

Proactive Software Complexity

Assessment

Vard Antinyan

Presentation:
7th of November 2017, 13:00

Room Omega, Jupiter Building
Hörselgången 5, 417 56, Gothenburg

University of Gothenburg

Main adviser: Prof. Miroslaw Staron
Second advisor: Assoc. Prof. Anna Sandberg

Examiner: Prof. Jörgen Hansson

Opponent: Prof. Tracy Hall

Committee:
Prof. Luigi Lavazza

Prof. Dag Søberg
Prof. Daniel Sundmark

https://folk.uio.no/dagsj/

Abstract
Large software development companies primarily deliver value to their customers by
continuously enhancing the functionality of their products. Continuously developing
software for customers insures the enduring success of a company. In continuous devel-
opment, however, software complexity tends to increase gradually, the consequence
being deteriorating maintainability over time. During short periods of time, the gradual
complexity increase is insignificant, but over longer periods of time, complexity can de-
velop to an unconceivable extent, such that maintenance is no longer profitable. Thus,
proactive complexity assessment methods are required to prevent the gradual growth of
complexity and instead build quality into developed software.

Many studies have been conducted to delineate methods for complexity assessment.
These focus on three main areas: 1) the landscape of complexity, i.e., the source of the
complexity; 2) the options for complexity assessment, i.e., how complexity can be meas-
ured and whether the results of assessment reflects reality; and 3) the practicality of
using complexity assessment methods, i.e., the successful integration and use of as-
sessment methods in continuous software development.

Partial successes were achieved in all three areas. Firstly, it is clear that complexity is
understood in terms of its consequences, such as spent time or resources, rather than in
terms of its structure per se, such as software characteristics. Consequently, current
complexity measures only assess isolated aspects of complexity and fail to capture its
entirety. Finally, it is also clear that existing complexity assessment methods are used
for isolated activities (e.g., defect and maintainability predictions) and not for integrated
decision support (e.g., continuous maintainability enhancement and defect prevention).

This thesis presents 14 new findings across these three areas. The key findings are that:
1) Complexity increases maintenance time multifold when software size is constant.
This consequential effect is mostly due to a few software characteristics, and whilst oth-
er software characteristics are essential for software development, they have an insig-
nificant effect on complexity growth; 2) Two methods are proposed for complexity as-
sessment. The first is for source code, which represents a combination of existing com-
plexity measures to indicate deteriorating areas of code. The second is for textual re-
quirements, which represents new complexity measures that can indicate the inflow of
poorly specified requirements; 3) Both methods were developed based on two critical
factors: (i) the accuracy of assessment, and (ii) the simplicity of interpretation. The
methods were integrated into practitioners’ working environments to allow proactive
complexity assessment and prevention of deteriorating maintainability.

In addition, several additional key observations were made, primarily that the focus
should be in creating more sophisticated software complexity measures based on empir-
ical data indicative of the code characteristics that most influence complexity. It is desir-
able, therefore, to integrate such complexity assessment measures into the practitioners’
working environments to ensure that complexity is assessed and managed proactively.
This would allow quality to be built into the product rather than having to conduct sepa-
rate, post-release refactoring activities.

Keywords: complexity, metric, measure, code, requirement, software quality, technical
risk, technical debt, continuous integration, agile development

Technical Report No 143D
ISBN 978-91-982237-2-9

