
Doctor of Engineering Thesis

Measuring the Evolution of Meta-models, Models and
Design Requirements to Facilitate Architectural

Updates in Large Software Systems

Darko Durǐsić

University of Gothenburg

Division of Software Engineering
Department of Computer Science & Engineering

University of Gothenburg
Gothenburg, Sweden, 2017

Measuring the Evolution of Meta-models, Models and Design Re-
quirements to Facilitate Architectural Updates in Large Software
Systems

Darko Durǐsić

Copyright c©2017 Darko Durǐsić
except where otherwise stated.
All rights reserved.

Technical Report No 148D
ISBN 978-91-982237-5-0

Department of Computer Science & Engineering
Division of Software Engineering
University of Gothenburg
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2017.

ii

To my son Filip
Your smiles and laughs came just in time to inspire me to finish

up what I started long before you were born.

iv

Abstract

Background: In order to reduce complexity of the system and its develop-
ment cost, the architecture of large software systems is often developed follow-
ing the MDE (Model-Driven Engineering) approach. Developing architectures
according to MDE relies on three main artifacts in the development process:
domain-specific meta-models, architectural models and system design require-
ments. The architecture of the system is defined in the architectural models
which are developed using modeling tools. The syntax of the models is defined
in domain-specific meta-models, while their semantics is usually provided in a
form of system design requirements in the supporting specifications.

Objective: The main objective of this thesis is to develop methods and tools
for managing architectural updates in the development of large software sys-
tems. Our goal is to automatically assess the impact of using new architectural
features on the development projects (e.g., in terms of model complexity and
required updates of the modeling tools) in order to assist system designers
in planning their use in the models. The assessment is based on measuring
the evolution of domain-specific meta-models, architectural models and system
design requirements related to relevant architectural features.

Method: We performed a series of case studies focusing on the domain-
specific meta-model, architectural models and system design requirements
from the automotive domain. On the one hand, the case studies helped us to
understand relevant industrial contexts for our research problems and develop
our methods using constructive research methodology. On the other hand, the
case studies helped us to empirically validate the results of our methods.

Results: We developed three new methods and software tools for automated
impact assessment. The first method and the tool (QTool) show the complex-
ity increase in the architectural models after adding a set of new features to the
system. The second method (MeFIA) and the tool (ARCA) assess the impact
of using these features in the system on the used modeling tools. Finally, the
third method and the tool (SREA) identify a subset of design requirements
that are affected by the use of the new features.

Conclusion: We showed in practice that our methods and tools enable faster
use of new architectural features in the development projects. More concretely,
we showed that quantitative analysis of evolution of domain-specific meta-
models, architectural models and system design requirements related to new
architectural features can be a valuable indicator of which features shall be
used in the system and what is their impact on the development projects.

v

Acknowledgment

First and foremost, I would like to express my deepest gratitude to Prof.
Miroslaw Staron, my main supervisor. I was very fortunate to work with
Miroslaw for my master thesis. This served as an initial spark that lit my
desire to pursue a PhD. Miroslaw’s guidance and constant feedback before and
during my PhD studies was invaluable for my development as a researcher.

Then, I would like to thank my co-supervisors Prof. Matthias Tichy and
Prof. Jörgen Hansson, whose ideas and comments significantly improved the
quality of my research and included publications. I would also like to thank
my managers at Volvo Cars Stefan Andreasson and Hans Alminger for steering
my development as an engineer and for supporting my wish to pursue a PhD.

There are a few other people from Volvo who I owe a great debt of grati-
tude. I am very grateful to Urban Kristiansson, now retired Senior Technical
Advisor, for guiding me through the process of becoming a part of Volvo’s
Industrial PhD Program. I am also very grateful to my colleagues Nicklas
Fritzson and Ola Reiner who kept this project alive with their ideas about
the application of the research results. Finally, I am very grateful to Martin
Nilsson whose industrial guidance while I was still a master student at Volvo
shaped an important part of my PhD project.

Additionally, I would like to thank Corrado Motta, a former master student
and now my colleague at Volvo Cars, and Maxime Jimenez, a former intern
at Chalmers, for contributing to my project in two studies. Their work was
very important for connecting the pieces of my thesis. I would also like to
thank my colleagues from the AUTOSAR consortium who were always willing
to discuss the results of my studies and offer suggestions for future work. In
particular, I am grateful to Dr. Joakim Ohlsson from Volvo AB, Johan Ekberg
from ArcCore, Anders Kallerdahl and Istvan Horvat from Mentor Graphics,
Uwe Honekamp from Vector, and Dr. Tom Galla from Elektrobit.

At the end, my inexpressible appreciation goes to my family who are the
most important thing in my life. First and foremost, I want to thank my wife
Bojana for her encouragement in my moments of doubt and for sharing my
moments of success. Without your sacrifices, finishing this thesis would not
be possible. I am also very grateful to my parents Slobodan and Mirjana who
were always there to support my personal and professional decisions in life.

The research presented in this thesis was conducted within the QuaSAR@car
research project which is funded by Volvo Cars, as part of the Volvo Industrial
PhD Program (VIPP), and by Swedish Governmental Agency for Innovation
Systems (VINNOVA), under the grant no. 2013-02630.

vii

List of Publications

Included publications

This doctorate thesis is based on the following publications:

[A] D. Durisic, M. Nilsson, M. Staron and J. Hansson, ”Measuring the
Impact of Changes to the Complexity and Coupling Properties of Auto-
motive Software Systems”, Journal of Systems and Software (JSS), vol.
86, no. 5, pp. 275-1293, 2013

[B] D. Durisic, M. Staron, M. Tichy, J. Hansson, ”Addressing the Need
for Strict Meta-Modeling in Practice - A Case Study of AUTOSAR”,
Proceedings of the 4th International Conference on Model-Driven En-
gineering and Software Development (MODELSWARD), pp. 317-322,
2016

[C] D. Durisic, M. Staron, M. Tichy, J. Hansson, ”Assessing the Impact of
Meta-Model Evolution - A Measure and Its Automotive Application”,
Journal of Software and Systems Modeling (SoSyM), pp. 1-27, 2017

[D] M. Jimenez, D. Durisic, M. Staron, ”Measuring the Evolution of Meta-
Models - A Case Study of Modelica and UML Meta-Models”, Proceedings
of the 5th International Conference on Model-Driven Engineering and
Software Development (MODELSWARD), 2017

[E] D. Durisic, M. Staron, M. Tichy, ”Identifying Optimal Sets of Standard-
ized Architectural Features - A Method and its Automotive Application”,
Proceedings of the 11th International Conference on Quality of Software
Architectures (QoSA), pp. 103-112, 2015

[F] D. Durisic, M. Staron, M. Tichy, J. Hansson, ”ARCA - Automated
Analysis of AUTOSAR Meta-Model Changes”, Proceedings of the 7th
International Workshop on Modeling in Software Engineering (MiSE),
pp. 30-35, 2015

[G] C. Motta, D. Durisic, M. Staron, ”Should We Adopt a New Version of
a Standard? - A Method and its Evaluation on AUTOSAR”, Proceed-
ings of the 17th International Conference on Product-Focused Software
Process Improvement (PROFES), pp. 127-143, 2016

ix

x CHAPTER 0. LIST OF PUBLICATIONS

[H] D. Durisic, C. Motta, M. Staron, M. Tichy, ”Co-Evolution of Meta-
Modeling Syntax and Semantics in Architectural Domain-Specific Mod-
eling Environments - A Case Study of AUTOSAR”, Proceedings of the
20th International Conference on Model Driven Engineering Languages
and Systems (MODELS), 2017

Additionally, case study background of the thesis described in Chapter 2
is based on the the first five sections of the following book chapter:

• D. Durisic, ”AUTOSAR”, Chapter in Automotive Software Architectures
book, Springer, 2017

Other publications

The following publications are published but not appended to this thesis
due to their content overlap or smaller relevance to the research questions:

• D. Durisic, M. Staron and M. Nilsson, ”Measuring the Size of Changes
in Automotive Software Systems and their Impact on Product Quality”,
Proceedings of the 12th International Conference on Product Focused
Software Development and Process Improvement (PROFES), pp. 10-13,
2011

• D. Durisic, M. Staron, M. Tichy, J. Hansson, ”Evolution of Long-Term
Industrial Meta-Models - An Automotive Case Study of AUTOSAR”,
Proceedings of the 40th EUROMICRO Conference on Software Engi-
neering and Advanced Applications (SEAA), pp. 141-148, 2014

• D. Durisic, M. Staron, M. Tichy, J. Hansson, ”Quantifying Long-Term
Evolution of Industrial Meta-Models - A Case Study”, Proceedings of the
International Conference on Software Process and Product Measurement
(MENSURA), pp. 104-113, 2014

Contents

Abstract v

Acknowledgment vii

List of Publications ix

1 Introduction 1

1.1 Modeling and meta-modeling 4

1.1.1 Theory of modeling and meta-modeling 4

1.1.2 Domain-specific modeling and meta-modeling 6

1.1.3 Architectural modeling and architectural features 7

1.1.4 Modeling and meta-modeling in this thesis 7

1.2 Software measurement . 8

1.2.1 Measurement theory . 9

1.2.2 Measurement process . 10

1.2.3 Software measurement in this thesis 12

1.3 Research questions and contributions 13

1.3.1 Industrial contribution 18

1.3.2 Individual contribution 20

1.3.3 Related publications . 20

1.4 Research methodology . 21

1.4.1 Case study theory . 22

1.4.2 Constructive research theory 23

1.4.3 Research methods used in our papers 24

1.4.4 Research validity . 27

1.5 Conclusions and future work 29

2 Case Study Background 35

2.1 Introduction . 36

2.2 AUTOSAR reference architecture 37

2.3 AUTOSAR development methodology 39

2.4 AUTOSAR meta-model . 44

2.4.1 AUTOSAR meta-modeling environment 44

2.4.2 Design based on the AUTOSAR meta-model 46

2.4.3 AUTOSAR template specifications 51

2.5 AUTOSAR ECU middleware 52

xi

xii CONTENTS

3 Paper A 57
3.1 Introduction . 58
3.2 Related Work . 60
3.3 Research Method . 61
3.4 Designing Software Systems at VCC 64

3.4.1 Logical View . 64
3.4.2 Deployment View . 65

3.5 Quality Metrics . 67
3.5.1 Logical View Measures 68
3.5.2 Deployment View Measures 72

3.6 Presentation and Interpretation of Results 73
3.6.1 Presentation of Measurement Results 73
3.6.2 Interpretation of Measurement Results 74

3.7 Example . 76
3.7.1 The Example System Description 76
3.7.2 Measurements and Results Presentation 79

3.7.2.1 Logical View 79
3.7.2.2 Deployment View 82

3.7.3 Results Interpretation 84
3.8 Validation of the Metrics . 85

3.8.1 Theoretical Validation 85
3.8.2 Empirical Validation . 87

3.9 Conclusions . 92

4 Paper B 99
4.1 Introduction . 100
4.2 Automotive Modeling . 101

4.2.1 AUTOSAR Meta-Model Hierarchy 103
4.3 Assuring Strictness of AUTOSAR 105
4.4 Discussion . 107
4.5 Conclusions . 108

5 Paper C 111
5.1 Introduction . 112
5.2 Background . 113

5.2.1 Architectural design based on meta-models 114
5.2.2 AUTOSAR based automotive architectural design . . . 115
5.2.3 AUTOSAR meta-modeling environment 117

5.3 Research methodology . 118
5.3.1 Study design and execution 118

5.3.1.1 Case study 1 - Analysis of AUTOSAR (RQA) 119
5.3.1.2 Constructive study - Definition of NoC (RQB) 120
5.3.1.3 Case study 2 - Validation of NoC (RQC) . . . 121

5.3.2 Replication of the Study 123
5.4 Definition of NoC . 124

5.4.1 Data model . 124
5.4.2 NoC definition . 126

5.5 Validation of NoC . 127

CONTENTS xiii

5.5.1 Validation scope: AUTOSAR features, meta-model changes,
and tools . 127

5.5.2 Measurement results . 128
5.5.3 NoC validation . 130

5.5.3.1 Company A 130
5.5.3.2 Company B . 131
5.5.3.3 Company C . 131
5.5.3.4 Company D 132
5.5.3.5 Company E . 132
5.5.3.6 Correlation results 133

5.6 Discussion . 134
5.6.1 Key finding 1 - NoC measure is a good indicator of tool-

ing impact . 134
5.6.2 Key finding 2 - Qualitative analysis of changes for accu-

rate impact assessment 135
5.6.3 Calculating NoC on other meta-models 136
5.6.4 Threats to validity . 137
5.6.5 Limitations . 139
5.6.6 Impact of different types of meta-model changes 140

5.7 Practical experience and recommendations 142
5.8 Related work . 143
5.9 Conclusions and future work 145

6 Paper D 155
6.1 Introduction . 156
6.2 Background . 157
6.3 Research method . 158
6.4 Results . 160

6.4.1 Modelica data-model . 160
6.4.2 UML data-model . 160
6.4.3 Modelica measurements 161
6.4.4 UML measurements . 163

6.5 Validation and discussion . 164
6.6 Related work . 165
6.7 Conclusion . 165

7 Paper E 169
7.1 Introduction . 170
7.2 Related work . 171
7.3 Research methodology . 172
7.4 MeFiA method definition . 174

7.4.1 Meta-data model for the changes 174
7.4.2 Linking meta-model changes to features 175
7.4.3 Optimizing the set of adopted features 176
7.4.4 Assumptions for the MeFiA method 178

7.5 Automotive software development 179
7.6 Applying MeFiA on AUTOSAR features 181

7.6.1 Optimization for the entire meta-model 183
7.6.2 Role-based optimization 184

xiv CONTENTS

7.6.3 Aggregated role-based optimization 187
7.7 Conclusion and future work . 187

8 Paper F 193
8.1 Introduction . 194
8.2 AUTOSAR based software development 195
8.3 Related work . 196
8.4 ARCA tool . 197

8.4.1 The architecture of ARCA tool 197
8.4.2 Quantifying/presenting the meta-model changes 199
8.4.3 Presenting the results of software metrics 200
8.4.4 Presenting/quantifying the feature related changes . . . 201
8.4.5 Combining all tool’s functionalities in car projects . . . 204

8.5 Conclusion . 204

9 Paper G 207
9.1 Introduction . 208
9.2 Related work . 209
9.3 Case study evaluation context 210
9.4 Research methodology . 212
9.5 The SREA method . 212
9.6 Evaluation of SREA on AUTOSAR 216
9.7 Discussion . 219
9.8 Conclusion . 220

10 Paper H 225
10.1 Introduction . 226
10.2 Case study background . 228

10.2.1 AUTOSAR meta-model (syntax) 228
10.2.2 AUTOSAR design specifications (semantics) 229

10.3 Research methodology . 230
10.4 Results . 233

10.4.1 Measurement context 233
10.4.2 Measurement results . 234
10.4.3 Correlation results . 235

10.5 Discussion . 237
10.5.1 Key findings . 237
10.5.2 Industrial impact . 238
10.5.3 Threats to validity . 239
10.5.4 Replication of the study 240

10.6 Related work . 240
10.7 Conclusion . 241

Chapter 1

Introduction

Model-Driven Engineering (MDE) [22] is a widely used methodology in the
development of large software systems. The main benefits of MDE are the facts
that it raises the level of abstraction [3] and employs tools to enable automation
in the development process [2]. Raising the level of abstraction contributes to
the reduced complexity of the system and increased understandability of the
interplay between the system’s components. Therefore, MDE is especially
useful in the development of large systems that consist of many complex parts
which have to communicate with each other [10]. Automation contributes to
the increased development speed.

Automotive software system is a good example of a large software system
where MDE facilitates the development process. One reason for this lies in the
highly increased size and complexity of automotive systems in the past decade.
Today, one premium car consists of more than 150 computers (referred to as
ECUs - Electronic Control Units) responsible for executing more than 1 giga-
byte of on board binary code, compared to only 50 ECUs and 10 megabytes
of binary code ten years ago [18]. This trend of increasing complexity of the
automotive software systems is expected to continue [26] driven by the new
functionalities that are expected from modern cars, e.g., autonomous drive
and car-to-car communication.

Another reason for using MDE in the automotive domain is the highly dis-
tributed development of software for different ECUs, which is usually devel-
oped by different suppliers. Therefore, using formalized models for exchanging
information between different actors in the development process, and modeling
tools for reading and editing the models in the automated way contributes to
the increased development speed. An alternative approach would be manual
work with the non-formalized artifacts of the system description which would,
given the complexity and size of the system, be hardly feasible.

Other examples of large software systems can be found in the avionics
domain, where the software for military jets today has up to 50 million lines
of code, and the software for the newest passenger planes almost 100 million
lines of code (comparable to some luxury cars) [18]. Similar to the automotive
software systems, other large software systems are usually also composed of
functionally diverse components which are developed by unrelated teams. This
additionally increases the complexity of the development process.

1

2 CHAPTER 1. INTRODUCTION

In the area of software architectural design, the methodology of MDE is
built around three main artifacts in the development process: domain-specific
meta-models, architectural models and system design requirements. The ar-
chitecture of the system is defined in the architectural models, which are de-
veloped in one or more architectural modeling tools. In order to be able to
exchange the models between modeling tools used by different actors in the
development process, the tools are based on a common domain-specific meta-
model that defines syntax for the models, thus assuring the tooling interoper-
ability. Finally, the semantics of the models is usually defined in the natural
language specifications, which may consist of a number of design requirements
explaining the use of one or more modeling elements.

Despite being used in industry for many years, employing MDE in practice
brings a number of challenges related to the evolution of the MDE artifacts and
their impact on each other. Some of these challenges are well covered in the
existing literature, such as the coupled evolution of models and meta-models
related to the automated model updates according to the new meta-model
versions [28]. Certain challenges, however, received less attention, such as
the impact of meta-model evolution on the compliant modeling tools and the
complexity of the models. This is important for planning updates of the tools
in order to support new modeling features in the meta-model, and prioritizing
testing areas in the system upon using these features in the models. Therefore,
the existence of such methods for automated impact assessment has a potential
to increase the speed innovation in the development projects.

The main goal of this thesis is to develop methods and tools for managing
architectural updates, that require updates of the modeling language, in the
development of large software systems. This management includes the assess-
ment of impact of using a new architectural feature in the models (e.g., new
communication protocol) on the modeling tools used in the development pro-
cess, in terms of updating effort, and existing models, in terms of increased
complexity. The tooling impact assessment is particularly important if soft-
ware is developed in a distributed environment, like in the automotive domain,
where architectural models are exchanged between multiple actors in the de-
velopment process. This is because each actor may use different modeling
tools, and all of them should be considered in the assessment.

In order to achieve our goal, we performed a series of case studies of meta-
models, architectural models and design requirements. For example, we exam-
ined the architectural models from Volvo Cars and the domain-specific meta-
model and the standardized requirements from the AUTOSAR standard [6],
a reference architecture and methodology used in the automotive domain. We
used these case studies as part of the constructive research methodology to de-
velop, evaluate and validate our methods for analyzing the evolution of these
three MDE artifacts. For example, we performed one case study to understand
the organization of domain-specific meta-models in order to define a method
for measuring meta-model evolution, and another case-study to evaluate and
validate the method using one or more industrial meta-models.

The main results of this thesis are three methods for automated impact as-
sessment of using new architectural features in large software systems on the
development projects, each based on one or two software measures. This is
based on our hypothesis that simple measures of change in the domain-specific

3

meta-models, architectural models and design requirements can produce accu-
rate early indicators of which architectural features shall be used in the system,
and estimate their impact on the development projects.

The first method, realized in the QTool, shows the complexity increase
in the architectural models after adding a set of new features to the system.
The method is based on the two measures of model complexity and coupling.
The second method, named MeFIA and realized in the ARCA tool, assesses
the impact of supporting different features on the used modeling tools. The
method is based on the measure of meta-model change (NoC) and it can also
show concrete meta-model changes caused by a particular feature and relevant
to a particular actor in the development process. Finally, the third method,
realized in the SREA tool, identifies the subset of design requirements, that
provide semantics to the modeling elements, affected by the analyzed feature.
The method can also identify the most unstable requirement specifications
based on the measures of requirements change and maturity index (RMI).

We can see that each of the three methods analyzes the evolution of one
of the three MDE artifacts, i.e., domain-specific meta-models, architectural
models and system design requirements. The methods can also perform impact
assessment of this evolution on the development projects, i.e., the first method
in terms of complexity increase in the models upon using the new architectural
features, the second method in terms of updating efforts of the used modeling
tools to support the new features, and the third method in terms of time
required to understand how to use the new features in the models. Therefore,
the methods complement each other and should be used together by the system
designers in order to decide which new features shall be used in projects, and
accurately estimate their impact on the development projects.

For example, the ARCA tool can be used first to assess the feasibility of
supporting one feature in the modeling tools in the project time-frame. If it is
considered feasible, the ARCA and SREA tools can then be used for planning
the required updates in the tools and understanding the relevant requirements
specifications, respectively, related to this feature. Finally, the QTool can be
used to indicate which parts of the system are mostly affected by the use of
this features for prioritizing testing areas or revising the system’s architecture.

In order to validate our methods in practice, we applied them in the auto-
motive domain on the AUTOSAR artifacts. The choice of the automotive do-
main is justified as automotive software systems represent large systems which
are developed, including the architectural design, fully according to MDE. The
choice of AUTOSAR is justified due to its long industrial use (more than 10
years) by the majority of car manufacturers, and its large size. For example,
the newest release of the AUTOSAR meta-model exceeds 10000 meta-classes
and 35000 meta-model changes in comparison to the previous release, and
more than 20000 requirements in the AUTOSAR specifications our of which
at least 2000 are changed in every release.

We first found that, using the QTool, it is possible to verify that certain
quality attributes of the AUTOSAR models have not deteriorated and to iden-
tify new testing areas in the system. We then found that the ARCA tool can
provide a preliminary indicator of effort needed to update AUTOSAR-based
modeling tools in order to support new AUTOSAR features. Finally, we found
that, using the SREA tool, we can support system designers to faster under-

4 CHAPTER 1. INTRODUCTION

stand how to use the new features in the architectural models. We used these
findings to validate our hypotheses described above.

This rest of Chapter 1 is structured as follows: Sections 1.1 and 1.2 provide
theoretical background related to modeling/meta-modeling and software mea-
surement, respectively, and how it is used in this thesis. These two areas of
software engineering are particularly important as our methods are based on
software measures applied on different modeling artifacts. Section 1.3 defines
our research questions and describes the contribution of our studies. Section
1.4 describes the methodology we employed to obtain the results. Finally,
Section 1.5 summarizes our conclusions and describes possible future work.

Chapter 2 describes automotive modeling environment and the role of the
AUTOSAR standard, as our main unit of analysis, in it. Chapters 3-10 present
the individual papers included in this thesis. Each paper is independent and
represents one study that addressed one or several research questions.

1.1 Modeling and meta-modeling

In this section, we first explain the theory behind modeling and meta-
modeling following the MDE approach in Section 1.1.1. We then describe how
meta-modeling is used in different domains, such as automotive, in Section
1.1.2. After that, we show the use of meta-modeling in the architectural design
of one system and clarify the term ”architectural feature” in Section 1.1.3.
These three sections define the terms related to modeling and meta-modeling
(indicated in bold) which are used in the rest of the thesis. Finally, we explain
the use of modeling and meta-modeling in this thesis in Section 1.1.4.

1.1.1 Theory of modeling and meta-modeling

Modeling plays an important role in the development of large software
systems because it reduces their complexity by raising the level of abstraction.
This abstraction is achieved by specifying what the system does rather than
how it does this [3]. Models and meta-models are the two most important
concepts involved in any modeling environment. Based on the definitions of
Bézivin et al. [9], a model represents a simplified representation of a software
system that has been created for a specific purpose, whilst a meta-model
represents the model of the language this system model is expressed in.

The prefix ”meta” is of Greek origin meaning ”after” or ”beyond”, and in
general it indicates that certain concept lies above the original concept; for
example, the meta-model represents ”a model of the model” and the meta-
meta-model represents ”a model of the meta-model”. Applying this logic sev-
eral times creates a meta-modeling hierarchy, which is also referred to as
the meta-pyramid [19]. The meta-modeling hierarchy of MOF [30] standard-
ized by the Object Management Group (OMG) [33] is considered a de facto
standard in meta-modeling and it consists of the following layers:

1. The M3 layer: MOF meta-meta-model that defines modeling concepts

2. The M2 layer: meta-model that defines language specifications

3. The M1 layer: model that defines application meta-data

1.1. MODELING AND META-MODELING 5

4. The M0 layer: objects that define application data

The Meta-Object Facility (MOF) [30] resides at the top of the hierarchy.
This is a meta-meta-model that defines the general modeling concepts used by
meta-models on the M2 layer. A frequently used meta-model on the M2 layer
is UML (Unified Modeling Language). The actual UML models reside on the
M1 layer and their actual execution at run-time resides on the M0 layer. An
example of the meta-modeling hierarchy is depicted in Figure 1.1.

M0

M1

M2

M3

MOFClass

UMLClass UMLObject

ECU

+ ECUAddress: int

WindshieldWiper: ECU

ECUAddress = 13

WindshieldWiper at

0x0000001F

«instanceOf»
linguistic

«instanceOff»
linguistic

«instanceOf»
linguistic

«instanceOf»
linguistic

«instanceOff»
ontological

+classifier

«instanceOff»
linguistic

Figure 1.1: Example of the meta-modeling hierarchy

The layers of MOF are connected by the instantiation mechanism, i.e.,
elements of each layer represent instances of the elements of the layer above,
except for the top layer M3 whose elements are considered to be instances of
themselves. For example, ECU on the M1 layer is an instance of UMLClass
on the M2 layer. This type of instantiation is referred to as linguistic in-
stantiation, and it is used to provide the instantiating elements with general
language types (e.g., classes, objects, attributes). In addition to the linguistic
instantiation, ontological instantiation is used to provide the instantiating
elements with semantic classifiers (e.g., WindshieldWiper is an ECU).

In both case, the instantiating element defines the characteristics of the
instance element, and the instance element defines the specific details of these
characteristics. The instanceOf relationship, however, is not transitive, e.g.,
the M1 model element will only receive characteristics from the M2 meta-
model elements and not from the M3 meta-meta-model elements [5].

According to the strict meta-modeling principle [4], all model elements
on one layer of a meta-modeling hierarchy are instances of the meta-model
elements of the layer above, except for the top layer. No relationships other
than instanceOf are allowed to cross the layer boundaries, and no instanceOf

6 CHAPTER 1. INTRODUCTION

relationships are allowed within one layer. If these conditions are not met, we
refer to the meta-modeling as loose. An example of loose meta-modeling
can be seen in Figure 1.1 where the instanceOf relationship between the Wind-
shieldWiper and ECU resides entirely on the M1 layer.

1.1.2 Domain-specific modeling and meta-modeling

Meta-modelling plays an important role in the development of description
languages suitable for modeling systems in specific domains [37], e.g., auto-
motive, telecommunications and avionics. A domain-specific model repre-
sents an abstract representation of the system of a particular domain, while a
domain-specific meta-model defines the syntax and the semantics of the
domain-specific models instantiating this meta-model [31].

Four important concepts of domain-specific meta-models can be distin-
guished: abstract syntax, concrete syntax, static semantics (well-formedness)
and dynamic semantics (or just semantics). The abstract syntax describes
the structural essence of the meta-model, e.g., elements and their relations in-
dependent of the representation of the actual models. An example can be seen
in Figure 1.1 in the definition of the ECU element and its potential relation to
other elements, e.g., Signals and Buses. The concrete syntax specifies the
representation of the model instances, e.g., WindshieldWiper, in the models.
These representations include graphical notations and XML, as a commonly
used format for exchanging models between different modeling tools. There
can be more than one concrete syntax for one abstract syntax, and vice versa.

The static semantics impose a set of constraints on the abstract syntax.
For example, each ECU needs to have an ECUAddress. This can be achieved
by specifying different constraints, e.g., in the form of multiplicities of the at-
tributes and relationships or using OCL (Object Constraint Language) [32].
Finally, the dynamic semantics provides meaning to the syntax notation
of the meta-model and it can be formal or informal (e.g., natural language
specifications). For example, ”An ECU represents one micro-controller in the
system.” informally describes the semantics of the ECU element. One domain-
specific meta-modeling environment usually specifies all four concepts [24], i.e.,
the meta-model itself specifies the abstract syntax and the static semantics,
while the concrete syntax (e.g., XML) for the models and their dynamic se-
mantics may be specified in the supporting natural language specifications.

Domain-specific meta-models are often linguistically instantiated from a
general-purpose meta-model such as MOF or UML. In case of UML-based
domain-specific meta-models, UML profiles with the defined stereotypes
and tag definitions can also be used for customizing the abstract syntax and
the static semantics of the UML meta-model for a specific domain.

One domain-specific modeling environment may contain an arbitrary num-
ber of layers; in practice, there can be more than the four layers defined by
MOF. These layers need to co-evolve in order to support the addition of new
modeling and meta-modeling features [14]. For example, in order to express
new modeling features on the M1 layer, the M2 layer need to evolve in order
to describe how to model these new features. Similarly, evolution of the M2
layer may require evolution of existing models of the M1 layer in order to
maintain conformity between the M1 and M2 layers.

1.1. MODELING AND META-MODELING 7

System modelers of one domain-specific modeling environment usually rely
on software modeling tools (CASE - Computer Aided Software Engineer-
ing tools) to create and update models and generate code based on them.
Since the development of large software systems often involves multiple actors
(design roles) potentially using different modeling tools in the development
process, a smooth exchange of models between these roles can be somewhat
challenging. Nevertheless, a smooth exchange can be enabled by defining and
gaining consensus from all roles for a domain-specific meta-model, which is
then fundamental to the development of all tools used in a specific model-
ing environment. This is based on the assumption that if two modeling tools
adopt the same model structure defined by the meta-model, they can exchange
software models that comply with this meta-model [2].

Since the modeling tools are based on a commonly-accepted domain-specific
meta-model, its evolution may significantly impact all the tools in a specific
modeling environment. Such tools tend to be developed based on their own
meta-models (e.g., to support graphical representations) so the evolution of
the domain-specific meta-models directly impacts the importers and exporters
of the compliant models, as well as the meta-models used by these tools.

1.1.3 Architectural modeling and architectural features

Software architecture represents a set of design decisions made about
a system (not all design decisions are architectural, though). A model that
captures some or all of these design decisions can be regarded as the architec-
tural model [41]. An architectural model defines a number of architectural
components responsible for the execution of different system functionalities.

Based on these definitions, the possibility of utilizing the architectural com-
ponents and their interactions in a specific way to achieve certain semantics can
be considered as an architectural feature. For example, the possibility of
modeling communication between two ECUs of specific ECU addresses. The
architectural models and their features are expressed using a general mod-
eling language, which has both the linguistic and ontological instantiations.
For example, in order to model the concrete ECUs and their addresses, a
domain-specific meta-model must define the ”ECU ” class with ”ECUAddt-
ess” attribute, as shown in Figure 1.1.

1.1.4 Modeling and meta-modeling in this thesis

As already explained, in this thesis we focus on analyzing the evolution
of three main artifacts used in domain-specific meta-modeling environments:
meta-models, models, and design requirements. Meta-models define abstract
syntax and static semantics for the models which ontologically instantiate them
using a concrete syntax, while design requirements provide informal dynamic
semantics to the models. Table 1.1 show the focus of our studies and studied
artifacts in different papers:

As we can see, the majority of our studies focus on the analysis of the
AUTOSAR meta-modeling environment, except the one described in Paper
D that analyzes UML and Modelica meta-models. AUTOSAR meta-model is
used as a basis for the architectural design of automotive software systems and

8 CHAPTER 1. INTRODUCTION

Table 1.1: Study focus and studied artifacts
Focus Artifact Paper

Analyzing domain-specific meta-
modeling environments with re-
spect to MOF

AUTOSAR meta-
model

B

Analyzing the evolution of models AUTOSAR models A
Analyzing the evolution of meta-
models

AUTOSAR meta-
model

C, E, F, H

Analyzing the evolution of meta-
models

UML and Modelica
meta-models

D

Analyzing the evolution of system
design requirements

AUTOSAR design
requirements

G, H

the development of AUTOSAR modeling tools (CASE tools), i.e., it defines
architectural models and their features. It is defined as a linguistic instance
of UML. AUTOSAR models represent ontological instances of the AUTOSAR
meta-model and linguistic instances of UML. As explained in Paper B, both the
AUTOSAR meta-model and the AUTOSAR models reside on the M2 layer
of the MOF hierarchy, despite the fact that AUTOSAR defines five meta-
modeling layers (see Chapter 2).

Due to the fact that AUTOSAR artifacts represent the most important
units of analysis in this theses, we dedicated Chapter 2 to the detailed defini-
tion of the AUTOSAR standard and its role in the development of automotive
software architectures. In this chapter, one can also find detailed description of
the AUTOSAR meta-model and examples of the AUTOSAR models in XML
and textual AUTOSAR design requirements.

Together with the analysis of the AUTOSAR meta-model, as a domain-
specific meta-model used for defining architectural models, we analyzed two
additional meta-models of a different kind. The first one is the meta-model of
Modelica [34], which is used for defining the behavioral models of complex sys-
tems containing, e.g., mechanical, electrical and electronic components. The
second one is the meta-model of UML [42], which represents a general-purpose
meta-model used for modeling a number of aspects, such as architecture (e.g.,
using UML class diagrams) and behavior (e.g., using UML sequence or state
machine diagrams), of a wide variety of software systems. It represents a di-
rect linguistic instance of the MOF meta-model, and it can also be used as a
meta-meta-model for defining further domain-specific meta-models.

1.2 Software measurement

In this section, we first explain the theory behind software measurement
in Section 1.2.1. We then describe how to perform the measurement process
in Section 1.2.2. These two sections define the terms related to software mea-
surement (indicated in bold) which are used in the rest of the thesis. Finally,
we explain the use of software measurement in this thesis in Section 1.2.3.

1.2. SOFTWARE MEASUREMENT 9

1.2.1 Measurement theory

Measurement in software engineering plays an essential role not only to as-
sessing a variety of quality attributes of the software system, such as reliability,
maintainability and efficiency [40], but also to estimating the implementation
cost and effort to support different features in the system. According to the
measurement theory [15], measurement is a process in which numbers (or
symbols) from the mathematical world are assigned to different entities from
the empirical world to describe the entities according to defined rules. A mea-
sure (also referred to as metric [16]) represents a variable to which a value is
assigned as a result of the measurement [38].

The measurement theory describes how to construct measures and formal-
ize their mapping from the empirical to the mathematical world, i.e., empirical
relations between entities are mapped to mathematical relations so that they
can be analyzed. For example, if two software systems (A and B) are related
by the empirical relation ”more complex than”, we can define a measure of
their complexity (c), where measurement results are related by the mathe-
matical relation ”>”. The mapping between the empirical and mathematical
relations, therefore, is defined as:

c(A) > c(B) => A more complex than B (1.1)

Measurement results can be represented on different scales and different
relations between the results are possible depending on the scale [15]:

• Nominal scale - only a relation of equivalence possible (A = B)

• Ordinal scale - a nominal relation + greater/smaller than (A > B)

• Interval scale - an ordinal relation + difference computation (A − B)

• Ratio scale - an interval relation + ratio computation (A / B)

• Absolute scale - like ratio, but for measurements with a predefined min-
imum value (e.g., zero) which are mostly used for counting entities

In order to structure software measures according to their objectives, Goal
Question Metric (GQM) approach proposed by Basili et al. [8] can be used.
GQM defines the measurement as a mechanism that helps to answer a variety
of questions about the software process and products. It defines the measure-
ment model on three levels: Conceptual (goals), Operational (questions) and
Quantitative (metrics), as shown in Figure 1.2:

Goal 1

Question Question

Metric Metric Metric

Goal 2

Question Question Question

Metric Metric Metric

Figure 1.2: The Goal Question Metric (GQM) levels [8]

10 CHAPTER 1. INTRODUCTION

The goal is defined for one object (e.g., a product or process) with respect
to its quality attributes for a specific purpose (e.g., an evaluation) and from a
specific perspective (e.g., that of a system designer). A set of questions for
one goal is used to specify how the goal will be assessed by characterizing the
object to be measured. Finally, the metrics represent the quantitative data
associated with every question that enable the question to be answered.

1.2.2 Measurement process

The ISO/IEC 15939 standard for the measurement process in software
engineering [39] defines the process as a set of activities that are required to
specify: (i) what information need is required for the measurement, (ii) how
the measures are made and measurement results are analyzed, and (iii) how
the results are validated. Additionally, the measurement process specifies how
to build the measurement products, although this area is beyond the scope of
this thesis. A simplified measurement process is shown in Figure 1.3:

(1)

Establish &

Sustain

Measurement

Commitment

(2)

Plan the

Measurement

Process

(3)

Perform the

Measurement

Process

(4)

Evaluate

Measurement

Commitment
Planning

information

Improvement actions

Performance

measures

Figure 1.3: Measurement process activities [39]

Activity (1) defines the scope of the measurement and who will execute
it. Activity (2) elaborates on the measurement plan, such as what is to be
measured (i.e., which entities and their quality attributes), what information is
needed (i.e., the reason for the measurement), which measures will be used and
on what scale, and the criteria for evaluating the measurement results. Activity
(3) describes the data collection and data analysys. Finally, activity (4)
describes the evaluation of the measures and the measurement process based
on the defined criteria of activity (3). This process is defined as iterative in
order to improve both the measures and measurement process based on the
results of the evaluation.

One important segment of the planning activity (3) is to ensure the defi-
nition of the measures in order to avoid different interpretations of how the
measurement has been done (see the measurement errors of different imple-
mentations of the commonly known lines of code measure [36]). The measures
will be defined based on the conceptual model (also referred to as the data
model), which is used to describe the entities in the empirical world [20] to
ensure that the metrics can satisfy the required information need.

Software measures are usually defined using either set theory or algebra
expressions. In order to prevent a definition of a measure using one of these
two approaches from becoming too complex, however, alternative approaches
can be taken, e.g., using pseudo-code snippets. For example, the complexity
(c) of one software component (x) that can be used as an indicator of the
number of faults in it’s code, can be defined using algebra as follows:

1.2. SOFTWARE MEASUREMENT 11

c(x) =
n∑
i=1

ri(x) ∗
n∑
i=1

ti(x);

ri(x) =

{
1, if x receives sigi

0, otherwise
; ti(x) =

{
1, if x transmits sigi

0, otherwise

where n represents the total number of signals and sigi the signal with
serial-number i. Using set theory, this same result can be achieved by defining
two sets Sin(x) and Sout(x):

• Sin(x) = {sin1(x), sin2(x), ..., sinα(x)} - a set of signals received by
software component x.

• Sout(x) = {sout1(x), sout2(x), ..., soutβ(x)} - a set signals transmitted
by software component x.

The complexity would then be calculated as follows:

C(x) = |Sin(x)| ∗ |Sout(x)|

Finally for the purpose of completeness, the simplified corresponding pseudo-
code could look like this:

int Complexity(Component x)
{

int Sin = 0;
int Sout = 0;

foreach (Signal in ReceivedSignals(x))
Sin = Sin + 1;

foreach (Signal in TransmittedSignals(x))
Sout = Sout + 1;

return Sin * Sout;
}

An important part of the measurement process is to validate the defined
software measures. Two different types of validation can be performed [11]: a
theoretical validation to answer ”Are we measuring the right attribute?” and
an empirical validation to answer ”Is the measure useful?”.

The theoretical validation ensures that a measure does not violate the
properties of the measured entity [23]. This can be achieved by assessing
whether the measure satisfies certain theoretical criteria. For example, there
must be at least two entities for which the measure yields a different result,
measuring the same entity twice yields the same results or measuring two en-
tities can yield the same result. Additionally, Briand et al. [12] classify the
measures according to five attributes (size, length, complexity, coupling and
cohesion) and define a set of properties required to measure each attribute.
These properties can be used to group measures according to different prop-
erties and validate that they indeed measure an intended attribute.

The empirical validation ensures that the measurement results reflect
the entities of the real world [23]. This can be achieved by discussing the
results with experts who work with the measured entity in order to ensure

12 CHAPTER 1. INTRODUCTION

that they are consistent with their expectations (e.g., code complexity should
decrease after re-factoring). Statistical analysis can also be used to validate
the relationship between two attributes of the measured entity using their
historical values. This is useful in situations where the value of one attribute
can be predicted by measuring the value of another attribute. An example of
this is the use of a correlation analysis based on historical data to empirically
validate the link between code complexity and the number of faults.

1.2.3 Software measurement in this thesis

The results presented in this thesis rely heavily on the use of software
measures and measurement results as all papers, except from Paper B, define
and/or use one or more software measures. The meta-models, architectural
models and system design requirements represent the scope of the measure-
ments, and our main information need was to assess their evolution with re-
spect to a number of properties, including changes, size, complexity and cou-
pling. Since available, off-the-shelf measures do not use the specific modeling
characteristics of the automotive domain, we defined our own set of measures
for this purpose. A summary of the most important measures used in our
studies is shown in Table 1.2.

Table 1.2: The most important measures used in the studies of this thesis
Measure name Measure goal Defined Used

Complexity measure Monitoring the complexity
evolution of the automotive
software systems.

Paper A Paper A

Package coupling
measure

Monitoring the coupling evo-
lution of the automotive soft-
ware systems.

Paper A Paper A

Number of (meta-
model) changes
measure (NoC)

Estimating the effort/cost of
adopting a new meta-model
version or a subset of the new
features it supports.

Paper C Papers
C, D, E,
F, H

Number of changed
requirements

Monitoring the evolution of
system requirements.

Paper G Papers
G, H

Requirements matu-
rity index (RMI)

Monitoring the stability of re-
quirements changes in rela-
tion to the past releases.

Paper G Paper G

Some studies also include additional more detailed measures. For example,
in addition to the results of the NoC measure, Papers D and F show the
results of the Number of added/modified/removed elements (elements can be
classes, attributes and connectors) and the Number of elements measures.
Another example can be found in Paper H where, in addition to the results
of the Number of changed requirements measure, the results of the Number of
added/modified/removed requirements measure are used.

The majority pf our measures are developed following the GQM approach
based on the appropriate data models. Clearly defining both the goals and

1.3. RESEARCH QUESTIONS AND CONTRIBUTIONS 13

questions for each study enabled us to re-use the logic behind certain measures
used for measuring one entity, in order to address similar questions and goals
about another entity. For example, the goal of our Number of changed elements
measure in Paper F was to monitor the evolution of domain-specific meta-
models. Similarly, to the goal our Number of changed requirements measure
in Paper G was to monitor the evolution of requirement specifications.

Some of our measurement results are presented on the ratio scale (e.g.,
model Complexity and Package coupling measures) whilst others are shown
on the absolute scale (e.g., NoC and the Number of changed requirements).
The majority of measures are defined using either algebra or pseudo-code snip-
pets. For example, we defined the Complexity and Coupling measure of the
architectural models used in Paper A using algebra and the NoC measure
for domain-specific meta-models used in Paper C using pseudo-code snippets.
However, some measure are defined in words, e.g., the Number of changed
requirements and RMI measures used in Paper G.

The process of data collection was fully automated as we developed soft-
ware tools to measure the properties of architectural meta-models, models and
requirements based on the appropriate data model. All the presented measures
are evaluated by calculating them on industrial project data, e.g., from Volvo
Cars and the AUTOSAR consortium. The Complexity and Coupling mea-
sures for monitoring the evolution of architectural models were calculated on
a number of software components and ECUs from the two evolving models
at Volvo Cars. The NoC measure was calculated on a number of AUTOSAR
meta-model releases and the new features they support, and a set of releases of
Modelica and UML meta-model. Finally, the Number of changed requirements
and RMI measure were calculated on a number of AUTOSAR requirement
specification from a set of chosen AUTOSAR releases.

The empirical validation of the measures, except for the RMI measure, was
done using one of the following two approaches: The first approach was to
match the measurement results with the expectations from the experts in the
field and/or available documentation. The second approach was to use statis-
tical methods, such as correlation analysis, in order to analyze the relationship
between the measurement results and the attributes of the measured entity.

The Complexity and Coupling measures for monitoring the evolution of the
architectural models were also validated theoretically based on the properties
of complexity and coupling measures defined by Briand et al. [12].

1.3 Research questions and contributions

The goal of this thesis was to develop methods and tools for managing ar-
chitectural updates in the MDE development of large software systems. These
architectural updates are usually manifested in a form of new architectural
features used in the development projects. In order to achieve our goal, we fo-
cused our studies on the automotive domain, considering automotive software
system as a good example of a large software system developed following the
MDE approach. Therefore, we defined the following main research question:

RQ: How to automatically assess the impact of using new architectural
features in the system on automotive software development projects?

14 CHAPTER 1. INTRODUCTION

Using new architectural features in the system, that require updates of the
modeling language, causes the evolution of domain-specific meta-models, archi-
tectural models and system design requirements. The evolution of these three
MDE artifacts, however, has significant impact on the development projects.
The evolution of meta-models requires updates of the used modeling tools and
possibly existing models. The evolution of architectural models usually re-
quires verification and validation of the entire system. The evolution of design
requirements requires detailed inspection of the requirement specifications for
the correct use of new features in the models. Therefore in order to be able
to assess the impact of using new architectural features on the development
projects, we needed to analyze the evolution of architectural meta-models,
models and design requirements, each representing one direction in our study.

In order to address our main research question, we divided it into fourteen
smaller research questions, each addressed in one of our eight studies/papers.
These smaller research questions, including a short description of our contri-
butions in each paper, are presented in Table 1.3.

Table 1.3: Research questions and contributions

No. Research question Contribution/finding Paper
RQ1 How can the complex-

ity increase of architectural
models and their compo-
nents be monitored during
the evolution of large soft-
ware systems?

Two measures are needed
to monitor the complex-
ity evolution of automotive
architectural models when
new architectural features
are added to the system -
the measures of architec-
tural complexity and cou-
pling. QTool can be used
for combined analysis of re-
sults of these two measures.

Paper
A

RQ2 What are the consequences
of UML based loose meta-
modeling in the automotive
domain?

The main consequence is
that not all semantics can
be conveyed between meta-
modeling layers by means
of modeling, e.g., which de-
fined stereotypes are appli-
cable to classes and which
to associations. In prac-
tice, this is solved by the
modeling tools by provid-
ing means to specify addi-
tional semantics.

Paper
B

RQ3 What are the drawbacks
of approaches for assur-
ing strictness of the AU-
TOSAR meta-model?

The main problem with ap-
proaches assuring strictness
is the lack of tool support
and their relatively short
and narrow use in industry.

Paper
B

1.3. RESEARCH QUESTIONS AND CONTRIBUTIONS 15

No. Research question Contribution/Finding Paper
RQ4 What are the practical

meta-modeling concerns of
the automotive modeling
practitioners?

One of the major practi-
cal concern of the automo-
tive modeling practitioners
is the impact of evolution
of domain-specific meta-
models on other artifacts in
the development process.

Paper
B

RQ5 How can the evolution
of domain-specific meta-
models be measured in or-
der to accurately reflect
the impact of meta-model
changes on the modeling
tools used by different ac-
tors in the development
process?

A simple measure of meta-
model change (NoC) can
be used as a prelimi-
nary indicator of impact of
new domain-specific meta-
model versions on the used
modeling tools.

Paper
C

RQ6 What types of changes can
be distinguished between
different versions of the
AUTOSAR meta-model?

Data model that captures
all relevant meta-model
changes for analyzing
the evolution of the AU-
TOSAR meta-model.

Paper
C

RQ7 How can the evolution
of the AUTOSAR meta-
model be quantified?

The NoC measure based on
our data model for quanti-
fying the evolution of the
AUTOSAR meta-model.

Paper
C

RQ8 How accurately can quan-
titative analysis of the
AUTOSAR meta-model
changes be used for pre-
dicting its impact on the
AUTOSAR tools?

Statistically significant
positive Spearman’s cor-
relation of 0.69 between
the results of NoC and
the actual effort needed
to update the AUTOSAR
based modeling tools.

Paper
C

RQ9 What is the level of applica-
bility of the measures of do-
main specific meta-model
evolution and the underly-
ing data-model defined in
(Durisic et al., 2014) for
monitoring the evolution
of Modelica/UML meta-
models?

The NoC measure and the
underlying data-model are
applicable for measuring
the evolution of two addi-
tional meta-models of Mod-
elica and UML.

Paper
D

RQ10 How to assess the impact of
different architectural fea-
tures on the used domain-
specific meta-models?

The MeFIA method can be
used for assessing the im-
pact of new architectural
features on domain-specific
meta-models.

Paper
E

16 CHAPTER 1. INTRODUCTION

No. Research question Contribution/Finding Paper
RQ11 How to identify the opti-

mum set of features to be
adopted based on the as-
sessed impact?

The MeFIA method can be
used for identifying opti-
mal sets of new architec-
tural features to be used in
the development projects.

Paper
E

RQ12 How to support model-
ing practitioners in analyz-
ing changes between dif-
ferent versions of domain-
specific meta-model related
to different architectural
features?

The ARCA tool realizing
the MeFIA method can be
used to support automo-
tive modeling practitioners
in deciding which new AU-
TOSAR features to use in
the development projects.

Paper
F

RQ13 How can we assure efficient
adoption of new releases of
standards in the develop-
ment of large software sys-
tems by analyzing the evo-
lution of standardized re-
quirements?

The SREA tool can be used
to support organizations in
understanding which parts
of the system will be mostly
affected by the changes in
the system design require-
ments.

Paper
G

RQ14 How strong is the relation
between the evolution of
meta-modeling syntax and
meta-modeling semantics?

Statistically significant
positive Spearman’s corre-
lation of 0.63 between the
results of the NoC mea-
sure (for meta-modeling
syntax) and the Number of
changed requirements (for
meta-modeling semantics).

Paper
H

The relation between our studies and research questions and how answers
to our smaller research questions contribute to our main research question and
general goal of this thesis are presented in Figure 1.4:

We divided our research area into three lanes, each lane dedicated to the
analysis of evolution of one of the three main MDE artifacts - models, meta-
models and design requirements (indicated as yellow, blue and green lanes in
Figure 1.4, respectively). We first examined the evolution of architectural mod-
els in the yellow lane by investigating how to monitor the complexity increase
of the automotive architectural models after certain architectural changes have
been made. As the answer to RQ1, we found that two measures are needed for
this purpose - the complexity and the coupling measure defined in Paper A.
We also showed in the same paper the practical use of these two measures on
a case of two evolving automotive architectural models. We did this by devel-
oping a method and the QTool implementing this method which can calculate
the measures and perform combined analysis of the measurement results.

We then examined the evolution of meta-models in the blue lane. In Paper
B, we analyzed the relevance of theoretical meta-modeling concepts in practice,
i.e., strict vs. loose meta-modeling, in order to position our studies with respect
to meta-modeling theory. We identified three consequences of loose meta-
modeling related to the organization of meta-modeling layers, as the answer

1.3. RESEARCH QUESTIONS AND CONTRIBUTIONS 17

RQ: How to automatically assess the impact of using new architectural features
in the system on automotive software development projects?

Paper A
Monitoring the
complexity of

architectural models

Complexity
measure
(RQ1)

Coupling
measure
(RQ1)

QTool
(RQ1)

Paper B
Addressing the need

for strict meta‐
modeling in practice

Paper C
Measuring the

evolution of meta‐
models

Paper G
Supporting the
adaption of

industrial standards

Problem:
Meta‐model
evolution

impact (RQ4)

Consequences
of loose meta‐
modeling (RQ2)

Problems with
strict meta‐
modeling
(RQ3)

Paper D
Assessing the

generalizability of
NoC measure

Paper E
Assessing the

impact of different
arch. features

Data model
and NoC

(RQ5, RQ7)

Indicator for
AUTOSAR

modeling tools
(RQ5, RQ8)

AUTOSAR
meta‐model
changes

(RQ5, RQ6)

Applicable to
other meta‐
models (RQ9)

MeFIA
method

(Q10, Q11)

Paper F
Tool for feature

impact assessment

SREA
tool

(RQ13)

ARCA tool
(RQ12)

Paper H
Co‐evolution of

meta‐model syntax
and semantics

Moderate
correlation
(RQ14)

Figure 1.4: StudyDesign

to RQ2. We also identified the main problem of lacking tool support for the
use of strict meta-modeling in practice, as the answer to RQ3. Finally as the
answer to RQ4, we found that the evolution of domain-specific meta-models
and their impact on the development projects is one of the major problems
of the (meta-) modeling practitioners. This information served as a valuable
input for our study described in Paper C which defined a measure of meta-
model evolution (NoC) that can be used for preliminary impact assessment of
new meta-model versions on the used modeling tools.

As the answer to RQ5 and more concrete RQ6, RQ7, and RQ8 defined in
Paper C, we first identified meta-model changes that should be considered in
the analysis of the AUTOSAR meta-model evolution (RQ5, RQ6). Consid-
ering these changes, we then defined a data model for the measurement and
the NoC (Number of Changes) measure based on this data-model in order
to quantify the evolution of architectural domain-specific meta-models (RQ5,
RQ7). Finally, we validated the NoC measure by finding moderate to strong
positive Spearman’s correlation of 0.69 between its results and the actual ef-
fort needed to update AUTOSAR modeling tools according to the meta-model
changes (RQ5, RQ8).

On the one hand, we used the NoC measure (and the underlying data
model) in Paper D in order to assess its applicability to a wider range of meta-
models. As the answer to RQ9, we found that our data model is able to capture
relevant changes for monitoring the evolution of UML and Modelica meta-
models. We also managed to calculate the NoC measure between different

18 CHAPTER 1. INTRODUCTION

releases of UML and Modelica. On the other hand, we used the NoC measure
in Paper E to construct the MeFIA method that is able to assess the impact
of a particular architectural feature on the used domain-specific meta-model.
This is done by calculating meta-model changes related to this feature only,
which represents the answer to RQ10. The MeFIA method is also able to
identify optimal set of features to be adopted in the development projects
based on their meta-model impact, which represents the answer to RQ11.

In order to enable industrial use of the MeFIA method in the automotive
domain, we implemented the ARCA tool described in Paper F. The ARCA
tool is able to automatically perform steps of the MeFIA method for a set of
AUTOSAR features. Therefore, it provides the answer to RQ12 as it supports
automotive engineers in analyzing the impact of different AUTOSAR features.

Finally, we examined the evolution of system design requirements in the
green lane. We focused on the standardized requirements that provide seman-
tics for the meta-modeling elements, as presented in Paper G. As the outcome
of this study and the answer to RQ13, we constructed a method and the SREA
tool implementing this method that can identify a subset of design require-
ments that are affected by the introduction of new architectural features.

Having the SREA and ARCA tools in place, we were also able to perform
an additional study described in Paper H with the goal to investigate the rela-
tionship between the evolutions of meta-modeling syntax and meta-modeling
semantics. As the outcome of this study and the answer to RQ14, we found
a moderate positive Spearman’s correlation of 0.63 between the evolutions of
these two artifacts. This confirms the importance of analyzing the evolution of
system design requirements together with the evolution of meta-models, and
requires more effort from the meta-modeling practitioners in describing the
syntactical changes in the meta-models.

Summarizing the results from all three lanes results in three new methods
and tools (QTool, ARCA and SREA), one from each lane, that can be used
for monitoring the evolution of architectural meta-models, models and system
design requirements. The combined use of these methods and tools for as-
sessing the impact of new architectural features on the development projects
represents the answer to our main research question.

1.3.1 Industrial contribution

All results presented in this thesis are directly implemented at Volvo Cars
by means of incorporating the QTool, ARCA and SREA tools into the com-
pany’s change management process.

The QTool implements the complexity and coupling measures presented
in Paper A and it is primarily used by the system architectural testers at
Volvo Cars. The tool is used during the evolution of automotive architectural
models in order to analyze the impact of added functionality on the com-
plexity and coupling properties of different architectural components (e.g.,
sub-systems, ECUs and domains). If the results are unsatisfactory, some com-
ponents need to be re-designed to reduce coupling and increase cohesion, e.g.,
by re-allocating functionality onto different ECUs. The results of the QTool
are also used to indicate which parts of the system require more testing.

The ARCA tool implements both the MeFIA method and the measures

1.3. RESEARCH QUESTIONS AND CONTRIBUTIONS 19

defined in Papers C, E, F and H (Paper F describes the ARCA tool itself)
for monitoring of the evolution of the AUTOSAR meta-model. The tool is
primarily used in one of the following three scenarios:

1. To decide which AUTOSAR meta-model release shall be used

The analysis is primarily done by the AUTOSAR team at Volvo Cars
with support from other teams (e.g., system architects and designers).
The analysis includes impact assessment of adapting a new AUTOSAR
release on the modeling tools used by different actors (design roles) in
the development process. The aim of this analysis is to indicate if a new
AUTOSAR release is feasible to be adopted in the development process.

2. To decide which new AUTOSAR features shall be used

The analysis is primarily done by the AUTOSAR team at Volvo Cars
with support from other teams (e.g., system architects and designers).
The analysis includes impact assessment of adapting each new AUTOSAR
feature on the modeling tools used by different design roles in the de-
velopment process. The aim of this analysis is to indicate if a new AU-
TOSAR feature is feasible to be adopted in the development process.

3. To influence standardization of the AUTOSAR meta-model

This analysis is done by the AUTOSAR team at Volvo Cars. The aim of
the analysis is to continuously inspect changes in the AUTOSAR meta-
model during the development of one AUTOSAR release, in order to
be able to influence their standardization. For example, if an accepted
change in the AUTOSAR meta-model removes one meta-element that is
used at Volvo Cars, the change should be re-discussed in the AUTOSAR
consortium involving representatives from Volvo Cars.

The SREA tool implements both the measures and the method defined
in Papers G and H related to monitoring of the evolution of system design
requirements and their specification. The tool is primarily used in one of the
following two scenarios:

1. To facilitate analysis of differences between requirements spec-
ifications from different AUTOSAR releases

The analysis is primarily done by the AUTOSAR team at Volvo Cars
with support from other teams (e.g., system architects and designers).
The aim of the analysis is to reduce time for analyzing differences be-
tween requirement specifications from different AUTOSAR releases.

2. To facilitate analysis of differences between requirements spec-
ifications related to specific AUTOSAR features

The analysis is primarily done by the AUTOSAR team at Volvo Cars
with support from other teams (e.g., system architects and designers).
The aim of the analysis is to reduce time for analyzing differences be-
tween requirement specifications related to a specific new AUTOSAR
feature. This analysis is meant to complement the analysis performed
by the ARCA tool explained in the second bullet. For example, SREA

20 CHAPTER 1. INTRODUCTION

tool can list all introduced, removed and/or modified requirements re-
lated to a set of new modeling elements introduced to the AUTOSAR
meta-model by the analyzed feature.

In addition to their use at Volvo Cars, there are three additional types of
industrial application of these three tools:

1. They can be used without modifications by other car manufacturers and
their software/tool suppliers in the similar scenarios as explained above,
as long as they follow the AUTOSAR standard in the development.

2. The ARCA tool can be used by the AUTOSAR consortium to generate
AUTOSAR meta-model change documentation, and the SREA tool can
be used to generate change documentation of the AUTOSAR require-
ments specifications, related to different AUTOSAR features. Together,
ARCA and SREA can also be used to indicate which meta-model ele-
ments (syntax) require further explanations in the specifications (seman-
tics) related to their use in the AUTOSAR models.

3. Finally, all three tools can be used, with certain modifications, by the
companies from other domains who work according to the principles of
MDE. On the one side, they would need to re-implement the meta-model,
model and requirements importers in the ARCA, QTool, and SREA tools,
respectively, depending on the format they use for these artifacts. On the
other hand, they would need to configure the tools in order to analyze
relevant types of changes, e.g., meta-model packages and tagged values
in case of ARCA and taxonomy of changes in case of SREA.

1.3.2 Individual contribution

In Papers A, B, C, E, F and H, the PhD candidate was the main contributor
in planning and execution of the studies, and writing of the publications. In
Paper D and G, the PhD candidate was the main contributor in planning of
the studies, and participated in writing of the publications. The execution
of the studies was performed by the first author of the papers, i.e., Maxime
Jimenez and Corrado Motta, respectively.

The PhD student was the main contributor in writing of the ”AUTOSAR”
book chapter in the ”Automotive Software Architectures” book.

The PhD student was the main contributor in the implementation of the
QTool and ARCA tool, while Corrado Motta was the main contributor in the
implementation of the SREA tool.

1.3.3 Related publications

As indicated in the list of publication under ”Other publications”, three of
our publications related to the work presented in this thesis are not included
in this thesis. In this subsection, we briefly describe their contribution and
explain why they are not included in the thesis.

1. ”Measuring the Size of Changes in Automotive Software Sys-
tems and their Impact on Product Quality” written by D. Durisic,

1.4. RESEARCH METHODOLOGY 21

M. Staron and M. Nilsson and published in the Proceedings of the 12th
International Conference on Product Focused Software Development and
Process Improvement (PROFES), pp. 10-13, 2011.

This publication is entirely contained in Paper A that represents its
extension by providing empirical validation, detailed explanation of the
proposed method, and detailed description of the research methodology,
related work and generalization of the presented results.

2. ”Evolution of Long-Term Industrial Meta-Models - An Au-
tomotive Case Study of AUTOSAR”, written by D. Durisic, M.
Staron, M. Tichy, J. Hansson and published in Proceedings of the 40th
EUROMICRO Conference on Software Engineering and Advanced Ap-
plications (SEAA), pp. 141-148, 2014.

The paper presents the study which defines and uses seven software
measures for analyzing and visualizing the evolution of the AUTOSAR
meta-model related to different design roles in the automotive develop-
ment process. The results of five of these measures (Number of elements,
Number of attributes, Number of changes, Number of changed elements
and Number of changed attributes) including the definition of design roles
are already presented in the similar scope in Papers C, D, E and F. The
remaining two measures (Complexity and Average depth of inheritance)
are not considered relevant for answering the main research question of
this thesis presented above.

3. ”Quantifying Long-Term Evolution of Industrial Meta-Models
- A Case Study” written by D. Durisic, M. Staron, M. Tichy, J. Hans-
son and published in the Proceedings of the International Conference on
Software Process and Product Measurement (MENSURA), pp. 104-113,
2014.

The paper presents the study which analyzes which of the five properties
of the AUTOSAR meta-model, namely size, length, complexity, coupling
and cohesion, are mostly affected by the AUTOSAR meta-model evolu-
tion. The analysis is done by calculating ten software measures between
available historical releases of the AUTOSAR meta-model. The results
of the measures and general conclusions of the paper are not considered
relevant for answering the main research question of this thesis.

The PhD candidate was the main contributor in planning and execution of
all three studies, and writing of all three publications.

1.4 Research methodology

The research methodology used in this thesis mainly consists of a series
of case studies which aim to increase understanding of meta-models, mod-
els and system requirements, and validate our methods used for monitoring
the evolution of certain properties of these three artifacts. Using only one
research method, however, does not usually suffice for the combined work of
practitioners and researchers for solving industrial problems [29]. Therefore,

22 CHAPTER 1. INTRODUCTION

our methods are developed following the methodology of constructive research
which relies on the results of our case studies.

As all of our methods are based on the use of software measurement, we
used the methodology of the GQM approach described in Section 1.2.1 as part
of the constructive studies for developing the actual measures. In particular,
we first defined the general goal for the measurement and the questions the
measurement results need to answer about the analyzed entities for achieving
this goal. We then developed the measures using conceptual models of these
entities and their properties, e.g., domain-specific models and meta-models.

In this section, we first summarize the theory of case study and constructive
research in Sections 1.4.1 and 1.4.2, respectively. We emphasize in bold the
important terms used in Section 1.4.3 in which we demonstrate how we used
the two research methods in our studies. Finally, we discuss threats to validity
of our results in Section 1.4.4.

1.4.1 Case study theory

Case study is classified as an empirical research method [17] and it fo-
cuses on the examination of a real-world situation, which makes it suitable for
industrial evaluations. Yin [43] defines a case study as an iterative process
consisting of five phases, as shown in Figure Figure 1.5:

Design

Prepare

Collect

AnalyzeShare

Figure 1.5: The five phases of a case study [43]

In this section, we focus on the design, collect and analyze phases. The
design phase consists of the following five components [43]: (i) Research ques-
tions, (ii) Study propositions, (iii) Unit of analysis, (iv) Linking data to prepo-
sitions and (v) Criteria for interpreting the findings.

The design of each study begins with a clear definition of research ques-
tions. Providing answers to these questions is the main goal of the case study.
In order to understand how to achieve this goal, however, the scope of the study
is defined together with the identification of elements which are to be examined
(the study propositions). Next, the unit of analysis (i.e., the ”case”), the
elements of which are to be examined, is defined. The data obtained from this

1.4. RESEARCH METHODOLOGY 23

examination are then linked to the propositions in order to answer the defined
research questions using, e.g.,, statistical analysis. Finally, the criteria for data
interpretation are defined in order to indicate when the obtained results can
be considered valid, e.g., by defining the statistical significance.

The data collection phase can include both qualitative and quantitative
data collection methods [17]. Qualitative data can be obtained by analyzing
documentation, performing observations, conducting interviews, etc. Inter-
views are especially common in analyzing industrial cases because they provide
quick answers to question from experts. They can be formal with a precisely-
defined set of questions, informal relying on a casual discussion with experts
[35] or semi-formal where questions are pre-defined, but can be deviated from
during the interview [7]. Quantitative research represents the analysis of nu-
merical data in order to explain a certain phenomenon [1]. Quantitative data
is usually obtained by measurement.

In the data analysis phase, the data can be analyzed using different
methods, e.g., pattern matching (comparing the empirical pattern with one or
several predicted patterns) and explanation building (e.g., using theoretically
proven concepts) [43]. Quantitative data can be analyzed using a number of
statistical methods, including correlation and time-series analysis.

1.4.2 Constructive research theory

”The aim of constructive research is to solve practical problems while pro-
ducing an academically appreciated theoretical contribution” [25]. Constructive
studies consist of the following six main phases [21]:

1. Understanding the industrial context and selecting a problem (case study)

2. Understanding the study area (literature review)

3. Designing one or more solutions (creation of a novel construct)

4. Demonstrating the solution’s feasibility (case study)

5. Validating the results (case study)

6. Generalizing the results (possible further case studies)

Understanding the industrial context and selecting a problem
usually involves a case study which aims to increase the understanding of
the industrial context and identify relevant problems for further studies, e.g.,
by conducting interviews and documentation reviews. Understanding the
study area aims to increase the understanding of the scientific problem and
the surrounding theory, usually by conducting literature reviews. Designing
one or more solutions aims to solve the identified industrial and scientific
problem by creating a novel construct, e.g., a method, tool, technique or pro-
cess [27], and it is based on the knowledge obtained in the first two phases.

The phases of demonstrating the solution’s feasibility and validating
the results usually require additional case studies, in which the novel con-
struct is evaluated and empirically validated on the chosen units of analysis.
Finally, the phase of generalizing the results involves a detailed discussion

24 CHAPTER 1. INTRODUCTION

on the practical use of the novel construct in other industrial contexts that
face similar problems, and may therefore involve further case studies.

As we can see from this description, all phases of constructive research,
except from the second phase, usually require conducting a case study. This
is why constructive research and case study methods should be combined for
solving practical problems and delivering academically rigorous contribution.
The benefit of this combined approach is that solutions for the relevant prac-
tical problems are produced quickly and their feasibility is directly tested in
the real industrial contexts. The use of constructive research with case studies
has some drawbacks as well. One drawback is that multiple case studies are
usually needed for generalizing the results. Another drawback that the pro-
duced solutions may not always be the best and/or optimal solutions, which
could have been identified by, e.g., conducting longer experiments with differ-
ent parameters and testing them in multiple scenarios.

1.4.3 Research methods used in our papers

In order to address our research questions, we conducted eight studies, each
described in one of the Papers A-H. Three studies were conducted using the
case study method, four studies were conducted using constructive research
which included additional case studies in the way described in the previous
section, and one study was a tool presentation. The description of the research
methodology we used in each study/paper is described below.

1. Paper A

The study presented in Paper A was conducted following the construc-
tive research method. In order to understand the industrial context and
select a problem for the study, we first conducted a case study using
architectural models from Volvo Cars as units of analysis. We analyzed
the organization of these architectural models. As the outcome, we for-
mulated our study problem in RQ1. In order to understand the study
area, we performed a literature review of the complexity measures that
can be used for monitoring the evolution of architectural models.

We used the outcomes of the case study and the literature review to
design a solution to the problem defined in RQ1. The solution repre-
sents a new method based on two software measures developed following
the GQM approach. The goal of the measurement was to monitor the
complexity increase of the automotive architectural models when new
functionality is introduced into the system. In order to achieve this goal,
we searched for the answer to the questions of what is the complexity and
coupling change between two version of one architectural model resulting
in the definition of the complexity and the coupling measures. We also
developed the QTool which is able to calculate the two measures for the
two evolving architectural models at different time points.

In order to demonstrate the solution’s feasibility and validate the results
empirically, we conducted another case study in which we evaluated our
method and the QTool using two architectural models from Volvo Cars
as units of analysis. The results are empirically validated by comparing

1.4. RESEARCH METHODOLOGY 25

the measurement results with the expectations from the experts from
Volvo Cars on the complexity increase of the two analyzed models.

2. Paper B

The study presented in Paper B was conducted following the case study
method using AUTOSAR meta-model as a unit of analysis. The study
aimed to increase the understanding of the industrial context and se-
lect a relevant problem for the constructive research presented in Paper
C. In the design phase, we defined RQ2 - RQ4. In the data analysis
phase, we studied the organization of the AUTOSAR meta-model and
created examples using four meta-modeling approaches in order to ad-
dress RQ2 and RQ3. In order to address RQ4, we identified that the
evolution of domain-specific meta-models related to different architec-
tural features and its impact on the development projects is one of the
biggest challenges for the meta-modeling practitioners. We used this
finding to formulate our research problem in Paper C.

3. Paper C

The study presented in Paper C was conducted following the constructive
research method. In Paper B, we already identified that the evolution
of domain-specific meta-models related to different architectural features
and its impact on the development projects is one of the biggest practical
meta-modeling problems. We used this finding to formulate our general
study problem in RQ5, and divided it into more concrete study problems
formulated in RQ6 - RQ8. In order to understand the industrial context,
we extended the knowledge obtained in Paper B related to the organiza-
tion of the AUTOSAR meta-model by conducting an interview with one
of the AUTOSAR’s change managers. This helped us to to understand
how changes related to different AUTOSAR features are implemented
in the AUTOSAR meta-model. In order to understand our study area,
we performed a literature review of the meta-model differentiation tech-
niques and applicable measures.

We used the outcomes from Paper B, the interview and the literature
review to design a solution to the problems defined in RQ6 and RQ7.
The solution represent two constructs: (i) a data model that is able
to capture relevant changes between different AUTOSAR meta-model
versions (RQ6), and (ii) a measure of meta-model change (NoC) which
is developed following the GQM approach based on this data-model. The
goal of the measurement was to monitor changes between different meta-
model versions. In order to achieve this goal, we searched for the answer
to the question of how many atomic changed occurred between two meta-
model versions resulting in the definition of the NoC measure. We also
developed the ARCA tool that is able to calculate NoC between two
AUTOSAR meta-model releases, related to a set of chosen AUTOSAR
features, and targeting a set of chosen AUTOSAR modeling tools.

In order to demonstrate the solution’s feasibility and validate the results
empirically, we conducted a case study in which we evaluated and vali-
dated the data model and the NoC measure using AUTOSAR features
and AUTOSAR modeling tools as unit of analysis. We asked the experts

26 CHAPTER 1. INTRODUCTION

from different tooling vendors to provide us with the estimated efforts
needed to support different AUTOSAR features in their modeling tools.
We used this collected data in the data analysis phase to perform corre-
lation analysis between the results of NoC and the estimated efforts in
order to address RQ8. The generalization of our findings from this study
is described in Paper D.

4. Paper D

The study presented in Paper D was conducted following the case study
method using Modelica and UML meta-models as units of analysis. The
study aimed to generalize our findings described in Paper C, i.e., to assess
the applicability of our data model and the NoC measure on additional
meta-models. In the design phase, we defined RQ9. In the data analysis
phase, we performed a study of the organization of Modelica and UML
meta-models. We calculated NoC between different releases of these two
meta-models, respectively, in order to address RQ9.

5. Paper E

The study presented in Paper E was conducted following the construc-
tive research method. The study aimed to extend the results presented
in Paper C so that they can be used for identifying the optimal set of
architectural features to be used in the development projects. Therefore,
we formulated our study problems in RQ10 and RQ11. In order to un-
derstand the study area, we performed a literature review of the existing
optimization methods.

We used the NoC measure presented in Paper C and the literature review
to design a solution to the problems defined in RQ10 and RQ11. The
solution involved constructing a method (MeFiA) that is able to calculate
the NoC measure in the domain-specific meta-models related to different
architectural features (RQ10). The method is also able to identify the
optimal set of features to be adapted in the development projects based
on their meta-model impact (RQ11). We also extended the ARCA tool
to be able to identify this optimal set in car development projects.

In order to demonstrate the solution’s feasibility, we conducted a case
study in which we evaluated the MeFIA method using AUTOSAR meta-
model as a unit of analysis.

6. Paper F

The study presented in Paper H describes the ARCA tool which is devel-
oped in the constructive studies described in Papers C and E. The study
also shows the industrial use of ARCA in order to address RQ12. The
presented data is obtained from the two case studies described in Papers
C and E, which were used to demonstrate the feasibility of the solutions
developed in the constructive studies of these two papers, respectively.

7. Paper G

The study presented in Paper G was conducted following the constructive
research method. In order to understand the industrial context and select
a problem for the study, we first conducted a case study using using the

1.4. RESEARCH METHODOLOGY 27

AUTOSAR standardized requirements as units of analysis. We analyzed
the organization of the AUTOSAR requirement specifications and the
structure of the requirements itself. As the outcome, we formulated
our study problem in RQ13. In order to understand the study area,
we performed a literature review of the requirements engineering field
focusing on how to cope with the evolution of system requirements.

We used the outcomes of the case study and the literature review to
design a solution to the problem defined in RQ13. The solution involved
constructing a method that is able to (i) analyze the evolution of re-
quirements related to different specifications and (ii) calculate a number
of measures related to different specification. The measures are devel-
oped following the GQM approach. The goal of the measurement was to
monitor changes in the specifications between their different releases. In
order to achieve this goal, we searched for the answer to the questions
of (i) how many requirements are semantically changed between the two
versions of one specification and (ii) how mature is the new version. This
resulted in the definition of a set of measures for counting added, deleted
and modified requirements (inspired by the similar measures for added,
deleted and modified meta-model elements), and the RMI measure. We
also developed the SREA tool that is able to calculate the measures used
by our method related to these specifications/requirements.

In order to demonstrate the solution’s feasibility, we conducted another
case study in which we evaluated our method and the SREA tool using
a set of AUTOSAR specifications and their requirements.

8. Paper H

The study presented in Paper H was conducted following the case study
method using the AUTOSAR meta-modeling environment as a unit of
analysis. In the design phase, we defined RQ14. In the data collection
phase, we calculated the NoC (defined in Paper C) in the AUTOSAR
meta-model (syntax) related to a set of chosen AUTOSAR features using
the ARCA tool (presented in Paper F). We also calculated the Number
of changed requirements (defined in Paper G) in the AUTOSAR speci-
fications (semantics) related to these features using the SREA tool. In
the data analysis phase, we calculated correlation between the results of
the ARCA tool and SREA tools in order to address RQ14.

1.4.4 Research validity

According to Cook and Campbell [13], four types of validity threats to
empirical studies conducted in the area of software engineering shall be con-
sidered. We explain below how we addressed each of them in our studies.

1. Internal validity

Internal validity is concerned with the results of the analysis not being
casual, i.e., the relationship between the measured properties and the
outcome should not be random. The most severe threat to the internal
validity in our studies was related to the measurement process which was
performed by developing software tools, e.g., QTool, ARCA and SREA,

28 CHAPTER 1. INTRODUCTION

for calculating different measures, e.g., NoC and RMI. In order to ensure
internal validity, we performed detailed testing of the tools using smaller
examples before employing them for the measurements in the studies.

2. External validity

External validity is concerned with the generalization of results. In our
studies, this is related to the applicability of our results to models, meta-
models and system requirements used by other companies facing similar
problems. There are two particular threats to the external validity of
our studies. The first threat is that the proposed methods and tools
would apply only to the automotive software development process at
Volvo Cars and not to other automotive companies. In order to mini-
mize this threat, we included other automotive companies (OEMs and
software/tool suppliers from the AUTOSAR consortium) in the process
of defining and evaluating our methods and tools.

The second threat is related to the AUTOSAR meta-modeling environ-
ment (AUTOSAR meta-model and AUTOSAR requirements) that was
the unit of analysis in Papers A - C and E - H . The proposed meth-
ods and tools we applied to the AUTOSAR meta-modeling environment
should also be applicable to other domain-specific meta-models. There-
fore, we mapped the layers of the AUTOSAR modeling environment to
the layers of MOF which is a commonly accepted modeling hierarchy. In
addition to this, we discussed in the included papers the steps that need
to be taken in order to apply the proposed methods to meta-models of
other domains, e.g., avionics and telecommunications.

Finally, the goal of Paper D was to minimize the external validity threat
of the NoC measure, which is used in Papers C, E, F and H. Therefore, we
calculated the measure to two additional meta-models of Modelica and
UML. As opposed to the AUTOSAR meta-model which is an architec-
tural meta-model, UML is a general-purpose meta-model and Modelica
is a behavioral meta-model. Therefore, we analyzed three different types
of meta-models which significantly reduces the threat that NoC is only
applicable for measuring the evolution of the AUTOSAR meta-model.

3. Construct validity

Construct validity is concerned with the mismatch between theory and
observations. In our studies, this was related to the ability of the mea-
sures to capture the desired properties of the analyzed system. In order
to define our measures in a rigorous way, all measures were defined ac-
cording to the GQM approach based on the data model that enabled us
to have open discussions about the ability of the measures to capture the
desired properties of the measured entities. Additionally, we performed
theoretical and empirical validation of the complexity and coupling mea-
sures presented in Paper A. We also performed empirical validation of
the NoC measure used in Papers C, E, F and H. Finally, we showed that
it is possible to calculate the measures of requirements evolution used in
Papers F and H on a case of AUTOSAR requirement specifications.

1.5. CONCLUSIONS AND FUTURE WORK 29

4. Conclusion validity

Conclusion validity is concerned with the degree to which the conclusions
of the studies are reasonable. In Papers C and H, this was related to the
significance of the results from the statistical analysis, which was high. In
Papers A, D, E, F and G, the conclusions were derived based on studying
and applying our methods to industrial scenarios. The conclusion was
that the results could capture the desired properties, thus validating our
hypothesis that simple measures can be used as preliminary indicators.
Finally, Paper B presents our opinion based on our experience in working
with domain-specific meta-models, and shall be taken as a position paper.

1.5 Conclusions and future work

The main contribution of this thesis are three methods (and software tools)
that can be used for automated impact assessment of using new architectural
features, that require updates of the modeling language, on the development
projects. We showed that using these methods and combining their results in
the development process is able to accelerate the work of system designers re-
sponsible for planning architectural updates in the development of automotive
software systems. This, in turn, enables faster and cheaper innovation cycles
in the car development projects.

The first method and the tool (QTool) are based on two structural measures
of complexity and coupling in the architectural models. The method is able
to identify parts of the system which became overly complex after the imple-
mentation of new architectural features. We showed that this information can
be used by the automotive system designers to identify and prioritize testing
areas in the system and/or rework the system’s architecture in order to reduce
the number of potential faults. This, in turn, contributes to the increased
speed of automotive software development and higher quality of software.

The second method (MeFIA) and the tool (ARCA) are based on the mea-
sure of change in the architectural meta-models (NoC). The method is able to
estimate the impact of using new architectural features on the used modeling
tools. We showed that this information can be used by the automotive system
designers to decide which architectural features shall be used in the system,
and to plan updates of the modeling tool-chain.

Additionally, we showed that with the help of the ARCA tool, it is possible
to identify the actual AUTOSAR meta-model changes caused by a particular
feature and relevant to a specific modeling tool used by one design role. This,
in turn, has a potential to significantly reduce the number of inspected AU-
TOSAR meta-model changes in the detailed impact assessment for different
modeling tools, e.g., from more than 35000 changes to less than a hundred for
the majority of AUTOSAR features and tools.

The third method and the tool (SREA) are based on the measure of change
in the system design requirements. The method is able to identify the sub-
set of design requirements which are affected by the use of new architectural
features. We showed that this information can be used by the automotive sys-
tem designers to more quickly understand how to use the new features in the
architectural models, and to identify unstable requirement specification which

30 CHAPTER 1. INTRODUCTION

are candidates for inspection. This, in turn, has a potential to significantly re-
duce the number of analyzed design requirements, e.g., from more than 20000
requirements to less than a hundred for the majority of AUTOSAR features.

In order to achieve the full benefit of using these methods and tools in
the development process, they should be used in combination. ARCA and
SREA tools shall be used before one architectural feature is supported in the
development process in two different ways: First, to indicate whether it is
feasible to use the feature in the project time-frame considering its impact
on the used modeling tools (ARCA) and requirements specifications (SREA).
Second, to plan updates of the tools (ARCA) and analysis of the changes in
the requirements specifications (SREA), in case it is considered feasible. The
QTool shall be used after one feature is supported in the development process
and used in the system models in order to indicate which parts of the system
are mostly affected by the new feature. This information can be used to steer
testing activities and possible restructuring of the system’s architecture in case
of significant complexity increase of its components.

As we can see, all three methods and tools are based on quantitative anal-
ysis of changes using one or more simple software measures. This validates our
hypothesis that quantitative analysis of evolution of the three main MDE ar-
tifacts related to different architectural features can serve as a valuable early
indicator of which features shall be used in the system, and what is their
impact on the development projects.

The results presented in this theses provide opportunities for further re-
search in the area of meta-model and system requirements evolution. Related
to the evolution of meta-models, one direction could be to classify meta-model
changes into categories according to their impact on different segments of the
modeling tools (e.g., graphical user interface, tool importers or underlying
data-base) and identify the ones that require most rework in the tools. The
results of such a study can then be used to extend the MeFIA method and
the ARCA tool to consider these categories in the measurement process e.g,
by performing category based measurements or assigning different weights to
different categories. This, in turn, can be used to steer the development of
the tools where certain changes could probably be done automatically, e.g.,
changes affecting databases of the tools or simple textual editors of the meta-
modeling elements and their properties.

Another direction could be to analyze the relation between different fea-
tures based on their impact on the same parts of the meta-model. The results
of such a study can be used to group similar features that should be used to-
gether in the development project, e.g., at the cost of tool-chain update that is
much lower than the sum of costs of supporting each feature separately duo to
the overlap of changes. This, in turn, can be used to complement the results
of the MeFIA method in the analysis of which architectural features shall be
used in the system.

Related to the evolution of system requirements, one direction could be
to include natural language processing (NLP) techniques in the analysis per-
formed by the SREA tool. This approach has a potential to additionally
increase the speed of analyzing changes in the requirements specifications re-
lated to the use of new architectural features in the system, by filtering out
syntactically changed requirements that have no semantic impact.

Bibliography

[1] M. Aliaga and B. Gunderson. Interactive Statistics, end edition. Prentice
Hall, 1999.

[2] U. Aßmann, S. Zschaler, and G. Wagner. “Ontologies, Meta-models, and
the Model-Driven Paradigm”. In: Ontologies for Software Engineering
and Software Technology. Springer Berlin Heidelberg, 2006, pp. 249–273.

[3] C. Atkinson and T. Kühne. “Model-Driven Development: A Metamod-
eling Foundation”. In: Journal of IEEE Software 20.5 (2003), pp. 36–
41.

[4] C. Atkinson and T. Kühne. “Strict Profiles: Why and How”. In: In Pro-
ceedings of the 3rd International Conference on the Unified Modeling
Language, Lecture Notes in Computer Science. 2000, pp. 309–322.

[5] C. Atkinson, T. Kühne, and B Henderson-Sellers. “To Meta or not to
Meta - That is the Question”. In: Journal of Object - Oriented Program-
ming 13.8 (2000), pp. 32–36.

[6] Automotive Open System Architecture. AUTOSAR. 2003. url: www.
autosar.org.

[7] L. Barriball and A. While. “Collecting Data Using a Semi-Structured
Interview: A Discussion Paper”. In: Journal of Advanced Nursing 19.2
(1994), pp. 328–335.

[8] V. Basili, G. Caldiera, and H. Rombach. The Goal Question Metric Ap-
proach. Encyclopedia of Software Engineering, Wiley, 1994.

[9] Jean Bézivin and Olivier Gerbé. “Towards a Precise Definition of the
OMG/MDA Framework”. In: International Conference on Automated
Software Engineering. 2001, pp. 273–280.

[10] X. Blanc, J Delatour, and T. Ziadi1. “Benefits of the MDE Approach for
the Development of Embedded and Robotic Systems”. In: Proceedings
of the Workshop on Control Architectures of Robots: from Models to
Execution on Distributed Control Architectures. 2007.

[11] L. Briand, K. El Emam, and S. Morasca. Theoretical and Empirical Val-
idation of Software Product Measures. Tech. rep. International software
Engineering Research Network, 1995.

[12] L.C. Briand, S. Morasca, and V.R. Basili. “Property-based Software En-
gineering Measurement”. In: IEEE Transactions on Software Engineer-
ing 22.1 (1996), pp. 68–86.

31

www.autosar.org
www.autosar.org

32 BIBLIOGRAPHY

[13] T. Cook and D. Campbell. Quasi-Experimentation: Design & Analysis
Issues for Field Settings. Houghton Mifflin, 1979.

[14] D Di Ruscio, L. Iovino, and A. Pierantonio. “Evolutionary Togetherness:
How to Manage Coupled Evolution in Metamodeling Ecosystems”. In:
Proceedings of the 6th International Conference on Graph Transforma-
tions. 2012, pp. 20–37.

[15] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Prac-
tical Approach, 2nd edition. London, International Thomson Computer
Press, 1996.

[16] F. Garćıa et al. “Towards a Consistent Terminology for Software Mea-
surement”. In: Journal of Information and Software Technology 48.8
(2006).

[17] R. Glass. “The Software Research Crisis”. In: Journal of IEEE Software
11.6 (1994), pp. 42–47.

[18] M. Hiller. Surviving in an Increasingly Computerized and Software Driven
Automotive Industry. Keynote speach at the International Conference
on Software Architectures. 2017. url: https://www.youtube.com/
watch?v=mpbWQbkl8_g.

[19] Information Technology - Information Resource Dictionary System. ISO
/ IEC 10027. 1990.

[20] M. Jørgensen. “Software Quality Measurement”. In: Journal of Advances
in Engineering Software 30.12 (1999), pp. 907–912.

[21] E. Kasanen and A. Siitonen. “The Constructive Approach in Manage-
ment Accounting Research”. In: Journal of Management Accounting Re-
search 5 (1993), pp. 241–264.

[22] S. Kent. “Model Driven Engineering”. In: Proceedings of the Interna-
tional Conference on Integrated Formal Methods. 2002, pp. 286–299.

[23] B. Kitchenham, S. L. Pfleeger, and N. Fenton. “Towards a Framework for
Software Measurement Validation”. In: Journal of IEEE Transactions on
Software Engineering 21.12 (1995), pp. 929–944.

[24] A. Kleppe. “A Language Description is More than a Metamodel”. In:
Proceedings of the 4th International Workshop on Software Language
Engineering. 2007, pp. 273–280.

[25] L. Lehtiranta et al. “The Constructive Research Approach: Problem
Solving for Complex Projects”. In: Designs, Methods and Practices for
Research of Project Management. Gower, 2015. Chap. 8, pp. 95–106.

[26] P. Liggesmeyer and M. Trapp. “Trends in Embedded Software Engineer-
ing”. In: Journal of IEEE Software 26.3 (2009), pp. 19–25.

[27] K. Lukka and T. Reponen. “The Key Issues of Applying the Constructive
Approach to Field Research”. In: Management Expertise for the New
Millennium: In Commemoration of the 50th Anniversary of the Turku
School of Economics and Business Administration (2000), pp. 113–128.

[28] F. Mantz, G. Taentzer, and Y. Lamo. “Well-formed Model Co-evolution
with Customizable Model Migration”. In: Proceedings of the Interna-
tional Workshop on Principles of Software Evolution. 2013, pp. 1–10.

https://www.youtube.com/watch?v=mpbWQbkl8_g
https://www.youtube.com/watch?v=mpbWQbkl8_g

BIBLIOGRAPHY 33

[29] L. Mathiassen. “Collaborative Practice Research”. In: Journal of Infor-
mation Technology & People 15.4 (2002), pp. 321–345.

[30] MOF 2.0 Core Specification. Object Management Group. 2004. url:
www.omg.org.

[31] G. Nordstrom et al. “Metamodeling - Rapid Design and Evolution of
Domain-Specific Modeling Environments”. In: IEEE Conference on En-
gineering of Computer Based Systems. 1999, pp. 68–74.

[32] Object Constraint Language Version 2.0. Object Management Group.
2006. url: www.omg.org.

[33] Object Management Group. OMG. 1989. url: www.omg.org.

[34] Open Modelica User Guide (Releases). OpenModelica. 2016. url: www.
openmodelica.org.

[35] C. Robson. Real World Research: A Resource for Social Scientists and
Practitioner-Researchers, 2nd edition. Blackwell Oxford, 2002.

[36] J. Rosenberg. “Some Misconceptions about Lines of Code”. In: Pro-
ceedings of the 4th International IEEE Symposium on Software Metrics.
1997, pp. 137–142.

[37] M. Saeki and H. Kaiya. “On Relationships among Models, Meta Models
and Ontologies”. In: 6th OOPSLA Workshop on Domain-Specific Mod-
eling. 2007.

[38] Standard for a Software Quality Metrics Methodology. IEEE. 1998.

[39] Systems and Software Engineering - Measurement Process. ISO/IEC
15939. 2007.

[40] Systems and Software Engineering - Product Quality. ISO/IEC 9126-1.
1991.

[41] R. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture: Foun-
dations, Theory, and Practice. Wiley, 2009.

[42] Unified Modeling Language 2.5. Object Management Group. 2015. url:
www.omg.org.

[43] R. Yin. Case Study Research: Design and Methods, 5th edition. London,
SAGE, 2014.

www.omg.org
www.omg.org
www.omg.org
www.openmodelica.org
www.openmodelica.org
www.omg.org

Chapter 2

Case Study Background

Automotive Software Development based on AUTOSAR

D. Durisic

Based on Chapter 4 of the Automotive Software Architectures book,
Springer, 2017

Chapter 3

Paper A

Measuring the Impact of Changes to the Complexity and
Coupling Properties of Automotive Software Systems

D. Durisic, M. Nilsson, M. Staron and J. Hansson

Journal of Systems and Software (JSS), vol 86, no 5, pp 275-1293,
2013

Chapter 4

Paper B

Addressing the Need for Strict Meta-Modeling in Practice
- A Case Study of AUTOSAR

D. Durisic, M. Staron, M. Tichy, J. Hansson

Proceedings of the 4th International Conference on Model-Driven
Engineering and Software Development (MODELSWARD), 317-
322, 2016

Chapter 5

Paper C

Assessing the Impact of Meta-Model Evolution - A Mea-
sure and Its Automotive Application

D. Durisic, M. Staron, M. Tichy, J. Hansson

Journal of Software and Systems Modeling (SoSyM), 2017

Chapter 6

Paper D

Measuring the Evolution of Meta-Models - A Case Study
of Modelica and UML Meta-Models

M. Jimenez, D. Durisic, M. Staron

Proceedings of the 5th International Conference on Model-Driven
Engineering and Software Development (MODELSWARD), 2017

Chapter 7

Paper E

Identifying Optimal Sets of Standardized Architectural
Features - A Method and its Automotive Application

D. Durisic, M. Staron, M. Tichy and J. Hansson

Proceedings of the 11 International ACM SIGSOFT Conference on
Quality of Software Architectures, 2015

Chapter 8

Paper F

ARCA - Automated Analysis of AUTOSAR Meta-Model
Changes

D. Durisic, M. Staron, M. Tichy and J. Hansson

Proceedings of the 7th International Workshop on Modelling in Soft-
ware Engineering, 2015

Chapter 9

Paper G

Should We Adopt a New Version of a Standard? - A
Method and its Evaluation on AUTOSAR

C. Motta, D. Durisic, M. Staron

Proceedings of the 17th International Conference on Product-Focused
Software Process Improvement (PROFES), 127-143, 2016

Chapter 10

Paper H

Co-Evolution of Meta-Modeling Syntax and Semantics in
Architectural Domain-Specific Modeling Environments -
A Case Study of AUTOSAR

D. Durisic, C. Motta, M. Staron, M. Tichy

Proceedings of the 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS), 2017

	Abstract
	Acknowledgment
	List of Publications
	Introduction
	Modeling and meta-modeling
	Theory of modeling and meta-modeling
	Domain-specific modeling and meta-modeling
	Architectural modeling and architectural features
	Modeling and meta-modeling in this thesis

	Software measurement
	Measurement theory
	Measurement process
	Software measurement in this thesis

	Research questions and contributions
	Industrial contribution
	Individual contribution
	Related publications

	Research methodology
	Case study theory
	Constructive research theory
	Research methods used in our papers
	Research validity

	Conclusions and future work

	Case Study Background
	Introduction
	AUTOSAR reference architecture
	AUTOSAR development methodology
	AUTOSAR meta-model
	AUTOSAR meta-modeling environment
	Design based on the AUTOSAR meta-model
	AUTOSAR template specifications

	AUTOSAR ECU middleware

	Paper A
	Introduction
	Related Work
	Research Method
	Designing Software Systems at VCC
	Logical View
	Deployment View

	Quality Metrics
	Logical View Measures
	Deployment View Measures

	Presentation and Interpretation of Results
	Presentation of Measurement Results
	Interpretation of Measurement Results

	Example
	The Example System Description
	Measurements and Results Presentation
	Logical View
	Deployment View

	Results Interpretation

	Validation of the Metrics
	Theoretical Validation
	Empirical Validation

	Conclusions

	Paper B
	Introduction
	Automotive Modeling
	AUTOSAR Meta-Model Hierarchy

	Assuring Strictness of AUTOSAR
	Discussion
	Conclusions

	Paper C
	Introduction
	Background
	Architectural design based on meta-models
	AUTOSAR based automotive architectural design
	AUTOSAR meta-modeling environment

	Research methodology
	Study design and execution
	Case study 1 - Analysis of AUTOSAR (RQA)
	Constructive study - Definition of NoC (RQB)
	Case study 2 - Validation of NoC (RQC)

	Replication of the Study

	Definition of NoC
	Data model
	NoC definition

	Validation of NoC
	Validation scope: AUTOSAR features, meta-model changes, and tools
	Measurement results
	NoC validation
	Company A
	Company B
	Company C
	Company D
	Company E
	Correlation results

	Discussion
	Key finding 1 - NoC measure is a good indicator of tooling impact
	Key finding 2 - Qualitative analysis of changes for accurate impact assessment
	Calculating NoC on other meta-models
	Threats to validity
	Limitations
	Impact of different types of meta-model changes

	Practical experience and recommendations
	Related work
	Conclusions and future work

	Paper D
	Introduction
	Background
	Research method
	Results
	Modelica data-model
	UML data-model
	Modelica measurements
	UML measurements

	Validation and discussion
	Related work
	Conclusion

	Paper E
	Introduction
	Related work
	Research methodology
	MeFiA method definition
	Meta-data model for the changes
	Linking meta-model changes to features
	Optimizing the set of adopted features
	Assumptions for the MeFiA method

	Automotive software development
	Applying MeFiA on AUTOSAR features
	Optimization for the entire meta-model
	Role-based optimization
	Aggregated role-based optimization

	Conclusion and future work

	Paper F
	Introduction
	AUTOSAR based software development
	Related work
	ARCA tool
	The architecture of ARCA tool
	Quantifying/presenting the meta-model changes
	Presenting the results of software metrics
	Presenting/quantifying the feature related changes
	Combining all tool's functionalities in car projects

	Conclusion

	Paper G
	Introduction
	Related work
	Case study evaluation context
	Research methodology
	The SREA method
	Evaluation of SREA on AUTOSAR
	Discussion
	Conclusion

	Paper H
	Introduction
	Case study background
	AUTOSAR meta-model (syntax)
	AUTOSAR design specifications (semantics)

	Research methodology
	Results
	Measurement context
	Measurement results
	Correlation results

	Discussion
	Key findings
	Industrial impact
	Threats to validity
	Replication of the study

	Related work
	Conclusion

