firstly needs a number that is greater than or equal to zero and followed
by the same number of random numbers. In the Snippet 3.12 below a random input generator for
this example written in the QuickCheck DSL.

generator ^:: Gen String
generator = do

n ^<- arbitrary `suchThat` (^>=0)
nums ^<- replicateM n arbitrary
return $ unwords $ map show (n:nums)

Snippet 3.12: A QuickCheck generator.

The first line in Snippet 3.12 is a type signature which says that the generator generates a random
String. The next few lines define the generator. It first generates a random number that is greater
than or equal to zero, then generates that many more random numbers, and finally formats all
numbers as a space-separated String. The input needs to be a String as it is given to the program
using stdin when running it through the command prompt. This is to ensure that a program
has the same behaviour when automatically testing it, as it would have when manually testing it.
Testing the student and model solutions using the random generator in Snippet 3.12 to generate
input may yield the failing test case in Snippet 3.13 below.

12

Input: "11 18 -18 8 -4 -2 6 -5 -27 -22 10 4"
Model solution output: -32
Student solution output: -50

Snippet 3.13: A failing test case, as the student and model solution does not have the same output.

The failing test case in Snippet 3.13 is to a certain extent informative, it determines the student
solution to be incorrect. To give the grader a better indication on what has failed the input is
shrunk. The only input to a program is of the type String QuickCheck will always shrink it as a
String. This means that the scheme for shrinking will be the same regardless of the generator used,
and therefore may violate the pre-conditions present in the exercise specification. One approach
might be to create a new type for each exercise and associate with that type a custom shrinking
function which does respect the pre-conditions when shrinking. However, this approach involves
a significant amount of overhead as specifying an exercise is no longer just a case of writing a
simple generator. Instead an integrated shrinking approach is used with a EDSL to simplify the
specification of input.

In the testing-EDSL the teaching assistant can write QuickCheck-style generators which integrate
the shrinking and have primitives specific to input generation for programming exercises. The
example from Snippet 3.12 can be written in the InputGenerator EDSL as follows:

generator ^:: InputGenerator SpaceString ()
generator = do

n ^<- anyInt `suchThat` (^>=0)
giveInput n
nums ^<- replicate n anyInt
giveInputs nums

Snippet 3.14: Generate first a Int n, then generate n more Ints.

4 Implementation

This section covers how the concepts from Section 3 have been implemented. The reader is expected
to have knowledge of functional programming in Haskell to fully understand the explanations in
this section.

4.1 Overview

The user of the tool can configure different behaviours. The options include printing logging in-
formation at run time, specifying the input generator to be used for testing, and to only run tests
when either the student solution or a model solution uses advanced Java language features not yet
supported by the tool. The user also specifies the path to the student solution and the path to
where the model solutions are located.

When the tool is configured it is run with the following execution steps that were previously shown
in Figure 3.1:

1. Read the arguments at start and configure accordingly

2. Find the student solution in the specified path

3. Find the model solutions in the specified path

4. Use default generator if another generator has not been configured

5. Compile the student solution and model solutions

• If it fails print the error and exit

13

6. Parse the student solution

• If it fails print the error and exit, if it is specified, do not exit and continue with testing

7. Parse the model solutions, exit with error if it fails

8. Normalise all solutions

9. Match the student solution and model solutions

• If matching fails, fallback on testing

10. Print feedback

If a solution does not compile it is by definition incorrect, since it is not a valid Java program. If
it fails to parse into the AST used in the tool it has a Java feature which is not yet supported.
The output is generated by the tool during execution and consists of issues and comments. Raising
an issue implies that there is some problem, such as the student solution not matching any model
solution. A comment indicates something positive, for instance when the student solution matches
a model solution or when the student solution passes all the tests.

The tool has been implemented using Haskell. Among the advantages of using Haskell for the
implementation are:

• Static typing, purity and controlled side effects - all of which simplify writing correct pro-
grams.

• Algebraic data types and pattern matching - which allows us to easily define the structures
of ASTs and traverse them.

• Laziness - which in particular is instrumental for the efficient comparison of programs Sec-
tion 4.3.

• Generics - which makes tree traversal and manipulation even easier as will be seen in Sec-
tion 4.2.1.

4.2 Normalisation

To implement then ormalisation EDSL specified in Section 3.1.1 we have constructed the Norm
monad. To satisfy the required properties, the monad provides the functions unique, change and
(^^>>=) which are defined as follows:

• unique, pure ^:: t ^-> Norm t, which indicates that the term t already was in normal form,
and that no normalisation has occurred.

• change ^:: t ^-> Norm t, which indicates that the term t was not in normal form, and that
normalisation has occurred. If the function is used during the normalisation of any sub-branch
of a term, then the term as a whole will be considered changed. This eliminates the need for
explicitly writing logic that tracks change.

• (^^>>=) ^:: Norm a ^-> (a ^-> Norm b) ^-> Norm b, which glues together
smaller building blocks into a whole.

The Norm monad which uses the functions, is defined as in Snippet 4.1.

14

newtype Norm a = Norm { runNorm ^:: (a, Bool) }
unique, change ^:: a ^-> Norm a
unique a = Norm (a, False)
change a = Norm (a, True)

instance Monad Norm where
return = unique
m ^^>>= f = let (a, u) = runNorm m

(b, v) = runNorm (f a)
in Norm (b, u ^|| v)

Snippet 4.1: Implementation of the normalisation monad.

To fully transform a term into unique normal form as done in Snippet 3.1, a rule, whether made
of a single transformation or composed of many, is applied until it causes no change in the AST.
The function normFix takes a rule and an AST and applies that rule on the AST until it converges
at a fix-point as shown in Snippet 4.2.

normFix ^:: (t ^-> Norm t) ^-> t ^-> t
normFix f t = let (t', c) = runNorm (f t) in if c then normFix f t' else t'

Snippet 4.2: Function for normalising a term until a fixed point is reached.

Therefore, every term must converge at a fix-point. If it does not, this has the implication that
the sequence of rules [^++x ⇓ x = x + 1, x = x + 1 ⇓ ^++x] never terminates if applied to either ^++x
or x = x + 1 since the term always changes. When designing normalisation rules, caution must
therefore be taken to ensure that a set of rules is reductive.

4.2.1 Bottom-up Traversals

All normalisation rules must always start from the top and traverse to the points of interest before
potentially changing those regions. These points or regions are terms or sub-terms in forms which
the rule wishes to transform. In the case of the Java, the entry point is a CompilationUnit, which
represents an entire Java file in an AST [25]. The AST that is used when normalising only contains
the constructs that were specified in Section 1.3. A simplified representation is given in Figure C.1.

Some terms, such as expressions (Expr) and statements (Stmt) can also be made up of sub-terms
of the same type. An example of this is an if-statement which may contain other if-statements.
Addition and multiplication expressions always contain two operands, which in turn are expressions.
To ensure that a rule is applied on all instances, the rule is usually applied recursively on elements
of the same type, which requires traversal.

To write these traversals and recursions manually is time consuming. A better strategy is to jump
into any sub-term of a certain type and apply a normalisation rule to every descendant of the same
type, including itself, in a bottom-up manner. To this end, the EDSL is extended with normEvery
in Snippet 4.3.

normEvery ^:: (Data s, Data a) ^=> (a ^-> Norm a) ^-> s ^-> Norm s
normEvery = transformMOnOf biplate uniplate

Snippet 4.3: The function normEvery applies a normaliser everywhere on terms of type a within s, bottom
up. The functions transfomMOnOf, biplate, and uniplate are described in Snippet 4.4.

The function normEvery applies a normalisation rule everywhere on terms of type a within a larger
term of type s. The function is implemented using the traversals uniplate, biplate as shown in
Snippet 4.4. These traversals are offered automatically by the lens package [26], subsuming Uniplate
[27] while adding type safety.

15

type Traversal' s a = forall f. Applicative f ^=> (a ^-> f a) ^-> s ^-> f s

^-- | A traversal of the immediate children with the same type a.
uniplate ^:: Data a ^=> Traversal' a a

^-- | A traversal of all terms of type a within s.
biplate ^:: forall s a. (Data s, Typeable a) ^=> Traversal' s a

^-- | Monadic bottom-up-recursive transformation with the latter
^-- traversal of elements within a region specified by the former.
transformMOnOf

^:: Monad m
^=> Traversal' s a ^-> Traversal' a a ^-> (a ^-> m a) ^-> s ^-> m s

Snippet 4.4: Scrapping boilerplate [28] with the lens package [26].

With the necessary underlying constructs defined, normalisation rules can be implemented.

4.2.2 Using the EDSL

An example of a normalisation rule is constant folding, which is the process of evaluating constant
expressions at compile time. Consider a rule which constant-folds addition and multiplication as
in Snippet 4.5.

constantFold ^:: Expr ^-> Norm Expr
constantFold expr = case expr of

EAdd (EInt l) (EInt r) ^-> change $ EInt $ l + r
EMul (EInt l) (EInt r) ^-> change $ EInt $ l * r
x ^-> unique x

Snippet 4.5: Using the EDSL to define a normalisation rule which constant-folds addition and multiplication
on the immediate level

With an example AST, visualising the use of normEvery applied to constantFold as in Snippet 4.6
of may look as in Figure 4.1.

normEvery constantFold ^:: CompilationUnit ^-> Norm CompilationUnit

Snippet 4.6: normEvery applied to constantFold

16

CUnit ^:: CompilationUnit

^^... ^:: ?

SExpr ^:: Stmt

EAssign ^:: Expr

EVar "x" ^:: Expr EAdd ^:: Expr

EInt 1 ^:: Expr EMul ^:: Expr

EInt 2 ^:: Expr EInt 3 ^:: Expr

^^... ^:: ?

FIExpr ^:: ForInit

EMul ^:: Expr

EInt 2 ^:: Expr EInt 1 ^:: Expr

^^>>= f

^^>>= f ^^>>= f

^^>>= f ^^>>= f

^^>>= f ^^>>= f

^^>>= f

^^>>= f ^^>>= f

⇒

CUnit ^:: CompilationUnit

^^... ^:: ?

SExpr ^:: Stmt

EAssign ^:: Expr

EVar "x" ^:: Expr EInt 7 ^:: Expr

^^... ^:: ?

FIExpr ^:: ForInit

EInt 2 ^:: Expr

Figure 4.1: The left AST shows the AST before being normalised with normEvery constantFold.
All nodes with a square around them are changed when constantFold is applied. The AST to the
right shows how the it looks after constantFold has been applied.

In Java, blocks are statements containing a sequence of other statements. Therefore, blocks may
be nested. Nested blocks may exist in solutions, or as a by-product of normalisation. Prior to
α-renaming, blocks also introduce scoping as specified in Section 3.1.1 which prohibits concatena-
tion of nested blocks into their parent block. However, after renaming, all nested blocks may be
concatenated into a single block containing a sequence of all the statements in the original nested
block.

Using the EDSL, a rule for the problem described in Section 4.2.2 called block-flattening can be
implemented as shown in Snippet 4.7.

execFlattenBlock ^:: CompilationUnit ^-> Norm CompilationUnit
execFlattenBlock = normEvery $ \b ^-> case b of

Block stmts ^-> fmap (Block . concat) $ forM stmts $ \stmt ^-> case stmt of
SBlock (Block ss) ^-> change ss
s ^-> unique [s]

x ^-> unique x

Snippet 4.7: Function for executing block-flattening with the normalisation EDSL.

Locally, a Block goes through its immediate sequence of statements and produces a list of lists
of statements. Non-block statements become singleton lists and no change happens, while the
statements inside nested blocks are extracted in which case change occurs. The produced list
of lists is then concatenated into a list and then boxed back into a Block. When normEvery is
applied to this logic, the statements are recursively bubbled-up until only a flattened block remains.
As illustrated by this example, the desired properties in Section 3.1.1 are satisfied. Additional
normalisation rules that are implemented are shown in Appendix B. To implement α-renaming
described of variables in Section 3.1.1, and thereby eliminate scoping, within a function definition,
the following implementation scheme is used.

A map that contains the names of variables before being α-renamed mapped to their new names
is referred to as a context. A stack of such contexts is kept in a State as seen in Snippet 4.8. The
name of the next variable is kept as part of the environment in the State monad.

17

type Context = Map Ident Ident
data Env = Env

{ stack ^:: [Context]
, nextId ^:: Int
}

type Comp a = State Env a

Snippet 4.8: The State monad with Env defines the computional form used for α-renaming.

When a new scope is entered, a new context is pushed with push ^:: Comp (), and when the scope is
left, the context is popped with pop ^:: Comp (). When a variable is declared, a new substitution is
added to the top context in the stack with newMapping ^:: Ident ^-> Comp Ident, and the variable
is renamed at the declaration site. When a variable is used, the stack is searched top to bottom
for the first mapping where the name of the variable matches oldName, and is then substituted
for newName. This substitution is retrieved with substitute ^:: Ident ^-> Comp Ident.

A specification for a student exercise might not explicitly define what classes and functions should
be named. Therefore, to allow students to use arbitrary names for classes and functions, they are
also renamed using a method similar to variable renaming. However, imported classes and functions
are not renamed since they are unknown to the tool.

4.2.3 Naming Normalisers

To increase usablility of the tool and to make it easier for a teacher to understand what a normal-
isation rule does, the actual functions that use the EDSL and encode the logic for rules are named
as shown in Snippet 4.9.

^-- | A named normalisation rule.
data NamedNRule a = NamedNRule

{ name ^:: String ^-- ^ A machine readable key for the rule.
, execute ^:: Norm a ^-- ^ The logic for the rule.
}

normFlattenBlock = NamedNRule "elim_redundant.stmt.flatten_block"
execFlattenBlock

Snippet 4.9: Naming the rule in Snippet 4.7.

The name can then be used to represent the normalisation. This key can then be translated into
longer descriptions and formats more presentable to a teacher. Rules are also grouped together in
a hierarchical manner where each each level is separated with a dot (.). In the example shown in
Snippet 4.9, the first hierarchy describes a large class of normalisers, the second describes that it
is a statement, while the third is unique specific rule.

4.3 Matching

This section describes the process of matching a student solution against a model solution. As
outlined in Section 3.2.2 the process happens in two stages. First a prefix tree is constructed from
the model solution, then the student solution is matched against that prefix tree.

4.3.1 Generating Prefix Trees

Prefix trees are represented as a tree of Java ASTs, seen in Snippet 4.10. To simplify the construction
of prefix trees a customised AST representation is used. The feature that differs in this AST and the
other internal representation is that it is unityped, meaning that all constructors have the same

18

type. The type contains the constructs of the Java language supported by our tool, extended with
a constructor for holes. The presence of a hole is what makes an AST a prefix.

data PrefixTree = Node AST [PrefixTree]

Snippet 4.10: Definition of the data structure PrefixTree.

The generation of the prefix tree is based on the principle of replacing a hole with another prefix
AST. This means that the process needs to start by replacing each subtree with holes, while simul-
taneously describing how to put that AST back in the place of the hole. The instruction of how
to put the AST in the place of a hole is called hole-refinement. The process of replacing ASTs with
holes is done in a bottom up manner, which means that each subtree will have as many parts of
itself replaced with holes as possible before being replaced itself.

The instructions for how a PrefixTree is created is defined as a Strategy AST using the
Ideas.Common.Strategy module, a part of the IDEAS framework [29]. The smallest building block
of the Strategy AST defines the execution for one concrete step in the process of building an AST and
can be combined using combinators. In the tool these steps are the hole-refinements. While more
combinators exists, the tool only uses the succession combinator, (.*.), and the choice combinator,
(.|.).

Besides being able to reconstruct a given AST we need the instructions for how to create all se-
mantically equivalent permutations of that AST. We call these instructions dependency-strategies.
The creation of the dependency-strategy is done in tree steps. Given the ASTs to be ordered and a
function dependsOn ^:: AST ^-> AST ^-> Bool, which implements the dependency analasis described
in Section 3.2, we start by creating a dependency-DAG. This DAG has nodes representing each
AST, and have edges from each node to each node representing an earlier AST on which it depends.
Using this DAG we construct a tree of AST representing each possible topological ordering of the
ASTs. The levels in the tree represents one position in the order, and each pathway represents
one possible order. Finally, this tree is converted into a Strategy AST using the combinators. This
process is visualised in Figure 4.2.

int i;
int j;
int k;
i = 1;
j = 2;
k = i + j;

⇒

k = i + j;

int k;j = 2;

int j;

i = 1;

int i;

⇒

int i;

int j;

int k;

i = 1;

j = 2;

k = i + j;

j = 2;

i = 2;

k = i + j;

i = 1;

int k;

j = 2;

k = i + j;

j = 2;

int k;

k = i + j;

j = 2;

· · ·

int k;

· · ·

i = 1;

· · ·

int j;

· · ·

int k;

· · ·

Figure 4.2: The steps required to transform a solution to a tree representing all topological orderings.

19

Once the Strategy AST is created it can be used to generate the PrefixTree.

4.3.2 Matching Using Prefix Trees

Once a prefix tree has been obtained a student solution may be compared to it to establish if
there exists a permutation of the model solution which is equivalent to the student solution. As
described in Section 3.2 the partial programs in the prefix tree need to be alpha renamed, this
is done using the function rename. The procedure for matching is given as the matches function,
given in Snippet 4.11.

matches ^:: PrefixTree ^-> AST ^-> Bool
matches tree ast = go [tree]

where
go [] = False
go ((Node a []):trees)

| ast ^== (rename a) = True
| otherwise = go trees

go ((Node _ [a]):trees) = go (a:trees)
go ((Node a branches):trees)

| (rename a) `isPrefixOf` ast = go (branches ^++ trees)
| otherwise = go trees

Snippet 4.11: A function for matching a student solution against a prefix tree generated from a model
solution. The function rename applies the α-renaming normalisation rule to an AST.

Note the final clause in the go function, it discards all children of a prefix node which is not a
prefix of the AST we are trying to match. Other than that the function is a standard depth first
search.

4.4 Testing

This section describes the process of testing a student solution against a model solution. As outlined
in Section 3.3 the teacher creates a generator using the testing-EDSL. This generator is used to
feed input, test cases, to the solutions. If a test fails, the input is shrunk to find a 1-minimal test
case.

The method for testing requires compiling the solutions with the javac compiler and running it
using the java program. This ensures that the solution behaves the same way during testing as it
does if a grader were to run it manually. It also means that all input is given to the program at
start or using stdin, and the output must be printed to stdout. This implies that all input and
output must be of the type String.

4.4.1 Generation of Input

The implementation of the EDSL for writing input generators described in Section 3.3 is shown in
Snippet 4.12.

import qualified Test.QuickCheck as QC

^-- | Generator wrapping the Generator from QC
newtype Generator a = Generator { unGen ^:: QC.Gen (Tree a)}

Snippet 4.12: Implementation of Generator.

20

Several functions to generate input are provided to give familiarity with QuickCheck and make the
implementation as intuitive as possible. The three main functions are those show in Snippet 4.13.

^-- | Generate an arbitrary value, and all ways to shrink that value
arbitrary ^:: (QC.Arbitrary a) ^=> Generator a

^-- | Generate a value such that a predicate holds for that value
^-- | and the predicate holds when shrinking
suchThat ^:: Generator a ^-> (a ^-> Bool) ^-> Generator a

^-- | Run the generator, generating a Tree
generate ^:: Generator a ^-> IO (Tree a)

Snippet 4.13: Main functions used for generating input.

With these functions the user can construct a generator for arbitrary values, such that a predicate
holds. The suchThat function is used to specify the predicate for generating and shrinking. When
the tool runs generate, the function returns a tree where the root is the value generated and the
children are how it can be shrunk, both satisfying the predicate.

4.4.2 The Testing EDSL

The EDSL is implemented as the monad InputGenerator m shown in Snippet 4.14 which uses
WriterT that takes a monoid, specifically the monoid InputMonoid, to specify how the functionality
of the monad works.

type InputGenerator m a = WriterT m Generator a

Snippet 4.14: The monad implementing the EDSL.

The InputMonoid constraints specifies the functionality of the InputGenerator, by using a Wrapper
that implements two functions called wrap and unwrap, as shown in Snippet 4.151.

type InputMonoid m = (Wrapper m String, Monoid m)

class Wrapper m a where
wrap ^:: a ^-> m
unwrap ^:: m ^-> a

Snippet 4.15: The special input monoid and the class.

An example of an InputMonoid is the type NewlineString in Snippet 4.16. The difference between
a NewlineString and String is that the Monoid instance for ordinary Strings use concatenation,
(^++), as their mappend operation, while NewlineStrings insert a newline character '\n' between the
operands of mappend.

1The code in this figure relies on the ConstraintKinds language extension

21

newtype NewlineString = NL { unNL ^:: String }

instance Monoid NewlineString where
mempty = NL ""

(NL "") `mappend` x = x
x `mappend` (NL "") = x
x `mappend` y = NL $ unNL x ^++ "\n" ^++ unNL y

instance Wrapper NewlineString String where
wrap = NL
unwrap = unNL

Snippet 4.16: The NewlineString monoid

The functions giveInput and giveInputs, as shown in Snippet 4.17, wraps the generated value.
The generated value needs to be able to cast to String. To make an abstraction the functions casts
the value and wraps it.

^-- | Take a value a, cast it to a String, then wrap it
giveInput ^:: (InputMonoid m, Show a) ^=> a ^-> InputMonad m ()
giveInput a = tell $ wrap $ show a

^-- | wrap a list of values
giveInputs ^:: (InputMonoid m, Show a) ^=> [a] ^-> InputMonad m ()
giveInputs list = mapM_ giveInput list

Snippet 4.17: The giveInput and giveInputs functions.

Using the InputGenerator with the example: read a number n, read n numbers, is shown in
Snippet 4.18 below.

exercise0 ^:: InputMonoid m ^=> InputMonad m ()
exercise0 = do

n ^<- (arbitrary ^:: Generator Int) `suchThat` (\x ^-> x ^>= 0)
giveInput n
numbers ^<- replicateM n (arbitrary ^:: Generator Int)
giveInputs numbers

Snippet 4.18: Generate a number n, then generate n numbers.

To extract the Generator from the InputMonad the tool calls the function makeGenerator as shown in
Snippet 4.19. The function runs the WriterT and unwraps the InputMonoid to make the Generator String
which is used to generate input to the program under test. Note that the use of the InputMonoid
constraint provides sufficient generality that the same exercise specification may be used with dif-
ferent separators between input given by giveInput, using NewlineString to separate items by
newline characters, or a type like SemicolonString to separate by semicolons.

^-- | Construct a `Gen String` from an `InputMonad a`
makeGenerator ^:: InputMonad m a ^-> Generator String
makeGenerator input = unwrap ^^<$> runWriterT input

Snippet 4.19: Run the Writer with the input and make a Generator String.

4.4.3 Shrinking

The root of the generated tree is the input to the program that is being tested. Once a failing root
input is found a 1-minimal failing child of that root test case should be found in the tree to shrink

22

the input. Every child of the root is a tree with the same structure. Searching for a 1-minimal
failing test case in the tree is done by a depth first search algorithm. It searches the left most child,
until it reaches the 1-minimal failing test case. The example in Figure 4.3 shows a tree of only
even numbers, where the original test has failed for the root input of 8. The children are all the
possible ways to shrink that input. As Haskell is lazy the whole tree will not be generated, but
only the children that the tool tests. If no leaf node is found, the failing test case deepest in the
tree is chosen as the 1-minimal failing test case.

8

0 4

2

0

6

0

Figure 4.3: A tree with the root 8 and all the ways to shrink it.

The children in the tree are ordered in ascending order which helps finding the 1-minimal failing
test case fast as the searching algorithm ensures that the left most child is tested first.

5 The Javista Tool

This section gives an overview of the usage of Javista command line interface. The user of the
tool specifies the path to the student solution, the path to the folder where all the model solutions
are located, and possible optional commands. The optional -h command gives a brief overview of
how to use the tool, the output generated when running with -h can be seen in Figure 5.1.

$> Javista -h

Javista, a program for Java Automated Assessment

Usage: Javista STUDENT_SOLUTION MODEL_SOLUTIONS_DIR [-g|--generator TEST_GENERATOR]

[-v|--verbose] [-l|--logfile LOGFILE] [-n|--numTests NUM_TESTS]

[-i|--ignoreFailingParse]

Available options:

-g,--generator TEST_GENERATOR

Should be on the form module:generator

-v,--verbose Prints log messages during execution

-l,--logfile LOGFILE Logfile produced on program crash

-n,--numTests NUM_TESTS Number of tests during property based testing

-i,--ignoreFailingParse Ignore the Javista parser failing if javac was OK,

proceed with testing only

-h,--help Show this help text

Figure 5.1: Output printed when running Javista with the -h flag

The flags that can be set at start to customise the behaviour of the tool. Figures 5.2, 5.3, and 5.4
below shows some examples of the tool running.

23

$> Javista -v stud.java mods

Checking if stud.java exists

Checking for model solutions in directory "mods"

Found the following model solutions in directory "mods": mod1.java

Using "arbitrary" generator

Running the command: javac -d compilationDirectory/model mods/mod1.java

Running the command: javac -d compilationDirectory/student stud.java

Reading student solution

Reading model solutions

Parsing student solution

Parsing model solution: mods/mod1.java

Matching student solution to model solutions

Checking: mods/mod1.java

Comments:

0. Student solution matches a model solution: mods/mod1.java

Issues:

No issues :)

Figure 5.2: Output printed when running Javista with the -v flag

Using the -v option, as shown in the example in Figure 5.2, makes the Javista print logging
information during execution. The final output in Figure 5.2 clearly states that the student solution
matched a model solution, the solution is assessed as correct.

$> Javista stud.java mods

Comments:

No comment...

Issues:

0. Student solution does not match a model solution

1. Failed on input: Input [] ""

With

Student solution output: -0.0039999991984016257

Model solution output: 3.19592655589785

Figure 5.3: A student solution where Javista found a fails testing

When a student solution does not match any of the model solutions, the tool fallback to testing.
The tool then tests the student solution against the model solutions the number of times that are
specified at start, or the default 100 times. If a failing test case is found, the 1-minimal test case
is printed as an issue, as is shown in Figure 5.3. This solution is assessed as incorrect.

$> Javista stud.java mods

Comments:

0. Student solution passed all tests

Issues:

0. Student solution does not match a model solution

Figure 5.4: A student solution which does not match a model solution and passes all tests

A student solution that passes all tests and does not match a model solution is assessed as unclas-
sified, also shown in Figure 5.4.

24

6 Results

The work presented in this report has resulted in a number of contributions, including the EDSLs
for writing normalisation rules and input generators. However, the primary contribution is the
prototype Javista tool and its underlying architecture described in sections 3 and 4. As a proof of
concept we have used Javista to automatically assess 47 real student solutions to an exercise from
the course TDA540 at Chalmers university of technology. The assignment was to calculate π using
the Leibniz formula with the first 500 terms and display the result. The full exercise specification
can be found in Appendix A. Because the tool does not support GUI-programming the solutions
using graphical components to display the result of the computation were manually rewritten to to
print the result to STDOUT instead. Furthermore, some solutions displayed more than the result of
the computation, e.g. printing "Pi is: 3.14^^..." instead of just "3.14^^...", these programs were
manually rewritten to only print the final result. Manual assessment of the 47 student solutions
showed that 22 were incorrect and 25 were correct. The results of running Javista on this dataset
are summarised in Table 1. Javista assessed all incorrect solutions as incorrect, 5 of the 25 correct
solutions as correct, and the other 20 correct solutions as unclassifiable.

Manual
Correct Incorrect

Javista
Correct 5 0

Incorrect 0 22
Unclassifiable 20 0

Table 1: Results of the experiment

Manual comparison of correct student solutions wihch were assessed as unclassifiable to model
solution revealed multiple examples of student solutions which were only subtly different from
one or more of the model solutions. This is an indication that adding further rewrite rules to the
normalisation stage would be helpful in increasing the total number of matched student solutions.
One example of such a subtle difference is found in Snippet 6.1.

Model
for (int i = 0; i < 500; i^++) {

^^...
}

Student
for (int i = 1; i ^<= 500 ; i^++) {

^^...
}

Snippet 6.1: A student solution which was not matched by the tool

7 Discussion

From the results presented in Section 6, it can be determined that the tool is a step towards auto-
mated assessment. In fact, 60% of the student solutions in the evaluation were correctly assessed
with no false positives. Thus our result shows that Javista achieved our goal of aiding a teacher in
their task of assessing student solutions. Furthermore, the fact that the tool did not yield any false
positives, as a result of all normalisation rules being semantic preserving, implies that the goal of
building a reliable tool was also achieved.

Keuning et. al. [24] presents results of 33% - 75% recognition of solutions. In their case, the
solutions were integrated into the tool which supplied guidance during the solving process and the
assignment was specified in a way that leaves less room for variations.

Making assignments that are more suited for the capabilities of the tool would increase the number
of recognised solutions. By using an existing data-set we could improve the tool by analysing why
it does not recognise a specific solution and implement relevant features to recognise it. Using this
method the tool would hopefully also improve in a more general case.

25

As indicated by the example in Snippet 6.1, further transformation rules must be added to the
normalisation procedure to match more solutions. The modularity of the tool as well as the usability
of the normalisation EDSL, makes creating new normalisation rules relatively simple.

7.1 Normalisation

Since solutions can use varying syntax, some transformations that retain semantic equivalence are
essential for static analysis. We chose to use normalisation for this since it reduces the amount of
variations that can occur in a solution.

The normalisation EDSL was implemented with the goal of simplifying the creation of transforma-
tion rules. The EDSL increases modularity by making it easy to create further normalisation rules
and combining them. There are alternative ways to implement the normalisation EDSL described
in Section 3.1.1. Two candidates for the normalisation monad are:

• The Identity monad with normaliser functions of type Eq a ^=> a ^-> a. This monad requires
tracking change manually by testing for equality, which negatively affects performance.

• The Maybe monad with normaliser functions of type a ^-> Maybe a. In the context of normali-
sation, if applying a normaliser on a term yields Nothing, then it was already in normal form.
Maybe does not encode the desired semantics, instead, it encodes the opposite: there was a
change at the top if there was a change in all sub-terms.

While normalisation reduces the number of possible variations, normalisation could result in ac-
cepting student solutions that should not be accepted. The student may have written a solution
that while correct, is far too complicated but is matched to a model solution after normalisation.
This would mean that the teacher would still have to look at the solution to ensure that it is not
written in a bad way.

Currently, all normalisation rules are always enabled, meaning that there is no way disable un-
wanted ones. Removing unwanted rules could be meaningful for a teacher if the exercise given is
supposed to teach the students about for loops. The tool transforms all for loops into while loops
which means that a student solution using while loops would be considered correct by the tool.

7.2 Matching

We introduced the matching as a way to define equality between programs that could not be
transformed to the same unique normal form. We chose to implement the matching as using the
Ideas-package and prefix trees. In order to support this a rather complex structure had to be
made. Due to the fact that the ordering problem was the only problem that was solved using the
matching, it is uncertain if the chosen approach was efficient for its use. It is however plausible
that the structure simplifies the addition of further solutions to problems that would be difficult
to solve with normalisation.

7.3 Testing

A large number of the student solutions used in the evaluation of the tool provided more output
than required by the exercise specification. While the specification said to print an approximation
of π, many student solutions either used a simple GUI to provide the output or printed more text
than specified, e.g. "Pi is 3.14^^..." rather than just "3.14^^...". Solving this problem could have
been done by analysing the student solution and making a unified way of showing the result. But
this was not in the scope of the project and the issue can be solved in other ways, such as that the
assignment specifies how the result should be shown, in our case it should be printed to stdout
in a certain way. There are some possible alternatives which we could have implemented given the
time. One alternative is to augment the testing-EDSL with a way of specifying what it means for
solution’s output to be correct. That way a generator could for example specify an interval of valid

26

outputs for π in our example above, or search for a valid value of π in the output. This method
could effectively get rid of the model solutions for testing, but may make writing generators more
difficult.

Another method to run the tests that where considered was to implement an interpreter. However,
this would not be superior if the scope expands, since it would require a very complex interpreter.

To improve testing, more properties could be added to the tool. At the moment, the only property
that is tested against are the outputs of model solutions. Specifying properties that hold could be
done much in the same way as specifying the generator. Allowing testing of ore properties would
improve the quality and quantity of information that the tool could provide a teacher.

7.4 Javista in Society

The tool can be used to aid teachers and teaching assistants in a course to shift the time and
money allocated to grading and correcting exercises. Instead the teachers and teaching assistants
could aid students in the process of problem solving. This could improve the working environment
for students as they would get more support and help.

Automated assessment is particularly well suited for distance learning. An example would be to
use the Javista tool in Massive Open Online Courses (MOOC), where anyone can enroll. By
eliminating the time it takes for the teacher to grade solutions, more students could be enrolled
into these courses. If successful, the tool could possibly reduce the overall cost of education.

There are no immediate global environmental effects that the Javista tool has, that we can see.

8 Conclusion and Future Work

The purpose of this project was to develop a tool to aid in the assessment of student programming
exercises by automatically assessing them. To this end, the tool used normalisation, matching, and
testing. Matching was introduced to cover the parts that were unfeasible to cover with normalisation
while the testing part of the tool was stand-alone and was developed separately.

Automatically assessing student solutions is a difficult problem. The goal was to make a useful and
reliable tool that could assess a student solution as either, correct, incorrect, or unclassifiable. The
results show that the Javista tool is both useful and reliable. With 60% of the student solutions
assessed as either correct or incorrect with no false positives. Furthermore, 100% of the incorrect
solutions where assessed as incorrect by the tool, while 20% of the correct solutions where assessed
as correct. This indicates that there is room for improvement in the static analysis part of the tool.

Analysing what type of statements and expressions that the matching has difficulty with and di-
recting the creation of new normalisation rules towards the failing cases would increase recognition.
In the case of exercise 12 in the appendix, adding constant folding would be particularly useful.
As the tool has been developed with modularity in mind, it can be easily extended with more
normalisation rules, more descriptive output, and a more thorough testing suit.

In conclusion we believe that it is possible to make a tool for automated assessment of Java. It
will, however, require some future work, including the items in the list below:

• The implementation of Javista currently only supports basic Java constructs. Extending
the tool to support the entire Java language requires significant engineering effort, but is
possible.

• Since Java is a very open ended language, there is almost no limit to the number of normal-
isation rules that can be added. Due to the modular implementation of the normalisation
EDSL this is likely to be a straight forward task.

27

• The testing EDSL could be enriched with specification of different generators for the same
exercises and what methods those generators generate input for. This could be used in com-
bination with properties for each generator, thus giving the grader a better understanding of
what fails.

• Instead of matching one solution at a time the tool could use a whole directory of student
solutions and run them in parallel. Also if a whole directory is used, the testing could group
solutions that fails with the same property, with inspiration from the paper about ranking
solutions using black box testing [30].

• The interaction with the tool could be extended with more flags and exhaustive output

• In order to indicate that a solution is overly complex compared to a model solution, com-
plexity analysis [1] and cyclomatic complexity analysis [31] could be used.

• Currently the tool does not do any type inference on student or model solutions. Including
type inference would enable implementing certain normalisation rules such as transforming
floating point literals, such as 1.0 to integer literals 1 where appropriate.

• Annotated model solutions in the style of [14] which allow teachers to customise the matching
and output generation processes could be implemented as a step towards providing feedback
directly to students.

28

References

[1] C. Benac Earle, L.-Å. Fredlund, and J. Hughes, ‘‘Automatic Grading of Programming Ex-
ercises using Property-Based Testing,’’ in Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education, ACM, 2016, pp. 47–52. doi:
10.1145/2899415.2899443.

[2] D. Insa and J. Silva, ‘‘Semi-automatic assessment of unrestrained Java code: a library, a DSL,
and a workbench to assess exams and exercises,’’ in Proceedings of the 2015 ACM Conference
on Innovation and Technology in Computer Science Education, ACM, 2015, pp. 39–44. doi:
10.1145/2729094.2742615.

[3] B. Heeren, J. Jeuring, and A. Gerdes, ‘‘Strategies for Exercises,’’ Department of Information
and Computing Sciences, Utrecht University, Tech. Rep. UU-CS-2009-003, 2009. doi: 10.
1007/s11786-010-0027-4.

[4] H. Keuning, B. Heeren, and J. Jeuring, ‘‘Strategy-based feedback in a programming tutor,’’
in Proceedings of the Computer Science Education Research Conference, ACM, 2014, pp. 43–
54. doi: 10.1145/2691352.2691356.

[5] J. Jeuring, A. Gerdes, and B. Heeren, ‘‘Ask-elle: A haskell tutor,’’ in European Conference
on Technology Enhanced Learning, Springer, 2012, pp. 453–458. doi: 10.1007/978-3-642-
33263-0_42.

[6] K. Arnold, J. Gosling, D. Holmes, and D. Holmes, The java programming language. Adtdison-
wesley Reading, 2000, vol. 2.

[7] A. Gerdes, Tda540 - objektorienterad programmering, 2015. [Online]. Available: http://www.
cse.chalmers.se/edu/year/2015/course/TDA540/Lectures/ (visited on 02/02/2017).

[8] P. Hudak, ‘‘Building domain-specific embedded languages,’’ ACM Computing Surveys (CSUR),
vol. 28, no. 4es, p. 196, 1996. doi: 10.1145/242224.242477.

[9] B. C. Pierce, ‘‘Types and programming languages,’’ in. MIT Press, 2002, ch. Section 5.1
Basics, Abstract and Concrete Syntax, pp. 53–54, isbn: 0-262-16209-1.

[10] D. Sannella and A. Tarlecki, ‘‘On observational equivalence and algebraic specification,’’
Journal of Computer and System Sciences, vol. 34, no. 2, pp. 150–178, 1987, issn: 0022-
0000. doi: http://dx.doi.org/10.1016/0022-0000(87)90023-7. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0022000087900237.

[11] S.-y. Katsumata, ‘‘Behavioural equivalence and indistinguishability in higher-order typed
languages,’’ in Recent Trends in Algebraic Development Techniques: 16th International Work-
shop, WADT 2002, Frauenchiemsee, Germany, September 24-27, 2002, Revised Selected Pa-
pers, M. Wirsing, D. Pattinson, and R. Hennicker, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 284–298, isbn: 978-3-540-40020-2. doi: 10.1007/978-3-540-40020-
2_16. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-40020-2_16.

[12] W. Landi, ‘‘Undecidability of static analysis,’’ ACM Lett. Program. Lang. Syst., vol. 1, no. 4,
pp. 323–337, Dec. 1992, issn: 1057-4514. doi: 10.1145/161494.161501. [Online]. Available:
http://doi.acm.org/10.1145/161494.161501.

[13] B. C. Pierce, ‘‘Types and programming languages,’’ in. MIT Press, 2002, ch. Section 21.1
Metatheory of Recursive Types, Induction and Coindunction, p. 282, isbn: 0-262-16209-1.

[14] A. Gerdes, J. Jeuring, and B. Heeres, Using strategies for automated assessment of program-
ming exercises, 2009. doi: 10.1145/1734263.1734412.

[15] M. Huth and M. Ryan, ‘‘Logic in computer science: Modelling and reasoning about systems,’’
in, ”second”. New York, NY, USA: Cambridge University Press, 2004, ch. Section 1.2, Natural
deduction, p. 27, isbn: 9780521543101.

[16] E. W. Dijkstra, ‘‘Notes on structured programming,’’ in. Technological University Eindhoven,
Deptartment of Mathematics, 1970, p. 5.

[17] ——, ‘‘Notes on structured programming,’’ in. Technological University Eindhoven, Deptart-
ment of Mathematics, 1970, p. 7.

[18] K. Claessen and J. Hughes, ‘‘Quickcheck: A lightweight tool for random testing of haskell
programs,’’ Acm sigplan notices, vol. 46, no. 4, pp. 53–64, 2011. doi: 10.1145/1988042.
1988046.

[19] A. Zeller and R. Hildebrandt, ‘‘Simplifying and isolating failure-inducing input,’’ IEEE
Transactions on Software Engineering, vol. 28, no. 2, pp. 183–200, 2002.

29

https://doi.org/10.1145/2899415.2899443
https://doi.org/10.1145/2729094.2742615
https://doi.org/10.1007/s11786-010-0027-4
https://doi.org/10.1007/s11786-010-0027-4
https://doi.org/10.1145/2691352.2691356
https://doi.org/10.1007/978-3-642-33263-0_42
https://doi.org/10.1007/978-3-642-33263-0_42
http://www.cse.chalmers.se/edu/year/2015/course/TDA540/Lectures/
http://www.cse.chalmers.se/edu/year/2015/course/TDA540/Lectures/
https://doi.org/10.1145/242224.242477
https://doi.org/http://dx.doi.org/10.1016/0022-0000(87)90023-7
http://www.sciencedirect.com/science/article/pii/0022000087900237
https://doi.org/10.1007/978-3-540-40020-2_16
https://doi.org/10.1007/978-3-540-40020-2_16
http://dx.doi.org/10.1007/978-3-540-40020-2_16
https://doi.org/10.1145/161494.161501
http://doi.acm.org/10.1145/161494.161501
https://doi.org/10.1145/1734263.1734412
https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1145/1988042.1988046

[20] Ambiata, Disorder-jack, 2016. [Online]. Available: https://github.com/ambiata/disorder.
hs/tree/master/disorder-jack (visited on 05/25/2017).

[21] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The Java® Language Specification,
2015. [Online]. Available: https://docs.oracle.com/javase/specs/jls/se8/html/
index.html (visited on 05/09/2017).

[22] R. Wilhelm, H. Seidl, and S. Hack, ‘‘Compiler design: Analysis and transformation,’’ in, 1st.
Springer Publishing Company, Incorporated, 2012, ch. Section 1.1, Introduction, p. 4, isbn:
9783642175473. doi: 10.1007/978-3-642-17548-0.

[23] B. C. Pierce, ‘‘Types and programming languages,’’ in. MIT Press, 2002, ch. Section 5.3 The
Untyped Lambda-Calculus, Formalities, p. 71, isbn: 0-262-16209-1.

[24] H. Keuning, ‘‘Strategy-based feedback for imperative programming exercises,’’ Master’s the-
sis, Open Universiteit Nederland, 2014, p. 43.

[25] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The Java® Language Specification,
Chapter 18. Syntax, 2015. [Online]. Available: https://docs.oracle.com/javase/specs/
jls/se8/html/jls-18.html (visited on 05/31/2017).

[26] E. A. Kmett, Lens: Lenses, folds and traversals, 2012. [Online]. Available: https://hackage.
haskell.org/package/lens (visited on 05/06/2017).

[27] N. Mitchell, Uniplate: Help writing simple, concise and fast generic operations, 2006. [Online].
Available: https://hackage.haskell.org/package/uniplate (visited on 05/06/2017).

[28] R. Lämmel and S. P. Jones, ‘‘Scrap your boilerplate,’’ ACM, 2003, pp. 26–37. doi: 10.1145/
604178.604179.

[29] B. Heeren, A. Gerdes, and J. Jeuring, Ideas: Feedback services for intelligent tutoring systems,
2009. [Online]. Available: https: / / hackage . haskell . org / package / ideas (visited on
05/08/2017).

[30] K. Claessen, J. Hughes, M. Pałka, N. Smallbone, and H. Svensson, ‘‘Ranking programs using
black box testing,’’ in Proceedings of the 5th Workshop on Automation of Software Test, ACM,
2010, pp. 103–110. doi: 10.1145/1808266.1808282.

[31] A. Sobey, 1.3 basis path testing, 1995. [Online]. Available: http://users.csc.calpoly.
edu/~jdalbey/206/Lectures/BasisPathTutorial/index.html (visited on 02/02/2017).

30

https://github.com/ambiata/disorder.hs/tree/master/disorder-jack
https://github.com/ambiata/disorder.hs/tree/master/disorder-jack
https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://doi.org/10.1007/978-3-642-17548-0
https://docs.oracle.com/javase/specs/jls/se8/html/jls-18.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-18.html
https://hackage.haskell.org/package/lens
https://hackage.haskell.org/package/lens
https://hackage.haskell.org/package/uniplate
https://doi.org/10.1145/604178.604179
https://doi.org/10.1145/604178.604179
https://hackage.haskell.org/package/ideas
https://doi.org/10.1145/1808266.1808282
http://users.csc.calpoly.edu/~jdalbey/206/Lectures/BasisPathTutorial/index.html
http://users.csc.calpoly.edu/~jdalbey/206/Lectures/BasisPathTutorial/index.html

A Exercise 12 - Translated from Swedish

The famous mathematician Gottfried Leibniz gave the following formula for π:

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ . . .

• Write a program that computes π according to this formula and includes the first 500 terms.
The method Math.pow is not allowed in the solution.

Tip The expression is a sum. A sum is a series of terms that are added together. In our
current expression the terms consist of a numerator and a denominator. A term can be
computed from the previous term. The denominator is 2 larger than in the previous term.
The absolute value of the numerator is always 1, but the sign is flipped in every term (i.e:
alternating between positive and negative).

• Write a program which compute π according to this formula and includes as many terms
that the absolute value of the last included term is smaller than 0.00001.

31

B Implemented Normalisation Rules

• α-renaming.

• If index of for loop begins at 1 and is not used in the loop, transform it to 0 and change
comparatorr from ^<= or ^>= to < or >.

• Transform a for loop to while loop.

• Transform compund assignment into regular assignment with expression on right hand.

• Move variable declarations and initiations out from for loop.

• Split variable declaration with many variables into many variable declarations.

• Move array dimension in declaration from right of variable to left of variable.

• Split variable declaration and initiation. int x = 1; => int x; x = 1;

• Move all variable declarations to the top.

• Flatten statement blocks into their parent blocks.

• Remove empty blocks.

• Filter empty statements.

• If a block contains a single statement, remove the block around it.

• Remove dead if-statements.

• Remove dead do-statements.

• Remove dead while-statements.

• Remove dead for-statements.

• Transform do while loop into while loop.

• Remove empty if in if-else statement.

• Remove empty else in if-else statement.

• Remove empty if and else in if-else statement.

• Transform i^++ in for loops into i = i + 1.

• Transform i^++ in statements into i = i + 1.

• Transform i^++ in expressions into i = i + 1.

• Transform float variables into double variables.

• Transform methods with return type float into double.

• Transform numerical expressions into sum of products form.

• Transform for(int i = x; i ^<= y; i^++) to for(int i = x; i < y + 1; i^++)

32

C AST Definition

data CUnit = CompilationUnit [TypeDecl] ^-- ^ Entry point

data TypeDecl = ClassTypeDecl ClassDecl ^-- ^ Class type declaration

data ClassDecl = ClassDecl Ident ClassBody ^-- ^ Class declaration

data ClassBody = ClassBody [Decl] ^-- ^ Class body

data Decl = Decl MemberDecl ^-- ^ Class members

data MemberDecl = MethodDecl Type Ident [FormalParam] Block ^-- ^ Method declaration

data FormalParam = Type Ident ^-- ^ Method parameters

data RType = Void
| RType Type

data Type = BoolT ^-- ^ Types
| IntT
| StringT
^^...

data Block = Block [Stmt] ^-- ^ Blocks

data Stmt = SBlock Block ^-- ^ Statements
| SExpr Expr
| SIf Expr Stmt
| SWhile Expr Stmt
| SFor FIExpr Expr [Expr] Stmt
| SDecl Type
^^...

data Expr = EInt Integer ^-- ^ Expressions
| EVar Ident
| EAssign Ident Expr
| EAdd Expr Expr
| EMul Expr Expr
^^...

Figure C.1: Part of the implementation of the AST.

33

	Introduction
	Purpose
	Problem Description
	Scope
	Contributions

	Theoretical Background
	Equivalence
	Static Analysis
	Behavioural Testing

	Conceptual Solutions
	Normalisation
	Normalisation EDSL
	Ordering of Composition and Execution

	Matching
	Prefix Trees
	Matching Using Prefix Trees

	Testing

	Implementation
	Overview
	Normalisation
	Bottom-up Traversals
	Using the EDSL
	Naming Normalisers

	Matching
	Generating Prefix Trees
	Matching Using Prefix Trees

	Testing
	Generation of Input
	The Testing EDSL
	Shrinking

	The Javista Tool
	Results
	Discussion
	Normalisation
	Matching
	Testing
	Javista in Society

	Conclusion and Future Work
	Exercise 12 - Translated from Swedish
	Implemented Normalisation Rules
	AST Definition

