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“Complexity, I would assert, is the biggest factor involved in anything 

having to do with the software field. It is explosive, far reaching, and 

massive in its scope”. 

 

Robert Glass 
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ABSTRACT 

Large software development companies primarily deliver value to their custom-
ers by continuously enhancing the functionality of their products. Continuously 
developing software for customers insures the enduring success of a company. 
In continuous development, however, software complexity tends to increase 
gradually, the consequence of which is deteriorating maintainability over time. 
During short periods of time, the gradual complexity increase is insignificant, 
but over longer periods of time, complexity can develop to an unconceivable 
extent, such that maintenance is no longer profitable. Thus, proactive complexi-
ty assessment methods are required to prevent the gradual growth of complexi-
ty and instead build quality into developed software. 

Many studies have been conducted to delineate methods for complexity assess-
ment. These focus on three main areas: 1) the landscape of complexity, i.e., the 
source of the  complexity;  2) the possibilities for complexity assessment, i.e., 
how complexity can be measured and whether the results of assessment reflects 
reality; and 3) the practicality of using complexity assessment methods, i.e.,  the 
successful integration and use of assessment methods in continuous software 
development.  

Partial successes were achieved in all three areas. Firstly, it is clear that com-
plexity is understood in terms of its consequences, such as spent time or re-
sources, rather than in terms of its structure per se, such as software character-
istics. Consequently, current complexity measures only assess isolated aspects 
of complexity and fail to capture its entirety. Finally, it is also clear that existing 
complexity assessment methods are used for isolated activities (e.g., defect and 
maintainability predictions) and not for integrated decision support (e.g., con-
tinuous maintainability enhancement and defect prevention).  

This thesis presents 14 new findings across these three areas. The key findings 
are that: 1) Complexity increases maintenance time multifold when software 
size is constant. This consequential effect is mostly due to a few software char-
acteristics, and whilst other software characteristics are essential for software 
development, they have an insignificant effect on complexity growth; 2) Two 
methods are proposed for complexity assessment. The first is for source code, 
which represents a combination of existing complexity measures to indicate 
deteriorating areas of code. The second is for textual requirements, which rep-
resents new complexity measures that can detect the inflow of poorly specified 
requirements; 3) Both methods were developed based on two critical factors: (i) 
the accuracy of assessment, and (ii) the simplicity of interpretation. The meth-
ods were integrated into practitioners’ working environments to allow proac-
tive complexity assessment, and prevent defects and deteriorating maintainabil-
ity.  

In addition, several additional key observations were made: Primarily the focus 
should be in creating more sophisticated software complexity measures based 
on empirical data indicative of the code characteristics that most influence com-
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plexity. It is desirable to integrate such complexity assessment measures into 
the practitioners’ working environments to ensure that complexity is assessed 
and managed proactively. This would allow quality to be built into the product 
rather than having to conduct separate, post-release refactoring activities.  

Keywords: complexity, metric, measure, code, requirement, software quality, 
technical risk, technical debt, continuous integration, agile development 
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 INTRODUCTION  1

The success of software development is determined by such parameters as de-
velopment cost, product quality, delivery time, and customer satisfaction. Soft-
ware complexity is widely considered to have a crucial impact on these parame-
ters. There are numerous reports on this subject, two of which is drastically 
summarized here: First, Charette [1] reports a project failure that cost 600U$ 
million due to excessively complex software. Furthermore, he indicates that 
large and complex software projects fail three to five times more often than 
smaller ones. Glass [2], meanwhile, reported that in practice, there is a hundred-
percent increase in the software solution’s complexity for every ten-percent 
increase in problem complexity.  

Software complexity is influenced by such factors as the product size, product 
maturity, problem domain, programming languages, development methodolo-
gies, and the knowledge and experience of developers. For example, linearly 
increasing software size is considered to trigger an exponential increase in its 
complexity [3] and that excellent programmers can be thirty times better in 
complexity management than average programmers [2].  

Nevertheless, a still challenging task is to determine the exact source of software 
complexity and how it can be proactively assessed for successful management.  

 The Challenge of Software Complexity  1.1

Software is structurally sophisticated, representationally abstract and progres-
sively versatile over time [4], [5]. These structural, representational and evolu-
tional aspects have a strong impact on software development.  

Structural Aspects. Software consists of many elementary units, such as opera-
tors, variables, function calls, branching statements, looping statements, point-
ers, preprocessors, etc. Thousands of interactions of these elements are the 
source of the convoluted structure of software. Moreover, multiple artifacts 
exist in large software development products, such as the requirements and 
tests necessary for software development. These artifacts augment the chal-
lenge of software elements and interactions.  

Representational Aspects. Software is abstract; it cannot be touched, felt or 
observed geometrically like other human-made artifacts. The primary interac-
tion with software is via the computer screen. Software is the only human-made 
artifact constructed with the help of representational languages, also known as 
programming languages. The latter are similar to natural languages, one funda-
mental difference being that making errors in programming languages can have 
severe consequences. Over the past decades, programming language designers 
have strived to create as simple and clear languages as possible so that descrip-
tions of machine instructions are straightforward to understand and communi-
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cate among software engineers. Language-based representation, however, is 
still the dominant method of reading and evaluating software.  

Evolutional Aspects. Software is progressively versatile – almost any software 
being used is under active maintenance. Maintenance activities change the rep-
resentational and structural conditions of software, i.e., while maintaining soft-
ware, software representation and structure are partly changed. Thus, during 
the maintenance time, practitioners must understand the current state of the 
software in order to progress maintenance yet another step.  

These three challenges introduce substantial difficulty to software development. 
Software practitioners refer to these challenges as software complexity. In this 
thesis, we have defined software complexity as:  

“An emergent property of structural, representational and evolutional 
aspects of software elements and interconnections that influences soft-
ware understanding”.  

This high-level definition of complexity is based on that of Rechtin and Maier [6] 
in software architecting, the foundations of which will be discussed in detail 
later.  

Software complexity is highly associated with system understandability. Alt-
hough complexity is not a thoroughly defined concept, it is still widely used to 
describe the difficulty of system understanding due to the sophisticated rela-
tionship between software elements. Increasing complexity indicates decreasing 
understandability of software. Therefore, it is natural that complexity both de-
celerates the development speed and decreases software maintainability and 
quality [7]. 

Several definitions of software complexity have been proposed previously; all, 
however, depend upon the consequences of complexity rather than its essence. 
For example, Basili [8] defines software complexity as a measure of the re-
sources allocated by a system or human while interacting with a piece of soft-
ware to perform a given task. Similarly, Zuse [9] describes software complexity 
as the difficulty in understanding, changing, and maintaining code. Nonetheless, 
it is vital to understand software complexity in the context of human-software 
interaction so that software complexity, as perceived by humans, can be meas-
ured and managed. Consequently, it is important to scrutinize the source of 
software complexity and how it affects the work of software practitioners.  

 Complexity Assessment 1.2

Thomas McCabe and Maurice Halstead were among the pioneers of software 
complexity measurement who introduced the first measures [10]. Other 
measures were subsequently introduced [11], such as  the information flow 
measures proposed by Henry and Kafura [12] and measures of object-oriented 
design proposed by  Chidamber and Kemerer [13]. 
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Notably, of all software-related attributes (product, process, project), complexi-
ty is the most frequently measured attribute (19% of the time) [14]. How good 
or appropriate existing measures are, however, has been debated by research-
ers and practitioners because complexity is not an attribute simple enough to be 
measured with one measure. 

To overcome the difficulty in understanding how good or appropriate a com-
plexity measure is, several studies were conducted to formalize the prerequisite 
properties of a complexity measure. Then, based on these properties, theoretical 
validation frameworks were introduced [15], [16]. As expected, in practice, the-
oretical validation was found to be unsatisfactory in classifying a measure good 
or appropriate for practical application. Hence, empirical validation emerged as 
being essential.  

Empirical validation is a prerequisite for understanding how effectively a com-
plexity measure indicates problem areas of a piece of software. This was inves-
tigated in a number of studies that focused on different forms of correlational or 
regression analyses, where the relationship of complexity and different kinds of 
software problems were evaluated. The most common type of analyses investi-
gated the relationship between complexity and defects, resulting in defect pre-
diction models. Despite considerable success in this line of research, practition-
ers seemed to need clearer guidance on the use of these defect prediction mod-
els. Existing complexity measures can be used to predict defects like the prob-
lems’ symptoms, but not to understand and eliminate the problems per se. Iso-
lated defect predictions turned out to be an insignificant support for practition-
ers [17]. In practice, practitioners need measurement-based methods that will 
indicate problem areas, reveal the essence of the problems, and guide problem 
solving. Hence, it is important to develop complexity assessment methods that 
indicate problem areas simply and directly and aid practitioners’ decision-
making for improvement.  

 The Need for Proactive Assessment  1.3

Continuous software development relies on incremental requirement specifica-
tion, design, testing and software integration [18]. One of the challenges of con-
tinuous software development is to shorten the feedback loops on software 
artifacts. Shortened feedback loops allow practitioners to track and solve 
emerging problems more quickly than they escalate into problems with multiple 
magnitudes of increased cost [19]. When feedback is instantaneous, i.e., “just in 
time” of problem creation, practitioners can manage the problems proactively to 
prevent problem escalation. If complexity is assessed “just in time” of develop-
ment, practitioners can prevent complexity from increasing, thereby reducing 
the risk of defects and degrading maintainability. Ultimately, this will increase 
the product quality and reduce maintenance costs.  
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 The Overarching Research Question 1.4

Sections 1.1‒1.3 described three research gaps that fundamental to the three 
main areas of research in this thesis. Specifically these are to:  

 Scrutinize the source of software complexity and how it affects soft-1.
ware practitioners’ work  

 Develop complexity assessment methods that indicate problem are-2.
as simply and accurately 

 Investigate methods for proactive software complexity assessment 3.
in practice. 

These areas of research are encapsulated in the following research question: 

How can we proactively assess software complexity in continuous soft-
ware development? 

The three areas, software complexity landscape, software complexity assessment, 
and proactivity of assessment in continuous software development, are shown in 
Figure 1.  

 

Figure 1 Research focus of this thesis  

 THEORETICAL FRAMEWORK 2

Section 2 describes the concept, history, and modern view of complexity (Sec-
tion 2.1), the theoretical basis for assessing complexity (Section 2.2), and the 
influence of complexity on continuous software development (Section 2.3).  

 Software Complexity 2.1

To understand the source of complexity, the landscape of complexity is explored 
in this section: first the landscape of complexity generally, and then, that of 
software complexity particularly.  
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 Conceptualization  2.1.1

In order to understand the essence of complexity, we explore the historical 
knowledge on complexity. This knowledge has emerged as an epistemological 
part of the term complexity and is axiomatic by its nature. Edmonds [20] metic-
ulously discussed this knowledge, which can be summarized in four points:  

 Complexity is a property of a system that emerges from the main 1.
substance comprising the system, i.e., system elements and inter-
connections 

 The complexity of a system is only relevant through interaction with 2.
another system (typically with humans) 

 Complexity can only be ascribed to a system if the latter can be rep-3.
resented in terms of a communicable language 

 System evolution triggers complexity evolution over time.  4.

The first point suggests that complexity emerges from elements and intercon-
nections, i.e., substances that the system is made of, and also emphasizes the fact 
that complexity is an intrinsic property of a system.   

The second point implies that the complexity of any system either does not exist 
or is irrelevant if there is no observer. Simply stating, complexity only makes 
sense when observed from a certain standpoint (typically by a human). A hu-
man interacts with a system and acquires information about different elements 
and their interconnections to understand how the system operates; the notion 
of complexity emerges through this interaction and compulsion to understand.  

The third point suggests that the complexity of a system can only be experi-
enced via a language through which the system is communicated. Therefore, we 
must distinguish two aspects of system complexity – structural and representa-
tional. The structural aspect requires an understanding of the actual system 
elements and their interconnections. The representational aspect requires an 
understanding of the language describing these elements and their interconnec-
tions. It is natural to assume that humans cannot skip the representational as-
pect and directly try to understand the structural aspect because the system 
must be represented in some sort of language. In the case of software systems, 
the languages of representation are usually programming languages.  

Finally, the fourth point suggests that there is also an evolutionary aspect to 
complexity in continuously developing systems. This is the complexity caused 
by the constant change of system elements and interconnections. Structural and 
representational complexities do not change in static systems. In evolving sys-
tems, however, information about the system elements and interconnections 
continuously changes and new information is being constructed; a human must 
learn the new information in order to understand the system operations. A fast-
er-evolving system will generate more new knowledge, thus requiring more 
effort for new knowledge appropriation. This is the evolutional aspect of com-
plexity.  
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We consider any software system as a typical dynamic system with evolving 
elements and interconnections. Therefore, we consider the aforementioned 
factors relevant for software systems.  

 Definition  2.1.2

According to the IEEE standard computer dictionary, software complexity is 
defined as “the degree to which a system or component has a design or imple-
mentation that is difficult to understand and verify” [21]. According to Zuse [9], 
the true meaning of code complexity is the difficulty to understand, change and 
maintain code. Fenton and Bieman [22] view code complexity as the resources 
spent on developing (or maintaining) a solution for a given task. Similarly, Basili 
[8] views code complexity as a measure of the resources allocated by a system 
or human while interacting with a piece of software to perform a given task. 
Although these definitions recognize the fact that the difficulty of understanding 
stems from complexity, they do not explore the composition of complexity.   

Briand, et al. [23] suggest that complexity should be defined as an intrinsic at-
tribute of software as opposed to its perceived difficulty, whilst in information 
theory, Kolmogorov [24] defines complexity as the minimum possible length of a 
system description in some language. It is not straightforward to calculate the 
minimum possible length of a system; however, the elegance of this definition is 
its focus on the essence of complexity and its measurement. It directly indicates 
that the minimum possible length of a system description can be a measure of 
complexity. 

In software architecting, Rechtin and Maier [6], as well as  Moses [25], define 
complexity as an emergent property of a system due to interconnections of system 
elements. This definition provides the main substance from which complexity 
emerges—elements and interconnections. Based on the  discussion in section 
2.1.1 and supported by  the definition of complexity of Rechtin and Maier [6], we  
describe the concept of software complexity according to the following five 
points:  

 Complexity is an emergent property of software due to software ele-1.
ments and interconnections 

 Complexity increases with increasing number and variety of elements 2.
and interconnections 

 Complexity is experienced through the language through which the 3.
software is represented 

 Complexity has at least three distinct aspects: structural, representa-4.
tional and evolutional 

 Complexity imposes difficulty on humans in software understanding. 5.

Software systems are developed with programming languages based on accu-
rately defined rules. So how is complexity revealed in programming languages? 
According to Brooks [4], software complexity emerges from elements and inter-
connections, such as variables, operators, control statements, preprocessors, 
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function invocations, etc. Programs containing a greater variety of such ele-
ments with denser interconnections are perceived to be more complex. Fur-
thermore, every type of element and interconnection has a different magnitude 
of influence on complexity.  

Mens [5] extends this understanding of complexity by indicating that software 
elements and interconnections vary in different abstraction levels of the system, 
such as modules, components and subsystems. Creating different abstraction 
levels is vital to completely understand the system, although every abstraction 
level creates its own complexity. 

Along with source code, which is the core constituent of software products, re-
quirements specification and software tests are also essential artifacts of soft-
ware. Requirements and tests can also be described by their complexity. As 
regards requirements, complexity occurs either in the natural language text or 
in the models of a system description. Natural language texts and models are 
alternative descriptions of the software system and, therefore, are equally ex-
posed to complexity. Tests, meanwhile, are similar to code so the complexity is 
in the code (programming language) used to develop the tests. 

The complete picture of software elements and interconnections is still hardly 
investigated. Moreover, research on the influence of different types of elements 
and interconnections on complexity is very rare so a part of this thesis is dedi-
cated to this subject.  

 Software Complexity Assessment 2.2

Section 2 firstly introduces the concept of measurement fundamental to com-
plexity assessment and widely used throughout this thesis. Examples of known 
complexity measures are then brought, which are used in the current complexi-
ty assessment methods. Finally, the need for new methods for advanced com-
plexity assessment is highlighted.  

 Measurement  2.2.1

Several definitions of measurement exist in the literature. In software engineer-
ing, Fenton and Bieman [22] define measurement as the: 

“Process by which numbers or symbols are assigned to attributes of en-
tities in the real word in such a way as to describe them according to 
clearly defined rules”. 

This definition implies quantification of the attributes of software artifacts, pro-
cesses or products with clearly defined rules. The definition does not, however, 
enforce the meaningfulness of measurement, which plays an important role in 
making observations.  Hubbard [26] defines measurement in applied economics 
as: 
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“A quantitatively expressed reduction of uncertainty based on observa-
tions”. 

This definition adds a pragmatic value to measurement and is used, therefore, 
throughout this thesis in conjunction with Fenton’s definition. Hubbard’s defini-
tion implies that any quantification of an attribute cannot be called measure-
ment unless that quantification reduces the uncertainty on the measurement 
entity. To understand this statement, one can consider counting the number of 
methods in two Java programs for comparing program sizes. Since the size of 
every single method can vary greatly (in terms of lines of code), it cannot be 
concluded from the end result as to which program was larger. In this context, 
therefore, counting the number of methods is not a measurement. This is crucial 
from a pragmatic standpoint because any measurement implicitly implies deci-
sion support for practitioners.  

Figure 2 provides an understanding of measurement as used in our work based 
on an example for software complexity measurement and distinguishes two 
worlds—comparative and operationalized.  

 

Figure 2 Overview of software measurement 

The comparative world represents that in which we compare the complexities 
of entities based on comparative adjectives of natural language. For example, we 
can say that entity C1 is more complex than entity C2, or that entity C6 is the 
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most complex of all the entities. This kind of comparison is usually based on 
perceptions. In the operationalized world, the complexity of every entity is a 
number. Numbers are assigned to the entities according to a predefined rule so 
that they provide greater precision on the complexity of an entity and thus re-
duce the initial uncertainty in the comparative judgment. Depending on the 
software artifact, the rule of assigning numbers can be different. The end results, 
however, should be artifact-independent numbers that can be subjected to 
comparison. Figure 2 exemplifies two artifacts: source code files (C) and textual 
requirements (XML). The comparison of the complexity numbers for artifact C is 
depicted in the middle part of the operationalized world.  

 Software Complexity Measures  2.2.2

The first software complexity measures were created in the late 1970s, the most 
widely-known being the McCabe cyclomatic complexity [10] and Halstead’s 
measures of software science [11]. New and more advanced complexity 
measures were created subsequently, such as the coupling measures of Henry 
and Kafura [12] and object-oriented programming measures of Chidamber and 
Kemerer [13].  

The cyclomatic complexity measure [10] is based on the control flow struc-
ture of a program, calculated as follows: 

Cyclomatic number (M)          (1) 

M is the cyclomatic complexity number, E is the number of edges, and N is the 
number of nodes in the control flow graph of the program. An alternative meth-
od of calculating M is to count the number of control statements in the program. 
McCabe created this measure primarily as an aid for software testing. The fact is 
that with linearly increasing cyclomatic complexity number, the number of exe-
cution paths in a program increases exponentially.  

The Halstead [11] measures are calculated based on the number of operators 
and operands in a software program. Operators are typically all mathematical 
and logical operators in a program, whilst the operands are typically all invoca-
tions of variables and functions in a program.  
Two of the Halstead measures can be calculated as: 

Program volume (V):                           (2) 

Program volume is meant to estimate the number of bits required to store the 
abstracted program of length N. 

Program difficulty (D):                       (3) 

where: 
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Program difficulty is meant to estimate the difficulty of the program based upon 
the most compact implementation of the program. Difficulty increases as the 
number of unique operators increases. 

Henry and Kafura [12] measure is calculated based on invocations and size of 
a function (method): 

Coupling (C):                                (4) 

where:  

fanIn is the number of invocations of a given function in a specified program 

fanOut is the number of invocations of functions in a given function 

LOC is the number of lines of code of a given function 

Coupling shows the magnitude of interconnections of a given function/method 
within a program.  

Clearly, the definitions of these measures are based on certain elements and 
interconnections of code. The McCabe complexity is based on conditional state-
ments, the Halstead measures are based on operators and operands, and cou-
pling measures are based on invocations of functions. Every measure is designed 
according to its own rationale as to why certain elements are considered in the 
complexity measurement and others are not. In the case of cyclomatic complexi-
ty, the consequence of control flow was considered because a function with too 
many decision points is difficult to test. In the case of the Halstead measures, 
almost all structural elements were used because the program volume and diffi-
culty had to be assessed. In the case of the Henry and Kafura measure, the invo-
cations of functions were used because highly coupled functions are considered 
to be difficult to maintain.  

Notably, each measure assesses a different aspect of software complexity, which 
appears to have many more aspects and may be the reason why many measures 
of software complexity are reported in the literature [9]. It may also be the rea-
son why an all-encompassing complexity measure has not yet been created.  

 Measurement Validity 2.2.3

The validity of complexity measures allows determining how well a measure 
assesses complexity. Two main clusters of validation methods exist: 

 Theoretical validation, and  1.
 Empirical validation. 2.
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Theoretical validation is based on theoretical validation frameworks, which 
typically define the prerequisite properties of a complexity measure. A complex-
ity measure is regarded as valid if it possesses these prerequisite properties. 
Properties are defined based on the cumulative general knowledge on complexi-
ty. Notable examples of validation frameworks are provided by Weyuker [15] 
and Briand, et al. [16].   

To elucidate the essence of properties, the properties of complexity proposed by 
Briand, et al. [16]l can be considered. The authors define the concept of system 
as a representation of system elements and their connections, such that complex-
ity is defined as a function of the system with the following properties: 

 Non-negativity: the complexity of a system is non-negative 1.
 Null value: the complexity of a system is 0 if the relations of elements 2.

are non-existent 
 Symmetry: the complexity of a system does not depend on the con-3.

vention chosen to represent the relations between its elements. 
 Module monotonicity: the complexity of a system is not less than the 4.

sum of the complexities of any two of its modules with no relation-
ships in common 

 Disjoint module additivity: the complexity of a system composed of 5.
two disjoint modules is equal to the sum of complexities of the two 
modules.  

These properties are defined in order to facilitate the design of complexity 
measures. Notably, several frameworks in the literature define properties for 
complexity. Naturally, the different frameworks propose different properties of 
complexity because they envision different motivations behind the properties. 
Complexity, however, is not a well-defined concept, even in older and more 
mature fields of science. Therefore, when considering pragmatic tasks, such as 
complexity measurement, it has been difficult to define the prerequisite proper-
ties of a complexity measure. For example, the third property of complexity 
according to Briand, et al. [16] implies that the language of software representa-
tion does not influence complexity measurement, whereas in practice, language-
dependent features, such as deep nesting or misplaced indentations, can be 
perceived as manifestation of complexity.  

Empirical validation is based on the assessment of the predictive power of the 
measures. Most of the time, the complexity measurement per se is not of ulti-
mate interest for practitioners. Rather, it is used to predict the extent to which 
complexity impacts business factors, such as quality, risks, time, cost, effort and 
developers’ work. Empirical validation suggests that complexity measures must 
be good predictors of such factors [27]. Thus far, however, defect prediction 
[28] has primarily been used for empirical validation of complexity measures. 
The number of defects has been seen as a substitute of software quality. The 
most likely reason for the popularity of defect prediction is that measuring the 
number of defects has been relatively easier than measuring effort and cost.  
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Despite the advances in complexity measurement and validation, serious issues 
must still be addressed. For example, Fenton [29] highlights the commonly held 
viewpoint that a complexity measure is not valid unless it is a good predictor of 
a particular attribute. A consequence of this is that pure size measures have 
been regarded as useful measures as they are good predictors of defects, where-
as deeper scrutiny shows that the predictive power of size measures is based 
purely on probabilistic reasons. Naturally, larger programs have more defects. 
This prediction, however, is not useful for quality improvement purposes so in 
practice, these prediction models are not used to help practitioners develop 
better code [30]. Methodological problems of measurement validity, highlighted 
by Kitchenham [14],  emerge from following a validation methodology without 
first reflecting on its adequacy.  

 Continuous Software Development 2.3

Continuous software development is defined as a:  

“Software engineering approach in which teams produce software in 
short cycles, ensuring that the software can be reliably released at any 
time. It aims at building, testing, and releasing software faster and 
more frequently” [31].  

Software development companies transition towards continuous software de-
velopment because it facilitates waste reduction in the development chain [32], 
[33]. Other benefits include reduced deployment risk, easier assessment of de-
velopment progress and shorter loops of user feedback [34]. 

Challenges also exist. All the development processes are carried on in a continu-
ous manner: continuous planning, coding, integration, testing, deployment, and 
maintenance. In this environment, developers want faster feedback on newly 
delivered software yet comprehensive reviews and tests take a long time to run. 
The risk then is the gradual degradation of software maintainability and late 
design modifications.  

Humble and Farley [34] have discussed five pivotal activities that underlie con-
tinuous development. In order to succeed in continuous software development, 
software developers should: 

 Build quality into the product in the first place 1.
 Work on small batches by getting every change in version control as 2.

far towards release as possible  
 Solve the problems, leaving repetitive tasks to the computers 3.
 Relentlessly pursue continuous improvement 4.
 Be responsible for the quality and stability of the entire software be-5.

ing built. 

It is remarkable that all five activities aim to decrease the risk of gradual soft-
ware degradation. In particular, the first activity (derived from the Deming’s 
Third Principle of Lean Thinking [35]: “…eliminate the need for inspection on a 
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mass basis by building quality into the product in the first place”) intends to 
mitigate the risk of code degradation. This paradigm shift views quality im-
provement as an integrated activity rather than a separate inspectional one. 
Instead of inspecting/testing software after development and reacting to areas 
of degraded software (revealed by defects and unmaintainable code), the ra-
tionale here is that quality is built into the software proactively. Proactive be-
havior is defined as:  

“…the relatively stable tendency to effect environmental change” [36]. 

Proactivity assumes that software developers are well aware of the quality of 
their software before its integration so any feedback on their software after 
integration cannot trigger reactive actions. Proactivity, however, requires inte-
grated methods for providing feedback to the developers “just in time” of devel-
opment so that they can prevent software degradation.  

Since software complexity is one of the major reasons for software degradation, 
complexity management should also be carried out proactively; developers 
should be able to obtain feedback on complexity “just in time” of software de-
velopment, allowing them to take instrumental action immediately.  

 RESEARCH METHODOLOGY 3

Section 3 describes the rationale for the choice of research methodology. The 
three main research methods employed in this work are presented.  

The research context had three key characteristics of fundamental importance 
to the choice of research methodology:  

 The research context was highly sophisticated, due to the involve-1.
ment of multiple software development artifacts, processes and hu-
man factors in the large development projects. 

 The scope of the research problem was extensive. The effect of com-2.
plexity permeated into different software development artifacts and 
people’s professions and so had different manifestations and subse-
quently different interpretations.  

 The goal of the research was to attain applicable results so the re-3.
search method assumed a reflective nature that would allow feed-
back from practitioners to calibrate the results.  

The sophisticated context, extensive scope and the requirement for results to be 
applicable limited the option of employing  a purely positivistic approach [37] in 
this research. More specifically, the phenomenon of complexity could not be 
described with a minimal set of general variables across all contexts and for all 
artifacts. In addition, since complexity was perceived differently by practitioners 
of different professions, the interpretative nature of the results had to be part of 
the final solution and a certain degree of Interpretivism [37] was required in the 
research methods used.  
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On the one hand, complexity could be measured within certain boundaries de-
termined by the type of software artifacts, programming languages, organiza-
tions, product domains and practitioners’ professions. This meant that within 
certain boundaries, a theory based on deductive reasoning could be postulated 
and subsequently evaluated in practice (typical to positivistic thinking). On the 
other hand, the same theory should be subjected to application and generaliza-
tion across boundaries, meaning that it should be tested across boundaries to 
allow a wider understanding and gradual theory building (typical to interpre-
tivistic thinking). 

The existence of positivistic and interpretivistic elements in the research meth-
odology indicates methodological realism (Figure 3, Layer 1). This philosophy is 
similar to positivism, but recognizes that all observations are fallible to a certain 
degree and, therefore, all theories are gradually improvable. The aforemen-
tioned factors suggest that the research methods of this thesis should be based 
upon methodological realism.  

Additionally, the research demanded the applicability of research results; this 
was not straightforward because of the sophisticated research context. More 
specifically, it was not easy to use a specific method for creating complexity 
measures for one company and simply applying these measures to other com-
panies. It was not generally possible to crystalize the conditions of the research 
environment that would facilitate the repeatability of research results. Repeata-
bility is the major issue for sophisticated organizations’ sciences [38]. To over-
come the issue, Checkland and Holwell [38] proposed that this criterion can be 
replaced by a recoverability criterion. The essential idea is that anyone interest-
ed in subjecting the research to critical scrutiny can get full access to the re-
search process. Having fully recoverable research allows the sophisticated na-
ture of research context to be understood sufficiently; this can be valuable in 
designing similar studies (documenting similarities and differences).  

A method that embraces methodological realism and is applicable for immediate 
problem solving is action research [39]. Therefore, action research was em-
ployed as the main method for scientific inquiry in this thesis, thereby allowing 
the results to be applied in the companies. Action research is perfectly suited to 
this purpose because of its practical problem solving. We, researchers had the 
opportunity to work alongside practitioners to acquire valuable qualitative and 
measurement data, which was advantageous in conducting a typical action re-
search process in the companies.  

The second method used in this research was survey because the collective 
viewpoint of practitioners could reveal important facts about software complex-
ity. Previously, theoretical explanations of software complexity have been very 
much emphasized. Even complexity measures were essentially based on theo-
retical considerations. In practice, however, software is always associated with 
more sophisticated aspects than those assessed by theoretical considerations. 
For example, it is still unclear how the different professions of people, such as 
testers, programmers, architects and managers, affect the perception of com-
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plexity. Hence, knowledge for software complexity understanding and meas-
urement should also be derived from practical observations. One problem here 
is that knowledge obtained from a survey can be inconclusive as it is derived 
from practitioners’ perceptions rather than factual sources. Nevertheless, since 
the research context itself is complex, there is little chance to obtain conclusive 
knowledge directly [38], whilst knowledge obtained from a survey is valuable in 
identifying likely answers. This knowledge can subsequently be used for trian-
gulation and more reliable theory construction. 

The third (last) method used in this research was case study. As with action 
research, case study is also suitable for researching sophisticated systems. A 
fundamental difference, however, is that in case study the researcher becomes a 
detached observer. The application of case study in our research was essential 
when an independent understanding of certain problems in the research con-
text was necessary or interesting from a research perspective.  

 

Figure 3 Methodological map of Saunders [40] (pp. 106-135)  

An overview of our research methodology based on the methodological map of 
Saunders [40], the so-called research onion, is shown in Figure 3. The first four 
layers of the research onion encompass four important methodological items: 
the research philosophy, type of reasoning, research method and type of data. 
The dashed trapezoid in Figure 3 outlines the boundaries of our research meth-
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odology. As explained earlier, the research philosophy relies on methodological 
realism (Layer 1). Abductive reasoning characterizes the process of drawing 
conclusions from the obtained data (Layer 2). Abductive reasoning is typical 
with case study and action research, where it is not possible to obtain a conclu-
sive data set and, therefore, conclusions are made based on the likeliest possible 
explanations. Survey, case study and action research methods lie in the upper 
middle part of the figure (Layer 3). Both quantitative and qualitative data were 
collected in our studies (Layer 4). At the core of Figure 3, we have outlined the 
main techniques of data collection and analysis; these are described in detail in 
each of the papers comprising this thesis. 

The forthcoming sections briefly describe the research methods and their appli-
cation in this research. Their specific application in each study is described in 
the corresponding papers of this thesis.  

 Action Research  3.1

Action research as a research method allows progressive problem solving based 
on the reflective process of a researcher-practitioner collaborative setup. The 
term action research was coined in 1946 by Kurt Lewin [41]. Action research is a 
cyclical process that includes identifying the client’s problem, designing actions, 
applying the actions to the client’s system, finding new facts, reformulating the 
problem, and repeating the cycle until the problem is meticulously understood 
and, if possible, solved. The whole process is geared towards incremental prob-
lem solving, and, in contrast to other methods, it allows researchers to intervene 
in the research process by introducing actions.  

In the 1970s, organizational science faced a crisis because of the increasing 
complexity of modern organizations. As reported by Susman and Evered [42] , 
many of the findings in scholarly journals were (and still are) only remotely 
related to real-world problems. To overcome the crisis, a group of scientists 
pioneered the application of action research in organizational science [43], [44], 
[38]. From the 1990s onwards, when software engineering organizations start-
ed to grow rapidly, action research was also applied in these organizations [45], 
[46].  

The companies that participated in this research are typical examples of large, 
complex organizations. Since the aim of this research included both knowledge 
acquisition and the solving of practical problems, and because we were able to 
work closely with practitioners, we found the action research method to be 
suitable for this work. Consequently, action research was applied to research 
tasks, such as developing and evaluating: 

 Complexity measures  1.
 Complexity assessment methods 2.
 Measurement systems. 3.
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We have applied the typical cycle of the action research process, as prescribed 
by Susman and Evered [42] (Figure 4). The cycle starts with diagnosing either 
the problem or improvement opportunities in the company. The problem can be 
either articulated by company representatives and discussed further to gain 
deeper understanding or identified by researchers in an initial case study. The 
action planning phase includes developing solutions for the problem. Both liter-
ature and empirical evidence were used to understand the solution options. The 
third step in the cycle includes action taking, both small-scale actions (e.g., in-
troducing a measure to the organization) and large-scale actions (e.g., introduc-
ing an entire measurement system to the organization). The fourth step focuses 
on evaluation, which includes evaluating newly introduced measures, methods, 
and measurement systems. Step four is done in order to evaluate qualities, such 
as the efficiency, effectiveness or adequacy of the solutions.  

Figure 4 The cyclical process of action research (Susman and Evered [42]) 

The final step focuses on learning from findings and documenting these findings. 
Here, we reflected on the findings and reformulated the problem for new action 
planning. The cycle was repeated as often as required to either solve the overall 
problem or confirm that the adopted approach was unsuitable for problem solv-
ing.  

The client system infrastructure is shown at the center of Figure 4. The core of 
the client system infrastructure in our case was a group of practitioners called 
the reference group, members of which provided evaluative feedback upon the 
courses of actions.  
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Reference groups were formed in every company  to establish a “researcher-
client” collaboration [47], [48]. Reference groups comprised several software 
engineers and managers who regularly provided feedback on the obtained re-
sults. The reference group practitioners were very well-informed on the subject 
under investigation and usually had deep insights on the results. Their insights 
helped the interpretation of results, as well as suggestions on how the subject 
could be investigated further. The professions of reference group practitioners 
could vary depending on the subjects under investigation. In all cases, however, 
practitioners were either software developers/testers, software architects or 
project managers, the latter having excellent knowledge concerning both the 
technical issues of the products and the managerial issues of decision making. 

In addition to the more active involvement of reference group practitioners, we 
also presented results to other practitioners in the companies, albeit less fre-
quently, so as to gather knowledge from a wider practitioner spectrum. The 
active involvement of practitioners in the research allowed us to achieve a 
broader and deeper understanding of the problem domain, obtain results, and 
assess the potential to apply these results. 

 Survey  3.2

Survey is a structured means of soliciting information from people [49]. In social 
science, social psychology, politics and business surveys are widely used to un-
derstand peoples’ preferences, attitudes and opinions on particular issues. Re-
cently, surveys have been widely used in software engineering to investigate 
topics like user experience and management practices. The main purpose of 
conducting a survey is to draw general conclusions based on a fraction of the 
population. A survey, for example, can be used to explore prospective users’ 
attitudes to a new product feature.  

In the research onion of Saunders [40] (Figure 3), the survey more closely re-
sembles the positivistic philosophy because it allows to collect quantitative data 
and make statistical inferences. Surveys can in fact be used to acquire both 
quantitative and qualitative data. A guideline for conducting surveys in software 
engineering has been proposed by Linåker, et al. [50]. 

In this study, a web-based quantitative survey (Rea and Parker [49] pp. 8-79) 
was developed in order to reach prospective respondents. Survey was used for 
three research tasks, i.e., to: 

 Acquire empirical data on software complexity triggers as experi-1.
enced by software developers 

 Estimate the use of current complexity measures in practice 2.
 Estimate the impact of complexity on software quality and mainte-3.

nance time.  

The first task was investigated using a survey because research on software 
complexity understanding and measurement has predominantly been theoreti-
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cal so far. Traditionally, research on software complexity has followed positiv-
istic research philosophies, i.e.,  defining the theoretical properties of complexity 
(e.g., [15], [16]), developing complexity measures (e.g., [9], [22]), and finally 
empirically validating these measures against dependent variables, such as de-
fects or maintainability (e.g., [51]). This approach has been only partly success-
ful [17] mainly because, software complexity is more convoluted in practice 
than in theory. Practitioners’ perspectives on software complexity are nearly 
non-existent in the literature. The use of survey provided a new perspective on 
complexity understanding and its potential measurement.  

The second task was investigated with survey because the use of complexity 
measures can be directly quantified by asking practitioners whether they use 
these measures. Asking a large proportion of practitioners (population) this 
question can provide a realistic estimate of the use of these measures.  

The third task was investigated with survey because it is difficult to establish an 
accurate relationship between maintenance time and complexity. We suggest 
that the practitioners’ collective standpoint on this relationship is a valuable 
complementary data source for triangulation and more accurate conclusions.  

 Case Study 3.3

The last and least used method in this research is case study. Case study is an 
empirical enquiry that investigates a contemporary phenomenon in real-life 
(Yin [52] p. 13). Case studies are suitable for studying a phenomenon where the 
boundaries between the research context and the phenomenon are not strictly 
determinable. Above all, when the research phenomenon and context are so-
phisticated and a more in-depth analysis is preferable, case study is a pragmatic 
choice. Typically case studies can be adopted for post-facto studies, so the study 
results do not have any effect on the studied event. It is commonly used in areas, 
such as psychology, sociology, community planning, etc.  

As with action research, case study is effective when investigating complex soci-
otechnical systems. Yet a significant difference exists between these two meth-
ods: the goal of action research is to solve a problem for the client, whilst that of 
case study is to provide independent and often post-facto analysis. Action re-
search is a strictly iterative process; this implies that researchers will intervene 
in the system being investigated by introducing changes and studying their con-
sequences. In contrast, case study implies that researchers will study the system 
with no intervention in the research process ([53] p. 13). Both methods gener-
ate knowledge for a particular case, but with different purposes and via differ-
ent approaches.  

In this thesis, we used case study primarily to study the relationship between 
unit test coverage measures and defect count in one company. This relationship 
was investigated in the wider context of software size, complexity and evolution. 
Unlike a typical case study that relies on qualitative analysis, this study used 
numerous measures to investigate the subject quantitatively and, as it was one 
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of the two last studies in our research, a wealth of qualitative understanding of 
the results was obtained based on experiences accumulated from preceding 
studies. Our other studies in the section of “Other Publications” also contain case 
studies.  

 RESEARCH QUESTIONS AND CONTRIBUTIONS 4

Section 4 clarifies the relationship between the research questions and 
research contributions of this thesis, which are depicted in relation to 
the three main areas of focus of this research (Figure 5).  

 

Figure 5. The research focus of this thesis  

To recap, the main research question of the thesis is: 

How can we proactively assess software complexity in continuous soft-
ware development? 

This research question is based upon the eight, more detailed, original research 
questions addressed in the six papers comprising this thesis. These eight ques-
tions are shown in Table 1.  

Research questions 1-3 are related to proactive complexity assessment in contin-
uous software development (the upper and the right-hand rectangles of Figure 
5). In particular, the aim of these questions was to create complexity assessment 
methods and apply them proactively in order to provide feedback on continu-
ously delivered software.  

Research questions 4‒6 are related to the triggers of complexity, the use of ex-
isting complexity measures in practice, and the impact of complexity on mainte-
nance time (the left-hand rectangle of Figure 5). The aim of these questions was 
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to fill the practical gaps of understanding complexity, to evaluating the use of 
the most popular complexity measures in practice, and to estimate the impact of 
complexity on the software maintenance time as perceived by practitioners. 

Finally, research questions 7 and 8 explore the problems and opportunities in 
the field of software (complexity) measurement (upper rectangle of Figure 5). 
They provide a critique on software complexity assessment methods.  

Table 1 Research questions 

Table 2 summarizes our findings after each research question was answered. 
Findings one, three, five, and six present solutions for complexity assessment (the 
upper rectangle of Figure 5). Findings two, four, and seven present solutions for 
assessment proactivity (the right-hand rectangle of Figure 5). In addition, these 
first seven findings led to the important conclusions that many current 
measures of complexity have major shortcomings. Subsequent research, there-
fore, focused on exploring the triggers of complexity and the possibility of better 
measurement, which resulted in to findings 8‒10 (the left-hand rectangle of 
Figure 5).  

Throughout the entire research process, we also documented valuable experi-
ences that highlighted the challenges and opportunities of complexity assessment 
in practice, as summarized in findings 11‒14 (the upper rectangle of Figure 5). 

N Research Question Paper 
1 How can we monitor code complexity and changes  

effectively when delivering feature increments to the 
main code branch? 

1 

2 How can we identify and assess risky elements of the 
code effectively when delivering new feature increments 
to the main code base? 

2 

3 How can we automatically rank textual requirements 
based on their internal quality in large software  
development organizations? 

3 

4 Which code characteristics are perceived by  
practitioners as the main triggers of complexity? 

4 

5 How frequently are complexity measures used in prac-
tice? 

4 

6 How much does complexity affect maintenance time? 4 

7 What is the relation between unit test coverage, complex-
ity and defects?  

5 

8 How can we validate software measures when the varia-
bles of prediction are not accurately measurable? 

6 
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Figure 6 helps to elucidate the relationship between the research questions and 
subsequent findings. Every research question was answered by one or more 
findings. 

Table 2 Summary of the findings 

N Finding Paper 
1 Only two out of investigated five complexity measures suf-

fice to monitor overly complex functions and files.  
1 

2 Only a few out of thousands of functions and files increase 
code complexity of the product when monitoring complexity 
over a period of weeks. 

3 The product of cyclomatic complexity and the number of 
revisions indicates source files that are error-prone and 
difficult to maintain.  

2 

4 Incorporating the indicator (Finding 3) into a  
measurement system allows the proactive  
identification of error-prone and difficult-to-maintain files. 

5 Four complexity measures have been defined which enable 
automated complexity measurement of textual  
requirements. 

3 

6 The weighted sum of the four measures (Finding 5) indi-
cates requirements that are difficult to understand for  
implementation and testing. 

7 Incorporating the indicator (Finding 6) within the require-
ments’ management system allows the proactive identifica-
tion of requirements that are difficult to understand. 

8 Two code complexity triggers (nesting depth and lack of 
structure) are considerably more important than other trig-
gers.  

4 
  

9 Well-known complexity measures are rarely used in prac-
tice.  

10 Practitioners’ cumulative perception indicates that  
complex code consumes multifold more additional mainte-
nance time compared to simple code  

11 Statement, decision and function coverage measures are 
inadequate for deciding upon the sufficiency of testing 

5 

12 The maximum level of nesting is the only measure with a 
tangible effect size on both defects (16%) and coverage 
(18%).   

13 Empirical validation of measures based on regression analy-
sis is often inaccurate because a dependent variable like 
defect count often cannot be measured accurately. 

6 

14 Validation of measures using action research can help to 
determine the usefulness of the measure in practice.  
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 The next section provides an overarching discussion of the findings and their 
implications. Note that we have intentionally avoided providing related back-
ground in order to maintain focus. More details on each finding can be found in 
the corresponding papers.  

 

Figure 6 Findings mapped onto the research questions 

 DISCUSSION 5

In this section, the pivotal points of all 14 findings are discussed within the 
three, logically separate areas shown in Figure 5: software complexity assess-
ment, proactive complexity assessment in continuous software development, and 
software complexity landscape.  

 Software Complexity Assessment  5.1

Finding 1 exemplifies the analysis of the relationship between five code com-
plexity measures. The conclusion that only two out of the five investigated com-
plexity measures are sufficient to monitor complexity in practice reduces the 
problem of having to use many measures. Two problems predominate:  

 If strongly correlated measures exist, these can indicate the same as-1.
pect of complexity [17] so only one of the strongly correlated 
measures may be useful.  

 It is difficult to use many measures because this makes it harder to 2.
interpret the results for final decision making.  

Finding 3 is the logical continuation of Finding 1. It represents a means to assess 
complexity based on the product of the two non-correlated measures: the effec-
tive cyclomatic complexity (   ) and number of revisions (NR) of a source code 

file. 
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          (1) 

This formula is designed to assess the relative risk (R) of error-prone and diffi-
cult-to-maintain files. In contrast with existing works, where measures are com-
bined based on regression equations (as demonstrated previously [54]), here 
the measures have been combined based on their semantic interpretation. The 
merit of this formula is that it provides interpretable numbers in a practical 
context. It indicates that if a structurally complex file changes frequently, there is 
a risk of errors and degrading maintainability. 

Importantly, the formula expresses the fact that if any of the measures obtain a 
zero value, then the value of risk must also be zero because: 

 If complex files do not change at all (NR = 0), then they are not ex-1.
posed to risk (R = 0) 

 If intensively changed files are only simple ones (    = 0), then they 2.

do not indicate risk, but intensive development (R = 0). 

If we juxtapose formula (1) with defect prediction models based on regression 
analysis, we have the following disadvantage and advantage, respectively: 

 Formula (1) does not ensure that defects are predicted with the max-1.
imum achievable accuracy, while regression equations in the previ-
ous works do. 

 Regression equations do not support decision making for code im-2.
provements because they have either complicated interpretations or 
no interpretations at all [17]. Formula (1) does help with decision 
making because it has clear interpretation based on which instru-
mental actions can be taken.  

In Ericsson, for example, the use of formula (1) could identify files that are fre-
quently changed not because of active maintenance, but because they are simul-
taneously complex and play a central role in the product code. These files were 
error-prone and continuously changing over time, inducing new defects, such 
that the organization decided to modularize them by refactoring.  

A problem with this approach is that if any measure in the formula is not a rea-
sonably accurate measure of its purpose, then the whole formula fails. Cyclomat-
ic complexity in particular is a moderately good measure of structural complexi-
ty. Therefore, the formula should be used to reflect what it shows for a particu-
lar case rather than as a decisive indicator. This formula could be greatly im-
proved by using a more sophisticated structural complexity measure, which is a 
topic for future investigation.  

The fifth finding shows that it is possible to define complexity measures for 
textual requirements. The problem is that natural language is a more sophisti-
cated representational language for a software system than source code. Its 
meaning lies in whole sentences rather than words as machine instructions in 
code. Therefore, defining simple measures for a sophisticated representational 
language is an unlikely possibility [55]. Nevertheless, the research in four com-
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panies showed that it was possible to define four simple complexity measures 
for textual requirements. Three of these measures are completely new and 
quantify the structural complexity of requirements. The first measure, number 
of conjunctions (NC), measures the number of interrelated actions in a require-
ment and is similar to McCabe’s cyclomatic complexity [10] in terms of decision 
sequences. This measure is also the most accurate indicator of internal quality 
with an effect size on internal quality as great as 59%. Put in perspective of its 
usefulness, this measure has about as much effect size on internal quality of 
requirements as popular code complexity measures have on code defects. For 
example, the results of finding twelve shows that one of the widely used 
measures, NR [56] has 62% effect size and cyclomatic complexity (M) has 41% 
effect size on code defects.  

The next two measures are similar to the fan-out measure of Henry and Kafura 
[12]. The number of reference modules (NRM) and number of reference docu-
ments (NRD) are two different measures of structural complexity, which can be 
classified as measures of coupling according to Briand, et al. [16]. The NRM has a 
best case effect size of 46%. The effect size of the NRD was not possible to calcu-
late because of measurement values being too low in magnitude, but it also has 
substantial effect based on qualitative evaluation. The last measure, the number 
of vague phrases (NV), is a measure of representational complexity and is based 
on several previous works, including that of Femer et al.  [57]. 

These results presented the opportunity for automated requirements reviews, a 
task regarded as one of the most tiresome activities in software engineering 
[58]. In contrast with existing work (e.g., [55] and [57]) that primarily focuses 
on ambiguity measurement, our results provide a means for complexity meas-
urement. The use of both types of measures can lead to the design of better indi-
cators for decision support. To our knowledge, no previous work has evaluated 
the effect size of ambiguity measures; therefore, we cannot provide any compar-
ison of ambiguity and complexity measures, which would be interesting from 
the assessment effectiveness perspective. 

Finding 6  presents a combination of the four complexity measures into a single 
formula to assess a requirement’s internal quality (QI). This combination is 
based on the simple sum of the measures: 

                                (2) 

As opposed to formula (1), comprised of one structural and one evolutional 
complexity measure, all four measures in formula (2) are structural measures. 
Since the evolutional complexity of requirements is low, formula (2) does not 
contain any evolutional complexity measure. 

Finding 11 focuses on three popular unit test coverage measures used to test 
sufficiency, and indicates that all three measures are inadequate for deciding 
upon the sufficiency of testing. The effect size of measures on defects was 9%, 
suggesting that increasing coverage has little effect on defect reduction. This 
finding is particularly important for companies that employ coverage measures 
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to decide upon test sufficiency. One of the findings of Mockus, et al. [59] was that 
increasing coverage linearly consumes effort exponentially. This finding empha-
sizes even more that increasing coverage alone is an inadequate technique for 
defect prevention. The key message from this finding is that practitioners 
should not focus on sheer fulfillment of the coverage criterion, but should apply 
more sophisticated techniques for unit testing to detect a maximal amount of 
defects with minimal testing effort. Exploratory testing [60] and causal analysis 
[61] are examples of such techniques. 

The results of finding twelve deepen the scrutiny of coverage-defect relation-
ship in the context of size, complexity, and evolution of code. The results clearly 
show that all of these properties have much larger effect on defects than cover-
age. In particular, the number of revisions, as shown earlier, has an effect size of 
62%. One interesting aspect of complexity is that the maximum level of nesting in 
a file has a tangible effect size on both defects (16%) and coverage (18%). As 
this measure is defined not for a file, but for a block of code, it would be interest-
ing to do further research and determine the extent to which nesting actually 
affects both defects and coverage. The results suggest that managing complexity 
can have much larger effect on defects than on managing unit test coverage. The 
results also tentatively suggest that managing nesting can have double the posi-
tive effects – decreasing defects and facilitating testing.  

As Briand, et al. [27] rightfully observe, a measure is considered to be empirical-
ly valid if it can predict an external attribute (e.g., maintainability). Finding 13 
suggests that empirical validation of complexity measures is not always possible 
because external attributes are not always measurable accurately. Statistical 
methods need to have historical data for both complexity measures and 
measures of external attributes in order to assess the predictive power of the 
complexity measures. Studies often use defect count as a dependent variable. 
Hence, complexity measures are usually evaluated by how well they predict 
defects. Yet counting defects for such entities as files and functions often cannot 
be done accurately; while a file can be considered defective, the actual root 
cause of the defect may be in another file yet since both files undergo defect 
correction activities, both are counted as defective. This means that defect count 
becomes inherently prone to inaccuracies. Consequently, studies report change 
measures to be better than static complexity measures in defect prediction, as in 
the case of ref. [56]. Other important dependent variables are readability and 
understandability of code and ease of code integration, although these variables 
have no direct measures so their empirical validation may be problematic.  

The issue of accurate measurement even affects simple measures, such as cy-
clomatic complexity [10] and the coupling measures of Henry and Kafura [12]. It 
is not clear, for example, how function invocations should be counted when the 
same function is called several times with different parameters’ list, i.e., should 
the function be considered the same function or a different function?  

Finding 14 proposes a method based on action research principles for validating 
complexity measures even if the dependent variables are not measurable. This 
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method was developed as a consequence of Finding 13. The main concept is that 
a group of expert practitioners can provide valuable qualitative input on meas-
ured entities. Having obtained input on a sufficient number of data points (files, 
functions, requirements), general conclusions can be made on the extent to 
which measurement values indicate problems with external attributes. Fur-
thermore, action research cycles can be used to improve measurement accuracy 
via “define-refine-redefine” action research cycles. Consequently, both the use-
fulness of measures and measurement accuracy can be evaluated using this 
method, which should be used with statistical methods for triangulating results 
and drawing more accurate conclusions.  

 Proactive Complexity Assessment in Continuous 5.2

Software Development 

Our measurements showed that the overall number of source functions in large 
products is tens of thousands. Complexity monitoring requires the continuous 
identification and manual checking of functions subject to substantial complexi-
ty increases over short time intervals (typically days or weeks). Finding 2 shows 
that only a few functions and files drastically increase in complexity over short 
periods of time. Typically, the number of such files and functions ranges from 0 
to 10. The predominant parts of the functions and files have stable complexity. 
These results are particularly helpful for an organization with a dedicated per-
son for code quality management because this person can feasibly monitor the 
complexity increase and conduct corrective actions.  

The cost of fixing such defects discovered in late development phases or by cus-
tomers can be multifold greater than if they were found in the development 
phase [62]. Similarly, the effort to improve the maintainability of code that was 
developed months ago can be multifold greater than if the defect was located 
and improved at the time of development. Code improvements that are con-
ducted in response to external signals (e.g., tester/customer dissatisfaction) are 
reactive improvements. In contrast to reactive improvements, which typically 
succeed defect reporting, proactive improvements are conducted before a given 
piece of code is merged with the main product code. The results of Finding 4 
represent a measurement system for the proactive identification of risky code 
areas. The main idea is that the measurement system allows the risk of defect-
proneness and degradation of maintainability to be assessed before these nega-
tive aspects can actually manifest themselves later in the product life cycle. This 
allows developers to conduct corrective actions proactively, thereby mitigating 
the risk well before the code is merged within the main product code.  

As with code, there are risks associated with poor requirements’ specifications; 
a low internal quality of requirements increases the risk of late design modifica-
tions and ultimately causes project cost overruns [63]. The results of Finding 7 
support conducting proactive reviews of textual requirements to prevent late 
design modifications. The results show that integrating formula (2) into local 
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requirement management tools enables proactive reviews. Every practitioner, 
and particularly requirements’ analysts, can run the analysis based on formula 
(2) whenever they want to. Since this analysis can be run in the same environ-
ment as used for requirements’ writing and usage, the administrative effort for 
the analysis is only a few seconds per review. As opposed to manual reviews, 
where the entire review process can take several weeks, automated reviews are 
performed within seconds. Moreover, when feedback is given “just in time” of 
writing the requirements, it is much easier for the writer to make improvements 
immediately.  

Finding 10 emphasizes the necessity of code complexity management from the 
practitioners’ perspective. It suggests that according to a practitioners’ cumula-
tive perception, code complexity increases the average maintenance time by a 
factor of 2.5 to 5. Thus, if it was possible to simplify a complex area of code, then 
maintenance time on that area could be reduced by a factor of 2.5 to 5, a sub-
stantial reduction. It is crucial, however, to understand the extent to which 
complexity can be reduced for a given piece of code based on the current com-
plexity measures. Qualitative estimates described in papers one and two suggest 
that complexity can be reduced significantly. Another study not included in this 
thesis, but listed as the first in the “Additional Papers” section, provides a more 
meticulous understanding of the potential for complexity reduction. Research in 
this area, however, remains scarce and more work is needed in order to esti-
mate the extent of complexity reduction more accurately.  

 Software Complexity Landscape  5.3

Finding 8 indicates that two out of the proposed eleven code characteristics, 
namely nesting depth and lack of structure, have a major influence on the in-
crease of code complexity. Curiously, the most popular code complexity 
measures currently used do not measure nesting. Little attention has been given 
to the nesting aspect in literature. A nesting-based measure designed by 
Harrison and Magel [64] in 1981 is virtually unused in literature or in practice.  
Moreover, reflections on nesting are rare, the most well-known being critiques 
of cyclomatic complexity measure, which takes no account of the nesting [65], 
[66]. As an aspect of complexity, nesting has both representational and struc-
tural natures. Some degree of nesting is always required to organize interrelated 
decision statements. Yet deep nesting, a major source of complexity according to 
our results, can always be avoided by smart coding techniques, such as decom-
posing the block into separate functions, combining the conditional tests, and 
using early returns.  

Compared to nesting, the second characteristic (lack of structure) is purely a 
representational characteristic. In Paper 4, lack of structure is defined as incor-
rect indentations, improper naming and not using the same style of coding for 
similar patterns of code. A measure that captures aspects of lack of structure 
was proposed by Buse and Weimer [67]; they evaluated the same measure 
and found that it had a good accuracy of agreement with manual assessors of 
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code readability. Lack of structure can always be avoided because it is mainly 
associated with how developers choose to write code. Nevertheless, the meas-
ure of Buse and Weimer has not gained any popularity. Finding 8 emphasizes 
strongly that, indeed, measures and supporting tools are needed to measure 
lack of structure and nesting of code.  

Finding 9 shows that well-known code complexity measures [22] (pp. 335-429) 
are rarely used in practice for at least three reasons: 1) the well-known com-
plexity measures do not capture the most influential complexity triggers; 2) 
single complexity measures alone are not effective in estimating maintainability 
and error-proneness – a combination of measures is needed; and 3) practition-
ers need research support to integrate complexity measures into companies in 
such a way that their use will take little administrative effort yet ensure maxi-
mal effect for decision support [68].  

 LIMITATIONS 6

This research has two important limitations, both of which are related to the 
ability to generalize these results, as discussed by Checkland and Holwell [38]. 

Firstly, complexity for the lowest abstraction levels of software was investigated 
in this thesis. As regards code and tests, the complexity of isolated blocks, func-
tions, and files was investigated, whilst in the case of requirements, complexity 
of isolated requirements was investigated. All results were evaluated for the 
entities of lowest abstraction level. Yet complexity for higher abstraction levels, 
such as components and subsystems, and which can be termed “architectural 
complexity” also exist. Architectural complexity refers to the complexity that 
emerges from the architectural components and interactions. Since the methods 
and findings created in this thesis were not evaluated for architectural complex-
ity, we do not know whether they can aid architectural complexity management.  

Secondly, all software products used in this research were large, mature, and 
had a long history of development. They primarily belong to the sector of em-
bedded systems, and were developed by C, C++, and Java programming lan-
guages. They also all belong to the Nordic software industry and thus contain 
elements of the Nordic software development culture. As these research results 
have all been obtained within this context, it is not clear whether other types of 
products would significantly impact these results.  

 FURTHER WORK 7

The results of this thesis open new research directions in the three areas that 
we investigated: complexity landscape, complexity assessment, and proactive 
complexity assessment in continuous software development.  

Firstly, it is worthwhile to identify the complete list of software characteristics 
and evaluate their influence on complexity increase. Here, empirical studies 
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could elucidate the influence of such characteristics on complexity increase. 
There is also the option of using interdisciplinary research, where concepts of 
cognitive psychology could help to determine exactly how the human mind han-
dles complexity. Previously, there was too much emphasis on investigating 
complexity as a pure system property. But complexity is profoundly connected 
with human perception. The first research paper in the “Other Publications” 
section is related to this subject.  

Secondly, the aforementioned investigation might enable the design of more 
sophisticated complexity measures that would accurately embrace pragmatical-
ly all aspects of complexity. These measures would involve not only the struc-
tural aspects of complexity, but also representational and evolutional aspects. 
Furthermore, the extent to which complexity is reducible should be investigat-
ed. The straightforward way to do this would be to investigate which software 
characteristics are essential and which are accidental. Identifying accidental 
characteristics could clearly indicate a potential for complexity reduction. To 
date, the task of complexity reduction is poorly supported by scientific facts; 
rather, it is left to the ingenuity of software developers.  

Thirdly, it is important to investigate how a good complexity measure can be 
standardized and used in practice. The challenges of integrating a good com-
plexity measure into the developmental environment should be understood 
thoroughly. Moreover, practitioners need guidelines for turning a complexity 
measure into a complexity indicator so that they can use the complexity meas-
ure to simplify the software. Ultimately, the goal of a complexity measure is not 
the defect or maintainability prediction, but continuous software improvement.  

What is more, the area of architectural complexity can be investigated. Of par-
ticular interest are which characteristics make architecture complex and how 
these can be measured. The ultimate goal of such research would be to create 
methods that allow architectural complexity to be assessed and reduced. Con-
trolling complexity at all levels (requirements, code, and architecture) would 
allow practitioners to expand their software virtually beyond limits whilst keep-
ing every composite part of software simple and maintainable. 
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ABSTRACT  

Complexity management has become an indispensable activity in continuous 
software development. While the overall perceived complexity of a product 
increases rather insignificantly, the small units, such as functions and files, can 
have significant complexity increase with every increment of product features. 
This kind of evolution triggers risks of escalating defect-proneness and deterio-
rating maintainability. The goal of this research was to develop a measurement 
system that enables effective monitoring of complexity evolution. An action 
research has been conducted in two large software development organizations. 
Three complexity and two change measures of code were measured for two 
large industrial products. The complexity increase was measured for five con-
secutive releases of the products. Different patterns of growth have been identi-
fied and evaluated with software engineers in industry. The results show that 
monitoring cyclomatic complexity evolution of functions and number of revi-
sions of files focuses the attention of engineers to risky files and functions for 
manual assessment and improvement. A measurement system was developed in 
one of the organizations to support the monitoring process.  
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 INTRODUCTION 1

Actively managing software complexity has become an important activity of 
continuous software development. It is generally accepted that software prod-
ucts developed in a continuous manner are getting more and more complex 
over time. Evidence shows that the rising complexity drives to deteriorating 
maintainability of software [3, 69, 70]. The continuous increase of complexity 
can lead to virtually unmaintainable source code, if complexity is left unman-
aged. 

A number of measures were suggested previously to measure various aspects of 
software complexity and evolution over development time [71]. Those 
measures were accompanied with a number of studies indicating how adequate-
ly the proposed measures relate to software quality [66, 72]. Complexity and 
change measures have been used extensively in recent years for assessing the 
maintainability and defect-proneness of code [73]. However, despite the consid-
erable amount of research conducted for investigating the influence of complex-
ity on software quality, little results can be found on how to effectively monitor 
and prevent complexity growth. Therefore a question remains: 

How can we monitor code complexity and changes effectively when de-
livering feature increments to the main code branch? 

The aim of this research was to develop a method and tool support for actively 
monitoring complexity evolution and drawing the attention of practitioners to 
the risky trends of growing complexity. In this paper we focus on the level of 
self-organized software development teams who often deliver code to the main 
branch for further testing, integration with hardware, and ultimate deployment 
to end customers. 

We address this question by conducting an action research project in two com-
panies, which develop software according to Agile and Lean principles. The 
studied companies are Ericsson which develops telecom products and Volvo 
Group Truck Technology (GTT) which develops electronic control units (ECU) 
for trucks. 

Our results show that using two complementary measures, McCabe’s cyclomatic 
complexity of functions and number of revisions of files supports teams in deci-
sion making, when delivering code to the main branch. The evaluation shows 
that monitoring trends in these measures helps identifying a handful of risky 
functions and files. These functions and files are manually assessed by the self-
organized agile teams, who make decisions whether to refactor or to integrate 
the code to the main code branch.  

 RELATED WORK 2

Continuous software evolution: A set of measures useful in the context of 
continuous deployment can be found in the work of Fritz [74]. The metrics pre-
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sented by Fritz measure aspects of continuous integration such as the pace of 
delivery of features to the customers. These measures complement the two 
indicators presented in this paper with business perspective which is important 
for product management. 

The delivery strategy, which is an extension of the concept of continuous de-
ployment, has been found as one of the three key aspects important for Agile 
software development organizations in a survey of 109 companies by Chow and 
Cao [75]. The indicator presented in this paper is a means of supporting organi-
zations in their transition towards achieving efficient delivery processes. 

Ericsson’s realization of the Lean principles combined with Agile development 
was not the only one recognized in literature. Perera and Fernando [76] pre-
sented another approach. In their work they show the difference between the 
traditional and Lean-Agile way of working. Based on our observations, the 
measures and their trends at Ericsson were similar to those observed by Perera 
and Fernando.  

Measurement systems: The concept of an early warning measurement system 
is not new in engineering. Measurement instruments are one of the corner-
stones of engineering. In this paper we only consider automated measurement 
systems – i.e. software products used as measurement systems. The reasons for 
this are: the flexibility of measurement systems, the fact that we work in the 
software field, and similarity of the problems – e.g. the concept of measurement 
errors, automation, etc. An example of a similar measurement system is pre-
sented by Wisell [77], where the concept of using multiple measurement in-
struments to define a measurement system is also used. Although differing in 
domains of applications these measurement systems show that concepts which 
we adopt from the international standards (like [78]) are successfully used in 
other engineering disciplines. We use the existing methods from the ISO stand-
ard to develop the measurement systems for monitoring complexity evolution.  

Lawler and Kitchenham [79] present a generic way of modeling measures and 
building more advanced measures from less complex ones. Their work is linked 
to the TychoMetric tool. The tool is a powerful measurement system, which has 
many advanced features not present in our framework (e.g. advanced ways of 
combining measures). A similar approach to the TychoMetric’s way of using 
measures was presented by Garcia, et al. [80]. Both the TychoMetric tool and 
Garcia’s tool provide advanced data presentation or advanced statistical analy-
sis over time. Our research is a complement to [79] and [80]. We contribute by 
showing how the minimal set of measures can be selected and how the meas-
urement systems can be applied regularly in large software organizations. 

Mayer [81, pp. 99-122] claims that the need for customized measurement sys-
tems for teams is one of the most important aspects in the adoption of measures 
at the lowest levels in the organization. Meyer’s claims were also supported by 
the requirements that the customization of measurement systems and devel-
opment of new ones should be simple and efficient in order to avoid unneces-
sary costs in development projects. In our research we simplify the ways of 
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developing key performance indicators exemplified by a 12-step model of 
Parmenter [82] in the domain of software development projects. 

 DESIGN OF THE STUDY 3

This study was conducted using action research approach [48, 83, 84]. The re-
searchers were part of the company’s operations and worked directly with 
product development units. The development of the method and its initial eval-
uation was carried out at Ericsson, whereas the replication of the study was 
carried out at Volvo GTT. 

 Studied Organizations 3.1

Ericsson: The collaborating organization of Ericsson developed large products 
for mobile packet core network. The number of the developers was up to 150. 
Projects were executed according to the principles of Agile software develop-
ment and Lean production system, referred to as Streamline development with-
in Ericsson [85]. In this environment, different development teams were re-
sponsible for larger parts of the development process compared to traditional 
processes: design teams, network verification and integration, and testing. 

Volvo GTT: The collaborating organization at Volvo GTT developed ECU soft-
ware for trucks. The collaborating unit developed software for two ECUs and 
consisted of over 40 engineers, business analysts, and testers at different levels. 
The development process was in the transaction from traditional to Agile. 

 Units of Analysis 3.2

During the study we analyzed two products – software for a telecom product at 
Ericsson and software for two ECUs at Volvo GTT.  

Ericsson: The product was a large telecommunication product comprised by 
over two million lines of code with several tens of thousands C functions. The 
product had a few releases per year with a number of service releases in-
between them. The product was in development for a number of years.  

Volvo GTT: The product was an embedded software system serving as one of 
the main computer nodes for a product line of trucks. It consisted of a few hun-
dred thousand lines of code and about ten thousand C functions. The analyses 
that were conducted at Ericsson were replicated at Volvo GTT under the same 
conditions and using the same tools. The results were communicated with engi-
neers of the software product after the data was analyzed.  

At Ericsson the developed measurement system ran regularly whereas at Volvo 
the analysis was done semi-automatically, running the measurement system 
whenever feedback was needed for the practitioners.  
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 Reference Group 3.3

During this study we had an opportunity to work with a reference group at Er-
icsson and an engineer at Volvo GTT. The aim of the reference group was to 
support the research team with expertise in the product domain and to validate 
the intermediate findings as prescribed by the principles of action research. The 
group interacted with researchers in bi-weekly meetings for over 8 months. At 
Ericsson the reference group consisted of a product manager, a measurement 
program leader, two engineers, one operational architect and one research en-
gineer. At Volvo GTT we worked with one engineer. 

 Measures in the Study 3.4

Table 1 presents the complexity measures, change measures and changes (del-
tas) of complexity measures over time. The definitions of measures and their 
deltas are provided in the table.  

Table 1 Measures and definitions 

Complexity 
Measures 

Abbr. Definition 

McCabe’s cy-
clomatic com-
plexity of a func-
tion 

M The number of linearly independent paths in the 
control flow graph of a function, measured by calcu-
lating the number of 'if', 'while', 'for', 'switch', 
'break', '&&', '||' tokens 

Structural Fan-
out 

Fan-out The number of invocations of functions found in a 
specified function 

Maximum Block 
Depth 

MBD The maximum level of nesting found in a function 

M of a file Mf The sum of all functions’ M in a file 
Change 
Measures 

Abbrev. Definition 

Number of revi-
sions of a file 

NR The number of check-ins of files in a specified code 
integration branch and its all sub-branches in a 
specified time interval 

Number of engi-
neers of a file 

ND The number of developers that do check-in of a file 
on a specified code integration branch and all of its 
sub-branches during a specified time interval 

Deltas of Com-
plexity 
Measures 

Abbrev. Definition 

Complexity del-
tas of a function 

ΔM  
ΔFan-

out 
ΔMBD 

The increase or decrease of M, Fan-out and MBD 
measures of a function during a specified time in-
terval. We register the file name, class name and 
function name in order to identify the same function 
and calculate its complexity change over releases.  
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 Research Method 3.5

We conducted the study according to the following pre-defined process. The 
first seven steps are conducted on both Ericsson and Volvo products. The rest of 
the steps are carried on for the Ericsson product.  

 Obtain access to the source code of the products and their different 1.
releases  

 Measure complexity of all functions and changes of all files of the 2.
code  

 Measure complexity deltas of all functions and changes of all files for 3.
the five releases of the products 

 Sort the functions by complexity delta and sort the files by change 4.
magnitude through the five releases 

 Identify possible patterns of complexity deltas and changes  5.
 Identify drivers and possible explanations for the highest complexity 6.

deltas and the highest magnitude of changes  
 Correlate measures to explore their dependencies and select 7.

measures for monitoring complexity and changes 
 Develop a measurement system (according to ISO 15939) for moni-8.

toring complexity and changes 
 Monitor and evaluate the measurement system for five weeks 9.
 The overall complexity change of function is calculated by: Overall 10.

delta = (ΔMrel12)+(ΔMrel23)+(ΔMrel34)+(ΔMrel45) where (ΔMrelij) is the 
value of McCabe complexity change of a function between i and j re-
leases.  

Overall complexity change of Fan-out and MBD is calculated the same way. 

 ANALYSIS AND RESULTS 4

In this section we explore the main scenarios of complexity evolution. We carry 
out correlation analysis of collected measures in order to understand their de-
pendencies and delect measures for monitoring. 

 Evolution of the Studied Measures over Time 4.1

Exploring different types of changes of complexity, we categorized changes into 
5 groups. The five groups are described in the following five points:  

 Functions that are newly created and become complex in current re-1.
lease and functions that were complex but disappeared in current re-
lease 

 Functions that are re-implemented in the current release 2.
 Functions that have significant complexity delta between two releas-3.

es due to development or maintenance 
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 Test functions, which are regularly generated, destroyed and regen-4.
erated for unit testing 

 Functions that have minor complexity changes between two releases 5.

Group 1 and group 5 functions were observed to be the most common. They 
appeared regularly in every release. Engineers of the reference group character-
ized their existence as expected result of software evolution. Group 2 functions 
were re-implementation of already existing function. The existed functions were 
re-implemented with different name and the old one was destroyed. After re-
implementation the new functions could be named as the old one. Re-
implementation usually took place when major software changes were happen-
ing: In this case re-implementation of a function sometimes could be more effi-
cient than its modification.  

Figure 1 shows the cyclomatic complexity evolution of top 200 functions 
through the five releases of the products. Each line in the figure represents a C 
function. In Figure 1 re-implemented functions are outlined by elliptic and old 
ones by round lines. In reality the number of re-implemented functions is small 
(about 1 %), however, considering the big complexity deltas of them, many of 
them ended-up in the top 200 functions in the figure, giving an impression that 
they are relatively many. Figure 2 similarly presents the evolution of Fan-out in 
the products. Group 3 functions are outlined by elliptic lines in Figure 2. 
 

 

Figure 1 Evolution of M of functions 

Figure 2 Evolution of Fan-out of functions 
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Group 3 functions were usually designed for parsing a huge amount of data and 
translating them into another format. As the amount and type of data is changed 
the complexity of the function also changes. Finally the Group 4 functions were 
unit test implementations. These functions were destroyed and regenerated 
frequently in order to update running unit tests. Figure 3 presents the MBD 
evolution of products. As nesting depth of blocks can be obtain much more lim-
ited values, many lines in Figure 3 overlap each other thus creating an impres-
sion that there are few functions. We observed that the functions of group 1, 
ones were created, stayed complex over time. These functions are outlined with 
a rectangular line in Figure 3. 

The proportions of all functions percentagewise represented in Table 2. The 
table shows how all functions, that had complexity change, are distributed in 
groups. We would like to mention that the number of all functions in telecom 
product is about 65000 and in automotive product about 10000, however only 
top 200 functions out of those are presented in the figures. This might result in 
disproportional visual understanding of the relation between different groups of 
functions in the table and in the figures, as the figures contain only top 200 func-
tions. 

 

Table 2 The distribution of functions with complexity delta in groups 

Group Group 1 Group 2 Group 3 Group 4 Group 5 
Percentage 27% 1% 1% 1% 70% 

 

We observed the deltas of complexity for both long time intervals (between 
releases) and for short time intervals (in weeks). Figure 4 shows how the com-
plexity of functions changes over weeks. The initial complexity of functions is 
provided under column M in the figure. 

Figure 3 Evolution of MBD of functions 
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 The week numbers are presented on the top of the columns, and every column 
shows the complexity delta of the functions in that particular week. Under ΔΜ 
column we can see the overall delta complexity per function that is the sum of 
weekly deltas per function.  

The fact that the complexity of the functions fluctuates irregularly was interest-
ing for the practitioners, as the fluctuations indicate active modifications of 
functions, which might be due to new feature development or represent defect 
removals with multiple test-modify-test cycles. Functions 4 and 6 are such in-
stances illustrated in Figure 4. Monitoring the complexity evolution through 
short time intervals we observed that very few functions are having significant 
complexity increase. For example, in a week period of time the number of func-
tions that have complexity increase ΔM > 10 are not more than ten. 

 Correlation Analyses 4.2

The correlation analyses of measures were carried out to eliminate dependent 
measures and select a minimal set of measures for monitoring. The correlation 
analyses results are presented in Table 3. The plot of the relationship of the 
complexity measures is presented in Figure 5. As the table illustrates there is a 
strong correlation (0,76) between M and Fan-out measures for the telecom 
product, while the correlation between the same measures is rather weak for 
the automotive product (0,26). This means that only M measure is enough to be 
monitored in the telecom product, because it also encompasses most of the in-
formation that could be obtained from the Fan-out measure.  

Table 3 Correlation of complexity measures 

Telecom / Automotive MBD M 
M 0,41 / 0,69  
Fan-out 0,34 / 0,20 0,76 / 0,26 

 

Figure 4. Visualizing complexity evolution of functions over weeks 
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Generally, this also means that the correlation between these two measures can 
vary greatly from product to product, and for every product a correlational 
analysis should be carried out to find out whether these measures are correlat-
ed. The correlation between M and MBD for the automotive product is also 
strong (0,69), while the correlation between M and MBD measures for the tele-
com product is moderate (0,41). Generally the discussions with the reference 
group led us to understanding that monitoring cyclomatic complexity among all 
complexity measures is good enough as there was a moderate or strong correla-
tion between the three complexity measures. M was chosen because of two rea-
sons:  

 MBD is rather a characteristic of a block of code than a whole func-1.
tion. It is a good complementary measure but it cannot characterize 
the complexity of a whole function. 

 Fan-out seemed to be a weaker indicator of complexity than M, be-2.
cause it rather shows the vulnerability of a function due to its de-
pendence on other functions. 

 

NR and ND are measures that indicate the magnitude of changes. Previously a 
few studies have shown that change measures are good indicators of problemat-
ic areas of code, as observed by Shihab, et al. [86]. The measurement entity of 
NR and ND is a file. Therefore in order to understand how change measures 
correlate with complexity measures we decided to define a cyclomatic complexi-
ty measure for files (Table 1). Table 4 presents the correlation analysis results 
for ND, NR and Mf measures. 

An important observation is the strong correlation between the number of de-
signers (ND) and the number of revisions (NR) for the telecom product. At the 
beginning of this study the practitioners of the reference group believed that a 
developer of a file might check-in and check-out the file several times which 
probably is not a problem.  

Table 4 Correlation of change and complexity measures 

Ericsson / Volvo Mf ND 
ND 0.40 / 0.37  
NR 0.46 / 0.72 0.92 / 0.41 

Figure 5 Correlograms of complexity measures 
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The real problem, they thought, could be when many designers modify a file 
simultaneously. Nonetheless, a strong correlation between the two measures 
showed that they are strongly dependent, and many revisions is mainly caused 
by many engineers modifying a file in a specified time interval (Figure 6). 
 

In case of the automotive product the correlation between ND and NR was mod-
erate which can be due to small number of engineers who have rather firmly 
assigned development areas and usually change the same code. The explanation 
of the strong correlation between Mf and NR is more complicated. As we reflect-
ed on Mf measure, (which is also used in other studies), in many cases it indi-
cates more size and less complexity of a file. A file may be composed of many 
small functions with small cyclomatic complexity numbers. The sum of all com-
plexities, however, can build up into a large number file with a big Mf number. 
Then the correlation between Mf and NR can be explained by pure probabilistic 
reasons – larger files are more likely to be changed. Therefore, since Mf is not a 
well-motivated measure, we decided to monitor the number of revisions on a 
file level.  

The results showed that for telecom product only NR and M measures need to 
be monitored, because they contain most of the information that all the 
measures would provide collectively. Considering these results we designed a 
measurement system at Ericsson for monitoring code complexity and magni-
tude of changes over time. The description of design and application of meas-
urement system is discussed in the next section.  

 Design of the Measurement System  4.3

We designed two indicators based on M and NR measures. These indicators 
capture the increase of complexity of the functions and highlight the files with 
highest magnitude of change over time. These indicators were designed accord-
ing to ISO/IEC 15959 standard. The design of complexity indicator is presented 
in Table 5.  

 

Figure 6 Correlograms of change and complexity measures 
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Table 5 Measurement system design based on ISO/IEC 15939 standard 

Information 
Need 

Monitor cyclomatic complexity evolution over development 
time 

Measurable 
Concept 

Complexity delta of delivered source code 

Entity Source code function 

Attribute Complexity of C functions 

Base 
Measures 

McCabe’s Cyclomatic complexity number of C functions – M 

Measurement 
Method 

Count cyclomatic number per C function according to the 
algorithm in CCCC tool  

Scale Positive integers 

Unit of meas-
urement 

Execution paths over the C/C++ function 

Derived 
Measure 

The growth of cyclomatic complexity number of a C function 
in one week development time period 

Measurement 
Function 

Subtract old cyclomatic number of a function from new one: 
ΔM = M(weeki) – M(weeki-1) 

Indicator Complexity growth: The number of functions that exceeded 
McCabe complexity of 20 during the last week 

Model Calculate the number of functions that exceeded cyclomatic 
number 20 during last week development period 

Decision 
Criteria 

If the number of functions that have exceeded cyclomatic 
number 20 is different than 0 then it indicates that there are 
functions that have exceeded established complexity thresh-
old. This suggests the need of reviewing those functions, find-
ing out the reasons of complexity increase and refactoring if 
necessary 

The other indicator based on NR is defined in the same way: the files that had 
NR > 20 during one week development time should be identified and reviewed. 
The measurement system was provided as a gadget with the necessary infor-
mation updated on a weekly basis (Figure 7). The measurement system relies on 
a previous study carried out at Ericsson [87, 88].  

For instance the total number of files with more than 20 revisions since last 
week is 5 (Figure 7). The gadget provides the link to the source file where the 
engineers can find the list of files or functions and the color-coded tables with 
details (see Figure 4).  

As in agile development the development teams merge builds to the main code 
branch in every week it was important for the teams to be notified about func-
tions with drastically increased complexity (over 20). 



Monitoring Evolution of Code Complexity and Magnitude of Changes 

 

62 
 

 
 

 

 
 
 
 

 THREATS TO VALIDITY 5

The main external validity threat is the fact that our results come for an action 
research. The research on two cases indicated that the results can vary greatly 
from company to company, therefore to develop a measurement system, one 
needs to conduct the analysis of this paper but make decisions based on the 
specific results. 

The main internal validity threat is related to the construct of the study and the 
products. In order to minimize the risk of making mistakes in data collection we 
communicated the results with reference groups at both companies to validate 
them. 

The threshold 20 for cyclomatic number does not have any firm empirical or 
theoretical support. It is rather an agreement of developers of large software 
systems. We suggest that this threshold can vary from product to product. The 
number 20 is a preliminary established number taking into account the number 
of functions that can be handled on a weekly basis by developers. 

The main construct validity threats are related to how we identify the names of 
functions for comparing their complexity numbers over time. There are several 
issues emerging in this operation. Namely, what happens if a function has 
changed its list of arguments or what happens if a function is moved to another 
file? Should this be regarded as the same function before and after changing the 
list of arguments or the position? We disregarded the change of argument list 
however this can be argued. 

Finally the main threat to conclusion validity is the fact that we do not use infer-
ential statistics to monitor relation between the code characteristics and project 
properties, e.g. number of defects. This was attempted during the study but the 
data in defect reports could not be mapped to individual files. This might be a 
thread for jeopardizing the reliability of such an analysis. Therefore we chose to 
rely on the most skilled engineers’ feedback on what a good measure is.  

Figure 7 Information product for monitoring ΔM 
and NR measures over time 



Monitoring Evolution of Code Complexity and Magnitude of Changes 

 

63 
 

 CONCLUSIONS 6

In this paper we explored how complexity evolves, by studying two software 
products – one telecom product at Ericsson and one automotive product at Vol-
vo GTT. We identified that in short periods of time a few out of tens of thou-
sands functions have significant complexity increase.  

By analyzing correlations between three complexity and two change measures 
we concluded that it is enough to use two measures, McCabe complexity and 
number of revisions for one of the products. This measurement can draw the 
attention of practitioners to risky code areas for review and improvement. 

The automated support for the teams was provided in form of a gadget with the 
indicators and links to statistics and trends with detailed data on complexity 
evolution. The measurement system was evaluated by using it on an ongoing 
project and communicating the results with practitioners. 
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ABSTRACT 

Modern software development relies on incremental feature delivery to facili-
tate quick response to customers’ requests. In this dynamic environment the 
continuous modifications of software code can trigger risks for software devel-
opers: When developing a new feature increment, the added or modified code 
may contain fault-prone or difficult-to-maintain elements. The outcome of these 
risks can be defective software or decreased development velocity. This study 
presents a method to identify the risky areas and assess the risk when develop-
ing software in agile environment. We have conducted an action research pro-
ject in two large companies, Ericsson and Volvo Group Truck Technology. Dur-
ing the study we have measured a set of code properties and investigated their 
influence on risk. The results show that the superposition of two measures can 
effectively enable identification and assessment of the risk. We also illustrate 
how this kind of assessment can be successfully used by software developers to 
manage risks on a weekly basis as well as release-wise. A measurement system 
for systematic risk assessment has been introduced to two companies. 
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 INTRODUCTION 1

Increasing complexity of modern software products has become a well-known 
problem. Escalating fault-proneness and declining maintainability of software 
are the main risks behind this kind of increase. Due to increasing size of soft-
ware products and the need for increased development velocity the traditional 
risk assessment methods [89-94] are not applicable in identifying and assessing 
these kind of risks. For example it is impossible for an expert to identify the 
most difficult-to-maintain files out of several thousands in a product, whereas 
this kind of assessment is needed on a regular basis for supporting practitioners 
in systematic mitigation of risks. 

Several studies have shown that the code is continuously becoming more com-
plex if left unmanaged [3, 69, 70], and with growing complexity momentous 
technical risks emerge. Fenton and Neil [68] claim that technical risk assess-
ment is essential for supporting software engineers in decision making, yet most 
of the studies in the field are concentrated on a narrower field – defect predic-
tions [95-102]. Despite the importance of other aspects of risks than fault-
proneness, very few researchers have proposed methods for full risk identifica-
tion and assessment that is adopted by industry. Therefore an open question 
remains: 

How can we effectively identify risky source code and assess the risk 
when delivering new feature increments in agile development? 

In this context we define the risk as likelihood that a source code file becomes 
fault prone, difficult-to-manage or difficult-to-maintain. Manageability of the 
code is concerned with such activities as assigning certain areas of code to cer-
tain developers, merging the code to the main code base, and controlling differ-
ent variants of code for different customer groups.  

The aim of this study was to develop a method and supporting tool for enabling 
systematic identification and assessment of risks, when delivering new code in 
agile production. To address this question we designed and conducted an action 
research project together with Ericsson and Volvo Group Trucks Technology 
(Volvo GTT).  

We created a method and supporting tool for identification of risky files. The 
method is based on measurement of two properties of code: the revisions and 
complexity of a file. We evaluated the method in an industrial context by apply-
ing it on ongoing software development projects. The evaluation of the method 
showed that all severe risks were identified, and the method helped the engi-
neers and architects to focus on about 0.1% of the code base, which are the risky 
files. The assessment method was evaluated to be effective for its application in 
industry.  
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 AGILE SOFTWARE DEVELOPMENT 2

Agile software development in large companies is characterized by a combina-
tion of challenges of large products, such as, long development cycles, long-term 
release planning, distributed decision making by software development teams, 
communication between teams, etc. Figure 1 presents an overview on how the 
functional requirements (FR) and non-functional requirements (NFR) are pack-
aged into work packages (WP) and developed as features by the teams. Each 
team delivers their code into the main branch. Each team has the possibility to 
deliver code for any component of the product. 

 

First, the requirements come from the customers, and are prioritized and pack-
aged into features by product management (PM). Next, PM hands over the re-
quirements to the system management (SM) for systemization. Then, design 
management (DM) and test teams implement and verify them before delivering 
to the main branch. Last, the code in the main branch is additionally tested by 
dedicated test units before the release [103].  

In this context software development is a continuous activity, with small incre-
ments on a daily or weekly basis to a large code base, which exists over long 
periods of time. In order to manage the risk of degrading maintenance in con-
tinuous development the risk management also needs to be a continuous activi-
ty. 

 STUDY DESIGN 3

We applied an action research method in our study by maintaining close collab-
oration with industry practitioners and regularly working at the companies’ 
premises.  

 Industrial Context 3.1

At Ericsson, the organization where the research was conducted develops large 
products for mobile telephony network. Several hundred developers comprise 
the development organization. Projects are conducted according to the princi-

Figure 1 Feature development by agile methodology. 
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ples of agile software development and lean production procedures, called 
streamline development in Ericsson [85]. In this environment cross-functional 
development teams are responsible for accomplishing a set of development 
activities: analysis, design, implementation, and testing assigned features of the 
product. 

To support managers, designers, and quality managers in decision making, a 
measurement organization was established at Ericsson (7 years before writing 
of this paper) for calculating and presenting variety of indicators and early 
warning systems. 

The developed unit was a large telecom product which constituted a few mil-
lions of lines of code with several thousands of C/C++ files. The product was 
released a few times per year with support of service releases. Rational Clear-
Case served as version control system by which all the source code of the prod-
uct was handled. The product had been in development for more than 15 years. 

At Volvo Group Trucks Technology (GTT), the organization in which we have 
worked developed software of Electronic Control Units’ (ECU) for Volvo, Re-
nault, UD Trucks and Mack. Our collaborating unit developed software for an 
ECU which consists of a few hundred thousand lines of code and more than one 
thousand files entirely developed by C language. The product was released in 
every 6-8 weeks. About 50 designers, business analysts and testers comprised 
the organization. The development process was progressing toward agile devel-
opment. 

The organization systematically uses various measures to control the progress 
of development and monitor the quality of the products. Our intention was to 
develop a method and tool for risk assessment of in-house developed software 
as well as outsourced and imported software. 

 Reference Groups at the Companies 3.2

During this study we had the opportunity to work with a reference group initi-
ated at Ericsson. The reference group was to support the research team with 
expertise in the product domain and to scrutinize and reflect on intermediate 
findings. The group meetings took place on bi-weekly basis for over 8 months. 
The reference group consisted of one line manager, one measurement program 
leader, two designers, one operational architect and one research engineer. At 
Volvo we worked with a designer and a line manager. 

 Flexible Research Design 3.3

Five main research cycles were carried out: 

 Identification of measures: Shortlisting a number of published 1.
measures which can theoretically be used in risk assessment 
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 Measurement and analyses: Collecting data for these measures and 2.
analyzing inter-dependencies of the measures 

 Creation of risk identification and assessment method: Developing a 3.
method based on the selected measures  

 Evaluation of the method with engineers: Evaluating the method 4.
over a number of weeks through by-weekly meetings with reference 
group, and according to the empirical measurement validation prin-
ciples [104]. 

 Refinement and evaluation of the method in the projects: Dissemi-5.
nating the method to all engineers in the project and monitoring the 
use of the method. 

The planned cycles above were concretized during the study. Thus we carried 
out the following steps to fulfill above defined five cycles: 

 Obtain access to the source code of the products and their different 1.
releases: Decided upon one product per company, releases of the 
product, whether service releases should be included or not 

 Set up necessary tools for extracting data: Develop scripts for data 2.
collection in Ruby, MS Excel VBA. 

 Calculate code measures per defined entities (files\functions) 3.
 Carry out calculation for four releases of the products 4.
 Identify drivers of high complexity/change through interviews with 5.

engineers and the reference group 
 Correlate measures to explore their relations and determine which 6.

measures should be selected 
 Develop a method by using the selected measures for identifying and 7.

assessing the risks, and establish decision criteria for determining 
the risk exposure per file 

 Identify the risky files and assess the risk using the method and deci-8.
sion criteria 

 Collect post-release error reports (ER) per file for four service re-9.
leases 

 Evaluate the method by:  10.

a. Correlating the ERs and calculated risk exposure of files 
b. Assigning files to responsible designers for manual assessment (6 

weeks period) 
 Develop a measurement system according to ISO 15939 to manage 11.

the risky files [105] 

The above process was used during the development of the method at Ericsson 
and replicated at Volvo GTT. 
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 Definition of Measures 3.4

In order to assess the risky code we used nine measures of code described in 
Table 7. These measures measure such properties of code as size, complexity, 
dependencies and change frequency. The choice of properties was motivated by: 

 How well these properties of code can be predictors of risk (identi-1.
fied from existing literature) 

 Which properties can relate to risk according to the perception and 2.
experience of the reference group 

Table 1 presents the measures of code properties which we used in our study 
and their definitions. It was not possible to measure ND and NR for functions so 
we measured them only for files. Other properties that were defined for functions 
were possible to redefine for files also. 

Table 1 Measures and definitions 

We defined and measured M and NCLOC for files so we could correlate these 

Name of measure Abbrev. Definition 
Number of non-
commented lines of 
code 

NCLOC The lines of non-blank, non-comment 
source code in a function/file (this proper-
ty is measured for both units) 

McCabe’s cyclomatic 
complexity of a func-
tion 

M The number of linearly independent paths 
in the control flow graph of a function, 
measured by calculating the number of ‘if’, 
‘else’, ‘while’, ‘for’, ‘||’, ‘&&’, ‘switch’, 
‘break’, ‘goto’, ‘return’ and ‘continue’ to-
kens 

McCabe’s cyclomatic 
complexity of a file 

File_M The sum of all functions’ M in a file 

Structural fan out of a 
function 

Sfout The number of function calls found in a 
specified function 

Max block depth MBD The depth of max nested block in a func-
tion 

Number of revisions 
of a file 

NR The number of check-ins of a file in a spec-
ified ClearCase branch and all its sub-
branches in a specified time interval 

Number of designers 
of a file 

ND The number of developers that do check-
in of a file on a specified ClearCase branch 
and all of its sub-branches during a speci-
fied time interval 

Effective cyclomatic 
complexity of a file 

Mef The complexity sum of all functions with 
M > 15 in a file 

Effective  cyclomatic 
complexity percent-
age of a file 

Mef% The ratio of  Mef  and File_M 
This measure shows how much of the 
complexity of a file composed by complex 
function  



Identifying Risky Areas of Source Code in Agile Software Development 

 

72 
 

measures with ND and NR, and understand their relation. Correlation analysis 
was carried out as a necessary step for determining which measure of code to 
choose for risk prediction. Collinear measures most likely indicate the same 
property of code. It is important to notice that correlation analyses were not 
sufficient for selecting measures so further analysis was also carried out to un-
derstand other aspects of measures’ relations. Later in the study, during the 
evaluation with designers we found that it is important to distinguish between 
files with many small non-complex functions and files with a few large complex 
functions. Thus we defined the following measures, Mef and Mef% presented in 
Table 1. The aim of the Mef% is to show what portion of the File_M number is 
distributed in complex functions of a file.  

We calculate these two measures the following way: 
 
      ∑   

 
                            (Eq. 1) 

       (
   

     
)       (Eq. 2) 

 
The functions having M > 15 are considered complex. In his paper McCabe [106] 
defines a threshold for M as 10. However, considering the fact that there are 
other suggested limits like 15 and 20, we chose 15. An example of how to calcu-
late      is shown in Table 2. As the table illustrates, for the specified file the 

functions 1, 3 and 5 are complex as they have M > 15 complexity. 

Table 2 An example of calculating Mef% 

 
 

Thus the     of this file is the sum of complexities of functions 1, 3 and 5, which 

is 58. Dividing this number by overall complexity File_M we get      = 71%. 

This kind of representation of complexity for a file is more informative and ap-
preciated by software designers as it does not ignore the fact that functions are 
independent units. It is importance not only quantifying the complex portion of 
file but also not losing relatively small files that contain complex functions. For 
example, if file A has only 2 functions, both of them having M = 25, then the sum 

File Function M File M Mef Mef%

file.c 82 58 71%
function 1 21

function 2 8

function 3 20

function 4 3

function 5 17

function 6 5

function 7 0

function 8 8

8+
0+

5+
17

+3
+2

0+
8+

21
 =

17
 +

 2
0 

+ 
21

 =

(5
8 

/ 
82

)*
10

0%
 =
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of complexities of the file would be 50. Large files having many simple functions 
and significantly larger File_M should not in reality be considered more complex 
than file A.      holds an ability to show that file A is complex irrespective its 

size because it contains complex functions:      = 100%. 

 RESULTS 4

In this section we present the correlation analysis of measures, designers’ com-
ments on correlations of measures, the created method for risk assessment, and 
the established thresholds. 

 Correlation Analysis 4.1

Correlation analyses were used to select the necessary set of measures for risk 
assessment. Table 3 shows the correlations of 4 measures for both products.  

Table 3 Correlation matrix of file measures 

Ericsson / Volvo NCLOC File_M ND 
File_M 0.91 / 0.90   
ND 0.47 / 0.38 0.41 / 0.40  
NR 0.55 / 0.61 0.48 / 0.68 0.92 / 0.46 

 

As the table shows, the correlation between M and NCLOC is strong, 0.91 / 0.90 
for telecom and automotive software conformably. However the McCabe’s com-
plexity originally is defined for functions thus high complexity number for files 
can be caused by summing the complexity numbers of many moderately com-
plex, but unrelated functions in a file. The correlation between NR and NCLOC is 
moderate, 0.55 / 0.61 for telecom and automotive respectively. The existing 
moderate correlation is driven by the size of files: Bigger files are more likely to 
get changes during development. By the observation of designers and us there 
are two fundamentally different reasons behind complex files that are changed 
often and simple files that are changed often: 

 Simple files that are changed often are usually files that are in the 1.
core of development in a particular one or two week time period. 
They are not regarded risky as they are easy to understand and 
maintain and are not fault prone 

 Complex files changed often are predominantly files that contain 2.
complex functions and are executing complex tasks. These files are 
hard to understand and maintain and usually are changed periodical-
ly. 

Initially the designers suggested that a good measure that would reveal the 
risky files is the number of designers (ND) making simultaneous changes on a 
file. The assumption was that the high number of revision can be achieved by 
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few developers also, when they work intensively on a file and do several check-
ins to version control system. However, the strong correlation between NR and 
ND (0.92) for telecom software shows that high number of revisions is a result 
of many designers checking in and out a file. In Figure 2 and 3 the data points in 
the scatter plots are the files.  

 

 

Overall the correlations of measures are similar for both of the products, yet 
with an essential difference: the correlation between NR and ND is weak for the 
automotive software. The main reason is that the number of designers of ECU 
development team is much smaller than it is for the telecom software. Tens of 
designers distributed in cross-functional teams in telecom product virtually are 
available to be assigned various development tasks in different parts of the 
software, whilst every designer of ECU development team has rather assigned 
area of functionality to develop. In Figure 3 we can see that the data points for 
ND graphs are portioned like discrete lines indicating scarce number of design-
ers. 

Next we correlated the function measures for both of the products. Table 4 pre-
sents correlations between the function measures. It is important to notice that 
the correlation coefficient between M and NCLOC diminished significantly. Pre-
viously several studies has reported observed linear relationship between 
NCLOC and M [66, 107]. We confirm that there is significant correlation between 
these two measures, however we argue that NCLOC most likely cannot be a 
substitute for M measure and a further analysis is needed to understand their 
relationship in a deeper sense. The thorough examination of these two 
measures is out of the scope of this study but there are a few valuable observa-
tions worth to mention. 

Table 4 Correlation matrix of function measures 

Ericsson/Volvo M NCLOC MBD 
NCLOC 0.75 / 0.77   
MBD 0.41 / 0.60 0.24 / 0.44  
Sfout 0.75 / 0.17 0.87 / 0.77 0.34 / 0.12 

Figure 2 Correlogram of measures of files 
telecom software 

Figure 3 Correlogram of measures of files 
automotive software 
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Firstly, high cyclomatic complexity necessitates large functions. This implies 
certain positive correlation between these two measures. However, big func-
tions are not necessarily complex. This simple observation is well expressed in 
correlograms of Figure 4 and Figure 5: Scatter plots of (M, NCLOC) show that the 
crowded data have a triangular shape. 

 

This means that there are functions along the line of NCLOC axis showing 0 
complexities but there is no function with high complexity and 0 NCLOC. Sec-
ondly, the correlation is calculated between NCLOC and M cyclomatic complexi-
ty numbers. But in reality the cyclomatic complexity number is intended to 
measure the complexity property. This means that the complexity that design-
ers perceive and the complexity that cyclomatic number shows are different. 
And the relationship between the real complexity and the cyclomatic complexity 
number is not linear itself.  

The correlation between Sfout and M is strong for telecom product, 0.75, 
whereas it is insignificant for ECU software, 0.17. The reference group designers 
at Ericsson believe that strong correlation between M and Sfout is product spe-
cific. They checked the code and identified that in telecom software functions 
usually execute “check message” - “call function” types of operations. We can 
observe also that (M, Sfout) scatterplot for telecom product is similar to (M, 
NCLOC) scatterplot: The data distribution has triangular shape. This means that 
functions with high M number necessarily have high Sfout. However the causality 
of these two measures is more complicated.  For the automotive software M and 
Sfout have rather weak dependency. In Figure 5 the scatterplot of (M, Sfout) 
shows that several functions have high M number and low Sfout. Those are state 
machines. A few other functions have high Sfout numbers and low complexity. 
These functions are test code. The rest of the data is scattered over the graph 
and there is no specific pattern. According to the contact designer at Volvo, the 
functions that have high Sfout and low M numbers are not perceived to be com-
plex. Certainly Sfout introduce complexity to the whole product, as it indicates 
more interconnections between functions but it is not a clear complexity meas-

Figure 4 Correlogram of function measures 
for telecom software 

Figure 5 Correlogram of function measures 
for ECU software 
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ure for a single function. A function with high Sfout is rather vulnerable to the 
called functions.  

The correlation between MBD and M is moderate for both products – (0.41 / 
0.60). Nesting is an interesting property, but one problem is that it is not appro-
priately defined for a function or a file, but rather for a block of code. This makes 
it difficult to apply for decision making.  

 Selecting Measures 4.2

Based on correlation analysis and designers interpretation of results one change 
measure (revisions) and one complexity measure (cyclomatic complexity) were 
decided to be used for risk identification and assessment. The intuition behind 
this choice is as following: 

 Complexity makes the code hard-to-maintain, hard-to-understand 1.
and fault-prone. 

 The risk is triggered when there is a change in complex code. 2.

As a change measure we selected NR. Firstly several studies has shown that high 
NR number is an indication of defect prone and difficult-to-maintain code [108, 
109]. Secondly, NR and ND were correlated strongly for telecom product show-
ing the same aspect of code, and finally, in case of automotive software there 
was no evidence that high ND indicates any tangible risk. 

As a complexity measure we selected the cyclomatic complexity. Firstly this is a 
measure characterizing rather inner complexity of a function than the complex 
interactions that it has with the rest of the code: Complex interactions do not 
imply that the function itself is complex, but show how vulnerable the function 
is when making modifications in other parts of code. Secondly in the telecom 
product high cyclomatic complexity entails high Sfout number of functions (Fig-
ure 4, right uppermost plot). 

MBD was perceived to be a good complexity measure, as it involves cyclomatic 
complexity and contains additional complexity also (nesting complexity). But it 
is hard to draw conclusions based on MBD. The reason is that MBD is defined for 
a block of code so it does not characterize the complexity of whole function. In 
order to use MBD with other measures it should be defined for the same code 
unit as other measures are defined. 

 Evaluation with Designers and Refinement of the 4.3

Method 

Our intention was to use M and NR for identifying risky files. However the two 
measures were defined for different entities of code: NR was defined for files 
and M for functions. We determined the risk assessment unit to be a source code 
file. NR was intended to be used in risk assessment but it was hard to define and 
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calculate number of revisions (NR) of a function so we had to select a file as risk 
assessment unit. We attempted to identify the risky files by selecting the files 
which have both high NR and File_M number. But evaluation with designers 
showed that File_M is not a good complexity measure. The reason is if many 
simple functions are placed in the same file then the sum of complexities might 
have a high value which is misleading. Instead if we calculate the average com-
plexity per file as complexity sum divided by the number of functions, we get a 
number which might not show if there are complex functions in a file or not. 
This was the reason that we defined the Mef% measure to estimate the complexi-
ty of a file. This measure can identify complex files irrespective their size.  

On one hand if a complex file is modified many times then, according to an earli-
er observation and two other studies [108, 109], it is most likely a hard-to-
maintain file. On the other hand making modifications in a complex file creates 
likelihood that we did a faulty step in that file. These two considerations and the 
observation that correlation between NR and Mef% is low (0.10 / 0.09) motivates 
us to count the risk as the product of effective complexity and number of revi-
sions. 

Relative Risk = Mef% * NR (Eq. 3) 
 

This number indicates the likeliness of a file being defect-prone, difficult-to-
maintain or difficult-to-manage. We call this kind of combination superposition 
of measures as it reflects the joint magnitude of two measures. For example if a 
file has NR = 20 for one week period and has Effective_M% = 80% at the end of 
that period we get Relative Risk = 80 * 20 = 1600. 

The product of NR and Mef% does not show how much the absolute risk exposure is, 
it rather shows the relative risk compared with other files. The product also holds 
the property of having 0 risk, as the risk is 0 when either NR or Mef% are 0, indi-
cating no change or no complex function in a file. However there is no upper 
bound of risk as increasing NR number does not imply linear increase of risk. 

Periodically collecting top risky files by this measurement and discussing them 
within reference group, we established two thresholds, by which we could de-
termine whether a file is considerably risky or not. The thresholds we defined 
for telecom software were:   

 If the Relative Risk > 1000 for a file in a week development time pe-1.
riod then the file is considered highly risky 

 If the Relative Risk > 500 for a file in a week development time peri-2.
od then the file is considered moderately risky. 

Figure 6 shows how the              and             hyperbolas 

separate files with high and moderate risks. By modifying the numbers 1000 
and 500 thresholds, we can move the hyperbolas thus including or excluding 
more files in the list of high risky files. These thresholds were determined the 
following way:  
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 Relative Risk of all files is calculated 1.
 Files are sorted according to Relative Risk values, so the first file has 2.

the greatest Relative Risk number, the second file has the second 
greatest Relative Risk number, etc. 

 Evaluate top files one by one with designers and determine a num-3.
ber that by designers’ perception is a point above which files can be 
considered risky.  

 

 
Figure 6 Filtering risky files by defined thresholds 

We calibrate the results repeating this process several times. The number of 
files that the organization can handle in risk mitigation is also considered when 
establishing a threshold: Too many risky files are not likely to be handled effec-
tively thus bigger threshold values can be established to choose fewer and the 
most risky files. 

The threshold defined for automotive software was different. Most likely the 
smaller size of the product and the lower number of designers resulted in hav-
ing in average 3 times less revisions per file than it is for telecom product. How-
ever by observing top files over several weeks that had highest Relative Risk 
value we could establish a threshold to distinguish risky files: If Relative Risk > 
200 for a file in a week development time then the file is considered risky. 
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 EVALUATION 5

We carried out two steps of evaluation process: 

 To evaluate the risk of defect-proneness we correlated the number 1.
of error reports (ER) with the Relative Risk of files. This activity 
permitted us to understand if the files having highest Relative Risk 
number also have the highest number of errors. 

 To evaluate the risk that the files might be difficult-to-maintain or 2.
difficult-to-manage we communicated identified files with designers 
of areas that the file belongs to. 

 Correlation with Error Reports 5.1

We collected post release ERs per file for 4 service releases. Then we calculated 
the Relative Risk of files for the time between planning and releasing. The analy-
sis showed that there is a strong correlation between the two measures ≈ 0.70 
for all 4 releases, however there were concerns regarding what this correlation 
shows. The question is how do we know which files are the root causes of ERs 
and which ones are not? There is no well-established view what ER number per 
file shows. For example if a simple header file is changed because of ER correc-
tion then the change might be caused by changing a complex function in another 
file, which has been the root cause of the ER. In our correlation analysis we 
found out several simple files containing ER reports in them. After checking with 
designers we identified that they are not the root cause of the problem and are 
changed due to modifications of other files. These simple files “infected” by ERs 
of other files in the data reduce the correlation coefficient of Relative Risk and 
ERs. Nonetheless, the correlation analysis was valuable as high correlation be-
tween ER and Relative Risk confirms that complex files that are changed often 
are more fault-prone. 

Another concern is that the Relative Risk measure does not distinguish between 
big complex files and small complex files, whereas big files are naturally expected 
to contain more defects proportional to their size. It is worth to notice also that 
a risky file might not have ER in a particular time period but it might have high 
likelihood to have ER in the future. 

 Evaluation with Designers in Ongoing Projects 5.2

At Ericsson we developed and deployed a measurement system for regular us-
age in the organization. The measurement system was developed based on 
ISO\IEC 15939 standard and two other studies [87, 105]. The measurement 
system runs on a daily basis and identifies the files that are risky for the current 
week development time period. Figure 7 presents a picture of a measurement 
that visualizes the results: One file with high risk and three files with moderate 
risk. The designers can follow the link (Source Data) available on the bottom of 
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the gadget to find all the relevant information regarding risky files. In a period of 
six weeks we collected and reported (weekly) top risky files to the responsible 
designers of development areas and obtained their feedback regarding risks. 

 

 

They knew a lot about the details of developed code. The evaluation results at 
Ericsson were as following: 

 95% of the identified files were confirmed by the designers to be in-1.
deed risky 

 The rest of the files were reported to have low risk 2.
 Several designers were checking if the file has ER before and decid-3.

ing risk on that account 
 There were a few files that designers reported to be risky but they 4.

were not detected by our measurement system: We detected that 
our tool failed to calculate the complexity of these files 

 Finally it was difficult for several designers to evaluate the riskiness 5.
of a file for a specified week period of time instead of doing it gener-
ally. This created an additional difficulty for evaluating the risk for a 
specified time period 

The evaluation at Volvo was done in form of a replication as the product was 10 
fold smaller and it was enough with our contact designer to judge if our provid-
ed files were risky. The list of files that we determined to be risky was fully con-
firmed by the designer. 

 Impact on Companies 5.3

At Ericsson the files indicated by the measurement system were brought up on a 
design forum where designers discuss plans for improvements. The line manag-
er, who was the direct stakeholder for the measurement system, was provided 
with a list of files that were constantly appearing to be risky. Refactoring and re-
architecting was planned for the risky areas of the product. Early feedback on 
developed code was of great importance, thus they considered the usage of pro-
vided information for release planning also. 

Whilst we observed that the refactoring and re-architecting is initiated, at the 
moment of writing this paper, however, we did not have sufficient quantitative 

Figure 7 A snapshot of the information product visualizing the risky files 
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information to record the effects of usage of the method. For example reduced 
number of ERs or increased development velocity. By manager’s reflection the 
positive effects were slow but persistent. The organization was moving towards 
re-architecting and refactoring of risky areas. 

Because of the size and not so intense modifications of functionality there was 
no need of running the measurement system on weekly basis for automotive 
product. It was rather useful to run the measurement system release-wise to get 
early feedback on the code to be delivered. At Volvo designers considered to use 
the measurement system with outsourced development of product when receiv-
ing it. The purpose was that when obtaining new code the designers did not 
know which parts of the delivered code is risky and getting an insight about it in 
advance was helpful for them to decide where the risky areas are and thus, 
where improvements’ actions must be addressed. 

 RELATED WORK 6

There have been a few studies proposing methods for identifying the risky ele-
ments of software code. Neumann [110] proposes an enhanced neural network 
technique to identify high-risk software modules. He argues that the combina-
tion of neural network and principal component analysis (PCA) can be effective-
ly used for identifying risky software components. Our method can be consid-
ered similar with what he proposed, if we consider that the unit step function of 
neural networks is the product of Mef% and NR measures with equal weights. 
Instead of using PCA to remove collinear data dimensions we have chosen pair-
wise correlation analysis of variables and investigation of their relations, be-
cause not only correlation values but also correlation types are important when 
selecting variables: For example high M number necessitates high Sfout and 
NCLOC number. Hence it is important to select M out of these three correlated 
measures. Selim, et al. [111] construct survival models based on size measures 
and code clones to assess the risk of defectiveness. In their study they defined 
the risk based on fault-proneness of code, which is important but one aspect of 
risk. Koru, et al. [112] use Cox modeling [113] to determine the relative risk of 
software modules’ defect proneness. Gondra [114] concludes that Machine 
learning techniques sometimes are not applicable because of scarcity of the 
data. Pendharkar [115] supports this idea by claiming that defect prediction 
models based on probabilistic neural network is not pragmatic and proposes a 
hybrid approach. Case-based reasoning is proposed by El Emam, et al. [116] to 
be a good technique for identifying the risk of fault-proneness and difficult-to-
maintain classes in the code. Moreover, they validate that the use of different 
parameters such as different distance measures, standardization techniques, 
etc. does not make any difference in prediction performance. Our research relies 
on their study and uses NR as a good predictor of risk. Bakota, et al. [117] con-
structed a probabilistic software quality model where the internal quality at-
tributes of software code are represented by goodness function for evaluating 
external quality attributes of software such as analyzability, changeability, test-
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ability and stability. Instead of combining the measures in one indicator they use 
experts’ ratings for internal measures to use them as evaluators of external 
quality attributes. Moreover, they define a rule for representing external quality 
attributes quantitatively by internal ones. This work is very valuable in terms of 
new ways of thinking and probabilistic representation of quality. However it is 
unclear how they chose measures (for example code clones in some cases have 
positive effect on quality) and why colinearity of measures is not considered. 
For example they use both cyclomatic complexity and lines of code, but as we 
show in our work big cyclomatic number necessitates big size. Baggen, et al. 
[118] also construct an approach for code analysis and quality consulting but 
again using various size measures. Generally bigger size implies higher mainte-
nance effort, but it is natural as bigger size indicates a bigger product with big-
ger functionality also which secures higher profit. In fact, what matters is the 
maintainability per unit of size. In an early phase of our study designers found 
size measures useless for assessing riskiness hence we had to construct a new 
approach which calculates the risk disregarding the size, based on Mef% meas-
ure. Shihab, et al. [86] present a large scale industrial study concerned with how 
code changes can trigger various risks. They use variety of change measures 
combined with developers’ experience. This study is very similar to our study 
and the two complement each other in many points: Firstly both studies consid-
er the risk to be wider concept then merely fault-proneness of the code. Second-
ly change measures are considered to be the main source of risk. Even if there is 
complex code only the change of it can trigger risk. Thirdly both studies are 
carried out in large software development context and rely on researchers and 
developers collaboration. The difference between the two is that our study is 
more focused on combining complexity and change measures in one number in 
order to develop very simple measurement system. Their study observes the 
most influential measures among various change measures, bug reports associ-
ated with changes, and developers’ experience. 

 THREATS TO VALIDITY 7

The major validity thread is concerned with the evaluation approach with de-
signers. Ideally, complying with well-established statistical techniques, we ought 
to determine a sample size for number of files for evaluation with designers, 
randomly chose files and check them on one side with designers and on the 
other side by measurement system for determining the riskiness. Instead we 
chose all the risky files found by the system and introduce to designers, as full-
scale evaluation with a number of files of sample size was taking enormous 
amount of effort from organization. Another validity thread is the inconsistency 
of defining a threshold for risk evaluation. We mentioned earlier the thresholds 
can vary from company to company. We are certain that files with highest Rela-
tive_Risk number are the most risky ones but how to measure the risk as an 
absolute value? This question is still remaining open which could be addressed 
in the future work. We believe that the parsing capacity of the tools are very 
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important also as the experience showed that  many of the tools could produce 
severe errors when parsing which are absolutely not acceptable to be used in 
analysis. 

 CONCLUSIONS 8

Contemporary software products solve increasingly complex problems leading 
to increasing complexity of the software products themselves. An uncontrolled 
growth of complexity over a long time triggers a variety of technical risks that 
have potential of jeopardizing the business of companies. There is an increasing 
need for regularly managing these risks, since in Agile software development 
the self-organized teams deliver small increments of software almost continu-
ously. 

This study developed a method and supporting measurement system for identi-
fying the risky source code files and assessing the magnitude of the risk. The 
method is based on McCabe complexity and number of revisions of source files. 
The overall results show that out of nine initial measures the superposition of 
two measures, effective cyclomatic complexity percentage and the number of 
revisions of a file is a good estimator of risk. The risk is calculated so: 
 

Relative_Risk = Mef% * NR  
 

Generally by systematically discussing the intermediate results with reference 
group we concluded that the complex software code that is changed frequently 
is risky, hence the superposition of these two measures was evaluated as risk 
predictor.  

The method was evaluated in two projects at two companies, Ericsson and Vol-
vo Group Truck Technology. The evaluation showed that the method is effective 
in technical risk assessment as well as practical for integrated regular usage 
within modern software development organizations. The weekly walkthrough 
with designers showed that it is highly valuable to have a systematic feedback 
on riskiness of the files. Particularly it is effective to identify the most risky few 
files out of several thousands, so developers can focus on the most severe risks. 

This risk assessment method is developed in Agile context as the studied organ-
izations develop products relying on Agile principles but the method might be 
successfully used for any type of development. One reason that the results might 
be different in non-Agile environment is that NR measure might not be as strong 
indicator of potential problems as it is in Agile environment. In Lean production 
new features are provided to the customer continuously therefore it was im-
portant to have risk assessment based on a measure that reflects the change of 
code over time. Complex code is not always a problem if it is not changed or 
maintained. Agile principles in big organization imply that one team can develop 
code which might be maintained by another team later. If developed code is 
complex and hard-to-understand, it can become a problem when new teams are 
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assigned to maintain that code, therefore a fast feedback is crucial on developed 
code. 

The impact of this method is two-fold: In the short term it led to establishing 
two online, daily updated, measurement systems at the companies. In the long-
run it triggered refactoring activities. This unique opportunity to work openly 
with two companies at the same time led to knowledge sharing between them 
and learning company-to-company with the researchers as catalysers.  

Our efforts are directed towards creating integrated technical risk management 
methods for modern software development industry. The further work focuses 
on the extension of here presented method to identify the risky func-
tions/methods in the code. Also, there are plans to expand the study on models 
for companies working with model-based development. 
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ABSTRACT 

Conducting requirements reviews before the start of software design is one of 
the central goals in requirements management. Fast and accurate reviews 
promise to facilitate software development process and mitigate technical risks 
of late design modifications. In large software development companies, howev-
er, it is difficult to conduct reviews as fast as needed, because the number of 
regularly incoming requirements is typically several thousand. Manually re-
viewing thousands of requirements is a time-consuming task and disrupts the 
process of continuous software development. As a consequence, software engi-
neers review requirements in parallel with designing the software, thus partial-
ly accepting the technical risks. In this paper we present a measurement-based 
method for automating requirements reviews in large software development 
companies. The method, Rendex, is developed in an action research project in a 
large software development organization and evaluated in four large companies. 
The evaluation shows that the assessment results of Rendex have 73%-80% 
agreement with the manual assessment results of software engineers. Succeed-
ing the evaluation, Rendex was integrated with the requirements management 
environment in two of the collaborating companies and is regularly used for 
proactive reviews of requirements. 
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 INTRODUCTION 1

A well-defined software requirements specification is a prerequisite for a high 
quality software design. If a specified requirement is not clearly defined, then 
software designers consume much unnecessary development time on its clarifi-
cation. Moreover, if a requirement is not clearly defined, then there is a technical 
risk that it will be misinterpreted, designed incorrectly, and cause late design 
modifications [119], [63], [120]. For this reason, software engineers aim to con-
duct requirements reviews as fast as possible so the design and verification 
phases can be started with a well-defined set of requirements. 

Although there are several studies arguing that early and fast improvements of 
requirements pay off in software development organizations over time [121], 
[122], [123] and frameworks for improvements also exist [124], [125], [126], in 
large continuous software development projects manually conducting fast re-
views before the start of software design often is not possible because of two 
main reasons: 

 The number of regularly upgraded or delivered requirements is sev-1.
eral thousand [127], so manually reviewing such an amount of re-
quirements takes substantial amount of time 

 Continuous software product development relies on continuous fea-2.
ture delivery to their customers. In such projects most of the devel-
opment activities run in a continuous manner, therefore it is not an 
optimal solution to temporarily stop the design and verification ac-
tivities until the review process is finished 

Many researchers have reported that for large software development projects 
manual reviews of requirements is recognized as a time consuming task [128], 
[129], [130], [58], [131]. For this reason many software engineers prefer to 
integrate the review process with the software design and verification, which is 
believed to be the optimal solution. In other words, software engineers review 
every requirement just before its implementation, and if there is an unclear 
specification, they clarify it with the requirements analysts.  

As Kauppinen, et al. [122] reports, practitioners find the tool support is a key for 
efficient reviewing process, as the size of software products grow. Software 
engineers at the four companies that we collaborated with, also consider that 
automated means for requirements review would be of great help. Based on 
their practice, they had a perception that in each of the software development 
organization, out of thousands of requirements only 3-5% needs improvements. 
As the collaborating practitioners stated, “Even if we could locate half of this 3-
5% just in time of their delivery, then we could considerably reduce the overall 
development effort”. Additionally, we learned that requirements analysts prefer 
getting fast feedback because it becomes easier to remember the requirements 
they just wrote, and thus the correction becomes easier. 
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On this backdrop, our research aimed to create a method for automated re-
quirements’ reviews and ranking based on needed improvements. The ambition 
was that the method should be simple to use, straightforward to help improving 
requirements, and easily integrable in any software development environment. 
In a pursuit of such a method we addressed the following research question:  

How can we automatically rank the textual requirements according to 
their need for improvements in large continuous software development 
projects? 

Our key contribution is a measurement-based automated method which identi-
fies requirements that need improvements. The more detailed contribution of 
the paper is as follows: 

 Four measures of  internal quality of textual requirements 1.
 A combined measure (   ) for requirements ranking 2.
 Rendex – a method for requirements ranking based on      3.
 Evaluation results of the ranking accuracy and the use of Rendex in 4.

four large software development products in four companies 

The research was carried out with collaboration of four large software devel-
opment companies: Saab, Grundfos, Volvo Group, and Volvo Car Group. In the 
inception, we conducted an action research project in an organization in one of 
these companies. A reference group of software engineers was formed, which 
supported us with systematic feedbacks in designing and evaluating the 
measures. Afterwards, an initial evaluation with six software engineers and 90 
requirements in three companies showed that the assessment of Rendex has 73-
80% agreement with the manual assessment of software engineers. In the 
fourth company, where the evaluation was conducted qualitatively, Rendex 
could locate the needed improvements in the top 5% of the ranked require-
ments. Consequently, the method was integrated with requirement manage-
ment systems in two of the companies and used in a systematic basis for proac-
tive requirements’ reviews. The other two companies used the method in a 
semi-automated fashion. 

As a final remark, we must say that Rendex is a result of an action research pro-
ject, and therefore it needs more evaluations so that we can understand the 
possibilities of its generalizability. With the promising results we also found that 
Rendex should be calibrated to companies’ specific requirements. To provide 
further guidelines on more generic use of Rendex we plan a follow-up evalua-
tion with a larger data set.  

 COLLABORATING SOFTWARE ORGANIZATIONS AND 2

THEIR REQUIREMENTS 

Volvo Group is a Swedish company that develops and manufactures trucks, 
buses, and construction machines. The company develops ECUs (electronic con-
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trol units) for these vehicles and machines. An ECU is a computer which controls 
a specified functionality for a vehicle automatically. Such functionalities can be, 
for example, climate control or break control. Rendex was evaluated in an organ-
ization that develops the ECU of chassis for the trucks. 

Saab is a Swedish company which develops and manufactures products and 
services for military defence and civil security. One of the security equipment is 
a ground radar system, which detects flying objects and reports information 
about them. The radar system is controlled by a computer which performs the 
object identification and analysis. Rendex was evaluated in the organization that 
develops software for the radar system. 

Volvo Car Group is a Swedish company that develops and manufactures vehi-
cles in the premium segment. Similar to Volvo Group the company develops 
ECUs, which perform variety of functionalities for cars. Rendex was evaluated in 
an organization which develops the climate control unit of the cars.  

Grundfos is a Danish company that develops and manufactures pumps for vari-
ety of purposes. The company also develops software for electronic systems 
used in pumps. The software system enables the automatic self-control of the 
pumps’ functionality as reaction to changing external parameters, such as liquid 
pressure, temperature, or volume. Rendex was evaluated in an organization 
which develops the electronic control unit for water pumps. 

The organization in which Rendex was developed, did not want to reveal its 
name or to which company it belongs to. However, we shall say that it was an 
organization in one of the four companies, and it is not any of the four organiza-
tions where Rendex was evaluated. 

The number of requirements in each of the organization was several thousand. 
The requirements that we analysed in the companies were of two levels of ab-
straction: component level and subsystem (system) level. Subsystem level re-
quirements were more general, containing more holistic description of system’s 
functionality. These requirements were written by requirements analysts who 
interact with customers. These requirements usually were small in size, typical-
ly 2-5 lines of natural language text in a page of A4 format. Component level 
requirements were detailed and comparably large. They were written by re-
quirements analysts who work closely with software designers and testers. 
These requirements specified how exactly every functionality should be imple-
mented. They were written in natural language but often did not follow gram-
matical rules and could contain tables, natural language pseudocode, camel-
cased words, etc. The size of these requirements could stretch from 1 line to a 
whole page. 
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 INTERNAL QUALITY MEASUREMENT MODEL OF RE-3

QUIREMENTS 

Following the practice of the four companies, a textual requirement needs im-
provement if it is difficult to understand and interpret for implementation and 
test. Usually vague specifications and complex descriptions are the common 
sources of difficulty of understanding. There are also other sources, such as 
incorrect or infeasible specifications. However, these sources mainly can be 
identified by customers or requirements analysts in the phase of requirements 
elicitation. Thus in the specification phase the main concern with the require-
ments is whether they are clearly understandable. That is why reviewers mostly 
care about understandability of requirements for facilitating the implementa-
tion and testing. Understandability is affected with several internal properties of 
requirements [132], grouped under the umbrella of internal quality. So in order 
to quantify internal quality and rank requirements we aimed to develop 
measures of internal quality properties. A well-known set of internal quality 
properties for software artifacts is proposed by Briand, et al. [16], which we 
used in this study. An overview of the measures and properties are presented in 
Figure 1.  

 
Figure 1 Requirements internal quality measurement model 

The left side of the figure represents the internal quality properties of require-
ments: complexity, coupling, size, length, and cohesion. The right side of the figure 
illustrates our designed measures. We could measure aspects of complexity, 
coupling, and size. The arrows between the measures and the properties indi-
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cate the designed measures per property. Complexity is generally defined for the 
concept of system and is closely related with elements and their interconnec-
tions in the system. High complexity of the system directly affects its under-
standability. We use a definition of complexity provided by Rechtin and Maier 
[133] and adapt it to textual requirements the following way: The complexity of 
a requirement is defined by its number of different actions so connected or related 
as to perform a unique function. As this definition indicates, we are not con-
cerned with the syntactic complexity of a requirement’s text. This means we 
define complexity from the standpoint of system design, hence, this definition is 
not anyhow concerned with the syntax or morphology of the text. However, we 
should notice that if there are more actors and relations described in a require-
ment’s text the syntax of that text can become more complex. 

Coupling, is generally defined for a subsystem, as to indicate how it influences or 
is influenced by other elements of the system. We use the concept of coupling 
adapted from ISO/IEC/IEEE 24765 international standard of Systems and Soft-
ware Engineering Vocabulary [134] and define it for a requirement the follow-
ing way: Coupling for a given requirement indicates the strength of its relationship 
with other requirements, software modules, variables, or external documents. This 
definition indicates that strongly coupled requirement may have many refer-
ences to software modules, other requirements, or external documentation, 
which makes a requirement difficult to understand. 

Size is a well-known property widely used in software measurement. From qual-
ity assessment standpoint, the basic assumption on this property is that if an 
artifact is too big then it is hard to understand and manage [135]. We used this 
assumption in our study and designed a size measure for internal quality as-
sessment. 

Length is another property that is used in software measurement. Known length 
measures are depth of inheritance or nesting depth of blocks in coding. Initially 
we designed length measures for requirements, however they were evaluated to 
be ineffective quality indicators (see section 4.6). 

Cohesion is the last property in the model. We can refer to two types of cohesion 
of a requirement. One is the linguistic cohesion, which indicates how smoothly 
the members of a sentence are linked in order to deliver the meaning of the 
sentence to the reader. More discussion on linguistic cohesion is provided in 
subsection 4.6. The second type of cohesion refers to the technical representa-
tion of a requirement, and can be defined as follows: Cohesion of a given re-
quirement indicates the manner and the degree to which the actions specified in 
the requirement are related to one another [134]. As the definition suggests co-
hesion is an important internal quality attribute for natural language require-
ments, because it indicates how well the relation of actions is described in a 
requirement. Two meaningful sentences that specify the same requirement may 
not have the same cohesion in their description, and therefore, they will not be 
equally understandable. Unfortunately we could not design a simple measure 
for the cohesion property due to its subjective nature and the difficulty of ex-
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tracting semantic information based on syntactic analysis. Generally there are 
promising techniques for designing cohesion measures, for example Latent Di-
richlet Allocation [136], however using sophisticated techniques compromise 
our aim of creating simple and easily integrable method. We decided therefore 
to adhere to simple measures. 

 DEFINING THE MEASURES 4

Table 1 presents the designed measures of three internal quality properties of 
textual requirements. 

Table 1 measures and their measurement method 

Name  Abbr. Definition  Measurement method 
Number of 
conjunctions 
(complexity) 

NC The number of 
such linguistic 
conjunctions that 
indicate a relation 
of two related 
actions in a re-
quirement 

Count the overall number of occurrences of 
the following conjunctions (27 of them): And, 
after, although, as long as, before, but, else, if, 
in order, in case, nor, or, otherwise, once, 
since, then, though, till, unless, until, when, 
whenever, where, whereas, wherever, while, 
yet  

Number of  
vague 
phrases 
(complexity) 

NV The number of 
such phrases that 
indicate either 
imprecise defini-
tion or multiple 
interpretations of 
a requirement 

Count the overall number of occurrences of 
the following words and phrases (26 of 
them): May, could, has to, have to, might, will, 
should have+past participle, must have+past 
participle, all the other, all other, based on, 
some, appropriate, as a, as an, a minimum, up 
to, adequate, as applicable, be able to, be 
capable, but not limited to, capability of, ca-
pability to, effective, normal 

Number of 
references 
(coupling) 

NR The number of 
variables such as 
state, sensor data, 
and module names 
in a requirement 

Count all unique words containing at least 
one capital letter not in the beginning of the 
word or at least one underscore in the word. 
Examples are: OperatingHours_log, Room-
Climate, ReducedLoadMode 

Number of 
reference 
documents 
(coupling) 

NRD The number of 
references to 
standards and 
other documents 
in a requirement 

Count such phrases which indicate reference 
to documents and standards. In case of one 
of the companies these are the phrases 
which indicate references to documents: 
defined in reference, defined in the refer-
ence, specified in reference, specified in the 
reference, specified by reference, specified 
by the reference, see reference, see the ref-
erence, refer to reference, refer to the refer-
ence, further reference, follow reference, 
follow the reference, see doc. 

Number of 
words (size) 

NW The number of 
words of a re-
quirement 

Count the number of words in the require-
ment. 
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The last column of the table presents the method (the complete list of the speci-
fied keywords) for measuring a given measure. For example, if we need to calcu-
late NC measure of a requirement we must count the overall number of occur-
rences of the specified keywords in a requirement. The complete list of the spec-
ified keywords for NC (27 keywords) is presented in the second row of the last 
column of the table. It is important to notice that when measuring any of the 
following three measures, NC, NV, or NR, we must strictly follow the rules pre-
sented in the last column of the Table 1. This is because the list of keywords that 
we present is selected through a rigorous evaluation process and in case of al-
teration the measurements will be exposed to inaccuracies. NRD is the only 
measure which is context dependent and should be calibrated when using for a 
particular organization. 

In the next subsections we present details about each measure and show several 
examples of how the aforementioned measures affect the requirements. The 
examples that we present are not complete requirements but complete sentenc-
es extracted from requirements, which can help understanding the measures 
and their use. 

 The Number of Conjunctions as a Complexity 4.1

Measure (NC) 

A conjunction is a part of a sentence that connects words, clauses, or sub-
sentences. The analysis showed that in textual requirements the majority of all 
known conjunctions are used to show relations of actions. All such conjunctions 
are included in Table 1 to define the measurement method for NC measure. 
There were a few conjunctions which not always showed a relation of two ac-
tions, and therefore, they were not included in Table 1. These conjunctions are 
“than”, “that”, “because” and “so”. Compound conjunctions, such as “even 
though”, which already contain one of the simple conjunctions listed in the table, 
are also excluded. Every conjunction indicates a relation. Consider the following 
simple example extracted from a requirement of subsystem level: 

 

In this requirement there is a relation of two actions connected by the conjunc-
tion “in order to”. This conjunction specifies the condition (not responding to 
external signals) in case of which a given module shall be able to conduct a spec-
ified action (to transmit valid data). Here is another example which is extracted 
from a requirement of component level: 

 

In order to transmit valid data within 100ms SIU shall not respond to external 
signals 

When ContainerType changes to “not valid” then ContainerCapacity should be 
set to the last value as long as VolumeReset is requested. 
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In this example there are three actions connected by two conjunctions. The first 
one is used in order to specify how two actions should follow one another. The 
second one specifies the time interval where the specified relation of the two 
actions must be valid. When the number of conjunctions increases the number 
of relations between actions also increases. This leads to a complex description 
of many actions and relations, which creates difficulty for understanding how to 
implement and test the given requirement. Particularly, it becomes hard to fol-
low how the actions comply with or has mandate over each other, and what the 
sequences of actions are in relation to one another. 

We also observed that this measure is the most context-independent measure 
among the test of the measures we defined. Conjunctions are present in any type 
of requirements specification and show exactly the same phenomenon – rela-
tions of actions. 

 The Number of Vague Phrases as a Complexity 4.2

Measure (NV) 

As we mentioned earlier the complexity of a requirement is defined by de-
scribed actions and their relations in the text. While the conjunctions indicate 
the actions and their relations, the vague phrases indicate the unclearness of the 
actions or actors, and their relations. In other words vague phrases introduce 
interpretative nature to the requirement description. Consider the following 
simple example extracted from a requirement of subsystem level: 

 

In this example there are two problems with the requirement. First, the re-
quirement starts with a phrase that assumes a previous specification, which we 
have to explore to understand the context. Second, the expression “all the other” 
does not specify what other values can be expected. Presumably, this way of 
writing assumes that there are two sets of values of a given variable and for 
each of the sets different courses of actions are executed. However, our observa-
tions showed that “all other” values usually are not predefined in the document 
and such a way of writing rather shows that the requirements designer has tried 
to include all unspecified possible scenarios in one sentence without proper 
consideration of them. A similar word is “some”, which has the same effect on 
requirements as the phrase “all the other”. Here is another example from a re-
quirement of component level: 

 

All the other transitions than from and to programming session shall not affect 
the ability to execute non diagnostic tasks 

If the ShortStopHeater_hdlr does not detect open circuit, that could be interpreted 
as thermoswitch is "opened". 
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In this example the modal verb “could” is used. The first part of this requirement 
contains a condition which may or may not occur. The second part states that 
something could occur if the first condition occurs. However, the use of “could” 
does not let the reader know whether the second part should be implemented 
or it is a consequence that should be considered by the reader. We observed that 
several modal and auxiliary verbs most of the time introduce such an interpreta-
tive nature to the text of requirements. Modal verbs that indicate wish or desire 
instead of a requirement that must be developed are ambiguous. Examples are 
“could” and “might”. Auxiliary verbs that indicate past tense or unaccomplished 
desires are ambiguous. Examples are “must have had” and “should have been”. 
The full list of these phrases is presented in Table 1.  

Often, in a requirement there is a need for specifying a range or a measure of 
“something”. This “something” can be speed, frequency, intensity, mode, accel-
eration, etc. We observed that, there are several qualitative words that in prac-
tice are commonly used for such specifications but are inadequate and thus 
introduce inaccuracy in requirements. Such words are: adequate, effective, effi-
cient, normal, etc. It is important to mention that we can find many more synon-
ymous words to these ones, for example by using a thesaurus dictionary. How-
ever, observing many examples of requirements in companies, we found that 
there are only a small set of words that are often used and are source of ambigu-
ity in the requirements. This is the reason why the list of vague phrases included 
in Table 1 is not very rich.  

We also found many phrases that have tangible likelihood to introduce vague-
ness but do not necessarily do so. These phrases were omitted in our measure-
ments, as they introduce inaccuracy in the measurements. We widely used exist-
ing literature ([137], [138], [139]) for designing NV measure with additional 
evaluation.  

 The Number of References as a Coupling Meas-4.3

ure (NR) 

This measure is designed to indicate the number of reference items in a re-
quirement that are referred with special names and require certain knowledge 
about them. These references can be signals, states, modules, or functions which 
have clearly defined roles. Consider the following example from a requirement 
of component level: 

 

As the example illustrates there is a state (Not_Valid) and four variables in the 
requirement. These variables are defined elsewhere in the requirements specifi-
cation, appended documents, or source code. To implement this requirement, 
software designers should have a good understanding of the referenced varia-

If ContainerCapacity or ContainerWarn or ContainerTemp is set to Not_Valid 
then ContainerAlert shall be set to Not_Valid. 
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bles in it. Many such variable names in a requirement indicate that much 
knowledge is required to understand how all these variables can and will inter-
act together. We observed that for requirements of component level these refer-
ences are one of the main constituents of the requirements and by the percep-
tion of the software engineers a high number of NR can indicate problems. The 
NR was measured by counting all the words that contain at least one capital 
letter or underscore in the middle of the word. This writing convention was 
well-established in all of the companies for requirements of component level. 
This was influenced by the principles of software coding, where the names of 
variables and functions also contain camel cases and underscores. Because of 
this convention it was easy to measure NR accurately in the four companies.  

 The Number of References to External Docu-4.4

ments as a Coupling Measure (NRD) 

NRD is designed to indicate the references of external documents found in a 
given requirement. External documents can be international standards, compa-
ny standards, or other external specification documents. We found out that 
when designers encounter reference documents in requirements, they have to 
look through them in order to understand how the implemented requirement 
should comply or be consistent with the documents. Often, there were no specif-
ics on how exactly the requirement should comply with the referred document. 
Consider the following example extracted from a requirement of subsystem 
level: 

 

In this example the first sentence states that a specified concept should allow 
changes in certain modules. The second sentence purports to specify the exact 
modules which are changeable. The second sentence, however, only refers to a 
document where the necessary information can be found. Usually the refer-
enced documents contain big amount of other information also, so it is hard to 
find the necessary information. 

In different organizations there are different conventions or habits of how to 
refer to a document in a requirement. In order to measure NRD in a particular 
organization, we identified the common phrases for referring to documents in 
that particular organization. In Table 1 we have specified the phrases, which are 
specific for counting NRD in one of the companies. In order to define a meas-
urement method for calculating this measure in a particular organization, we 
recommend using likely keywords that might be used for referring external 
documents. For example “see document”, “see the standard”, “document”, etc. 
Making searches based on many synonymous keywords in a large requirements 

The C concept shall allow changes in the configuration of the M modules after the 
software has been built. For detailed specification of which modules and parameters 
are changeable see reference R configuration specification. 
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specification can reveal what keywords are generally used for referring a docu-
ment. Such an analysis then will allow understanding whether there is a set of 
keywords that can exhaustively capture all references (or nearly all references).  

 The Number of Words as a Size Measure (NW) 4.5

Counting the number of words is a commonly used measure for measuring the 
size of a text. This measure was also used in our analysis in order to understand 
how it correlates with the newly defined measures and whether it affects the 
internal quality of requirements. 

 Measures Considered but Not Used 4.6

We found that pure grammatical problems with requirements were not tangible 
in the practice of the companies. This was true for both high level and low level 
requirements. The most likely reason is that practitioners who write require-
ments have reasonably good language skills and actually write reasonably high 
quality requirements from the syntactic perspective. Even though in low level 
requirements the natural language syntax is not always assessable as a gram-
matical construct, the “syntactic” understandability of the flow of the text is still 
reasonably good. But the understandability of the requirement itself, which has 
a pivotal role in designing software, can suffer due to high complexity and cou-
pling. Even if there were small morphological or syntactic problems, such as 
putting wrong propositions or using the adverbs in wrong positions of a sen-
tence, they hardly ever became an issue for the software designers. We consider 
that the cohesion analysis of pure morphology or syntax is not desirable in this 
context for two reasons: 

 There are different styles of writing requirements in every company, 1.
and these styles of writing are not necessarily grammatically assess-
able. Such examples can be tables of specifications, symbolic repre-
sentations, pseudocode, and briefed clauses. Such requirements can-
not be grammatically assessed, because they do not represent “sen-
tences” as linguistic constructs. 

 Following the previous point, the measures which are designed for 2.
morphological or syntactic analysis usually follow a set of defined 
rules enforcing how a requirement should be written, but they do 
not necessarily reveal the actual problems in requirements  

We identified several phrases which can influence the requirements’ quality but 
do not necessarily do so. Examples are: “than”, “that”, “during”, “easy”, “fast”, 
“passive”, “should” etc. For example the word “that” is not always used as a con-
junction, but a pronoun or an adverb, therefore, it does not show interconnec-
tions of actions. The keyword “fast” can be used so: “the signal should be as fast 
as 20 units per second”. Counting these keywords reduces the measurement 
accuracy and introduces construct validity threat. 
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The nesting level in structured text such as with bullet points or numbering rep-
resents a measure of length property. This measure is analogous to the nesting 
depth in software coding, that is the reason we considered evaluating it. Howev-
er, while in code nesting introduces complexity, in natural language text it rather 
shows how the text is broken down into more simple and comprehensible piec-
es. In large requirements bullet points were usually used to indicate independ-
ent pieces of functionalities which comply with a general condition for all of 
them. This was an effective tactic for making a large but simple requirement. In 
many cases we also observed that bullet points effectively replaced conjunctions. 
Finally, nesting level in requirements was not as deep as its analogous measure 
in the code. While using bullet points in some cases simplify a requirement, in 
other cases they do not have any tangible effect, so nesting in text that is based 
on bullet points was excluded it from the final list of measures. Another measure 
of length property is the hierarchical level of a requirement among other re-
quirements. However we found that the hierarchy level of a requirement has no 
tangible impact on its quality. . 

Three measures of evolution, number of revisions, number of versions and number 
of variants of requirements were initially measured. Unlike their analogous 
measures for source code [140], these measures did not have significantly high 
values, usually limited in a narrow interval of [0, 4]. After the evaluation they 
were shown to be poor indicators of internal quality and were not considered 
further in this research. Initially, in order to detect the number of actions in the 
requirements, we measured the number of verbs (imperatives) and punctuations. 
However the number of verbs was not an accurate measure due to the following 
reasons: 

 The number of verbs in a sentence does not always correspond to 1.
the number of actions specified in that sentence 

 Many requirements were written in natural language text but did not 2.
represent sentences as grammatical constructs, and therefore often 
omitted the use of verbs. For example: “If signal A or B then default 
state activation” 

Punctuations (comas, colons, semicolons) indeed connect actions, but are not 
always used to show such connections. This is because several conjunctions, 
which do not require separation with comma, can connect actions as well, thus 
the number of punctuations do not approximate the number of relations in a 
given requirement. 

 Range of Measurement Values 4.7

It is important to notice that the measures had significantly different values 
from each other in the measured set of requirements. Of all the measures NC 
had the biggest values (excluding the size measure). For the requirements of 
component level, in average NC had nearly twice as big value as NR. In average, 
it also had about six times as big value as NV. The NRD was infrequent. There 
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was a little chance that a requirement can have NRD = 1 value. For the require-
ments of subsystem level, the proportions were nearly the same with one excep-
tion: NR was more infrequent. This can be explained by the fact that high-level 
requirements are much closer to daily language and thus do not contain many 
special names of variables or functions. 

 RESEARCH DESIGN 5

The research was initiated in a large software development organization as an 
action research project with collaboration of the authors and software engi-
neers. During a period of nine months we developed Rendex in the collaborating 
organization. Later we conducted four evaluative studies in the four companies: 
in three of them Rendex was evaluated quantitatively and in one of them quali-
tatively. In the next subsection we describe the process of developing the 
measures.  

 Action Research for Designing Measures 5.1

To develop the measures we established a collaboration unit with the research-
ers (the authors of this paper) and a reference group of software engineers in 
the collaborating organization. The principles of action research were used 
Susman and Evered [42], Baskerville [141]. The reference group consisted of 
one manager, one test leader, one software designer, and one design architect. 
The software engineers had 15 plus years of experience in software develop-
ment and were regarded as the key engineers of the organization. The research-
ers established monthly formal meetings with the reference group, as well as 
many non-formal meetings.  

 
Figure 2 An overview of the research method 
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Figure 2 presents the action research cycle and three consecutive research ac-
tivities. The cycle with four iterations was carried out for designing the 
measures. Then Rendex was developed, and its ranking accuracy and use in the 
companies were evaluated. The next four subsections describe the process of 
designing the measures through the action research cycle. 

 Access to the data 5.1.1

The data were extracted from the requirements management tool into a RIF 
(Requirements Interchange Format) document. The document contained all the 
necessary information about the requirements, namely, requirements names, 
identification numbers (ID), revision numbers, variants, and descriptions. 

 Design measures 5.1.1

In order to get started with defining measures, the researchers and the engi-
neers of the reference group met and proposed an initial set of measurable as-
pects of requirements supported by certain rationale. To propose an initial set 
of measures in the very first iteration, the researchers requested from the refer-
ence group to identify and present two sets of requirements: The first set should 
contain 10 requirements that need improvements by the engineers’ perception. 
The second set should contain 10 requirements that do not need any improve-
ments. The software engineers organized a workshop, where with other six 
engineers of their team they discussed and selected the requested 20 require-
ments and provided to the researchers. In this context a requirement is regarded 
as “needing improvement” if software designers or testers find it difficult to under-
stand for implementing or testing. The researchers examined the two sets of 
requirements and tried to identify the properties that distinguish these two sets 
of requirements. The researchers explored linguistic and technical aspects of the 
requirements and investigated what is measurable. Based on this analysis the 
researchers designed the initial proposals of measures. 

 Apply measures 5.1.2

Once the initial proposals of measures were defined the researchers developed 
a tool and conducted measurements. A Python script was used to parse the RIF 
document. After parsing, the results were stored in an output file, containing the 
requirements’ name and results of the measurement per requirement.  

 Evaluate measures 5.1.3

Four evaluative iterations were conducted with the reference group through the 
action research cycle. Each of the iteration was a workshop with the researchers 
and reference group, where all the proposed measures were discussed. In the 
workshops the researchers presented the design of the measures and motiva-
tions behind the design. Several requirements with both high and low meas-
urement values were discussed for all the measures. The engineers discussed 
what the measures mean for them, what they perceive the measures indicate, 
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and then they proposed suggestions. Considering the engineers’ reflections the 
researchers selected two sets of requirements for continuing analysis and pre-
paring the next workshop session. Each of the set contained 5-6 requirements 
and was selected based on the following criteria: 

 The first set represents requirements that are difficult to understand 1.
but the measures that were designed in the previous iteration could 
not detect these requirements 

 The second set represents requirements that are easy to understand 2.
but they have high values for the measures designed in the previous 
iteration. 

By scrutinizing these requirements, the researchers could understand the rea-
sons of why the defined measures were not adequate for the separated sets of 
requirements. This preparation allowed the researchers to change or solidify 
the rationale that was provided for designing the measures and facilitated the 
process of understanding the generalizability of the measures. Several measures 
that were considered candidate measures in the first iteration were invalidated 
and ruled out during the later iterations. Overall about 60 requirements were 
discussed for designing the measures including the first 20 requirements de-
scribed earlier in this subsection. 

 Developing Rendex 5.2

Once the measures were designed, we decided to combine them into a single 
indicator that can be used for requirements assessment and ranking. However, 
before combining, we ought to check whether or not there are strongly correlat-
ed measures, because strongly correlated measures are alternative measures of 
the same property. Simply stated, strongly correlated measures indicate exactly 
the same problem in a requirement. Using both of them for obtaining a single 
quality indicator can artificially diminish the importance of the rest of the 
measures in calculating a quality index for requirements [72]. We used Pearson 
correlation coefficients and correlation plots for correlation analyses. The re-
sults of the correlation analyses between the measures are provided in section 
6. 

To obtain a single quality indicator we conducted regression analysis, because it 
allows quantitatively determining optimal coefficients of the measures. In order 
to conduct regression analysis we used sample sets of requirements from the 
companies which were manually assessed by software engineers in the compa-
nies.  

Before conducting regression analysis we postulated a formula for requirements 
ranking, which is similar to a regression equation but the weights of the 
measures are defined with a qualitative approach, that is, by asking the experts 
of reference group and summarizing their responses. If the postulated formula 
performed well in requirements ranking and could be a good approximation for 
all regression equations (an equation per company), then we could use it as a 
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generalized formula for requirements ranking. To determine the weights of the 
measures, we organized a workshop with the reference group and discussed the 
measures and their influence on the requirements. On several examples, the 
engineers expressed their understanding of how much the measurement values 
influence the understandability of the requirements. Summarizing we deter-
mined the approximate coefficients of the measures and postulated a formula of 
quality index: 

                  (1) 

 Evaluating the Ranking Accuracy of Rendex 5.3

This subsection presents the two approaches by which we evaluated the rank-
ing accuracy of Rendex. Both approaches rely on manual assessments of soft-
ware engineers    , where     is the averaged rank for a requirement’s internal 
quality given by software engineers. In the first approach we used the postulat-
ed formula (1) for calculating     of requirements and evaluating how much it 
agrees with    . In the second approach we employed regression analyses to 
determine how well the regression equations can predict    . 

 The first approach: evaluating QIR against QIE 5.3.1

In order to compare the results of the automated ranks (   ) with the manual 
assessments (   ) we defined the following stepwise process: 

 Rank all requirements using    .  1.
 Randomly select 15 requirements from the top 100 requirements 2.

with highest     (requirements needing improvements) 
 Randomly select 15 requirements from all the requirements that are 3.

not included in the top 300 requirements with highest     (satisfac-
tory requirements). The next 200 requirements after the top 100 re-
quirements were omitted intentionally in order to assure that there 
is a significant measurement discrepancy between requirements that 
need improvements and requirements that do not need any im-
provements according to     

 Create a random mix of the two groups of requirements and get a set 4.
of 30 requirements 

 Select two software engineers for assessing the quality of the 30 re-5.
quirements 

 Ask the two engineers to rank each requirement using 5 values of 6.
Likert scale, where 1 means a requirement is absolutely easy to un-
derstand and 5 means the requirement needs improvement most ur-
gently. This five-scale of ranking is chosen because there shall be 
enough ranks to observe the disagreement of ranking between engi-
neers themselves. When conducting the evaluation with engineers 
we also provided textual description per rank, indicating what exact-
ly the rank means (Table 2). 
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Table 2 Descriptions of ranks 

Rank Description 
1 It is absolutely easy to understand this requirement 
2 It is rather easy to understand this requirement 
3 This requirement can be improved to make it easy to understand 
4 This requirement should be improved, because it is hard to understand 
5 This requirement must be improved, it is not possible to understand 

 

 Combine and average the assessment results of engineers as a final 7.
quality index of engineers (   ).  

 Classify the requirements into two categories – satisfactory and 8.
needs improvement – based on     two alternative ways 

 Alternative 1: Strict case 9.

a. If the         then the requirement is considered as satisfac-
tory  

b. If the        then the requirement is considered as needs 
improvement 

 Alternative 2: Not-strict case 10.

c. If the       then the requirement is considered as satisfacto-
ry 

d. If the       then the requirement is considered as needs im-
provement 

 Develop a confusion matrix for both strict and not-strict cases by the 11.
rules specified in Table 3. The TN, FN, FP, and TP are true negative, 
false negative, false positive and true positive values corresponding-
ly. 

Table 3 Confusion matrix and evaluation rules 

     
satisfactory 

    needs 
improvement 

Evaluation method 

Strict case: QIE < 3 
Not-strict case: QIE ≤ 3 

TN FP  
 
PA%=100*(TP+TN)/n% Strict case: QIE ≥ 3 

Not-strict case: QIE > 3 
FN TP 

 

 Calculate Percentage Agreement (PA) for both strict and not-strict 12.
cases by the following formula: PA=100*(TP+TN)/n% to assess the 
agreement of     and    . The number n=30 indicates the overall 
number of requirements in the sample size. 

Since the portion of the requirements that need improvements was much small-
er compared to the overall number of requirements (3-5%), a completely ran-
dom selection of the sample size would result in very few or no requirements 
turning out to need improvements among the 30 requirements. This fact would 
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jeopardize the evaluation results. Instead we selected the sample size based on 
the    , which postulates that 15 requirements out of 30 need improvements 
and the other 15 are fine. This tactic balanced the two groups of the require-
ments in the sample size. 

The two alternative cases of evaluation (strict and not-strict) are carried out due 
to a problem of creating binary categorical data: If there are many requirements 
that get marginal average     number (e.g. average       ) the estimated 
agreement (PA) between     and     will be an underestimation or overestima-
tion. By providing two alternative ways of assessments, we can have more ob-
jective view on the assessed agreement. 

We must notice that the manual rankings of requirements in the sample sets are 
based on subjective judgments of software engineers. For this reason we tested 
the congruence level of the two engineers’ assessments. Kendall’s tau coefficient 
[142] was used for this test, because the data is of ordinal type and for two 
raters.  

 The second approach: conducting regression anal-5.3.2

yses for obtaining QIR 

Using the same data samples of the manual assessments described in the previ-
ous subsection, we conducted regression analyses to determine the coefficients 
of the measures in the regression equations. Through these analyses we also 
tested the statistical power of regression equations in predicting the manually 
provided ranks.  

 Establishing the evaluation setup in the companies 5.3.3

In each of the companies we chose a software development organization where 
the method could be evaluated. In each of the organization we collaborated with 
software engineers, who helped us in accessing their requirements, discussing 
the adequateness of our measures for their requirements, tuning the measures, 
and selecting two software engineers for manual assessments of the sample sets 
of requirements. The collaborating engineers had core knowledge about their 
requirements management processes and had many years of experience (> 8 
years) in requirements management. The engineers who provided the manual 
assessments were software designers and testers with 10 plus years of experi-
ence. They were neither a part of designing the measures nor knew about the 
measures. The companies preferred not to reveal the exact number of require-
ments, but we can say that the number of requirements in each organization 
ranged from 2000-8000. Since the companies did not want to present results 
mapped on companies henceforth we refer the companies as company X, Y, Z, 
and Q. 
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 Evaluating Rendex in Companies 5.4

After finalizing the development of the method, all four companies expressed 
their interest to use the method and find out whether they would like to adopt it 
for regular organizational use. Due to a variety of factors, the adoption of the 
tool was different from company to company. We were directly involved in the 
process of integrating Rendex in two of the companies, which used the same 
requirements management tool. The third company preferred integrating the 
four measures in the set of rules that they had defined for writing requirements. 
The last company used our Python script for semi-automated evaluation of re-
quirements whenever needed. After nearly 6 months of using the method we 
had two formal meetings with technical leaders of the requirements manage-
ment teams in the first two companies.  In both cases we asked questions about 
how they think the method performs, whether they feel that its application eas-
es the review process and spares time for them, whether they perceive the tool 
is accurate in evaluating requirements, and whether the way it is integrated to 
the requirements management system is adequate for use. 

 RESULTS OF CORRELATION ANALYSES AND SELEC-6

TION OF MEASURES 

Pearson correlation coefficients between the measures for three companies are 
presented in Table 4 (the fourth company is not included in this analysis). The 
analysis shows strong correlation between NW and NC measures for the three 
companies. There are also significant correlations between NR and NC in case of 
company Χ (0,578), between NV and NC in case of company Z (0,625), and be-
tween NV and NW in case of company Z (0,563). The rest of the correlation coef-
ficients are weak or insignificant. The absence of correlation coefficients for 
NRD measure in case of company Y is explained by the fact that requirements of 
company Y are of subsystem level which do not have high enough values for 
NRD in order to permit correlation analysis. 

Table 4 Correlation analyses results of measures for three companies 

Χ/Υ/Ζ NW NC NV NR 
NC 0,80/0,62/ 0,86    
NV 0,48/0,23/ 0,56  0,36/0,21/0,62   
NR 0,46/0,46/0,39 0,57/0,35/0,43 0,14/0,15/0,29  
NRD 0,25 /  -  / 0,29 0,26/ - /0,27 0,04 / - /0,12 0,14/ - /0,05 

 

As there is a fairly strong correlation between NC and NW we should choose 
only one of them. In order to choose a single measure out of NC and NW we 
analyze their correlation plots. In Figure 3 we can see correlation plots of NC 
and NW where every dot represents a requirement.  
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Figure 3 Correlation plots of NC and NW measures for all three companies 

These three plots have one general feature: In all of them the dots are scattered 
over NC and NW dimensions in such a way that the upper left side of the plot 
(along with the axis of NC measure) is empty. This means that there are no re-
quirements that have many conjunctions and are small in size at the same time, 
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and that is intuitive. Oppositely, we see that there are many requirements along 
with the axis of NW measure and in the nearby area. This means that there are 
requirements which have big size but do not contain many conjunctions. Con-
cluding the above two statements we can say that a requirement text with many 
conjunctions necessarily has many words as well, whereas, a requirement text 
with many words does not necessarily have many conjunctions. In other words, 
only NC measure indicates both size and complexity, while NW indicates only 
size. For this reason we chose only NC to use in the regression analysis. 

 COMBINING SELECTED MEASURES 7

A weighted sum of the four selected measures is used as a combined internal 
quality index. The weights of NC, NV, and NR were considered equal by the ref-
erence group engineers. This means that adding a conjunction or a vague phrase 
or a reference to a requirement decreases that requirement’s understandability 
equally. The influence of NRD was considered to be about five times stronger on 
internal quality. This is reasoned the following way: Having a reference to a 
document requires considerable amount of time to find the reference and the 
necessary information in it for understanding how a requirement should comply 
with it. Similarly, five conjunctions make a requirement so difficult that a de-
signer usually needs a clarification by communicating with a relevant person to 
understand it. So, considering the weights of the measures we calculated QIR for 
a requirement by formula (1): 

                  (1) 

    is not an absolute but a relative measure of internal quality, indicating that 
the requirements with smaller     have better quality.     does not provide a 
threshold by which a requirement can be regarded either “satisfactory” or 
“needs improvement”. Despite not establishing an absolute threshold, with 
agreement of the reference group designers we concluded that usually it is pref-
erable that for a requirement     < 5 is a good threshold, because in practice the 
requirements with bigger     values were becoming hard to understand. 

 EVALUATION RESULTS OF RENDEX 8

Subsection 8.1 presents the PA values for the three companies. It provides cor-
relation analyses results between the measures,     and    . In the same sub-
section the results of agreement between manual assessors are also provided. 
Subsection 8.2 provides the results of regression analysis and discusses the 
differences across the companies. Subsection 8.3 generalizes the regression 
analyses results. 
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 Results of Evaluating QI
R

 against QI
E

 8.1

PA values for the three companies are presented in Table 5. The best results of 
agreement was obtained for company X, followed by company Z. Both of the 
companies had requirements of component level, and there is no substantial 
difference between the results of strict and not-strict cases for them. 

Table 5 Evaluation 

Strict / Not strict X Y Z 
PA 80% / 87% 73% / 63% 74% / 70% 

 
The somewhat bigger difference of results in strict and not strict cases for 
company Y is due to the fact that there were relatively more marginal ratings in 
the manual assessments, i.e. some requirements got rank 3 which is a marginal 
value for calculating PA.  

In company Q, when we integrated the method with their requirements man-
agement system, they had already manually detected about 20 requirements for 
urgent improvements, but they were still in the beginning of the review process 
for that particular project. By running the tool we found that all these require-
ments were among the top 100 requirements that needed improvements pro-
vided by the tool. We would like to emphasize that the tool found all these re-
quirements in about two thousand requirements.  

Table 6 presents Pearson (R) and Spearman (S) correlation coefficients between 
the measures and     for three companies. Strong values of the coefficients are 
boldfaced (R, S > 0,6). Generally the NC measure is strongly correlated with the 
manual assessments. The rest of the measures have significant but not strong 
correlation with    .  

Table 6 Correlation coefficients for three companies 

 QIE (X) QIE (Y) QIE (Z) 
NC 0,74 / 0,77 0,54 / 0,54 0,58 / 0,65 

NV 0,27 / 0,30 0,20 / 0,23  0,52 / 0,57 
NR 0,56 / 0,68 0,43 / 0,24 0,46 / 0,44 
NRD - - - 
QIR 0,72 / 0,77 0,62 / 0,60 0,57 / 0,62 
p value for QIR < 0,001 <0,001/ 0,001 0,001 / 0,005 

Since the values of NRD measure was very low, we could not conduct correla-
tion analysis. The last row of Table 6 shows correlation coefficients between     
and    . The coefficients are strong, and the low p-values show that the likeli-
hood of getting these results driven by chance is too small.  

Table 7 presents the tau coefficients of agreement for every pair of software 
engineers per company. Generally we can see that there is a significant agree-
ment between the assessors.  
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Table 7 Correlation results between engineers’ assessments 

Company X Y Z 
Kendall’s tau 0,56 0,61 0,75 
P value 0,001 < 0,001 < 0,001 

 Results of Regression Analyses 8.2

Regression analyses were conducted to evaluate how well regression equations 
can predict     . The equations (2) represent the regression equations for the 
three companies. The variable NRD is not included in the regression equation 
for company Y, because NRD had too low values for the requirements of subsys-
tem level. 

X:                                             

Y:                                     (2) 

Z:                                              

Since     values are of interval scale, the absolute values of     are not mean-
ingful themselves. Therefore, we can simplify (2) equations by multiplying their 
right side by 100 and removing the constants. Then we can get the following set 
of equations (3), which is equivalent to equations (2): 

X:                                

Y:                          (3) 

Z: :                                 

Observing equations (3) we can see that the coefficients of the measures do not 
have any fixed predominance over each other across the equations. This means 
that we cannot obtain a general regression equation for all three companies in 
an explicit manner. This observation seems to be intuitive, because the re-
quirements were of different types and the sample sizes were not big enough for 
finding similar patterns across the companies. Only NRD has significantly higher 
coefficients in the regression equations, which was an expected outcome, be-
cause it has very small values for requirements and higher impact on internal 
quality by qualitative reasoning of the software engineers. The upper part of 
Table 8 presents p values of the four measures in the three regression equations 
corresponding to the three companies. Smaller p values indicate bigger statisti-
cal significance in the equations. Small P-values for NC measure show statistical 
significance for the companies X and Y (0,008 and 0,010 < 0,05), which indicates 
that NC measure can be used alone as well for predicting    .  

In case of company Z the p-values did not gain any statistical significance. The 
lower part of Table 8 presents R-squared, R, and p values for the regression 
equations. The values of R-sq. are ranging from 39% to 56%, indicating that 39-
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56% of data variation in     can be explained by regression equations. For all 
three regression equations the p values gain statistical significance indicating 
that the probability that our results are by chance is very small. 

Table 8 P values for the measures and for regression 

 QIE (X) QIE (Y) QIE (Z) 
P values of measures in regression equations 

NC 0,008 0,010 0,441 
NV 0,650 0,766 0,967 
NR 0,339 0,050 0,838 
NRD 0,404 - 0,148 

P and R-sq values for regression equations 
R-sq 56,6% 39,1% 40,4% 
R 0,75 0,62 0,64 
P value < 0,001 0,004 0,009 

 Generalizing the Results 8.3

Let us compare the Pearson correlation coefficients of     and regression equa-
tions in Table 8 with that of     and     that is obtained from applying formula 
(1) in Table 6. 

Table 9 A comparison of correlation coefficients  

 QIE (X) QIE (Y) QIE (Z) 
Regression equations 0,75 0,62 0,64 
QIR from formula (1) 0,72 0,62 0,57 
Difference 0,03 0 0,07 

This comparison is illustrated in Table 9. The correlation coefficients for the 
postulated equation (1) are only slightly weaker than the correlation coeffi-
cients obtained by regression analyses. The differences between coefficients are 
presented in the third row of the table. The weakest approximation is found for 
company Z (difference of coefficients is 0.07). However, even in the weakest 
case, the difference between the correlation coefficients is not significant. This 
means that formula (1) can be regarded as a good general approximation of 
regression equations and thus can be a substitute of them for the all three com-
panies. Saying that, we still find the generalizability is a problem, because coeffi-
cients of measures in all three regression equations are irregularly different, and 
formula (1) is rather an informal generalization.   
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 REQUIREMENTS QUALITY INDEX APPLIED IN THE 9

COMPANIES 

Summarizing the evaluation results we shall state that     obtained by formula 
(1) has 73-80% agreement with human assessors of requirements. Alternative 
evaluation results by the rank (Spearman) correlation coefficients between the 
automated and manual ranks are 0.60 – 0.77. Since the results show substantial 
agreement between the manual and automated ranks we consider that the au-
tomated ranking can be effectively applied in practice. Hence, in this section we 
delineate a method for automated ranking of textual requirements. The follow-
ing steps shall be done in order to rank requirements based on    :  

 Extract all textual requirements in a structured file. These can be 1.
.xml, .txt, .rif. The extracted file should contain the names and the 
texts of all requirements. 

 Calculate the NC, NV, and NR measures for each requirement by the 2.
rules specified in Table 1 

 Calculate NRD measure by investigating the naming conventions and 3.
referencing conventions in the organization where the measure-
ments are done. Identifying these conventions with fellow designers 
and requirements analysts is recommended. For NRD calculation 
consider the help of the measurement rules presented in Table 1 also 

 Calculate the     per requirement based on formula (1): 4.
                   

 Rank all the requirements by     in descending order 5.
 Decide upon a cut-off point in the ranked list, above which all re-6.

quirements shall be manually reviewed and improved. In the prac-
tice of the collaborating companies the cut-off point is usually chosen 
in a way that it separates 3-5% of all requirements with the highest 
    values. 

The collaborating companies found that Rendex has good enough accuracy for 
automated requirements reviews, because it permits finding most of the require-
ments that need improvements in only 5% of the overall requirements. In two of 
the companies Rendex was integrated with the requirements management tools 
(RMT), so every requirement analyst could get an instantaneous feedback “just 
in time” of writing requirements. Every requirement in RMT had a new field 
with a     value. This means that every engineer could choose to see     values 
of requirements. Figure 4 presents a screenshot of requirements and their quali-
ty indices in RMT at one of the companies. The right side of the figure presents 
several requirements and their quality indices for a given software component. 
We recommended that the higher quality indices shall have darker color so they 
can be easily identifiably. Generally the practitioners perceived that the use of 
Rendex accelerates their working process substantially and allows proactive 
management of requirements’ quality.  
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Figure 4 Rendex integrated with RMT 

One of the technical leaders of requirements management states that: “If we 
continue using this method in our organization, I think we are going to spare hun-
dreds of hours till the end of the product release”. 

 THREATS TO VALIDITY 10

Validity issues of this study are identified and discussed here based on the rec-
ommendations of Baskerville and Wood-Harper [143] and Checkland and 
Holwell [38]. 

We believe the biggest issue of this study is the external validity. The complexity 
of the research environment and the multidimensionality of the internal quality 
of textual requirements hindered us to conduct a study that would satisfy the 
classical validity criteria of positivistic scientific studies. Particularly, generali-
zability of the results needs further investigation. Larger sample size of re-
quirements and more companies could most likely help to overcome this issue, 
but we must notice that conducting action research with many companies and 
larger sample sizes is not realistic in the scope of one study. We consider the 
biggest value of this study is that it provides simple and effective measures of 
textual requirements that are validated in real contexts. The generalization of 
the regression equations also provides a practical tool for industrial application. 
Unfortunately the sample size of the requirements was not big enough for ob-
taining conclusive results for generalization, however, we still found that a sim-
ple general method can already be constructed for practical purposes. We are 
hopeful that in the future additional evaluation of these measures can be con-
ducted, so the possibilities of generalization can be better understood. 

The context of the research is confined with requirements of large companies, 
who have well-established requirements management process. The measures 
that we developed are only tested on these requirements. It is very likely that 
small or inexperienced companies can have completely different types of prob-
lems which affect the understandability of requirements. Particularly, complexi-
ty may not be a problem for them, while the lack of well-established writing 
conventions can become a large problem. Therefore, the results of this research 
are most likely more useful for requirements of large products.  
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While the usefulness of the measures was qualified in practice, the interpretive 
nature of the analysis did not permit us to estimate the empirical effectiveness 
of measures in larger scales. This is not a particular problem for this study but 
rather an inherent problem for complex systems’ research [44], as the effective-
ness of applying measures in complex systems are hard to quantify. The in-
volvement of several software products in the study permits us partly overcome 
that problem by observing how well the same measure performs from company 
to company. Notwithstanding, more detailed examination of these measures 
would be valuable.  

Evaluating the measurement methods for the measures in more contexts would 
benefit the measures and their use. Particularly the measurement methods for 
NR and NRD can exhibit problems in practice because these methods heavily 
rely on the writing conventions of the practitioners. The evaluation showed that 
the current measurement method for NR is generic at least for the four compa-
nies, while the measurement method for NRD should be specific from company 
to company. This implies that the measurement method for NR should be inves-
tigated further to understand how generic it is in different companies and con-
texts of requirements.  

There is also a construct validity threat for formula (1), because the weights of 
the measures were decided in a qualitative manner. In a way, we considered this 
formula as more of a priori postulate for an evaluation, and if it turned out to 
work well, then we could simply use it. To find out whether the formula is a 
good approximation for all three companies we conducted regression analyses 
and compared the results. However, when it came to regression analyses results 
and possibilities of deriving a general equation for ranking, it turned out the 
weights of measures in the three formulas are different. The problem was that 
there were no straightforward solutions of deriving generalized weights. We 
intendedly did not focus on the regression equations per case because the coef-
ficients of the measures could not be effectively explained. Bigger sample sizes 
of requirements would have been helpful for such an explanation. They could 
even give a possibility to ultimately decide whether one general formula for 
assessment is possible to derive. But we leave this problem to be addressed in 
our future research. 

The next construct validity threat is concerned with calculating PA values when 
there are different scales of data. The assessment values for engineers is limited 
by [1, 5] integer numbers, while the assessment of Rendex was in an unlimited 
[0, ∞) interval. In order to compare these two assessments we had to bring 
them into a comparable interval. One simple way to do so is to derive binary 
ordinal measurements from their interval measurements, that is: a requirement 
is either “satisfactory” or “needs improvement”. Categorizing data in a binary 
form creates possibility of evaluation by confusion matrix. However it also 
brings a new validity threat that is the issue of marginal requirements. If a re-
quirement actually had an average quality, it is “forced” to be either a satisfacto-
ry or dissatisfactory one. We could partly solve this issue by additionally creat-
ing so called strict and not strict evaluations, which provide two alternative 
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overviews on how Rendex performs when comparing it with engineers’ assess-
ments. As a final point, we emphasize the fact that the research was validated 
with four software development organizations, so the results seem to have a 
good chance to be generalized for textual requirements. Therefore we encour-
age the use of the measures (method) in software development organizations 
and appreciate the feedback we might get. 

 RELATED WORK 11

There are different views in the literature on what quality properties are rea-
sonable to measure, for example models by Fabbrini, et al. [144] or Bøegh [145]. 
One of the early studies that attempted to define quality measures for textual 
requirements was conducted by Davis, et al. [146]. Their paper proposes 24 
quality properties that can be measured for a requirement, and measures for 18 
of them. As the study was one of the first studies in the area of requirements 
measurement, it is rather a suggestion of possible quality attributes and 
measures, which could be maintained and advanced. Similarly Costello and Liu 
[147] proposed software quality properties for measurements, among which 
there were properties of requirements such as traceability, consistency, volatili-
ty etc. Later a study conducted by Hyatt and Rosenberg [138] proposed simple 
measures for identifying ambiguous phrases in textual requirements and actual-
ly used them in a software metrics program.  

Since then there have been several studies which conducted research towards 
creating measures for textual requirements. For example Vlas and Robinson 
[148] created measures for requirements classification. Based on certain pat-
terns identified in requirements, they could automatically classify a requirement 
as holding a particular property or belonging to a certain type of requirements 
group. Huertas and Juárez-Ramírez [149] presented an automated tool for ana-
lysing such properties as ambiguity and atomicity of a textual requirement. 
Kasser, et al. [150] defined measures for assessing the quality of requirements. 
They determine the words that most likely introduce uncertainty to the re-
quirements, then they calculate those words. Most of the words in their list are 
evaluated and included in our list. We perceive that the aforementioned studies 
would benefit substantially from industrial evaluation. This is because the prac-
ticality and precision of the designed measures are identifiable only in the or-
ganization where the actual requirements review process is conducted. 

Gleich, et al. [139] examined the ambiguity patterns in textual requirements and 
proposed a tool for ambiguity detection. The study is notable by the fact that the 
ambiguity patterns are explained with a great detail, and the results are evalu-
ated with both software engineers of Siemens and academicians. One of the 
measures defined in our study, the number of vague phrases, was designed by 
considering the results of Gleich, et al. [139]. 

Fabbrini, et al. [144] presented a tool (QuARS) for automatic identification of 
low-quality requirements. The tool is based on a number of quality properties 
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and measurements subsumed into four quality categories: testability, complete-
ness, understandability, consistency. The tool evaluates requirements based on 
a set of measures (indicators) of these properties. The five measures that they 
present – optionality, subjectivity, vagueness, weakness, implicity – are similar 
to our NV measure. Generally these are phrases that introduce vagueness or 
imprecision in requirements. From the study it is not clear how exactly these 
five measures are calculated, because they do not present an exhaustive list of 
keywords, but we observed that most of the keywords they present we have 
included in the measurement method of NV. Few keywords that they consider 
we have deliberately excluded from our list, such as, “fast” or “below”, because 
they often do not cause any problem. They also define a measure called multi-
plicity which indicates the number of multiple statements in a requirement. To 
calculate this they count the number of “and”, “or”, and, as they say, similar 
phrases. We have generalized this measure by our NC measure which presents 
an exhaustive list of conjunctions to calculate the number of actions in a re-
quirement. 

In a very recent study Femmer, et al. [57] conducted a meticulous evaluation of 
eight categories of requirements’ smells which are fundamentally based on eight 
types of ambiguity expressions. The evaluation in four real cases showed that 
many of the smells are often problems in practice, and moreover, they are au-
tomatically detectable. An interesting finding of them is that pure morphological 
analysis often introduces false positive results, and this finding is congruent 
with results of our paper.  Femmer, et al. [151] also developed a tool which ana-
lyzes requirements based on eight types of ambiguous terms. The tool was ap-
plied in Daimler AG and showed that it can help practitioners with indicating 
problematic requirements.  

Génova, et al. [137] proposed a framework and tool support (Requirements 
Quality Analyser, RQA) for quality improvements of textual requirements. They 
measure such properties as size, readability, punctuation, imprecise terms, ver-
bal tense, number of versions, degree of nesting, overlapping, and dependencies 
of requirements. Then they develop a quality indicator for requirements based 
on these measures. The aforementioned two studies do not specify how exactly 
the measures are calculated and evaluated. They qualitatively evaluate the tools 
based on the feedback of companies that use it. As our results showed, several of 
the measures that they have used, such as number of versions, nesting degree, 
and punctuations are poor indicators and introduce noise in the measurement 
accuracy. Additionally it is important to select the independent measures among 
all designed measures, so several strongly correlated measures are not used in 
quality assessment formula at the same time. Considering the upper mentioned 
concerns we would recommend to be extra careful when designing measures 
and using them in a formula as a means of inference.  

Parra, et al. [152] used measures presented in [137] to evaluate the correctness 
of requirements. They train a classifier based on the measures and experts’ 
manual classification to identify “correct” and “incorrect” requirements. They 
achieve significantly high accuracy of classification compared with results of 
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manual assessors (83-87%). It is not clear from the paper whether the manual 
assessors were classifying correctness based on a predefined template or based 
on semantic understanding of requirements correctness. Nevertheless, the pa-
per shows that it is possible to achieve high accuracy of automated quality 
checking, which is valuable for our research. 

The previous studies have mainly focused on different types of ambiguity 
measures. They also have conducted evaluation to understand to what extent 
these measures can detect the problem areas. Our work is a continuation of the 
aforementioned studies. Our contribution to the state of art is the new measures 
of complexity and coupling, which can be used in combination with the previ-
ously created measures of ambiguity in order to enhance the precision of the 
problem detection. Moreover, we also provide an evaluation of the measures 
(and the method) based on not only how well the method indicates the problem 
areas but also how well the method can rank requirements based on the severi-
ty of the problems as ranked by the manual assessors.  

 SUMMARY 12

This paper presents a method for proactive requirements reviews. The method 
is based on four internal quality measures of textual requirements, which were 
developed in an action research project conducted in a large software develop-
ment organization. The evaluation results in four software development compa-
nies showed that the method can identify 73% - 80% of the needed improve-
ments that software engineers working manually would identify. The method 
was deployed and used in the companies in different ways, considering their 
ways of working. The results also showed that more evaluation of the method is 
needed in order to understand the possibilities of its generalization across dif-
ferent sizes and domains of products. 
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ABSTRACT 

Code complexity has been studied intensively over the past decades because it is 
a quintessential characterizer of a code’s internal quality. Previously, much em-
phasis has been put on creating code complexity measures and their application 
in practical contexts. To date, most measures are created based on theoretical 
frameworks, which determine the expected properties that a code complexity 
measure should fulfill. Fulfilling the necessary properties, however, does not 
guarantee that the measure characterizes the code complexity that is perceived 
by software engineers. Subsequently, code complexity measures often turn out 
to provide rather superficial insights into code complexity. This paper supports 
the discipline of code complexity measurement by providing insights into the 
code characteristics that trigger complexity, the use of code complexity 
measures in industry, and the influence of code complexity on maintenance time 
from an empirical perspective. Results of an online survey, conducted in seven 
companies and two universities with a total of 100 respondents are presented, 
and show that among other code characteristics, two such characteristics signif-
icantly increase code complexity, which subsequently have a major influence on 
the maintenance time of code. Notably, existing code complexity measures are 
poorly used in industry. 
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 INTRODUCTION 1

The internal quality of software influences the ability of software engineers to 
progress software development. A major aspect of internal quality is the code 
complexity, which directly affects the maintainability and defect proneness of 
code [153, 154]. Therefore, research interest on the topic of complexity has 
been high over the years. Complexity measures have been designed to apply the 
notion of complexity practically [9, 22, 155]. Complexity measurement allows 
complexity to be quantified and its influence on aspects of code, such as main-
tainability and defect proneness, to be understood. The concept of complexity, 
however, is not an atomic concept, so it is difficult to design a single measure 
that quantifies complexity thoroughly. Instead, several complementary 
measures are designed to measure different aspects of complexity. Consequent-
ly, the insight that is provided by this combination of measures is expected to 
provide a fair assessment of the magnitude of complexity for a given piece of 
code. 

Designing complexity measures often has followed theoretically established 
frameworks, according to which a complexity measure should either fulfill a 
predetermined  set of properties or comply with a set of rules [27, 156-158]. 
Theoretical frameworks for creating measures are justifiably necessary because 
they propose a common foundation upon which complexity measures should be 
designed. Nevertheless, we believe that theoretical frameworks alone are unsat-
isfactory since detailed knowledge supporting the design of measures needs to 
be extracted from empirical data. Specifically, to design a complexity measure 
one must: 

 Identify specific code characteristics that should be considered for 1.
complexity measurement 

 Understand whether these characteristics are actually measurable in 2.
practice 

 Evaluate the contribution of these characteristics to  complexity in-3.
crease 

 Observe existing complexity measures and determine how well they 4.
capture code characteristics that influence complexity 

 Evaluate the usefulness and popularity of existing complexity 5.
measures in practice 

 Assess the influence of complexity on code maintainability. 6.

Since these factors are not addressed fully in the design of complexity measures, 
existing measures are usually perceived as being only moderately accurate in 
complexity measurement. A typical example of this is when two source code 
functions have the same cyclomatic complexity value. The cyclomatic complexi-
ty is the same, but intuitively we understand that one of the functions is more 
complex because, for example, it has more nested blocks [159]. These kinds of 
issues are apparent in many well-recognized complexity measures and have 
been discussed previously [72, 160-162]. In practice, certain modules of code 
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are perceived to be intrinsically more complex and, therefore, more difficult to 
maintain despite their relatively small size [30, 163]. 

We believe that the aforementioned knowledge required for designing 
measures can be partially or fully answered if we consider the collective view-
point of software engineers, which would provide an insightful contribution for 
academics when designing complexity measures and measurement-based pre-
diction models. 

The aim of this study, therefore, was to acquire such knowledge using the fol-
lowing five research questions (RQ): 

RQ 1: Which code characteristics are perceived by software engineers 
to be the main triggers of complexity? 

RQ 2: How frequently are complexity measures used in practice? 

RQ 3: How strongly do software engineers perceive complexity to influ-
ence code quality? 

RQ 4: How much does complexity affect maintenance time? 

RQ 5: Do the responses to RQ 1 to RQ 4 depend on the demographics of 
respondents? 

Here, we present the evaluation results of code characteristics as complexity 
triggers, the extent to which complexity measures are used in industry, and the 
evaluation results of complexity influence on internal quality and maintainabil-
ity based on a survey of 100 software engineers. The survey included both 
structured and open questions that allowed for comments. In summary, the 
results of the five categories of questions (RQ1‒RQ5) showed that: 

 Of the eleven proposed code characteristics, only two markedly in-1.
fluence complexity growth: the nesting depth and the lack of struc-
ture 

 None of the suggested nine popular complexity measures are active-2.
ly used in practice. Size and change measures as forms of complexity 
measures are used relatively more often, although not for complexity 
or quality assessment purposes 

 Complexity is perceived to have strong negative influence on aspects 3.
of internal quality, such as readability, understandability and modifi-
ability of code 

 The statistical mode (most likely value) of the software engineers’ 4.
assessment indicates that complex code requires 250‒500% more 
maintenance time than simple code of the same size 

 The demographics of the respondents did not influence the results of 5.
RQ 1‒RQ 4. 

These results suggest that managing complexity has a crucial role in increasing 
product quality and decreasing maintenance time. Moreover, the results provide 
insight as to which code characteristics should be considered in code complexity 
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measurement and management. Importantly, however, the reasons why com-
plexity measures are not actively used in complexity management activities 
need thorough investigation. 

 THE LANDSCAPE OF CODE COMPLEXITY SOURCES 2

The term complexity has been used widely in many disciplines, usually to de-
scribe an intrinsic quality of systems that strongly influences human under-
standability of these systems. Unfortunately, as no generally accepted definition 
of complexity that would facilitate its measurement exists, every discipline has 
its own rough understanding on how to quantify complexity. 

Code complexity, the subject of this study, is not an exhaustively defined concept 
either. In the IEEE standard computer dictionary, code complexity is defined as 
“the degree to which a system or component has a design or implementation 
that is difficult to understand and verify” [21]. According to Zuse [9], the true 
meaning of code complexity is the difficulty in understanding, changing and 
maintaining code. Fenton and Bieman [22] view code complexity as the re-
sources spent on developing (or maintaining) a solution for a given task. Simi-
larly, Basili [8] defines code complexity as a measure of the resources allocated 
by a system or human while interacting with a piece of software to perform a 
given task. An understanding of how to measure complexity and make code less 
complex is not facilitated by these definitions because they focus on the effects 
of complexity, i.e., the time and/or resources spent or experienced difficulty, and 
thus do not capture essence of complexity. Briand, et al. [23] have suggested 
that complexity should be defined as an intrinsic attribute of code and not its 
perceived difficulty by an external observer, which would indeed  aid the under-
standing of the origin of complexity. 

To outline a landscape of the source of code complexity that would facilitate the 
design of the survey questions and the interpretation of the results, we adopted 
a general definition of system complexity that considers it to be an intrinsic 
attribute of a system. An example of such a definition is provided by Moses [25], 
who defines complexity as “an emergent property of a system due to its many 
elements and interconnections”. This is very similar to the definition of Rechtin 
and Maier [6], stating that “a complex system has a set of different elements so 
connected or related as to perform a unique function not performable by the 
elements alone”. These two definitions are suitable for understanding and 
measuring code complexity because they indicate the origin of complexity, 
namely different elements and their interconnections in the code. Elements and 
interconnections appear to be the direct sources of code complexity, i.e., those 
sources that directly influence code complexity and thus complexity measure-
ment. Based on these two definitions, we can imply three things: (i) The more 
elements and interconnections the code contains, the more complex the code; 
(ii) Since the elements and interconnections always have some kind of represen-
tation (for reading, understanding and interpreting), the complexity depends on 
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this representational clarity; and (iii) If we consider that any system usually 
evolves over time, the evolution of elements and interconnections also deter-
mines a change in complexity. 

Considering these three points, we postulate that there are three direct sources 
of code complexity:  

 Elements and their connections in a unit of code 1.
 Representational clarity of the elements and interconnections in a 2.

unit of code 
 Evolution of a unit of code over development time. 3.

Elements and their connections: Complexity emerges from existing elements 
and their interconnections in a unit of code. For a unit of code, the elements are 
different types of source code statements (e.g., constants, global and local varia-
bles, function calls, etc.). The interconnections of elements can be expressed 
both by mathematical operators (e.g., addition, division, multiplication, etc.) and 
control statements, Boolean operators, pointers, nesting level of code, etc. Each 
type of element and each type of connection increases the magnitude of code 
complexity to a different extent. 

Representational clarity: Complexity arises from unclear representation of the 
code. This is concerned with how clearly the elements and interconnections are 
presented to demonstrate their intended function. This means that there could 
be a difference between what a given element does and what its representation 
implies that it does. A typical example is using misleading names for functions 
and variables. 

Intensity of evolution: Code evolution can be characterized by the frequency 
and magnitude of changes of that code. Evolution of the code is also regarded as 
a source of complexity because this changes the information about how a given 
piece of code operates in order to complete a given task. If a software engineer 
already has knowledge on how the code operates, then the evolution of the code 
will partly or completely destroy that knowledge because changes will intro-
duce a new set of elements and interconnections into the code. This does not 
imply that changing the code always makes the code more complex, it only implies 
that the level of complexity, solely driven by changes in the code, increases. At the 
same time, the level of complexity that emerges from elements and their con-
nections might decrease and thus potentially reducing overall complexity. This 
occurs often in practice when the code is refactored successfully. 

We used these three direct sources of complexity to correctly identify those 
code characteristics that belong to any of these sources as direct complexity 
triggers. Subsequently, we developed the survey questions to evaluate these 
characteristics. 

These three sources of complexity comply with the definitions of Moses [25] and 
Rechtin and Maier [6], and are directly observable on the code, hence our term 
“direct sources of complexity”. In addition, there are several other, indirect 
sources of complexity, such as those described by Mens et al. [5]. These are not 
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directly visible in the source code, although they somewhat influence 
complexity. Examples include the: 

 Complexity of the problem to be solved by the program 1.
 Selected design solution for the given problem 2.
 Selected architectural solution for the given problem 3.
 Complexity of the organization where the code is developed 4.
 Programming language 5.
 Knowledge of developers in programming 6.
 Quality of the communication between developers and development 7.

teams 
 Managerial decisions 8.
 Domain of development. 9.

In this study, we did not consider the indirect sources of complexity, their 
measures and influence on the internal quality; this requires additional study. 

In summary, we perceive complexity to be an emergent property of code that is 
magnified by the addition of more elements and/or interconnections, changing 
the existing ones or not clearly specifying the function of existing elements. We 
consider that the origin of code complexity is outlined primarily by the three 
aforementioned sources. Since the other factors are not direct sources of com-
plexity, they should not be included in the landscape of code complexity sources. 

 RESEARCH DESIGN 3

To address the research questions (RQ 1‒RQ 5), we conducted an online survey 
[49] with software engineers in Industry and Academia. Most data were collect-
ed using structured questions of which there were 25 in total organized as a six-
point Likert scale. An even number for the scale values avoided a scale mid-
point, thereby ensuring that respondents could choose a higher or lower esti-
mate than average. Additionally, three open questions allowed respondents to 
add choices that might otherwise have been missed in the structured questions. 
The survey consisted of five logical parts: 

 Part 1: Identified the demographics of participants 1.
 Part 2: Estimated the extent to which different code characteristics 2.

make code complex 
 Part 3: Evaluated the influence of complexity on internal code quality 3.

attributes 
 Part 4: Evaluated the most commonly used complexity measures in 4.

industry 
 Part 5: Assessed the influence of complexity on development time. 5.

Survey participants were software engineers from seven large software devel-
opment organizations and two universities, all of which were a part of a re-
search consortium called Software Centre. The seven collaborating companies 
were: Ericsson, Volvo Group, Volvo Car Group, Saab and Axis Communication all 
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from Sweden, Grundfos from Denmark, and the Swedish branch of Jeppesen in 
the United States. The two universities were University of Gothenburg and 
Chalmers University of Technology The companies represented a variety of 
market sectors, namely telecommunication equipment, trucks and cars, the air 
defense system, video surveillance system, pumps, and the air traffic manage-
ment system. All of these systems used both small and large software products, 
which had been developed using different development processes, such as Lean, 
Agile, and V-model. Complexity was an actively discussed topic in these compa-
nies so many software engineers were motivated to participate in the survey. 
Since we were involved in previous research with these companies and knew 
the products and development organizations, we found this selection of compa-
nies rational from the perspective of construct validity. 

We shared the online address of the survey with the collaborating managers or 
organizational leaders in the companies, who then distributed the survey within 
their corresponding software development organizations, targeting software 
engineers who worked intensively with software development. Our objective 
was to collect at least 100 responses from the companies in order that one an-
swer should represent at most one percent. One initial request and one remind-
er were sent to prompt a response from the participants. In total, however, 89 
responses were received from the companies. In addition, 11 responses were 
received from the two universities. We selected university respondents who 
worked in close collaboration with software companies and had developed 
software products themselves earlier in their careers. In contrast to the compa-
nies, the survey link was distributed in universities directly to potential re-
spondents. The response rate was estimated by counting the number of poten-
tial respondents who received the survey link from corporate contacts and di-
rectly from us. Approximately 280 people received the survey link, 100 of whom 
responded, resulting in a response rate of approximately 36%. 

To minimize any misunderstanding of words or concepts in the survey ques-
tions, two pilot studies were conducted prior to the survey launch. Feedback 
from a group of nine software engineers from companies was also used to im-
prove the survey and the choice of assessment scales. This test group was also 
asked to interpret their understanding of the survey questions in order to iden-
tify any misinterpretations. The survey was only launched once all nine engi-
neers understood the survey questions as they were intended to be understood. 
The results of the pilot studies are not included in the results of this study. 

 Demographics and the Related Questions 3.1

The first part of the survey investigated the participant demographics. Five 
fields were given for information related to demographics, as presented with 
the specified options in Table 1. Data for the five fields were collected using the 
following five statements: 

 Select your education 1.
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 Select your job title 2.
 Select your domain 3.
 Select the years of experience that you have in software develop-4.

ment 
 Select the programming languages that you usually work with. 5.

Table 1 Specified fields and options for acquiring demographic data 

Education Job Title Domain Experience Programming 
Language 

Computer Sci-
ence (31) 

Developer (49) Telecom (30) < 3 years 
(10) 

Python / Ruby 
(30) 

Software Engi-
neering (37) 

Tester (5) Automotive 
(23) 

3‒5 years 
(11) 

Java / C# (43) 

Information 
systems, Infor-
matics (7) 

Architect (13) Defence (10) 6‒10 years 
(20) 

C++ (42) 

Computer Engi-
neering (11) 

Team leader, 
Scrum master 
(14) 

Enterprise 
Systems (14) 

11‒15 
years (20) 

C (57) 

Management (2) Product owner 
(2) 

Web Devel-
opment (2) 

> 15 years 
(40) 

JavaScript/PHP 
(15) 

Economics (0) Project man-
ager (1) 

Health Care 
(0) 

 Perl / Haskell (10) 

Electrical, Elec-
tronic Engineer-
ing (38) 

Researcher 
(12) 

Academia 
(11) 

 TTCN / Tcl / Shell 
(11) 

Other (12) Other (4) Other (16)  Other (21) 

 

In the cases of “Job Title” and “Experience”, options were given by radio buttons 
with a “one-choice-only” option. Checkboxes were specified for all other fields to 
enable respondents to select more than one option. In Table 1, the number of 
responses obtained per demographical category is shown in brackets. In addi-
tion, graphical representations of these results can be found in Section 4.1. 

 Selected Code Characteristics as Complexity 3.2

Triggers 

The second part of the survey concerned code characteristics with the objective 
of understanding the extent to which each code characteristic increases code 
complexity. We proposed eleven code characteristics that can potentially in-
crease code complexity based on our previous study conducted with Ericsson 
and Volvo Group [164]. In that study, we were designing code complexity meas-
urement systems for these companies in which approximately 20 software en-
gineers were involved. Based on regular discussions on topics like the origin of 
complexity and which code characteristics are usually considered in complexity 
measurement, we determined the eleven common code characteristics that 
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were used in this study. These characteristics belong to one of the three main 
sources of the complexity landscape presented in Section 2. The three main 
sources, complexity characteristics and their descriptions are shown in Table 2. 

Table 2 Code characteristics and descriptions 

Three sources 
of complexity 

11 Code Characteristics Description of the Characteristic 

 
 
 
 
 
 
 
 
 
Elements and 
interconnections 

Many operators All mathematical operators (e.g., =, +, 
-, /, mod, sqrt) 

Many variables Both local and global variables in the 
code 

Many control statements Control statements in the code (e.g., 
“if”, “while”, “for”, etc.) 

Many calls All unique invocations of methods or 
functions in the code 

Big nesting depth The code is nested if there are many 
code-blocks inside one another 

Multiple tasks Logically independent tasks that are 
solved in one code unit 

Complex requirement 
specification 

This relates to detail requirement 
specification that the developers use 
to design software  

 

 

Representational 
clarity 

Lack of structure This relates to correct indentations, 
proper naming and using the same 
style of coding for similar patterns of 
code 

Improper or not existing 
comments 

This relates to code that does not 
have any comments or the existing 
ones are misleading 

 
Evolution 

Frequent changes  This relates to code that changes 
frequently thus behaving differently 
over development time 

Many developers This relates to code that is modified 
by many developers in parallel 

Nine of the code characteristics are easily observable in the code. Although two 
of the characteristics—“complex requirement specification” and “many devel-
opers”—are difficult to observe in the code, they still directly influence complex-
ity: 

 Many requirements in industry are written in a very detailed man-1.
ner, such as pseudocode or detail diagram. Such detail specifications 
do not allow developers to consider the design of the code, but mere-
ly translate the specification into a programming language so the 
specification complexity is largely transferred into the code. 

 Many developers who make changes on the same piece of code add a 2.
new dimension on the code change as a type of complexity. The in-
formation needed to learn about the change in this case comes from 
multiple developers.  
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To investigate the effect of these eleven characteristics on code complexity, one 
statement (question) per characteristic was formulated be answered using the 
specified Likert scale. For example, the statement for function calls is shown 
Figure 1. The three dots at the end of the statement were to be completed by 
one of the options given in the Likert scale. The second line explained in more 
detail what was meant by the given characteristic to ensure no uncertainty on 
the part of the respondent. 

 

Figure 1 Example of a question regarding a given code characteristic 

The rest of the statements about code characteristics were organized the same 
way as that shown Figure 1. In most of the statements, we intentionally empha-
sized that “many of something” makes code complex, i.e., many operators, many 
variables, many control statements, etc. In other statements, we used different 
methods of framing, for example, the lack of structure, the frequent changes, etc. 
At the end of this part of the survey, an open question was included to allow 
respondents to suggest other code characteristics that they believed could sig-
nificantly increase complexity. 

 Complexity and Internal Code Quality Attributes 3.3

The third part of the survey was designed to acquire information on the extent 
to which code complexity influences internal code quality attributes that are 
directly experienced by software engineers. Note that by internal code quality 
attributes we do not mean the emergent properties of software code, such as 
size, length, cohesion, coupling and complexity itself, but the quality attributes 
that arise from the relationship between the intrinsic properties of code and 
cognitive capabilities of engineers, namely readability, understandability and 
modifiability. We added “ease of integration” to these three attributes, however, 
since we consider it also plays an important role in code development and can 
be influenced by complexity. The four internal code quality attributes and their 
brief descriptions are shown in Table 3. The questions were organized to have 
six possible values of the Likert Scale plus an additional option to allow a “no 
answer” option. One of the four questions is shown in Figure 2 and depicts the 
organization of the rest of the questions.  
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Table 3 Internal quality attributes and descriptions 

Internal code quality 
attributes 

Explanation 

Readability The visual clarity of code that determines the ease for reading 
the code 

Understandability The conceptual clarity and soundness of code that ease the 
process of understanding the code 

Modifiability The logical soundness and independence of code that deter-
mine the ease of modifying the code 

Ease of integration The ease of merging a piece of code to a code development 
branch or to the whole product 

In this section, only selected internal code quality attributes concerned with 
cognitive capabilities of the engineers working with the code were covered. 
Other internal code quality attributes, such as error-proneness or testability 
were not considered in this study because they are not directly experienced by 
software engineers when working with the code. 

 

 

Figure 2 Example of a question regarding the influence of complexity on internal 
quality 

 Selected Complexity Measures 3.4

The fourth survey section investigated the use of the most actively investigated 
complexity measures from the literature. Measures were selected based on their 
popularity in the literature, and particularly how often they are used for main-
tainability assessment and defect predictions. 

The measures and their descriptions are shown in Table 4.  To acquire infor-
mation on the use of the measures, the frequency of use was assessed using a 
Likert Scale; an example of these questions is shown in Figure 3. The last option 
in this this “multiple choice” question was “never heard of it”, which essentially 
differs from that of “never used it” because in the former case, the reason why 
the measure is not used differs substantially from the latter. If a respondent 
selects “never heard of it”, this implies that the measure could be either useful 
for them or not; however, if the respondent has never heard of it, no conclusion 
can be made. In contrast, if a respondent answers “never used it” (or “hardly 
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ever used it”) this might indicate a problem with the measure itself. An addi-
tional field was included at the end of this section that allowed respondents to 
add more complexity measures, which they did, but was not included in our list.  

Table 4 Selected measures and descriptions 

Name of the Measure Description 
McCabe’s cyclomatic 
complexity [106] 

The number of linearly independent paths in the control 
flow graph of code. This can be calculated by counting the 
number of control statements in the code 

Halstead measures [165] Seven measures completely based on the number of oper-
ators and operands  

Fan-out [166] The number of unique invocations found in a given func-
tion 

Fan-in [166] The number of calls of a given function elsewhere in the 
code 

Coupling measures of 
Henry and Kafura [166] 

Based on size, fan-in, and fan-out 

Chidamber and Kemerer 
OO measures [167] 

Inheritance level and several size measures for class 

Size measures  Lines of code, number of statements, etc. 
Change measures, e. g., 
Antinyan, et al. [140] 

Number of revisions, number of developers, etc. 

Readability measures, e. 
g., Tenny [168], Buse and 
Weimer [169] 

Line length, indentations, length of identifiers, etc. 

 
 

 

Figure 3 Example of a question regarding the use of measures 

 Complexity and Maintenance Time 3.5

The fifth part of the survey concerned the influence of the code complexity on 
code maintenance time. Here the objective was to obtain quantitative infor-
mation on how much time is spent unnecessarily on maintaining complex code. 
The quantitative information was based purely on a perceptive estimation of 
respondents; therefore, we expected the summary of the answers to be a rough 
estimation. The only question posed in this section is shown in Figure 4. 



Evaluating Code Complexity Triggers 

 

134 
 

 

 

Figure 4 Question investigating the influence of complexity on maintenance time 

The question assumes that two pieces of code of the same size can differ signifi-
cantly in complexity. The respondents were expected to estimate the additional 
time required to maintain a piece of complex code compared to the maintenance 
time of simple code of the same size. The answer was not expected to be based 
on any quantitative estimation, but rather on the knowledge and experience of 
respondents. At the end of this question, a field for free comments on respond-
ents’ thought processes when making the estimates was added. 

 Data Analysis Methods 3.6

Data was analyzed using descriptive statistics and visualizations. As regards 
descriptive statistics, percentages and statistical modes were used, whilst visu-
alizations included tables and bar charts to summarize data related to the code 
characteristic, the use of complexity measures and the effect of complexity on 
the internal quality of code. Color-coded bars were used to enhance graph read-
ability. Pie charts were used to visualize the complexity influence on mainte-
nance time. The fields that had been specified for free text were analyzed by 
classifying answers into similar categories. As regards the code characteristics, 
the number of respondents who proposed a specific characteristic to be a signif-
icant complexity trigger was counted. With respect to measures, the number of 
respondents who mentioned a specific complexity measure that they used was 
not included in our list. The assessment of complexity influence on maintenance 
time was done by listing the tactics used by respondents for their assessment, as 
well as counting the number of respondents per proposed tactic.  

In addition to the aforementioned analysis, across-sectional data analysis was 
also conducted to investigate whether the demographics of the respondents 
significantly influenced the results. We hypothesized that demographics do not 
influence the results and conducted statistical tests to either reject or confirm 
this hypothesis. Since the number of responses was only 100, it was not possible 
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to divide the data into many groups to obtain meaningful results because some 
groups had too few data for clear statistical analysis. Data, therefore, were di-
vided into fewer groups for such analyses. 

Table 5 shows all the possibilities for cross-sectional data analysis. The first row 
depicts the four main categories of data. The first column shows the five units of 
demographics. Every cell of the table indicates whether cross-sectional analysis 
for a pair of “demographical data” and “category of result” was conducted in this 
study. Three of the survey questions in the Demographics Section were specified 
by checkboxes. These questions concerned education, domain and programming 
language. Since these were specified by checkboxes, one respondent could se-
lect several choices concurrently, such that a statistical test to analyse the effect 
of demographics on the results could be conducted. The results concerning 
complexity measures and complexity influence on code quality attributes were so 
polarized over the categorical values that it was not possible to do any cross-
sectional data analysis for these two categories either. 

Table 5 Cross-sectional data analysis table 

 

The remaining four cells of Table 5, however, show the four pieces of cross-
sectional analysis that were done. Methods for each of the analyses are present-
ed in the following subsections. 

 Evaluating the Association between Job Type and 3.6.1

Assessment of Code Characteristics 

Here, the objective was to understand whether the type of job has any associa-
tion with the assessment results of code characteristics. Therefore, the type of 
job was divided into two groups, developers and non-developers. Developers 
were respondents who marked their role as “developer” in the survey, whilst 
the non-developers were those respondents who marked any role other than 
“developer”. Hence, the variable type of job has two possible categorical values: 
developer and non-developer.  
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Table 6 Original six values and derived two values of “assessment” for code charac-
teristic 

Original values Derived values 

Not complex at all  
Little influence Little complex 

Somewhat complex 

Rather complex  
Much influence Quite complex 

Very complex 

This division of jobs is motivated by the fact that developers work directly with 
the code and they themselves influence code complexity, whereas non-
developers are only influenced by the code complexity. Therefore, we expected 
a statistical difference between these two groups. Similarly, we derived two 
values of “assessment” for code characteristic from the original six values. The 
original six values and the derived two values are presented in Table 6. The two 
values for both “type of job” and “assessment” allowed us to develop a contin-
gency table based on which Chi-Square test was conducted to determine wheth-
er there was a statistical difference in assessment of code characteristics by 
people with different jobs. An example is given for nesting depth in Table 7, 
which shows that nine developers indicated that nested code has little influence 
on complexity increase, while 42 developers indicated the opposite. 

Table 7 Contingency table for “type of job” and “assessment of code” characteristics 

 Developer Non-developer 

Little influence 9 7 

Much influence 42 41 

Because the variables can have categorical values, the Chi-Square test was used 
to assess whether the type of job and assessed influence were associated. To 
perform this analysis for all eleven code characteristics, eleven tables similar to 
that of Table 7 were developed 

 Evaluating the Association between Experience and 3.6.2

Assessment of Code Characteristics 

Two values of “experience” from the original five values were derived to con-
duct this analysis (Table 8), namely, “much experience” and “little experience”. 
The analysis was conducted in exactly the same way as in Section 3.6.1. 
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Table 8 The original five-scale assessment and the derived two-scale assessment 

Original values Derived values 

< 3 years  
Little experience 3‒5 years 

6‒10 years  
Much experience 11‒15 years 

> 15 years 

 Evaluating the Association between Type of Job and 3.6.3

Assessment of Complexity Influence on Mainte-

nance Time 

Two values for “type of job” (developer and non-developer) were used to ana-
lyse the effect of complexity on maintenance time. Originally, the variable that 
showed the assessment values of complexity influence on maintenance time had 
eight categorical values, but to ensure sufficient data points for a meaningful 
Chi-Square test, three categorical values were derived from these eight values. 
Three values were chosen because eight might be too many to categorize them 
into two values as with the other variables. The original eight values and the 
three derived values are shown in Table 9. 

Table 9 Original eight values of assessment and three derived values of assessment 

Original values Derived values 

0‒10%  
Little influence 10‒25% 

25‒50% 

50‒100% Much influence 

100‒150% 

150‒250%  
Very much influence 250‒500% 

500‒1000% 

Based on the three values of “assessment” in Table 9 and two values of “type of 
job”, a  contingency table was made (Table 10). Using this table, a Chi-Square 
test was performed to determine whether there was a significant difference 
between “assessment” and “type of job”.  

Table 10 Cross-sectional data for “type of job” and assessment of “complexity influ-
ence on maintenance time” 

 Developer Non-developer 

Little influence 8 10 

Much influence 13 16 

Very much influence 29 22 
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 Evaluating the Association between Experience and 3.6.4

Assessment of Complexity Influence on Mainte-

nance Time 

Based on two values of “experience” and three values of “complexity influence 
on maintenance time”, a contingency table was developed (Table 11). A Chi-
Square test using data in Table 11 was done to determine whether there was an 
association between “experience” and assessed “complexity influence on 
maintenance time”.  

Table 11 Cross-sectional data for “experience” and assessment of “complexity in-
fluence on maintenance time” 

 Little experience Much experience 

Little influence 3 15 

Much influence 7 22 

Very much influence 11 40 

 RESULTS AND INTERPRETATIONS 4

The results are divided into six sections. The first section shows demographic 
data of all respondents. The subsequent four sections present results on (i) code 
characteristics, (ii) complexity influence on internal quality, (iii) the use of com-
plexity measures in industry, and (iv) the influence of code complexity on the 
maintenance time of code. These four sections answer the first four research 
questions (see RQ 1‒RQ 4 in Introduction). Section 6 shows the cross-sectional 
data analysis when slicing data according to the demographic data and answers 
the fifth research question (RQ 5).  

 Summary of Demographics 4.1

This section presents data from the five demographical dimensions of the re-
spondents, i.e., the type of education of respondents, the type of job the respond-
ents had, the software development domain the respondents worked in, and the 
group of programming languages they used. 

The educational background of the respondents is shown in Figure 5. Since this 
question was based on checkboxes, respondents could select multiple answers. 
In total, 100 respondents gave 138 ticks, indicating that several respondents 
had more than one educational background. Figure 5 shows that the majority of 
respondents had received education in electrical/electronic engineering, soft-
ware engineering or computer science. The popularity of electrical/electronic 
engineering can be explained by the fact that many respondents were from car 
and pump industries, which traditionally demand competence in electrical engi-
neering. The increasing importance of software in these industries has created a 
favorable environment for electrical engineers to become software development 
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specialists over time. Figure 6 shows the job titles of respondents. Almost half of 
respondents (n = 49) are developers, but there was also a number of architects, 
development team leaders and researchers.  

 

Figure 5 Respondents’ educational 
background 

 

Figure 6 Respondents’ job description 

This was unexpected in that there were few “testers” among the respondents, 
although this could be explained by the fact that many respondents are working 
in Agile development teams, which have no specific testers and developers. 
Notably, these two jobs (“testers” and “developers”) often are interchangeable 
and both are known as “developers” in some organizations.  

Figure 7 presents the domain of respondents. In total, 105 answers were given 
by the 100 respondents, i.e., five or fewer respondents had worked in more than 
one domain. Fifty three respondents alone worked in the telecom and automo-
tive domains. 

 

Figure 7 Software development do-
main of respondents 

 

Figure 8 Experience of respondents in 
software development 

Figure 8 presents the experience of respondents in software development. Thir-
ty nine respondents had more than 15 years of experience and, generally, only 
10 respondents had little experience (less than 3 years). 

Finally, Figure 9 shows the programming languages used by respondents. Ac-
cording to the responses, C language was dominant in these industries, partly 
due to embedded development and partly because all products were old and 
mature having been developed for many years and  traditionally relying on C 
language. 

In total, 100 respondents gave 171 ticks for programming languages, indicating 
that many of the developers used several programming languages.  
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Figure 9 Programming languages used by respondents during their entire experi-
ence 

 Code Characteristics as Complexity Triggers 4.2

Figure 10 shows the eleven characteristics and their evaluated influence on 
complexity. The vertical axis shows the number of respondents, and every bar 
represents one characteristic. Bars are color-coded, with the darkest red indi-
cating that the given characteristic made code very complex. The darkest green 
color indicates that the given characteristic does not make the code any com-
plex.  

 

Figure 10 Influence of code characteristics on complexity 

Overall, it can be inferred from Figure 10 that two characteristics—the lack of 
structure and nesting depth—are separated from all other characteristics due to 
their estimated magnitude of influence. If the red-orange area is considered to 
be an area of major influence, then the majority of respondents (over 80%) be-



Evaluating Code Complexity Triggers 

 

141 
 

lieved these characteristics to have major influence on complexity. The influence 
level of the rest of the characteristics decreased gradually along the horizontal 
axis. Approximately 50‒60% of respondents believed that control statements, 
misleading comments and many developers have a major influence on complexi-
ty, whilst about 35‒45% of respondents believed that multiple tasks, frequent 
changes and complex requirements did so. 

The larger grey area for “Complex Requirements” may indicate that respondents 
found it difficult to evaluate this factor’s influence on complexity. The exact 
numbers of estimates are presented in Table 12. The statistical modes of the 
evaluations per characteristic are emphasized by color so that what values the 
modes have on the assessment scale area easy to read. This alternative repre-
sentation of the results enables greater understanding of the influence of char-
acteristics on complexity. The characteristics have been divided into four groups 
based on their modes. The most influential characteristics are nesting depth and 
lack of structure, the modes of which reside in the categories of very complex and 
quite complex. The next three characteristics have modes categorized as rather 
complex, making them the second most influential characteristics. The rest of 
the characteristics are interpreted similarly. 

Table 12 Influence of code characteristics on complexity with the modes empha-
sized 

 very quite  rather  some. little no  

Lack of structure 36 29 21 9 4 0 

Nesting depth 23 37 23 13 3 0 

Control statements 8 21 30 23 15 2 

Misleading com-
ments 

12 20 22 21 19 1 

Many developers 8 18 25 23 16 4 

Multiple tasks 7 18 20 27 14 5 

Frequent changes 8 10 22 26 15 12 

Complex require-
ments 

9 10 17 25 12 12 

Many variables 0 13 21 27 34 3 

Many calls 0 10 16 31 32 9 

Many operators 2 6 9 30 34 16 

In addition to the evaluation of code characteristics, respondents were also able 
to provide qualitative feedback on what other characteristics they considered 
might significantly influence code complexity. Eight respondents mentioned that 
it is preferable to separate categories of “missing comments” and “misleading 
comments” since they influence complexity differently, i.e., missing comments 
are not considered a problem if the code is well-structured and written in a self-
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explanatory manner; however, misleading comments can significantly increase 
the representational complexity of the code. 

One respondent stated that it is always good practice to incorporate the com-
ments into the names of functions, variables, etc. because it is highly likely that 
over time and with the evolution of software, comments become misleading 
because they are not always updated. 

Four respondents mentioned that they prefer global and local variables to be 
separated since global variables introduce significantly higher complexity than 
local variables. According to respondents, the extensive use of global variables 
can cause high complexity and decrease the ability to find serious defects. A case 
study conducted in Toyota also supports this line of argument [170]. 

Three respondents mentioned that multiple levels of inheritance with functions 
overloaded at many different levels can significantly increase complexity. In 
such cases, it is hard to understand which piece of code is actually executed. 
Another three respondents mentioned that the extensive use of pre-processors, 
macro-code and many levels of pointers can also significantly influence com-
plexity. 

As well as comments regarding code characteristics, respondents also reflected 
on other issues of code complexity. For example, several recognized that there 
are two types of complexity: essential and accidental, the former being inherent 
to the problem and the latter arising from non-optimal methods of program-
ming, and that sometimes it is difficult to understand whether the complexity is 
essential or accidental. 

 The Influence of Complexity on Internal Code 4.3

Quality Attributes 

This subsection presents the negative influence of code complexity on internal 
code quality attributes, such as readability, understandability, modifiability and 
ease of integration. Figure 11 shows the evaluation results for the influence of 
code complexity on internal code quality attributes. The diagram shows that the 
majority of respondents agree that complexity has a huge influence on three 
attributes: readability, understandability and modifiability.  

Modifiability, which can be considered the essential constituent of code main-
tainability, is influenced by complexity the most. Ninety five respondents be-
lieved that the complexity has major influence on code modifiability. Only four 
respondents believed otherwise, and one respondent did not answer the ques-
tion. Every cell of the table in Figure 11 shows the number of responses ob-
tained per pair of internal code quality attribute and magnitude of influence, and 
the first row shows the “N/A” option. 

The last three rows of this table tend to show greater numbers than the first 
three rows, indicating that the huge influence of complexity on internal code 
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quality attributes. One of the attributes, “ease of integration”, is believed not to 
be influenced by complexity as much as the other three, which is intuitive be-
cause integration often concerns making the specified piece of code work with 
the rest of code without understanding its content in detail, and thus without 
actually dealing with complexity. 

 

Figure 11 Influence of code complexity on internal code quality attributes 

 The Use of Complexity Measures 4.4

The use of code complexity measures in industry is presented here. Nine com-
plexity measures (or groups of complexity measures) and their popularity are 
presented in Figure 12. Figure 12 also shows that the next three measures 
(McCabe’s cyclomatic complexity, fan-in, and fan-out) were slightly used. Only 
two groups of measures (size measures and change measures) were moderately 
used by respondents, although this does not necessarily mean that they were 
used as a means of quality assessment, but for other purposes, such as effort 
estimation or productivity measurement. Table 13 presents a more detailed 
view of the use of these measures. The modes of the first five measures in the 
table indicate that many respondents had never heard of the specified 
measures. The rest of the measures appear to be known by many, but never 
used in any systematic way.  
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Figure 12 Use of complexity measures in industry 

Figure 12 also shows that the next three measures (McCabe’s cyclomatic com-
plexity, fan-in, and fan-out) were slightly used. Only two groups of measures 
(size measures and change measures) were moderately used by respondents, 
although this does not necessarily mean that they were used as a means of qual-
ity assessment, but for other purposes, such as effort estimation or productivity 
measurement.  

Table 13 presents a more detailed view of the use of these measures. The modes 
of the first five measures in the table indicate that many respondents had never 
heard of the specified measures. The rest of the measures appear to be known 
by many, but never used in any systematic way. Figure 12 also shows that the 
next three measures (McCabe’s cyclomatic complexity, fan-in, and fan-out) were 
slightly used. Only two groups of measures (size measures and change measures) 
were moderately used by respondents, although this does not necessarily mean 
that they were used as a means of quality assessment, but for other purposes, 
such as effort estimation or productivity measurement. Table 13 presents a 
more detailed view of the use of these measures. The modes of the first five 
measures in the table indicate that many respondents had never heard of the 
specified measures. The rest of the measures appear to be known by many, but 
never used in any systematic way. 

Table 14 more concisely represents the data, classifying the frequency of use 
into three categories: regularly used, not used, and never heard of it. We consider 
a measure is used regularly if it is used daily, weekly, or monthly, and a measure 
is not used if it is classified as hardly ever or never used it. 
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Table 13 Measures and their use represented by statistical modes 

  Daily Weekly Monthly Hardly 
ever 

Never  
used 

Never 
heard of 

Chidamber 
& Kemerer 

0 0 1 5 28 66 

Halstead 1 0 1 6 27 65 

Henry & 
Kafura 

0 0 1 9 26 64 

Buse & 
Weimer 

3 1 2 10 35 49 

McCabe 4 4 3 21 27 41 

Fan-in 3 1 3 27 39 27 

Fan-out 4 2 4 27 37 26 

Change 6 9 7 38 32 8 

Size 10 14 12 38 18 8 

 

The latter two categories mean that respondents knew of the measure and had 
even have tried to use it, but for some reason did not consider using it regularly. 
We have ascertained reasons for this through informal talks from software en-
gineers in the participating companies; these vary and are inconclusive. For 
example: 

 Company regulations either do not consider using the measure or 1.
another measure is the accepted standard 

 Developers do not believe that use of the measure can compensate 2.
for the time spent on the measurement 

 The measure is not a good indicator of complexity 3.
 The measure is a good indicator of complexity, but of little help in 4.

understanding how to improve code 
 Tool support is unsatisfactory, particularly in minimizing the spent 5.

time on the measurement and facilitating an understanding of the 
measurement output. 

Considering these reflections, we can conclude that not only are measures po-
tentially unhelpful, but also that company regulations and non-optimal tools 
thwart the full adoption of measures. 

The modes of responses in Table 14 show that the first four measures in the 
table are the least known. Nearly two-thirds of respondents did not know about 
the first three measures. Similarly, although the last five measures of the table 
were known by most respondents, they have never been used systematically. 
Besides the measures that we suggested, respondents also mentioned several 
measures that they had used; however these were either alternatives of size 
measures (e.g., number of methods) or measures unrelated to complexity. 
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Table 14 Measures and their use represented in three categories 

  Regularly 
used 

Not used Never 
heard  

Chidamber and Ke-
merer 

1 33 66 

Halstead 2 33 65 

Henry and Kafura 1 35 64 

Readability measures 6 45 49 

McCabe 11 48 41 

Fan-in 7 66 27 

Fan-out 10 64 26 

Change 22 70 8 

Size 36 56 8 

 Influence of Complexity on Maintenance Time 4.5

Understanding the influence of complexity on maintenance time is necessary in 
order to make decisions on conducting complexity management activities. If 
complexity has a relatively small influence on maintenance time, it would be 
difficult to decide whether it is worth spending effort on complexity reduction.  

The results in this section aim to increase understanding of the complexity in-
fluence on maintenance time. They are inconclusive, however, as the estimates 
are based on educated guesses rather than quantitative assessment methods. It 
is true that such an estimate is subjective, and cannot be used as  is. It value, how-
ever, is that it provides an insight into the scale of complexity influence. Does com-
plexity increase maintenance time by 10‒20%, or 60‒80%, or two-fold, or multi-
fold or another order of magnitude? 

Figure 13 presents the results of the influence of code complexity on mainte-
nance time of code. The statistical mode of the estimates is 27% corresponding 
to 250‒500%. Twenty seven respondents believed that complexity roughly 
increases maintenance time by a factor of 2.5‒5 times. Generally, 62% of re-
spondents believed that complex code takes more than twice as much effort as 
maintenance compared with simple code. In fact, only seven respondents 
thought that the code complexity has insignificant influence on maintenance 
time. This result means that complexity management activities are necessary 
because a significant reduction in complexity promises to decrease the mainte-
nance time multiple times. The respondents also commented on how they had 
estimated complexity influence on maintenance time. Four stated that they re-
membered some examples of simple code and complex code that they had modi-
fied in their practice. They remembered roughly how much time code modifica-
tion took and made general estimates. One respondent noticed that in her/his 
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experience, complex code (usually defect-prone) took a multi-fold longer time to 
correct defects than modifying the given code. One respondent stated that the 
estimation was a pure speculation. Two respondents found it difficult to make 
such an estimate. Generally, the estimates indicate that there is a high likelihood 
that complexity increases maintenance time by multiple times. 

 

 

Figure 13 Influence of complexity on maintenance time of code 

 Cross-Sectional Data Analysis Results 4.6

In the previous five subsections, we presented the five main groups of results of 
this paper. Here, we investigate whether the demographic data significantly 
affect the results presented so far. These data correspond to the four pieces of 
statistical analyses described in Section 3.6.  

 Type of job and assessment of code characteristics  4.6.1

This section presents results on whether the assessment results of code charac-
teristics are associated with type of job. Table 15 presents the code characteris-
tics and corresponding p and Chi-Square values for every characteristic. The 
significance level for p-value is p<0.05. P-values for “many operators” (0.014) 
and “many calls” (0.016) attained statistical significance, indicating that there is 
indeed a difference between the assessments of “developers” and “non-
developers”. In both cases, the data suggest that according to the developers’ 
assessment, “many operators” and “many calls” have less influence on complexi-
ty increase compared to that of “non-developers”. All other p-values are large 
(p>0.1), indicating no significant difference between the assessments of “devel-
opers” and “non-developers”. 
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Table 15 Chi-Square test results per code characteristic: type of job and assess-
ment 

Name of 
character-
istic 

Lack of 
struc-
ture 

Nesting 
depth 

Control 
state-
ments 

Mislead-
ing Com-
Com-
ments 

Many 
develop-
ers 

Multi-
ple 
tasks 

P-value 0.438 0.679 0.804 0.076 0.317 0.249 
Chi-sq. 0.602 0.171 0.062 3.151 1.002 1.327 

Name of 
character-
istic 

Fre-
quent 
Changes 

Complex 
Require-
ments 

Many 
Variables 

Many 
calls 

Many 
operators 

 

P-value 0.654 0.196 0.472 0.016 0.014  
Chi-sq. 0.201 1.673 0.518 5.808 6.005  

 

 Respondents’ experience and the assessment of 4.6.2

code characteristics 

The results here show whether the assessment results of code characteristics 
are associated with respondents’ experiences. Table 16 presents code character-
istics and corresponding p and Chi-Square values for every characteristic.  

Table 16 Chi-Square test results per code characteristic: experience 
and assessment 

Name of 
character-
istic 

Lack of 
struc-
ture 

Nesting 
depth 

Control 
state-
ments 

Mislead-
ing Com-
Com-
ments 

Many 
develop-
ers 

Multi-
ple 
tasks 

P-value NA 0.686 0.213 0.407 0.111 0.040 
Chi-sq. NA 1.164 1.550 0.687 2.538 4.216 
Name of 
character-
istic 

Fre-
quent 
changes 

Complex 
require-
ments 

Many 
variables 

Many 
calls 

Many 
operators 

 

P-value 0.667 0.460 0.160 0.176 0.659  
Chi-sq. 0.185 0.547 1.971 1.834 0.195  

 

The p-value for “multiple tasks” is small (0.04), indicating a statistical difference 
between assessments of “more experienced” and “less experienced” respond-
ents. In this case, the data suggest that according to “more experienced” re-
spondents, the number of “multiple tasks” in a unit of code has more influence in 
complexity increase compared with the assessment of “less experienced re-
spondents”. The rest of the p-values are statistically significant, showing no 
association between assessment results and respondents’ experience. In the 
case of “lack of structure”, one of the values was less than five when calculating 
the estimated frequencies of its contingency table so it was not possible to con-
duct a meaningful test. 
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 Type of job and assessment of complexity influence 4.6.3

on maintenance time 

The results here show whether the assessment results of “complexity influence 
on maintenance time” is associated with respondents’ “type of job”. The Chi-
Square test that was performed based on Table 10 shows a large p-value, p = 
0.484 (Chi-Sq. = 1.453), indicating no statistical significance. This means the 
assessment results of complexity influence on maintenance time are not statisti-
cally different across different jobs.  

 Respondent’ experience and assessment of com-4.6.4

plexity influence on maintenance time 

The results here show whether the assessment results of “complexity influence 
on maintenance time” is associated with respondents’ “experience”. The Chi-
Square test that was performed based on Table 11 shows a large p-value, p = 
0.831 (Chi-Sq. = 0.831), indicating no statistical significance. This means the 
assessment results of complexity influence on maintainability cannot be statisti-
cally different due to respondents’ experience.  

 DISCUSSION 5

Code characteristics as complexity triggers (RQ 1): We have proposed elev-
en code characteristics in this survey, two of which, nesting depth and lack of 
structure, strongly influenced complexity. Compared to other characteristics, 
these two are usually avoidable because deeply nesting blocks can be averted by 
using the “return” statement, creating additional function calls, etc. It is also 
possible to write highly structured code by using meaningful names of function 
and variables, maintaining line length within good limits, keeping indentations 
consistent, etc. Other characteristics, such as the number of operators, control 
statements or function calls, usually cannot be avoided  since they are tightly 
associated with problem complexity. 

Our results show that the main two complexity triggers might instead be related 
to accidental complexity, which can arise due to suboptimal design decisions. 
Our results also closely relate to a report by Glass [7] that for every 25% in-
crease in problem complexity, there is a 100% increase in complexity of the 
software solution. A natural question then follows: is it the accidental complexi-
ty that quadruples the increased complexity in the solution domain? We believe 
that there is great value in investing effort to answer this question with a further 
research because the results of RQ 4 show that complexity has an enormous 
influence on the maintenance time, which consumes 90% of the total cost of 
software projects [171].  

Figure 10 clearly shows that different complexity triggers (code characteristics) 
have significantly different levels of influence on complexity increase. This sug-
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gests that when creating a complexity measure, the relative differences of such 
influences should be considered otherwise the complexity measure will miss-
estimate the perceived complexity of the given measurement entity. Moreover, 
when calculating complexity, the weighting for different characteristics can be 
derived from empirical estimates of code characteristics as complexity drivers. 
In our case, for example, the nesting depth will have a higher coefficient in com-
plexity calculation than the number of operators. 

The influence of code complexity on internal code quality attributes (RQ 
2): The second research question concerns the complexity influence on internal 
code quality attributes. The results suggest that readability, understandability 
and modifiability of the code are highly affected by complexity. These results, 
and those of RQ 1, entail a straightforward conclusion: nested blocks and poorly 
structured code are the main contributors (at least among the proposed eleven 
characteristics) in making code hard to read, understand and modify. This con-
clusion may provide good insight for programmers in order to  develop under-
standable code. 

The use of complexity measures in the industry (RQ 3). This part of the sur-
vey included only the popular code complexity measures; however, there was 
an empty field where respondents could register other measures that they used. 
The results show that all of the measures are used rarely in the collaborating 
companies, and that respondents have never considered any other complexity 
measures. There are at least two clear arguments for these results:  

 Either the measures are not satisfactorily good at predicting problem 1.
areas, 

 Or the measures are good enough (particularly when used in combi-2.
nation), but software engineers need help in understanding how 
they can optimally use these measures to locate problem areas and 
improve the code. 

There are also valid perspectives to support both arguments:  

 Designing measures should not be based merely on theoretical 1.
frameworks because the weighting for different complexity triggers 
that are considered in complexity measurement can only be derived 
from empirical data 

 Complexity measures should be evaluated not only for defect predic-2.
tion, but also for how well they can both locate complex code areas  
and indicate necessary improvements. 

The influence of complexity on maintenance time of the code (RQ 4): If we 
were to believe the statistical mode of the results then clearly, complexity man-
agement can potentially decrease maintenance time by a multiple factor.  

Cross-sectional data analysis (RQ 5): The cross-sectional data analysis results 
support the argument that results obtained for RQ 1‒4 of the survey are most 
likely not associated with respondents’ demographics. It was particularly intui-
tive to believe that certain jobs not largely related to core development activities 
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would tend to underestimate the complexity effect on maintenance time. Our 
results, however, show that this is not so, which might imply that practitioners 
who are not working directly with software design are, nevertheless, well aware 
of the complexity effect on maintenance time. 

Future work: We are planning two further studies to directly follow this study; 
specifically, we will: 

 Circulate the survey to a wider range of software developers, includ-1.
ing the open source community, to gather results from a wider arena 
of products and development paradigms, and 

 Design a complexity measure that takes into consideration the as-2.
sessed influences of code characteristics.  

 VALIDITY THREATS 6

Notably, when analyzing the results obtained on code characteristics as com-
plexity triggers, these results are limited to the eleven characteristics proposed 
in this study, which creates a construct validity threat. If more code characteris-
tics had been used in the study, the influence of characteristics on complexity 
would differ in Figure 10. For example, if we had added more characteristics 
(e.g., “inheritance level” and “usage of macro-code”) to the survey, the number of 
the most influential characteristics might have increased. This means that “nest-
ing depth” and “the lack of structure” might not be the only important character-
istics to consider in coding. This should be considered when applying these 
results in practice. Nevertheless, adding more characteristics will not change the 
estimated influence of code characteristics, which means that nesting depth and 
lack of structure remain very influential characteristics. 

There is also a possibility that several corporate respondents had worked in the 
same organization/team. A common practice in software development organiza-
tions is to decide the standard tools to be used by the organization. Using soft-
ware measures also complies with this practice. Therefore, if five respondents 
from the same organization answered the survey, they might all indicate that 
they use the same measure. Whilst this does not mean that this measure is used 
more often than others, it does mean that in a particular organization the given 
measure is adopted for regular use. By including seven companies (including 
several organizations within each) and two universities in this study, this threat 
has been significantly minimized. Nevertheless, employing a wider range of 
companies or domains in this survey would likely result in a markedly more 
accurate picture of the use of measures. It would be particularly interesting to 
determine those measures used in open source product development because 
there the use of measurement tools is fundamentally regulated in a different 
way. While tool choice is often affected by corporate regulations and standards 
[172], open source developers are more likely to have greater freedom in their 
choice of tools.  
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Another construct validity threat arises due to the possibility that respondents 
did not actually understand the measures investigated in the survey. It is possi-
ble that respondents use a tool that shows values of complexity using a certain 
measure, yet despite using these values, they still do not know the name of the 
measure. Thus, when encountering this measure in the survey, they might have 
marked it as “have not heard of”. In the survey, we have partially mitigated this 
validity threat by providing explanatory text on what a given measure actually 
shows. It may well be the case that even these explanations do not shed light on 
whether the given measure was actually known, although this is unlikely. 

The four internal quality attributes of code in Section 3.3 were chosen based on 
two important points. Firstly, the attributes should be simple and direct to ena-
ble respondents to make a clear logical connection between them and a com-
plexity otherwise a validity threat of misinterpreting the attribute and the entire 
question could occur. For example, if we used conciseness, respondents might 
have difficulty in understanding what “conciseness of code” is and thus might 
provide a flawed answer. Secondly, as we are interested in internal quality at-
tributes that directly affect developers’ work on maintainability, we did not 
want to expand the survey to explore the effect of complexity on any quality 
attribute in particular. 

We designed even-point, Likert scale questions to avoid mid-point values. We 
argue that mid-point values should not be used because some respondents 
might opt for them if the question is perceived as difficult and requires more 
thought. The survey questions did not imply the necessity of mid-point values so 
we believe that the six-point scale was adequate. 

Two factors can cause a construct validity threat when estimating the influence 
of complexity on maintenance time (RQ 5). The first factor concerns the inter-
pretation of what is simple code and what is complex code. We suggested com-
paring the maintenance time spent on simple code with that spent on complex 
code. Since respondents could have their own interpretations of complex code 
and simple code in our survey (RQ 5), such a comparison is based on a purely 
subjective interpretation of the definition of complex/simple code. The second 
factor concerns the estimation itself, which is neither quantified in any way nor 
derived from a specified mechanism that used by respondents. These results are 
derived only from what respondents believe based on their experience and 
knowledge so we acknowledge that these results should be used cautiously 
when making inferences or predictions. 

The classification of developers and non-developers for the cross-sectional data 
analysis might not have been an optimal choice because the non-developers’ 
group contains several categories of jobs. Unfortunately, we were unable to 
classify the data based on more categories and conduct meaningful statistical 
tests due to data scarcity. Therefore, the fact that no statistical significance was 
attained in this piece of analysis might be due to over-simplification of this cate-
gory 
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In conclusion, the assessment of code characteristics and their influence on 
maintenance time is entirely based on the knowledge of software engineers. 
While a summary of this knowledge can be valuable, it should not be taken for 
granted. Evidence based on alternative and more objective measures would be 
markedly beneficial for this type of study [173].   

 RELATED WORK 7

A comprehensive list of code characteristics that influence complexity can be 
found in the work of Tegarden, et al. [174]., who separate code characteristics 
for several entities, including variables, methods, objects and subsystems. They 
differentiate nearly 40 distinct code characteristics that can influence complexi-
ty differently. They propose that some of these characteristics can be combined 
as they are similar; however they leave this up to the user of their list to decide 
on how to do so. Their work is valuable because it provides a comprehensive list 
of characteristics that can be used to design complexity measures. Gonzalez 
[175] identifies seven sources of complexity that should be considered when 
designing complexity measures: control structure, module coupling, algorithm, 
code nesting level, module cohesion and data structure. Gonzales also distin-
guishes three domains of complexity: syntactical, functional and computational. 
Syntactical is the most visible domain, although it can reveal information about 
the other two domains of complexity. 

In addition to the nine measures of complexity in our study, there are also sev-
eral other measures reported in literature that are more or less as good as for 
complexity assessment, notably the Chapin [176] complexity measure based on 
data input and output. Munson and Kohshgoftaar [177] have reported measures 
of data structure complexity, whilst cohesion measures have been described by 
Tao and Chen [178] and Yang, et al. [179]. Moha, et al. [180] have designed 
measures for code smells, where “code smells” can be regarded as an aspect of 
complexity. Kpodjedo, et al. [181] have proposed a rich set of evolution 
measures, some of which were considered in our study. Wang and Shao 
[182],followed by Waweru, et al. [183] proposed complexity measures based on 
the weighted sum of distinct code characteristics. Earlier, we discussed that 
weighting can provide a more accurate measure of complexity; however the 
weighting should not merely be based on the perception of the measure’s de-
signer, but on empirical estimates to provide sensibly accurate weights. From 
this perspective, we believe that our study can provide valuable information for 
studies that design measures of complexity. Keshavarz, et al. [184] have devel-
oped complexity measures, which are based on software requirement specifica-
tions and can provide an estimate of complexity without examining existing 
source code. Al-Hajjaji, et al. [185] have evaluated measures for decision cover-
age. 

Suh and Neamtiu [186] have demonstrated how software measures can be used 
for proactive management of software complexity. They report, however, that 
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the measurement values they obtained for existing measures provided incon-
clusive evidence for refactoring and reducing complexity. They observed many 
occasions when developers reduced values of complexity measures in the code 
with no reduction in actual perceived complexity as had been expected. The 
results of this study support the argument that existing software measures are 
still far from satisfactory for software engineers when not used in combination 
with each other. 

Salman [187] has defined and used a set of complexity measures for component-
oriented software systems. Most of the measures that these introduce are more 
like size measures (the number of components, functions, etc.). There are also 
measures similar to fan-in and fan-out, but at the component level. Most im-
portantly, the study shows that complexity has major influence on code main-
tainability and integrity and that there is lack of empirical data on how existing 
complexity measures actually perform in industry. Kanellopoulos, et al. [188] 
have proposed a methodology for code quality evaluation based on the ISO/IEC 
9126 standard. This work is distinguished by the fact that they use expert opin-
ions for weighting code measures and attributes for more accurate evaluation of 
code quality. In two of our previous studies, we have developed measurement 
systems in Ericsson and Volvo Group Truck Technology [189]. We investigated 
several complexity measures and chose to use a combination of two measures 
as a predictor of maintainability and error-proneness. Since we had the close 
collaboration of a reference group of engineers, we received valuable feedback 
on how these engineers viewed the introduced complexity measures. One of the 
most important points they made was that the introduced complexity measures, 
such as cyclomatic complexity, fan-in, and fan-out, are too simplistic for com-
plexity measurement. According to them, there were stronger characteristics of 
complexity that needed to be weighed in measurement. This feedback was taken 
into consideration in the design of this current survey.  

 CONCLUSIONS 8

Effective complexity management can reduce the maintenance cost and increase 
the chance of producing defect-free software. Complexity measures, therefore, 
are developed and utilized as a means of quantification of complexity. Existing 
complexity measures are developed based on theoretical frameworks, but do 
not necessarily consider empirical observations of the specific code characteris-
tics that complicate code and how much investment each characteristic has in 
complexity increase. For these reasons, complexity measurement results often 
are incongruent with software engineers’ perceptions of complexity. In this 
study, we have conducted a survey to: (i) investigate code characteristics and 
their contribution to complexity increase; (ii) evaluate how often complexity 
measures are used in practice; and (iii) evaluate the negative effect of complexi-
ty on the internal quality and maintenance time. Our results show that: (i) code 
complexity has a major influence on internal quality and maintenance time; (ii) 
the two, top-prioritized characteristics for code complexity are not included in 
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existing code complexity measures; and (iii) existing code complexity measures 
are poorly used in practice. This study shows that the discipline concerning code 
complexity should focus more on designing effective complexity measures; in 
particular, data from empirical observations of code characteristics as complexi-
ty triggers should be used. More work is necessary for a greater understanding 
of how software engineers can use existing complexity measures for effective 
complexity management and for the ultimate need of maintainability enhance-
ment. 
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ABSTRACT 

It is a continuous struggle to understand how much a product should be tested 
before the delivery to the market. Ericsson, as a global software development 
company, decided to evaluate the adequacy of unit test coverage criterion that 
they employed for years as a guide for sufficiency of testing. Naturally one can 
think that if increasing coverage decreases the number of defects significantly, 
then that coverage measure can be considered a criterion for test sufficiency. To 
test this hypothesis in practice we investigated the relationship of unit test cov-
erage measures and post-unit-test defects in a large commercial product of Er-
icsson. Based on the results we would like to indicate that the current unit test 
coverage measures do not seem to be any tangible help in producing defect-free 
software.  
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 TEST COVERAGE MEASURES 1

Testing is the process of executing a program with the intent of finding errors 
[190]. Sufficient testing has a decisive role for product delivery. However, as 
practice has shown, it is rather a complex task to understand whether a product 
is sufficiently tested or not. There are several unit test coverage measures which 
are aimed to quantify the sufficiency of testing. Three popular measures are 
statement coverage, decision coverage, and function coverage: 

Statement coverage is the percentage of statements in a file that has 
been exercised during a test run. 

Decision coverage is the percentage of decision blocks in a file that has 
been exercised during a test run. 

Function coverage is the percentage of all functions in a file that has 
been exercised during a test run. 

Simply increasing coverage takes effort from software developers, but the deal 
is that we do not know whether this effort is justified, because we do not know 
how much the increasing coverage can decrease the number of defects. Several 
researchers pointed theoretically that simply satisfying coverage criteria can 
miss important code execution possibilities and leave undetected defects [191, 
192]. Other researchers showed tactics, such as assertions and causal analysis, 
which can improve defect finding capabilities of tests independent of coverage 
[193, 194]. In practice, however, the direct effect of test coverage on defect-
proneness is still unknown.  

 EXISTING STUDIES 2

First we conducted a literature survey to find out what research is available on 
the subject. The survey gave us 29 articles that most likely were related to our 
study. After a close examination we found that only eight of them have direct 
relation to the subject of coverage-defect relationship. These papers and their 
findings are presented in Table 1. It seems that seven out of eight papers sup-
port the statement that the coverage measures are weakly correlated with the 
number of defects. Only paper five in the table presents moderate and strong 
correlation. Most importantly, in seven out of eight papers one or several of the 
following issues are present:  

 artificial defects (mutants)  1.
 uncontrolled confounding factors such as size, change rate, complex-2.

ity  
 artificial tests and coverage control 3.
 small products and little amount of defects  4.

These factors reduce the likelihood that the obtained results effectively repre-
sent the reality. Essentially only one paper presents data which is sufficiently 
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close to a practical case [59]. Curiously enough the authors of this paper argue 
that there is a correlation between defects and coverage, but they do not em-
phasize the fact that the statistical effect size is very small, which is essential in 
understanding the adequacy of coverage criterion. 

Table 1 Papers and findings on coverage measures 

Paper Context Summary of Findings 

1. 
[59] 

Two large industrial products. Actual 
defects. Block coverage and arch 
coverage are measured. cyclomatic 
complexity and code changes are 
measured and controlled for 

The correlation between coverage 
and defects is none or very weak. 
Moreover, the effort required to in-
crease the coverage from a certain 
level to 100% increases exponentially 

2.  
[195] 

Twelve small programs. Actual de-
fects, block coverage, and decision 
coverage are measured 

No association is found between the 
defects and coverage by qualitative 
analysis 

3.  
[196] 

Interviews are conducted with 605 
practitioners to understand whether 
coverage measures are used as test 
sufficiency criteria 

Mixed responses are obtained. Some 
use coverage as sufficiency criteria, 
some others stop testing when they 
feel the most complex part of the code 
is tested 

4.  
[197] 

Twelve small programs. Artificial 
defects. Monte-Carlo simulation is 
used to find out the relationship of 
defects and coverage. Block coverage 
and defect coverage are measured 

The results do not support the hy-
pothesis of causal dependency be-
tween test coverage and number of 
defects when testing intensity is 
controlled for 

5.  
[198] 

Two large open source products. 
Actual defects. Test suite size, state-
ment coverage, and decision cover-
age are measured. Defectiveness is 
measured as a binary variable. Code 
coverage is not collected as it is but 
manually generated and manipulated 

Moderate to strong correlation is 
found between coverage and defec-
tiveness.  

 6.  
[199]                                                                                                                                                                                                                                                                              

Five large open source products. 
Artificial defects. Statement coverage 
and (modified) decision coverage are 
measured. Code size is measured and 
controlled for 

Weak and moderate correlation is 
found between coverage and defects. 
Type of the coverage does not have an 
impact on the results 

7.  
[200] 

Experiment on a large software 
product. Artificial defects. Block 
coverage and decision coverage are 
measured. The correlation of cover-
age and defects is assessed under 
different testing profiles 

Moderate correlation is found be-
tween coverage and defects. The 
correlation is different for different 
testing profiles. 

8.  
[201] 

Experiment on 14 industrial prod-
ucts. Both artificial and actual defects. 
Tests are generated during the exper-
iment. Decision and condition cover-
age are used. The size of test suites is 
controlled for 

Coverage measures are weak indica-
tors for test suite adequacy. High 
coverage does not assume effective 
test 
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Having such inconclusive results, we decided to conduct a case study which 
avoids artificial conditions in the investigated product and controls as many 
confounding variables as possible in order to obtain more conclusive results for 
the practitioners. 

 THE INVESTIGATED PRODUCT 3

The product we studies was a large telecom product developed by Ericsson. The 
product size was about 2 million lines of code (Loc). The organization consisted 
of about 150 engineers who deliver several major releases of the product in 
each year. The organization used mixed Agile/Lean development methodolo-
gies, relying on incremental code deliveries by semi-independent development 
teams. As a frontline development organization they are always eager to identify 
impediments in their development chain. Thus it was natural to question the 
adequacy of test coverage measures that were used as recommendations for 
test sufficiency. 

 METHOD OF INVESTIGATION 4

We collected all defects per file in a year period of time. Generally, if a file is 
changed due to a defect correction is tagged as “bug fix” in the corresponding 
development branch. Therefore, it was possible to count how many files have 
been defective, and how many defects have been fixed in a file. The defects we 
measured were usually found during integration and system tests, or were re-
ported by customers. The defects that were found during unit testing were not 
reported and measured. Oppositely, we measured the two coverage measures 
per file for unit tests, for the same year as the defects were measured. Since the 
coverage data was stable over the given year, we only took a snapshot meas-
urement for the given year. Considering that unit tests were done earlier than 
integration and system tests, we could expect that having high coverage during 
unit testing would reduce the chance of emerging defects during integration and 
system testing. The opposite is also true: less coverage in unit testing would lead 
to more defects in integration and system testing. This means that if there is a 
tangible negative correlation (<-0.4) between unit test coverage and later found 
defects per file, then the coverage measure could be further analyzed to under-
stand its adequacy of use. However, if no tangible correlation is found, then the 
coverage measure can be regarded as an inadequate indicator for test sufficien-
cy. 

We also measured size, complexity, and changes of files to understand how they 
affect the test coverage, defects, and coverage-defect relation. Figure 1 depicts 
an overview of our analysis.  
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Figure 1 The focus of the study 

The original analysis is focused on scrutinizing the relationship of test coverage 
and defects. However, since both coverage and defects are affected by code 
properties – complexity, changes, size, – we investigate their influence on the 
original analysis as well. Probably there are other variables that influence the 
defects-coverage relationship, such as, developers’ experience in coding and 
testing, the programming language by which the product was developed, inte-
grated development environment which offers testing tools, etc. But we assume 
that their influence is randomly distributed over source files, so our results will 
not suffer noticeably. 

 RESULTS  5

The Pearson/Spearman correlation coefficients between several complexity, 
size, change measures and defects and coverage measures are presented in Ta-
ble 2. Important values are boldfaced in the table. The first important thing is 
that the correlation coefficients between statement (decision, function) cover-
age and defects are weak (rows two, three, and four under the column of de-
fects). Interestingly the correlation between coverage measures is very strong, 
indicating that they are very similar to each other (rows three and four in the 
last column).  

This is the reason why the correlation coefficients between coverage measures 
and defects are nearly the same. Since the decision, statement, and function 
coverage are strongly correlated, only one of them is used in the correlation 
analysis with the other variables (the last column of the table). The fact that the 
correlation between the coverage and defects is weak can be regarded as the 
first indication of the coverage measures being inappropriate as test sufficiency 
criteria. However there can be a problem with this kind of conclusion, because 
the size of files is not controlled for. Our analysis assumed that files with equal 
coverage should have equal amount of defects. But this assumption is not true, 
because a file with 1000 Loc and 50% coverage has 500 Loc untested, while 
another file with 100 Loc and still with 50% coverage have only 50 Loc untest-
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ed. You see, the files have equal coverage but there is much bigger likelihood of 
finding defects in 500 lines of untested code than in 50 lines of untested code. In 
fact the strong correlation between Loc and defects (0,67/0,53) indicates that 
bigger size is more likely to defects, and that is quite intuitive.  

Table 2 Pearson/Spearman correlation coefficients between change, size, and 
complexity measures with defect count and coverage of files 

N Property Measure Correlation 
with defects 

Cor. with 
statement 
coverage 

1 Defect Defects 1 -0,19 / -0,13 

2 Coverage Statement coverage -0,19 / -0,13  1 

3 Coverage Decision coverage -0,19 / -0,13 0,91 / 0,87 

4 Coverage Function coverage -0,18 / -0,14 0,87 / 0,86 

5 Change Versions 0,79 / 0,62 -0,14 / -0,07 

6 Change Developers count 0,76 / 0,63 -0,14 / -0,06 

7 Change Changed code 0,61 / 0,55 -0,11 / -0,08 

8 Change Added code 0,58 / 0,53 -0,11 /  0 

9 Change Deleted code 0,51 / 0,55 -0,1  /  -0,08 

10 Change Age 0,31 / 0,27 -0,27 / -0,21 

11 Size Statements 0,62 / 0,49 -0,17 / -0,11 

12 Size Loc 0,67 / 0,53 -0,18 / -0,12 

13 Complexity Cyclomatic complexity 0,64 / 0,48 -0,18 / -0,12 

14 Complexity Maximum block depth 0,42 / 0,42 -0,4  /  -0,33 

15 Complexity Parameter count 0,52 / 0,45 0 / 0 

16 Complexity Percent comments 0 / 0 0 / 0 

17 Coverage density Statement cov./Loc -0,06 / -0,25 – 

18 Coverage density Statement cov./Versions -0,18 / -0,3 – 

 

The same problem emerges for files with different change rates: files that have 
more changes (versions), have been under more intensive development, and 
therefore are more prone to have defects. These problems of size and changes 
create validity threats for our analysis results. Therefore, in order to neutralize 
the effects of size and changes on defect-coverage analysis results we created 
two additional measures – average coverage per Loc (statement coverage over 
Loc) and average coverage per version (statement coverage over versions). 
Lines 13 and 14 in Table 2 show that the Spearman correlation coefficients be-
tween the new measures and defects are a little improved, (-0,25 and -0,3), 
however they still did not gain any tangible value. At this point we reached to an 
important conclusion for this study: Increasing coverage does not necessarily 
decrease the amount of defects. 
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Figure 2 Marginal plot for statement coverage and defects 

The only thing we can say is that increasing coverage creates a slight tendency 
of decreasing defects. This fact is illustrated in Figure 2. Even though the figure 
shows a downward association between defects and coverage for some files 
(dots), for most of the files, which are closer to the origin of the coordinating 
system, this association does not exist. We also found that besides the maximum 
block depth (max block depth), the rest of the complexity and change measures 
presented in Table 2 were strongly correlated with either Loc or Versions, so 
they did not have any additional impact on the coverage-defect relationship, 
when Loc and Versions were already controlled for. 

 THE EFFECT OF COMPLEXITY 6

As we mentioned earlier, there was only one measure which was not correlated 
with the size and change measures strongly, and this measure was max block 
depth. This measure shows the maximum level of nesting in a file. Table 2 shows 
that max block depth is the only measure which has tangible negative correla-
tion with coverage (-0,4/-0,33), suggesting that it might be hard to write tests 
for nested code. At the same time max block depth has tangible correlation with 
defects (0,42), indicating that nested code might be more prone to defects than 
simpler code. Since max block depth is correlated both with defects and cover-
age, we found it interesting to understand defect-coverage relation in the con-
text of max block depth. Figure 3 shows two contour plots. The upper plot 
shows the relation of statement coverage, max block depth, and defects. The 
dark green area indicates no defects, while areas towards yellow and then red 
indicate increasing number of defects. What is very interesting about the plot is 
that all of the defected areas are situated in the right-hand side of the plot, clear-
ly indicating that defects emerge only in places where the level of nesting gets 
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higher. However, we cannot draw the same conclusion for the coverage-defect 
relationship, since the defects are along the line of coverage axis. It is true that 
there is more red area in the bottom of the plot but still upper part contains red 
and yellow areas as well. It is important to recall that coverage itself was nega-
tively correlated with max block depth, so some of the files in the bottom-right 
red area have low coverage right because of high nesting level. This essentially 
means that nesting has double effect on code: it both increases the defect-
proneness of code and complicates the process of writing tests. It is worth to 
notice that max block depth is not a solidly defined measure for source files as 
entities. It only indicates nesting level for a block but not for a whole file, but 
still we observe its effect on file level.  

 

 
Figure 3 Contour plots of statement coverage and defects 

S
ta

te
m

e
n

t 
co

v
e

ra
g

e
 

S
ta

te
m

e
n

t 
co

v
e

ra
g

e
 



Mythical Unit Test Coverage 

 

166 
 

A more adequate complexity measure based on nesting might indicate much 
larger effect on the coverage and defects. The bottom plot shows a similar 
presentation of the relationships between statement coverage, defects, and ver-
sions. This plot also clearly shows that files which have little amount of versions 
(less changes) did not have defects, no matter they were tested or not. When we 
substituted the versions by Loc in the second plot, we got a very similar picture. 
Thus, the areas of code that are small in size or are not changed are defect-free, 
and this is quite natural by the laws of probability, because it is more likely to 
find defects in larger files or in files that are under intensive development.  

Generally speaking, in the first plot we see a relation of code complexity, cover-
age, and defects, while in the second plot we see a relation of development size, 
coverage, and defects. Usually complexity is more manageable than size and 
changes. The latter ones are not always possible to reduce since they are the 
core constituents of product development and delivered functionality: no value 
can be delivered without developing new piece of code or modifying an existing 
one. Meanwhile certain amount of complexity can be reduced by contrivance 
and smart coding tricks, and therefore it is possible to partially control the effect 
of complexity on defects and coverage.  

 CONCLUDING REMARKS 7

Decision coverage, statement coverage, and function coverage are popular 
measures that purport to indicate test sufficiency. However, 100% coverage 
does not entail 100% tested code. Moreover, the results of this case study sug-
gest that: 1) the adequacy of unit test coverage criterion in Ericsson was a myth, 
2) it is well worth to conduct similar case studies in other domains in order to 
understand how general this problem is in practice, 3) international standards 
such as ISO 26262, IEC 61508, ANSI/IEEE 1008-1987, and DO 178B need to 
reconsider their recommendations of unit test coverage measures as criteria for 
test sufficiency, 4) developers should realize that managing complexity both 
decreases error-proneness and facilitates testing of code. 
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ABSTRACT 

Validating software measures for using them in practice is a challenging task. 
Usually more than one complementary validation methods are applied for rig-
orously validating software measures: Theoretical methods help with defining 
the measures with expected properties and empirical methods help with evalu-
ating the predictive power of measures. Despite the variety of these methods 
there still remain cases when the validation of measures is difficult. Particularly 
when the response variables of interest are not accurately measurable and the 
practical context cannot be reduced to an experimental setup the abovemen-
tioned methods are not effective. In this paper we present a complementary 
empirical method for validating measures. The method relies on action research 
principles and is meant to be used in combination with theoretical validation 
methods. The industrial experiences documented in this paper show that in 
many practical cases the method is effective. 
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 INTRODUCTION 1

A measure is considered valid if it fulfills the theoretically required properties 
and has some kind of predictive capability of a variable of interest. Validity of 
software measures is essential for designing and applying assessment tools for 
software development organizations. The use of rigorously validated measures 
provides valuable information on the developed software and development 
processes. Software developers use this information to obtain valuable 
knowledge on the quality, risks, opportunities, productivity, cost, and speed 
associated with the software development product and process. A well-
established opinion is that a measure should be designed based on a firm theo-
retical ground and be tested many times in practice in order to be considered 
valid [27]. There is much work done for providing theoretical methods for vali-
dation: Kitchenham, et al. [158] introduced a framework for software measure-
ment validation based on a set of predefined rules. Schneidewind [157] pro-
posed a methodology for measurement validation based on a set of validity cri-
teria. Briand, et al. [23] introduced property based measurement in order to 
facilitate the measurement design and validity check. Issues concerned with 
difficulties of having a generally accepted measurement validation framework is 
discussed by Sellami and Abran [202] to a great detail.  

Empirical validation, however, seems to be a more difficult task: in order for a 
measure to be empirically valid, it is expected to have some kind of predictive 
power [27]. We continuously see studies using statistical models for assessing 
the predictive power of measures. Examples are [97, 98, 203, 204]. However, in 
practice, despite the extensive use of measures and existed validation frame-
works, there are many measures which are simplistic for what they are de-
signed to measure. Moreover, we continuously see many scientific reports still 
trying to validate such old and established measures as cyclomatic complexity 
[106] or Halstead measures [165]. These are the symptoms of not having a well-
established and generally-agreed-upon framework for software measurement 
validation. Surely statistical models are powerful for examining whether a given 
measure predicts the intended variable of interest of software system. But, how 
can we conduct a sample measurement on this variable, so we can make a statis-
tical model for validation? The practice shows that such a measurement is very 
difficult. Many papers use the defect count as a measure for quality and validate 
various measures against it [28, 205]. Nevertheless, they rarely question how 
accurately the defect count can be done (not so accurately in many cases as we 
show in this paper) and to what extend the defect count represents the quality. 
Problems similar to this one are ubiquitous in software measurement. These can 
be related to assessing code maintain-ability and error-proneness, requirements 
understandability, models’ complexity, development speed, etc. 

When the variable of interest is measurable, at least for historical or a subset of 
data, statistical models are often used for validating measures. When the varia-
ble of interest is not measurable directly, experimental methods may be used to 
obtain some kind of ranks or values for the variable of interest. Then these 
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ranks and values can be used in statistical models for validating the given meas-
ure. In many cases, when the variable of interest is not directly measurable, and 
the organizational context cannot be reduced to an experimental setup [143], it 
is difficult to conduct empirical validation. To the best of our knowledge, there 
are no validation approaches which would help to empirically validate software 
measures when the variable of prediction is not accurately measurable. In this 
paper we illustrate how the action research can be used for empirical validation 
of measures when the variable of interest is not accurately measurable. The 
research question that we address in this paper is: 

How can we validate software measures when the prediction variables 
are not accurately measurable and when the organizational context 
cannot be reduced to an experimental setup? 

The results of this paper are derived from data that we collected from a set of 
action research projects in five large software development companies, where 
we previously designed and evaluated a variety of internal quality measures. 
Action research is a methodology which permits the application of a designed 
method directly in the area of its intended use, thus allowing collecting valuable 
feedback and refining the method accordingly. The results show that action 
research methodology is suitable for conducting empirical validation of 
measures. Particularly it helps to understand the effectiveness of a measure in 
what it is designed for assessing. Action research also permits evaluating the 
improvement possibilities of a measure. We argue that the effectiveness of a 
measure should be evaluated by the help of software engineers who use that 
measure. The repetition of such evaluation with many software engineers and in 
many software development organizations helps building up solid knowledge 
about whether or not the measure can be ultimately accepted for adoption and 
regular use. 

 A RECAP OF MEASUREMENT VALIDATION RESEARCH 2

IN SOFTWARE ENGINEERING 

There are two complementary groups of measurement validation methods in 
the literature, theoretical and empirical [24]. The first methods of the first group 
usually define properties or rules that a given measure should fulfill in order to 
be regarded a correct measure of the given attribute. The methods of the second 
group are used to find out whether the given measure has the desired predictive 
power for predicting the variable of interest. Table 1 presents examples of vali-
dation methods, requirements for measure’s validity, and an example measure. 
The fourth column of the table presents the validation method proposed in this 
paper. In the coming two subsections we discuss the current state of theoretical 
validation methods and empirical validation methods based on statistical mod-
els. 
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 Theoretical Validation 2.1

Theoretical validation is needed for understanding the properties that a meas-
ure should fulfill and the rules that it should comply with, indicating what that 
measure should be and what it should not be. The theoretical validation helps to 
understand whether the measure is actually a measure of the intended meas-
urement attribute of software entities. Measurement attributes are size, com-
plexity, cohesion, length, coupling, change frequency, etc. Entities are code, re-
quirements, test cases, architecture, development processes, etc. Not knowing 
what attribute we actually measure by a given measure makes the use of that 
measure difficult, as we cannot correctly understand in what prediction (evalua-
tion) mechanism it should be applied for.  

The properties and rules, in their turn, are derived from the essential under-
standing of software attributes. For example the size attribute should have addi-
tivity property because the essence of the size concept (attribute) indicates the 
amount of something: when adding more of this something it should have more 
size then earlier. Thus when designing a size measure, it should comply with the 
determined additivity property. In this manner properties of the other attrib-
utes are determined in order to ease the design of measures. One of the early 
works dedicated to software measurement validity is reported by Weyuker 
[156]. In this work she formulates a set of properties which shall be necessary 
for newly defined complexity measures. Even though the work was criticized for 
not providing a complete set of properties it provided a fresh ground for meas-
urement validation frameworks. 

Table 1 Techniques of validating measures 

 Theoretical 
validation 

Empirical validation 

 All cases Response 
variable is 
measurable 

Response variable is not 
measurable 

Validation method Briand, et al. 
[23]  frame-
work 

Statistical 
models 

Action research, refer-
ence group 

Requirement for 
validity 

A measure is 
valid if it 
fulfills the 
required 5 
properties of 
complexity 

A measure is 
valid if it 
predicts a 
variable of 
interest 

A measure is valid if it is a 
good indicator of a varia-
ble of interest (qualita-
tive) 

Example measure McCabe’s 
complexity 
(M) 

M M 

A valid measure of 
complexity if  

it fulfills 5 
properties of 
complexity  

it predicts 
the number 
of defects 

it affects the readability 
of the code 
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This was called a property based measurement [23], the essence of which was 
to understand what basic properties a particular measure shall fulfill in order to 
be a valid measure. Another framework for validating measures is reported by 
Schneidewind [157]. The methodology relies on six validity criteria for a meas-
ure: association, consistency, discriminative power, tracking, predictability, and 
repeatability. The author claims that fulfilling these criteria provides a good 
rationale for considering a measure valid. Briand, et al. [23] presented property 
based measurement for facilitating the selection and validation of measures. 
Their method is based on the idea that every measure should fulfill a set of pre-
defined properties in order to be qualified as valid. These properties are based 
on human perception, relying on the intuition. For example we know that the 
size must be additive because its essence and definition dictates so. Thus any 
size measures should fulfill the additivity property. In another study Briand, et 
al. [27] observe that it is very hard to agree upon a general rule or method for 
measures’ validation. They notice that a general validation framework cannot be 
expected from one researcher or from one study, it is rather repetitions and 
replications of multiple studies that builds trust on a method. Kaner [162] ex-
plores the use of software measures in the field of software engineering and 
found that there are too many simplistic measures that do not measure whatev-
er they purport to measure. He notices that the use of such measures is not rare, 
so it is better to put more effort in the design of measures to get more meaning-
ful data. 

Having theoretical frameworks for measures’ design and validity, researchers in 
the field examined how applicable the measurement theory is in practice. For 
example Briand, et al. [206] found that the application of software measurement 
theory sometimes can be questionable due to several factors, such as undefined 
scale types of several measures, endless discussions of what exact properties 
complexity measures should fulfill, what kind of statistical model should be used 
for measures’ validation, etc. In a mapping study Kitchenham [14] concludes 
that there is a large body of empirical validation of measures, however it seems 
in measurement research we do not quite know how much a measure should be 
validated, so even some old and well-established measures can be still validated 
by researchers. Her findings show that only statistical models for finding the 
relationship between measures and defects possibly are not enough for thor-
ough validation of measures. Our study supports her observation as even meas-
uring the number of defects can be quite tricky task. A recent study reported by 
Mair and Shepperd [207] found that software engineers’ participation for de-
signing good measures and statistical models is crucial, however this considera-
tion is often ignored. This study also concludes that software engineers’ partici-
pation should be considered when designing prediction measures in companies.  
Meneely, et al. [208] conducted a systematic literature review on software 
measurement validity to understand the main problems and current state of 
validation methods. They found 47 validation criteria for measures reported by 
20 authors. The authors concluded that several authors completely disagreed on 
a number of validation criteria, which shows the non-profound nature of those 
criteria. McGarry [209] (p. 128) emphasizes the importance of users feedback 
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for designing adequate measures, however he does not specify an understruc-
ture by which the communication should be established for getting feedback 
and refining the measures. Elbaum and Munson [210] investigated the relation-
ship of software measures and defects in an empirical study. Among other find-
ings they report that it is extremely difficult to accurately measure the number 
of faults for a given entity of code (module, file, or function). They mentioned 
nearly the same reasons of problems for this measurement as we presented in 
this paper. This study also comes to support our observation that there are al-
ternative views on how we should count a given measure, even if all the alterna-
tives are theoretically valid. Sellami and Abran [202] found that the existing 
validation frameworks rely on validation criteria of different philosophies. As a 
way forward they suggested building consolidated framework based on multi-
ple validation types. There are also international standards of software meas-
urement, such as ISO/IEC 15939 [211] and ISO/IEC 25000 [212]. These stand-
ards aim to facilitate the design and evaluation of measurement and also pro-
vide a common vocabulary to the community. However, they still need consoli-
dation for providing explicit guidance for measurement validation. El-Emam 
[213] discusses the importance of both theoretical and empirical validation and 
emphasizes the importance of distinguishing between internal and external 
attributes of software products. Then he acknowledges that usually it is possible 
to design measures for internal attributes such as complexity or coupling, which 
are used to assess the external attributes such as maintainability or error-
proneness. 

 Validation Using Statistical Models 2.2

Statistical models (a variety of regression models, Bayesian networks, Markov 
models, Neural networks, etc.) are widely applied to understand whether 
measures of internal attributes of software can predict external attributes. In-
ternal attributes, such as complexity or change rate, are not direct representa-
tives of external attributes such as software quality, risks, or development 
speed, which are the actual variables of interest of software developers. Internal 
attributes rather influence external attributes and their main merit is to predict 
the external attributes. This prediction mechanism is easily developed by statis-
tical models, when there are accurate measures for both internal and external 
attributes. However, as practice shows, designing accurate measures is rather 
challenging and sometimes problematic. Today, there are many papers using the 
defect count as the measure of external quality, and then validate different 
measures by versatile statistical models against the defect count [205]. We 
should not only notice that there are other much important aspects of external 
quality, such as, maintainability, but also that the defect count is sometimes 
highly inaccurate and inadequate (we argue this claim in subsection 6.1.4 by 
concrete examples). When the aim of a statistical model is to predict the number 
of defects for the sake of planning or resource allocation, its use is justified. 
However, if an organization wants to have more in depth analysis to identify 
product areas of bad quality these models become inadequate. The reason is 
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that the number of defects is a narrow characteristic of quality. Moreover, it is 
the symptom of deeper multifactor problems such as accumulated technical 
debt, inadequate development processes, size of the product, and other organi-
zational factors. Hall, et al. [205] conducted a systematic literature review in the 
area of software defect prediction and found that nearly all statistical models, 
which perform well in the original context, failed to perform well when applying 
in different organizations or products. Most of the models that are good in pre-
diction are trained in their context of use. Moreover, the measures used in these 
models were not consistently good or bad predictors across the studies, and 
sometimes even had contradictory results. This is a strong sign that the defect 
count is not a clear representation of problem areas but rather a manifestation 
of multifactor problems. For this reason it is not always adequate to validate a 
measure by assessing its defect prediction capability. 

When the variable of interest is not directly measurable, experimentation can be 
applied for acquiring measures from human assessors. Such variables are main-
tainability, ease of integration, readability, etc. In this case the human assessors 
might be requested to analyze the given set of artifacts and give some ranks of 
maintainability, readability, etc. Then these ranks (as measures) can be applied 
for designing prediction models. Experimentations on software measurement 
are expected to be conducted in controlled conditions. However, in order to 
achieve controlled experiments in software engineering, the experimental setup 
needs to be simplified considerably. This simplification usually affects the ex-
perimental system to an extent that it becomes no longer a representative of a 
real-word system. For this reason, often the results obtained from such experi-
ments are not applicable for software development organizations [143]. In a 
survey on experimentations in software engineering Sjøberg, et al. [214] report-
ed that 103 studies were conducted between 1993 and 2002. Among these 103 
studies there was only one study in the field of software measurement. In fact, 
most of the studies were done in the areas of comparing domain specific lan-
guages and code inspection techniques. These areas are the least affected by 
organizational process and therefore are easier for isolated controlled experi-
ments. Oppositely, there were very few experiments on such subjects as produc-
tivity, cost, and risk assessment (one study per each). This kind of scarcity of the 
data is due to the difficulty of conducting meaningful experiments in the field of 
software measurement. 

 A METHOD FOR VALIDATING SOFTWARE MEASURES 3

In majority of cases it is not possible to design accurate measures for external 
product attributes, so the validation of internal attributes cannot be conducted 
by help of statistical models. In such cases we argue that action research can be 
successfully applied for validation. There are two factors that make action re-
search powerful in validating measures. First, it permits the validation directly 
in the application area. Second, it relies on systematic define-refine-redefine 
typical action research process with practitioners, which allows ultimately 
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shape the intended measure and either accept or reject it for further application. 
In this process, the qualitative feedback of practitioners, who on practical exam-
ples evaluate to which extent a measure has influence on the variable of interest, 
has a pivotal role.  

Figure 1 shows the evaluation method as an action research cycle. It is aligned 
with the action research methodology, and is adopted for validating measures.  

 

 

Figure 1 Action research cycle for validating measures 

The measures are selected (defined), calculated, evaluated, and redefined based 
on the evaluation until they are perceived to be good measures. In the middle of 
this cycle is the ‘measurement designer’ – ‘reference group’ infrastructure which 
jointly refines the measure, until it reaches to an adequate condition for use. 
Initially the organization forms a “measurement designer” – “reference group” 
infrastructure. On the one hand, the measurement designer is the person, who is 
assigned for designing and validating measures for the organization. This can be 
an external or internal researcher, a measurement expert, a design architect or 
other knowledgeable person in the field of measurement. On the other hand, the 
reference group is a group of practitioners who work closely with the artifacts 
that are to be measured. The members of the reference group should have deep 
insights on the measurement artifacts and directly work with these artifacts on 
a systematic basis (developers, testers, architects). The measurement designer 
sets up systematic meetings with the reference group. The steps shown in Fig-
ure 1 are:  

 The measurement designer decides on designing or using a measure 5.
for predicting a variable of interest. Variables of interest are not ac-
curately measurable, such as maintainability, modifiability, ease of 
integration, etc. 
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 The measurement designer, with the reference group, decides upon 6.
the measurement entity and the measure that is to be validated. 
Measurement entities can be source code files, functions, require-
ments, models, test cases, etc. The measures usually are designed for 
known software attributes such as complexity, size, length, cohesion, 
coupling, change frequency, etc. 

 The measurement designer conducts measurement by developing or 7.
using available automated tools. She/he structures the measure-
ments results in a file (files), where the name, location, measurement 
result, and other necessary information per measurement entity are 
available 

 The measurement designer evaluates the measures against the ref-8.
erence group’s understanding of the non-measureable property: She 
selects a sample set of measurement entities in such a way, that for 
half of them the measurement values are big and for the other half 
the measurement values are small. The sample set is selected con-
sidering the size of the population, which is usually known. After-
wards, the measurement designer presents the selected set of enti-
ties to the reference group, and they brainstorm together for under-
standing how effectively the selected measure can assess or predict 
the variable of interest. They review each measurement entity one 
by one and share their knowledge on what kind of problems or diffi-
culties they had previously with the given entities in the past devel-
opment time. The measurement designer writes registers these 
problems and difficulties per measurement entity in a checklist. The 
practitioners of reference group brainstorm and find rationale for 
regarding a given measure effective or not effective. Their agree-
ments and disagreements, and reasons are also registered in the 
checklist. After brainstorming the measurement designer decides to 
what degree of accuracy the measure predicts the variable of inter-
est, based on the summarized knowledge in the checklist. The degree 
of accuracy is decided on a qualitative scale: an example is “bad”, 
“average”, and “good”. The measurement designer also outlines the 
enhancement possibilities of the measure, based on the obtained 
knowledge 

 The measurement designer examines the measurement method for 9.
the selected measure: questions that are needed to be addressed for 
this examination are: 

a. What do we actually calculate by the defined measure? 
b. What inaccuracies are likely to be introduced by the defined meth-

od of calculation? 
c. How can we refine the method of calculation so the measurement 

values can show a better association with the variable of interest? 

 The measurement designer considers the aforementioned questions 10.
and the discussions over them with the reference group. She refines 
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the measurement method and redefines the measure based on ac-
quiring answers for the above questions. Then she plans measure-
ments for a new set of entities. In the next cycle the new set of enti-
ties are planned to be reviewed and discussed, and thus more 
knowledge can be gathered 

 The further process iterates over (Figure 1) until the measurement 11.
designer can decide whether the selected measure is validated for fi-
nal use or not.  

We used the essence of the described method in five large software develop-
ment organizations for validating several sets of measures. In Ericsson we used 
this method for validating measures of complexity, size, and evolution for 
source code. In Volvo Group we used this method for validating measures of 
complexity, coupling, and evolution of textual requirement. In Grundfos and 
Saab we replicated the validation process for requirements’ measures. In Volvo 
Car Group we used this method for validating measures of Simulink models and 
textual requirements. 

 AN ILLUSTRATIVE CASE 4

In this section we present an example of how a measure was validated in prac-
tice. The validation process was conducted in a software development organiza-
tion at Ericsson [140]. We formed the “measurement designer” - “reference 
group” infrastructure. The measurement designer was a researcher (the first 
author of this paper) from the Software Engineering Division of University of 
Gothenburg. The reference group’s participants consisted of a measurement 
team leader, three design architects, an operational architect, and a project 
manager from Ericsson. We organized biweekly meetings for the evaluation 
process. The rest of the process complies with the method presented in the pre-
vious section:  

 The measurement designer decides on designing a measure for au-13.
tomated identification of risky areas of software code: such code pat-
terns that were error-prone or difficult to maintain. Source code files 
were chosen as measurement entities. This means that our target 
was to identify risky source code files.  

 Evolution of files was chosen as a measurement attribute. The meas-14.
ure for validation was the number of check-ins (NR) of files to the 
version control system in a specified period of time. Participants of 
the reference group believed that this measure can be effective in 
identifying risky files when combined with complexity measures. 
The reasons for such a belief were: 

a. In a specified period of time there were only a limited number of 
files changed, which means that if we search for error-prone files 
for a specific period of time, than they must be among the changed 
ones 
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b. Complex files are risky only if they have been changed recently 

 The measurement designer developed a tool (script) and counted the 15.
number of check-ins per file for one month interval. The names of 
files, measurement values, and locations were registered in an excel 
file.  

 The measurement designer randomly selected 50 files that had big 16.
values of NR and 50 files that had small nonzero values. The meas-
urement designer presented the selected set of 100 files to the refer-
ence group. The reference group engineers examined the files one by 
one and discussed their experiences with these files. The measure-
ment designer registered the collected information during the dis-
cussion. The results of the collected data were as follows: 

a. There was a group of complex files that changed more often than 
other groups. Those were usually problematic and were classified 
as risky 

b. There was a group of files that often changed. Those were header 
files or simple files that were affected by the changes in other files 
and had to be changed. These files were not classified as risky 

c. There was a group of complex files that had not changed at all. It 
was difficult to understand whether in cases of changes these files 
can be classified as risky, therefore these files were classified as 
potentially risky and needed a further investigation 

d. There was a group of simple files that do not change. The reference 
group decided that in practice such files were not problematic and 
they were classified as not risky with no further investigation 
needed 

 At this point, the measurement designer concluded that NR is likely 17.
to be an effective measure when applied with combination of com-
plexity measures, because it can predict the risky files in: 

a. case a) 
b. the files of case b) can be easily filtered out using complexity 

measures, files in case d) are filtered out by NR measure, and  
c. case c) needs further investigation by doing additional measure-

ments for different time intervals 
For the files that needed a further investigation we decided to add one more 
action research cycle. The time intervals for additional measurements were 
chosen to be daily, weekly, and release-wise. Such measurements would permit 
to understand how complex files behave during different time intervals.  

The reference group engineers proposed alternative measures of evolution, 
such as counting the number of designers making check-ins, and the number of 
check-ins for rather on a specific development branch than on all the develop-
ment branches managed by different development teams. As the NR measure 
showed an initial good qualitative result, the reference group concluded that the 
measure can be classified as a “good” measure for continuing the validation 
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process. The measurement designer planned designing tools for conducting 
measurements for the suggested two additional measures to check whether 
they outperform the NR measure 

After this point the action research cycle repeated. The measurement designer 
conducted the planned measurements for different time intervals, prepared the 
files that needed further investigation, and presented to the reference group in 
the next meeting. He also conducted measurements for the additional two 
measures. The action research cycle was repeated 6 times (12 weeks) to under-
stand the behavior of different groups of complex files. Continuing similar anal-
ysis for 12 weeks the reference group concluded that the NR measure is good 
enough for being used in combination with the complexity measures. The addi-
tional two measures were removed because they were in a strong correlation 
with NR measure, making these three measures equally effective for the planned 
use. 

 ORGANIZATIONAL CONTEXT OF THIS EXPERIENCE 5

REPORT 

Prior to this study we had conducted several action research projects at five 
large software development organizations. The collaborating organizations 
were Ericsson, Volvo Group, Volvo Car Group, Saab AB, and Grundfos. The pro-
jects aimed at applying software measures for identifying difficult-to-maintain 
artifacts for refactoring. In order to get continuous feedback on the ongoing 
work and determine next steps in the research in each of the company we col-
laborated with a reference group of engineers. These engineers had extensive 
knowledge on the developed product and had different positions in the organi-
zation. By their help we both designed new measures and used already well-
established measures in the literature. There were three different artifacts tar-
geted for measurement in these organizations: textual requirements, Simulink 
models, and source code of products. Figure 2 shows in how many organizations 
a given artifact was measured.  

 

Figure 2 Software artifacts measured in the collaborating companies 

A number of measures were used throughout these projects and tested for se-
lection of final use. In the beginning we decided to select measures that are well-
established in literature and develop measurement systems based on them. 
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However when we conducted initial measurements and presented to reference 
groups for feedback we realized that the measures do not show what we ex-
pected them to show. Software engineers’ feedback was that their perception is 
not aligned with what measures show. Besides they had also diverse opinions 
on what should be measured. In order to overcome the chaotic situation we 
decided to collect all seemingly relevant measures and start a validation process 
by the help of reference group engineers. Conducting this process in different 
organization we not only designed the targeted measures for them but collected 
knowledge on how action research can be used for validating software 
measures. This collective knowledge is then methodized in this paper as a step 
forward for empowering the sector of software measurement validation. 

 RESULTS FROM VALIDATING MEASURES IN COMPA-6

NIES  

In this section we report the results that we got when validating various 
measures in the collaborating companies. We show how certain measures were 
demonstrated to be poor ones and other measures to be good ones for the ini-
tially defined purposes. 

 Measures of Source Code 6.1

Prior to this study the authors of this paper designed measurement systems for 
Ericsson and Volvo Group. The measurement systems used a combination of 
several measures for identifying such areas of code that are error-prone or diffi-
cult-to-maintain. The measures that we used, was validated by Action research. 
In the coming subsection we discuss results of validation of them in the collabo-
rating companies. 

 Size 6.1.1

In practice it is quite common that size measures are used as quality estimators. 
For example the number of source lines of code and different measurement 
variations of them. First of all we ought to mention that size measures are quite 
effective in effort estimation [215]. However it is misleading to use size 
measures for assessing quality for the need of any type of improvements. Why is 
it so?  Let us assume that we have 2 source code files and we would like to as-
sess their quality for improvements. Suppose one of them has relatively bigger 
size and historically is reported to be more fault-prone. However, this does not 
mean that it has worse quality than the other file. If its size is bigger, it most 
likely provides more functionality, thus delivers more features to the customers, 
and eventually gains more profit. The size is not only highly correlated with 
fault-proneness but also with gained revenue, because software of a big size 
most likely delivers more value. This means that when comparing error-
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proneness of code one should consider comparing software modules of equal 
sizes in order to get a meaningful result. The results of Action research cycles 
with both reference groups at Ericsson and Volvo Group yielded to a conclusion 
that size measures are useful for effort estimation and defect prediction for 
planning, but it must not be used for quality assessment, because any conclu-
sions on quality based on size measures cannot prompt a meaningful action 
towards quality improvement. 

 Complexity 6.1.2

One of the most used complexity measures of code is cyclomatic complexity. 
Also there are some controversies about this measure [160, 161] discussing its 
usefulness, it is still used by many organizations. When T. J. McCabe introduced 
this measure, he actually never claimed that cyclomatic complexity anyhow 
purports to measure the complexity of the code as perceived by software engi-
neers. It rather measures the testability of a unit of code. Now we know that in 
practice it is a poor measure of complexity, however we cannot invalidate this 
measure against a claim which is never made. For example software engineers 
at Saab are using this measure as a good practice for testability of code. We in-
vestigated this measure at Ericsson and come to a conclusion that cyclomatic 
complexity does not really indicate the complexity of the code as perceived by 
software engineers, however it is actually very effective when using it with the 
combination of evolution measures: we observed that such functions that have 
big cyclomatic complexity and at the same time has undergone many revision 
are complex and hard to maintain. 

The next complexity measure that we discuss is the number of function calls in a 
given function. In literature this measure is called fan-out. The basic assumption 
on this measure is that if there are more function calls in a given function then 
that function becomes more complex. This assumption is quite straightforward 
from intuition’s standpoint, however, it is not clear how this measure shall be 
calculated. For example, if the same function is called ten times, shall we consid-
er each time as a different call or we shall calculate it as one call, since the num-
ber of unique function calls is one? How about calling the same function with 
different list of parameters each time? Even though all these alternative calcula-
tions can be regarded correct, we cannot really know which one is more ade-
quate measure for whatever we are trying to assess. The investigation with 
reference group engineers at Ericsson and Volvo Group showed that calling the 
same function many times in the code only slightly increases its complexity, so 
we used only the unique calls as a more adequate measure.  

 Evolution 6.1.3

Evolution measures are such measures that show how a given artifact or its 
attributes change over time of development. Evolution measures are shown to 
be good predictors of maintainability [108, 216]. When intending to use evolu-
tion measures of source code we encountered a problem, which was concerned 
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with the alternative ways of measures for evolution. For a file, measuring modi-
fied lines of code, added and deleted lines of code, the number of check-ins of 
code designers to the version control system in a specified development branch, 
the number of check-ins for all branches, the number of code designers that ever 
opened the given file in a specified time period, etc. are different alternatives of 
evolution measures. Among all of these measures it is simply not possible to use 
the most adequate one without using the software engineers’ perception of ref-
erence group. With their qualitative validation we recorded that the number of 
designers that make check-ins is a stronger measure for maintainability, howev-
er this measure was strongly correlated with the number of check-ins of files so 
we used the latter one for our measurement system. 

Additionally we should acknowledge that measuring the evolution of complexity 
of source code functions turned out to be quite hard, because: 

 Many of the functions were changing their list of parameters, so it 1.
was hard to decide whether they should be regarded as  a new func-
tion or a reformulation of old ones 

 Many functions were changing their names over time, so we could 2.
not track them by automated means 

We concluded that due to these two reasons the measurement accuracy is not 
satisfactory so the evolution of complexity measures should not be used for 
functions as measurement entities. 

 Defects 6.1.4

Measuring the number of defects on different software entities has several im-
portant roles in software engineering research and practice. This measure is 
used both for development planning and resource allocating, and also for vali-
dating other measures as quality predictors. There are far many papers report-
ed, which use this measure for validating complexity, size, evolution measures, 
and also complex statistical and analytical models for defect and quality predic-
tions [108, 217, 218]. However, before its use, it is worth to ask how do we 
measure defects and what does this measure actually show? 

In an earlier study we developed method and supporting measurement system 
for Ericsson for predicting the difficult-to-maintain and defect-prone source files 
[140]. In order to validate the method initially we decided to use the historical 
number of defects per file. However, as it turned out, there were several prob-
lems with both counting and using this measure. There was no such report as to 
map defects on files, because it was either very difficult or impossible for devel-
opers. Usually the defects are reported per development area. An alternative 
way of counting defect was to measure which files were changed due to defect 
correction. This approach had more success, but still there was much noise in-
troduced to the measurement as it was not always clear whether a given file has 
been changed due to defect correction or other activities. Even if there was a 
specifically defined branch in version control system for defect correction, all 
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works done in that branch were not purely concerned with defect correction. 
This was due to the complex relationships of such activities as defect correction, 
maintenance, release, and new feature development. Although there was noise 
in the described measurement, we decided to use this measure for a small set of 
files and by observing them understand the magnitude of noise. The results 
showed that for about 20% of the files it is actually not determinable whether a 
file was changed due to the defect correction or due to another activity. Yet 
there was even more important reason for being careful with this measure: 
certain files were in fact changed for defect correction, but they were not the 
root cause of the defect. We found that there were many cases where the root 
cause of a defect can be in a complex file, however several other simple files can 
be affected by that defect and thus undergone defect correction activities. So, 
when counting defects disregarding the aforementioned issues we might actual-
ly underestimate the defect predicting power of complexity measures and over-
estimate the predicting power of evolution measures (such as the number of 
changes or revisions). 

Lastly, we would like to mention that the criticality of defects also plays a major 
role when it comes to representing the quality of products by their number of 
defects. Some defects might take multiple times more effort for correction than 
other ones, so this will affect the statistical model and the results of their validi-
ty. This issue is not well-investigated topic in the field of software measurement, 
so we do not know its influence on the results we obtain [205]. 

 Measures of Simulink Models 6.2

In Volvo Car Group, where a portion of software development is done by Sim-
ulink models, we needed to design measures of complexity to get insights on 
quality of the models. At the time the company used one measure for complexi-
ty, which was the cyclomatic complexity of the code that is generated from Sim-
ulink models. We also found several articles which attempt to define measures 
for Simulink models and measure them [219-222]. One of the tools that was 
developed by the researchers of Åbo Akademi University can measure several 
complexity measures, such as the depth of nesting, the fan-in, and fan-out, and 
the number of in-ports and out-ports of Simulink subsystems. The discussions 
with reference group engineers of Volvo showed that none of the measures are 
relevant for measuring the complexity of models for the following reasons: 

 The cyclomatic complexity of the generated code does not anyhow 1.
show the complexity of the models from which the code is generated. 
The code and models are different entities and have different rea-
sons for becoming complex 

 The nesting depth, as originally adopted from code measures, was 2.
rather simplicity measure than a complexity measure for models. 
The reason is that all nested levels in the code are visible in one place 
making it hard to comprehend for a developer, however, for models, 
every nested level is isolated piece of implementation, visibly dis-
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connected from other parts of the model. So the reference group en-
gineers used it to simplify the models by decomposing it 

 The fan-in and fan-out were defined as the outgoing and incoming 3.
calls of subsystems [222]. The investigation showed that these 
measures in practice do not have any tangibly high values for mod-
els. The highest fan-in for all models we examined in Volvo was only 
two. Thus in practice a subsystem does not call more than two sub-
systems 

 The in-ports and out-ports of a subsystem was determined by the 4.
number of incoming and outgoing signals. Our observations showed 
that these measures are weak indicators of complexity unless we dis-
tinguish two types of them: 

a. signals which are linked to Simulink libraries (strong complexity 
indicators) 

b. And signals without any linkage (weak complexity indicator) 
Based on this evaluation results we started a collaboration with the researches 
of Åbo Akademi University as to define more advances complexity measures 
based on the feedback of reference group engineers of Volvo. At the time of writ-
ing this paper our collaboration was an ongoing activity. 

 Measures of Textual Requirements 6.3

In large software development companies, where there are several thousands of 
textual requirements, automatic quality assessment is much appreciated. We 
conducted multiple action research projects at Volvo Group, Volvo Car Group, 
Saab AB, and Grundfos for designing measures of textual requirements, which 
can help automation of requirements review process. Software measures in the 
sector of textual requirements are perhaps not as mature as in the sector of 
coding. For this reason, when trying to find adequate measures, we ended up 
with collecting a bunch of not evaluated measures for requirements [138, 139, 
144, 147]. We started a refinement process with the reference groups and as a 
result we found that the number of versions, nesting degree of bulleted text, punc-
tuations, imperative words, and many imprecise terms were weak measures. 
Instead we found that the number of conjunctions and the number of references 
to other requirements and modules in a textual requirement are strong indicators 
of complexity. Analogous to source code measures the number of revisions 
turned out a very weak indicator of quality due to two facts: 

 The requirements of higher hierarchy level had more revisions due 1.
to containing many requirements inside them. This does not mean 
that a requirement is frequently revised, but as the engineers of ref-
erence group noticed, rather adjusted with its lower members 

 In a long period of development time the requirements got much less 2.
revisions than source code (1-2 revision per month), therefore it was 
impractical to use revision of requirements 
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Additionally, we should mention that most of the approaches for requirements 
quality checking that are based on morphological analysis, turned out to be ir-
relevant for industry. The reason is that the requirements written in companies 
are not necessarily grammatically assessable. Such examples can be tables of 
specifications, symbolic representations, pseudocode, etc. Such requirements 
cannot be grammatically evaluated, because they do not represent “sentences” 
as linguistic constructs. Moreover, rules, which are designed for morphological 
analysis, usually enforce on how a requirement should be written, but they do 
not necessarily reveal the actual problems in requirements. 

 Summary of Measures and Validation 6.4

 Figure 3 shows all the measures that we have validated or invalidated in the 
five companies. The measures which have cross in front of them were invalidat-
ed for the specified use.  

 

Figure 3 Validated and invalidated software measures - results of our action re-
search projects 

The measures with tick in front of them were validated to be either moderate or 
strong indicators for the specified use. Two of the measures that have the sign of 
attention are difficult to measure accurately and therefore extra attention was 
needed.  

 DISCUSSION 7

The results of validating measures in collaborating companies (section 6) show 
an important barrier for conducting a meaningful action of validation: what the 
quantified variable should be, against which a measure can be validated. For 
example if we want to design a measure for assessing the quality of code then 
we usually chose the number of defects as a variable against which the measure 
can be validated. As we indicated in this paper the number of defects itself is 
very difficult to count, and even more, it is not quite clear what that number 
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shows. In other cases there is even no clearly defined variable for validating 
software measures. For example if we would like to design a good measure for 
maintainability we cannot know, by any quantitative means, whether the de-
signed measure is a good measure of maintainability. In this case the effective-
ness of a measure is determined by how well the measure agrees with what 
software engineers perceive to be maintainable. However, the software engi-
neers’ perception is not quantitatively available by any direct and simple means. 
Therefore there emerges a necessity of qualitative understanding whether a 
given measure agrees with software engineers’ perception. Yet we can see that 
many researchers and engineers praise quantitative evaluation of measures 
more than the qualitative one, even if any quantitative measure is derived from 
fundamentally qualitative perception. This philosophical confusion sometimes 
yields to a situation where software engineers get fed up by discussing the pos-
sibility of using more advanced measures and return to using old and rather 
simplistic than simple measures. 

As a way forward we suggest using action research cycles and close collabora-
tion with software engineers when validating measures. Careful and stepwise 
consideration of measures and their systematic refinement during action re-
search cycles can reward with more sophisticated and useful measures, which 
will provide significantly more insight about the measured artifact. Examples of 
approaches for creating measures in practical contexts are presented by 
Iversen, et al. [223] and Moody [224].  

Despite the importance of practitioners’ participation and collaborative learning 
process in the measurement design, it is solely the measurement designer who 
design, refine, and select final measures. The opinions and attitudes of reference 
group engineers may vary over time, and it is the responsibility of the research-
er who collects all the feedback and based on its summary decides which meas-
ure should be selected. We would like to remind that if a measure is defined and 
validated for one type of entity (even though that is a really good measure for 
that artifact), we cannot just take it and apply for another type of entity without 
proper consideration.  

 CONCLUSIONS 8

Using valid measures provide valuable insights on developed software and de-
velopment processes. Software engineers and managers use these insights to 
make strategic decisions for improving their product. There has been a great 
amount of endeavor by the research community for providing validation 
frameworks for software measures. No doubt, the results are encouraging, but 
there are still open issues to be solved. So far we know that there is no general-
ly-agreed validation framework that can serve for measurement validation of 
any type. 

In this study we suggest that the software engineers should be involved in the 
process of validating measures. We show how action research principles can be 
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employed as a complementary step for validating measures. The results report-
ed in this paper show that the involvement of engineers can be a powerful tactic 
for validating measures. The action research cycles enable to systematically 
refine and redefine the measures as long as they are not perceived to be satis-
factory for industrial use. And when the measures are finally accepted by all 
parties they are deployed for use. The knowledge that is generated during the 
action research cycles is organized and preserved as a body of knowledge. We 
would like to encourage the use of action research for validating software 
measures, as we believe such knowledge can be gathered and methodized for 
facilitating the validation of software measures. 
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