

Proactive Software Complexity
Assessment

Vard Antinyan

Department of Computer Science and Engineering

Gothenburg 2017

ii

PhD Thesis
Proactive Software Complexity Assessment

© Vard Antinyan 2017

Technical Report No 143D
ISBN 978-91-982237-2-9
Department of Computer Science and Engineering
Division of Software Engineering
University of Gothenburg | Chalmers University of Technology
Printed by Chalmers Reproservice
Gothenburg, Sweden 2017

iii

“Complexity, I would assert, is the biggest factor involved in anything

having to do with the software field. It is explosive, far reaching, and

massive in its scope”.

Robert Glass

iv

v

ABSTRACT

Large software development companies primarily deliver value to their custom-
ers by continuously enhancing the functionality of their products. Continuously
developing software for customers insures the enduring success of a company.
In continuous development, however, software complexity tends to increase
gradually, the consequence of which is deteriorating maintainability over time.
During short periods of time, the gradual complexity increase is insignificant,
but over longer periods of time, complexity can develop to an unconceivable
extent, such that maintenance is no longer profitable. Thus, proactive complexi-
ty assessment methods are required to prevent the gradual growth of complexi-
ty and instead build quality into developed software.

Many studies have been conducted to delineate methods for complexity assess-
ment. These focus on three main areas: 1) the landscape of complexity, i.e., the
source of the complexity; 2) the possibilities for complexity assessment, i.e.,
how complexity can be measured and whether the results of assessment reflects
reality; and 3) the practicality of using complexity assessment methods, i.e., the
successful integration and use of assessment methods in continuous software
development.

Partial successes were achieved in all three areas. Firstly, it is clear that com-
plexity is understood in terms of its consequences, such as spent time or re-
sources, rather than in terms of its structure per se, such as software character-
istics. Consequently, current complexity measures only assess isolated aspects
of complexity and fail to capture its entirety. Finally, it is also clear that existing
complexity assessment methods are used for isolated activities (e.g., defect and
maintainability predictions) and not for integrated decision support (e.g., con-
tinuous maintainability enhancement and defect prevention).

This thesis presents 14 new findings across these three areas. The key findings
are that: 1) Complexity increases maintenance time multifold when software
size is constant. This consequential effect is mostly due to a few software char-
acteristics, and whilst other software characteristics are essential for software
development, they have an insignificant effect on complexity growth; 2) Two
methods are proposed for complexity assessment. The first is for source code,
which represents a combination of existing complexity measures to indicate
deteriorating areas of code. The second is for textual requirements, which rep-
resents new complexity measures that can detect the inflow of poorly specified
requirements; 3) Both methods were developed based on two critical factors: (i)
the accuracy of assessment, and (ii) the simplicity of interpretation. The meth-
ods were integrated into practitioners’ working environments to allow proac-
tive complexity assessment, and prevent defects and deteriorating maintainabil-
ity.

In addition, several additional key observations were made: Primarily the focus
should be in creating more sophisticated software complexity measures based
on empirical data indicative of the code characteristics that most influence com-

vi

plexity. It is desirable to integrate such complexity assessment measures into
the practitioners’ working environments to ensure that complexity is assessed
and managed proactively. This would allow quality to be built into the product
rather than having to conduct separate, post-release refactoring activities.

Keywords: complexity, metric, measure, code, requirement, software quality,
technical risk, technical debt, continuous integration, agile development

vii

ACKNOWLEDGEMENTS

This thesis is the culmination of five years of research that I have carried out at
the University of Gothenburg and collaborating companies. I have worked with
many professionals who have profoundly influenced me. Their traces can be
found throughout this work.

I express my deep gratitude to my main advisor, Miroslaw Staron, my second
advisor, Anna Sandberg, and my examiner, Jörgen Hansson, for their invaluable
advice and support throughout these years. Their care and professionalism
underpin the success of this thesis.

This research was conducted in “Software Center”, a research consortium of
universities and companies that aims to enhance software engineering practices
in industry. I thank the Head of Software Center, Jan Bosch, and collaborators
from the companies who enriched my professional life: Wilhelm Meding, Per
Österström, Micael Caiman, Johan Andersson, Jesper Derehag, Erik Wikström
and Henric Bergenwall from Ericsson; Anders Henriksson, Johan Wranker, Mat-
tias Runsten, and Andreas Longard from Volvo Group Truck Technology; Kent
Niesel, Carina Fransson, Jan-Åke Johnson, Darko Durisic and Lars Ljungberg
from Volvo Car Group; Christoffer Höglund, Jonas Lindgren and Per Wall from
Saab; Laith Said and Gert Frost from Grundfos; Ali Shahrokni from Systemite.

I thank my three friends at work, Alessia Knauss, Lucas Gren, and Siranush
Kosayan, who curiously yet unintentionally influenced my work with their ad-
vice. Thanks also to all of my colleagues and fellow Ph.D. students for their
pleasant presence in my professional life – I apologize for not mentioning their
names, but inadvertently omitting anyone would be unfair. Thanks to my par-
ents and friends in Armenia who supported me without questioning the feasibil-
ity of my goal. Thanks to Ulrika Kretz for her unconditional support throughout
this journey. Finally, thanks to Jack Riganyan who, 9 years ago in the army, hav-
ing heard my worries of not pursuing our aims told me, “You are right – it’s too
challenging. But then, you know, we are the challenge lovers.”

viii

ix

INCLUDED PUBLICATIONS

This thesis is based on the following studies.

1. Vard Antinyan, Miroslaw Staron, Wilhelm Meding, Per Österström, Anders
Henriksson Jörgen Hansson, “Monitoring evolution of code complexity and
magnitude of changes.” Published in Journal of Acta Cybernetica (0324-
721X, Vol. 21, pp. 367-382), 2014.

2. Vard Antinyan, Miroslaw Staron, Wilhelm Meding, Per Österström, Erik
Wikström, Johan Wranker, Anders Henriksson, Jörgen Hansson, “Identifying
risky areas of software code in Agile/Lean software development: an indus-
trial experience report”. Published in 21th IEEE International Conference on
of Software Analysis, Evolution and Reengineering (SANER, former CSMR
and WCRE conferences), pp. 154-163, IEEE 2014.

3. Vard Antinyan and Miroslaw Staron, “Rendex: A method for automated re-
views of textual requirements”. Published in Journal of Systems and Soft-
ware. DOI /10.1016/j.jss.2017.05.079. Elsevier, 2017.

4. Vard Antinyan, Miroslaw Staron, Anna Sandberg, “Evaluating code complexi-
ty triggers, use of complexity measures, and the influence of code complexi-
ty on maintenance time”. Published in Empirical Software Engineering Jour-
nal. DOI: 10.1007/s10664-017-9508-2. Springer, 2017.

5. Vard Antinyan, Jesper Derehag, Anna Sandberg, Miroslaw Staron, “Mythical
unit test coverage”. Published in IEEE Software Magazine, 2017 (scheduled
for printing).

6. Vard Antinyan, Miroslaw Staron, Anna Sandberg, & Jörgen Hansson “Validat-
ing software measures using action research a method and industrial expe-
riences”. Published in 20th International Conference on Evaluation and As-
sessment in Software Engineering (EASE), p. 23. ACM, 2016.

https://doi.org/10.1016/j.jss.2017.05.079

x

OTHER PUBLICATIONS

1. Vard Antinyan, Anna Sandberg, and Miroslaw Staron, “A pragmatic view on
code complexity management”. Under revision in IEEE Computer Magazine.
IEEE, 2017.

2. Vard Antinyan and Spyridon Maniotis. “Monitoring risks in large software
development programs”. Published in Computing Conference. IEEE, 2017.

3. Vard Antinyan and Miroslaw Staron. “Proactive reviews of textual require-
ments.” Published in 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER pp. 541-545). IEEE, 2017.

4. Lucas Gren and Vard Antinyan. “On the relationship between unit testing
and software quality”. Published in Conference on Software Engineering and
Advanced Applications (SEAA), pp. 52-56. IEEE 2017.

5. Vard Antinyan and Miroslaw Staron, “A complexity measure for textual re-
quirement”. Published in International Conference on Software Process and
Product Measurement (IWSM-MENSURA 2016, pp. 66-71). IEEE, 2016.

6. Anna Börjesson Sandberg, Miroslaw Staron, Vard Antinyan: “Towards pro-
active management of technical debt by software metrics”. Published in
15th Symposium on Programming Languages and Software Tools (SPLST’15
pp. 1-15). 2015.

7. Vard Antinyan, Miroslaw Staron, Jesper Derehag, Mattias Runsten, Erik Wik-
ström, Wilhelm Meding, & Jörgen Hansson. “Identifying complex functions:
by investigating various aspects of code complexity”. Published in Science
and Information Conference (SAI 2015, pp. 879-888). IEEE, 2015.

8. Vard Antinyan, Miroslaw Staron, Wilhelm Meding, Anders Henriksson, Jör-
gen Hansson, & Anna Sandberg, “Defining technical risks in software devel-
opment”. Published in International Conference on Software Process and
Product Measurement (IWSM-MENSURA 2014 pp. 167-182). IEEE, 2014.

9. Vard Antinyan, Miroslaw Staron and Wilhelm Meding, “Profiling pre-release
software product and organizational performance”. Software Center, book
chapter (pp. 167-182). Springer, 2014.

10. Vard Antinyan, Miroslaw Staron, Wilhelm Meding, Per Österström, Anders
Henriksson, Jörgen Hansson, "Monitoring evolution of code complexity in
Agile/Lean software development: A case study at two compa-
nies". Published in 13th Symposium on Programming Languages and Soft-
ware Tools (p. 1-15), 2013.

11. Vard Antinyan, Anna Sandberg, and Miroslaw Staron, “Code complexity as-
sessment for practitioners”. Submitted to International Conference on Soft-
ware Engineering, 2017.

http://dblp.uni-trier.de/pers/hd/s/Sandberg:Anna_B=ouml=rjesson
http://dblp.uni-trier.de/pers/hd/s/Staron:Miroslaw

xi

TABLE OF CONTENTS

Abstract .. v
Acknowledgements ... vii
Included Publications ... ix
Other Publications ... x

Introduction to Software Complexity……………………………………………………..…17
 Introduction ... 18 1

 The Challenge of Software Complexity ... 18 1.1
 Complexity Assessment .. 19 1.2
 The Need for Proactive Assessment .. 20 1.3
 The Overarching Research Question ... 21 1.4

 Theoretical Framework .. 21 2
 Software Complexity .. 21 2.1

 Conceptualization .. 22 2.1.1
 Definition ... 23 2.1.2

 Software Complexity Assessment ... 24 2.2
 Measurement ... 24 2.2.1
 Software Complexity Measures ... 26 2.2.2
 Measurement Validity ... 27 2.2.3

 Continuous Software Development ... 29 2.3
 Research Methodology .. 30 3

 Action Research .. 33 3.1
 Survey .. 35 3.2
 Case Study ... 36 3.3

 Research Questions and Contributions ... 37 4
 Discussion ... 40 5

 Software Complexity Assessment ... 40 5.1
 Proactive Complexity Assessment in Continuous Development 44 5.2
 Software Complexity Landscape ... 45 5.3

 Limitations.. 46 6
 Further Work... 46 7

Monitoring Evolution of Code Complexity and Magnitude of Changes……. 49
Abstract .. 50

 Introduction ... 51 1
 Related Work ... 51 2
 Design of the Study ... 53 3

 Studied Organizations .. 53 3.1
 Units of Analysis ... 53 3.2
 Reference Group ... 54 3.3
 Measures in the Study .. 54 3.4
 Research Method .. 55 3.5

 Analysis and Results... 55 4
 Evolution of the Studied Measures over Time .. 55 4.1
 Correlation Analyses... 58 4.2
 Design of the Measurement System ... 60 4.3

xii

 Threats to Validity ... 62 5
 Conclusions .. 63 6

Identifying Risky Areas of Source Code in Agile Software Development….65
Abstract .. 66

 Introduction ... 67 1
 Agile Software Development .. 68 2
 Study Design .. 68 3

 Industrial Context .. 68 3.1
 Reference Groups at the Companies .. 69 3.2
 Flexible Research Design .. 69 3.3
 Definition of Measures ... 71 3.4

 Results .. 73 4
 Correlation Analysis .. 73 4.1
 Selecting Measures .. 76 4.2
 Evaluation with Designers and Refinement of the Method 76 4.3

 Evaluation ... 79 5
 Correlation with Error Reports ... 79 5.1
 Evaluation with Designers in Ongoing Projects ... 79 5.2
 Impact on Companies ... 80 5.3

 Related Work ... 81 6
 Threats to Validity ... 82 7
 Conclusions .. 83 8

A Method for Automated Reviews of Textual Requirements……….…………...87
Abstract .. 88

 Introduction ... 89 1
 Collaborating Software Organizations and Their Requirements 90 2
 Internal Quality Measurement Model of Requirements....................................... 92 3
 Defining the Measures ... 94 4

 The Number of Conjunctions as a Complexity Measure (NC) 95 4.1
 The Number of Vague Phrases as a Complexity Measure (NV) 96 4.2
 The Number of References as a Coupling Measure (NR) 97 4.3
 The Number of References to External Documents as a Coupling Measure 4.4

(NRD) ... 98
 The Number of Words as a Size Measure (NW) ... 99 4.5
 Measures Considered but Not Used ... 99 4.6
 Range of Measurement Values .. 100 4.7

 Research Design .. 101 5
 Action Research for Designing Measures ... 101 5.1

 Access to the data ... 102 5.1.1
 Design measures ... 102 5.1.1
 Apply measures ... 102 5.1.2
 Evaluate measures ... 102 5.1.3

 Developing Rendex ... 103 5.2
 Evaluating the Ranking Accuracy of Rendex... 104 5.3

 The first approach: evaluating QIR against QIE ... 104 5.3.1
 The second approach: regression analyses for obtaining QIR 106 5.3.2

xiii

 Establishing the evaluation setup in the companies 106 5.3.3
 Evaluating Rendex in Companies ... 107 5.4

 Results of Correlation Analyses and Selection of Measures 107 6
 Combining Selected Measures .. 109 7
 Evaluation Results of Rendex .. 109 8

 Results of Evaluating QIR against QIE ... 110 8.1
 Results of Regression Analyses ... 111 8.2
 Generalizing the Results .. 112 8.3

 Requirements Quality Index Applied in the Companies 113 9
 Threats to Validity .. 114 10
 Related Work .. 116 11
 Summary ... 118 12

Evaluating Code Complexity Triggers……………………………………………………...121
Abstract ... 122

 Introduction .. 123 1
 The Landscape of Code Complexity Sources .. 125 2
 Research Design .. 127 3

 Demographics and the Related Questions ... 128 3.1
 Selected Code Characteristics as Complexity Triggers................................... 129 3.2
 Complexity and Internal Code Quality Attributes .. 131 3.3
 Selected Complexity Measures .. 132 3.4
 Complexity and Maintenance Time... 133 3.5
 Data Analysis Methods ... 134 3.6

 Evaluating the Association between Job Type and Assessment of 3.6.1
Code Characteristics .. 135

 Evaluating the Association between Experience and Assessment of 3.6.2
Code Characteristics .. 136

 Evaluating the Association between Type of Job and Assessment of 3.6.3
Complexity Influence on Maintenance Time .. 137

 Evaluating the Association between Experience and Assessment of 3.6.4
Complexity Influence on Maintenance Time .. 138

 Results and Interpretations ... 138 4
 Summary of Demographics .. 138 4.1
 Code Characteristics as Complexity Triggers ... 140 4.2
 The Influence of Complexity on Internal Code Quality Attributes 142 4.3
 The Use of Complexity Measures ... 143 4.4
 Influence of Complexity on Maintenance Time ... 146 4.5
 Cross-Sectional Data Analysis Results ... 147 4.6

 Type of job and assessment of code characteristics 147 4.6.1
 Experience and code characteristics .. 148 4.6.2
 Type of job and complexity influence on maintenance time 149 4.6.3
 Experience and complexity influence on maintenance time............. 149 4.6.4

 Discussion .. 149 5
 Validity Threats ... 151 6
 Related Work .. 153 7
 Conclusions ... 154 8

xiv

Mythical Unit Test Coverage…………………………………………………………………….157
Abstract ... 158

 Test Coverage Measures .. 159 1
 Existing Studies ... 159 2
 The Investigated Product .. 161 3
 Method of Investigation ... 161 4
 Results ... 162 5
 Effect of Complexity on the Results .. 164 6
 Concluding Remarks ... 166 7

Validating Software Measures Using Action Research…………..………………..169
Abstract ... 170

 Introduction .. 171 1
 A Recap of Measurement Validation Research in Software Engineering .. 172 2

 Theoretical Validation ... 173 2.1
 Validation Using Statistical Models ... 175 2.2

 A Method for Validating Software Measures .. 176 3
 An Illustrative Case .. 179 4
 Organizational Context of This Experience Report ... 181 5
 Results from Validating Measures in Companies ... 182 6

 Measures of Source Code ... 182 6.1
 Size .. 182 6.1.1
 Complexity ... 183 6.1.2
 Evolution .. 183 6.1.3
 Defects ... 184 6.1.4

 Measures of Simulink Models .. 185 6.2
 Measures of Textual Requirements .. 186 6.3
 Summary of Measures and Validation ... 187 6.4

 Discussion .. 187 7
 Conclusions ... 188 8

References .. 191

Introduction to Software Complexity

Introduction to Software Complexity

18

 INTRODUCTION 1

The success of software development is determined by such parameters as de-
velopment cost, product quality, delivery time, and customer satisfaction. Soft-
ware complexity is widely considered to have a crucial impact on these parame-
ters. There are numerous reports on this subject, two of which is drastically
summarized here: First, Charette [1] reports a project failure that cost 600U$
million due to excessively complex software. Furthermore, he indicates that
large and complex software projects fail three to five times more often than
smaller ones. Glass [2], meanwhile, reported that in practice, there is a hundred-
percent increase in the software solution’s complexity for every ten-percent
increase in problem complexity.

Software complexity is influenced by such factors as the product size, product
maturity, problem domain, programming languages, development methodolo-
gies, and the knowledge and experience of developers. For example, linearly
increasing software size is considered to trigger an exponential increase in its
complexity [3] and that excellent programmers can be thirty times better in
complexity management than average programmers [2].

Nevertheless, a still challenging task is to determine the exact source of software
complexity and how it can be proactively assessed for successful management.

 The Challenge of Software Complexity 1.1

Software is structurally sophisticated, representationally abstract and progres-
sively versatile over time [4], [5]. These structural, representational and evolu-
tional aspects have a strong impact on software development.

Structural Aspects. Software consists of many elementary units, such as opera-
tors, variables, function calls, branching statements, looping statements, point-
ers, preprocessors, etc. Thousands of interactions of these elements are the
source of the convoluted structure of software. Moreover, multiple artifacts
exist in large software development products, such as the requirements and
tests necessary for software development. These artifacts augment the chal-
lenge of software elements and interactions.

Representational Aspects. Software is abstract; it cannot be touched, felt or
observed geometrically like other human-made artifacts. The primary interac-
tion with software is via the computer screen. Software is the only human-made
artifact constructed with the help of representational languages, also known as
programming languages. The latter are similar to natural languages, one funda-
mental difference being that making errors in programming languages can have
severe consequences. Over the past decades, programming language designers
have strived to create as simple and clear languages as possible so that descrip-
tions of machine instructions are straightforward to understand and communi-

Introduction to Software Complexity

19

cate among software engineers. Language-based representation, however, is
still the dominant method of reading and evaluating software.

Evolutional Aspects. Software is progressively versatile – almost any software
being used is under active maintenance. Maintenance activities change the rep-
resentational and structural conditions of software, i.e., while maintaining soft-
ware, software representation and structure are partly changed. Thus, during
the maintenance time, practitioners must understand the current state of the
software in order to progress maintenance yet another step.

These three challenges introduce substantial difficulty to software development.
Software practitioners refer to these challenges as software complexity. In this
thesis, we have defined software complexity as:

“An emergent property of structural, representational and evolutional
aspects of software elements and interconnections that influences soft-
ware understanding”.

This high-level definition of complexity is based on that of Rechtin and Maier [6]
in software architecting, the foundations of which will be discussed in detail
later.

Software complexity is highly associated with system understandability. Alt-
hough complexity is not a thoroughly defined concept, it is still widely used to
describe the difficulty of system understanding due to the sophisticated rela-
tionship between software elements. Increasing complexity indicates decreasing
understandability of software. Therefore, it is natural that complexity both de-
celerates the development speed and decreases software maintainability and
quality [7].

Several definitions of software complexity have been proposed previously; all,
however, depend upon the consequences of complexity rather than its essence.
For example, Basili [8] defines software complexity as a measure of the re-
sources allocated by a system or human while interacting with a piece of soft-
ware to perform a given task. Similarly, Zuse [9] describes software complexity
as the difficulty in understanding, changing, and maintaining code. Nonetheless,
it is vital to understand software complexity in the context of human-software
interaction so that software complexity, as perceived by humans, can be meas-
ured and managed. Consequently, it is important to scrutinize the source of
software complexity and how it affects the work of software practitioners.

 Complexity Assessment 1.2

Thomas McCabe and Maurice Halstead were among the pioneers of software
complexity measurement who introduced the first measures [10]. Other
measures were subsequently introduced [11], such as the information flow
measures proposed by Henry and Kafura [12] and measures of object-oriented
design proposed by Chidamber and Kemerer [13].

Introduction to Software Complexity

20

Notably, of all software-related attributes (product, process, project), complexi-
ty is the most frequently measured attribute (19% of the time) [14]. How good
or appropriate existing measures are, however, has been debated by research-
ers and practitioners because complexity is not an attribute simple enough to be
measured with one measure.

To overcome the difficulty in understanding how good or appropriate a com-
plexity measure is, several studies were conducted to formalize the prerequisite
properties of a complexity measure. Then, based on these properties, theoretical
validation frameworks were introduced [15], [16]. As expected, in practice, the-
oretical validation was found to be unsatisfactory in classifying a measure good
or appropriate for practical application. Hence, empirical validation emerged as
being essential.

Empirical validation is a prerequisite for understanding how effectively a com-
plexity measure indicates problem areas of a piece of software. This was inves-
tigated in a number of studies that focused on different forms of correlational or
regression analyses, where the relationship of complexity and different kinds of
software problems were evaluated. The most common type of analyses investi-
gated the relationship between complexity and defects, resulting in defect pre-
diction models. Despite considerable success in this line of research, practition-
ers seemed to need clearer guidance on the use of these defect prediction mod-
els. Existing complexity measures can be used to predict defects like the prob-
lems’ symptoms, but not to understand and eliminate the problems per se. Iso-
lated defect predictions turned out to be an insignificant support for practition-
ers [17]. In practice, practitioners need measurement-based methods that will
indicate problem areas, reveal the essence of the problems, and guide problem
solving. Hence, it is important to develop complexity assessment methods that
indicate problem areas simply and directly and aid practitioners’ decision-
making for improvement.

 The Need for Proactive Assessment 1.3

Continuous software development relies on incremental requirement specifica-
tion, design, testing and software integration [18]. One of the challenges of con-
tinuous software development is to shorten the feedback loops on software
artifacts. Shortened feedback loops allow practitioners to track and solve
emerging problems more quickly than they escalate into problems with multiple
magnitudes of increased cost [19]. When feedback is instantaneous, i.e., “just in
time” of problem creation, practitioners can manage the problems proactively to
prevent problem escalation. If complexity is assessed “just in time” of develop-
ment, practitioners can prevent complexity from increasing, thereby reducing
the risk of defects and degrading maintainability. Ultimately, this will increase
the product quality and reduce maintenance costs.

Introduction to Software Complexity

21

 The Overarching Research Question 1.4

Sections 1.1‒1.3 described three research gaps that fundamental to the three
main areas of research in this thesis. Specifically these are to:

 Scrutinize the source of software complexity and how it affects soft-1.
ware practitioners’ work

 Develop complexity assessment methods that indicate problem are-2.
as simply and accurately

 Investigate methods for proactive software complexity assessment 3.
in practice.

These areas of research are encapsulated in the following research question:

How can we proactively assess software complexity in continuous soft-
ware development?

The three areas, software complexity landscape, software complexity assessment,
and proactivity of assessment in continuous software development, are shown in
Figure 1.

Figure 1 Research focus of this thesis

 THEORETICAL FRAMEWORK 2

Section 2 describes the concept, history, and modern view of complexity (Sec-
tion 2.1), the theoretical basis for assessing complexity (Section 2.2), and the
influence of complexity on continuous software development (Section 2.3).

 Software Complexity 2.1

To understand the source of complexity, the landscape of complexity is explored
in this section: first the landscape of complexity generally, and then, that of
software complexity particularly.

Introduction to Software Complexity

22

 Conceptualization 2.1.1

In order to understand the essence of complexity, we explore the historical
knowledge on complexity. This knowledge has emerged as an epistemological
part of the term complexity and is axiomatic by its nature. Edmonds [20] metic-
ulously discussed this knowledge, which can be summarized in four points:

 Complexity is a property of a system that emerges from the main 1.
substance comprising the system, i.e., system elements and inter-
connections

 The complexity of a system is only relevant through interaction with 2.
another system (typically with humans)

 Complexity can only be ascribed to a system if the latter can be rep-3.
resented in terms of a communicable language

 System evolution triggers complexity evolution over time. 4.

The first point suggests that complexity emerges from elements and intercon-
nections, i.e., substances that the system is made of, and also emphasizes the fact
that complexity is an intrinsic property of a system.

The second point implies that the complexity of any system either does not exist
or is irrelevant if there is no observer. Simply stating, complexity only makes
sense when observed from a certain standpoint (typically by a human). A hu-
man interacts with a system and acquires information about different elements
and their interconnections to understand how the system operates; the notion
of complexity emerges through this interaction and compulsion to understand.

The third point suggests that the complexity of a system can only be experi-
enced via a language through which the system is communicated. Therefore, we
must distinguish two aspects of system complexity – structural and representa-
tional. The structural aspect requires an understanding of the actual system
elements and their interconnections. The representational aspect requires an
understanding of the language describing these elements and their interconnec-
tions. It is natural to assume that humans cannot skip the representational as-
pect and directly try to understand the structural aspect because the system
must be represented in some sort of language. In the case of software systems,
the languages of representation are usually programming languages.

Finally, the fourth point suggests that there is also an evolutionary aspect to
complexity in continuously developing systems. This is the complexity caused
by the constant change of system elements and interconnections. Structural and
representational complexities do not change in static systems. In evolving sys-
tems, however, information about the system elements and interconnections
continuously changes and new information is being constructed; a human must
learn the new information in order to understand the system operations. A fast-
er-evolving system will generate more new knowledge, thus requiring more
effort for new knowledge appropriation. This is the evolutional aspect of com-
plexity.

Introduction to Software Complexity

23

We consider any software system as a typical dynamic system with evolving
elements and interconnections. Therefore, we consider the aforementioned
factors relevant for software systems.

 Definition 2.1.2

According to the IEEE standard computer dictionary, software complexity is
defined as “the degree to which a system or component has a design or imple-
mentation that is difficult to understand and verify” [21]. According to Zuse [9],
the true meaning of code complexity is the difficulty to understand, change and
maintain code. Fenton and Bieman [22] view code complexity as the resources
spent on developing (or maintaining) a solution for a given task. Similarly, Basili
[8] views code complexity as a measure of the resources allocated by a system
or human while interacting with a piece of software to perform a given task.
Although these definitions recognize the fact that the difficulty of understanding
stems from complexity, they do not explore the composition of complexity.

Briand, et al. [23] suggest that complexity should be defined as an intrinsic at-
tribute of software as opposed to its perceived difficulty, whilst in information
theory, Kolmogorov [24] defines complexity as the minimum possible length of a
system description in some language. It is not straightforward to calculate the
minimum possible length of a system; however, the elegance of this definition is
its focus on the essence of complexity and its measurement. It directly indicates
that the minimum possible length of a system description can be a measure of
complexity.

In software architecting, Rechtin and Maier [6], as well as Moses [25], define
complexity as an emergent property of a system due to interconnections of system
elements. This definition provides the main substance from which complexity
emerges—elements and interconnections. Based on the discussion in section
2.1.1 and supported by the definition of complexity of Rechtin and Maier [6], we
describe the concept of software complexity according to the following five
points:

 Complexity is an emergent property of software due to software ele-1.
ments and interconnections

 Complexity increases with increasing number and variety of elements 2.
and interconnections

 Complexity is experienced through the language through which the 3.
software is represented

 Complexity has at least three distinct aspects: structural, representa-4.
tional and evolutional

 Complexity imposes difficulty on humans in software understanding. 5.

Software systems are developed with programming languages based on accu-
rately defined rules. So how is complexity revealed in programming languages?
According to Brooks [4], software complexity emerges from elements and inter-
connections, such as variables, operators, control statements, preprocessors,

Introduction to Software Complexity

24

function invocations, etc. Programs containing a greater variety of such ele-
ments with denser interconnections are perceived to be more complex. Fur-
thermore, every type of element and interconnection has a different magnitude
of influence on complexity.

Mens [5] extends this understanding of complexity by indicating that software
elements and interconnections vary in different abstraction levels of the system,
such as modules, components and subsystems. Creating different abstraction
levels is vital to completely understand the system, although every abstraction
level creates its own complexity.

Along with source code, which is the core constituent of software products, re-
quirements specification and software tests are also essential artifacts of soft-
ware. Requirements and tests can also be described by their complexity. As
regards requirements, complexity occurs either in the natural language text or
in the models of a system description. Natural language texts and models are
alternative descriptions of the software system and, therefore, are equally ex-
posed to complexity. Tests, meanwhile, are similar to code so the complexity is
in the code (programming language) used to develop the tests.

The complete picture of software elements and interconnections is still hardly
investigated. Moreover, research on the influence of different types of elements
and interconnections on complexity is very rare so a part of this thesis is dedi-
cated to this subject.

 Software Complexity Assessment 2.2

Section 2 firstly introduces the concept of measurement fundamental to com-
plexity assessment and widely used throughout this thesis. Examples of known
complexity measures are then brought, which are used in the current complexi-
ty assessment methods. Finally, the need for new methods for advanced com-
plexity assessment is highlighted.

 Measurement 2.2.1

Several definitions of measurement exist in the literature. In software engineer-
ing, Fenton and Bieman [22] define measurement as the:

“Process by which numbers or symbols are assigned to attributes of en-
tities in the real word in such a way as to describe them according to
clearly defined rules”.

This definition implies quantification of the attributes of software artifacts, pro-
cesses or products with clearly defined rules. The definition does not, however,
enforce the meaningfulness of measurement, which plays an important role in
making observations. Hubbard [26] defines measurement in applied economics
as:

Introduction to Software Complexity

25

“A quantitatively expressed reduction of uncertainty based on observa-
tions”.

This definition adds a pragmatic value to measurement and is used, therefore,
throughout this thesis in conjunction with Fenton’s definition. Hubbard’s defini-
tion implies that any quantification of an attribute cannot be called measure-
ment unless that quantification reduces the uncertainty on the measurement
entity. To understand this statement, one can consider counting the number of
methods in two Java programs for comparing program sizes. Since the size of
every single method can vary greatly (in terms of lines of code), it cannot be
concluded from the end result as to which program was larger. In this context,
therefore, counting the number of methods is not a measurement. This is crucial
from a pragmatic standpoint because any measurement implicitly implies deci-
sion support for practitioners.

Figure 2 provides an understanding of measurement as used in our work based
on an example for software complexity measurement and distinguishes two
worlds—comparative and operationalized.

Figure 2 Overview of software measurement

The comparative world represents that in which we compare the complexities
of entities based on comparative adjectives of natural language. For example, we
can say that entity C1 is more complex than entity C2, or that entity C6 is the

Introduction to Software Complexity

26

most complex of all the entities. This kind of comparison is usually based on
perceptions. In the operationalized world, the complexity of every entity is a
number. Numbers are assigned to the entities according to a predefined rule so
that they provide greater precision on the complexity of an entity and thus re-
duce the initial uncertainty in the comparative judgment. Depending on the
software artifact, the rule of assigning numbers can be different. The end results,
however, should be artifact-independent numbers that can be subjected to
comparison. Figure 2 exemplifies two artifacts: source code files (C) and textual
requirements (XML). The comparison of the complexity numbers for artifact C is
depicted in the middle part of the operationalized world.

 Software Complexity Measures 2.2.2

The first software complexity measures were created in the late 1970s, the most
widely-known being the McCabe cyclomatic complexity [10] and Halstead’s
measures of software science [11]. New and more advanced complexity
measures were created subsequently, such as the coupling measures of Henry
and Kafura [12] and object-oriented programming measures of Chidamber and
Kemerer [13].

The cyclomatic complexity measure [10] is based on the control flow struc-
ture of a program, calculated as follows:

Cyclomatic number (M) (1)

M is the cyclomatic complexity number, E is the number of edges, and N is the
number of nodes in the control flow graph of the program. An alternative meth-
od of calculating M is to count the number of control statements in the program.
McCabe created this measure primarily as an aid for software testing. The fact is
that with linearly increasing cyclomatic complexity number, the number of exe-
cution paths in a program increases exponentially.

The Halstead [11] measures are calculated based on the number of operators
and operands in a software program. Operators are typically all mathematical
and logical operators in a program, whilst the operands are typically all invoca-
tions of variables and functions in a program.
Two of the Halstead measures can be calculated as:

Program volume (V): (2)

Program volume is meant to estimate the number of bits required to store the
abstracted program of length N.

Program difficulty (D): (3)

where:

Introduction to Software Complexity

27

Program difficulty is meant to estimate the difficulty of the program based upon
the most compact implementation of the program. Difficulty increases as the
number of unique operators increases.

Henry and Kafura [12] measure is calculated based on invocations and size of
a function (method):

Coupling (C): (4)

where:

fanIn is the number of invocations of a given function in a specified program

fanOut is the number of invocations of functions in a given function

LOC is the number of lines of code of a given function

Coupling shows the magnitude of interconnections of a given function/method
within a program.

Clearly, the definitions of these measures are based on certain elements and
interconnections of code. The McCabe complexity is based on conditional state-
ments, the Halstead measures are based on operators and operands, and cou-
pling measures are based on invocations of functions. Every measure is designed
according to its own rationale as to why certain elements are considered in the
complexity measurement and others are not. In the case of cyclomatic complexi-
ty, the consequence of control flow was considered because a function with too
many decision points is difficult to test. In the case of the Halstead measures,
almost all structural elements were used because the program volume and diffi-
culty had to be assessed. In the case of the Henry and Kafura measure, the invo-
cations of functions were used because highly coupled functions are considered
to be difficult to maintain.

Notably, each measure assesses a different aspect of software complexity, which
appears to have many more aspects and may be the reason why many measures
of software complexity are reported in the literature [9]. It may also be the rea-
son why an all-encompassing complexity measure has not yet been created.

 Measurement Validity 2.2.3

The validity of complexity measures allows determining how well a measure
assesses complexity. Two main clusters of validation methods exist:

 Theoretical validation, and 1.
 Empirical validation. 2.

Introduction to Software Complexity

28

Theoretical validation is based on theoretical validation frameworks, which
typically define the prerequisite properties of a complexity measure. A complex-
ity measure is regarded as valid if it possesses these prerequisite properties.
Properties are defined based on the cumulative general knowledge on complexi-
ty. Notable examples of validation frameworks are provided by Weyuker [15]
and Briand, et al. [16].

To elucidate the essence of properties, the properties of complexity proposed by
Briand, et al. [16]l can be considered. The authors define the concept of system
as a representation of system elements and their connections, such that complex-
ity is defined as a function of the system with the following properties:

 Non-negativity: the complexity of a system is non-negative 1.
 Null value: the complexity of a system is 0 if the relations of elements 2.

are non-existent
 Symmetry: the complexity of a system does not depend on the con-3.

vention chosen to represent the relations between its elements.
 Module monotonicity: the complexity of a system is not less than the 4.

sum of the complexities of any two of its modules with no relation-
ships in common

 Disjoint module additivity: the complexity of a system composed of 5.
two disjoint modules is equal to the sum of complexities of the two
modules.

These properties are defined in order to facilitate the design of complexity
measures. Notably, several frameworks in the literature define properties for
complexity. Naturally, the different frameworks propose different properties of
complexity because they envision different motivations behind the properties.
Complexity, however, is not a well-defined concept, even in older and more
mature fields of science. Therefore, when considering pragmatic tasks, such as
complexity measurement, it has been difficult to define the prerequisite proper-
ties of a complexity measure. For example, the third property of complexity
according to Briand, et al. [16] implies that the language of software representa-
tion does not influence complexity measurement, whereas in practice, language-
dependent features, such as deep nesting or misplaced indentations, can be
perceived as manifestation of complexity.

Empirical validation is based on the assessment of the predictive power of the
measures. Most of the time, the complexity measurement per se is not of ulti-
mate interest for practitioners. Rather, it is used to predict the extent to which
complexity impacts business factors, such as quality, risks, time, cost, effort and
developers’ work. Empirical validation suggests that complexity measures must
be good predictors of such factors [27]. Thus far, however, defect prediction
[28] has primarily been used for empirical validation of complexity measures.
The number of defects has been seen as a substitute of software quality. The
most likely reason for the popularity of defect prediction is that measuring the
number of defects has been relatively easier than measuring effort and cost.

Introduction to Software Complexity

29

Despite the advances in complexity measurement and validation, serious issues
must still be addressed. For example, Fenton [29] highlights the commonly held
viewpoint that a complexity measure is not valid unless it is a good predictor of
a particular attribute. A consequence of this is that pure size measures have
been regarded as useful measures as they are good predictors of defects, where-
as deeper scrutiny shows that the predictive power of size measures is based
purely on probabilistic reasons. Naturally, larger programs have more defects.
This prediction, however, is not useful for quality improvement purposes so in
practice, these prediction models are not used to help practitioners develop
better code [30]. Methodological problems of measurement validity, highlighted
by Kitchenham [14], emerge from following a validation methodology without
first reflecting on its adequacy.

 Continuous Software Development 2.3

Continuous software development is defined as a:

“Software engineering approach in which teams produce software in
short cycles, ensuring that the software can be reliably released at any
time. It aims at building, testing, and releasing software faster and
more frequently” [31].

Software development companies transition towards continuous software de-
velopment because it facilitates waste reduction in the development chain [32],
[33]. Other benefits include reduced deployment risk, easier assessment of de-
velopment progress and shorter loops of user feedback [34].

Challenges also exist. All the development processes are carried on in a continu-
ous manner: continuous planning, coding, integration, testing, deployment, and
maintenance. In this environment, developers want faster feedback on newly
delivered software yet comprehensive reviews and tests take a long time to run.
The risk then is the gradual degradation of software maintainability and late
design modifications.

Humble and Farley [34] have discussed five pivotal activities that underlie con-
tinuous development. In order to succeed in continuous software development,
software developers should:

 Build quality into the product in the first place 1.
 Work on small batches by getting every change in version control as 2.

far towards release as possible
 Solve the problems, leaving repetitive tasks to the computers 3.
 Relentlessly pursue continuous improvement 4.
 Be responsible for the quality and stability of the entire software be-5.

ing built.

It is remarkable that all five activities aim to decrease the risk of gradual soft-
ware degradation. In particular, the first activity (derived from the Deming’s
Third Principle of Lean Thinking [35]: “…eliminate the need for inspection on a

Introduction to Software Complexity

30

mass basis by building quality into the product in the first place”) intends to
mitigate the risk of code degradation. This paradigm shift views quality im-
provement as an integrated activity rather than a separate inspectional one.
Instead of inspecting/testing software after development and reacting to areas
of degraded software (revealed by defects and unmaintainable code), the ra-
tionale here is that quality is built into the software proactively. Proactive be-
havior is defined as:

“…the relatively stable tendency to effect environmental change” [36].

Proactivity assumes that software developers are well aware of the quality of
their software before its integration so any feedback on their software after
integration cannot trigger reactive actions. Proactivity, however, requires inte-
grated methods for providing feedback to the developers “just in time” of devel-
opment so that they can prevent software degradation.

Since software complexity is one of the major reasons for software degradation,
complexity management should also be carried out proactively; developers
should be able to obtain feedback on complexity “just in time” of software de-
velopment, allowing them to take instrumental action immediately.

 RESEARCH METHODOLOGY 3

Section 3 describes the rationale for the choice of research methodology. The
three main research methods employed in this work are presented.

The research context had three key characteristics of fundamental importance
to the choice of research methodology:

 The research context was highly sophisticated, due to the involve-1.
ment of multiple software development artifacts, processes and hu-
man factors in the large development projects.

 The scope of the research problem was extensive. The effect of com-2.
plexity permeated into different software development artifacts and
people’s professions and so had different manifestations and subse-
quently different interpretations.

 The goal of the research was to attain applicable results so the re-3.
search method assumed a reflective nature that would allow feed-
back from practitioners to calibrate the results.

The sophisticated context, extensive scope and the requirement for results to be
applicable limited the option of employing a purely positivistic approach [37] in
this research. More specifically, the phenomenon of complexity could not be
described with a minimal set of general variables across all contexts and for all
artifacts. In addition, since complexity was perceived differently by practitioners
of different professions, the interpretative nature of the results had to be part of
the final solution and a certain degree of Interpretivism [37] was required in the
research methods used.

Introduction to Software Complexity

31

On the one hand, complexity could be measured within certain boundaries de-
termined by the type of software artifacts, programming languages, organiza-
tions, product domains and practitioners’ professions. This meant that within
certain boundaries, a theory based on deductive reasoning could be postulated
and subsequently evaluated in practice (typical to positivistic thinking). On the
other hand, the same theory should be subjected to application and generaliza-
tion across boundaries, meaning that it should be tested across boundaries to
allow a wider understanding and gradual theory building (typical to interpre-
tivistic thinking).

The existence of positivistic and interpretivistic elements in the research meth-
odology indicates methodological realism (Figure 3, Layer 1). This philosophy is
similar to positivism, but recognizes that all observations are fallible to a certain
degree and, therefore, all theories are gradually improvable. The aforemen-
tioned factors suggest that the research methods of this thesis should be based
upon methodological realism.

Additionally, the research demanded the applicability of research results; this
was not straightforward because of the sophisticated research context. More
specifically, it was not easy to use a specific method for creating complexity
measures for one company and simply applying these measures to other com-
panies. It was not generally possible to crystalize the conditions of the research
environment that would facilitate the repeatability of research results. Repeata-
bility is the major issue for sophisticated organizations’ sciences [38]. To over-
come the issue, Checkland and Holwell [38] proposed that this criterion can be
replaced by a recoverability criterion. The essential idea is that anyone interest-
ed in subjecting the research to critical scrutiny can get full access to the re-
search process. Having fully recoverable research allows the sophisticated na-
ture of research context to be understood sufficiently; this can be valuable in
designing similar studies (documenting similarities and differences).

A method that embraces methodological realism and is applicable for immediate
problem solving is action research [39]. Therefore, action research was em-
ployed as the main method for scientific inquiry in this thesis, thereby allowing
the results to be applied in the companies. Action research is perfectly suited to
this purpose because of its practical problem solving. We, researchers had the
opportunity to work alongside practitioners to acquire valuable qualitative and
measurement data, which was advantageous in conducting a typical action re-
search process in the companies.

The second method used in this research was survey because the collective
viewpoint of practitioners could reveal important facts about software complex-
ity. Previously, theoretical explanations of software complexity have been very
much emphasized. Even complexity measures were essentially based on theo-
retical considerations. In practice, however, software is always associated with
more sophisticated aspects than those assessed by theoretical considerations.
For example, it is still unclear how the different professions of people, such as
testers, programmers, architects and managers, affect the perception of com-

Introduction to Software Complexity

32

plexity. Hence, knowledge for software complexity understanding and meas-
urement should also be derived from practical observations. One problem here
is that knowledge obtained from a survey can be inconclusive as it is derived
from practitioners’ perceptions rather than factual sources. Nevertheless, since
the research context itself is complex, there is little chance to obtain conclusive
knowledge directly [38], whilst knowledge obtained from a survey is valuable in
identifying likely answers. This knowledge can subsequently be used for trian-
gulation and more reliable theory construction.

The third (last) method used in this research was case study. As with action
research, case study is also suitable for researching sophisticated systems. A
fundamental difference, however, is that in case study the researcher becomes a
detached observer. The application of case study in our research was essential
when an independent understanding of certain problems in the research con-
text was necessary or interesting from a research perspective.

Figure 3 Methodological map of Saunders [40] (pp. 106-135)

An overview of our research methodology based on the methodological map of
Saunders [40], the so-called research onion, is shown in Figure 3. The first four
layers of the research onion encompass four important methodological items:
the research philosophy, type of reasoning, research method and type of data.
The dashed trapezoid in Figure 3 outlines the boundaries of our research meth-

Introduction to Software Complexity

33

odology. As explained earlier, the research philosophy relies on methodological
realism (Layer 1). Abductive reasoning characterizes the process of drawing
conclusions from the obtained data (Layer 2). Abductive reasoning is typical
with case study and action research, where it is not possible to obtain a conclu-
sive data set and, therefore, conclusions are made based on the likeliest possible
explanations. Survey, case study and action research methods lie in the upper
middle part of the figure (Layer 3). Both quantitative and qualitative data were
collected in our studies (Layer 4). At the core of Figure 3, we have outlined the
main techniques of data collection and analysis; these are described in detail in
each of the papers comprising this thesis.

The forthcoming sections briefly describe the research methods and their appli-
cation in this research. Their specific application in each study is described in
the corresponding papers of this thesis.

 Action Research 3.1

Action research as a research method allows progressive problem solving based
on the reflective process of a researcher-practitioner collaborative setup. The
term action research was coined in 1946 by Kurt Lewin [41]. Action research is a
cyclical process that includes identifying the client’s problem, designing actions,
applying the actions to the client’s system, finding new facts, reformulating the
problem, and repeating the cycle until the problem is meticulously understood
and, if possible, solved. The whole process is geared towards incremental prob-
lem solving, and, in contrast to other methods, it allows researchers to intervene
in the research process by introducing actions.

In the 1970s, organizational science faced a crisis because of the increasing
complexity of modern organizations. As reported by Susman and Evered [42] ,
many of the findings in scholarly journals were (and still are) only remotely
related to real-world problems. To overcome the crisis, a group of scientists
pioneered the application of action research in organizational science [43], [44],
[38]. From the 1990s onwards, when software engineering organizations start-
ed to grow rapidly, action research was also applied in these organizations [45],
[46].

The companies that participated in this research are typical examples of large,
complex organizations. Since the aim of this research included both knowledge
acquisition and the solving of practical problems, and because we were able to
work closely with practitioners, we found the action research method to be
suitable for this work. Consequently, action research was applied to research
tasks, such as developing and evaluating:

 Complexity measures 1.
 Complexity assessment methods 2.
 Measurement systems. 3.

Introduction to Software Complexity

34

We have applied the typical cycle of the action research process, as prescribed
by Susman and Evered [42] (Figure 4). The cycle starts with diagnosing either
the problem or improvement opportunities in the company. The problem can be
either articulated by company representatives and discussed further to gain
deeper understanding or identified by researchers in an initial case study. The
action planning phase includes developing solutions for the problem. Both liter-
ature and empirical evidence were used to understand the solution options. The
third step in the cycle includes action taking, both small-scale actions (e.g., in-
troducing a measure to the organization) and large-scale actions (e.g., introduc-
ing an entire measurement system to the organization). The fourth step focuses
on evaluation, which includes evaluating newly introduced measures, methods,
and measurement systems. Step four is done in order to evaluate qualities, such
as the efficiency, effectiveness or adequacy of the solutions.

Figure 4 The cyclical process of action research (Susman and Evered [42])

The final step focuses on learning from findings and documenting these findings.
Here, we reflected on the findings and reformulated the problem for new action
planning. The cycle was repeated as often as required to either solve the overall
problem or confirm that the adopted approach was unsuitable for problem solv-
ing.

The client system infrastructure is shown at the center of Figure 4. The core of
the client system infrastructure in our case was a group of practitioners called
the reference group, members of which provided evaluative feedback upon the
courses of actions.

Introduction to Software Complexity

35

Reference groups were formed in every company to establish a “researcher-
client” collaboration [47], [48]. Reference groups comprised several software
engineers and managers who regularly provided feedback on the obtained re-
sults. The reference group practitioners were very well-informed on the subject
under investigation and usually had deep insights on the results. Their insights
helped the interpretation of results, as well as suggestions on how the subject
could be investigated further. The professions of reference group practitioners
could vary depending on the subjects under investigation. In all cases, however,
practitioners were either software developers/testers, software architects or
project managers, the latter having excellent knowledge concerning both the
technical issues of the products and the managerial issues of decision making.

In addition to the more active involvement of reference group practitioners, we
also presented results to other practitioners in the companies, albeit less fre-
quently, so as to gather knowledge from a wider practitioner spectrum. The
active involvement of practitioners in the research allowed us to achieve a
broader and deeper understanding of the problem domain, obtain results, and
assess the potential to apply these results.

 Survey 3.2

Survey is a structured means of soliciting information from people [49]. In social
science, social psychology, politics and business surveys are widely used to un-
derstand peoples’ preferences, attitudes and opinions on particular issues. Re-
cently, surveys have been widely used in software engineering to investigate
topics like user experience and management practices. The main purpose of
conducting a survey is to draw general conclusions based on a fraction of the
population. A survey, for example, can be used to explore prospective users’
attitudes to a new product feature.

In the research onion of Saunders [40] (Figure 3), the survey more closely re-
sembles the positivistic philosophy because it allows to collect quantitative data
and make statistical inferences. Surveys can in fact be used to acquire both
quantitative and qualitative data. A guideline for conducting surveys in software
engineering has been proposed by Linåker, et al. [50].

In this study, a web-based quantitative survey (Rea and Parker [49] pp. 8-79)
was developed in order to reach prospective respondents. Survey was used for
three research tasks, i.e., to:

 Acquire empirical data on software complexity triggers as experi-1.
enced by software developers

 Estimate the use of current complexity measures in practice 2.
 Estimate the impact of complexity on software quality and mainte-3.

nance time.

The first task was investigated using a survey because research on software
complexity understanding and measurement has predominantly been theoreti-

Introduction to Software Complexity

36

cal so far. Traditionally, research on software complexity has followed positiv-
istic research philosophies, i.e., defining the theoretical properties of complexity
(e.g., [15], [16]), developing complexity measures (e.g., [9], [22]), and finally
empirically validating these measures against dependent variables, such as de-
fects or maintainability (e.g., [51]). This approach has been only partly success-
ful [17] mainly because, software complexity is more convoluted in practice
than in theory. Practitioners’ perspectives on software complexity are nearly
non-existent in the literature. The use of survey provided a new perspective on
complexity understanding and its potential measurement.

The second task was investigated with survey because the use of complexity
measures can be directly quantified by asking practitioners whether they use
these measures. Asking a large proportion of practitioners (population) this
question can provide a realistic estimate of the use of these measures.

The third task was investigated with survey because it is difficult to establish an
accurate relationship between maintenance time and complexity. We suggest
that the practitioners’ collective standpoint on this relationship is a valuable
complementary data source for triangulation and more accurate conclusions.

 Case Study 3.3

The last and least used method in this research is case study. Case study is an
empirical enquiry that investigates a contemporary phenomenon in real-life
(Yin [52] p. 13). Case studies are suitable for studying a phenomenon where the
boundaries between the research context and the phenomenon are not strictly
determinable. Above all, when the research phenomenon and context are so-
phisticated and a more in-depth analysis is preferable, case study is a pragmatic
choice. Typically case studies can be adopted for post-facto studies, so the study
results do not have any effect on the studied event. It is commonly used in areas,
such as psychology, sociology, community planning, etc.

As with action research, case study is effective when investigating complex soci-
otechnical systems. Yet a significant difference exists between these two meth-
ods: the goal of action research is to solve a problem for the client, whilst that of
case study is to provide independent and often post-facto analysis. Action re-
search is a strictly iterative process; this implies that researchers will intervene
in the system being investigated by introducing changes and studying their con-
sequences. In contrast, case study implies that researchers will study the system
with no intervention in the research process ([53] p. 13). Both methods gener-
ate knowledge for a particular case, but with different purposes and via differ-
ent approaches.

In this thesis, we used case study primarily to study the relationship between
unit test coverage measures and defect count in one company. This relationship
was investigated in the wider context of software size, complexity and evolution.
Unlike a typical case study that relies on qualitative analysis, this study used
numerous measures to investigate the subject quantitatively and, as it was one

Introduction to Software Complexity

37

of the two last studies in our research, a wealth of qualitative understanding of
the results was obtained based on experiences accumulated from preceding
studies. Our other studies in the section of “Other Publications” also contain case
studies.

 RESEARCH QUESTIONS AND CONTRIBUTIONS 4

Section 4 clarifies the relationship between the research questions and
research contributions of this thesis, which are depicted in relation to
the three main areas of focus of this research (Figure 5).

Figure 5. The research focus of this thesis

To recap, the main research question of the thesis is:

How can we proactively assess software complexity in continuous soft-
ware development?

This research question is based upon the eight, more detailed, original research
questions addressed in the six papers comprising this thesis. These eight ques-
tions are shown in Table 1.

Research questions 1-3 are related to proactive complexity assessment in contin-
uous software development (the upper and the right-hand rectangles of Figure
5). In particular, the aim of these questions was to create complexity assessment
methods and apply them proactively in order to provide feedback on continu-
ously delivered software.

Research questions 4‒6 are related to the triggers of complexity, the use of ex-
isting complexity measures in practice, and the impact of complexity on mainte-
nance time (the left-hand rectangle of Figure 5). The aim of these questions was

Introduction to Software Complexity

38

to fill the practical gaps of understanding complexity, to evaluating the use of
the most popular complexity measures in practice, and to estimate the impact of
complexity on the software maintenance time as perceived by practitioners.

Finally, research questions 7 and 8 explore the problems and opportunities in
the field of software (complexity) measurement (upper rectangle of Figure 5).
They provide a critique on software complexity assessment methods.

Table 1 Research questions

Table 2 summarizes our findings after each research question was answered.
Findings one, three, five, and six present solutions for complexity assessment (the
upper rectangle of Figure 5). Findings two, four, and seven present solutions for
assessment proactivity (the right-hand rectangle of Figure 5). In addition, these
first seven findings led to the important conclusions that many current
measures of complexity have major shortcomings. Subsequent research, there-
fore, focused on exploring the triggers of complexity and the possibility of better
measurement, which resulted in to findings 8‒10 (the left-hand rectangle of
Figure 5).

Throughout the entire research process, we also documented valuable experi-
ences that highlighted the challenges and opportunities of complexity assessment
in practice, as summarized in findings 11‒14 (the upper rectangle of Figure 5).

N Research Question Paper
1 How can we monitor code complexity and changes

effectively when delivering feature increments to the
main code branch?

1

2 How can we identify and assess risky elements of the
code effectively when delivering new feature increments
to the main code base?

2

3 How can we automatically rank textual requirements
based on their internal quality in large software
development organizations?

3

4 Which code characteristics are perceived by
practitioners as the main triggers of complexity?

4

5 How frequently are complexity measures used in prac-
tice?

4

6 How much does complexity affect maintenance time? 4

7 What is the relation between unit test coverage, complex-
ity and defects?

5

8 How can we validate software measures when the varia-
bles of prediction are not accurately measurable?

6

Introduction to Software Complexity

39

Figure 6 helps to elucidate the relationship between the research questions and
subsequent findings. Every research question was answered by one or more
findings.

Table 2 Summary of the findings

N Finding Paper
1 Only two out of investigated five complexity measures suf-

fice to monitor overly complex functions and files.
1

2 Only a few out of thousands of functions and files increase
code complexity of the product when monitoring complexity
over a period of weeks.

3 The product of cyclomatic complexity and the number of
revisions indicates source files that are error-prone and
difficult to maintain.

2

4 Incorporating the indicator (Finding 3) into a
measurement system allows the proactive
identification of error-prone and difficult-to-maintain files.

5 Four complexity measures have been defined which enable
automated complexity measurement of textual
requirements.

3

6 The weighted sum of the four measures (Finding 5) indi-
cates requirements that are difficult to understand for
implementation and testing.

7 Incorporating the indicator (Finding 6) within the require-
ments’ management system allows the proactive identifica-
tion of requirements that are difficult to understand.

8 Two code complexity triggers (nesting depth and lack of
structure) are considerably more important than other trig-
gers.

4

9 Well-known complexity measures are rarely used in prac-
tice.

10 Practitioners’ cumulative perception indicates that
complex code consumes multifold more additional mainte-
nance time compared to simple code

11 Statement, decision and function coverage measures are
inadequate for deciding upon the sufficiency of testing

5

12 The maximum level of nesting is the only measure with a
tangible effect size on both defects (16%) and coverage
(18%).

13 Empirical validation of measures based on regression analy-
sis is often inaccurate because a dependent variable like
defect count often cannot be measured accurately.

6

14 Validation of measures using action research can help to
determine the usefulness of the measure in practice.

Introduction to Software Complexity

40

 The next section provides an overarching discussion of the findings and their
implications. Note that we have intentionally avoided providing related back-
ground in order to maintain focus. More details on each finding can be found in
the corresponding papers.

Figure 6 Findings mapped onto the research questions

 DISCUSSION 5

In this section, the pivotal points of all 14 findings are discussed within the
three, logically separate areas shown in Figure 5: software complexity assess-
ment, proactive complexity assessment in continuous software development, and
software complexity landscape.

 Software Complexity Assessment 5.1

Finding 1 exemplifies the analysis of the relationship between five code com-
plexity measures. The conclusion that only two out of the five investigated com-
plexity measures are sufficient to monitor complexity in practice reduces the
problem of having to use many measures. Two problems predominate:

 If strongly correlated measures exist, these can indicate the same as-1.
pect of complexity [17] so only one of the strongly correlated
measures may be useful.

 It is difficult to use many measures because this makes it harder to 2.
interpret the results for final decision making.

Finding 3 is the logical continuation of Finding 1. It represents a means to assess
complexity based on the product of the two non-correlated measures: the effec-
tive cyclomatic complexity () and number of revisions (NR) of a source code

file.

Introduction to Software Complexity

41

 (1)

This formula is designed to assess the relative risk (R) of error-prone and diffi-
cult-to-maintain files. In contrast with existing works, where measures are com-
bined based on regression equations (as demonstrated previously [54]), here
the measures have been combined based on their semantic interpretation. The
merit of this formula is that it provides interpretable numbers in a practical
context. It indicates that if a structurally complex file changes frequently, there is
a risk of errors and degrading maintainability.

Importantly, the formula expresses the fact that if any of the measures obtain a
zero value, then the value of risk must also be zero because:

 If complex files do not change at all (NR = 0), then they are not ex-1.
posed to risk (R = 0)

 If intensively changed files are only simple ones (= 0), then they 2.

do not indicate risk, but intensive development (R = 0).

If we juxtapose formula (1) with defect prediction models based on regression
analysis, we have the following disadvantage and advantage, respectively:

 Formula (1) does not ensure that defects are predicted with the max-1.
imum achievable accuracy, while regression equations in the previ-
ous works do.

 Regression equations do not support decision making for code im-2.
provements because they have either complicated interpretations or
no interpretations at all [17]. Formula (1) does help with decision
making because it has clear interpretation based on which instru-
mental actions can be taken.

In Ericsson, for example, the use of formula (1) could identify files that are fre-
quently changed not because of active maintenance, but because they are simul-
taneously complex and play a central role in the product code. These files were
error-prone and continuously changing over time, inducing new defects, such
that the organization decided to modularize them by refactoring.

A problem with this approach is that if any measure in the formula is not a rea-
sonably accurate measure of its purpose, then the whole formula fails. Cyclomat-
ic complexity in particular is a moderately good measure of structural complexi-
ty. Therefore, the formula should be used to reflect what it shows for a particu-
lar case rather than as a decisive indicator. This formula could be greatly im-
proved by using a more sophisticated structural complexity measure, which is a
topic for future investigation.

The fifth finding shows that it is possible to define complexity measures for
textual requirements. The problem is that natural language is a more sophisti-
cated representational language for a software system than source code. Its
meaning lies in whole sentences rather than words as machine instructions in
code. Therefore, defining simple measures for a sophisticated representational
language is an unlikely possibility [55]. Nevertheless, the research in four com-

Introduction to Software Complexity

42

panies showed that it was possible to define four simple complexity measures
for textual requirements. Three of these measures are completely new and
quantify the structural complexity of requirements. The first measure, number
of conjunctions (NC), measures the number of interrelated actions in a require-
ment and is similar to McCabe’s cyclomatic complexity [10] in terms of decision
sequences. This measure is also the most accurate indicator of internal quality
with an effect size on internal quality as great as 59%. Put in perspective of its
usefulness, this measure has about as much effect size on internal quality of
requirements as popular code complexity measures have on code defects. For
example, the results of finding twelve shows that one of the widely used
measures, NR [56] has 62% effect size and cyclomatic complexity (M) has 41%
effect size on code defects.

The next two measures are similar to the fan-out measure of Henry and Kafura
[12]. The number of reference modules (NRM) and number of reference docu-
ments (NRD) are two different measures of structural complexity, which can be
classified as measures of coupling according to Briand, et al. [16]. The NRM has a
best case effect size of 46%. The effect size of the NRD was not possible to calcu-
late because of measurement values being too low in magnitude, but it also has
substantial effect based on qualitative evaluation. The last measure, the number
of vague phrases (NV), is a measure of representational complexity and is based
on several previous works, including that of Femer et al. [57].

These results presented the opportunity for automated requirements reviews, a
task regarded as one of the most tiresome activities in software engineering
[58]. In contrast with existing work (e.g., [55] and [57]) that primarily focuses
on ambiguity measurement, our results provide a means for complexity meas-
urement. The use of both types of measures can lead to the design of better indi-
cators for decision support. To our knowledge, no previous work has evaluated
the effect size of ambiguity measures; therefore, we cannot provide any compar-
ison of ambiguity and complexity measures, which would be interesting from
the assessment effectiveness perspective.

Finding 6 presents a combination of the four complexity measures into a single
formula to assess a requirement’s internal quality (QI). This combination is
based on the simple sum of the measures:

 (2)

As opposed to formula (1), comprised of one structural and one evolutional
complexity measure, all four measures in formula (2) are structural measures.
Since the evolutional complexity of requirements is low, formula (2) does not
contain any evolutional complexity measure.

Finding 11 focuses on three popular unit test coverage measures used to test
sufficiency, and indicates that all three measures are inadequate for deciding
upon the sufficiency of testing. The effect size of measures on defects was 9%,
suggesting that increasing coverage has little effect on defect reduction. This
finding is particularly important for companies that employ coverage measures

Introduction to Software Complexity

43

to decide upon test sufficiency. One of the findings of Mockus, et al. [59] was that
increasing coverage linearly consumes effort exponentially. This finding empha-
sizes even more that increasing coverage alone is an inadequate technique for
defect prevention. The key message from this finding is that practitioners
should not focus on sheer fulfillment of the coverage criterion, but should apply
more sophisticated techniques for unit testing to detect a maximal amount of
defects with minimal testing effort. Exploratory testing [60] and causal analysis
[61] are examples of such techniques.

The results of finding twelve deepen the scrutiny of coverage-defect relation-
ship in the context of size, complexity, and evolution of code. The results clearly
show that all of these properties have much larger effect on defects than cover-
age. In particular, the number of revisions, as shown earlier, has an effect size of
62%. One interesting aspect of complexity is that the maximum level of nesting in
a file has a tangible effect size on both defects (16%) and coverage (18%). As
this measure is defined not for a file, but for a block of code, it would be interest-
ing to do further research and determine the extent to which nesting actually
affects both defects and coverage. The results suggest that managing complexity
can have much larger effect on defects than on managing unit test coverage. The
results also tentatively suggest that managing nesting can have double the posi-
tive effects – decreasing defects and facilitating testing.

As Briand, et al. [27] rightfully observe, a measure is considered to be empirical-
ly valid if it can predict an external attribute (e.g., maintainability). Finding 13
suggests that empirical validation of complexity measures is not always possible
because external attributes are not always measurable accurately. Statistical
methods need to have historical data for both complexity measures and
measures of external attributes in order to assess the predictive power of the
complexity measures. Studies often use defect count as a dependent variable.
Hence, complexity measures are usually evaluated by how well they predict
defects. Yet counting defects for such entities as files and functions often cannot
be done accurately; while a file can be considered defective, the actual root
cause of the defect may be in another file yet since both files undergo defect
correction activities, both are counted as defective. This means that defect count
becomes inherently prone to inaccuracies. Consequently, studies report change
measures to be better than static complexity measures in defect prediction, as in
the case of ref. [56]. Other important dependent variables are readability and
understandability of code and ease of code integration, although these variables
have no direct measures so their empirical validation may be problematic.

The issue of accurate measurement even affects simple measures, such as cy-
clomatic complexity [10] and the coupling measures of Henry and Kafura [12]. It
is not clear, for example, how function invocations should be counted when the
same function is called several times with different parameters’ list, i.e., should
the function be considered the same function or a different function?

Finding 14 proposes a method based on action research principles for validating
complexity measures even if the dependent variables are not measurable. This

Introduction to Software Complexity

44

method was developed as a consequence of Finding 13. The main concept is that
a group of expert practitioners can provide valuable qualitative input on meas-
ured entities. Having obtained input on a sufficient number of data points (files,
functions, requirements), general conclusions can be made on the extent to
which measurement values indicate problems with external attributes. Fur-
thermore, action research cycles can be used to improve measurement accuracy
via “define-refine-redefine” action research cycles. Consequently, both the use-
fulness of measures and measurement accuracy can be evaluated using this
method, which should be used with statistical methods for triangulating results
and drawing more accurate conclusions.

 Proactive Complexity Assessment in Continuous 5.2

Software Development

Our measurements showed that the overall number of source functions in large
products is tens of thousands. Complexity monitoring requires the continuous
identification and manual checking of functions subject to substantial complexi-
ty increases over short time intervals (typically days or weeks). Finding 2 shows
that only a few functions and files drastically increase in complexity over short
periods of time. Typically, the number of such files and functions ranges from 0
to 10. The predominant parts of the functions and files have stable complexity.
These results are particularly helpful for an organization with a dedicated per-
son for code quality management because this person can feasibly monitor the
complexity increase and conduct corrective actions.

The cost of fixing such defects discovered in late development phases or by cus-
tomers can be multifold greater than if they were found in the development
phase [62]. Similarly, the effort to improve the maintainability of code that was
developed months ago can be multifold greater than if the defect was located
and improved at the time of development. Code improvements that are con-
ducted in response to external signals (e.g., tester/customer dissatisfaction) are
reactive improvements. In contrast to reactive improvements, which typically
succeed defect reporting, proactive improvements are conducted before a given
piece of code is merged with the main product code. The results of Finding 4
represent a measurement system for the proactive identification of risky code
areas. The main idea is that the measurement system allows the risk of defect-
proneness and degradation of maintainability to be assessed before these nega-
tive aspects can actually manifest themselves later in the product life cycle. This
allows developers to conduct corrective actions proactively, thereby mitigating
the risk well before the code is merged within the main product code.

As with code, there are risks associated with poor requirements’ specifications;
a low internal quality of requirements increases the risk of late design modifica-
tions and ultimately causes project cost overruns [63]. The results of Finding 7
support conducting proactive reviews of textual requirements to prevent late
design modifications. The results show that integrating formula (2) into local

Introduction to Software Complexity

45

requirement management tools enables proactive reviews. Every practitioner,
and particularly requirements’ analysts, can run the analysis based on formula
(2) whenever they want to. Since this analysis can be run in the same environ-
ment as used for requirements’ writing and usage, the administrative effort for
the analysis is only a few seconds per review. As opposed to manual reviews,
where the entire review process can take several weeks, automated reviews are
performed within seconds. Moreover, when feedback is given “just in time” of
writing the requirements, it is much easier for the writer to make improvements
immediately.

Finding 10 emphasizes the necessity of code complexity management from the
practitioners’ perspective. It suggests that according to a practitioners’ cumula-
tive perception, code complexity increases the average maintenance time by a
factor of 2.5 to 5. Thus, if it was possible to simplify a complex area of code, then
maintenance time on that area could be reduced by a factor of 2.5 to 5, a sub-
stantial reduction. It is crucial, however, to understand the extent to which
complexity can be reduced for a given piece of code based on the current com-
plexity measures. Qualitative estimates described in papers one and two suggest
that complexity can be reduced significantly. Another study not included in this
thesis, but listed as the first in the “Additional Papers” section, provides a more
meticulous understanding of the potential for complexity reduction. Research in
this area, however, remains scarce and more work is needed in order to esti-
mate the extent of complexity reduction more accurately.

 Software Complexity Landscape 5.3

Finding 8 indicates that two out of the proposed eleven code characteristics,
namely nesting depth and lack of structure, have a major influence on the in-
crease of code complexity. Curiously, the most popular code complexity
measures currently used do not measure nesting. Little attention has been given
to the nesting aspect in literature. A nesting-based measure designed by
Harrison and Magel [64] in 1981 is virtually unused in literature or in practice.
Moreover, reflections on nesting are rare, the most well-known being critiques
of cyclomatic complexity measure, which takes no account of the nesting [65],
[66]. As an aspect of complexity, nesting has both representational and struc-
tural natures. Some degree of nesting is always required to organize interrelated
decision statements. Yet deep nesting, a major source of complexity according to
our results, can always be avoided by smart coding techniques, such as decom-
posing the block into separate functions, combining the conditional tests, and
using early returns.

Compared to nesting, the second characteristic (lack of structure) is purely a
representational characteristic. In Paper 4, lack of structure is defined as incor-
rect indentations, improper naming and not using the same style of coding for
similar patterns of code. A measure that captures aspects of lack of structure
was proposed by Buse and Weimer [67]; they evaluated the same measure
and found that it had a good accuracy of agreement with manual assessors of

Introduction to Software Complexity

46

code readability. Lack of structure can always be avoided because it is mainly
associated with how developers choose to write code. Nevertheless, the meas-
ure of Buse and Weimer has not gained any popularity. Finding 8 emphasizes
strongly that, indeed, measures and supporting tools are needed to measure
lack of structure and nesting of code.

Finding 9 shows that well-known code complexity measures [22] (pp. 335-429)
are rarely used in practice for at least three reasons: 1) the well-known com-
plexity measures do not capture the most influential complexity triggers; 2)
single complexity measures alone are not effective in estimating maintainability
and error-proneness – a combination of measures is needed; and 3) practition-
ers need research support to integrate complexity measures into companies in
such a way that their use will take little administrative effort yet ensure maxi-
mal effect for decision support [68].

 LIMITATIONS 6

This research has two important limitations, both of which are related to the
ability to generalize these results, as discussed by Checkland and Holwell [38].

Firstly, complexity for the lowest abstraction levels of software was investigated
in this thesis. As regards code and tests, the complexity of isolated blocks, func-
tions, and files was investigated, whilst in the case of requirements, complexity
of isolated requirements was investigated. All results were evaluated for the
entities of lowest abstraction level. Yet complexity for higher abstraction levels,
such as components and subsystems, and which can be termed “architectural
complexity” also exist. Architectural complexity refers to the complexity that
emerges from the architectural components and interactions. Since the methods
and findings created in this thesis were not evaluated for architectural complex-
ity, we do not know whether they can aid architectural complexity management.

Secondly, all software products used in this research were large, mature, and
had a long history of development. They primarily belong to the sector of em-
bedded systems, and were developed by C, C++, and Java programming lan-
guages. They also all belong to the Nordic software industry and thus contain
elements of the Nordic software development culture. As these research results
have all been obtained within this context, it is not clear whether other types of
products would significantly impact these results.

 FURTHER WORK 7

The results of this thesis open new research directions in the three areas that
we investigated: complexity landscape, complexity assessment, and proactive
complexity assessment in continuous software development.

Firstly, it is worthwhile to identify the complete list of software characteristics
and evaluate their influence on complexity increase. Here, empirical studies

Introduction to Software Complexity

47

could elucidate the influence of such characteristics on complexity increase.
There is also the option of using interdisciplinary research, where concepts of
cognitive psychology could help to determine exactly how the human mind han-
dles complexity. Previously, there was too much emphasis on investigating
complexity as a pure system property. But complexity is profoundly connected
with human perception. The first research paper in the “Other Publications”
section is related to this subject.

Secondly, the aforementioned investigation might enable the design of more
sophisticated complexity measures that would accurately embrace pragmatical-
ly all aspects of complexity. These measures would involve not only the struc-
tural aspects of complexity, but also representational and evolutional aspects.
Furthermore, the extent to which complexity is reducible should be investigat-
ed. The straightforward way to do this would be to investigate which software
characteristics are essential and which are accidental. Identifying accidental
characteristics could clearly indicate a potential for complexity reduction. To
date, the task of complexity reduction is poorly supported by scientific facts;
rather, it is left to the ingenuity of software developers.

Thirdly, it is important to investigate how a good complexity measure can be
standardized and used in practice. The challenges of integrating a good com-
plexity measure into the developmental environment should be understood
thoroughly. Moreover, practitioners need guidelines for turning a complexity
measure into a complexity indicator so that they can use the complexity meas-
ure to simplify the software. Ultimately, the goal of a complexity measure is not
the defect or maintainability prediction, but continuous software improvement.

What is more, the area of architectural complexity can be investigated. Of par-
ticular interest are which characteristics make architecture complex and how
these can be measured. The ultimate goal of such research would be to create
methods that allow architectural complexity to be assessed and reduced. Con-
trolling complexity at all levels (requirements, code, and architecture) would
allow practitioners to expand their software virtually beyond limits whilst keep-
ing every composite part of software simple and maintainable.

PAPER 1

Monitoring Evolution of Code Com-

plexity and Magnitude of Changes

Monitoring Evolution of Code Complexity and Magnitude of Changes

50

ABSTRACT

Complexity management has become an indispensable activity in continuous
software development. While the overall perceived complexity of a product
increases rather insignificantly, the small units, such as functions and files, can
have significant complexity increase with every increment of product features.
This kind of evolution triggers risks of escalating defect-proneness and deterio-
rating maintainability. The goal of this research was to develop a measurement
system that enables effective monitoring of complexity evolution. An action
research has been conducted in two large software development organizations.
Three complexity and two change measures of code were measured for two
large industrial products. The complexity increase was measured for five con-
secutive releases of the products. Different patterns of growth have been identi-
fied and evaluated with software engineers in industry. The results show that
monitoring cyclomatic complexity evolution of functions and number of revi-
sions of files focuses the attention of engineers to risky files and functions for
manual assessment and improvement. A measurement system was developed in
one of the organizations to support the monitoring process.

Monitoring Evolution of Code Complexity and Magnitude of Changes

51

 INTRODUCTION 1

Actively managing software complexity has become an important activity of
continuous software development. It is generally accepted that software prod-
ucts developed in a continuous manner are getting more and more complex
over time. Evidence shows that the rising complexity drives to deteriorating
maintainability of software [3, 69, 70]. The continuous increase of complexity
can lead to virtually unmaintainable source code, if complexity is left unman-
aged.

A number of measures were suggested previously to measure various aspects of
software complexity and evolution over development time [71]. Those
measures were accompanied with a number of studies indicating how adequate-
ly the proposed measures relate to software quality [66, 72]. Complexity and
change measures have been used extensively in recent years for assessing the
maintainability and defect-proneness of code [73]. However, despite the consid-
erable amount of research conducted for investigating the influence of complex-
ity on software quality, little results can be found on how to effectively monitor
and prevent complexity growth. Therefore a question remains:

How can we monitor code complexity and changes effectively when de-
livering feature increments to the main code branch?

The aim of this research was to develop a method and tool support for actively
monitoring complexity evolution and drawing the attention of practitioners to
the risky trends of growing complexity. In this paper we focus on the level of
self-organized software development teams who often deliver code to the main
branch for further testing, integration with hardware, and ultimate deployment
to end customers.

We address this question by conducting an action research project in two com-
panies, which develop software according to Agile and Lean principles. The
studied companies are Ericsson which develops telecom products and Volvo
Group Truck Technology (GTT) which develops electronic control units (ECU)
for trucks.

Our results show that using two complementary measures, McCabe’s cyclomatic
complexity of functions and number of revisions of files supports teams in deci-
sion making, when delivering code to the main branch. The evaluation shows
that monitoring trends in these measures helps identifying a handful of risky
functions and files. These functions and files are manually assessed by the self-
organized agile teams, who make decisions whether to refactor or to integrate
the code to the main code branch.

 RELATED WORK 2

Continuous software evolution: A set of measures useful in the context of
continuous deployment can be found in the work of Fritz [74]. The metrics pre-

Monitoring Evolution of Code Complexity and Magnitude of Changes

52

sented by Fritz measure aspects of continuous integration such as the pace of
delivery of features to the customers. These measures complement the two
indicators presented in this paper with business perspective which is important
for product management.

The delivery strategy, which is an extension of the concept of continuous de-
ployment, has been found as one of the three key aspects important for Agile
software development organizations in a survey of 109 companies by Chow and
Cao [75]. The indicator presented in this paper is a means of supporting organi-
zations in their transition towards achieving efficient delivery processes.

Ericsson’s realization of the Lean principles combined with Agile development
was not the only one recognized in literature. Perera and Fernando [76] pre-
sented another approach. In their work they show the difference between the
traditional and Lean-Agile way of working. Based on our observations, the
measures and their trends at Ericsson were similar to those observed by Perera
and Fernando.

Measurement systems: The concept of an early warning measurement system
is not new in engineering. Measurement instruments are one of the corner-
stones of engineering. In this paper we only consider automated measurement
systems – i.e. software products used as measurement systems. The reasons for
this are: the flexibility of measurement systems, the fact that we work in the
software field, and similarity of the problems – e.g. the concept of measurement
errors, automation, etc. An example of a similar measurement system is pre-
sented by Wisell [77], where the concept of using multiple measurement in-
struments to define a measurement system is also used. Although differing in
domains of applications these measurement systems show that concepts which
we adopt from the international standards (like [78]) are successfully used in
other engineering disciplines. We use the existing methods from the ISO stand-
ard to develop the measurement systems for monitoring complexity evolution.

Lawler and Kitchenham [79] present a generic way of modeling measures and
building more advanced measures from less complex ones. Their work is linked
to the TychoMetric tool. The tool is a powerful measurement system, which has
many advanced features not present in our framework (e.g. advanced ways of
combining measures). A similar approach to the TychoMetric’s way of using
measures was presented by Garcia, et al. [80]. Both the TychoMetric tool and
Garcia’s tool provide advanced data presentation or advanced statistical analy-
sis over time. Our research is a complement to [79] and [80]. We contribute by
showing how the minimal set of measures can be selected and how the meas-
urement systems can be applied regularly in large software organizations.

Mayer [81, pp. 99-122] claims that the need for customized measurement sys-
tems for teams is one of the most important aspects in the adoption of measures
at the lowest levels in the organization. Meyer’s claims were also supported by
the requirements that the customization of measurement systems and devel-
opment of new ones should be simple and efficient in order to avoid unneces-
sary costs in development projects. In our research we simplify the ways of

Monitoring Evolution of Code Complexity and Magnitude of Changes

53

developing key performance indicators exemplified by a 12-step model of
Parmenter [82] in the domain of software development projects.

 DESIGN OF THE STUDY 3

This study was conducted using action research approach [48, 83, 84]. The re-
searchers were part of the company’s operations and worked directly with
product development units. The development of the method and its initial eval-
uation was carried out at Ericsson, whereas the replication of the study was
carried out at Volvo GTT.

 Studied Organizations 3.1

Ericsson: The collaborating organization of Ericsson developed large products
for mobile packet core network. The number of the developers was up to 150.
Projects were executed according to the principles of Agile software develop-
ment and Lean production system, referred to as Streamline development with-
in Ericsson [85]. In this environment, different development teams were re-
sponsible for larger parts of the development process compared to traditional
processes: design teams, network verification and integration, and testing.

Volvo GTT: The collaborating organization at Volvo GTT developed ECU soft-
ware for trucks. The collaborating unit developed software for two ECUs and
consisted of over 40 engineers, business analysts, and testers at different levels.
The development process was in the transaction from traditional to Agile.

 Units of Analysis 3.2

During the study we analyzed two products – software for a telecom product at
Ericsson and software for two ECUs at Volvo GTT.

Ericsson: The product was a large telecommunication product comprised by
over two million lines of code with several tens of thousands C functions. The
product had a few releases per year with a number of service releases in-
between them. The product was in development for a number of years.

Volvo GTT: The product was an embedded software system serving as one of
the main computer nodes for a product line of trucks. It consisted of a few hun-
dred thousand lines of code and about ten thousand C functions. The analyses
that were conducted at Ericsson were replicated at Volvo GTT under the same
conditions and using the same tools. The results were communicated with engi-
neers of the software product after the data was analyzed.

At Ericsson the developed measurement system ran regularly whereas at Volvo
the analysis was done semi-automatically, running the measurement system
whenever feedback was needed for the practitioners.

Monitoring Evolution of Code Complexity and Magnitude of Changes

54

 Reference Group 3.3

During this study we had an opportunity to work with a reference group at Er-
icsson and an engineer at Volvo GTT. The aim of the reference group was to
support the research team with expertise in the product domain and to validate
the intermediate findings as prescribed by the principles of action research. The
group interacted with researchers in bi-weekly meetings for over 8 months. At
Ericsson the reference group consisted of a product manager, a measurement
program leader, two engineers, one operational architect and one research en-
gineer. At Volvo GTT we worked with one engineer.

 Measures in the Study 3.4

Table 1 presents the complexity measures, change measures and changes (del-
tas) of complexity measures over time. The definitions of measures and their
deltas are provided in the table.

Table 1 Measures and definitions

Complexity
Measures

Abbr. Definition

McCabe’s cy-
clomatic com-
plexity of a func-
tion

M The number of linearly independent paths in the
control flow graph of a function, measured by calcu-
lating the number of 'if', 'while', 'for', 'switch',
'break', '&&', '||' tokens

Structural Fan-
out

Fan-out The number of invocations of functions found in a
specified function

Maximum Block
Depth

MBD The maximum level of nesting found in a function

M of a file Mf The sum of all functions’ M in a file
Change
Measures

Abbrev. Definition

Number of revi-
sions of a file

NR The number of check-ins of files in a specified code
integration branch and its all sub-branches in a
specified time interval

Number of engi-
neers of a file

ND The number of developers that do check-in of a file
on a specified code integration branch and all of its
sub-branches during a specified time interval

Deltas of Com-
plexity
Measures

Abbrev. Definition

Complexity del-
tas of a function

ΔM
ΔFan-

out
ΔMBD

The increase or decrease of M, Fan-out and MBD
measures of a function during a specified time in-
terval. We register the file name, class name and
function name in order to identify the same function
and calculate its complexity change over releases.

Monitoring Evolution of Code Complexity and Magnitude of Changes

55

 Research Method 3.5

We conducted the study according to the following pre-defined process. The
first seven steps are conducted on both Ericsson and Volvo products. The rest of
the steps are carried on for the Ericsson product.

 Obtain access to the source code of the products and their different 1.
releases

 Measure complexity of all functions and changes of all files of the 2.
code

 Measure complexity deltas of all functions and changes of all files for 3.
the five releases of the products

 Sort the functions by complexity delta and sort the files by change 4.
magnitude through the five releases

 Identify possible patterns of complexity deltas and changes 5.
 Identify drivers and possible explanations for the highest complexity 6.

deltas and the highest magnitude of changes
 Correlate measures to explore their dependencies and select 7.

measures for monitoring complexity and changes
 Develop a measurement system (according to ISO 15939) for moni-8.

toring complexity and changes
 Monitor and evaluate the measurement system for five weeks 9.
 The overall complexity change of function is calculated by: Overall 10.

delta = (ΔMrel12)+(ΔMrel23)+(ΔMrel34)+(ΔMrel45) where (ΔMrelij) is the
value of McCabe complexity change of a function between i and j re-
leases.

Overall complexity change of Fan-out and MBD is calculated the same way.

 ANALYSIS AND RESULTS 4

In this section we explore the main scenarios of complexity evolution. We carry
out correlation analysis of collected measures in order to understand their de-
pendencies and delect measures for monitoring.

 Evolution of the Studied Measures over Time 4.1

Exploring different types of changes of complexity, we categorized changes into
5 groups. The five groups are described in the following five points:

 Functions that are newly created and become complex in current re-1.
lease and functions that were complex but disappeared in current re-
lease

 Functions that are re-implemented in the current release 2.
 Functions that have significant complexity delta between two releas-3.

es due to development or maintenance

Monitoring Evolution of Code Complexity and Magnitude of Changes

56

 Test functions, which are regularly generated, destroyed and regen-4.
erated for unit testing

 Functions that have minor complexity changes between two releases 5.

Group 1 and group 5 functions were observed to be the most common. They
appeared regularly in every release. Engineers of the reference group character-
ized their existence as expected result of software evolution. Group 2 functions
were re-implementation of already existing function. The existed functions were
re-implemented with different name and the old one was destroyed. After re-
implementation the new functions could be named as the old one. Re-
implementation usually took place when major software changes were happen-
ing: In this case re-implementation of a function sometimes could be more effi-
cient than its modification.

Figure 1 shows the cyclomatic complexity evolution of top 200 functions
through the five releases of the products. Each line in the figure represents a C
function. In Figure 1 re-implemented functions are outlined by elliptic and old
ones by round lines. In reality the number of re-implemented functions is small
(about 1 %), however, considering the big complexity deltas of them, many of
them ended-up in the top 200 functions in the figure, giving an impression that
they are relatively many. Figure 2 similarly presents the evolution of Fan-out in
the products. Group 3 functions are outlined by elliptic lines in Figure 2.

Figure 1 Evolution of M of functions

Figure 2 Evolution of Fan-out of functions

Monitoring Evolution of Code Complexity and Magnitude of Changes

57

Group 3 functions were usually designed for parsing a huge amount of data and
translating them into another format. As the amount and type of data is changed
the complexity of the function also changes. Finally the Group 4 functions were
unit test implementations. These functions were destroyed and regenerated
frequently in order to update running unit tests. Figure 3 presents the MBD
evolution of products. As nesting depth of blocks can be obtain much more lim-
ited values, many lines in Figure 3 overlap each other thus creating an impres-
sion that there are few functions. We observed that the functions of group 1,
ones were created, stayed complex over time. These functions are outlined with
a rectangular line in Figure 3.

The proportions of all functions percentagewise represented in Table 2. The
table shows how all functions, that had complexity change, are distributed in
groups. We would like to mention that the number of all functions in telecom
product is about 65000 and in automotive product about 10000, however only
top 200 functions out of those are presented in the figures. This might result in
disproportional visual understanding of the relation between different groups of
functions in the table and in the figures, as the figures contain only top 200 func-
tions.

Table 2 The distribution of functions with complexity delta in groups

Group Group 1 Group 2 Group 3 Group 4 Group 5
Percentage 27% 1% 1% 1% 70%

We observed the deltas of complexity for both long time intervals (between
releases) and for short time intervals (in weeks). Figure 4 shows how the com-
plexity of functions changes over weeks. The initial complexity of functions is
provided under column M in the figure.

Figure 3 Evolution of MBD of functions

Monitoring Evolution of Code Complexity and Magnitude of Changes

58

 The week numbers are presented on the top of the columns, and every column
shows the complexity delta of the functions in that particular week. Under ΔΜ
column we can see the overall delta complexity per function that is the sum of
weekly deltas per function.

The fact that the complexity of the functions fluctuates irregularly was interest-
ing for the practitioners, as the fluctuations indicate active modifications of
functions, which might be due to new feature development or represent defect
removals with multiple test-modify-test cycles. Functions 4 and 6 are such in-
stances illustrated in Figure 4. Monitoring the complexity evolution through
short time intervals we observed that very few functions are having significant
complexity increase. For example, in a week period of time the number of func-
tions that have complexity increase ΔM > 10 are not more than ten.

 Correlation Analyses 4.2

The correlation analyses of measures were carried out to eliminate dependent
measures and select a minimal set of measures for monitoring. The correlation
analyses results are presented in Table 3. The plot of the relationship of the
complexity measures is presented in Figure 5. As the table illustrates there is a
strong correlation (0,76) between M and Fan-out measures for the telecom
product, while the correlation between the same measures is rather weak for
the automotive product (0,26). This means that only M measure is enough to be
monitored in the telecom product, because it also encompasses most of the in-
formation that could be obtained from the Fan-out measure.

Table 3 Correlation of complexity measures

Telecom / Automotive MBD M
M 0,41 / 0,69
Fan-out 0,34 / 0,20 0,76 / 0,26

Figure 4. Visualizing complexity evolution of functions over weeks

Monitoring Evolution of Code Complexity and Magnitude of Changes

59

Generally, this also means that the correlation between these two measures can
vary greatly from product to product, and for every product a correlational
analysis should be carried out to find out whether these measures are correlat-
ed. The correlation between M and MBD for the automotive product is also
strong (0,69), while the correlation between M and MBD measures for the tele-
com product is moderate (0,41). Generally the discussions with the reference
group led us to understanding that monitoring cyclomatic complexity among all
complexity measures is good enough as there was a moderate or strong correla-
tion between the three complexity measures. M was chosen because of two rea-
sons:

 MBD is rather a characteristic of a block of code than a whole func-1.
tion. It is a good complementary measure but it cannot characterize
the complexity of a whole function.

 Fan-out seemed to be a weaker indicator of complexity than M, be-2.
cause it rather shows the vulnerability of a function due to its de-
pendence on other functions.

NR and ND are measures that indicate the magnitude of changes. Previously a
few studies have shown that change measures are good indicators of problemat-
ic areas of code, as observed by Shihab, et al. [86]. The measurement entity of
NR and ND is a file. Therefore in order to understand how change measures
correlate with complexity measures we decided to define a cyclomatic complexi-
ty measure for files (Table 1). Table 4 presents the correlation analysis results
for ND, NR and Mf measures.

An important observation is the strong correlation between the number of de-
signers (ND) and the number of revisions (NR) for the telecom product. At the
beginning of this study the practitioners of the reference group believed that a
developer of a file might check-in and check-out the file several times which
probably is not a problem.

Table 4 Correlation of change and complexity measures

Ericsson / Volvo Mf ND
ND 0.40 / 0.37
NR 0.46 / 0.72 0.92 / 0.41

Figure 5 Correlograms of complexity measures

Monitoring Evolution of Code Complexity and Magnitude of Changes

60

The real problem, they thought, could be when many designers modify a file
simultaneously. Nonetheless, a strong correlation between the two measures
showed that they are strongly dependent, and many revisions is mainly caused
by many engineers modifying a file in a specified time interval (Figure 6).

In case of the automotive product the correlation between ND and NR was mod-
erate which can be due to small number of engineers who have rather firmly
assigned development areas and usually change the same code. The explanation
of the strong correlation between Mf and NR is more complicated. As we reflect-
ed on Mf measure, (which is also used in other studies), in many cases it indi-
cates more size and less complexity of a file. A file may be composed of many
small functions with small cyclomatic complexity numbers. The sum of all com-
plexities, however, can build up into a large number file with a big Mf number.
Then the correlation between Mf and NR can be explained by pure probabilistic
reasons – larger files are more likely to be changed. Therefore, since Mf is not a
well-motivated measure, we decided to monitor the number of revisions on a
file level.

The results showed that for telecom product only NR and M measures need to
be monitored, because they contain most of the information that all the
measures would provide collectively. Considering these results we designed a
measurement system at Ericsson for monitoring code complexity and magni-
tude of changes over time. The description of design and application of meas-
urement system is discussed in the next section.

 Design of the Measurement System 4.3

We designed two indicators based on M and NR measures. These indicators
capture the increase of complexity of the functions and highlight the files with
highest magnitude of change over time. These indicators were designed accord-
ing to ISO/IEC 15959 standard. The design of complexity indicator is presented
in Table 5.

Figure 6 Correlograms of change and complexity measures

Monitoring Evolution of Code Complexity and Magnitude of Changes

61

Table 5 Measurement system design based on ISO/IEC 15939 standard

Information
Need

Monitor cyclomatic complexity evolution over development
time

Measurable
Concept

Complexity delta of delivered source code

Entity Source code function

Attribute Complexity of C functions

Base
Measures

McCabe’s Cyclomatic complexity number of C functions – M

Measurement
Method

Count cyclomatic number per C function according to the
algorithm in CCCC tool

Scale Positive integers

Unit of meas-
urement

Execution paths over the C/C++ function

Derived
Measure

The growth of cyclomatic complexity number of a C function
in one week development time period

Measurement
Function

Subtract old cyclomatic number of a function from new one:
ΔM = M(weeki) – M(weeki-1)

Indicator Complexity growth: The number of functions that exceeded
McCabe complexity of 20 during the last week

Model Calculate the number of functions that exceeded cyclomatic
number 20 during last week development period

Decision
Criteria

If the number of functions that have exceeded cyclomatic
number 20 is different than 0 then it indicates that there are
functions that have exceeded established complexity thresh-
old. This suggests the need of reviewing those functions, find-
ing out the reasons of complexity increase and refactoring if
necessary

The other indicator based on NR is defined in the same way: the files that had
NR > 20 during one week development time should be identified and reviewed.
The measurement system was provided as a gadget with the necessary infor-
mation updated on a weekly basis (Figure 7). The measurement system relies on
a previous study carried out at Ericsson [87, 88].

For instance the total number of files with more than 20 revisions since last
week is 5 (Figure 7). The gadget provides the link to the source file where the
engineers can find the list of files or functions and the color-coded tables with
details (see Figure 4).

As in agile development the development teams merge builds to the main code
branch in every week it was important for the teams to be notified about func-
tions with drastically increased complexity (over 20).

Monitoring Evolution of Code Complexity and Magnitude of Changes

62

 THREATS TO VALIDITY 5

The main external validity threat is the fact that our results come for an action
research. The research on two cases indicated that the results can vary greatly
from company to company, therefore to develop a measurement system, one
needs to conduct the analysis of this paper but make decisions based on the
specific results.

The main internal validity threat is related to the construct of the study and the
products. In order to minimize the risk of making mistakes in data collection we
communicated the results with reference groups at both companies to validate
them.

The threshold 20 for cyclomatic number does not have any firm empirical or
theoretical support. It is rather an agreement of developers of large software
systems. We suggest that this threshold can vary from product to product. The
number 20 is a preliminary established number taking into account the number
of functions that can be handled on a weekly basis by developers.

The main construct validity threats are related to how we identify the names of
functions for comparing their complexity numbers over time. There are several
issues emerging in this operation. Namely, what happens if a function has
changed its list of arguments or what happens if a function is moved to another
file? Should this be regarded as the same function before and after changing the
list of arguments or the position? We disregarded the change of argument list
however this can be argued.

Finally the main threat to conclusion validity is the fact that we do not use infer-
ential statistics to monitor relation between the code characteristics and project
properties, e.g. number of defects. This was attempted during the study but the
data in defect reports could not be mapped to individual files. This might be a
thread for jeopardizing the reliability of such an analysis. Therefore we chose to
rely on the most skilled engineers’ feedback on what a good measure is.

Figure 7 Information product for monitoring ΔM
and NR measures over time

Monitoring Evolution of Code Complexity and Magnitude of Changes

63

 CONCLUSIONS 6

In this paper we explored how complexity evolves, by studying two software
products – one telecom product at Ericsson and one automotive product at Vol-
vo GTT. We identified that in short periods of time a few out of tens of thou-
sands functions have significant complexity increase.

By analyzing correlations between three complexity and two change measures
we concluded that it is enough to use two measures, McCabe complexity and
number of revisions for one of the products. This measurement can draw the
attention of practitioners to risky code areas for review and improvement.

The automated support for the teams was provided in form of a gadget with the
indicators and links to statistics and trends with detailed data on complexity
evolution. The measurement system was evaluated by using it on an ongoing
project and communicating the results with practitioners.

PAPER 2

Identifying Risky Areas of Source

Code in Agile Software Development

Identifying Risky Areas of Source Code in Agile Software Development

66

ABSTRACT

Modern software development relies on incremental feature delivery to facili-
tate quick response to customers’ requests. In this dynamic environment the
continuous modifications of software code can trigger risks for software devel-
opers: When developing a new feature increment, the added or modified code
may contain fault-prone or difficult-to-maintain elements. The outcome of these
risks can be defective software or decreased development velocity. This study
presents a method to identify the risky areas and assess the risk when develop-
ing software in agile environment. We have conducted an action research pro-
ject in two large companies, Ericsson and Volvo Group Truck Technology. Dur-
ing the study we have measured a set of code properties and investigated their
influence on risk. The results show that the superposition of two measures can
effectively enable identification and assessment of the risk. We also illustrate
how this kind of assessment can be successfully used by software developers to
manage risks on a weekly basis as well as release-wise. A measurement system
for systematic risk assessment has been introduced to two companies.

Identifying Risky Areas of Source Code in Agile Software Development

67

 INTRODUCTION 1

Increasing complexity of modern software products has become a well-known
problem. Escalating fault-proneness and declining maintainability of software
are the main risks behind this kind of increase. Due to increasing size of soft-
ware products and the need for increased development velocity the traditional
risk assessment methods [89-94] are not applicable in identifying and assessing
these kind of risks. For example it is impossible for an expert to identify the
most difficult-to-maintain files out of several thousands in a product, whereas
this kind of assessment is needed on a regular basis for supporting practitioners
in systematic mitigation of risks.

Several studies have shown that the code is continuously becoming more com-
plex if left unmanaged [3, 69, 70], and with growing complexity momentous
technical risks emerge. Fenton and Neil [68] claim that technical risk assess-
ment is essential for supporting software engineers in decision making, yet most
of the studies in the field are concentrated on a narrower field – defect predic-
tions [95-102]. Despite the importance of other aspects of risks than fault-
proneness, very few researchers have proposed methods for full risk identifica-
tion and assessment that is adopted by industry. Therefore an open question
remains:

How can we effectively identify risky source code and assess the risk
when delivering new feature increments in agile development?

In this context we define the risk as likelihood that a source code file becomes
fault prone, difficult-to-manage or difficult-to-maintain. Manageability of the
code is concerned with such activities as assigning certain areas of code to cer-
tain developers, merging the code to the main code base, and controlling differ-
ent variants of code for different customer groups.

The aim of this study was to develop a method and supporting tool for enabling
systematic identification and assessment of risks, when delivering new code in
agile production. To address this question we designed and conducted an action
research project together with Ericsson and Volvo Group Trucks Technology
(Volvo GTT).

We created a method and supporting tool for identification of risky files. The
method is based on measurement of two properties of code: the revisions and
complexity of a file. We evaluated the method in an industrial context by apply-
ing it on ongoing software development projects. The evaluation of the method
showed that all severe risks were identified, and the method helped the engi-
neers and architects to focus on about 0.1% of the code base, which are the risky
files. The assessment method was evaluated to be effective for its application in
industry.

Identifying Risky Areas of Source Code in Agile Software Development

68

 AGILE SOFTWARE DEVELOPMENT 2

Agile software development in large companies is characterized by a combina-
tion of challenges of large products, such as, long development cycles, long-term
release planning, distributed decision making by software development teams,
communication between teams, etc. Figure 1 presents an overview on how the
functional requirements (FR) and non-functional requirements (NFR) are pack-
aged into work packages (WP) and developed as features by the teams. Each
team delivers their code into the main branch. Each team has the possibility to
deliver code for any component of the product.

First, the requirements come from the customers, and are prioritized and pack-
aged into features by product management (PM). Next, PM hands over the re-
quirements to the system management (SM) for systemization. Then, design
management (DM) and test teams implement and verify them before delivering
to the main branch. Last, the code in the main branch is additionally tested by
dedicated test units before the release [103].

In this context software development is a continuous activity, with small incre-
ments on a daily or weekly basis to a large code base, which exists over long
periods of time. In order to manage the risk of degrading maintenance in con-
tinuous development the risk management also needs to be a continuous activi-
ty.

 STUDY DESIGN 3

We applied an action research method in our study by maintaining close collab-
oration with industry practitioners and regularly working at the companies’
premises.

 Industrial Context 3.1

At Ericsson, the organization where the research was conducted develops large
products for mobile telephony network. Several hundred developers comprise
the development organization. Projects are conducted according to the princi-

Figure 1 Feature development by agile methodology.

Identifying Risky Areas of Source Code in Agile Software Development

69

ples of agile software development and lean production procedures, called
streamline development in Ericsson [85]. In this environment cross-functional
development teams are responsible for accomplishing a set of development
activities: analysis, design, implementation, and testing assigned features of the
product.

To support managers, designers, and quality managers in decision making, a
measurement organization was established at Ericsson (7 years before writing
of this paper) for calculating and presenting variety of indicators and early
warning systems.

The developed unit was a large telecom product which constituted a few mil-
lions of lines of code with several thousands of C/C++ files. The product was
released a few times per year with support of service releases. Rational Clear-
Case served as version control system by which all the source code of the prod-
uct was handled. The product had been in development for more than 15 years.

At Volvo Group Trucks Technology (GTT), the organization in which we have
worked developed software of Electronic Control Units’ (ECU) for Volvo, Re-
nault, UD Trucks and Mack. Our collaborating unit developed software for an
ECU which consists of a few hundred thousand lines of code and more than one
thousand files entirely developed by C language. The product was released in
every 6-8 weeks. About 50 designers, business analysts and testers comprised
the organization. The development process was progressing toward agile devel-
opment.

The organization systematically uses various measures to control the progress
of development and monitor the quality of the products. Our intention was to
develop a method and tool for risk assessment of in-house developed software
as well as outsourced and imported software.

 Reference Groups at the Companies 3.2

During this study we had the opportunity to work with a reference group initi-
ated at Ericsson. The reference group was to support the research team with
expertise in the product domain and to scrutinize and reflect on intermediate
findings. The group meetings took place on bi-weekly basis for over 8 months.
The reference group consisted of one line manager, one measurement program
leader, two designers, one operational architect and one research engineer. At
Volvo we worked with a designer and a line manager.

 Flexible Research Design 3.3

Five main research cycles were carried out:

 Identification of measures: Shortlisting a number of published 1.
measures which can theoretically be used in risk assessment

Identifying Risky Areas of Source Code in Agile Software Development

70

 Measurement and analyses: Collecting data for these measures and 2.
analyzing inter-dependencies of the measures

 Creation of risk identification and assessment method: Developing a 3.
method based on the selected measures

 Evaluation of the method with engineers: Evaluating the method 4.
over a number of weeks through by-weekly meetings with reference
group, and according to the empirical measurement validation prin-
ciples [104].

 Refinement and evaluation of the method in the projects: Dissemi-5.
nating the method to all engineers in the project and monitoring the
use of the method.

The planned cycles above were concretized during the study. Thus we carried
out the following steps to fulfill above defined five cycles:

 Obtain access to the source code of the products and their different 1.
releases: Decided upon one product per company, releases of the
product, whether service releases should be included or not

 Set up necessary tools for extracting data: Develop scripts for data 2.
collection in Ruby, MS Excel VBA.

 Calculate code measures per defined entities (files\functions) 3.
 Carry out calculation for four releases of the products 4.
 Identify drivers of high complexity/change through interviews with 5.

engineers and the reference group
 Correlate measures to explore their relations and determine which 6.

measures should be selected
 Develop a method by using the selected measures for identifying and 7.

assessing the risks, and establish decision criteria for determining
the risk exposure per file

 Identify the risky files and assess the risk using the method and deci-8.
sion criteria

 Collect post-release error reports (ER) per file for four service re-9.
leases

 Evaluate the method by: 10.

a. Correlating the ERs and calculated risk exposure of files
b. Assigning files to responsible designers for manual assessment (6

weeks period)
 Develop a measurement system according to ISO 15939 to manage 11.

the risky files [105]

The above process was used during the development of the method at Ericsson
and replicated at Volvo GTT.

Identifying Risky Areas of Source Code in Agile Software Development

71

 Definition of Measures 3.4

In order to assess the risky code we used nine measures of code described in
Table 7. These measures measure such properties of code as size, complexity,
dependencies and change frequency. The choice of properties was motivated by:

 How well these properties of code can be predictors of risk (identi-1.
fied from existing literature)

 Which properties can relate to risk according to the perception and 2.
experience of the reference group

Table 1 presents the measures of code properties which we used in our study
and their definitions. It was not possible to measure ND and NR for functions so
we measured them only for files. Other properties that were defined for functions
were possible to redefine for files also.

Table 1 Measures and definitions

We defined and measured M and NCLOC for files so we could correlate these

Name of measure Abbrev. Definition
Number of non-
commented lines of
code

NCLOC The lines of non-blank, non-comment
source code in a function/file (this proper-
ty is measured for both units)

McCabe’s cyclomatic
complexity of a func-
tion

M The number of linearly independent paths
in the control flow graph of a function,
measured by calculating the number of ‘if’,
‘else’, ‘while’, ‘for’, ‘||’, ‘&&’, ‘switch’,
‘break’, ‘goto’, ‘return’ and ‘continue’ to-
kens

McCabe’s cyclomatic
complexity of a file

File_M The sum of all functions’ M in a file

Structural fan out of a
function

Sfout The number of function calls found in a
specified function

Max block depth MBD The depth of max nested block in a func-
tion

Number of revisions
of a file

NR The number of check-ins of a file in a spec-
ified ClearCase branch and all its sub-
branches in a specified time interval

Number of designers
of a file

ND The number of developers that do check-
in of a file on a specified ClearCase branch
and all of its sub-branches during a speci-
fied time interval

Effective cyclomatic
complexity of a file

Mef The complexity sum of all functions with
M > 15 in a file

Effective cyclomatic
complexity percent-
age of a file

Mef% The ratio of Mef and File_M
This measure shows how much of the
complexity of a file composed by complex
function

Identifying Risky Areas of Source Code in Agile Software Development

72

measures with ND and NR, and understand their relation. Correlation analysis
was carried out as a necessary step for determining which measure of code to
choose for risk prediction. Collinear measures most likely indicate the same
property of code. It is important to notice that correlation analyses were not
sufficient for selecting measures so further analysis was also carried out to un-
derstand other aspects of measures’ relations. Later in the study, during the
evaluation with designers we found that it is important to distinguish between
files with many small non-complex functions and files with a few large complex
functions. Thus we defined the following measures, Mef and Mef% presented in
Table 1. The aim of the Mef% is to show what portion of the File_M number is
distributed in complex functions of a file.

We calculate these two measures the following way:

 ∑

 (Eq. 1)

 (

) (Eq. 2)

The functions having M > 15 are considered complex. In his paper McCabe [106]
defines a threshold for M as 10. However, considering the fact that there are
other suggested limits like 15 and 20, we chose 15. An example of how to calcu-
late is shown in Table 2. As the table illustrates, for the specified file the

functions 1, 3 and 5 are complex as they have M > 15 complexity.

Table 2 An example of calculating Mef%

Thus the of this file is the sum of complexities of functions 1, 3 and 5, which

is 58. Dividing this number by overall complexity File_M we get = 71%.

This kind of representation of complexity for a file is more informative and ap-
preciated by software designers as it does not ignore the fact that functions are
independent units. It is importance not only quantifying the complex portion of
file but also not losing relatively small files that contain complex functions. For
example, if file A has only 2 functions, both of them having M = 25, then the sum

File Function M File M Mef Mef%

file.c 82 58 71%
function 1 21

function 2 8

function 3 20

function 4 3

function 5 17

function 6 5

function 7 0

function 8 8

8+
0+

5+
17

+3
+2

0+
8+

21
 =

17
 +

 2
0

+
21

 =

(5
8

/
82

)*
10

0%
 =

Identifying Risky Areas of Source Code in Agile Software Development

73

of complexities of the file would be 50. Large files having many simple functions
and significantly larger File_M should not in reality be considered more complex
than file A. holds an ability to show that file A is complex irrespective its

size because it contains complex functions: = 100%.

 RESULTS 4

In this section we present the correlation analysis of measures, designers’ com-
ments on correlations of measures, the created method for risk assessment, and
the established thresholds.

 Correlation Analysis 4.1

Correlation analyses were used to select the necessary set of measures for risk
assessment. Table 3 shows the correlations of 4 measures for both products.

Table 3 Correlation matrix of file measures

Ericsson / Volvo NCLOC File_M ND
File_M 0.91 / 0.90
ND 0.47 / 0.38 0.41 / 0.40
NR 0.55 / 0.61 0.48 / 0.68 0.92 / 0.46

As the table shows, the correlation between M and NCLOC is strong, 0.91 / 0.90
for telecom and automotive software conformably. However the McCabe’s com-
plexity originally is defined for functions thus high complexity number for files
can be caused by summing the complexity numbers of many moderately com-
plex, but unrelated functions in a file. The correlation between NR and NCLOC is
moderate, 0.55 / 0.61 for telecom and automotive respectively. The existing
moderate correlation is driven by the size of files: Bigger files are more likely to
get changes during development. By the observation of designers and us there
are two fundamentally different reasons behind complex files that are changed
often and simple files that are changed often:

 Simple files that are changed often are usually files that are in the 1.
core of development in a particular one or two week time period.
They are not regarded risky as they are easy to understand and
maintain and are not fault prone

 Complex files changed often are predominantly files that contain 2.
complex functions and are executing complex tasks. These files are
hard to understand and maintain and usually are changed periodical-
ly.

Initially the designers suggested that a good measure that would reveal the
risky files is the number of designers (ND) making simultaneous changes on a
file. The assumption was that the high number of revision can be achieved by

Identifying Risky Areas of Source Code in Agile Software Development

74

few developers also, when they work intensively on a file and do several check-
ins to version control system. However, the strong correlation between NR and
ND (0.92) for telecom software shows that high number of revisions is a result
of many designers checking in and out a file. In Figure 2 and 3 the data points in
the scatter plots are the files.

Overall the correlations of measures are similar for both of the products, yet
with an essential difference: the correlation between NR and ND is weak for the
automotive software. The main reason is that the number of designers of ECU
development team is much smaller than it is for the telecom software. Tens of
designers distributed in cross-functional teams in telecom product virtually are
available to be assigned various development tasks in different parts of the
software, whilst every designer of ECU development team has rather assigned
area of functionality to develop. In Figure 3 we can see that the data points for
ND graphs are portioned like discrete lines indicating scarce number of design-
ers.

Next we correlated the function measures for both of the products. Table 4 pre-
sents correlations between the function measures. It is important to notice that
the correlation coefficient between M and NCLOC diminished significantly. Pre-
viously several studies has reported observed linear relationship between
NCLOC and M [66, 107]. We confirm that there is significant correlation between
these two measures, however we argue that NCLOC most likely cannot be a
substitute for M measure and a further analysis is needed to understand their
relationship in a deeper sense. The thorough examination of these two
measures is out of the scope of this study but there are a few valuable observa-
tions worth to mention.

Table 4 Correlation matrix of function measures

Ericsson/Volvo M NCLOC MBD
NCLOC 0.75 / 0.77
MBD 0.41 / 0.60 0.24 / 0.44
Sfout 0.75 / 0.17 0.87 / 0.77 0.34 / 0.12

Figure 2 Correlogram of measures of files
telecom software

Figure 3 Correlogram of measures of files
automotive software

Identifying Risky Areas of Source Code in Agile Software Development

75

Firstly, high cyclomatic complexity necessitates large functions. This implies
certain positive correlation between these two measures. However, big func-
tions are not necessarily complex. This simple observation is well expressed in
correlograms of Figure 4 and Figure 5: Scatter plots of (M, NCLOC) show that the
crowded data have a triangular shape.

This means that there are functions along the line of NCLOC axis showing 0
complexities but there is no function with high complexity and 0 NCLOC. Sec-
ondly, the correlation is calculated between NCLOC and M cyclomatic complexi-
ty numbers. But in reality the cyclomatic complexity number is intended to
measure the complexity property. This means that the complexity that design-
ers perceive and the complexity that cyclomatic number shows are different.
And the relationship between the real complexity and the cyclomatic complexity
number is not linear itself.

The correlation between Sfout and M is strong for telecom product, 0.75,
whereas it is insignificant for ECU software, 0.17. The reference group designers
at Ericsson believe that strong correlation between M and Sfout is product spe-
cific. They checked the code and identified that in telecom software functions
usually execute “check message” - “call function” types of operations. We can
observe also that (M, Sfout) scatterplot for telecom product is similar to (M,
NCLOC) scatterplot: The data distribution has triangular shape. This means that
functions with high M number necessarily have high Sfout. However the causality
of these two measures is more complicated. For the automotive software M and
Sfout have rather weak dependency. In Figure 5 the scatterplot of (M, Sfout)
shows that several functions have high M number and low Sfout. Those are state
machines. A few other functions have high Sfout numbers and low complexity.
These functions are test code. The rest of the data is scattered over the graph
and there is no specific pattern. According to the contact designer at Volvo, the
functions that have high Sfout and low M numbers are not perceived to be com-
plex. Certainly Sfout introduce complexity to the whole product, as it indicates
more interconnections between functions but it is not a clear complexity meas-

Figure 4 Correlogram of function measures
for telecom software

Figure 5 Correlogram of function measures
for ECU software

Identifying Risky Areas of Source Code in Agile Software Development

76

ure for a single function. A function with high Sfout is rather vulnerable to the
called functions.

The correlation between MBD and M is moderate for both products – (0.41 /
0.60). Nesting is an interesting property, but one problem is that it is not appro-
priately defined for a function or a file, but rather for a block of code. This makes
it difficult to apply for decision making.

 Selecting Measures 4.2

Based on correlation analysis and designers interpretation of results one change
measure (revisions) and one complexity measure (cyclomatic complexity) were
decided to be used for risk identification and assessment. The intuition behind
this choice is as following:

 Complexity makes the code hard-to-maintain, hard-to-understand 1.
and fault-prone.

 The risk is triggered when there is a change in complex code. 2.

As a change measure we selected NR. Firstly several studies has shown that high
NR number is an indication of defect prone and difficult-to-maintain code [108,
109]. Secondly, NR and ND were correlated strongly for telecom product show-
ing the same aspect of code, and finally, in case of automotive software there
was no evidence that high ND indicates any tangible risk.

As a complexity measure we selected the cyclomatic complexity. Firstly this is a
measure characterizing rather inner complexity of a function than the complex
interactions that it has with the rest of the code: Complex interactions do not
imply that the function itself is complex, but show how vulnerable the function
is when making modifications in other parts of code. Secondly in the telecom
product high cyclomatic complexity entails high Sfout number of functions (Fig-
ure 4, right uppermost plot).

MBD was perceived to be a good complexity measure, as it involves cyclomatic
complexity and contains additional complexity also (nesting complexity). But it
is hard to draw conclusions based on MBD. The reason is that MBD is defined for
a block of code so it does not characterize the complexity of whole function. In
order to use MBD with other measures it should be defined for the same code
unit as other measures are defined.

 Evaluation with Designers and Refinement of the 4.3

Method

Our intention was to use M and NR for identifying risky files. However the two
measures were defined for different entities of code: NR was defined for files
and M for functions. We determined the risk assessment unit to be a source code
file. NR was intended to be used in risk assessment but it was hard to define and

Identifying Risky Areas of Source Code in Agile Software Development

77

calculate number of revisions (NR) of a function so we had to select a file as risk
assessment unit. We attempted to identify the risky files by selecting the files
which have both high NR and File_M number. But evaluation with designers
showed that File_M is not a good complexity measure. The reason is if many
simple functions are placed in the same file then the sum of complexities might
have a high value which is misleading. Instead if we calculate the average com-
plexity per file as complexity sum divided by the number of functions, we get a
number which might not show if there are complex functions in a file or not.
This was the reason that we defined the Mef% measure to estimate the complexi-
ty of a file. This measure can identify complex files irrespective their size.

On one hand if a complex file is modified many times then, according to an earli-
er observation and two other studies [108, 109], it is most likely a hard-to-
maintain file. On the other hand making modifications in a complex file creates
likelihood that we did a faulty step in that file. These two considerations and the
observation that correlation between NR and Mef% is low (0.10 / 0.09) motivates
us to count the risk as the product of effective complexity and number of revi-
sions.

Relative Risk = Mef% * NR (Eq. 3)

This number indicates the likeliness of a file being defect-prone, difficult-to-
maintain or difficult-to-manage. We call this kind of combination superposition
of measures as it reflects the joint magnitude of two measures. For example if a
file has NR = 20 for one week period and has Effective_M% = 80% at the end of
that period we get Relative Risk = 80 * 20 = 1600.

The product of NR and Mef% does not show how much the absolute risk exposure is,
it rather shows the relative risk compared with other files. The product also holds
the property of having 0 risk, as the risk is 0 when either NR or Mef% are 0, indi-
cating no change or no complex function in a file. However there is no upper
bound of risk as increasing NR number does not imply linear increase of risk.

Periodically collecting top risky files by this measurement and discussing them
within reference group, we established two thresholds, by which we could de-
termine whether a file is considerably risky or not. The thresholds we defined
for telecom software were:

 If the Relative Risk > 1000 for a file in a week development time pe-1.
riod then the file is considered highly risky

 If the Relative Risk > 500 for a file in a week development time peri-2.
od then the file is considered moderately risky.

Figure 6 shows how the and hyperbolas

separate files with high and moderate risks. By modifying the numbers 1000
and 500 thresholds, we can move the hyperbolas thus including or excluding
more files in the list of high risky files. These thresholds were determined the
following way:

Identifying Risky Areas of Source Code in Agile Software Development

78

 Relative Risk of all files is calculated 1.
 Files are sorted according to Relative Risk values, so the first file has 2.

the greatest Relative Risk number, the second file has the second
greatest Relative Risk number, etc.

 Evaluate top files one by one with designers and determine a num-3.
ber that by designers’ perception is a point above which files can be
considered risky.

Figure 6 Filtering risky files by defined thresholds

We calibrate the results repeating this process several times. The number of
files that the organization can handle in risk mitigation is also considered when
establishing a threshold: Too many risky files are not likely to be handled effec-
tively thus bigger threshold values can be established to choose fewer and the
most risky files.

The threshold defined for automotive software was different. Most likely the
smaller size of the product and the lower number of designers resulted in hav-
ing in average 3 times less revisions per file than it is for telecom product. How-
ever by observing top files over several weeks that had highest Relative Risk
value we could establish a threshold to distinguish risky files: If Relative Risk >
200 for a file in a week development time then the file is considered risky.

Identifying Risky Areas of Source Code in Agile Software Development

79

 EVALUATION 5

We carried out two steps of evaluation process:

 To evaluate the risk of defect-proneness we correlated the number 1.
of error reports (ER) with the Relative Risk of files. This activity
permitted us to understand if the files having highest Relative Risk
number also have the highest number of errors.

 To evaluate the risk that the files might be difficult-to-maintain or 2.
difficult-to-manage we communicated identified files with designers
of areas that the file belongs to.

 Correlation with Error Reports 5.1

We collected post release ERs per file for 4 service releases. Then we calculated
the Relative Risk of files for the time between planning and releasing. The analy-
sis showed that there is a strong correlation between the two measures ≈ 0.70
for all 4 releases, however there were concerns regarding what this correlation
shows. The question is how do we know which files are the root causes of ERs
and which ones are not? There is no well-established view what ER number per
file shows. For example if a simple header file is changed because of ER correc-
tion then the change might be caused by changing a complex function in another
file, which has been the root cause of the ER. In our correlation analysis we
found out several simple files containing ER reports in them. After checking with
designers we identified that they are not the root cause of the problem and are
changed due to modifications of other files. These simple files “infected” by ERs
of other files in the data reduce the correlation coefficient of Relative Risk and
ERs. Nonetheless, the correlation analysis was valuable as high correlation be-
tween ER and Relative Risk confirms that complex files that are changed often
are more fault-prone.

Another concern is that the Relative Risk measure does not distinguish between
big complex files and small complex files, whereas big files are naturally expected
to contain more defects proportional to their size. It is worth to notice also that
a risky file might not have ER in a particular time period but it might have high
likelihood to have ER in the future.

 Evaluation with Designers in Ongoing Projects 5.2

At Ericsson we developed and deployed a measurement system for regular us-
age in the organization. The measurement system was developed based on
ISO\IEC 15939 standard and two other studies [87, 105]. The measurement
system runs on a daily basis and identifies the files that are risky for the current
week development time period. Figure 7 presents a picture of a measurement
that visualizes the results: One file with high risk and three files with moderate
risk. The designers can follow the link (Source Data) available on the bottom of

Identifying Risky Areas of Source Code in Agile Software Development

80

the gadget to find all the relevant information regarding risky files. In a period of
six weeks we collected and reported (weekly) top risky files to the responsible
designers of development areas and obtained their feedback regarding risks.

They knew a lot about the details of developed code. The evaluation results at
Ericsson were as following:

 95% of the identified files were confirmed by the designers to be in-1.
deed risky

 The rest of the files were reported to have low risk 2.
 Several designers were checking if the file has ER before and decid-3.

ing risk on that account
 There were a few files that designers reported to be risky but they 4.

were not detected by our measurement system: We detected that
our tool failed to calculate the complexity of these files

 Finally it was difficult for several designers to evaluate the riskiness 5.
of a file for a specified week period of time instead of doing it gener-
ally. This created an additional difficulty for evaluating the risk for a
specified time period

The evaluation at Volvo was done in form of a replication as the product was 10
fold smaller and it was enough with our contact designer to judge if our provid-
ed files were risky. The list of files that we determined to be risky was fully con-
firmed by the designer.

 Impact on Companies 5.3

At Ericsson the files indicated by the measurement system were brought up on a
design forum where designers discuss plans for improvements. The line manag-
er, who was the direct stakeholder for the measurement system, was provided
with a list of files that were constantly appearing to be risky. Refactoring and re-
architecting was planned for the risky areas of the product. Early feedback on
developed code was of great importance, thus they considered the usage of pro-
vided information for release planning also.

Whilst we observed that the refactoring and re-architecting is initiated, at the
moment of writing this paper, however, we did not have sufficient quantitative

Figure 7 A snapshot of the information product visualizing the risky files

Identifying Risky Areas of Source Code in Agile Software Development

81

information to record the effects of usage of the method. For example reduced
number of ERs or increased development velocity. By manager’s reflection the
positive effects were slow but persistent. The organization was moving towards
re-architecting and refactoring of risky areas.

Because of the size and not so intense modifications of functionality there was
no need of running the measurement system on weekly basis for automotive
product. It was rather useful to run the measurement system release-wise to get
early feedback on the code to be delivered. At Volvo designers considered to use
the measurement system with outsourced development of product when receiv-
ing it. The purpose was that when obtaining new code the designers did not
know which parts of the delivered code is risky and getting an insight about it in
advance was helpful for them to decide where the risky areas are and thus,
where improvements’ actions must be addressed.

 RELATED WORK 6

There have been a few studies proposing methods for identifying the risky ele-
ments of software code. Neumann [110] proposes an enhanced neural network
technique to identify high-risk software modules. He argues that the combina-
tion of neural network and principal component analysis (PCA) can be effective-
ly used for identifying risky software components. Our method can be consid-
ered similar with what he proposed, if we consider that the unit step function of
neural networks is the product of Mef% and NR measures with equal weights.
Instead of using PCA to remove collinear data dimensions we have chosen pair-
wise correlation analysis of variables and investigation of their relations, be-
cause not only correlation values but also correlation types are important when
selecting variables: For example high M number necessitates high Sfout and
NCLOC number. Hence it is important to select M out of these three correlated
measures. Selim, et al. [111] construct survival models based on size measures
and code clones to assess the risk of defectiveness. In their study they defined
the risk based on fault-proneness of code, which is important but one aspect of
risk. Koru, et al. [112] use Cox modeling [113] to determine the relative risk of
software modules’ defect proneness. Gondra [114] concludes that Machine
learning techniques sometimes are not applicable because of scarcity of the
data. Pendharkar [115] supports this idea by claiming that defect prediction
models based on probabilistic neural network is not pragmatic and proposes a
hybrid approach. Case-based reasoning is proposed by El Emam, et al. [116] to
be a good technique for identifying the risk of fault-proneness and difficult-to-
maintain classes in the code. Moreover, they validate that the use of different
parameters such as different distance measures, standardization techniques,
etc. does not make any difference in prediction performance. Our research relies
on their study and uses NR as a good predictor of risk. Bakota, et al. [117] con-
structed a probabilistic software quality model where the internal quality at-
tributes of software code are represented by goodness function for evaluating
external quality attributes of software such as analyzability, changeability, test-

Identifying Risky Areas of Source Code in Agile Software Development

82

ability and stability. Instead of combining the measures in one indicator they use
experts’ ratings for internal measures to use them as evaluators of external
quality attributes. Moreover, they define a rule for representing external quality
attributes quantitatively by internal ones. This work is very valuable in terms of
new ways of thinking and probabilistic representation of quality. However it is
unclear how they chose measures (for example code clones in some cases have
positive effect on quality) and why colinearity of measures is not considered.
For example they use both cyclomatic complexity and lines of code, but as we
show in our work big cyclomatic number necessitates big size. Baggen, et al.
[118] also construct an approach for code analysis and quality consulting but
again using various size measures. Generally bigger size implies higher mainte-
nance effort, but it is natural as bigger size indicates a bigger product with big-
ger functionality also which secures higher profit. In fact, what matters is the
maintainability per unit of size. In an early phase of our study designers found
size measures useless for assessing riskiness hence we had to construct a new
approach which calculates the risk disregarding the size, based on Mef% meas-
ure. Shihab, et al. [86] present a large scale industrial study concerned with how
code changes can trigger various risks. They use variety of change measures
combined with developers’ experience. This study is very similar to our study
and the two complement each other in many points: Firstly both studies consid-
er the risk to be wider concept then merely fault-proneness of the code. Second-
ly change measures are considered to be the main source of risk. Even if there is
complex code only the change of it can trigger risk. Thirdly both studies are
carried out in large software development context and rely on researchers and
developers collaboration. The difference between the two is that our study is
more focused on combining complexity and change measures in one number in
order to develop very simple measurement system. Their study observes the
most influential measures among various change measures, bug reports associ-
ated with changes, and developers’ experience.

 THREATS TO VALIDITY 7

The major validity thread is concerned with the evaluation approach with de-
signers. Ideally, complying with well-established statistical techniques, we ought
to determine a sample size for number of files for evaluation with designers,
randomly chose files and check them on one side with designers and on the
other side by measurement system for determining the riskiness. Instead we
chose all the risky files found by the system and introduce to designers, as full-
scale evaluation with a number of files of sample size was taking enormous
amount of effort from organization. Another validity thread is the inconsistency
of defining a threshold for risk evaluation. We mentioned earlier the thresholds
can vary from company to company. We are certain that files with highest Rela-
tive_Risk number are the most risky ones but how to measure the risk as an
absolute value? This question is still remaining open which could be addressed
in the future work. We believe that the parsing capacity of the tools are very

Identifying Risky Areas of Source Code in Agile Software Development

83

important also as the experience showed that many of the tools could produce
severe errors when parsing which are absolutely not acceptable to be used in
analysis.

 CONCLUSIONS 8

Contemporary software products solve increasingly complex problems leading
to increasing complexity of the software products themselves. An uncontrolled
growth of complexity over a long time triggers a variety of technical risks that
have potential of jeopardizing the business of companies. There is an increasing
need for regularly managing these risks, since in Agile software development
the self-organized teams deliver small increments of software almost continu-
ously.

This study developed a method and supporting measurement system for identi-
fying the risky source code files and assessing the magnitude of the risk. The
method is based on McCabe complexity and number of revisions of source files.
The overall results show that out of nine initial measures the superposition of
two measures, effective cyclomatic complexity percentage and the number of
revisions of a file is a good estimator of risk. The risk is calculated so:

Relative_Risk = Mef% * NR

Generally by systematically discussing the intermediate results with reference
group we concluded that the complex software code that is changed frequently
is risky, hence the superposition of these two measures was evaluated as risk
predictor.

The method was evaluated in two projects at two companies, Ericsson and Vol-
vo Group Truck Technology. The evaluation showed that the method is effective
in technical risk assessment as well as practical for integrated regular usage
within modern software development organizations. The weekly walkthrough
with designers showed that it is highly valuable to have a systematic feedback
on riskiness of the files. Particularly it is effective to identify the most risky few
files out of several thousands, so developers can focus on the most severe risks.

This risk assessment method is developed in Agile context as the studied organ-
izations develop products relying on Agile principles but the method might be
successfully used for any type of development. One reason that the results might
be different in non-Agile environment is that NR measure might not be as strong
indicator of potential problems as it is in Agile environment. In Lean production
new features are provided to the customer continuously therefore it was im-
portant to have risk assessment based on a measure that reflects the change of
code over time. Complex code is not always a problem if it is not changed or
maintained. Agile principles in big organization imply that one team can develop
code which might be maintained by another team later. If developed code is
complex and hard-to-understand, it can become a problem when new teams are

Identifying Risky Areas of Source Code in Agile Software Development

84

assigned to maintain that code, therefore a fast feedback is crucial on developed
code.

The impact of this method is two-fold: In the short term it led to establishing
two online, daily updated, measurement systems at the companies. In the long-
run it triggered refactoring activities. This unique opportunity to work openly
with two companies at the same time led to knowledge sharing between them
and learning company-to-company with the researchers as catalysers.

Our efforts are directed towards creating integrated technical risk management
methods for modern software development industry. The further work focuses
on the extension of here presented method to identify the risky func-
tions/methods in the code. Also, there are plans to expand the study on models
for companies working with model-based development.

PAPER 3

A Method for Automated Reviews of

Textual Requirements

A Method for Automated Reviews of Textual Requirements

88

ABSTRACT

Conducting requirements reviews before the start of software design is one of
the central goals in requirements management. Fast and accurate reviews
promise to facilitate software development process and mitigate technical risks
of late design modifications. In large software development companies, howev-
er, it is difficult to conduct reviews as fast as needed, because the number of
regularly incoming requirements is typically several thousand. Manually re-
viewing thousands of requirements is a time-consuming task and disrupts the
process of continuous software development. As a consequence, software engi-
neers review requirements in parallel with designing the software, thus partial-
ly accepting the technical risks. In this paper we present a measurement-based
method for automating requirements reviews in large software development
companies. The method, Rendex, is developed in an action research project in a
large software development organization and evaluated in four large companies.
The evaluation shows that the assessment results of Rendex have 73%-80%
agreement with the manual assessment results of software engineers. Succeed-
ing the evaluation, Rendex was integrated with the requirements management
environment in two of the collaborating companies and is regularly used for
proactive reviews of requirements.

A Method for Automated Reviews of Textual Requirements

89

 INTRODUCTION 1

A well-defined software requirements specification is a prerequisite for a high
quality software design. If a specified requirement is not clearly defined, then
software designers consume much unnecessary development time on its clarifi-
cation. Moreover, if a requirement is not clearly defined, then there is a technical
risk that it will be misinterpreted, designed incorrectly, and cause late design
modifications [119], [63], [120]. For this reason, software engineers aim to con-
duct requirements reviews as fast as possible so the design and verification
phases can be started with a well-defined set of requirements.

Although there are several studies arguing that early and fast improvements of
requirements pay off in software development organizations over time [121],
[122], [123] and frameworks for improvements also exist [124], [125], [126], in
large continuous software development projects manually conducting fast re-
views before the start of software design often is not possible because of two
main reasons:

 The number of regularly upgraded or delivered requirements is sev-1.
eral thousand [127], so manually reviewing such an amount of re-
quirements takes substantial amount of time

 Continuous software product development relies on continuous fea-2.
ture delivery to their customers. In such projects most of the devel-
opment activities run in a continuous manner, therefore it is not an
optimal solution to temporarily stop the design and verification ac-
tivities until the review process is finished

Many researchers have reported that for large software development projects
manual reviews of requirements is recognized as a time consuming task [128],
[129], [130], [58], [131]. For this reason many software engineers prefer to
integrate the review process with the software design and verification, which is
believed to be the optimal solution. In other words, software engineers review
every requirement just before its implementation, and if there is an unclear
specification, they clarify it with the requirements analysts.

As Kauppinen, et al. [122] reports, practitioners find the tool support is a key for
efficient reviewing process, as the size of software products grow. Software
engineers at the four companies that we collaborated with, also consider that
automated means for requirements review would be of great help. Based on
their practice, they had a perception that in each of the software development
organization, out of thousands of requirements only 3-5% needs improvements.
As the collaborating practitioners stated, “Even if we could locate half of this 3-
5% just in time of their delivery, then we could considerably reduce the overall
development effort”. Additionally, we learned that requirements analysts prefer
getting fast feedback because it becomes easier to remember the requirements
they just wrote, and thus the correction becomes easier.

A Method for Automated Reviews of Textual Requirements

90

On this backdrop, our research aimed to create a method for automated re-
quirements’ reviews and ranking based on needed improvements. The ambition
was that the method should be simple to use, straightforward to help improving
requirements, and easily integrable in any software development environment.
In a pursuit of such a method we addressed the following research question:

How can we automatically rank the textual requirements according to
their need for improvements in large continuous software development
projects?

Our key contribution is a measurement-based automated method which identi-
fies requirements that need improvements. The more detailed contribution of
the paper is as follows:

 Four measures of internal quality of textual requirements 1.
 A combined measure () for requirements ranking 2.
 Rendex – a method for requirements ranking based on 3.
 Evaluation results of the ranking accuracy and the use of Rendex in 4.

four large software development products in four companies

The research was carried out with collaboration of four large software devel-
opment companies: Saab, Grundfos, Volvo Group, and Volvo Car Group. In the
inception, we conducted an action research project in an organization in one of
these companies. A reference group of software engineers was formed, which
supported us with systematic feedbacks in designing and evaluating the
measures. Afterwards, an initial evaluation with six software engineers and 90
requirements in three companies showed that the assessment of Rendex has 73-
80% agreement with the manual assessment of software engineers. In the
fourth company, where the evaluation was conducted qualitatively, Rendex
could locate the needed improvements in the top 5% of the ranked require-
ments. Consequently, the method was integrated with requirement manage-
ment systems in two of the companies and used in a systematic basis for proac-
tive requirements’ reviews. The other two companies used the method in a
semi-automated fashion.

As a final remark, we must say that Rendex is a result of an action research pro-
ject, and therefore it needs more evaluations so that we can understand the
possibilities of its generalizability. With the promising results we also found that
Rendex should be calibrated to companies’ specific requirements. To provide
further guidelines on more generic use of Rendex we plan a follow-up evalua-
tion with a larger data set.

 COLLABORATING SOFTWARE ORGANIZATIONS AND 2

THEIR REQUIREMENTS

Volvo Group is a Swedish company that develops and manufactures trucks,
buses, and construction machines. The company develops ECUs (electronic con-

A Method for Automated Reviews of Textual Requirements

91

trol units) for these vehicles and machines. An ECU is a computer which controls
a specified functionality for a vehicle automatically. Such functionalities can be,
for example, climate control or break control. Rendex was evaluated in an organ-
ization that develops the ECU of chassis for the trucks.

Saab is a Swedish company which develops and manufactures products and
services for military defence and civil security. One of the security equipment is
a ground radar system, which detects flying objects and reports information
about them. The radar system is controlled by a computer which performs the
object identification and analysis. Rendex was evaluated in the organization that
develops software for the radar system.

Volvo Car Group is a Swedish company that develops and manufactures vehi-
cles in the premium segment. Similar to Volvo Group the company develops
ECUs, which perform variety of functionalities for cars. Rendex was evaluated in
an organization which develops the climate control unit of the cars.

Grundfos is a Danish company that develops and manufactures pumps for vari-
ety of purposes. The company also develops software for electronic systems
used in pumps. The software system enables the automatic self-control of the
pumps’ functionality as reaction to changing external parameters, such as liquid
pressure, temperature, or volume. Rendex was evaluated in an organization
which develops the electronic control unit for water pumps.

The organization in which Rendex was developed, did not want to reveal its
name or to which company it belongs to. However, we shall say that it was an
organization in one of the four companies, and it is not any of the four organiza-
tions where Rendex was evaluated.

The number of requirements in each of the organization was several thousand.
The requirements that we analysed in the companies were of two levels of ab-
straction: component level and subsystem (system) level. Subsystem level re-
quirements were more general, containing more holistic description of system’s
functionality. These requirements were written by requirements analysts who
interact with customers. These requirements usually were small in size, typical-
ly 2-5 lines of natural language text in a page of A4 format. Component level
requirements were detailed and comparably large. They were written by re-
quirements analysts who work closely with software designers and testers.
These requirements specified how exactly every functionality should be imple-
mented. They were written in natural language but often did not follow gram-
matical rules and could contain tables, natural language pseudocode, camel-
cased words, etc. The size of these requirements could stretch from 1 line to a
whole page.

A Method for Automated Reviews of Textual Requirements

92

 INTERNAL QUALITY MEASUREMENT MODEL OF RE-3

QUIREMENTS

Following the practice of the four companies, a textual requirement needs im-
provement if it is difficult to understand and interpret for implementation and
test. Usually vague specifications and complex descriptions are the common
sources of difficulty of understanding. There are also other sources, such as
incorrect or infeasible specifications. However, these sources mainly can be
identified by customers or requirements analysts in the phase of requirements
elicitation. Thus in the specification phase the main concern with the require-
ments is whether they are clearly understandable. That is why reviewers mostly
care about understandability of requirements for facilitating the implementa-
tion and testing. Understandability is affected with several internal properties of
requirements [132], grouped under the umbrella of internal quality. So in order
to quantify internal quality and rank requirements we aimed to develop
measures of internal quality properties. A well-known set of internal quality
properties for software artifacts is proposed by Briand, et al. [16], which we
used in this study. An overview of the measures and properties are presented in
Figure 1.

Figure 1 Requirements internal quality measurement model

The left side of the figure represents the internal quality properties of require-
ments: complexity, coupling, size, length, and cohesion. The right side of the figure
illustrates our designed measures. We could measure aspects of complexity,
coupling, and size. The arrows between the measures and the properties indi-

A Method for Automated Reviews of Textual Requirements

93

cate the designed measures per property. Complexity is generally defined for the
concept of system and is closely related with elements and their interconnec-
tions in the system. High complexity of the system directly affects its under-
standability. We use a definition of complexity provided by Rechtin and Maier
[133] and adapt it to textual requirements the following way: The complexity of
a requirement is defined by its number of different actions so connected or related
as to perform a unique function. As this definition indicates, we are not con-
cerned with the syntactic complexity of a requirement’s text. This means we
define complexity from the standpoint of system design, hence, this definition is
not anyhow concerned with the syntax or morphology of the text. However, we
should notice that if there are more actors and relations described in a require-
ment’s text the syntax of that text can become more complex.

Coupling, is generally defined for a subsystem, as to indicate how it influences or
is influenced by other elements of the system. We use the concept of coupling
adapted from ISO/IEC/IEEE 24765 international standard of Systems and Soft-
ware Engineering Vocabulary [134] and define it for a requirement the follow-
ing way: Coupling for a given requirement indicates the strength of its relationship
with other requirements, software modules, variables, or external documents. This
definition indicates that strongly coupled requirement may have many refer-
ences to software modules, other requirements, or external documentation,
which makes a requirement difficult to understand.

Size is a well-known property widely used in software measurement. From qual-
ity assessment standpoint, the basic assumption on this property is that if an
artifact is too big then it is hard to understand and manage [135]. We used this
assumption in our study and designed a size measure for internal quality as-
sessment.

Length is another property that is used in software measurement. Known length
measures are depth of inheritance or nesting depth of blocks in coding. Initially
we designed length measures for requirements, however they were evaluated to
be ineffective quality indicators (see section 4.6).

Cohesion is the last property in the model. We can refer to two types of cohesion
of a requirement. One is the linguistic cohesion, which indicates how smoothly
the members of a sentence are linked in order to deliver the meaning of the
sentence to the reader. More discussion on linguistic cohesion is provided in
subsection 4.6. The second type of cohesion refers to the technical representa-
tion of a requirement, and can be defined as follows: Cohesion of a given re-
quirement indicates the manner and the degree to which the actions specified in
the requirement are related to one another [134]. As the definition suggests co-
hesion is an important internal quality attribute for natural language require-
ments, because it indicates how well the relation of actions is described in a
requirement. Two meaningful sentences that specify the same requirement may
not have the same cohesion in their description, and therefore, they will not be
equally understandable. Unfortunately we could not design a simple measure
for the cohesion property due to its subjective nature and the difficulty of ex-

A Method for Automated Reviews of Textual Requirements

94

tracting semantic information based on syntactic analysis. Generally there are
promising techniques for designing cohesion measures, for example Latent Di-
richlet Allocation [136], however using sophisticated techniques compromise
our aim of creating simple and easily integrable method. We decided therefore
to adhere to simple measures.

 DEFINING THE MEASURES 4

Table 1 presents the designed measures of three internal quality properties of
textual requirements.

Table 1 measures and their measurement method

Name Abbr. Definition Measurement method
Number of
conjunctions
(complexity)

NC The number of
such linguistic
conjunctions that
indicate a relation
of two related
actions in a re-
quirement

Count the overall number of occurrences of
the following conjunctions (27 of them): And,
after, although, as long as, before, but, else, if,
in order, in case, nor, or, otherwise, once,
since, then, though, till, unless, until, when,
whenever, where, whereas, wherever, while,
yet

Number of
vague
phrases
(complexity)

NV The number of
such phrases that
indicate either
imprecise defini-
tion or multiple
interpretations of
a requirement

Count the overall number of occurrences of
the following words and phrases (26 of
them): May, could, has to, have to, might, will,
should have+past participle, must have+past
participle, all the other, all other, based on,
some, appropriate, as a, as an, a minimum, up
to, adequate, as applicable, be able to, be
capable, but not limited to, capability of, ca-
pability to, effective, normal

Number of
references
(coupling)

NR The number of
variables such as
state, sensor data,
and module names
in a requirement

Count all unique words containing at least
one capital letter not in the beginning of the
word or at least one underscore in the word.
Examples are: OperatingHours_log, Room-
Climate, ReducedLoadMode

Number of
reference
documents
(coupling)

NRD The number of
references to
standards and
other documents
in a requirement

Count such phrases which indicate reference
to documents and standards. In case of one
of the companies these are the phrases
which indicate references to documents:
defined in reference, defined in the refer-
ence, specified in reference, specified in the
reference, specified by reference, specified
by the reference, see reference, see the ref-
erence, refer to reference, refer to the refer-
ence, further reference, follow reference,
follow the reference, see doc.

Number of
words (size)

NW The number of
words of a re-
quirement

Count the number of words in the require-
ment.

A Method for Automated Reviews of Textual Requirements

95

The last column of the table presents the method (the complete list of the speci-
fied keywords) for measuring a given measure. For example, if we need to calcu-
late NC measure of a requirement we must count the overall number of occur-
rences of the specified keywords in a requirement. The complete list of the spec-
ified keywords for NC (27 keywords) is presented in the second row of the last
column of the table. It is important to notice that when measuring any of the
following three measures, NC, NV, or NR, we must strictly follow the rules pre-
sented in the last column of the Table 1. This is because the list of keywords that
we present is selected through a rigorous evaluation process and in case of al-
teration the measurements will be exposed to inaccuracies. NRD is the only
measure which is context dependent and should be calibrated when using for a
particular organization.

In the next subsections we present details about each measure and show several
examples of how the aforementioned measures affect the requirements. The
examples that we present are not complete requirements but complete sentenc-
es extracted from requirements, which can help understanding the measures
and their use.

 The Number of Conjunctions as a Complexity 4.1

Measure (NC)

A conjunction is a part of a sentence that connects words, clauses, or sub-
sentences. The analysis showed that in textual requirements the majority of all
known conjunctions are used to show relations of actions. All such conjunctions
are included in Table 1 to define the measurement method for NC measure.
There were a few conjunctions which not always showed a relation of two ac-
tions, and therefore, they were not included in Table 1. These conjunctions are
“than”, “that”, “because” and “so”. Compound conjunctions, such as “even
though”, which already contain one of the simple conjunctions listed in the table,
are also excluded. Every conjunction indicates a relation. Consider the following
simple example extracted from a requirement of subsystem level:

In this requirement there is a relation of two actions connected by the conjunc-
tion “in order to”. This conjunction specifies the condition (not responding to
external signals) in case of which a given module shall be able to conduct a spec-
ified action (to transmit valid data). Here is another example which is extracted
from a requirement of component level:

In order to transmit valid data within 100ms SIU shall not respond to external
signals

When ContainerType changes to “not valid” then ContainerCapacity should be
set to the last value as long as VolumeReset is requested.

A Method for Automated Reviews of Textual Requirements

96

In this example there are three actions connected by two conjunctions. The first
one is used in order to specify how two actions should follow one another. The
second one specifies the time interval where the specified relation of the two
actions must be valid. When the number of conjunctions increases the number
of relations between actions also increases. This leads to a complex description
of many actions and relations, which creates difficulty for understanding how to
implement and test the given requirement. Particularly, it becomes hard to fol-
low how the actions comply with or has mandate over each other, and what the
sequences of actions are in relation to one another.

We also observed that this measure is the most context-independent measure
among the test of the measures we defined. Conjunctions are present in any type
of requirements specification and show exactly the same phenomenon – rela-
tions of actions.

 The Number of Vague Phrases as a Complexity 4.2

Measure (NV)

As we mentioned earlier the complexity of a requirement is defined by de-
scribed actions and their relations in the text. While the conjunctions indicate
the actions and their relations, the vague phrases indicate the unclearness of the
actions or actors, and their relations. In other words vague phrases introduce
interpretative nature to the requirement description. Consider the following
simple example extracted from a requirement of subsystem level:

In this example there are two problems with the requirement. First, the re-
quirement starts with a phrase that assumes a previous specification, which we
have to explore to understand the context. Second, the expression “all the other”
does not specify what other values can be expected. Presumably, this way of
writing assumes that there are two sets of values of a given variable and for
each of the sets different courses of actions are executed. However, our observa-
tions showed that “all other” values usually are not predefined in the document
and such a way of writing rather shows that the requirements designer has tried
to include all unspecified possible scenarios in one sentence without proper
consideration of them. A similar word is “some”, which has the same effect on
requirements as the phrase “all the other”. Here is another example from a re-
quirement of component level:

All the other transitions than from and to programming session shall not affect
the ability to execute non diagnostic tasks

If the ShortStopHeater_hdlr does not detect open circuit, that could be interpreted
as thermoswitch is "opened".

A Method for Automated Reviews of Textual Requirements

97

In this example the modal verb “could” is used. The first part of this requirement
contains a condition which may or may not occur. The second part states that
something could occur if the first condition occurs. However, the use of “could”
does not let the reader know whether the second part should be implemented
or it is a consequence that should be considered by the reader. We observed that
several modal and auxiliary verbs most of the time introduce such an interpreta-
tive nature to the text of requirements. Modal verbs that indicate wish or desire
instead of a requirement that must be developed are ambiguous. Examples are
“could” and “might”. Auxiliary verbs that indicate past tense or unaccomplished
desires are ambiguous. Examples are “must have had” and “should have been”.
The full list of these phrases is presented in Table 1.

Often, in a requirement there is a need for specifying a range or a measure of
“something”. This “something” can be speed, frequency, intensity, mode, accel-
eration, etc. We observed that, there are several qualitative words that in prac-
tice are commonly used for such specifications but are inadequate and thus
introduce inaccuracy in requirements. Such words are: adequate, effective, effi-
cient, normal, etc. It is important to mention that we can find many more synon-
ymous words to these ones, for example by using a thesaurus dictionary. How-
ever, observing many examples of requirements in companies, we found that
there are only a small set of words that are often used and are source of ambigu-
ity in the requirements. This is the reason why the list of vague phrases included
in Table 1 is not very rich.

We also found many phrases that have tangible likelihood to introduce vague-
ness but do not necessarily do so. These phrases were omitted in our measure-
ments, as they introduce inaccuracy in the measurements. We widely used exist-
ing literature ([137], [138], [139]) for designing NV measure with additional
evaluation.

 The Number of References as a Coupling Meas-4.3

ure (NR)

This measure is designed to indicate the number of reference items in a re-
quirement that are referred with special names and require certain knowledge
about them. These references can be signals, states, modules, or functions which
have clearly defined roles. Consider the following example from a requirement
of component level:

As the example illustrates there is a state (Not_Valid) and four variables in the
requirement. These variables are defined elsewhere in the requirements specifi-
cation, appended documents, or source code. To implement this requirement,
software designers should have a good understanding of the referenced varia-

If ContainerCapacity or ContainerWarn or ContainerTemp is set to Not_Valid
then ContainerAlert shall be set to Not_Valid.

A Method for Automated Reviews of Textual Requirements

98

bles in it. Many such variable names in a requirement indicate that much
knowledge is required to understand how all these variables can and will inter-
act together. We observed that for requirements of component level these refer-
ences are one of the main constituents of the requirements and by the percep-
tion of the software engineers a high number of NR can indicate problems. The
NR was measured by counting all the words that contain at least one capital
letter or underscore in the middle of the word. This writing convention was
well-established in all of the companies for requirements of component level.
This was influenced by the principles of software coding, where the names of
variables and functions also contain camel cases and underscores. Because of
this convention it was easy to measure NR accurately in the four companies.

 The Number of References to External Docu-4.4

ments as a Coupling Measure (NRD)

NRD is designed to indicate the references of external documents found in a
given requirement. External documents can be international standards, compa-
ny standards, or other external specification documents. We found out that
when designers encounter reference documents in requirements, they have to
look through them in order to understand how the implemented requirement
should comply or be consistent with the documents. Often, there were no specif-
ics on how exactly the requirement should comply with the referred document.
Consider the following example extracted from a requirement of subsystem
level:

In this example the first sentence states that a specified concept should allow
changes in certain modules. The second sentence purports to specify the exact
modules which are changeable. The second sentence, however, only refers to a
document where the necessary information can be found. Usually the refer-
enced documents contain big amount of other information also, so it is hard to
find the necessary information.

In different organizations there are different conventions or habits of how to
refer to a document in a requirement. In order to measure NRD in a particular
organization, we identified the common phrases for referring to documents in
that particular organization. In Table 1 we have specified the phrases, which are
specific for counting NRD in one of the companies. In order to define a meas-
urement method for calculating this measure in a particular organization, we
recommend using likely keywords that might be used for referring external
documents. For example “see document”, “see the standard”, “document”, etc.
Making searches based on many synonymous keywords in a large requirements

The C concept shall allow changes in the configuration of the M modules after the
software has been built. For detailed specification of which modules and parameters
are changeable see reference R configuration specification.

A Method for Automated Reviews of Textual Requirements

99

specification can reveal what keywords are generally used for referring a docu-
ment. Such an analysis then will allow understanding whether there is a set of
keywords that can exhaustively capture all references (or nearly all references).

 The Number of Words as a Size Measure (NW) 4.5

Counting the number of words is a commonly used measure for measuring the
size of a text. This measure was also used in our analysis in order to understand
how it correlates with the newly defined measures and whether it affects the
internal quality of requirements.

 Measures Considered but Not Used 4.6

We found that pure grammatical problems with requirements were not tangible
in the practice of the companies. This was true for both high level and low level
requirements. The most likely reason is that practitioners who write require-
ments have reasonably good language skills and actually write reasonably high
quality requirements from the syntactic perspective. Even though in low level
requirements the natural language syntax is not always assessable as a gram-
matical construct, the “syntactic” understandability of the flow of the text is still
reasonably good. But the understandability of the requirement itself, which has
a pivotal role in designing software, can suffer due to high complexity and cou-
pling. Even if there were small morphological or syntactic problems, such as
putting wrong propositions or using the adverbs in wrong positions of a sen-
tence, they hardly ever became an issue for the software designers. We consider
that the cohesion analysis of pure morphology or syntax is not desirable in this
context for two reasons:

 There are different styles of writing requirements in every company, 1.
and these styles of writing are not necessarily grammatically assess-
able. Such examples can be tables of specifications, symbolic repre-
sentations, pseudocode, and briefed clauses. Such requirements can-
not be grammatically assessed, because they do not represent “sen-
tences” as linguistic constructs.

 Following the previous point, the measures which are designed for 2.
morphological or syntactic analysis usually follow a set of defined
rules enforcing how a requirement should be written, but they do
not necessarily reveal the actual problems in requirements

We identified several phrases which can influence the requirements’ quality but
do not necessarily do so. Examples are: “than”, “that”, “during”, “easy”, “fast”,
“passive”, “should” etc. For example the word “that” is not always used as a con-
junction, but a pronoun or an adverb, therefore, it does not show interconnec-
tions of actions. The keyword “fast” can be used so: “the signal should be as fast
as 20 units per second”. Counting these keywords reduces the measurement
accuracy and introduces construct validity threat.

A Method for Automated Reviews of Textual Requirements

100

The nesting level in structured text such as with bullet points or numbering rep-
resents a measure of length property. This measure is analogous to the nesting
depth in software coding, that is the reason we considered evaluating it. Howev-
er, while in code nesting introduces complexity, in natural language text it rather
shows how the text is broken down into more simple and comprehensible piec-
es. In large requirements bullet points were usually used to indicate independ-
ent pieces of functionalities which comply with a general condition for all of
them. This was an effective tactic for making a large but simple requirement. In
many cases we also observed that bullet points effectively replaced conjunctions.
Finally, nesting level in requirements was not as deep as its analogous measure
in the code. While using bullet points in some cases simplify a requirement, in
other cases they do not have any tangible effect, so nesting in text that is based
on bullet points was excluded it from the final list of measures. Another measure
of length property is the hierarchical level of a requirement among other re-
quirements. However we found that the hierarchy level of a requirement has no
tangible impact on its quality. .

Three measures of evolution, number of revisions, number of versions and number
of variants of requirements were initially measured. Unlike their analogous
measures for source code [140], these measures did not have significantly high
values, usually limited in a narrow interval of [0, 4]. After the evaluation they
were shown to be poor indicators of internal quality and were not considered
further in this research. Initially, in order to detect the number of actions in the
requirements, we measured the number of verbs (imperatives) and punctuations.
However the number of verbs was not an accurate measure due to the following
reasons:

 The number of verbs in a sentence does not always correspond to 1.
the number of actions specified in that sentence

 Many requirements were written in natural language text but did not 2.
represent sentences as grammatical constructs, and therefore often
omitted the use of verbs. For example: “If signal A or B then default
state activation”

Punctuations (comas, colons, semicolons) indeed connect actions, but are not
always used to show such connections. This is because several conjunctions,
which do not require separation with comma, can connect actions as well, thus
the number of punctuations do not approximate the number of relations in a
given requirement.

 Range of Measurement Values 4.7

It is important to notice that the measures had significantly different values
from each other in the measured set of requirements. Of all the measures NC
had the biggest values (excluding the size measure). For the requirements of
component level, in average NC had nearly twice as big value as NR. In average,
it also had about six times as big value as NV. The NRD was infrequent. There

A Method for Automated Reviews of Textual Requirements

101

was a little chance that a requirement can have NRD = 1 value. For the require-
ments of subsystem level, the proportions were nearly the same with one excep-
tion: NR was more infrequent. This can be explained by the fact that high-level
requirements are much closer to daily language and thus do not contain many
special names of variables or functions.

 RESEARCH DESIGN 5

The research was initiated in a large software development organization as an
action research project with collaboration of the authors and software engi-
neers. During a period of nine months we developed Rendex in the collaborating
organization. Later we conducted four evaluative studies in the four companies:
in three of them Rendex was evaluated quantitatively and in one of them quali-
tatively. In the next subsection we describe the process of developing the
measures.

 Action Research for Designing Measures 5.1

To develop the measures we established a collaboration unit with the research-
ers (the authors of this paper) and a reference group of software engineers in
the collaborating organization. The principles of action research were used
Susman and Evered [42], Baskerville [141]. The reference group consisted of
one manager, one test leader, one software designer, and one design architect.
The software engineers had 15 plus years of experience in software develop-
ment and were regarded as the key engineers of the organization. The research-
ers established monthly formal meetings with the reference group, as well as
many non-formal meetings.

Figure 2 An overview of the research method

A Method for Automated Reviews of Textual Requirements

102

Figure 2 presents the action research cycle and three consecutive research ac-
tivities. The cycle with four iterations was carried out for designing the
measures. Then Rendex was developed, and its ranking accuracy and use in the
companies were evaluated. The next four subsections describe the process of
designing the measures through the action research cycle.

 Access to the data 5.1.1

The data were extracted from the requirements management tool into a RIF
(Requirements Interchange Format) document. The document contained all the
necessary information about the requirements, namely, requirements names,
identification numbers (ID), revision numbers, variants, and descriptions.

 Design measures 5.1.1

In order to get started with defining measures, the researchers and the engi-
neers of the reference group met and proposed an initial set of measurable as-
pects of requirements supported by certain rationale. To propose an initial set
of measures in the very first iteration, the researchers requested from the refer-
ence group to identify and present two sets of requirements: The first set should
contain 10 requirements that need improvements by the engineers’ perception.
The second set should contain 10 requirements that do not need any improve-
ments. The software engineers organized a workshop, where with other six
engineers of their team they discussed and selected the requested 20 require-
ments and provided to the researchers. In this context a requirement is regarded
as “needing improvement” if software designers or testers find it difficult to under-
stand for implementing or testing. The researchers examined the two sets of
requirements and tried to identify the properties that distinguish these two sets
of requirements. The researchers explored linguistic and technical aspects of the
requirements and investigated what is measurable. Based on this analysis the
researchers designed the initial proposals of measures.

 Apply measures 5.1.2

Once the initial proposals of measures were defined the researchers developed
a tool and conducted measurements. A Python script was used to parse the RIF
document. After parsing, the results were stored in an output file, containing the
requirements’ name and results of the measurement per requirement.

 Evaluate measures 5.1.3

Four evaluative iterations were conducted with the reference group through the
action research cycle. Each of the iteration was a workshop with the researchers
and reference group, where all the proposed measures were discussed. In the
workshops the researchers presented the design of the measures and motiva-
tions behind the design. Several requirements with both high and low meas-
urement values were discussed for all the measures. The engineers discussed
what the measures mean for them, what they perceive the measures indicate,

A Method for Automated Reviews of Textual Requirements

103

and then they proposed suggestions. Considering the engineers’ reflections the
researchers selected two sets of requirements for continuing analysis and pre-
paring the next workshop session. Each of the set contained 5-6 requirements
and was selected based on the following criteria:

 The first set represents requirements that are difficult to understand 1.
but the measures that were designed in the previous iteration could
not detect these requirements

 The second set represents requirements that are easy to understand 2.
but they have high values for the measures designed in the previous
iteration.

By scrutinizing these requirements, the researchers could understand the rea-
sons of why the defined measures were not adequate for the separated sets of
requirements. This preparation allowed the researchers to change or solidify
the rationale that was provided for designing the measures and facilitated the
process of understanding the generalizability of the measures. Several measures
that were considered candidate measures in the first iteration were invalidated
and ruled out during the later iterations. Overall about 60 requirements were
discussed for designing the measures including the first 20 requirements de-
scribed earlier in this subsection.

 Developing Rendex 5.2

Once the measures were designed, we decided to combine them into a single
indicator that can be used for requirements assessment and ranking. However,
before combining, we ought to check whether or not there are strongly correlat-
ed measures, because strongly correlated measures are alternative measures of
the same property. Simply stated, strongly correlated measures indicate exactly
the same problem in a requirement. Using both of them for obtaining a single
quality indicator can artificially diminish the importance of the rest of the
measures in calculating a quality index for requirements [72]. We used Pearson
correlation coefficients and correlation plots for correlation analyses. The re-
sults of the correlation analyses between the measures are provided in section
6.

To obtain a single quality indicator we conducted regression analysis, because it
allows quantitatively determining optimal coefficients of the measures. In order
to conduct regression analysis we used sample sets of requirements from the
companies which were manually assessed by software engineers in the compa-
nies.

Before conducting regression analysis we postulated a formula for requirements
ranking, which is similar to a regression equation but the weights of the
measures are defined with a qualitative approach, that is, by asking the experts
of reference group and summarizing their responses. If the postulated formula
performed well in requirements ranking and could be a good approximation for
all regression equations (an equation per company), then we could use it as a

A Method for Automated Reviews of Textual Requirements

104

generalized formula for requirements ranking. To determine the weights of the
measures, we organized a workshop with the reference group and discussed the
measures and their influence on the requirements. On several examples, the
engineers expressed their understanding of how much the measurement values
influence the understandability of the requirements. Summarizing we deter-
mined the approximate coefficients of the measures and postulated a formula of
quality index:

 (1)

 Evaluating the Ranking Accuracy of Rendex 5.3

This subsection presents the two approaches by which we evaluated the rank-
ing accuracy of Rendex. Both approaches rely on manual assessments of soft-
ware engineers , where is the averaged rank for a requirement’s internal
quality given by software engineers. In the first approach we used the postulat-
ed formula (1) for calculating of requirements and evaluating how much it
agrees with . In the second approach we employed regression analyses to
determine how well the regression equations can predict .

 The first approach: evaluating QIR against QIE 5.3.1

In order to compare the results of the automated ranks () with the manual
assessments () we defined the following stepwise process:

 Rank all requirements using . 1.
 Randomly select 15 requirements from the top 100 requirements 2.

with highest (requirements needing improvements)
 Randomly select 15 requirements from all the requirements that are 3.

not included in the top 300 requirements with highest (satisfac-
tory requirements). The next 200 requirements after the top 100 re-
quirements were omitted intentionally in order to assure that there
is a significant measurement discrepancy between requirements that
need improvements and requirements that do not need any im-
provements according to

 Create a random mix of the two groups of requirements and get a set 4.
of 30 requirements

 Select two software engineers for assessing the quality of the 30 re-5.
quirements

 Ask the two engineers to rank each requirement using 5 values of 6.
Likert scale, where 1 means a requirement is absolutely easy to un-
derstand and 5 means the requirement needs improvement most ur-
gently. This five-scale of ranking is chosen because there shall be
enough ranks to observe the disagreement of ranking between engi-
neers themselves. When conducting the evaluation with engineers
we also provided textual description per rank, indicating what exact-
ly the rank means (Table 2).

A Method for Automated Reviews of Textual Requirements

105

Table 2 Descriptions of ranks

Rank Description
1 It is absolutely easy to understand this requirement
2 It is rather easy to understand this requirement
3 This requirement can be improved to make it easy to understand
4 This requirement should be improved, because it is hard to understand
5 This requirement must be improved, it is not possible to understand

 Combine and average the assessment results of engineers as a final 7.
quality index of engineers ().

 Classify the requirements into two categories – satisfactory and 8.
needs improvement – based on two alternative ways

 Alternative 1: Strict case 9.

a. If the then the requirement is considered as satisfac-
tory

b. If the then the requirement is considered as needs
improvement

 Alternative 2: Not-strict case 10.

c. If the then the requirement is considered as satisfacto-
ry

d. If the then the requirement is considered as needs im-
provement

 Develop a confusion matrix for both strict and not-strict cases by the 11.
rules specified in Table 3. The TN, FN, FP, and TP are true negative,
false negative, false positive and true positive values corresponding-
ly.

Table 3 Confusion matrix and evaluation rules

satisfactory

 needs
improvement

Evaluation method

Strict case: QIE < 3
Not-strict case: QIE ≤ 3

TN FP

PA%=100*(TP+TN)/n% Strict case: QIE ≥ 3

Not-strict case: QIE > 3
FN TP

 Calculate Percentage Agreement (PA) for both strict and not-strict 12.
cases by the following formula: PA=100*(TP+TN)/n% to assess the
agreement of and . The number n=30 indicates the overall
number of requirements in the sample size.

Since the portion of the requirements that need improvements was much small-
er compared to the overall number of requirements (3-5%), a completely ran-
dom selection of the sample size would result in very few or no requirements
turning out to need improvements among the 30 requirements. This fact would

A Method for Automated Reviews of Textual Requirements

106

jeopardize the evaluation results. Instead we selected the sample size based on
the , which postulates that 15 requirements out of 30 need improvements
and the other 15 are fine. This tactic balanced the two groups of the require-
ments in the sample size.

The two alternative cases of evaluation (strict and not-strict) are carried out due
to a problem of creating binary categorical data: If there are many requirements
that get marginal average number (e.g. average) the estimated
agreement (PA) between and will be an underestimation or overestima-
tion. By providing two alternative ways of assessments, we can have more ob-
jective view on the assessed agreement.

We must notice that the manual rankings of requirements in the sample sets are
based on subjective judgments of software engineers. For this reason we tested
the congruence level of the two engineers’ assessments. Kendall’s tau coefficient
[142] was used for this test, because the data is of ordinal type and for two
raters.

 The second approach: conducting regression anal-5.3.2

yses for obtaining QIR

Using the same data samples of the manual assessments described in the previ-
ous subsection, we conducted regression analyses to determine the coefficients
of the measures in the regression equations. Through these analyses we also
tested the statistical power of regression equations in predicting the manually
provided ranks.

 Establishing the evaluation setup in the companies 5.3.3

In each of the companies we chose a software development organization where
the method could be evaluated. In each of the organization we collaborated with
software engineers, who helped us in accessing their requirements, discussing
the adequateness of our measures for their requirements, tuning the measures,
and selecting two software engineers for manual assessments of the sample sets
of requirements. The collaborating engineers had core knowledge about their
requirements management processes and had many years of experience (> 8
years) in requirements management. The engineers who provided the manual
assessments were software designers and testers with 10 plus years of experi-
ence. They were neither a part of designing the measures nor knew about the
measures. The companies preferred not to reveal the exact number of require-
ments, but we can say that the number of requirements in each organization
ranged from 2000-8000. Since the companies did not want to present results
mapped on companies henceforth we refer the companies as company X, Y, Z,
and Q.

A Method for Automated Reviews of Textual Requirements

107

 Evaluating Rendex in Companies 5.4

After finalizing the development of the method, all four companies expressed
their interest to use the method and find out whether they would like to adopt it
for regular organizational use. Due to a variety of factors, the adoption of the
tool was different from company to company. We were directly involved in the
process of integrating Rendex in two of the companies, which used the same
requirements management tool. The third company preferred integrating the
four measures in the set of rules that they had defined for writing requirements.
The last company used our Python script for semi-automated evaluation of re-
quirements whenever needed. After nearly 6 months of using the method we
had two formal meetings with technical leaders of the requirements manage-
ment teams in the first two companies. In both cases we asked questions about
how they think the method performs, whether they feel that its application eas-
es the review process and spares time for them, whether they perceive the tool
is accurate in evaluating requirements, and whether the way it is integrated to
the requirements management system is adequate for use.

 RESULTS OF CORRELATION ANALYSES AND SELEC-6

TION OF MEASURES

Pearson correlation coefficients between the measures for three companies are
presented in Table 4 (the fourth company is not included in this analysis). The
analysis shows strong correlation between NW and NC measures for the three
companies. There are also significant correlations between NR and NC in case of
company Χ (0,578), between NV and NC in case of company Z (0,625), and be-
tween NV and NW in case of company Z (0,563). The rest of the correlation coef-
ficients are weak or insignificant. The absence of correlation coefficients for
NRD measure in case of company Y is explained by the fact that requirements of
company Y are of subsystem level which do not have high enough values for
NRD in order to permit correlation analysis.

Table 4 Correlation analyses results of measures for three companies

Χ/Υ/Ζ NW NC NV NR
NC 0,80/0,62/ 0,86
NV 0,48/0,23/ 0,56 0,36/0,21/0,62
NR 0,46/0,46/0,39 0,57/0,35/0,43 0,14/0,15/0,29
NRD 0,25 / - / 0,29 0,26/ - /0,27 0,04 / - /0,12 0,14/ - /0,05

As there is a fairly strong correlation between NC and NW we should choose
only one of them. In order to choose a single measure out of NC and NW we
analyze their correlation plots. In Figure 3 we can see correlation plots of NC
and NW where every dot represents a requirement.

A Method for Automated Reviews of Textual Requirements

108

Figure 3 Correlation plots of NC and NW measures for all three companies

These three plots have one general feature: In all of them the dots are scattered
over NC and NW dimensions in such a way that the upper left side of the plot
(along with the axis of NC measure) is empty. This means that there are no re-
quirements that have many conjunctions and are small in size at the same time,

A Method for Automated Reviews of Textual Requirements

109

and that is intuitive. Oppositely, we see that there are many requirements along
with the axis of NW measure and in the nearby area. This means that there are
requirements which have big size but do not contain many conjunctions. Con-
cluding the above two statements we can say that a requirement text with many
conjunctions necessarily has many words as well, whereas, a requirement text
with many words does not necessarily have many conjunctions. In other words,
only NC measure indicates both size and complexity, while NW indicates only
size. For this reason we chose only NC to use in the regression analysis.

 COMBINING SELECTED MEASURES 7

A weighted sum of the four selected measures is used as a combined internal
quality index. The weights of NC, NV, and NR were considered equal by the ref-
erence group engineers. This means that adding a conjunction or a vague phrase
or a reference to a requirement decreases that requirement’s understandability
equally. The influence of NRD was considered to be about five times stronger on
internal quality. This is reasoned the following way: Having a reference to a
document requires considerable amount of time to find the reference and the
necessary information in it for understanding how a requirement should comply
with it. Similarly, five conjunctions make a requirement so difficult that a de-
signer usually needs a clarification by communicating with a relevant person to
understand it. So, considering the weights of the measures we calculated QIR for
a requirement by formula (1):

 (1)

 is not an absolute but a relative measure of internal quality, indicating that
the requirements with smaller have better quality. does not provide a
threshold by which a requirement can be regarded either “satisfactory” or
“needs improvement”. Despite not establishing an absolute threshold, with
agreement of the reference group designers we concluded that usually it is pref-
erable that for a requirement < 5 is a good threshold, because in practice the
requirements with bigger values were becoming hard to understand.

 EVALUATION RESULTS OF RENDEX 8

Subsection 8.1 presents the PA values for the three companies. It provides cor-
relation analyses results between the measures, and . In the same sub-
section the results of agreement between manual assessors are also provided.
Subsection 8.2 provides the results of regression analysis and discusses the
differences across the companies. Subsection 8.3 generalizes the regression
analyses results.

A Method for Automated Reviews of Textual Requirements

110

 Results of Evaluating QI
R

 against QI
E

 8.1

PA values for the three companies are presented in Table 5. The best results of
agreement was obtained for company X, followed by company Z. Both of the
companies had requirements of component level, and there is no substantial
difference between the results of strict and not-strict cases for them.

Table 5 Evaluation

Strict / Not strict X Y Z
PA 80% / 87% 73% / 63% 74% / 70%

The somewhat bigger difference of results in strict and not strict cases for
company Y is due to the fact that there were relatively more marginal ratings in
the manual assessments, i.e. some requirements got rank 3 which is a marginal
value for calculating PA.

In company Q, when we integrated the method with their requirements man-
agement system, they had already manually detected about 20 requirements for
urgent improvements, but they were still in the beginning of the review process
for that particular project. By running the tool we found that all these require-
ments were among the top 100 requirements that needed improvements pro-
vided by the tool. We would like to emphasize that the tool found all these re-
quirements in about two thousand requirements.

Table 6 presents Pearson (R) and Spearman (S) correlation coefficients between
the measures and for three companies. Strong values of the coefficients are
boldfaced (R, S > 0,6). Generally the NC measure is strongly correlated with the
manual assessments. The rest of the measures have significant but not strong
correlation with .

Table 6 Correlation coefficients for three companies

 QIE (X) QIE (Y) QIE (Z)
NC 0,74 / 0,77 0,54 / 0,54 0,58 / 0,65

NV 0,27 / 0,30 0,20 / 0,23 0,52 / 0,57
NR 0,56 / 0,68 0,43 / 0,24 0,46 / 0,44
NRD - - -
QIR 0,72 / 0,77 0,62 / 0,60 0,57 / 0,62
p value for QIR < 0,001 <0,001/ 0,001 0,001 / 0,005

Since the values of NRD measure was very low, we could not conduct correla-
tion analysis. The last row of Table 6 shows correlation coefficients between
and . The coefficients are strong, and the low p-values show that the likeli-
hood of getting these results driven by chance is too small.

Table 7 presents the tau coefficients of agreement for every pair of software
engineers per company. Generally we can see that there is a significant agree-
ment between the assessors.

A Method for Automated Reviews of Textual Requirements

111

Table 7 Correlation results between engineers’ assessments

Company X Y Z
Kendall’s tau 0,56 0,61 0,75
P value 0,001 < 0,001 < 0,001

 Results of Regression Analyses 8.2

Regression analyses were conducted to evaluate how well regression equations
can predict . The equations (2) represent the regression equations for the
three companies. The variable NRD is not included in the regression equation
for company Y, because NRD had too low values for the requirements of subsys-
tem level.

X:

Y: (2)

Z:

Since values are of interval scale, the absolute values of are not mean-
ingful themselves. Therefore, we can simplify (2) equations by multiplying their
right side by 100 and removing the constants. Then we can get the following set
of equations (3), which is equivalent to equations (2):

X:

Y: (3)

Z: :

Observing equations (3) we can see that the coefficients of the measures do not
have any fixed predominance over each other across the equations. This means
that we cannot obtain a general regression equation for all three companies in
an explicit manner. This observation seems to be intuitive, because the re-
quirements were of different types and the sample sizes were not big enough for
finding similar patterns across the companies. Only NRD has significantly higher
coefficients in the regression equations, which was an expected outcome, be-
cause it has very small values for requirements and higher impact on internal
quality by qualitative reasoning of the software engineers. The upper part of
Table 8 presents p values of the four measures in the three regression equations
corresponding to the three companies. Smaller p values indicate bigger statisti-
cal significance in the equations. Small P-values for NC measure show statistical
significance for the companies X and Y (0,008 and 0,010 < 0,05), which indicates
that NC measure can be used alone as well for predicting .

In case of company Z the p-values did not gain any statistical significance. The
lower part of Table 8 presents R-squared, R, and p values for the regression
equations. The values of R-sq. are ranging from 39% to 56%, indicating that 39-

A Method for Automated Reviews of Textual Requirements

112

56% of data variation in can be explained by regression equations. For all
three regression equations the p values gain statistical significance indicating
that the probability that our results are by chance is very small.

Table 8 P values for the measures and for regression

 QIE (X) QIE (Y) QIE (Z)
P values of measures in regression equations

NC 0,008 0,010 0,441
NV 0,650 0,766 0,967
NR 0,339 0,050 0,838
NRD 0,404 - 0,148

P and R-sq values for regression equations
R-sq 56,6% 39,1% 40,4%
R 0,75 0,62 0,64
P value < 0,001 0,004 0,009

 Generalizing the Results 8.3

Let us compare the Pearson correlation coefficients of and regression equa-
tions in Table 8 with that of and that is obtained from applying formula
(1) in Table 6.

Table 9 A comparison of correlation coefficients

 QIE (X) QIE (Y) QIE (Z)
Regression equations 0,75 0,62 0,64
QIR from formula (1) 0,72 0,62 0,57
Difference 0,03 0 0,07

This comparison is illustrated in Table 9. The correlation coefficients for the
postulated equation (1) are only slightly weaker than the correlation coeffi-
cients obtained by regression analyses. The differences between coefficients are
presented in the third row of the table. The weakest approximation is found for
company Z (difference of coefficients is 0.07). However, even in the weakest
case, the difference between the correlation coefficients is not significant. This
means that formula (1) can be regarded as a good general approximation of
regression equations and thus can be a substitute of them for the all three com-
panies. Saying that, we still find the generalizability is a problem, because coeffi-
cients of measures in all three regression equations are irregularly different, and
formula (1) is rather an informal generalization.

A Method for Automated Reviews of Textual Requirements

113

 REQUIREMENTS QUALITY INDEX APPLIED IN THE 9

COMPANIES

Summarizing the evaluation results we shall state that obtained by formula
(1) has 73-80% agreement with human assessors of requirements. Alternative
evaluation results by the rank (Spearman) correlation coefficients between the
automated and manual ranks are 0.60 – 0.77. Since the results show substantial
agreement between the manual and automated ranks we consider that the au-
tomated ranking can be effectively applied in practice. Hence, in this section we
delineate a method for automated ranking of textual requirements. The follow-
ing steps shall be done in order to rank requirements based on :

 Extract all textual requirements in a structured file. These can be 1.
.xml, .txt, .rif. The extracted file should contain the names and the
texts of all requirements.

 Calculate the NC, NV, and NR measures for each requirement by the 2.
rules specified in Table 1

 Calculate NRD measure by investigating the naming conventions and 3.
referencing conventions in the organization where the measure-
ments are done. Identifying these conventions with fellow designers
and requirements analysts is recommended. For NRD calculation
consider the help of the measurement rules presented in Table 1 also

 Calculate the per requirement based on formula (1): 4.

 Rank all the requirements by in descending order 5.
 Decide upon a cut-off point in the ranked list, above which all re-6.

quirements shall be manually reviewed and improved. In the prac-
tice of the collaborating companies the cut-off point is usually chosen
in a way that it separates 3-5% of all requirements with the highest
 values.

The collaborating companies found that Rendex has good enough accuracy for
automated requirements reviews, because it permits finding most of the require-
ments that need improvements in only 5% of the overall requirements. In two of
the companies Rendex was integrated with the requirements management tools
(RMT), so every requirement analyst could get an instantaneous feedback “just
in time” of writing requirements. Every requirement in RMT had a new field
with a value. This means that every engineer could choose to see values
of requirements. Figure 4 presents a screenshot of requirements and their quali-
ty indices in RMT at one of the companies. The right side of the figure presents
several requirements and their quality indices for a given software component.
We recommended that the higher quality indices shall have darker color so they
can be easily identifiably. Generally the practitioners perceived that the use of
Rendex accelerates their working process substantially and allows proactive
management of requirements’ quality.

A Method for Automated Reviews of Textual Requirements

114

Figure 4 Rendex integrated with RMT

One of the technical leaders of requirements management states that: “If we
continue using this method in our organization, I think we are going to spare hun-
dreds of hours till the end of the product release”.

 THREATS TO VALIDITY 10

Validity issues of this study are identified and discussed here based on the rec-
ommendations of Baskerville and Wood-Harper [143] and Checkland and
Holwell [38].

We believe the biggest issue of this study is the external validity. The complexity
of the research environment and the multidimensionality of the internal quality
of textual requirements hindered us to conduct a study that would satisfy the
classical validity criteria of positivistic scientific studies. Particularly, generali-
zability of the results needs further investigation. Larger sample size of re-
quirements and more companies could most likely help to overcome this issue,
but we must notice that conducting action research with many companies and
larger sample sizes is not realistic in the scope of one study. We consider the
biggest value of this study is that it provides simple and effective measures of
textual requirements that are validated in real contexts. The generalization of
the regression equations also provides a practical tool for industrial application.
Unfortunately the sample size of the requirements was not big enough for ob-
taining conclusive results for generalization, however, we still found that a sim-
ple general method can already be constructed for practical purposes. We are
hopeful that in the future additional evaluation of these measures can be con-
ducted, so the possibilities of generalization can be better understood.

The context of the research is confined with requirements of large companies,
who have well-established requirements management process. The measures
that we developed are only tested on these requirements. It is very likely that
small or inexperienced companies can have completely different types of prob-
lems which affect the understandability of requirements. Particularly, complexi-
ty may not be a problem for them, while the lack of well-established writing
conventions can become a large problem. Therefore, the results of this research
are most likely more useful for requirements of large products.

A Method for Automated Reviews of Textual Requirements

115

While the usefulness of the measures was qualified in practice, the interpretive
nature of the analysis did not permit us to estimate the empirical effectiveness
of measures in larger scales. This is not a particular problem for this study but
rather an inherent problem for complex systems’ research [44], as the effective-
ness of applying measures in complex systems are hard to quantify. The in-
volvement of several software products in the study permits us partly overcome
that problem by observing how well the same measure performs from company
to company. Notwithstanding, more detailed examination of these measures
would be valuable.

Evaluating the measurement methods for the measures in more contexts would
benefit the measures and their use. Particularly the measurement methods for
NR and NRD can exhibit problems in practice because these methods heavily
rely on the writing conventions of the practitioners. The evaluation showed that
the current measurement method for NR is generic at least for the four compa-
nies, while the measurement method for NRD should be specific from company
to company. This implies that the measurement method for NR should be inves-
tigated further to understand how generic it is in different companies and con-
texts of requirements.

There is also a construct validity threat for formula (1), because the weights of
the measures were decided in a qualitative manner. In a way, we considered this
formula as more of a priori postulate for an evaluation, and if it turned out to
work well, then we could simply use it. To find out whether the formula is a
good approximation for all three companies we conducted regression analyses
and compared the results. However, when it came to regression analyses results
and possibilities of deriving a general equation for ranking, it turned out the
weights of measures in the three formulas are different. The problem was that
there were no straightforward solutions of deriving generalized weights. We
intendedly did not focus on the regression equations per case because the coef-
ficients of the measures could not be effectively explained. Bigger sample sizes
of requirements would have been helpful for such an explanation. They could
even give a possibility to ultimately decide whether one general formula for
assessment is possible to derive. But we leave this problem to be addressed in
our future research.

The next construct validity threat is concerned with calculating PA values when
there are different scales of data. The assessment values for engineers is limited
by [1, 5] integer numbers, while the assessment of Rendex was in an unlimited
[0, ∞) interval. In order to compare these two assessments we had to bring
them into a comparable interval. One simple way to do so is to derive binary
ordinal measurements from their interval measurements, that is: a requirement
is either “satisfactory” or “needs improvement”. Categorizing data in a binary
form creates possibility of evaluation by confusion matrix. However it also
brings a new validity threat that is the issue of marginal requirements. If a re-
quirement actually had an average quality, it is “forced” to be either a satisfacto-
ry or dissatisfactory one. We could partly solve this issue by additionally creat-
ing so called strict and not strict evaluations, which provide two alternative

A Method for Automated Reviews of Textual Requirements

116

overviews on how Rendex performs when comparing it with engineers’ assess-
ments. As a final point, we emphasize the fact that the research was validated
with four software development organizations, so the results seem to have a
good chance to be generalized for textual requirements. Therefore we encour-
age the use of the measures (method) in software development organizations
and appreciate the feedback we might get.

 RELATED WORK 11

There are different views in the literature on what quality properties are rea-
sonable to measure, for example models by Fabbrini, et al. [144] or Bøegh [145].
One of the early studies that attempted to define quality measures for textual
requirements was conducted by Davis, et al. [146]. Their paper proposes 24
quality properties that can be measured for a requirement, and measures for 18
of them. As the study was one of the first studies in the area of requirements
measurement, it is rather a suggestion of possible quality attributes and
measures, which could be maintained and advanced. Similarly Costello and Liu
[147] proposed software quality properties for measurements, among which
there were properties of requirements such as traceability, consistency, volatili-
ty etc. Later a study conducted by Hyatt and Rosenberg [138] proposed simple
measures for identifying ambiguous phrases in textual requirements and actual-
ly used them in a software metrics program.

Since then there have been several studies which conducted research towards
creating measures for textual requirements. For example Vlas and Robinson
[148] created measures for requirements classification. Based on certain pat-
terns identified in requirements, they could automatically classify a requirement
as holding a particular property or belonging to a certain type of requirements
group. Huertas and Juárez-Ramírez [149] presented an automated tool for ana-
lysing such properties as ambiguity and atomicity of a textual requirement.
Kasser, et al. [150] defined measures for assessing the quality of requirements.
They determine the words that most likely introduce uncertainty to the re-
quirements, then they calculate those words. Most of the words in their list are
evaluated and included in our list. We perceive that the aforementioned studies
would benefit substantially from industrial evaluation. This is because the prac-
ticality and precision of the designed measures are identifiable only in the or-
ganization where the actual requirements review process is conducted.

Gleich, et al. [139] examined the ambiguity patterns in textual requirements and
proposed a tool for ambiguity detection. The study is notable by the fact that the
ambiguity patterns are explained with a great detail, and the results are evalu-
ated with both software engineers of Siemens and academicians. One of the
measures defined in our study, the number of vague phrases, was designed by
considering the results of Gleich, et al. [139].

Fabbrini, et al. [144] presented a tool (QuARS) for automatic identification of
low-quality requirements. The tool is based on a number of quality properties

A Method for Automated Reviews of Textual Requirements

117

and measurements subsumed into four quality categories: testability, complete-
ness, understandability, consistency. The tool evaluates requirements based on
a set of measures (indicators) of these properties. The five measures that they
present – optionality, subjectivity, vagueness, weakness, implicity – are similar
to our NV measure. Generally these are phrases that introduce vagueness or
imprecision in requirements. From the study it is not clear how exactly these
five measures are calculated, because they do not present an exhaustive list of
keywords, but we observed that most of the keywords they present we have
included in the measurement method of NV. Few keywords that they consider
we have deliberately excluded from our list, such as, “fast” or “below”, because
they often do not cause any problem. They also define a measure called multi-
plicity which indicates the number of multiple statements in a requirement. To
calculate this they count the number of “and”, “or”, and, as they say, similar
phrases. We have generalized this measure by our NC measure which presents
an exhaustive list of conjunctions to calculate the number of actions in a re-
quirement.

In a very recent study Femmer, et al. [57] conducted a meticulous evaluation of
eight categories of requirements’ smells which are fundamentally based on eight
types of ambiguity expressions. The evaluation in four real cases showed that
many of the smells are often problems in practice, and moreover, they are au-
tomatically detectable. An interesting finding of them is that pure morphological
analysis often introduces false positive results, and this finding is congruent
with results of our paper. Femmer, et al. [151] also developed a tool which ana-
lyzes requirements based on eight types of ambiguous terms. The tool was ap-
plied in Daimler AG and showed that it can help practitioners with indicating
problematic requirements.

Génova, et al. [137] proposed a framework and tool support (Requirements
Quality Analyser, RQA) for quality improvements of textual requirements. They
measure such properties as size, readability, punctuation, imprecise terms, ver-
bal tense, number of versions, degree of nesting, overlapping, and dependencies
of requirements. Then they develop a quality indicator for requirements based
on these measures. The aforementioned two studies do not specify how exactly
the measures are calculated and evaluated. They qualitatively evaluate the tools
based on the feedback of companies that use it. As our results showed, several of
the measures that they have used, such as number of versions, nesting degree,
and punctuations are poor indicators and introduce noise in the measurement
accuracy. Additionally it is important to select the independent measures among
all designed measures, so several strongly correlated measures are not used in
quality assessment formula at the same time. Considering the upper mentioned
concerns we would recommend to be extra careful when designing measures
and using them in a formula as a means of inference.

Parra, et al. [152] used measures presented in [137] to evaluate the correctness
of requirements. They train a classifier based on the measures and experts’
manual classification to identify “correct” and “incorrect” requirements. They
achieve significantly high accuracy of classification compared with results of

A Method for Automated Reviews of Textual Requirements

118

manual assessors (83-87%). It is not clear from the paper whether the manual
assessors were classifying correctness based on a predefined template or based
on semantic understanding of requirements correctness. Nevertheless, the pa-
per shows that it is possible to achieve high accuracy of automated quality
checking, which is valuable for our research.

The previous studies have mainly focused on different types of ambiguity
measures. They also have conducted evaluation to understand to what extent
these measures can detect the problem areas. Our work is a continuation of the
aforementioned studies. Our contribution to the state of art is the new measures
of complexity and coupling, which can be used in combination with the previ-
ously created measures of ambiguity in order to enhance the precision of the
problem detection. Moreover, we also provide an evaluation of the measures
(and the method) based on not only how well the method indicates the problem
areas but also how well the method can rank requirements based on the severi-
ty of the problems as ranked by the manual assessors.

 SUMMARY 12

This paper presents a method for proactive requirements reviews. The method
is based on four internal quality measures of textual requirements, which were
developed in an action research project conducted in a large software develop-
ment organization. The evaluation results in four software development compa-
nies showed that the method can identify 73% - 80% of the needed improve-
ments that software engineers working manually would identify. The method
was deployed and used in the companies in different ways, considering their
ways of working. The results also showed that more evaluation of the method is
needed in order to understand the possibilities of its generalization across dif-
ferent sizes and domains of products.

PAPER 4

Evaluating Code Complexity Triggers,

Use of Complexity Measures, and the

Influence of Complexity on Mainte-

nance Time

Evaluating Code Complexity Triggers

122

ABSTRACT

Code complexity has been studied intensively over the past decades because it is
a quintessential characterizer of a code’s internal quality. Previously, much em-
phasis has been put on creating code complexity measures and their application
in practical contexts. To date, most measures are created based on theoretical
frameworks, which determine the expected properties that a code complexity
measure should fulfill. Fulfilling the necessary properties, however, does not
guarantee that the measure characterizes the code complexity that is perceived
by software engineers. Subsequently, code complexity measures often turn out
to provide rather superficial insights into code complexity. This paper supports
the discipline of code complexity measurement by providing insights into the
code characteristics that trigger complexity, the use of code complexity
measures in industry, and the influence of code complexity on maintenance time
from an empirical perspective. Results of an online survey, conducted in seven
companies and two universities with a total of 100 respondents are presented,
and show that among other code characteristics, two such characteristics signif-
icantly increase code complexity, which subsequently have a major influence on
the maintenance time of code. Notably, existing code complexity measures are
poorly used in industry.

Evaluating Code Complexity Triggers

123

 INTRODUCTION 1

The internal quality of software influences the ability of software engineers to
progress software development. A major aspect of internal quality is the code
complexity, which directly affects the maintainability and defect proneness of
code [153, 154]. Therefore, research interest on the topic of complexity has
been high over the years. Complexity measures have been designed to apply the
notion of complexity practically [9, 22, 155]. Complexity measurement allows
complexity to be quantified and its influence on aspects of code, such as main-
tainability and defect proneness, to be understood. The concept of complexity,
however, is not an atomic concept, so it is difficult to design a single measure
that quantifies complexity thoroughly. Instead, several complementary
measures are designed to measure different aspects of complexity. Consequent-
ly, the insight that is provided by this combination of measures is expected to
provide a fair assessment of the magnitude of complexity for a given piece of
code.

Designing complexity measures often has followed theoretically established
frameworks, according to which a complexity measure should either fulfill a
predetermined set of properties or comply with a set of rules [27, 156-158].
Theoretical frameworks for creating measures are justifiably necessary because
they propose a common foundation upon which complexity measures should be
designed. Nevertheless, we believe that theoretical frameworks alone are unsat-
isfactory since detailed knowledge supporting the design of measures needs to
be extracted from empirical data. Specifically, to design a complexity measure
one must:

 Identify specific code characteristics that should be considered for 1.
complexity measurement

 Understand whether these characteristics are actually measurable in 2.
practice

 Evaluate the contribution of these characteristics to complexity in-3.
crease

 Observe existing complexity measures and determine how well they 4.
capture code characteristics that influence complexity

 Evaluate the usefulness and popularity of existing complexity 5.
measures in practice

 Assess the influence of complexity on code maintainability. 6.

Since these factors are not addressed fully in the design of complexity measures,
existing measures are usually perceived as being only moderately accurate in
complexity measurement. A typical example of this is when two source code
functions have the same cyclomatic complexity value. The cyclomatic complexi-
ty is the same, but intuitively we understand that one of the functions is more
complex because, for example, it has more nested blocks [159]. These kinds of
issues are apparent in many well-recognized complexity measures and have
been discussed previously [72, 160-162]. In practice, certain modules of code

Evaluating Code Complexity Triggers

124

are perceived to be intrinsically more complex and, therefore, more difficult to
maintain despite their relatively small size [30, 163].

We believe that the aforementioned knowledge required for designing
measures can be partially or fully answered if we consider the collective view-
point of software engineers, which would provide an insightful contribution for
academics when designing complexity measures and measurement-based pre-
diction models.

The aim of this study, therefore, was to acquire such knowledge using the fol-
lowing five research questions (RQ):

RQ 1: Which code characteristics are perceived by software engineers
to be the main triggers of complexity?

RQ 2: How frequently are complexity measures used in practice?

RQ 3: How strongly do software engineers perceive complexity to influ-
ence code quality?

RQ 4: How much does complexity affect maintenance time?

RQ 5: Do the responses to RQ 1 to RQ 4 depend on the demographics of
respondents?

Here, we present the evaluation results of code characteristics as complexity
triggers, the extent to which complexity measures are used in industry, and the
evaluation results of complexity influence on internal quality and maintainabil-
ity based on a survey of 100 software engineers. The survey included both
structured and open questions that allowed for comments. In summary, the
results of the five categories of questions (RQ1‒RQ5) showed that:

 Of the eleven proposed code characteristics, only two markedly in-1.
fluence complexity growth: the nesting depth and the lack of struc-
ture

 None of the suggested nine popular complexity measures are active-2.
ly used in practice. Size and change measures as forms of complexity
measures are used relatively more often, although not for complexity
or quality assessment purposes

 Complexity is perceived to have strong negative influence on aspects 3.
of internal quality, such as readability, understandability and modifi-
ability of code

 The statistical mode (most likely value) of the software engineers’ 4.
assessment indicates that complex code requires 250‒500% more
maintenance time than simple code of the same size

 The demographics of the respondents did not influence the results of 5.
RQ 1‒RQ 4.

These results suggest that managing complexity has a crucial role in increasing
product quality and decreasing maintenance time. Moreover, the results provide
insight as to which code characteristics should be considered in code complexity

Evaluating Code Complexity Triggers

125

measurement and management. Importantly, however, the reasons why com-
plexity measures are not actively used in complexity management activities
need thorough investigation.

 THE LANDSCAPE OF CODE COMPLEXITY SOURCES 2

The term complexity has been used widely in many disciplines, usually to de-
scribe an intrinsic quality of systems that strongly influences human under-
standability of these systems. Unfortunately, as no generally accepted definition
of complexity that would facilitate its measurement exists, every discipline has
its own rough understanding on how to quantify complexity.

Code complexity, the subject of this study, is not an exhaustively defined concept
either. In the IEEE standard computer dictionary, code complexity is defined as
“the degree to which a system or component has a design or implementation
that is difficult to understand and verify” [21]. According to Zuse [9], the true
meaning of code complexity is the difficulty in understanding, changing and
maintaining code. Fenton and Bieman [22] view code complexity as the re-
sources spent on developing (or maintaining) a solution for a given task. Simi-
larly, Basili [8] defines code complexity as a measure of the resources allocated
by a system or human while interacting with a piece of software to perform a
given task. An understanding of how to measure complexity and make code less
complex is not facilitated by these definitions because they focus on the effects
of complexity, i.e., the time and/or resources spent or experienced difficulty, and
thus do not capture essence of complexity. Briand, et al. [23] have suggested
that complexity should be defined as an intrinsic attribute of code and not its
perceived difficulty by an external observer, which would indeed aid the under-
standing of the origin of complexity.

To outline a landscape of the source of code complexity that would facilitate the
design of the survey questions and the interpretation of the results, we adopted
a general definition of system complexity that considers it to be an intrinsic
attribute of a system. An example of such a definition is provided by Moses [25],
who defines complexity as “an emergent property of a system due to its many
elements and interconnections”. This is very similar to the definition of Rechtin
and Maier [6], stating that “a complex system has a set of different elements so
connected or related as to perform a unique function not performable by the
elements alone”. These two definitions are suitable for understanding and
measuring code complexity because they indicate the origin of complexity,
namely different elements and their interconnections in the code. Elements and
interconnections appear to be the direct sources of code complexity, i.e., those
sources that directly influence code complexity and thus complexity measure-
ment. Based on these two definitions, we can imply three things: (i) The more
elements and interconnections the code contains, the more complex the code;
(ii) Since the elements and interconnections always have some kind of represen-
tation (for reading, understanding and interpreting), the complexity depends on

Evaluating Code Complexity Triggers

126

this representational clarity; and (iii) If we consider that any system usually
evolves over time, the evolution of elements and interconnections also deter-
mines a change in complexity.

Considering these three points, we postulate that there are three direct sources
of code complexity:

 Elements and their connections in a unit of code 1.
 Representational clarity of the elements and interconnections in a 2.

unit of code
 Evolution of a unit of code over development time. 3.

Elements and their connections: Complexity emerges from existing elements
and their interconnections in a unit of code. For a unit of code, the elements are
different types of source code statements (e.g., constants, global and local varia-
bles, function calls, etc.). The interconnections of elements can be expressed
both by mathematical operators (e.g., addition, division, multiplication, etc.) and
control statements, Boolean operators, pointers, nesting level of code, etc. Each
type of element and each type of connection increases the magnitude of code
complexity to a different extent.

Representational clarity: Complexity arises from unclear representation of the
code. This is concerned with how clearly the elements and interconnections are
presented to demonstrate their intended function. This means that there could
be a difference between what a given element does and what its representation
implies that it does. A typical example is using misleading names for functions
and variables.

Intensity of evolution: Code evolution can be characterized by the frequency
and magnitude of changes of that code. Evolution of the code is also regarded as
a source of complexity because this changes the information about how a given
piece of code operates in order to complete a given task. If a software engineer
already has knowledge on how the code operates, then the evolution of the code
will partly or completely destroy that knowledge because changes will intro-
duce a new set of elements and interconnections into the code. This does not
imply that changing the code always makes the code more complex, it only implies
that the level of complexity, solely driven by changes in the code, increases. At the
same time, the level of complexity that emerges from elements and their con-
nections might decrease and thus potentially reducing overall complexity. This
occurs often in practice when the code is refactored successfully.

We used these three direct sources of complexity to correctly identify those
code characteristics that belong to any of these sources as direct complexity
triggers. Subsequently, we developed the survey questions to evaluate these
characteristics.

These three sources of complexity comply with the definitions of Moses [25] and
Rechtin and Maier [6], and are directly observable on the code, hence our term
“direct sources of complexity”. In addition, there are several other, indirect
sources of complexity, such as those described by Mens et al. [5]. These are not

Evaluating Code Complexity Triggers

127

directly visible in the source code, although they somewhat influence
complexity. Examples include the:

 Complexity of the problem to be solved by the program 1.
 Selected design solution for the given problem 2.
 Selected architectural solution for the given problem 3.
 Complexity of the organization where the code is developed 4.
 Programming language 5.
 Knowledge of developers in programming 6.
 Quality of the communication between developers and development 7.

teams
 Managerial decisions 8.
 Domain of development. 9.

In this study, we did not consider the indirect sources of complexity, their
measures and influence on the internal quality; this requires additional study.

In summary, we perceive complexity to be an emergent property of code that is
magnified by the addition of more elements and/or interconnections, changing
the existing ones or not clearly specifying the function of existing elements. We
consider that the origin of code complexity is outlined primarily by the three
aforementioned sources. Since the other factors are not direct sources of com-
plexity, they should not be included in the landscape of code complexity sources.

 RESEARCH DESIGN 3

To address the research questions (RQ 1‒RQ 5), we conducted an online survey
[49] with software engineers in Industry and Academia. Most data were collect-
ed using structured questions of which there were 25 in total organized as a six-
point Likert scale. An even number for the scale values avoided a scale mid-
point, thereby ensuring that respondents could choose a higher or lower esti-
mate than average. Additionally, three open questions allowed respondents to
add choices that might otherwise have been missed in the structured questions.
The survey consisted of five logical parts:

 Part 1: Identified the demographics of participants 1.
 Part 2: Estimated the extent to which different code characteristics 2.

make code complex
 Part 3: Evaluated the influence of complexity on internal code quality 3.

attributes
 Part 4: Evaluated the most commonly used complexity measures in 4.

industry
 Part 5: Assessed the influence of complexity on development time. 5.

Survey participants were software engineers from seven large software devel-
opment organizations and two universities, all of which were a part of a re-
search consortium called Software Centre. The seven collaborating companies
were: Ericsson, Volvo Group, Volvo Car Group, Saab and Axis Communication all

Evaluating Code Complexity Triggers

128

from Sweden, Grundfos from Denmark, and the Swedish branch of Jeppesen in
the United States. The two universities were University of Gothenburg and
Chalmers University of Technology The companies represented a variety of
market sectors, namely telecommunication equipment, trucks and cars, the air
defense system, video surveillance system, pumps, and the air traffic manage-
ment system. All of these systems used both small and large software products,
which had been developed using different development processes, such as Lean,
Agile, and V-model. Complexity was an actively discussed topic in these compa-
nies so many software engineers were motivated to participate in the survey.
Since we were involved in previous research with these companies and knew
the products and development organizations, we found this selection of compa-
nies rational from the perspective of construct validity.

We shared the online address of the survey with the collaborating managers or
organizational leaders in the companies, who then distributed the survey within
their corresponding software development organizations, targeting software
engineers who worked intensively with software development. Our objective
was to collect at least 100 responses from the companies in order that one an-
swer should represent at most one percent. One initial request and one remind-
er were sent to prompt a response from the participants. In total, however, 89
responses were received from the companies. In addition, 11 responses were
received from the two universities. We selected university respondents who
worked in close collaboration with software companies and had developed
software products themselves earlier in their careers. In contrast to the compa-
nies, the survey link was distributed in universities directly to potential re-
spondents. The response rate was estimated by counting the number of poten-
tial respondents who received the survey link from corporate contacts and di-
rectly from us. Approximately 280 people received the survey link, 100 of whom
responded, resulting in a response rate of approximately 36%.

To minimize any misunderstanding of words or concepts in the survey ques-
tions, two pilot studies were conducted prior to the survey launch. Feedback
from a group of nine software engineers from companies was also used to im-
prove the survey and the choice of assessment scales. This test group was also
asked to interpret their understanding of the survey questions in order to iden-
tify any misinterpretations. The survey was only launched once all nine engi-
neers understood the survey questions as they were intended to be understood.
The results of the pilot studies are not included in the results of this study.

 Demographics and the Related Questions 3.1

The first part of the survey investigated the participant demographics. Five
fields were given for information related to demographics, as presented with
the specified options in Table 1. Data for the five fields were collected using the
following five statements:

 Select your education 1.

Evaluating Code Complexity Triggers

129

 Select your job title 2.
 Select your domain 3.
 Select the years of experience that you have in software develop-4.

ment
 Select the programming languages that you usually work with. 5.

Table 1 Specified fields and options for acquiring demographic data

Education Job Title Domain Experience Programming
Language

Computer Sci-
ence (31)

Developer (49) Telecom (30) < 3 years
(10)

Python / Ruby
(30)

Software Engi-
neering (37)

Tester (5) Automotive
(23)

3‒5 years
(11)

Java / C# (43)

Information
systems, Infor-
matics (7)

Architect (13) Defence (10) 6‒10 years
(20)

C++ (42)

Computer Engi-
neering (11)

Team leader,
Scrum master
(14)

Enterprise
Systems (14)

11‒15
years (20)

C (57)

Management (2) Product owner
(2)

Web Devel-
opment (2)

> 15 years
(40)

JavaScript/PHP
(15)

Economics (0) Project man-
ager (1)

Health Care
(0)

 Perl / Haskell (10)

Electrical, Elec-
tronic Engineer-
ing (38)

Researcher
(12)

Academia
(11)

 TTCN / Tcl / Shell
(11)

Other (12) Other (4) Other (16) Other (21)

In the cases of “Job Title” and “Experience”, options were given by radio buttons
with a “one-choice-only” option. Checkboxes were specified for all other fields to
enable respondents to select more than one option. In Table 1, the number of
responses obtained per demographical category is shown in brackets. In addi-
tion, graphical representations of these results can be found in Section 4.1.

 Selected Code Characteristics as Complexity 3.2

Triggers

The second part of the survey concerned code characteristics with the objective
of understanding the extent to which each code characteristic increases code
complexity. We proposed eleven code characteristics that can potentially in-
crease code complexity based on our previous study conducted with Ericsson
and Volvo Group [164]. In that study, we were designing code complexity meas-
urement systems for these companies in which approximately 20 software en-
gineers were involved. Based on regular discussions on topics like the origin of
complexity and which code characteristics are usually considered in complexity
measurement, we determined the eleven common code characteristics that

Evaluating Code Complexity Triggers

130

were used in this study. These characteristics belong to one of the three main
sources of the complexity landscape presented in Section 2. The three main
sources, complexity characteristics and their descriptions are shown in Table 2.

Table 2 Code characteristics and descriptions

Three sources
of complexity

11 Code Characteristics Description of the Characteristic

Elements and
interconnections

Many operators All mathematical operators (e.g., =, +,
-, /, mod, sqrt)

Many variables Both local and global variables in the
code

Many control statements Control statements in the code (e.g.,
“if”, “while”, “for”, etc.)

Many calls All unique invocations of methods or
functions in the code

Big nesting depth The code is nested if there are many
code-blocks inside one another

Multiple tasks Logically independent tasks that are
solved in one code unit

Complex requirement
specification

This relates to detail requirement
specification that the developers use
to design software

Representational
clarity

Lack of structure This relates to correct indentations,
proper naming and using the same
style of coding for similar patterns of
code

Improper or not existing
comments

This relates to code that does not
have any comments or the existing
ones are misleading

Evolution

Frequent changes This relates to code that changes
frequently thus behaving differently
over development time

Many developers This relates to code that is modified
by many developers in parallel

Nine of the code characteristics are easily observable in the code. Although two
of the characteristics—“complex requirement specification” and “many devel-
opers”—are difficult to observe in the code, they still directly influence complex-
ity:

 Many requirements in industry are written in a very detailed man-1.
ner, such as pseudocode or detail diagram. Such detail specifications
do not allow developers to consider the design of the code, but mere-
ly translate the specification into a programming language so the
specification complexity is largely transferred into the code.

 Many developers who make changes on the same piece of code add a 2.
new dimension on the code change as a type of complexity. The in-
formation needed to learn about the change in this case comes from
multiple developers.

Evaluating Code Complexity Triggers

131

To investigate the effect of these eleven characteristics on code complexity, one
statement (question) per characteristic was formulated be answered using the
specified Likert scale. For example, the statement for function calls is shown
Figure 1. The three dots at the end of the statement were to be completed by
one of the options given in the Likert scale. The second line explained in more
detail what was meant by the given characteristic to ensure no uncertainty on
the part of the respondent.

Figure 1 Example of a question regarding a given code characteristic

The rest of the statements about code characteristics were organized the same
way as that shown Figure 1. In most of the statements, we intentionally empha-
sized that “many of something” makes code complex, i.e., many operators, many
variables, many control statements, etc. In other statements, we used different
methods of framing, for example, the lack of structure, the frequent changes, etc.
At the end of this part of the survey, an open question was included to allow
respondents to suggest other code characteristics that they believed could sig-
nificantly increase complexity.

 Complexity and Internal Code Quality Attributes 3.3

The third part of the survey was designed to acquire information on the extent
to which code complexity influences internal code quality attributes that are
directly experienced by software engineers. Note that by internal code quality
attributes we do not mean the emergent properties of software code, such as
size, length, cohesion, coupling and complexity itself, but the quality attributes
that arise from the relationship between the intrinsic properties of code and
cognitive capabilities of engineers, namely readability, understandability and
modifiability. We added “ease of integration” to these three attributes, however,
since we consider it also plays an important role in code development and can
be influenced by complexity. The four internal code quality attributes and their
brief descriptions are shown in Table 3. The questions were organized to have
six possible values of the Likert Scale plus an additional option to allow a “no
answer” option. One of the four questions is shown in Figure 2 and depicts the
organization of the rest of the questions.

Evaluating Code Complexity Triggers

132

Table 3 Internal quality attributes and descriptions

Internal code quality
attributes

Explanation

Readability The visual clarity of code that determines the ease for reading
the code

Understandability The conceptual clarity and soundness of code that ease the
process of understanding the code

Modifiability The logical soundness and independence of code that deter-
mine the ease of modifying the code

Ease of integration The ease of merging a piece of code to a code development
branch or to the whole product

In this section, only selected internal code quality attributes concerned with
cognitive capabilities of the engineers working with the code were covered.
Other internal code quality attributes, such as error-proneness or testability
were not considered in this study because they are not directly experienced by
software engineers when working with the code.

Figure 2 Example of a question regarding the influence of complexity on internal
quality

 Selected Complexity Measures 3.4

The fourth survey section investigated the use of the most actively investigated
complexity measures from the literature. Measures were selected based on their
popularity in the literature, and particularly how often they are used for main-
tainability assessment and defect predictions.

The measures and their descriptions are shown in Table 4. To acquire infor-
mation on the use of the measures, the frequency of use was assessed using a
Likert Scale; an example of these questions is shown in Figure 3. The last option
in this this “multiple choice” question was “never heard of it”, which essentially
differs from that of “never used it” because in the former case, the reason why
the measure is not used differs substantially from the latter. If a respondent
selects “never heard of it”, this implies that the measure could be either useful
for them or not; however, if the respondent has never heard of it, no conclusion
can be made. In contrast, if a respondent answers “never used it” (or “hardly

Evaluating Code Complexity Triggers

133

ever used it”) this might indicate a problem with the measure itself. An addi-
tional field was included at the end of this section that allowed respondents to
add more complexity measures, which they did, but was not included in our list.

Table 4 Selected measures and descriptions

Name of the Measure Description
McCabe’s cyclomatic
complexity [106]

The number of linearly independent paths in the control
flow graph of code. This can be calculated by counting the
number of control statements in the code

Halstead measures [165] Seven measures completely based on the number of oper-
ators and operands

Fan-out [166] The number of unique invocations found in a given func-
tion

Fan-in [166] The number of calls of a given function elsewhere in the
code

Coupling measures of
Henry and Kafura [166]

Based on size, fan-in, and fan-out

Chidamber and Kemerer
OO measures [167]

Inheritance level and several size measures for class

Size measures Lines of code, number of statements, etc.
Change measures, e. g.,
Antinyan, et al. [140]

Number of revisions, number of developers, etc.

Readability measures, e.
g., Tenny [168], Buse and
Weimer [169]

Line length, indentations, length of identifiers, etc.

Figure 3 Example of a question regarding the use of measures

 Complexity and Maintenance Time 3.5

The fifth part of the survey concerned the influence of the code complexity on
code maintenance time. Here the objective was to obtain quantitative infor-
mation on how much time is spent unnecessarily on maintaining complex code.
The quantitative information was based purely on a perceptive estimation of
respondents; therefore, we expected the summary of the answers to be a rough
estimation. The only question posed in this section is shown in Figure 4.

Evaluating Code Complexity Triggers

134

Figure 4 Question investigating the influence of complexity on maintenance time

The question assumes that two pieces of code of the same size can differ signifi-
cantly in complexity. The respondents were expected to estimate the additional
time required to maintain a piece of complex code compared to the maintenance
time of simple code of the same size. The answer was not expected to be based
on any quantitative estimation, but rather on the knowledge and experience of
respondents. At the end of this question, a field for free comments on respond-
ents’ thought processes when making the estimates was added.

 Data Analysis Methods 3.6

Data was analyzed using descriptive statistics and visualizations. As regards
descriptive statistics, percentages and statistical modes were used, whilst visu-
alizations included tables and bar charts to summarize data related to the code
characteristic, the use of complexity measures and the effect of complexity on
the internal quality of code. Color-coded bars were used to enhance graph read-
ability. Pie charts were used to visualize the complexity influence on mainte-
nance time. The fields that had been specified for free text were analyzed by
classifying answers into similar categories. As regards the code characteristics,
the number of respondents who proposed a specific characteristic to be a signif-
icant complexity trigger was counted. With respect to measures, the number of
respondents who mentioned a specific complexity measure that they used was
not included in our list. The assessment of complexity influence on maintenance
time was done by listing the tactics used by respondents for their assessment, as
well as counting the number of respondents per proposed tactic.

In addition to the aforementioned analysis, across-sectional data analysis was
also conducted to investigate whether the demographics of the respondents
significantly influenced the results. We hypothesized that demographics do not
influence the results and conducted statistical tests to either reject or confirm
this hypothesis. Since the number of responses was only 100, it was not possible

Evaluating Code Complexity Triggers

135

to divide the data into many groups to obtain meaningful results because some
groups had too few data for clear statistical analysis. Data, therefore, were di-
vided into fewer groups for such analyses.

Table 5 shows all the possibilities for cross-sectional data analysis. The first row
depicts the four main categories of data. The first column shows the five units of
demographics. Every cell of the table indicates whether cross-sectional analysis
for a pair of “demographical data” and “category of result” was conducted in this
study. Three of the survey questions in the Demographics Section were specified
by checkboxes. These questions concerned education, domain and programming
language. Since these were specified by checkboxes, one respondent could se-
lect several choices concurrently, such that a statistical test to analyse the effect
of demographics on the results could be conducted. The results concerning
complexity measures and complexity influence on code quality attributes were so
polarized over the categorical values that it was not possible to do any cross-
sectional data analysis for these two categories either.

Table 5 Cross-sectional data analysis table

The remaining four cells of Table 5, however, show the four pieces of cross-
sectional analysis that were done. Methods for each of the analyses are present-
ed in the following subsections.

 Evaluating the Association between Job Type and 3.6.1

Assessment of Code Characteristics

Here, the objective was to understand whether the type of job has any associa-
tion with the assessment results of code characteristics. Therefore, the type of
job was divided into two groups, developers and non-developers. Developers
were respondents who marked their role as “developer” in the survey, whilst
the non-developers were those respondents who marked any role other than
“developer”. Hence, the variable type of job has two possible categorical values:
developer and non-developer.

Evaluating Code Complexity Triggers

136

Table 6 Original six values and derived two values of “assessment” for code charac-
teristic

Original values Derived values

Not complex at all
Little influence Little complex

Somewhat complex

Rather complex
Much influence Quite complex

Very complex

This division of jobs is motivated by the fact that developers work directly with
the code and they themselves influence code complexity, whereas non-
developers are only influenced by the code complexity. Therefore, we expected
a statistical difference between these two groups. Similarly, we derived two
values of “assessment” for code characteristic from the original six values. The
original six values and the derived two values are presented in Table 6. The two
values for both “type of job” and “assessment” allowed us to develop a contin-
gency table based on which Chi-Square test was conducted to determine wheth-
er there was a statistical difference in assessment of code characteristics by
people with different jobs. An example is given for nesting depth in Table 7,
which shows that nine developers indicated that nested code has little influence
on complexity increase, while 42 developers indicated the opposite.

Table 7 Contingency table for “type of job” and “assessment of code” characteristics

 Developer Non-developer

Little influence 9 7

Much influence 42 41

Because the variables can have categorical values, the Chi-Square test was used
to assess whether the type of job and assessed influence were associated. To
perform this analysis for all eleven code characteristics, eleven tables similar to
that of Table 7 were developed

 Evaluating the Association between Experience and 3.6.2

Assessment of Code Characteristics

Two values of “experience” from the original five values were derived to con-
duct this analysis (Table 8), namely, “much experience” and “little experience”.
The analysis was conducted in exactly the same way as in Section 3.6.1.

Evaluating Code Complexity Triggers

137

Table 8 The original five-scale assessment and the derived two-scale assessment

Original values Derived values

< 3 years
Little experience 3‒5 years

6‒10 years
Much experience 11‒15 years

> 15 years

 Evaluating the Association between Type of Job and 3.6.3

Assessment of Complexity Influence on Mainte-

nance Time

Two values for “type of job” (developer and non-developer) were used to ana-
lyse the effect of complexity on maintenance time. Originally, the variable that
showed the assessment values of complexity influence on maintenance time had
eight categorical values, but to ensure sufficient data points for a meaningful
Chi-Square test, three categorical values were derived from these eight values.
Three values were chosen because eight might be too many to categorize them
into two values as with the other variables. The original eight values and the
three derived values are shown in Table 9.

Table 9 Original eight values of assessment and three derived values of assessment

Original values Derived values

0‒10%
Little influence 10‒25%

25‒50%

50‒100% Much influence

100‒150%

150‒250%
Very much influence 250‒500%

500‒1000%

Based on the three values of “assessment” in Table 9 and two values of “type of
job”, a contingency table was made (Table 10). Using this table, a Chi-Square
test was performed to determine whether there was a significant difference
between “assessment” and “type of job”.

Table 10 Cross-sectional data for “type of job” and assessment of “complexity influ-
ence on maintenance time”

 Developer Non-developer

Little influence 8 10

Much influence 13 16

Very much influence 29 22

Evaluating Code Complexity Triggers

138

 Evaluating the Association between Experience and 3.6.4

Assessment of Complexity Influence on Mainte-

nance Time

Based on two values of “experience” and three values of “complexity influence
on maintenance time”, a contingency table was developed (Table 11). A Chi-
Square test using data in Table 11 was done to determine whether there was an
association between “experience” and assessed “complexity influence on
maintenance time”.

Table 11 Cross-sectional data for “experience” and assessment of “complexity in-
fluence on maintenance time”

 Little experience Much experience

Little influence 3 15

Much influence 7 22

Very much influence 11 40

 RESULTS AND INTERPRETATIONS 4

The results are divided into six sections. The first section shows demographic
data of all respondents. The subsequent four sections present results on (i) code
characteristics, (ii) complexity influence on internal quality, (iii) the use of com-
plexity measures in industry, and (iv) the influence of code complexity on the
maintenance time of code. These four sections answer the first four research
questions (see RQ 1‒RQ 4 in Introduction). Section 6 shows the cross-sectional
data analysis when slicing data according to the demographic data and answers
the fifth research question (RQ 5).

 Summary of Demographics 4.1

This section presents data from the five demographical dimensions of the re-
spondents, i.e., the type of education of respondents, the type of job the respond-
ents had, the software development domain the respondents worked in, and the
group of programming languages they used.

The educational background of the respondents is shown in Figure 5. Since this
question was based on checkboxes, respondents could select multiple answers.
In total, 100 respondents gave 138 ticks, indicating that several respondents
had more than one educational background. Figure 5 shows that the majority of
respondents had received education in electrical/electronic engineering, soft-
ware engineering or computer science. The popularity of electrical/electronic
engineering can be explained by the fact that many respondents were from car
and pump industries, which traditionally demand competence in electrical engi-
neering. The increasing importance of software in these industries has created a
favorable environment for electrical engineers to become software development

Evaluating Code Complexity Triggers

139

specialists over time. Figure 6 shows the job titles of respondents. Almost half of
respondents (n = 49) are developers, but there was also a number of architects,
development team leaders and researchers.

Figure 5 Respondents’ educational
background

Figure 6 Respondents’ job description

This was unexpected in that there were few “testers” among the respondents,
although this could be explained by the fact that many respondents are working
in Agile development teams, which have no specific testers and developers.
Notably, these two jobs (“testers” and “developers”) often are interchangeable
and both are known as “developers” in some organizations.

Figure 7 presents the domain of respondents. In total, 105 answers were given
by the 100 respondents, i.e., five or fewer respondents had worked in more than
one domain. Fifty three respondents alone worked in the telecom and automo-
tive domains.

Figure 7 Software development do-
main of respondents

Figure 8 Experience of respondents in
software development

Figure 8 presents the experience of respondents in software development. Thir-
ty nine respondents had more than 15 years of experience and, generally, only
10 respondents had little experience (less than 3 years).

Finally, Figure 9 shows the programming languages used by respondents. Ac-
cording to the responses, C language was dominant in these industries, partly
due to embedded development and partly because all products were old and
mature having been developed for many years and traditionally relying on C
language.

In total, 100 respondents gave 171 ticks for programming languages, indicating
that many of the developers used several programming languages.

Evaluating Code Complexity Triggers

140

Figure 9 Programming languages used by respondents during their entire experi-
ence

 Code Characteristics as Complexity Triggers 4.2

Figure 10 shows the eleven characteristics and their evaluated influence on
complexity. The vertical axis shows the number of respondents, and every bar
represents one characteristic. Bars are color-coded, with the darkest red indi-
cating that the given characteristic made code very complex. The darkest green
color indicates that the given characteristic does not make the code any com-
plex.

Figure 10 Influence of code characteristics on complexity

Overall, it can be inferred from Figure 10 that two characteristics—the lack of
structure and nesting depth—are separated from all other characteristics due to
their estimated magnitude of influence. If the red-orange area is considered to
be an area of major influence, then the majority of respondents (over 80%) be-

Evaluating Code Complexity Triggers

141

lieved these characteristics to have major influence on complexity. The influence
level of the rest of the characteristics decreased gradually along the horizontal
axis. Approximately 50‒60% of respondents believed that control statements,
misleading comments and many developers have a major influence on complexi-
ty, whilst about 35‒45% of respondents believed that multiple tasks, frequent
changes and complex requirements did so.

The larger grey area for “Complex Requirements” may indicate that respondents
found it difficult to evaluate this factor’s influence on complexity. The exact
numbers of estimates are presented in Table 12. The statistical modes of the
evaluations per characteristic are emphasized by color so that what values the
modes have on the assessment scale area easy to read. This alternative repre-
sentation of the results enables greater understanding of the influence of char-
acteristics on complexity. The characteristics have been divided into four groups
based on their modes. The most influential characteristics are nesting depth and
lack of structure, the modes of which reside in the categories of very complex and
quite complex. The next three characteristics have modes categorized as rather
complex, making them the second most influential characteristics. The rest of
the characteristics are interpreted similarly.

Table 12 Influence of code characteristics on complexity with the modes empha-
sized

 very quite rather some. little no

Lack of structure 36 29 21 9 4 0

Nesting depth 23 37 23 13 3 0

Control statements 8 21 30 23 15 2

Misleading com-
ments

12 20 22 21 19 1

Many developers 8 18 25 23 16 4

Multiple tasks 7 18 20 27 14 5

Frequent changes 8 10 22 26 15 12

Complex require-
ments

9 10 17 25 12 12

Many variables 0 13 21 27 34 3

Many calls 0 10 16 31 32 9

Many operators 2 6 9 30 34 16

In addition to the evaluation of code characteristics, respondents were also able
to provide qualitative feedback on what other characteristics they considered
might significantly influence code complexity. Eight respondents mentioned that
it is preferable to separate categories of “missing comments” and “misleading
comments” since they influence complexity differently, i.e., missing comments
are not considered a problem if the code is well-structured and written in a self-

Evaluating Code Complexity Triggers

142

explanatory manner; however, misleading comments can significantly increase
the representational complexity of the code.

One respondent stated that it is always good practice to incorporate the com-
ments into the names of functions, variables, etc. because it is highly likely that
over time and with the evolution of software, comments become misleading
because they are not always updated.

Four respondents mentioned that they prefer global and local variables to be
separated since global variables introduce significantly higher complexity than
local variables. According to respondents, the extensive use of global variables
can cause high complexity and decrease the ability to find serious defects. A case
study conducted in Toyota also supports this line of argument [170].

Three respondents mentioned that multiple levels of inheritance with functions
overloaded at many different levels can significantly increase complexity. In
such cases, it is hard to understand which piece of code is actually executed.
Another three respondents mentioned that the extensive use of pre-processors,
macro-code and many levels of pointers can also significantly influence com-
plexity.

As well as comments regarding code characteristics, respondents also reflected
on other issues of code complexity. For example, several recognized that there
are two types of complexity: essential and accidental, the former being inherent
to the problem and the latter arising from non-optimal methods of program-
ming, and that sometimes it is difficult to understand whether the complexity is
essential or accidental.

 The Influence of Complexity on Internal Code 4.3

Quality Attributes

This subsection presents the negative influence of code complexity on internal
code quality attributes, such as readability, understandability, modifiability and
ease of integration. Figure 11 shows the evaluation results for the influence of
code complexity on internal code quality attributes. The diagram shows that the
majority of respondents agree that complexity has a huge influence on three
attributes: readability, understandability and modifiability.

Modifiability, which can be considered the essential constituent of code main-
tainability, is influenced by complexity the most. Ninety five respondents be-
lieved that the complexity has major influence on code modifiability. Only four
respondents believed otherwise, and one respondent did not answer the ques-
tion. Every cell of the table in Figure 11 shows the number of responses ob-
tained per pair of internal code quality attribute and magnitude of influence, and
the first row shows the “N/A” option.

The last three rows of this table tend to show greater numbers than the first
three rows, indicating that the huge influence of complexity on internal code

Evaluating Code Complexity Triggers

143

quality attributes. One of the attributes, “ease of integration”, is believed not to
be influenced by complexity as much as the other three, which is intuitive be-
cause integration often concerns making the specified piece of code work with
the rest of code without understanding its content in detail, and thus without
actually dealing with complexity.

Figure 11 Influence of code complexity on internal code quality attributes

 The Use of Complexity Measures 4.4

The use of code complexity measures in industry is presented here. Nine com-
plexity measures (or groups of complexity measures) and their popularity are
presented in Figure 12. Figure 12 also shows that the next three measures
(McCabe’s cyclomatic complexity, fan-in, and fan-out) were slightly used. Only
two groups of measures (size measures and change measures) were moderately
used by respondents, although this does not necessarily mean that they were
used as a means of quality assessment, but for other purposes, such as effort
estimation or productivity measurement. Table 13 presents a more detailed
view of the use of these measures. The modes of the first five measures in the
table indicate that many respondents had never heard of the specified
measures. The rest of the measures appear to be known by many, but never
used in any systematic way.

Evaluating Code Complexity Triggers

144

Figure 12 Use of complexity measures in industry

Figure 12 also shows that the next three measures (McCabe’s cyclomatic com-
plexity, fan-in, and fan-out) were slightly used. Only two groups of measures
(size measures and change measures) were moderately used by respondents,
although this does not necessarily mean that they were used as a means of qual-
ity assessment, but for other purposes, such as effort estimation or productivity
measurement.

Table 13 presents a more detailed view of the use of these measures. The modes
of the first five measures in the table indicate that many respondents had never
heard of the specified measures. The rest of the measures appear to be known
by many, but never used in any systematic way. Figure 12 also shows that the
next three measures (McCabe’s cyclomatic complexity, fan-in, and fan-out) were
slightly used. Only two groups of measures (size measures and change measures)
were moderately used by respondents, although this does not necessarily mean
that they were used as a means of quality assessment, but for other purposes,
such as effort estimation or productivity measurement. Table 13 presents a
more detailed view of the use of these measures. The modes of the first five
measures in the table indicate that many respondents had never heard of the
specified measures. The rest of the measures appear to be known by many, but
never used in any systematic way.

Table 14 more concisely represents the data, classifying the frequency of use
into three categories: regularly used, not used, and never heard of it. We consider
a measure is used regularly if it is used daily, weekly, or monthly, and a measure
is not used if it is classified as hardly ever or never used it.

Evaluating Code Complexity Triggers

145

Table 13 Measures and their use represented by statistical modes

 Daily Weekly Monthly Hardly
ever

Never
used

Never
heard of

Chidamber
& Kemerer

0 0 1 5 28 66

Halstead 1 0 1 6 27 65

Henry &
Kafura

0 0 1 9 26 64

Buse &
Weimer

3 1 2 10 35 49

McCabe 4 4 3 21 27 41

Fan-in 3 1 3 27 39 27

Fan-out 4 2 4 27 37 26

Change 6 9 7 38 32 8

Size 10 14 12 38 18 8

The latter two categories mean that respondents knew of the measure and had
even have tried to use it, but for some reason did not consider using it regularly.
We have ascertained reasons for this through informal talks from software en-
gineers in the participating companies; these vary and are inconclusive. For
example:

 Company regulations either do not consider using the measure or 1.
another measure is the accepted standard

 Developers do not believe that use of the measure can compensate 2.
for the time spent on the measurement

 The measure is not a good indicator of complexity 3.
 The measure is a good indicator of complexity, but of little help in 4.

understanding how to improve code
 Tool support is unsatisfactory, particularly in minimizing the spent 5.

time on the measurement and facilitating an understanding of the
measurement output.

Considering these reflections, we can conclude that not only are measures po-
tentially unhelpful, but also that company regulations and non-optimal tools
thwart the full adoption of measures.

The modes of responses in Table 14 show that the first four measures in the
table are the least known. Nearly two-thirds of respondents did not know about
the first three measures. Similarly, although the last five measures of the table
were known by most respondents, they have never been used systematically.
Besides the measures that we suggested, respondents also mentioned several
measures that they had used; however these were either alternatives of size
measures (e.g., number of methods) or measures unrelated to complexity.

Evaluating Code Complexity Triggers

146

Table 14 Measures and their use represented in three categories

 Regularly
used

Not used Never
heard

Chidamber and Ke-
merer

1 33 66

Halstead 2 33 65

Henry and Kafura 1 35 64

Readability measures 6 45 49

McCabe 11 48 41

Fan-in 7 66 27

Fan-out 10 64 26

Change 22 70 8

Size 36 56 8

 Influence of Complexity on Maintenance Time 4.5

Understanding the influence of complexity on maintenance time is necessary in
order to make decisions on conducting complexity management activities. If
complexity has a relatively small influence on maintenance time, it would be
difficult to decide whether it is worth spending effort on complexity reduction.

The results in this section aim to increase understanding of the complexity in-
fluence on maintenance time. They are inconclusive, however, as the estimates
are based on educated guesses rather than quantitative assessment methods. It
is true that such an estimate is subjective, and cannot be used as is. It value, how-
ever, is that it provides an insight into the scale of complexity influence. Does com-
plexity increase maintenance time by 10‒20%, or 60‒80%, or two-fold, or multi-
fold or another order of magnitude?

Figure 13 presents the results of the influence of code complexity on mainte-
nance time of code. The statistical mode of the estimates is 27% corresponding
to 250‒500%. Twenty seven respondents believed that complexity roughly
increases maintenance time by a factor of 2.5‒5 times. Generally, 62% of re-
spondents believed that complex code takes more than twice as much effort as
maintenance compared with simple code. In fact, only seven respondents
thought that the code complexity has insignificant influence on maintenance
time. This result means that complexity management activities are necessary
because a significant reduction in complexity promises to decrease the mainte-
nance time multiple times. The respondents also commented on how they had
estimated complexity influence on maintenance time. Four stated that they re-
membered some examples of simple code and complex code that they had modi-
fied in their practice. They remembered roughly how much time code modifica-
tion took and made general estimates. One respondent noticed that in her/his

Evaluating Code Complexity Triggers

147

experience, complex code (usually defect-prone) took a multi-fold longer time to
correct defects than modifying the given code. One respondent stated that the
estimation was a pure speculation. Two respondents found it difficult to make
such an estimate. Generally, the estimates indicate that there is a high likelihood
that complexity increases maintenance time by multiple times.

Figure 13 Influence of complexity on maintenance time of code

 Cross-Sectional Data Analysis Results 4.6

In the previous five subsections, we presented the five main groups of results of
this paper. Here, we investigate whether the demographic data significantly
affect the results presented so far. These data correspond to the four pieces of
statistical analyses described in Section 3.6.

 Type of job and assessment of code characteristics 4.6.1

This section presents results on whether the assessment results of code charac-
teristics are associated with type of job. Table 15 presents the code characteris-
tics and corresponding p and Chi-Square values for every characteristic. The
significance level for p-value is p<0.05. P-values for “many operators” (0.014)
and “many calls” (0.016) attained statistical significance, indicating that there is
indeed a difference between the assessments of “developers” and “non-
developers”. In both cases, the data suggest that according to the developers’
assessment, “many operators” and “many calls” have less influence on complexi-
ty increase compared to that of “non-developers”. All other p-values are large
(p>0.1), indicating no significant difference between the assessments of “devel-
opers” and “non-developers”.

Evaluating Code Complexity Triggers

148

Table 15 Chi-Square test results per code characteristic: type of job and assess-
ment

Name of
character-
istic

Lack of
struc-
ture

Nesting
depth

Control
state-
ments

Mislead-
ing Com-
Com-
ments

Many
develop-
ers

Multi-
ple
tasks

P-value 0.438 0.679 0.804 0.076 0.317 0.249
Chi-sq. 0.602 0.171 0.062 3.151 1.002 1.327

Name of
character-
istic

Fre-
quent
Changes

Complex
Require-
ments

Many
Variables

Many
calls

Many
operators

P-value 0.654 0.196 0.472 0.016 0.014
Chi-sq. 0.201 1.673 0.518 5.808 6.005

 Respondents’ experience and the assessment of 4.6.2

code characteristics

The results here show whether the assessment results of code characteristics
are associated with respondents’ experiences. Table 16 presents code character-
istics and corresponding p and Chi-Square values for every characteristic.

Table 16 Chi-Square test results per code characteristic: experience
and assessment

Name of
character-
istic

Lack of
struc-
ture

Nesting
depth

Control
state-
ments

Mislead-
ing Com-
Com-
ments

Many
develop-
ers

Multi-
ple
tasks

P-value NA 0.686 0.213 0.407 0.111 0.040
Chi-sq. NA 1.164 1.550 0.687 2.538 4.216
Name of
character-
istic

Fre-
quent
changes

Complex
require-
ments

Many
variables

Many
calls

Many
operators

P-value 0.667 0.460 0.160 0.176 0.659
Chi-sq. 0.185 0.547 1.971 1.834 0.195

The p-value for “multiple tasks” is small (0.04), indicating a statistical difference
between assessments of “more experienced” and “less experienced” respond-
ents. In this case, the data suggest that according to “more experienced” re-
spondents, the number of “multiple tasks” in a unit of code has more influence in
complexity increase compared with the assessment of “less experienced re-
spondents”. The rest of the p-values are statistically significant, showing no
association between assessment results and respondents’ experience. In the
case of “lack of structure”, one of the values was less than five when calculating
the estimated frequencies of its contingency table so it was not possible to con-
duct a meaningful test.

Evaluating Code Complexity Triggers

149

 Type of job and assessment of complexity influence 4.6.3

on maintenance time

The results here show whether the assessment results of “complexity influence
on maintenance time” is associated with respondents’ “type of job”. The Chi-
Square test that was performed based on Table 10 shows a large p-value, p =
0.484 (Chi-Sq. = 1.453), indicating no statistical significance. This means the
assessment results of complexity influence on maintenance time are not statisti-
cally different across different jobs.

 Respondent’ experience and assessment of com-4.6.4

plexity influence on maintenance time

The results here show whether the assessment results of “complexity influence
on maintenance time” is associated with respondents’ “experience”. The Chi-
Square test that was performed based on Table 11 shows a large p-value, p =
0.831 (Chi-Sq. = 0.831), indicating no statistical significance. This means the
assessment results of complexity influence on maintainability cannot be statisti-
cally different due to respondents’ experience.

 DISCUSSION 5

Code characteristics as complexity triggers (RQ 1): We have proposed elev-
en code characteristics in this survey, two of which, nesting depth and lack of
structure, strongly influenced complexity. Compared to other characteristics,
these two are usually avoidable because deeply nesting blocks can be averted by
using the “return” statement, creating additional function calls, etc. It is also
possible to write highly structured code by using meaningful names of function
and variables, maintaining line length within good limits, keeping indentations
consistent, etc. Other characteristics, such as the number of operators, control
statements or function calls, usually cannot be avoided since they are tightly
associated with problem complexity.

Our results show that the main two complexity triggers might instead be related
to accidental complexity, which can arise due to suboptimal design decisions.
Our results also closely relate to a report by Glass [7] that for every 25% in-
crease in problem complexity, there is a 100% increase in complexity of the
software solution. A natural question then follows: is it the accidental complexi-
ty that quadruples the increased complexity in the solution domain? We believe
that there is great value in investing effort to answer this question with a further
research because the results of RQ 4 show that complexity has an enormous
influence on the maintenance time, which consumes 90% of the total cost of
software projects [171].

Figure 10 clearly shows that different complexity triggers (code characteristics)
have significantly different levels of influence on complexity increase. This sug-

Evaluating Code Complexity Triggers

150

gests that when creating a complexity measure, the relative differences of such
influences should be considered otherwise the complexity measure will miss-
estimate the perceived complexity of the given measurement entity. Moreover,
when calculating complexity, the weighting for different characteristics can be
derived from empirical estimates of code characteristics as complexity drivers.
In our case, for example, the nesting depth will have a higher coefficient in com-
plexity calculation than the number of operators.

The influence of code complexity on internal code quality attributes (RQ
2): The second research question concerns the complexity influence on internal
code quality attributes. The results suggest that readability, understandability
and modifiability of the code are highly affected by complexity. These results,
and those of RQ 1, entail a straightforward conclusion: nested blocks and poorly
structured code are the main contributors (at least among the proposed eleven
characteristics) in making code hard to read, understand and modify. This con-
clusion may provide good insight for programmers in order to develop under-
standable code.

The use of complexity measures in the industry (RQ 3). This part of the sur-
vey included only the popular code complexity measures; however, there was
an empty field where respondents could register other measures that they used.
The results show that all of the measures are used rarely in the collaborating
companies, and that respondents have never considered any other complexity
measures. There are at least two clear arguments for these results:

 Either the measures are not satisfactorily good at predicting problem 1.
areas,

 Or the measures are good enough (particularly when used in combi-2.
nation), but software engineers need help in understanding how
they can optimally use these measures to locate problem areas and
improve the code.

There are also valid perspectives to support both arguments:

 Designing measures should not be based merely on theoretical 1.
frameworks because the weighting for different complexity triggers
that are considered in complexity measurement can only be derived
from empirical data

 Complexity measures should be evaluated not only for defect predic-2.
tion, but also for how well they can both locate complex code areas
and indicate necessary improvements.

The influence of complexity on maintenance time of the code (RQ 4): If we
were to believe the statistical mode of the results then clearly, complexity man-
agement can potentially decrease maintenance time by a multiple factor.

Cross-sectional data analysis (RQ 5): The cross-sectional data analysis results
support the argument that results obtained for RQ 1‒4 of the survey are most
likely not associated with respondents’ demographics. It was particularly intui-
tive to believe that certain jobs not largely related to core development activities

Evaluating Code Complexity Triggers

151

would tend to underestimate the complexity effect on maintenance time. Our
results, however, show that this is not so, which might imply that practitioners
who are not working directly with software design are, nevertheless, well aware
of the complexity effect on maintenance time.

Future work: We are planning two further studies to directly follow this study;
specifically, we will:

 Circulate the survey to a wider range of software developers, includ-1.
ing the open source community, to gather results from a wider arena
of products and development paradigms, and

 Design a complexity measure that takes into consideration the as-2.
sessed influences of code characteristics.

 VALIDITY THREATS 6

Notably, when analyzing the results obtained on code characteristics as com-
plexity triggers, these results are limited to the eleven characteristics proposed
in this study, which creates a construct validity threat. If more code characteris-
tics had been used in the study, the influence of characteristics on complexity
would differ in Figure 10. For example, if we had added more characteristics
(e.g., “inheritance level” and “usage of macro-code”) to the survey, the number of
the most influential characteristics might have increased. This means that “nest-
ing depth” and “the lack of structure” might not be the only important character-
istics to consider in coding. This should be considered when applying these
results in practice. Nevertheless, adding more characteristics will not change the
estimated influence of code characteristics, which means that nesting depth and
lack of structure remain very influential characteristics.

There is also a possibility that several corporate respondents had worked in the
same organization/team. A common practice in software development organiza-
tions is to decide the standard tools to be used by the organization. Using soft-
ware measures also complies with this practice. Therefore, if five respondents
from the same organization answered the survey, they might all indicate that
they use the same measure. Whilst this does not mean that this measure is used
more often than others, it does mean that in a particular organization the given
measure is adopted for regular use. By including seven companies (including
several organizations within each) and two universities in this study, this threat
has been significantly minimized. Nevertheless, employing a wider range of
companies or domains in this survey would likely result in a markedly more
accurate picture of the use of measures. It would be particularly interesting to
determine those measures used in open source product development because
there the use of measurement tools is fundamentally regulated in a different
way. While tool choice is often affected by corporate regulations and standards
[172], open source developers are more likely to have greater freedom in their
choice of tools.

Evaluating Code Complexity Triggers

152

Another construct validity threat arises due to the possibility that respondents
did not actually understand the measures investigated in the survey. It is possi-
ble that respondents use a tool that shows values of complexity using a certain
measure, yet despite using these values, they still do not know the name of the
measure. Thus, when encountering this measure in the survey, they might have
marked it as “have not heard of”. In the survey, we have partially mitigated this
validity threat by providing explanatory text on what a given measure actually
shows. It may well be the case that even these explanations do not shed light on
whether the given measure was actually known, although this is unlikely.

The four internal quality attributes of code in Section 3.3 were chosen based on
two important points. Firstly, the attributes should be simple and direct to ena-
ble respondents to make a clear logical connection between them and a com-
plexity otherwise a validity threat of misinterpreting the attribute and the entire
question could occur. For example, if we used conciseness, respondents might
have difficulty in understanding what “conciseness of code” is and thus might
provide a flawed answer. Secondly, as we are interested in internal quality at-
tributes that directly affect developers’ work on maintainability, we did not
want to expand the survey to explore the effect of complexity on any quality
attribute in particular.

We designed even-point, Likert scale questions to avoid mid-point values. We
argue that mid-point values should not be used because some respondents
might opt for them if the question is perceived as difficult and requires more
thought. The survey questions did not imply the necessity of mid-point values so
we believe that the six-point scale was adequate.

Two factors can cause a construct validity threat when estimating the influence
of complexity on maintenance time (RQ 5). The first factor concerns the inter-
pretation of what is simple code and what is complex code. We suggested com-
paring the maintenance time spent on simple code with that spent on complex
code. Since respondents could have their own interpretations of complex code
and simple code in our survey (RQ 5), such a comparison is based on a purely
subjective interpretation of the definition of complex/simple code. The second
factor concerns the estimation itself, which is neither quantified in any way nor
derived from a specified mechanism that used by respondents. These results are
derived only from what respondents believe based on their experience and
knowledge so we acknowledge that these results should be used cautiously
when making inferences or predictions.

The classification of developers and non-developers for the cross-sectional data
analysis might not have been an optimal choice because the non-developers’
group contains several categories of jobs. Unfortunately, we were unable to
classify the data based on more categories and conduct meaningful statistical
tests due to data scarcity. Therefore, the fact that no statistical significance was
attained in this piece of analysis might be due to over-simplification of this cate-
gory

Evaluating Code Complexity Triggers

153

In conclusion, the assessment of code characteristics and their influence on
maintenance time is entirely based on the knowledge of software engineers.
While a summary of this knowledge can be valuable, it should not be taken for
granted. Evidence based on alternative and more objective measures would be
markedly beneficial for this type of study [173].

 RELATED WORK 7

A comprehensive list of code characteristics that influence complexity can be
found in the work of Tegarden, et al. [174]., who separate code characteristics
for several entities, including variables, methods, objects and subsystems. They
differentiate nearly 40 distinct code characteristics that can influence complexi-
ty differently. They propose that some of these characteristics can be combined
as they are similar; however they leave this up to the user of their list to decide
on how to do so. Their work is valuable because it provides a comprehensive list
of characteristics that can be used to design complexity measures. Gonzalez
[175] identifies seven sources of complexity that should be considered when
designing complexity measures: control structure, module coupling, algorithm,
code nesting level, module cohesion and data structure. Gonzales also distin-
guishes three domains of complexity: syntactical, functional and computational.
Syntactical is the most visible domain, although it can reveal information about
the other two domains of complexity.

In addition to the nine measures of complexity in our study, there are also sev-
eral other measures reported in literature that are more or less as good as for
complexity assessment, notably the Chapin [176] complexity measure based on
data input and output. Munson and Kohshgoftaar [177] have reported measures
of data structure complexity, whilst cohesion measures have been described by
Tao and Chen [178] and Yang, et al. [179]. Moha, et al. [180] have designed
measures for code smells, where “code smells” can be regarded as an aspect of
complexity. Kpodjedo, et al. [181] have proposed a rich set of evolution
measures, some of which were considered in our study. Wang and Shao
[182],followed by Waweru, et al. [183] proposed complexity measures based on
the weighted sum of distinct code characteristics. Earlier, we discussed that
weighting can provide a more accurate measure of complexity; however the
weighting should not merely be based on the perception of the measure’s de-
signer, but on empirical estimates to provide sensibly accurate weights. From
this perspective, we believe that our study can provide valuable information for
studies that design measures of complexity. Keshavarz, et al. [184] have devel-
oped complexity measures, which are based on software requirement specifica-
tions and can provide an estimate of complexity without examining existing
source code. Al-Hajjaji, et al. [185] have evaluated measures for decision cover-
age.

Suh and Neamtiu [186] have demonstrated how software measures can be used
for proactive management of software complexity. They report, however, that

Evaluating Code Complexity Triggers

154

the measurement values they obtained for existing measures provided incon-
clusive evidence for refactoring and reducing complexity. They observed many
occasions when developers reduced values of complexity measures in the code
with no reduction in actual perceived complexity as had been expected. The
results of this study support the argument that existing software measures are
still far from satisfactory for software engineers when not used in combination
with each other.

Salman [187] has defined and used a set of complexity measures for component-
oriented software systems. Most of the measures that these introduce are more
like size measures (the number of components, functions, etc.). There are also
measures similar to fan-in and fan-out, but at the component level. Most im-
portantly, the study shows that complexity has major influence on code main-
tainability and integrity and that there is lack of empirical data on how existing
complexity measures actually perform in industry. Kanellopoulos, et al. [188]
have proposed a methodology for code quality evaluation based on the ISO/IEC
9126 standard. This work is distinguished by the fact that they use expert opin-
ions for weighting code measures and attributes for more accurate evaluation of
code quality. In two of our previous studies, we have developed measurement
systems in Ericsson and Volvo Group Truck Technology [189]. We investigated
several complexity measures and chose to use a combination of two measures
as a predictor of maintainability and error-proneness. Since we had the close
collaboration of a reference group of engineers, we received valuable feedback
on how these engineers viewed the introduced complexity measures. One of the
most important points they made was that the introduced complexity measures,
such as cyclomatic complexity, fan-in, and fan-out, are too simplistic for com-
plexity measurement. According to them, there were stronger characteristics of
complexity that needed to be weighed in measurement. This feedback was taken
into consideration in the design of this current survey.

 CONCLUSIONS 8

Effective complexity management can reduce the maintenance cost and increase
the chance of producing defect-free software. Complexity measures, therefore,
are developed and utilized as a means of quantification of complexity. Existing
complexity measures are developed based on theoretical frameworks, but do
not necessarily consider empirical observations of the specific code characteris-
tics that complicate code and how much investment each characteristic has in
complexity increase. For these reasons, complexity measurement results often
are incongruent with software engineers’ perceptions of complexity. In this
study, we have conducted a survey to: (i) investigate code characteristics and
their contribution to complexity increase; (ii) evaluate how often complexity
measures are used in practice; and (iii) evaluate the negative effect of complexi-
ty on the internal quality and maintenance time. Our results show that: (i) code
complexity has a major influence on internal quality and maintenance time; (ii)
the two, top-prioritized characteristics for code complexity are not included in

Evaluating Code Complexity Triggers

155

existing code complexity measures; and (iii) existing code complexity measures
are poorly used in practice. This study shows that the discipline concerning code
complexity should focus more on designing effective complexity measures; in
particular, data from empirical observations of code characteristics as complexi-
ty triggers should be used. More work is necessary for a greater understanding
of how software engineers can use existing complexity measures for effective
complexity management and for the ultimate need of maintainability enhance-
ment.

PAPER 5

Mythical Unit Test Coverage

Mythical Unit Test Coverage

158

ABSTRACT

It is a continuous struggle to understand how much a product should be tested
before the delivery to the market. Ericsson, as a global software development
company, decided to evaluate the adequacy of unit test coverage criterion that
they employed for years as a guide for sufficiency of testing. Naturally one can
think that if increasing coverage decreases the number of defects significantly,
then that coverage measure can be considered a criterion for test sufficiency. To
test this hypothesis in practice we investigated the relationship of unit test cov-
erage measures and post-unit-test defects in a large commercial product of Er-
icsson. Based on the results we would like to indicate that the current unit test
coverage measures do not seem to be any tangible help in producing defect-free
software.

Mythical Unit Test Coverage

159

 TEST COVERAGE MEASURES 1

Testing is the process of executing a program with the intent of finding errors
[190]. Sufficient testing has a decisive role for product delivery. However, as
practice has shown, it is rather a complex task to understand whether a product
is sufficiently tested or not. There are several unit test coverage measures which
are aimed to quantify the sufficiency of testing. Three popular measures are
statement coverage, decision coverage, and function coverage:

Statement coverage is the percentage of statements in a file that has
been exercised during a test run.

Decision coverage is the percentage of decision blocks in a file that has
been exercised during a test run.

Function coverage is the percentage of all functions in a file that has
been exercised during a test run.

Simply increasing coverage takes effort from software developers, but the deal
is that we do not know whether this effort is justified, because we do not know
how much the increasing coverage can decrease the number of defects. Several
researchers pointed theoretically that simply satisfying coverage criteria can
miss important code execution possibilities and leave undetected defects [191,
192]. Other researchers showed tactics, such as assertions and causal analysis,
which can improve defect finding capabilities of tests independent of coverage
[193, 194]. In practice, however, the direct effect of test coverage on defect-
proneness is still unknown.

 EXISTING STUDIES 2

First we conducted a literature survey to find out what research is available on
the subject. The survey gave us 29 articles that most likely were related to our
study. After a close examination we found that only eight of them have direct
relation to the subject of coverage-defect relationship. These papers and their
findings are presented in Table 1. It seems that seven out of eight papers sup-
port the statement that the coverage measures are weakly correlated with the
number of defects. Only paper five in the table presents moderate and strong
correlation. Most importantly, in seven out of eight papers one or several of the
following issues are present:

 artificial defects (mutants) 1.
 uncontrolled confounding factors such as size, change rate, complex-2.

ity
 artificial tests and coverage control 3.
 small products and little amount of defects 4.

These factors reduce the likelihood that the obtained results effectively repre-
sent the reality. Essentially only one paper presents data which is sufficiently

Mythical Unit Test Coverage

160

close to a practical case [59]. Curiously enough the authors of this paper argue
that there is a correlation between defects and coverage, but they do not em-
phasize the fact that the statistical effect size is very small, which is essential in
understanding the adequacy of coverage criterion.

Table 1 Papers and findings on coverage measures

Paper Context Summary of Findings

1.
[59]

Two large industrial products. Actual
defects. Block coverage and arch
coverage are measured. cyclomatic
complexity and code changes are
measured and controlled for

The correlation between coverage
and defects is none or very weak.
Moreover, the effort required to in-
crease the coverage from a certain
level to 100% increases exponentially

2.
[195]

Twelve small programs. Actual de-
fects, block coverage, and decision
coverage are measured

No association is found between the
defects and coverage by qualitative
analysis

3.
[196]

Interviews are conducted with 605
practitioners to understand whether
coverage measures are used as test
sufficiency criteria

Mixed responses are obtained. Some
use coverage as sufficiency criteria,
some others stop testing when they
feel the most complex part of the code
is tested

4.
[197]

Twelve small programs. Artificial
defects. Monte-Carlo simulation is
used to find out the relationship of
defects and coverage. Block coverage
and defect coverage are measured

The results do not support the hy-
pothesis of causal dependency be-
tween test coverage and number of
defects when testing intensity is
controlled for

5.
[198]

Two large open source products.
Actual defects. Test suite size, state-
ment coverage, and decision cover-
age are measured. Defectiveness is
measured as a binary variable. Code
coverage is not collected as it is but
manually generated and manipulated

Moderate to strong correlation is
found between coverage and defec-
tiveness.

 6.
[199]

Five large open source products.
Artificial defects. Statement coverage
and (modified) decision coverage are
measured. Code size is measured and
controlled for

Weak and moderate correlation is
found between coverage and defects.
Type of the coverage does not have an
impact on the results

7.
[200]

Experiment on a large software
product. Artificial defects. Block
coverage and decision coverage are
measured. The correlation of cover-
age and defects is assessed under
different testing profiles

Moderate correlation is found be-
tween coverage and defects. The
correlation is different for different
testing profiles.

8.
[201]

Experiment on 14 industrial prod-
ucts. Both artificial and actual defects.
Tests are generated during the exper-
iment. Decision and condition cover-
age are used. The size of test suites is
controlled for

Coverage measures are weak indica-
tors for test suite adequacy. High
coverage does not assume effective
test

Mythical Unit Test Coverage

161

Having such inconclusive results, we decided to conduct a case study which
avoids artificial conditions in the investigated product and controls as many
confounding variables as possible in order to obtain more conclusive results for
the practitioners.

 THE INVESTIGATED PRODUCT 3

The product we studies was a large telecom product developed by Ericsson. The
product size was about 2 million lines of code (Loc). The organization consisted
of about 150 engineers who deliver several major releases of the product in
each year. The organization used mixed Agile/Lean development methodolo-
gies, relying on incremental code deliveries by semi-independent development
teams. As a frontline development organization they are always eager to identify
impediments in their development chain. Thus it was natural to question the
adequacy of test coverage measures that were used as recommendations for
test sufficiency.

 METHOD OF INVESTIGATION 4

We collected all defects per file in a year period of time. Generally, if a file is
changed due to a defect correction is tagged as “bug fix” in the corresponding
development branch. Therefore, it was possible to count how many files have
been defective, and how many defects have been fixed in a file. The defects we
measured were usually found during integration and system tests, or were re-
ported by customers. The defects that were found during unit testing were not
reported and measured. Oppositely, we measured the two coverage measures
per file for unit tests, for the same year as the defects were measured. Since the
coverage data was stable over the given year, we only took a snapshot meas-
urement for the given year. Considering that unit tests were done earlier than
integration and system tests, we could expect that having high coverage during
unit testing would reduce the chance of emerging defects during integration and
system testing. The opposite is also true: less coverage in unit testing would lead
to more defects in integration and system testing. This means that if there is a
tangible negative correlation (<-0.4) between unit test coverage and later found
defects per file, then the coverage measure could be further analyzed to under-
stand its adequacy of use. However, if no tangible correlation is found, then the
coverage measure can be regarded as an inadequate indicator for test sufficien-
cy.

We also measured size, complexity, and changes of files to understand how they
affect the test coverage, defects, and coverage-defect relation. Figure 1 depicts
an overview of our analysis.

Mythical Unit Test Coverage

162

Figure 1 The focus of the study

The original analysis is focused on scrutinizing the relationship of test coverage
and defects. However, since both coverage and defects are affected by code
properties – complexity, changes, size, – we investigate their influence on the
original analysis as well. Probably there are other variables that influence the
defects-coverage relationship, such as, developers’ experience in coding and
testing, the programming language by which the product was developed, inte-
grated development environment which offers testing tools, etc. But we assume
that their influence is randomly distributed over source files, so our results will
not suffer noticeably.

 RESULTS 5

The Pearson/Spearman correlation coefficients between several complexity,
size, change measures and defects and coverage measures are presented in Ta-
ble 2. Important values are boldfaced in the table. The first important thing is
that the correlation coefficients between statement (decision, function) cover-
age and defects are weak (rows two, three, and four under the column of de-
fects). Interestingly the correlation between coverage measures is very strong,
indicating that they are very similar to each other (rows three and four in the
last column).

This is the reason why the correlation coefficients between coverage measures
and defects are nearly the same. Since the decision, statement, and function
coverage are strongly correlated, only one of them is used in the correlation
analysis with the other variables (the last column of the table). The fact that the
correlation between the coverage and defects is weak can be regarded as the
first indication of the coverage measures being inappropriate as test sufficiency
criteria. However there can be a problem with this kind of conclusion, because
the size of files is not controlled for. Our analysis assumed that files with equal
coverage should have equal amount of defects. But this assumption is not true,
because a file with 1000 Loc and 50% coverage has 500 Loc untested, while
another file with 100 Loc and still with 50% coverage have only 50 Loc untest-

Mythical Unit Test Coverage

163

ed. You see, the files have equal coverage but there is much bigger likelihood of
finding defects in 500 lines of untested code than in 50 lines of untested code. In
fact the strong correlation between Loc and defects (0,67/0,53) indicates that
bigger size is more likely to defects, and that is quite intuitive.

Table 2 Pearson/Spearman correlation coefficients between change, size, and
complexity measures with defect count and coverage of files

N Property Measure Correlation
with defects

Cor. with
statement
coverage

1 Defect Defects 1 -0,19 / -0,13

2 Coverage Statement coverage -0,19 / -0,13 1

3 Coverage Decision coverage -0,19 / -0,13 0,91 / 0,87

4 Coverage Function coverage -0,18 / -0,14 0,87 / 0,86

5 Change Versions 0,79 / 0,62 -0,14 / -0,07

6 Change Developers count 0,76 / 0,63 -0,14 / -0,06

7 Change Changed code 0,61 / 0,55 -0,11 / -0,08

8 Change Added code 0,58 / 0,53 -0,11 / 0

9 Change Deleted code 0,51 / 0,55 -0,1 / -0,08

10 Change Age 0,31 / 0,27 -0,27 / -0,21

11 Size Statements 0,62 / 0,49 -0,17 / -0,11

12 Size Loc 0,67 / 0,53 -0,18 / -0,12

13 Complexity Cyclomatic complexity 0,64 / 0,48 -0,18 / -0,12

14 Complexity Maximum block depth 0,42 / 0,42 -0,4 / -0,33

15 Complexity Parameter count 0,52 / 0,45 0 / 0

16 Complexity Percent comments 0 / 0 0 / 0

17 Coverage density Statement cov./Loc -0,06 / -0,25 –

18 Coverage density Statement cov./Versions -0,18 / -0,3 –

The same problem emerges for files with different change rates: files that have
more changes (versions), have been under more intensive development, and
therefore are more prone to have defects. These problems of size and changes
create validity threats for our analysis results. Therefore, in order to neutralize
the effects of size and changes on defect-coverage analysis results we created
two additional measures – average coverage per Loc (statement coverage over
Loc) and average coverage per version (statement coverage over versions).
Lines 13 and 14 in Table 2 show that the Spearman correlation coefficients be-
tween the new measures and defects are a little improved, (-0,25 and -0,3),
however they still did not gain any tangible value. At this point we reached to an
important conclusion for this study: Increasing coverage does not necessarily
decrease the amount of defects.

Mythical Unit Test Coverage

164

Figure 2 Marginal plot for statement coverage and defects

The only thing we can say is that increasing coverage creates a slight tendency
of decreasing defects. This fact is illustrated in Figure 2. Even though the figure
shows a downward association between defects and coverage for some files
(dots), for most of the files, which are closer to the origin of the coordinating
system, this association does not exist. We also found that besides the maximum
block depth (max block depth), the rest of the complexity and change measures
presented in Table 2 were strongly correlated with either Loc or Versions, so
they did not have any additional impact on the coverage-defect relationship,
when Loc and Versions were already controlled for.

 THE EFFECT OF COMPLEXITY 6

As we mentioned earlier, there was only one measure which was not correlated
with the size and change measures strongly, and this measure was max block
depth. This measure shows the maximum level of nesting in a file. Table 2 shows
that max block depth is the only measure which has tangible negative correla-
tion with coverage (-0,4/-0,33), suggesting that it might be hard to write tests
for nested code. At the same time max block depth has tangible correlation with
defects (0,42), indicating that nested code might be more prone to defects than
simpler code. Since max block depth is correlated both with defects and cover-
age, we found it interesting to understand defect-coverage relation in the con-
text of max block depth. Figure 3 shows two contour plots. The upper plot
shows the relation of statement coverage, max block depth, and defects. The
dark green area indicates no defects, while areas towards yellow and then red
indicate increasing number of defects. What is very interesting about the plot is
that all of the defected areas are situated in the right-hand side of the plot, clear-
ly indicating that defects emerge only in places where the level of nesting gets

Mythical Unit Test Coverage

165

higher. However, we cannot draw the same conclusion for the coverage-defect
relationship, since the defects are along the line of coverage axis. It is true that
there is more red area in the bottom of the plot but still upper part contains red
and yellow areas as well. It is important to recall that coverage itself was nega-
tively correlated with max block depth, so some of the files in the bottom-right
red area have low coverage right because of high nesting level. This essentially
means that nesting has double effect on code: it both increases the defect-
proneness of code and complicates the process of writing tests. It is worth to
notice that max block depth is not a solidly defined measure for source files as
entities. It only indicates nesting level for a block but not for a whole file, but
still we observe its effect on file level.

Figure 3 Contour plots of statement coverage and defects

S
ta

te
m

e
n

t
co

v
e

ra
g

e

S
ta

te
m

e
n

t
co

v
e

ra
g

e

Mythical Unit Test Coverage

166

A more adequate complexity measure based on nesting might indicate much
larger effect on the coverage and defects. The bottom plot shows a similar
presentation of the relationships between statement coverage, defects, and ver-
sions. This plot also clearly shows that files which have little amount of versions
(less changes) did not have defects, no matter they were tested or not. When we
substituted the versions by Loc in the second plot, we got a very similar picture.
Thus, the areas of code that are small in size or are not changed are defect-free,
and this is quite natural by the laws of probability, because it is more likely to
find defects in larger files or in files that are under intensive development.

Generally speaking, in the first plot we see a relation of code complexity, cover-
age, and defects, while in the second plot we see a relation of development size,
coverage, and defects. Usually complexity is more manageable than size and
changes. The latter ones are not always possible to reduce since they are the
core constituents of product development and delivered functionality: no value
can be delivered without developing new piece of code or modifying an existing
one. Meanwhile certain amount of complexity can be reduced by contrivance
and smart coding tricks, and therefore it is possible to partially control the effect
of complexity on defects and coverage.

 CONCLUDING REMARKS 7

Decision coverage, statement coverage, and function coverage are popular
measures that purport to indicate test sufficiency. However, 100% coverage
does not entail 100% tested code. Moreover, the results of this case study sug-
gest that: 1) the adequacy of unit test coverage criterion in Ericsson was a myth,
2) it is well worth to conduct similar case studies in other domains in order to
understand how general this problem is in practice, 3) international standards
such as ISO 26262, IEC 61508, ANSI/IEEE 1008-1987, and DO 178B need to
reconsider their recommendations of unit test coverage measures as criteria for
test sufficiency, 4) developers should realize that managing complexity both
decreases error-proneness and facilitates testing of code.

PAPER 6

Validating Software Measures Using

Action Research

Validating Software Measures Using Action Research

170

ABSTRACT

Validating software measures for using them in practice is a challenging task.
Usually more than one complementary validation methods are applied for rig-
orously validating software measures: Theoretical methods help with defining
the measures with expected properties and empirical methods help with evalu-
ating the predictive power of measures. Despite the variety of these methods
there still remain cases when the validation of measures is difficult. Particularly
when the response variables of interest are not accurately measurable and the
practical context cannot be reduced to an experimental setup the abovemen-
tioned methods are not effective. In this paper we present a complementary
empirical method for validating measures. The method relies on action research
principles and is meant to be used in combination with theoretical validation
methods. The industrial experiences documented in this paper show that in
many practical cases the method is effective.

Validating Software Measures Using Action Research

171

 INTRODUCTION 1

A measure is considered valid if it fulfills the theoretically required properties
and has some kind of predictive capability of a variable of interest. Validity of
software measures is essential for designing and applying assessment tools for
software development organizations. The use of rigorously validated measures
provides valuable information on the developed software and development
processes. Software developers use this information to obtain valuable
knowledge on the quality, risks, opportunities, productivity, cost, and speed
associated with the software development product and process. A well-
established opinion is that a measure should be designed based on a firm theo-
retical ground and be tested many times in practice in order to be considered
valid [27]. There is much work done for providing theoretical methods for vali-
dation: Kitchenham, et al. [158] introduced a framework for software measure-
ment validation based on a set of predefined rules. Schneidewind [157] pro-
posed a methodology for measurement validation based on a set of validity cri-
teria. Briand, et al. [23] introduced property based measurement in order to
facilitate the measurement design and validity check. Issues concerned with
difficulties of having a generally accepted measurement validation framework is
discussed by Sellami and Abran [202] to a great detail.

Empirical validation, however, seems to be a more difficult task: in order for a
measure to be empirically valid, it is expected to have some kind of predictive
power [27]. We continuously see studies using statistical models for assessing
the predictive power of measures. Examples are [97, 98, 203, 204]. However, in
practice, despite the extensive use of measures and existed validation frame-
works, there are many measures which are simplistic for what they are de-
signed to measure. Moreover, we continuously see many scientific reports still
trying to validate such old and established measures as cyclomatic complexity
[106] or Halstead measures [165]. These are the symptoms of not having a well-
established and generally-agreed-upon framework for software measurement
validation. Surely statistical models are powerful for examining whether a given
measure predicts the intended variable of interest of software system. But, how
can we conduct a sample measurement on this variable, so we can make a statis-
tical model for validation? The practice shows that such a measurement is very
difficult. Many papers use the defect count as a measure for quality and validate
various measures against it [28, 205]. Nevertheless, they rarely question how
accurately the defect count can be done (not so accurately in many cases as we
show in this paper) and to what extend the defect count represents the quality.
Problems similar to this one are ubiquitous in software measurement. These can
be related to assessing code maintain-ability and error-proneness, requirements
understandability, models’ complexity, development speed, etc.

When the variable of interest is measurable, at least for historical or a subset of
data, statistical models are often used for validating measures. When the varia-
ble of interest is not measurable directly, experimental methods may be used to
obtain some kind of ranks or values for the variable of interest. Then these

Validating Software Measures Using Action Research

172

ranks and values can be used in statistical models for validating the given meas-
ure. In many cases, when the variable of interest is not directly measurable, and
the organizational context cannot be reduced to an experimental setup [143], it
is difficult to conduct empirical validation. To the best of our knowledge, there
are no validation approaches which would help to empirically validate software
measures when the variable of prediction is not accurately measurable. In this
paper we illustrate how the action research can be used for empirical validation
of measures when the variable of interest is not accurately measurable. The
research question that we address in this paper is:

How can we validate software measures when the prediction variables
are not accurately measurable and when the organizational context
cannot be reduced to an experimental setup?

The results of this paper are derived from data that we collected from a set of
action research projects in five large software development companies, where
we previously designed and evaluated a variety of internal quality measures.
Action research is a methodology which permits the application of a designed
method directly in the area of its intended use, thus allowing collecting valuable
feedback and refining the method accordingly. The results show that action
research methodology is suitable for conducting empirical validation of
measures. Particularly it helps to understand the effectiveness of a measure in
what it is designed for assessing. Action research also permits evaluating the
improvement possibilities of a measure. We argue that the effectiveness of a
measure should be evaluated by the help of software engineers who use that
measure. The repetition of such evaluation with many software engineers and in
many software development organizations helps building up solid knowledge
about whether or not the measure can be ultimately accepted for adoption and
regular use.

 A RECAP OF MEASUREMENT VALIDATION RESEARCH 2

IN SOFTWARE ENGINEERING

There are two complementary groups of measurement validation methods in
the literature, theoretical and empirical [24]. The first methods of the first group
usually define properties or rules that a given measure should fulfill in order to
be regarded a correct measure of the given attribute. The methods of the second
group are used to find out whether the given measure has the desired predictive
power for predicting the variable of interest. Table 1 presents examples of vali-
dation methods, requirements for measure’s validity, and an example measure.
The fourth column of the table presents the validation method proposed in this
paper. In the coming two subsections we discuss the current state of theoretical
validation methods and empirical validation methods based on statistical mod-
els.

Validating Software Measures Using Action Research

173

 Theoretical Validation 2.1

Theoretical validation is needed for understanding the properties that a meas-
ure should fulfill and the rules that it should comply with, indicating what that
measure should be and what it should not be. The theoretical validation helps to
understand whether the measure is actually a measure of the intended meas-
urement attribute of software entities. Measurement attributes are size, com-
plexity, cohesion, length, coupling, change frequency, etc. Entities are code, re-
quirements, test cases, architecture, development processes, etc. Not knowing
what attribute we actually measure by a given measure makes the use of that
measure difficult, as we cannot correctly understand in what prediction (evalua-
tion) mechanism it should be applied for.

The properties and rules, in their turn, are derived from the essential under-
standing of software attributes. For example the size attribute should have addi-
tivity property because the essence of the size concept (attribute) indicates the
amount of something: when adding more of this something it should have more
size then earlier. Thus when designing a size measure, it should comply with the
determined additivity property. In this manner properties of the other attrib-
utes are determined in order to ease the design of measures. One of the early
works dedicated to software measurement validity is reported by Weyuker
[156]. In this work she formulates a set of properties which shall be necessary
for newly defined complexity measures. Even though the work was criticized for
not providing a complete set of properties it provided a fresh ground for meas-
urement validation frameworks.

Table 1 Techniques of validating measures

 Theoretical
validation

Empirical validation

 All cases Response
variable is
measurable

Response variable is not
measurable

Validation method Briand, et al.
[23] frame-
work

Statistical
models

Action research, refer-
ence group

Requirement for
validity

A measure is
valid if it
fulfills the
required 5
properties of
complexity

A measure is
valid if it
predicts a
variable of
interest

A measure is valid if it is a
good indicator of a varia-
ble of interest (qualita-
tive)

Example measure McCabe’s
complexity
(M)

M M

A valid measure of
complexity if

it fulfills 5
properties of
complexity

it predicts
the number
of defects

it affects the readability
of the code

Validating Software Measures Using Action Research

174

This was called a property based measurement [23], the essence of which was
to understand what basic properties a particular measure shall fulfill in order to
be a valid measure. Another framework for validating measures is reported by
Schneidewind [157]. The methodology relies on six validity criteria for a meas-
ure: association, consistency, discriminative power, tracking, predictability, and
repeatability. The author claims that fulfilling these criteria provides a good
rationale for considering a measure valid. Briand, et al. [23] presented property
based measurement for facilitating the selection and validation of measures.
Their method is based on the idea that every measure should fulfill a set of pre-
defined properties in order to be qualified as valid. These properties are based
on human perception, relying on the intuition. For example we know that the
size must be additive because its essence and definition dictates so. Thus any
size measures should fulfill the additivity property. In another study Briand, et
al. [27] observe that it is very hard to agree upon a general rule or method for
measures’ validation. They notice that a general validation framework cannot be
expected from one researcher or from one study, it is rather repetitions and
replications of multiple studies that builds trust on a method. Kaner [162] ex-
plores the use of software measures in the field of software engineering and
found that there are too many simplistic measures that do not measure whatev-
er they purport to measure. He notices that the use of such measures is not rare,
so it is better to put more effort in the design of measures to get more meaning-
ful data.

Having theoretical frameworks for measures’ design and validity, researchers in
the field examined how applicable the measurement theory is in practice. For
example Briand, et al. [206] found that the application of software measurement
theory sometimes can be questionable due to several factors, such as undefined
scale types of several measures, endless discussions of what exact properties
complexity measures should fulfill, what kind of statistical model should be used
for measures’ validation, etc. In a mapping study Kitchenham [14] concludes
that there is a large body of empirical validation of measures, however it seems
in measurement research we do not quite know how much a measure should be
validated, so even some old and well-established measures can be still validated
by researchers. Her findings show that only statistical models for finding the
relationship between measures and defects possibly are not enough for thor-
ough validation of measures. Our study supports her observation as even meas-
uring the number of defects can be quite tricky task. A recent study reported by
Mair and Shepperd [207] found that software engineers’ participation for de-
signing good measures and statistical models is crucial, however this considera-
tion is often ignored. This study also concludes that software engineers’ partici-
pation should be considered when designing prediction measures in companies.
Meneely, et al. [208] conducted a systematic literature review on software
measurement validity to understand the main problems and current state of
validation methods. They found 47 validation criteria for measures reported by
20 authors. The authors concluded that several authors completely disagreed on
a number of validation criteria, which shows the non-profound nature of those
criteria. McGarry [209] (p. 128) emphasizes the importance of users feedback

Validating Software Measures Using Action Research

175

for designing adequate measures, however he does not specify an understruc-
ture by which the communication should be established for getting feedback
and refining the measures. Elbaum and Munson [210] investigated the relation-
ship of software measures and defects in an empirical study. Among other find-
ings they report that it is extremely difficult to accurately measure the number
of faults for a given entity of code (module, file, or function). They mentioned
nearly the same reasons of problems for this measurement as we presented in
this paper. This study also comes to support our observation that there are al-
ternative views on how we should count a given measure, even if all the alterna-
tives are theoretically valid. Sellami and Abran [202] found that the existing
validation frameworks rely on validation criteria of different philosophies. As a
way forward they suggested building consolidated framework based on multi-
ple validation types. There are also international standards of software meas-
urement, such as ISO/IEC 15939 [211] and ISO/IEC 25000 [212]. These stand-
ards aim to facilitate the design and evaluation of measurement and also pro-
vide a common vocabulary to the community. However, they still need consoli-
dation for providing explicit guidance for measurement validation. El-Emam
[213] discusses the importance of both theoretical and empirical validation and
emphasizes the importance of distinguishing between internal and external
attributes of software products. Then he acknowledges that usually it is possible
to design measures for internal attributes such as complexity or coupling, which
are used to assess the external attributes such as maintainability or error-
proneness.

 Validation Using Statistical Models 2.2

Statistical models (a variety of regression models, Bayesian networks, Markov
models, Neural networks, etc.) are widely applied to understand whether
measures of internal attributes of software can predict external attributes. In-
ternal attributes, such as complexity or change rate, are not direct representa-
tives of external attributes such as software quality, risks, or development
speed, which are the actual variables of interest of software developers. Internal
attributes rather influence external attributes and their main merit is to predict
the external attributes. This prediction mechanism is easily developed by statis-
tical models, when there are accurate measures for both internal and external
attributes. However, as practice shows, designing accurate measures is rather
challenging and sometimes problematic. Today, there are many papers using the
defect count as the measure of external quality, and then validate different
measures by versatile statistical models against the defect count [205]. We
should not only notice that there are other much important aspects of external
quality, such as, maintainability, but also that the defect count is sometimes
highly inaccurate and inadequate (we argue this claim in subsection 6.1.4 by
concrete examples). When the aim of a statistical model is to predict the number
of defects for the sake of planning or resource allocation, its use is justified.
However, if an organization wants to have more in depth analysis to identify
product areas of bad quality these models become inadequate. The reason is

Validating Software Measures Using Action Research

176

that the number of defects is a narrow characteristic of quality. Moreover, it is
the symptom of deeper multifactor problems such as accumulated technical
debt, inadequate development processes, size of the product, and other organi-
zational factors. Hall, et al. [205] conducted a systematic literature review in the
area of software defect prediction and found that nearly all statistical models,
which perform well in the original context, failed to perform well when applying
in different organizations or products. Most of the models that are good in pre-
diction are trained in their context of use. Moreover, the measures used in these
models were not consistently good or bad predictors across the studies, and
sometimes even had contradictory results. This is a strong sign that the defect
count is not a clear representation of problem areas but rather a manifestation
of multifactor problems. For this reason it is not always adequate to validate a
measure by assessing its defect prediction capability.

When the variable of interest is not directly measurable, experimentation can be
applied for acquiring measures from human assessors. Such variables are main-
tainability, ease of integration, readability, etc. In this case the human assessors
might be requested to analyze the given set of artifacts and give some ranks of
maintainability, readability, etc. Then these ranks (as measures) can be applied
for designing prediction models. Experimentations on software measurement
are expected to be conducted in controlled conditions. However, in order to
achieve controlled experiments in software engineering, the experimental setup
needs to be simplified considerably. This simplification usually affects the ex-
perimental system to an extent that it becomes no longer a representative of a
real-word system. For this reason, often the results obtained from such experi-
ments are not applicable for software development organizations [143]. In a
survey on experimentations in software engineering Sjøberg, et al. [214] report-
ed that 103 studies were conducted between 1993 and 2002. Among these 103
studies there was only one study in the field of software measurement. In fact,
most of the studies were done in the areas of comparing domain specific lan-
guages and code inspection techniques. These areas are the least affected by
organizational process and therefore are easier for isolated controlled experi-
ments. Oppositely, there were very few experiments on such subjects as produc-
tivity, cost, and risk assessment (one study per each). This kind of scarcity of the
data is due to the difficulty of conducting meaningful experiments in the field of
software measurement.

 A METHOD FOR VALIDATING SOFTWARE MEASURES 3

In majority of cases it is not possible to design accurate measures for external
product attributes, so the validation of internal attributes cannot be conducted
by help of statistical models. In such cases we argue that action research can be
successfully applied for validation. There are two factors that make action re-
search powerful in validating measures. First, it permits the validation directly
in the application area. Second, it relies on systematic define-refine-redefine
typical action research process with practitioners, which allows ultimately

Validating Software Measures Using Action Research

177

shape the intended measure and either accept or reject it for further application.
In this process, the qualitative feedback of practitioners, who on practical exam-
ples evaluate to which extent a measure has influence on the variable of interest,
has a pivotal role.

Figure 1 shows the evaluation method as an action research cycle. It is aligned
with the action research methodology, and is adopted for validating measures.

Figure 1 Action research cycle for validating measures

The measures are selected (defined), calculated, evaluated, and redefined based
on the evaluation until they are perceived to be good measures. In the middle of
this cycle is the ‘measurement designer’ – ‘reference group’ infrastructure which
jointly refines the measure, until it reaches to an adequate condition for use.
Initially the organization forms a “measurement designer” – “reference group”
infrastructure. On the one hand, the measurement designer is the person, who is
assigned for designing and validating measures for the organization. This can be
an external or internal researcher, a measurement expert, a design architect or
other knowledgeable person in the field of measurement. On the other hand, the
reference group is a group of practitioners who work closely with the artifacts
that are to be measured. The members of the reference group should have deep
insights on the measurement artifacts and directly work with these artifacts on
a systematic basis (developers, testers, architects). The measurement designer
sets up systematic meetings with the reference group. The steps shown in Fig-
ure 1 are:

 The measurement designer decides on designing or using a measure 5.
for predicting a variable of interest. Variables of interest are not ac-
curately measurable, such as maintainability, modifiability, ease of
integration, etc.

Validating Software Measures Using Action Research

178

 The measurement designer, with the reference group, decides upon 6.
the measurement entity and the measure that is to be validated.
Measurement entities can be source code files, functions, require-
ments, models, test cases, etc. The measures usually are designed for
known software attributes such as complexity, size, length, cohesion,
coupling, change frequency, etc.

 The measurement designer conducts measurement by developing or 7.
using available automated tools. She/he structures the measure-
ments results in a file (files), where the name, location, measurement
result, and other necessary information per measurement entity are
available

 The measurement designer evaluates the measures against the ref-8.
erence group’s understanding of the non-measureable property: She
selects a sample set of measurement entities in such a way, that for
half of them the measurement values are big and for the other half
the measurement values are small. The sample set is selected con-
sidering the size of the population, which is usually known. After-
wards, the measurement designer presents the selected set of enti-
ties to the reference group, and they brainstorm together for under-
standing how effectively the selected measure can assess or predict
the variable of interest. They review each measurement entity one
by one and share their knowledge on what kind of problems or diffi-
culties they had previously with the given entities in the past devel-
opment time. The measurement designer writes registers these
problems and difficulties per measurement entity in a checklist. The
practitioners of reference group brainstorm and find rationale for
regarding a given measure effective or not effective. Their agree-
ments and disagreements, and reasons are also registered in the
checklist. After brainstorming the measurement designer decides to
what degree of accuracy the measure predicts the variable of inter-
est, based on the summarized knowledge in the checklist. The degree
of accuracy is decided on a qualitative scale: an example is “bad”,
“average”, and “good”. The measurement designer also outlines the
enhancement possibilities of the measure, based on the obtained
knowledge

 The measurement designer examines the measurement method for 9.
the selected measure: questions that are needed to be addressed for
this examination are:

a. What do we actually calculate by the defined measure?
b. What inaccuracies are likely to be introduced by the defined meth-

od of calculation?
c. How can we refine the method of calculation so the measurement

values can show a better association with the variable of interest?

 The measurement designer considers the aforementioned questions 10.
and the discussions over them with the reference group. She refines

Validating Software Measures Using Action Research

179

the measurement method and redefines the measure based on ac-
quiring answers for the above questions. Then she plans measure-
ments for a new set of entities. In the next cycle the new set of enti-
ties are planned to be reviewed and discussed, and thus more
knowledge can be gathered

 The further process iterates over (Figure 1) until the measurement 11.
designer can decide whether the selected measure is validated for fi-
nal use or not.

We used the essence of the described method in five large software develop-
ment organizations for validating several sets of measures. In Ericsson we used
this method for validating measures of complexity, size, and evolution for
source code. In Volvo Group we used this method for validating measures of
complexity, coupling, and evolution of textual requirement. In Grundfos and
Saab we replicated the validation process for requirements’ measures. In Volvo
Car Group we used this method for validating measures of Simulink models and
textual requirements.

 AN ILLUSTRATIVE CASE 4

In this section we present an example of how a measure was validated in prac-
tice. The validation process was conducted in a software development organiza-
tion at Ericsson [140]. We formed the “measurement designer” - “reference
group” infrastructure. The measurement designer was a researcher (the first
author of this paper) from the Software Engineering Division of University of
Gothenburg. The reference group’s participants consisted of a measurement
team leader, three design architects, an operational architect, and a project
manager from Ericsson. We organized biweekly meetings for the evaluation
process. The rest of the process complies with the method presented in the pre-
vious section:

 The measurement designer decides on designing a measure for au-13.
tomated identification of risky areas of software code: such code pat-
terns that were error-prone or difficult to maintain. Source code files
were chosen as measurement entities. This means that our target
was to identify risky source code files.

 Evolution of files was chosen as a measurement attribute. The meas-14.
ure for validation was the number of check-ins (NR) of files to the
version control system in a specified period of time. Participants of
the reference group believed that this measure can be effective in
identifying risky files when combined with complexity measures.
The reasons for such a belief were:

a. In a specified period of time there were only a limited number of
files changed, which means that if we search for error-prone files
for a specific period of time, than they must be among the changed
ones

Validating Software Measures Using Action Research

180

b. Complex files are risky only if they have been changed recently

 The measurement designer developed a tool (script) and counted the 15.
number of check-ins per file for one month interval. The names of
files, measurement values, and locations were registered in an excel
file.

 The measurement designer randomly selected 50 files that had big 16.
values of NR and 50 files that had small nonzero values. The meas-
urement designer presented the selected set of 100 files to the refer-
ence group. The reference group engineers examined the files one by
one and discussed their experiences with these files. The measure-
ment designer registered the collected information during the dis-
cussion. The results of the collected data were as follows:

a. There was a group of complex files that changed more often than
other groups. Those were usually problematic and were classified
as risky

b. There was a group of files that often changed. Those were header
files or simple files that were affected by the changes in other files
and had to be changed. These files were not classified as risky

c. There was a group of complex files that had not changed at all. It
was difficult to understand whether in cases of changes these files
can be classified as risky, therefore these files were classified as
potentially risky and needed a further investigation

d. There was a group of simple files that do not change. The reference
group decided that in practice such files were not problematic and
they were classified as not risky with no further investigation
needed

 At this point, the measurement designer concluded that NR is likely 17.
to be an effective measure when applied with combination of com-
plexity measures, because it can predict the risky files in:

a. case a)
b. the files of case b) can be easily filtered out using complexity

measures, files in case d) are filtered out by NR measure, and
c. case c) needs further investigation by doing additional measure-

ments for different time intervals
For the files that needed a further investigation we decided to add one more
action research cycle. The time intervals for additional measurements were
chosen to be daily, weekly, and release-wise. Such measurements would permit
to understand how complex files behave during different time intervals.

The reference group engineers proposed alternative measures of evolution,
such as counting the number of designers making check-ins, and the number of
check-ins for rather on a specific development branch than on all the develop-
ment branches managed by different development teams. As the NR measure
showed an initial good qualitative result, the reference group concluded that the
measure can be classified as a “good” measure for continuing the validation

Validating Software Measures Using Action Research

181

process. The measurement designer planned designing tools for conducting
measurements for the suggested two additional measures to check whether
they outperform the NR measure

After this point the action research cycle repeated. The measurement designer
conducted the planned measurements for different time intervals, prepared the
files that needed further investigation, and presented to the reference group in
the next meeting. He also conducted measurements for the additional two
measures. The action research cycle was repeated 6 times (12 weeks) to under-
stand the behavior of different groups of complex files. Continuing similar anal-
ysis for 12 weeks the reference group concluded that the NR measure is good
enough for being used in combination with the complexity measures. The addi-
tional two measures were removed because they were in a strong correlation
with NR measure, making these three measures equally effective for the planned
use.

 ORGANIZATIONAL CONTEXT OF THIS EXPERIENCE 5

REPORT

Prior to this study we had conducted several action research projects at five
large software development organizations. The collaborating organizations
were Ericsson, Volvo Group, Volvo Car Group, Saab AB, and Grundfos. The pro-
jects aimed at applying software measures for identifying difficult-to-maintain
artifacts for refactoring. In order to get continuous feedback on the ongoing
work and determine next steps in the research in each of the company we col-
laborated with a reference group of engineers. These engineers had extensive
knowledge on the developed product and had different positions in the organi-
zation. By their help we both designed new measures and used already well-
established measures in the literature. There were three different artifacts tar-
geted for measurement in these organizations: textual requirements, Simulink
models, and source code of products. Figure 2 shows in how many organizations
a given artifact was measured.

Figure 2 Software artifacts measured in the collaborating companies

A number of measures were used throughout these projects and tested for se-
lection of final use. In the beginning we decided to select measures that are well-
established in literature and develop measurement systems based on them.

Validating Software Measures Using Action Research

182

However when we conducted initial measurements and presented to reference
groups for feedback we realized that the measures do not show what we ex-
pected them to show. Software engineers’ feedback was that their perception is
not aligned with what measures show. Besides they had also diverse opinions
on what should be measured. In order to overcome the chaotic situation we
decided to collect all seemingly relevant measures and start a validation process
by the help of reference group engineers. Conducting this process in different
organization we not only designed the targeted measures for them but collected
knowledge on how action research can be used for validating software
measures. This collective knowledge is then methodized in this paper as a step
forward for empowering the sector of software measurement validation.

 RESULTS FROM VALIDATING MEASURES IN COMPA-6

NIES

In this section we report the results that we got when validating various
measures in the collaborating companies. We show how certain measures were
demonstrated to be poor ones and other measures to be good ones for the ini-
tially defined purposes.

 Measures of Source Code 6.1

Prior to this study the authors of this paper designed measurement systems for
Ericsson and Volvo Group. The measurement systems used a combination of
several measures for identifying such areas of code that are error-prone or diffi-
cult-to-maintain. The measures that we used, was validated by Action research.
In the coming subsection we discuss results of validation of them in the collabo-
rating companies.

 Size 6.1.1

In practice it is quite common that size measures are used as quality estimators.
For example the number of source lines of code and different measurement
variations of them. First of all we ought to mention that size measures are quite
effective in effort estimation [215]. However it is misleading to use size
measures for assessing quality for the need of any type of improvements. Why is
it so? Let us assume that we have 2 source code files and we would like to as-
sess their quality for improvements. Suppose one of them has relatively bigger
size and historically is reported to be more fault-prone. However, this does not
mean that it has worse quality than the other file. If its size is bigger, it most
likely provides more functionality, thus delivers more features to the customers,
and eventually gains more profit. The size is not only highly correlated with
fault-proneness but also with gained revenue, because software of a big size
most likely delivers more value. This means that when comparing error-

Validating Software Measures Using Action Research

183

proneness of code one should consider comparing software modules of equal
sizes in order to get a meaningful result. The results of Action research cycles
with both reference groups at Ericsson and Volvo Group yielded to a conclusion
that size measures are useful for effort estimation and defect prediction for
planning, but it must not be used for quality assessment, because any conclu-
sions on quality based on size measures cannot prompt a meaningful action
towards quality improvement.

 Complexity 6.1.2

One of the most used complexity measures of code is cyclomatic complexity.
Also there are some controversies about this measure [160, 161] discussing its
usefulness, it is still used by many organizations. When T. J. McCabe introduced
this measure, he actually never claimed that cyclomatic complexity anyhow
purports to measure the complexity of the code as perceived by software engi-
neers. It rather measures the testability of a unit of code. Now we know that in
practice it is a poor measure of complexity, however we cannot invalidate this
measure against a claim which is never made. For example software engineers
at Saab are using this measure as a good practice for testability of code. We in-
vestigated this measure at Ericsson and come to a conclusion that cyclomatic
complexity does not really indicate the complexity of the code as perceived by
software engineers, however it is actually very effective when using it with the
combination of evolution measures: we observed that such functions that have
big cyclomatic complexity and at the same time has undergone many revision
are complex and hard to maintain.

The next complexity measure that we discuss is the number of function calls in a
given function. In literature this measure is called fan-out. The basic assumption
on this measure is that if there are more function calls in a given function then
that function becomes more complex. This assumption is quite straightforward
from intuition’s standpoint, however, it is not clear how this measure shall be
calculated. For example, if the same function is called ten times, shall we consid-
er each time as a different call or we shall calculate it as one call, since the num-
ber of unique function calls is one? How about calling the same function with
different list of parameters each time? Even though all these alternative calcula-
tions can be regarded correct, we cannot really know which one is more ade-
quate measure for whatever we are trying to assess. The investigation with
reference group engineers at Ericsson and Volvo Group showed that calling the
same function many times in the code only slightly increases its complexity, so
we used only the unique calls as a more adequate measure.

 Evolution 6.1.3

Evolution measures are such measures that show how a given artifact or its
attributes change over time of development. Evolution measures are shown to
be good predictors of maintainability [108, 216]. When intending to use evolu-
tion measures of source code we encountered a problem, which was concerned

Validating Software Measures Using Action Research

184

with the alternative ways of measures for evolution. For a file, measuring modi-
fied lines of code, added and deleted lines of code, the number of check-ins of
code designers to the version control system in a specified development branch,
the number of check-ins for all branches, the number of code designers that ever
opened the given file in a specified time period, etc. are different alternatives of
evolution measures. Among all of these measures it is simply not possible to use
the most adequate one without using the software engineers’ perception of ref-
erence group. With their qualitative validation we recorded that the number of
designers that make check-ins is a stronger measure for maintainability, howev-
er this measure was strongly correlated with the number of check-ins of files so
we used the latter one for our measurement system.

Additionally we should acknowledge that measuring the evolution of complexity
of source code functions turned out to be quite hard, because:

 Many of the functions were changing their list of parameters, so it 1.
was hard to decide whether they should be regarded as a new func-
tion or a reformulation of old ones

 Many functions were changing their names over time, so we could 2.
not track them by automated means

We concluded that due to these two reasons the measurement accuracy is not
satisfactory so the evolution of complexity measures should not be used for
functions as measurement entities.

 Defects 6.1.4

Measuring the number of defects on different software entities has several im-
portant roles in software engineering research and practice. This measure is
used both for development planning and resource allocating, and also for vali-
dating other measures as quality predictors. There are far many papers report-
ed, which use this measure for validating complexity, size, evolution measures,
and also complex statistical and analytical models for defect and quality predic-
tions [108, 217, 218]. However, before its use, it is worth to ask how do we
measure defects and what does this measure actually show?

In an earlier study we developed method and supporting measurement system
for Ericsson for predicting the difficult-to-maintain and defect-prone source files
[140]. In order to validate the method initially we decided to use the historical
number of defects per file. However, as it turned out, there were several prob-
lems with both counting and using this measure. There was no such report as to
map defects on files, because it was either very difficult or impossible for devel-
opers. Usually the defects are reported per development area. An alternative
way of counting defect was to measure which files were changed due to defect
correction. This approach had more success, but still there was much noise in-
troduced to the measurement as it was not always clear whether a given file has
been changed due to defect correction or other activities. Even if there was a
specifically defined branch in version control system for defect correction, all

Validating Software Measures Using Action Research

185

works done in that branch were not purely concerned with defect correction.
This was due to the complex relationships of such activities as defect correction,
maintenance, release, and new feature development. Although there was noise
in the described measurement, we decided to use this measure for a small set of
files and by observing them understand the magnitude of noise. The results
showed that for about 20% of the files it is actually not determinable whether a
file was changed due to the defect correction or due to another activity. Yet
there was even more important reason for being careful with this measure:
certain files were in fact changed for defect correction, but they were not the
root cause of the defect. We found that there were many cases where the root
cause of a defect can be in a complex file, however several other simple files can
be affected by that defect and thus undergone defect correction activities. So,
when counting defects disregarding the aforementioned issues we might actual-
ly underestimate the defect predicting power of complexity measures and over-
estimate the predicting power of evolution measures (such as the number of
changes or revisions).

Lastly, we would like to mention that the criticality of defects also plays a major
role when it comes to representing the quality of products by their number of
defects. Some defects might take multiple times more effort for correction than
other ones, so this will affect the statistical model and the results of their validi-
ty. This issue is not well-investigated topic in the field of software measurement,
so we do not know its influence on the results we obtain [205].

 Measures of Simulink Models 6.2

In Volvo Car Group, where a portion of software development is done by Sim-
ulink models, we needed to design measures of complexity to get insights on
quality of the models. At the time the company used one measure for complexi-
ty, which was the cyclomatic complexity of the code that is generated from Sim-
ulink models. We also found several articles which attempt to define measures
for Simulink models and measure them [219-222]. One of the tools that was
developed by the researchers of Åbo Akademi University can measure several
complexity measures, such as the depth of nesting, the fan-in, and fan-out, and
the number of in-ports and out-ports of Simulink subsystems. The discussions
with reference group engineers of Volvo showed that none of the measures are
relevant for measuring the complexity of models for the following reasons:

 The cyclomatic complexity of the generated code does not anyhow 1.
show the complexity of the models from which the code is generated.
The code and models are different entities and have different rea-
sons for becoming complex

 The nesting depth, as originally adopted from code measures, was 2.
rather simplicity measure than a complexity measure for models.
The reason is that all nested levels in the code are visible in one place
making it hard to comprehend for a developer, however, for models,
every nested level is isolated piece of implementation, visibly dis-

Validating Software Measures Using Action Research

186

connected from other parts of the model. So the reference group en-
gineers used it to simplify the models by decomposing it

 The fan-in and fan-out were defined as the outgoing and incoming 3.
calls of subsystems [222]. The investigation showed that these
measures in practice do not have any tangibly high values for mod-
els. The highest fan-in for all models we examined in Volvo was only
two. Thus in practice a subsystem does not call more than two sub-
systems

 The in-ports and out-ports of a subsystem was determined by the 4.
number of incoming and outgoing signals. Our observations showed
that these measures are weak indicators of complexity unless we dis-
tinguish two types of them:

a. signals which are linked to Simulink libraries (strong complexity
indicators)

b. And signals without any linkage (weak complexity indicator)
Based on this evaluation results we started a collaboration with the researches
of Åbo Akademi University as to define more advances complexity measures
based on the feedback of reference group engineers of Volvo. At the time of writ-
ing this paper our collaboration was an ongoing activity.

 Measures of Textual Requirements 6.3

In large software development companies, where there are several thousands of
textual requirements, automatic quality assessment is much appreciated. We
conducted multiple action research projects at Volvo Group, Volvo Car Group,
Saab AB, and Grundfos for designing measures of textual requirements, which
can help automation of requirements review process. Software measures in the
sector of textual requirements are perhaps not as mature as in the sector of
coding. For this reason, when trying to find adequate measures, we ended up
with collecting a bunch of not evaluated measures for requirements [138, 139,
144, 147]. We started a refinement process with the reference groups and as a
result we found that the number of versions, nesting degree of bulleted text, punc-
tuations, imperative words, and many imprecise terms were weak measures.
Instead we found that the number of conjunctions and the number of references
to other requirements and modules in a textual requirement are strong indicators
of complexity. Analogous to source code measures the number of revisions
turned out a very weak indicator of quality due to two facts:

 The requirements of higher hierarchy level had more revisions due 1.
to containing many requirements inside them. This does not mean
that a requirement is frequently revised, but as the engineers of ref-
erence group noticed, rather adjusted with its lower members

 In a long period of development time the requirements got much less 2.
revisions than source code (1-2 revision per month), therefore it was
impractical to use revision of requirements

Validating Software Measures Using Action Research

187

Additionally, we should mention that most of the approaches for requirements
quality checking that are based on morphological analysis, turned out to be ir-
relevant for industry. The reason is that the requirements written in companies
are not necessarily grammatically assessable. Such examples can be tables of
specifications, symbolic representations, pseudocode, etc. Such requirements
cannot be grammatically evaluated, because they do not represent “sentences”
as linguistic constructs. Moreover, rules, which are designed for morphological
analysis, usually enforce on how a requirement should be written, but they do
not necessarily reveal the actual problems in requirements.

 Summary of Measures and Validation 6.4

 Figure 3 shows all the measures that we have validated or invalidated in the
five companies. The measures which have cross in front of them were invalidat-
ed for the specified use.

Figure 3 Validated and invalidated software measures - results of our action re-
search projects

The measures with tick in front of them were validated to be either moderate or
strong indicators for the specified use. Two of the measures that have the sign of
attention are difficult to measure accurately and therefore extra attention was
needed.

 DISCUSSION 7

The results of validating measures in collaborating companies (section 6) show
an important barrier for conducting a meaningful action of validation: what the
quantified variable should be, against which a measure can be validated. For
example if we want to design a measure for assessing the quality of code then
we usually chose the number of defects as a variable against which the measure
can be validated. As we indicated in this paper the number of defects itself is
very difficult to count, and even more, it is not quite clear what that number

Validating Software Measures Using Action Research

188

shows. In other cases there is even no clearly defined variable for validating
software measures. For example if we would like to design a good measure for
maintainability we cannot know, by any quantitative means, whether the de-
signed measure is a good measure of maintainability. In this case the effective-
ness of a measure is determined by how well the measure agrees with what
software engineers perceive to be maintainable. However, the software engi-
neers’ perception is not quantitatively available by any direct and simple means.
Therefore there emerges a necessity of qualitative understanding whether a
given measure agrees with software engineers’ perception. Yet we can see that
many researchers and engineers praise quantitative evaluation of measures
more than the qualitative one, even if any quantitative measure is derived from
fundamentally qualitative perception. This philosophical confusion sometimes
yields to a situation where software engineers get fed up by discussing the pos-
sibility of using more advanced measures and return to using old and rather
simplistic than simple measures.

As a way forward we suggest using action research cycles and close collabora-
tion with software engineers when validating measures. Careful and stepwise
consideration of measures and their systematic refinement during action re-
search cycles can reward with more sophisticated and useful measures, which
will provide significantly more insight about the measured artifact. Examples of
approaches for creating measures in practical contexts are presented by
Iversen, et al. [223] and Moody [224].

Despite the importance of practitioners’ participation and collaborative learning
process in the measurement design, it is solely the measurement designer who
design, refine, and select final measures. The opinions and attitudes of reference
group engineers may vary over time, and it is the responsibility of the research-
er who collects all the feedback and based on its summary decides which meas-
ure should be selected. We would like to remind that if a measure is defined and
validated for one type of entity (even though that is a really good measure for
that artifact), we cannot just take it and apply for another type of entity without
proper consideration.

 CONCLUSIONS 8

Using valid measures provide valuable insights on developed software and de-
velopment processes. Software engineers and managers use these insights to
make strategic decisions for improving their product. There has been a great
amount of endeavor by the research community for providing validation
frameworks for software measures. No doubt, the results are encouraging, but
there are still open issues to be solved. So far we know that there is no general-
ly-agreed validation framework that can serve for measurement validation of
any type.

In this study we suggest that the software engineers should be involved in the
process of validating measures. We show how action research principles can be

Validating Software Measures Using Action Research

189

employed as a complementary step for validating measures. The results report-
ed in this paper show that the involvement of engineers can be a powerful tactic
for validating measures. The action research cycles enable to systematically
refine and redefine the measures as long as they are not perceived to be satis-
factory for industrial use. And when the measures are finally accepted by all
parties they are deployed for use. The knowledge that is generated during the
action research cycles is organized and preserved as a body of knowledge. We
would like to encourage the use of action research for validating software
measures, as we believe such knowledge can be gathered and methodized for
facilitating the validation of software measures.

References

191

REFERENCES

[1] R. N. Charette, "Why software fails," Ieee Spectrum, vol. 42, pp. 42-49, 2005.
[2] R. L. Glass, "Frequently forgotten fundamental facts about software

engineering," IEEE software, vol. 18, pp. 112-111, 2001.
[3] J. Bosch and P. Bosch-Sijtsema, "From integration to composition: On the impact

of software product lines, global development and ecosystems," Journal of
Systems and Software, vol. 83, pp. 67-76, 2010.

[4] F. Brooks, "Essence and Accidents of Software Engineering," IEEE Computer,
vol. 20, pp. 10-19, 1987.

[5] T. Mens, "On the complexity of software systems," Computer, vol. 45, pp. 79-81,
2012.

[6] E. Rechtin and M. W. Maier, "The art of systems architecting", CRC Press, 2010.
[7] R. L. Glass, "Sorting out software complexity," Communications of the ACM, vol.

45, pp. 19-21, 2002.
[8] V. Basili, "Qualitative software complexity models: A summary," Tutorial on

models and methods for software management and engineering, 1980.
[9] H. Zuse, "Software complexity," NY, USA: Walter de Cruyter, 1991.
[10] T. J. McCabe, "A complexity measure," IEEE Transactions on Software

Engineering, pp. 308-320, 1976.
[11] M. H. Halstead, "Elements of software science," Elsevier New York, 1977.
[12] S. Henry and D. Kafura, "Software structure metrics based on information flow,"

IEEE Transactions on Software Engineering, vol14, pp. 510-518, 1981.
[13] S. R. Chidamber and C. F. Kemerer, "A metrics suite for object oriented design,"

IEEE Transactions on Software Engineering, vol. 20, pp. 476-493, 1994.
[14] B. Kitchenham, "What’s up with software metrics?–A preliminary mapping

study," Journal of Systems and Software, vol. 83, pp. 37-51, 2010.
[15] E. J. Weyuker, "Evaluating software complexity measures," IEEE Transactions

on Software Engineering, vol. 14, pp. 1357-1365, 1988.
[16] L. C. Briand, S. Morasca, and V. R. Basili, "Property-based software engineering

measurement," IEEE Transactions on Software Engineering, vol. 22, pp. 68-86,
1996.

[17] N. E. Fenton and M. Neil, "A critique of software defect prediction models," IEEE
Transactions on Software Engineering, vol. 25, pp. 675-689, 1999.

[18] J. Bosch, "Continuous Software Engineering," Springer, 2014.
[19] J. M. Stecklein, J. Dabney, B. Dick, B. Haskins, R. Lovell, and G. Moroney, "Error

cost escalation through the project life cycle," 2004.
[20] B. Edmonds, "What is Complexity?-The philosophy of complexity per se with

application to some examples in evolution," The Evolution of Complexity, 1995.
[21] A. Geraci, F. Katki, L. McMonegal, B. Meyer, and H. Porteous, "IEEE Standard

Computer Dictionary," A Compilation of IEEE Standard Computer Glossaries.
IEEE Std, vol. 610, 1991.

[22] N. Fenton and J. Bieman, "Software metrics: a rigorous and practical approach,"
CRC Press, 2014.

[23] L. C. Briand, S. Morasca, and V. R. Basili, "Property-based software engineering
measurement," IEEE Transactions on Software Engineering, vol. 22, pp. 68-86,
1996.

[24] A. N. Kolmogorov, "On tables of random numbers," Sankhyā: The Indian Journal
of Statistics, Series A, pp. 369-376, 1963.

[25] J. Moses, "Complexity and Flexibility," MIT/ESD, 2001.

References

192

[26] D. W. Hubbard, "How to measure anything: Finding the value of intangibles in
business," John Wiley & Sons, 2014.

[27] L. Briand, K. El Emam, and S. Morasca, "Theoretical and empirical validation of
software product measures," International Software Engineering Research
Network, Technical Report ISERN-95-03, 1995.

[28] C. Catal, "Software fault prediction: A literature review and current trends,"
Expert Systems with Applications, vol. 38, pp. 4626-4636, 2011.

[29] N. Fenton, "Software measurement: A necessary scientific basis," IEEE
Transactions on software engineering, vol. 20, pp. 199-206, 1994.

[30] N. E. Fenton and M. Neil, "Software metrics: successes, failures and new
directions," Journal of Systems and Software, vol. 47, pp. 149-157, 1999.

[31] L. Chen, "Continuous delivery: Huge benefits, but challenges too," IEEE
Software, vol. 32, pp. 50-54, 2015.

[32] J. Bosch, "Speed, data, and ecosystems: the future of software engineering," IEEE
Software, vol. 33, pp. 82-88, 2016.

[33] B. Fitzgerald and K.-J. Stol, "Continuous software engineering: A roadmap and
agenda," Journal of Systems and Software, vol. 123, pp. 176-189, 2017.

[34] J. Humble and D. Farley, "Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation," Pearson Education, 2010.

[35] H. R. Neave, "Deming's 14 points for management: framework for success," The
Statistician, pp. 561-570, 1987.

[36] T. S. Bateman and J. M. Crant, "The proactive component of organizational
behavior: A measure and correlates," Journal of Organizational Behavior, vol.
14, pp. 103-118, 1993.

[37] R. Weber, "Editor's comments: the rhetoric of positivism versus interpretivism:
a personal view," MIS quarterly, pp. iii-xii, 2004.

[38] P. Checkland and S. Holwell, "Action research: its nature and validity," Systemic
Practice and Action Research, vol. 11, pp. 9-21, 1998.

[39] R. L. Baskerville and A. T. Wood-Harper, "A critical perspective on action
research as a method for information systems research," Journal of Information
Technology, 1996.

[40] M. N. Saunders, "Research methods for business students, 5/e," Pearson
Education India, 2011.

[41] K. Lewin, "Action research and minority problems," Journal of social issues, vol.
2, pp. 34-46, 1946.

[42] G. I. Susman and R. D. Evered, "An assessment of the scientific merits of action
research," Administrative science quarterly, pp. 582-603, 1978.

[43] F. Baum, C. MacDougall, and D. Smith, "Glossary: Participatory action research,"
Journal of Epidemiology and Community Health (1979-), vol. 60, pp. 854-857,
2006.

[44] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen, "Action research,"
Communications of the ACM, vol. 42, pp. 94-97, 1999.

[45] R. Baskerville and A. T. Wood-Harper, "Diversity in information systems action
research methods," European Journal of Information Systems, vol. 7, pp. 90-
107, 1998.

[46] R. Baskerville and M. D. Myers, "Special issue on action research in information
systems: Making IS research relevant to practice: Foreword," Mis Quarterly, pp.
329-335, 2004.

[47] L. Mathiassen, "Collaborative practice research," Information Technology &
People, vol. 15, pp. 321-345, 2002.

References

193

[48] A. Sandberg, L. Pareto, and T. Arts, "Agile collaborative research: Action
principles for industry-academia collaboration," IEEE Software, vol. 28, pp. 74-
83, 2011.

[49] L. M. Rea and R. A. Parker, "Designing and conducting survey research: A
comprehensive guide," John Wiley & Sons, 2014.

[50] J. Linåker, S. M. Sulaman, R. Maiani de Mello, and M. Höst, "Guidelines for
conducting surveys in software engineering," 2015.

[51] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum, "Empirical
validation of three software metrics suites to predict fault-proneness of object-
oriented classes developed using highly iterative or agile software development
processes," IEEE Transactions on Software Engineering, vol. 33, 2007.

[52] R. K. Yin, "Case study research: Design and methods," Sage publications, 2013.
[53] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case study research in software

engineering: Guidelines and examples: John Wiley & Sons, 2012.
[54] N. Nagappan, T. Ball, and A. Zeller, "Mining metrics to predict component

failures," in Proceedings of the 28th International Conference on Software
Engineering, 2006, pp. 452-461.

[55] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry, "Requirements for tools for
ambiguity identification and measurement in natural language requirements
specifications," Requirements Engineering, vol. 13, pp. 207-239, 2008.

[56] R. Moser, W. Pedrycz, and G. Succi, "A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction," in Proceedings
of the 30th International Conference on Software engineering, 2008, pp. 181-
190.

[57] H. Femmer, D. M. Fernández, S. Wagner, and S. Eder, "Rapid quality assurance
with requirements smells," Journal of Systems and Software, vol. 123, pp. 190-
213, 2017.

[58] A. Van Lamsweerde, "Requirements engineering in the year 00: a research
perspective," in Proceedings of the 22nd International Conference on Software
Engineering, 2000, pp. 5-19.

[59] A. Mockus, N. Nagappan, and T. T. Dinh-Trong, "Test coverage and post-
verification defects: A multiple case study," Empirical Software Engineering and
Measurement, 2009. ESEM 2009. pp. 291-301.

[60] J. Itkonen and K. Rautiainen, "Exploratory testing: a multiple case study,"
Empirical Software Engineering, 2005.

[61] D. N. Card, "Learning from our mistakes with defect causal analysis," IEEE
Software, vol. 15, pp. 56-63, 1998.

[62] V. S. Sheng, B. Gu, W. Fang, and J. Wu, "Cost-sensitive learning for defect
escalation," Knowledge-Based Systems, vol. 66, pp. 146-155, 2014.

[63] M. I. Kamata and T. Tamai, "How does requirements quality relate to project
success or failure?," Requirements Engineering Conference, 2007, pp. 69-78.

[64] W. A. Harrison and K. I. Magel, "A complexity measure based on nesting level,"
ACM Sigplan Notices, vol. 16, pp. 63-74, 1981.

[65] M. M. S. Sarwar, S. Shahzad, and I. Ahmad, "Cyclomatic complexity: The nesting
problem," Digital Information Management (ICDIM), pp. 274-279.

[66] M. Shepperd, "A critique of cyclomatic complexity as a software metric,"
Software Engineering Journal, vol. 3, pp. 30-36, 1988.

[67] R. P. Buse and W. R. Weimer, "Learning a metric for code readability," IEEE
Transactions on Software Engineering, vol. 36, pp. 546-558, 2010.

[68] N. E. Fenton and M. Neil, "Software metrics: roadmap," in Proceedings of the
Conference on the Future of Software Engineering, 2000, pp. 357-370.

References

194

[69] B. Boehm, "A view of 20th and 21st century software engineering," in
Proceedings of the 28th International Conference on Software engineering,
2006, pp. 12-29.

[70] T. Little, "Context-adaptive agility: managing complexity and uncertainty," IEEE
Software, vol. 22, pp. 28-35, 2005.

[71] N. E. Fenton and S. L. Pfleeger, "Software metrics," Chapman & Hall London,
1991.

[72] N. E. Fenton and M. Neil, "A critique of software defect prediction models," IEEE
Transactions on Software Engineering, vol. 25, pp. 675-689, 1999.

[73] C. Catal and B. Diri, "A systematic review of software fault prediction studies,"
Expert systems with applications, vol. 36, pp. 7346-7354, 2009.

[74] T. Fitz. (2009), "Continuous Deployment at IMVU: Doing the impossible fifty
times a day," Available at:
http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-
imvu-doing-the-impossible-fifty-times-a-day/

[75] T. Chow and D.-B. Cao, "A survey study of critical success factors in agile
software projects," Journal of Systems and Software, vol. 81, pp. 961-971, 2008.

[76] G. I. U. S. Perera and M. S. D. Fernando, "Enhanced agile software development -
hybrid paradigm with LEAN practice," in International Conference on Industrial
and Information Systems (ICIIS), 2007, pp. 239-244.

[77] D. Wisell, P. Stenvard, A. Hansebacke, and N. Keskitalo, "Considerations when
Designing and Using Virtual Instruments as Building Blocks in Flexible
Measurement System Solutions," in IEEE Instrumentation and Measurement
Technology Conference, 2007, pp. 1-5.

[78] International Bureau of Weights and Measures, "International vocabulary of
basic and general terms in metrology 2nd ed," Genève, Switzerland:
International Organization for Standardization, 1993.

[79] J. Lawler and B. Kitchenham, "Measurement modeling technology," IEEE
Software, vol. 20, pp. 68-75, 2003.

[80] F. Garcia, M. Serrano, J. Cruz-Lemus, F. Ruiz, M. Pattini, and ALARACOS Research
Group, "Managing Software Process Measurement: A Meta-model Based
Approach," Information Sciences, vol. 177, pp. 2570-2586, 2007.

[81] Harvard Business School, "Harvard business review on measuring corporate
performance," Boston, MA: Harvard Business School Press, 1998.

[82] D. Parmenter, "Key performance indicators: developing, implementing, and
using winning KPIs," John Wiley & Sons, 2007.

[83] R. L. Baskerville and A. T. Wood-Harper, "A Critical Perspective on Action
Research as a Method for Information Systems Research," Journal of
Information Technology, vol. 1996, pp. 235-246, 1996.

[84] G. I. Susman and R. D. Evered, "An Assessment of the Scientific Merits of Action
Research," Administrative Science Quarterly, vol. 1978, pp. 582-603, 1978.

[85] P. Tomaszewski, P. Berander, and L.-O. Damm, "From Traditional to Streamline
Development - Opportunities and Challenges," Software Process Improvement
and Practice, vol. 2007, pp. 1-20, 2007.

[86] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang, "An industrial study on the
risk of software changes," in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, 2012, p.
62.

[87] M. Staron, W. Meding, G. Karlsson, and C. Nilsson, "Developing measurement
systems: an industrial case study," Journal of Software Maintenance and
Evolution: Research and Practice, vol. 23, pp. 89-107, 2011.

http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/

References

195

[88] M. Staron and W. Meding, "Ensuring reliability of information provided by
measurement systems," Software Process and Product Measurement, Springer,
2009, pp. 1-16.

[89] W.-M. Han and S.-J. Huang, "An empirical analysis of risk components and
performance on software projects," Journal of Systems and Software, vol. 80, pp.
42-50, 2007.

[90] B. Boehm, "Software risk management," Springer, 1989.
[91] L. Wallace, M. Keil, and A. Rai, "Understanding software project risk: a cluster

analysis," Information & Management, vol. 42, pp. 115-125, 2004.
[92] S. Amland, "Risk-based testing: Risk analysis fundamentals and metrics for

software testing including a financial application case study," Journal of Systems
and Software, vol. 53, pp. 287-295, 9/15/ 2000.

[93] H. Barki, S. Rivard, and J. Talbot, "Toward an assessment of software
development risk," Journal of management information systems, pp. 203-225,
1993.

[94] J. H. Iversen, L. Mathiassen, and P. A. Nielsen, "Managing risk in software
process improvement: an action research approach," Mis Quarterly, vol. 28, pp.
395-433, 2004.

[95] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, "Looking for bugs in all the right
places," in Proceedings of the 2006 International Symposium on Software
Testing and Analysis, 2006, pp. 61-72.

[96] G. Denaro, S. Morasca, M. Pezz, "Deriving models of software fault-proneness,"
presented at the Proceedings of the 14th International Conference on Software
Engineering and Knowledge Engineering, Ischia, Italy, 2002.

[97] T. Gyimothy, R. Ferenc, and I. Siket, "Empirical validation of object-oriented
metrics on open source software for fault prediction," IEEE Transactions on
Software Engineering, , vol. 31, pp. 897-910, 2005.

[98] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum, "Empirical
validation of three software metrics suites to predict fault-proneness of object-
oriented classes developed using highly iterative or agile software development
processes," IEEE Transactions on Software Engineering, vol. 33, pp. 402-419,
2007.

[99] J. P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar, E. B. Allen, and J. Mayrand,
"Emerald: Software metrics and models on the desktop," IEEE Software, vol. 13,
pp. 56-60, 1996.

[100] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan, and P. Thambidurai, "Object-
oriented software fault prediction using neural networks," Information and
Software Technology, vol. 49, pp. 483-492, 2007.

[101] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Predicting the location and number
of faults in large software systems," IEEE Transactions on Software
Engineering, vol. 31, pp. 340-355, 2005.

[102] G. J. Pai and J. B. Dugan, "Empirical analysis of software fault content and fault
proneness using Bayesian methods," IEEE Transactions on Software
Engineering, vol. 33, pp. 675-686, 2007.

[103] M. Staron and W. Meding, "Monitoring Bottlenecks in Agile and Lean Software
Development Projects – A Method and Its Industrial Use," in Product-Focused
Software Process Improvement, Tore Cane, Italy, 2011, pp. 3-16.

[104] N. E. Fenton and S. L. Pfleeger, "Software metrics : a rigorous and practical
approach," 2nd ed. London: International Thomson Computer Press, 1996.

References

196

[105] M. Staron, W. Meding, and C. Nilsson, "A framework for developing
measurement systems and its industrial evaluation," Information and Software
Technology, vol. 51, pp. 721-737, 2009.

[106] T. J. McCabe, "A complexity measure," IEEE Transactions on Software
Engineering, pp. 308-320, 1976.

[107] G. Jay, J. E. Hale, R. K. Smith, D. Hale, N. A. Kraft, and C. Ward, "Cyclomatic
complexity and lines of code: empirical evidence of a stable linear relationship,"
Journal of Software Engineering and Applications (JSEA), 2009.

[108] R. Moser, W. Pedrycz, and G. Succi, "A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction," 30th
International Conference on Software Engineering, ACM/IEEE, 2008, pp. 181-
190.

[109] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto, "Software quality
analysis by code clones in industrial legacy software," Eighth IEEE Symposium
on Software Metrics, 2002, pp. 87-94.

[110] D. E. Neumann, "An enhanced neural network technique for software risk
analysis," IEEE Transactions on Software Engineering, vol. 28, pp. 904-912,
2002.

[111] G. M. Selim, L. Barbour, W. Shang, B. Adams, A. E. Hassan, and Y. Zou, "Studying
the impact of clones on software defects," 17th Working Conference on Reverse
Engineering (WCRE), 2010, pp. 13-21.

[112] A. G. Koru, K. El Emam, D. Zhang, H. Liu, and D. Mathew, "Theory of relative
defect proneness," Empirical Software Engineering, vol. 13, pp. 473-498, 2008.

[113] D. R. Cox, "Regression models and life-tables," Journal of the Royal Statistical
Society. Series B (Methodological), pp. 187-220, 1972.

[114] I. Gondra, "Applying machine learning to software fault-proneness prediction,"
Journal of Systems and Software, vol. 81, pp. 186-195, 2// 2008.

[115] P. C. Pendharkar, "Exhaustive and heuristic search approaches for learning a
software defect prediction model," Engineering Applications of Artificial
Intelligence, vol. 23, pp. 34-40, 2// 2010.

[116] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai, "Comparing case-based reasoning
classifiers for predicting high risk software components," Journal of Systems
and Software, vol. 55, pp. 301-320, 1/15/ 2001.

[117] T. Bakota, P. Hegedus, P. Kortvelyesi, R. Ferenc, and T. Gyimóthy, "A
probabilistic software quality model," 27th IEEE International Conference on
Software Maintenance (ICSM), 2011, pp. 243-252.

[118] R. Baggen, J. P. Correia, K. Schill, and J. Visser, "Standardized code quality
benchmarking for improving software maintainability," Software Quality
Journal, vol. 20, pp. 287-307, 2012.

[119] V. Antinyan, M. Staron, W. Meding, A. Henriksson, J. Hansson, and A. Sandberg,
"Defining Technical Risks in Software Development," International Conference
on Software Process and Product Measurement (IWSM-MENSURA), 2014, pp.
66-71.

[120] E. Knauss and C. El Boustani, "Assessing the quality of software requirements
specifications," 16th IEEE International Requirements Engineering Conference,
2008. pp. 341-342.

[121] D. Damian and J. Chisan, "An empirical study of the complex relationships
between requirements engineering processes and other processes that lead to
payoffs in productivity, quality, and risk management," IEEE Transactions on
Software Engineering, vol. 32, pp. 433-453, 2006.

References

197

[122] M. Kauppinen, M. Vartiainen, J. Kontio, S. Kujala, and R. Sulonen, "Implementing
requirements engineering processes throughout organizations: success factors
and challenges," Information and Software Technology, vol. 46, pp. 937-953,
2004.

[123] S. Jacobs, "Introducing measurable quality requirements: a case study," IEEE
International Symposium on Requirements Engineering, 1999, pp. 172-179.

[124] H. Mat Jani and A. Tariqul Islam, "A framework of software requirements
quality analysis system using case-based reasoning and Neural Network,"
Information Science and Service Science and Data Mining (ISSDM), 2012 6th
International Conference on New Trends in, 2012, pp. 152-157.

[125] C. Patel and M. Ramachandran, "Story card maturity model (SMM): a process
improvement framework for agile requirements engineering practices," Journal
of Software, vol. 4, pp. 422-435, 2009.

[126] S. Beecham, T. Hall, and A. Rainer, "Defining a requirements process
improvement model," Software Quality Journal, vol. 13, pp. 247-279, 2005.

[127] F. Houdek, "Managing Large Scale Specification Projects," Keynote Presentation
in Working Conference on Requirements Engineering: Foundation for Software
Quality, https://refsq.org/2013/industry-track/presentations/, 2013.

[128] B. H. Cheng and J. M. Atlee, "Research directions in requirements engineering,"
Future of Software Engineering, 2007, pp. 285-303.

[129] B. Regnell, R. B. Svensson, and K. Wnuk, "Can we beat the complexity of very
large-scale requirements engineering?," Requirements Engineering: Foundation
for Software Quality, Springer, 2008, pp. 123-128.

[130] K. Wnuk, B. Regnell, and C. Schrewelius, "Architecting and coordinating
thousands of requirements–an industrial case study," Requirements
Engineering: Foundation for Software Quality, ed: Springer, 2009, pp. 118-123.

[131] N. P. Napier, L. Mathiassen, and R. D. Johnson, "Combining perceptions and
prescriptions in requirements engineering process assessment: an industrial
case study," IEEE Transactions on Software Engineering, vol. 35, pp. 593-606,
2009.

[132] ISO/IEC 9126 International Standard, 2000.
[133] E. Rechtin and M. W. Maier, "The art of systems architecting," CRC Press, 2000.
[134] Systems and software engineering Vocabulary, I. S. I. I. I. 24765, 2010.
[135] D. I. Sjøberg, B. Anda, and A. Mockus, "Questioning software maintenance

metrics: a comparative case study," Proceedings of the ACM-IEEE International
Symposium on Empirical Eoftware Engineering and Measurement, 2012, pp.
107-110.

[136] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," Journal of
machine Learning research, vol. 3, pp. 993-1022, 2003.

[137] G. Génova, J. M. Fuentes, J. Llorens, O. Hurtado, and V. Moreno, "A framework to
measure and improve the quality of textual requirements," Requirements
Engineering, vol. 18, pp. 25-41, 2013.

[138] L. E. Hyatt and L. H. Rosenberg, "Software metrics program for risk assessment,"
Acta Astronautica, vol. 40, pp. 223-233, 1997.

[139] B. Gleich, O. Creighton, and L. Kof, "Ambiguity detection: Towards a tool
explaining ambiguity sources," Requirements Engineering: Foundation for
Software Quality, ed: Springer, 2010, pp. 218-232.

[140] V. Antinyan, M. Staron, W. Meding, P. Osterstrom, E. Wikstrom, J. Wranker, et al.,
"Identifying risky areas of software code in Agile/Lean software development:
An industrial experience report," Software Maintenance, Reengineering and
Reverse Engineering (CSMR-WCRE), 2014, pp. 154-163.

References

198

[141] R. L. Baskerville, "Investigating information systems with action research,"
Communications of the AIS, vol. 2, p. 4, 1999.

[142] M. G. Kendall, "A new measure of rank correlation," Biometrika, vol. 30, pp. 81-
93, 1938.

[143] R. L. Baskerville and A. T. Wood-Harper, "A critical perspective on action
research as a method for information systems research," Journal of Information
Technology, vol. 11, pp. 235-246, 1996.

[144] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, "An automatic quality evaluation
for natural language requirements," Requirements Engineering: Foundation for
Software Quality REFSQ, 2001, pp. 4-5.

[145] J. Bøegh, "A New Standard for Quality Requirements," IEEE Software, vol. 25, pp.
57-63, 2008.

[146] A. Davis, S. Overmyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh, et al.,
"Identifying and measuring quality in a software requirements specification,"
Software Metrics Symposium, 1993. pp. 141-152.

[147] R. J. Costello and D.-B. Liu, "Metrics for requirements engineering," Journal of
Systems and Software, vol. 29, pp. 39-63, 1995.

[148] R. Vlas and W. N. Robinson, "A rule-based natural language technique for
requirements discovery and classification in open-source software
development projects," 44th Hawaii International Conference on System
Sciences (HICSS), 2011, pp. 1-10.

[149] C. Huertas and R. Juárez-Ramírez, "NLARE, a natural language processing tool
for automatic requirements evaluation," International Information Technology
Conference, 2012, pp. 371-378.

[150] J. Kasser, W. Scott, X.-L. Tran, and S. Nesterov, "A proposed research programme
for determining a metric for a good requirement," Conference on Systems
Engineering Research, 2006, p. 1.

[151] H. Femmer, D. M. Fernández, E. Juergens, M. Klose, I. Zimmer, and J. Zimmer,
"Rapid requirements checks with requirements smells: two case studies,"
International Workshop on Rapid Continuous Software Engineering, 2014, pp.
10-19.

[152] E. Parra, C. Dimou, J. Llorens, V. Moreno, and A. Fraga, "A methodology for the
classification of quality of requirements using machine learning techniques,"
Information and Software Technology, vol. 67, pp. 180-195, 2015.

[153] G. H. Subramanian, P. C. Pendharkar, and M. Wallace, "An empirical study of the
effect of complexity, platform, and program type on software development
effort of business applications," Empirical Software Engineering, vol. 11, pp.
541-553, 2006.

[154] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig, "Software complexity and
maintenance costs," Communications of the ACM, vol. 36, pp. 81-95, 1993.

[155] A. Abran, "Software metrics and software metrology," John Wiley & Sons, 2010.
[156] E. J. Weyuker, "Evaluating software complexity measures," IEEE Transactions

on Software Engineering, vol. 14, pp. 1357-1365, 1988.
[157] N. F. Schneidewind, "Methodology for validating software metrics," IEEE

Transactions on Software Engineering, vol. 18, pp. 410-422, 1992.
[158] B. Kitchenham, S. L. Pfleeger, and N. Fenton, "Towards a framework for

software measurement validation," IEEE Transactions on Software Engineering,
vol. 21, pp. 929-944, 1995.

[159] S. Sarwar, M. Muhammd, S. Shahzad, and I. Ahmad, "Cyclomatic complexity: The
nesting problem," Eighth International Conference on Digital Information
Management (ICDIM), 2013, pp. 274-279.

References

199

[160] M. Shepperd and D. C. Ince, "A critique of three metrics," Journal of Systems and
Software, vol. 26, pp. 197-210, 1994.

[161] J. Graylin, J. E. Hale, R. K. Smith, H. David, N. A. Kraft, and W. Charles, "Cyclomatic
complexity and lines of code: empirical evidence of a stable linear relationship,"
Journal of Software Engineering and Applications, vol. 2, p. 137, 2009.

[162] C. Kaner, "Software engineering metrics: What do they measure and how do we
know?," METRICS 2004. IEEE CS, 2004.

[163] J. C. Munson and T. M. Khoshgoftaar, "The detection of fault-prone programs,"
IEEE Transactions on Software Engineering, vol. 18, pp. 423-433, 1992.

[164] V. Antinyan, M. Staron, W. Meding, P. Österström, E. Wikstrom, J. Wranker, et al.,
"Identifying risky areas of software code in Agile/Lean software development:
An industrial experience report," IEEE Conference on Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014, pp. 154-163.

[165] M. H. Halstead, "Elements of Software Science (Operating and programming
systems series)," Elsevier Science Inc., 1977.

[166] S. Henry and D. Kafura, "Software structure metrics based on information flow,"
IEEE Transactions on Software Engineering, pp. 510-518, 1981.

[167] S. R. Chidamber and C. F. Kemerer, "A metrics suite for object oriented design,"
IEEE Transactions on Software Engineering, vol. 20, pp. 476-493, 1994.

[168] T. Tenny, "Program readability: Procedures versus comments," IEEE
Transactions on Software Engineering, vol. 14, pp. 1271-1279, 1988.

[169] R. P. Buse and W. R. Weimer, "Learning a metric for code readability," IEEE
Transactions on Software Engineering, vol. 36, pp. 546-558, 2010.

[170] P. Koopman, "A case study of Toyota unintended acceleration and software
safety," Presentation. Sept, 2014.

[171] R. C. Seacord, D. Plakosh, and G. A. Lewis, "Modernizing legacy systems:
software technologies, engineering processes, and business practices," Addison-
Wesley Professional, 2003.

[172] S. Xiao, J. Witschey, and E. Murphy-Hill, "Social influences on secure
development tool adoption: why security tools spread," in Proceedings of the
17th ACM conference on Computer supported cooperative work & social
computing, 2014, pp. 1095-1106.

[173] P. Devanbu, T. Zimmermann, and C. Bird, "Belief & evidence in empirical
software engineering," in Proceedings of the 38th International Conference on
Software Engineering, 2016, pp. 108-119.

[174] D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi, "A software complexity model
of object-oriented systems," Decision Support Systems, vol. 13, pp. 241-262,
1995.

[175] R. R. Gonzalez, "A unified metric of software complexity: measuring
productivity, quality, and value," Journal of Systems and Software, vol. 29, pp.
17-37, 1995.

[176] N. Chapin, "A measure of software complexity," Proceedings of the 1979 NCC,
pp. 995-1002, 1979.

[177] J. C. Munson and T. M. Kohshgoftaar, "Measurement of data structure
complexity," Journal of Systems and Software, vol. 20, pp. 217-225, 1993.

[178] H. Tao and Y. Chen, "Complexity measure based on program slicing and its
validation," Wuhan University Journal of Natural Sciences, vol. 19, pp. 512-518,
2014.

[179] Y. Yang, Y. Zhou, H. Lu, L. Chen, Z. Chen, B. Xu, et al., "Are slice-based cohesion
metrics actually useful in effort-aware post-release fault-proneness prediction?

References

200

An empirical study," IEEE Transactions on Software Engineering, vol. 41, pp.
331-357, 2015.

[180] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, "DECOR: A method for
the specification and detection of code and design smells," IEEE Transactions on
Software Engineering, vol. 36, pp. 20-36, 2010.

[181] S. Kpodjedo, F. Ricca, P. Galinier, Y.-G. Guéhéneuc, and G. Antoniol, "Design
evolution metrics for defect prediction in object oriented systems," Empirical
Software Engineering, vol. 16, pp. 141-175, 2011.

[182] Y. Wang and J. Shao, "Measurement of the cognitive functional complexity of
software," The Second IEEE International Conference on Cognitive Informatics,
2003, pp. 67-74.

[183] S. N. Waweru, W. Mwangi, and W. Joseph, "A Software Code Complexity
Framework; Based on an Empirical Analysis of Software Cognitive Complexity
Metrics using an Improved Merged Weighted Complexity Measure,"
International Journal of Advanced Research in Computer Science, vol. 4, 2013.

[184] G. Keshavarz, N. Modiri, and M. Pedram, "Metric for Early Measurement of
Software Complexity," Interfaces, vol. 5, p. 15, 2011.

[185] M. Al-Hajjaji, I. Alsmadi, and S. Samarah, "Evaluating software complexity based
on decision coverage," LAP LAMBERT Academic Publishing, 2013.

[186] S. D. Suh and I. Neamtiu, "Studying software evolution for taming software
complexity," 21st Australian Software Engineering Conference (ASWEC) 2010,
pp. 3-12.

[187] N. Salman, "Complexity metrics as predictors of maintainability and
integrability of software components," Cankaya University Journal of Arts and
Sciences, vol. 1, 2006.

[188] Y. Kanellopoulos, P. Antonellis, D. Antoniou, C. Makris, E. Theodoridis, C. Tjortjis,
et al., "Code quality evaluation methodology using the ISO/IEC 9126 standard,"
preprint arXiv:1007.5117, 2010.

[189] V. Antinyan, M. Staron, J. Hansson, W. Meding, P. Österström, and A. Henriksson,
"Monitoring Evolution of Code Complexity and Magnitude of Changes," Acta
Cybernetica, vol. 21, pp. 367-382, 2014.

[190] G. J. Myers, C. Sandler, and T. Badgett, "The art of software testing," John Wiley
& Sons, 2011.

[191] A. Glover, "In pursuit of code quality: Don’t be fooled by the coverage report,"
IBM Developer Works blog post, pp. 1-2, 2006.

[192] B. Marick, "How to misuse code coverage," in Proceedings of the 16th
Interational Conference on Testing Computer Software, 1999, pp. 16-18.

[193] Y. Chernak, "Validating and improving test-case effectiveness," IEEE software,
vol. 18, pp. 81-86, 2001.

[194] J. Voas, "How assertions can increase test effectiveness," IEEE Software, vol. 14,
pp. 118-119, 1997.

[195] M. R. Lyu, J. Horgan, and S. London, "A coverage analysis tool for the
effectiveness of software testing," IEEE Transactions on Reliability, vol. 43, pp.
527-535, 1994.

[196] B. Smith and L. A. Williams, "A survey on code coverage as a stopping criterion
for unit testing," North Carolina State University. Dept. of Computer Science,
2008.

[197] L. Briand and D. Pfahl, "Using simulation for assessing the real impact of test
coverage on defect coverage," 10th International Symposium on Software
Reliability Engineering, 1999, pp. 148-157.

References

201

[198] P. S. Kochhar, F. Thung, and D. Lo, "Code coverage and test suite effectiveness:
Empirical study with real bugs in large systems," IEEE 22nd International
Conference on in Software Analysis, Evolution and Reengineering (SANER),
2015, pp. 560-564.

[199] L. Inozemtseva and R. Holmes, "Coverage is not strongly correlated with test
suite effectiveness," 36th International Conference on Software Engineering,
2014, pp. 435-445.

[200] X. Cai and M. R. Lyu, "The effect of code coverage on fault detection under
different testing profiles," ACM SIGSOFT Software Engineering Notes, vol. 30,
pp. 1-7, 2005.

[201] G. Gay, M. Staats, M. Whalen, and M. P. Heimdahl, "The risks of coverage-
directed test case generation," IEEE Transactions on Software Engineering, vol.
41, pp. 803-819, 2015.

[202] A. Sellami and A. Abran, "The contribution of metrology concepts to
understanding and clarifying a proposed framework for software measurement
validation," 13th International Workshop on Software Measurement (IWSM),
Montreal, Canada, 2003, pp. 18-40.

[203] W. Li and S. Henry, "Object-oriented metrics that predict maintainability,"
Journal of systems and software, vol. 23, pp. 111-122, 1993.

[204] V. R. Basili, L. C. Briand, and W. L. Melo, "A validation of object-oriented design
metrics as quality indicators," IEEE Transactions on Software Engineering, vol.
22, pp. 751-761, 1996.

[205] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, "A systematic literature
review on fault prediction performance in software engineering," IEEE
Transactions on Software Engineering, vol. 38, pp. 1276-1304, 2012.

[206] L. Briand, K. El Emam, and S. Morasca, "On the application of measurement
theory in software engineering," Empirical Software Engineering, vol. 1, pp. 61-
88, 1996.

[207] C. Mair and M. Shepperd, "Human judgement and software metrics: vision for
the future," 2nd international workshop on emerging trends in software
metrics, 2011, pp. 81-84.

[208] A. Meneely, B. Smith, and L. Williams, "Validating software metrics: A spectrum
of philosophies," ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 21, p. 24, 2012.

[209] J. McGarry, "Practical software measurement: objective information for decision
makers," Addison-Wesley Professional, 2002.

[210] S. G. Elbaum and J. C. Munson, "Getting a handle on the fault injection process:
validation of measurement tools," Fifth International Software Metrics
Symposium, 1998, pp. 133-141.

[211] ISO/IEC 15939 international standard of software measurement, 2001.
[212] ISO/IEC 25020 international standard of software and system engineering,

2007.
[213] K. El-Emam, "A methodology for validating software product metrics,"

Encyclopaedia of software engineering, 2002.
[214] D. I. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N.-K.

Liborg, et al., "A survey of controlled experiments in software engineering,"
IEEE Transactions on Software Engineering, vol. 31, pp. 733-753, 2005.

[215] B. Boehm, R. Valerdi, J. Lane, and A. Brown, "COCOMO suite methodology and
evolution," CrossTalk, vol. 18, pp. 20-25, 2005.

References

202

[216] A. Monden, D. Nakae, T. Kamiya, S.-i. Sato, and K.-i. Matsumoto, "Software
quality analysis by code clones in industrial legacy software," Eighth IEEE
Symposium on Software Metrics, 2002, pp. 87-94.

[217] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, "Cross-project
defect prediction: a large scale experiment on data vs. domain vs. process," 7th
joint meeting of the european software engineering conference and the ACM
SIGSOFT symposium on the foundations of software engineering, 2009, pp. 91-
100.

[218] H. Zhang, X. Zhang, and M. Gu, "Predicting defective software components from
code complexity measures," 13th Pacific Rim International Symposium on
Dependable Computing, 2007, pp. 93-96.

[219] R. Reicherdt and S. Glesner, "Slicing MATLAB simulink models," 34th
International Conference on Software Engineering (ICSE), 2012, pp. 551-561.

[220] P. Boström, R. Grönblom, T. Huotari, and J. Wiik, "An approach to contract-based
verification of Simulink models," ed: Tech. Rep. 985, TUCS, 2010.

[221] J. Prabhu, "Complexity Analysis of Simulink Models to improve the Quality of
Outsourcing in an Automotive Company," Manuscript, August, 2010.

[222] M. Olszewska, "Simulink-specific design quality metrics," Technical report,
Turku, Finland, 2011.

[223] J. H. Iversen, L. Mathiassen, and P. A. Nielsen, "Managing risk in software
process improvement: an action research approach," Mis Quarterly, pp. 395-
433, 2004.

[224] D. L. Moody, "Metrics for evaluating the quality of entity relationship models,"
Conceptual Modeling–ER’98, ed: Springer, 1998, pp. 211-225.

