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This thesis concerns the problem of providing a semantics for quantification
over absolutely all there is. Chapter 2 argues against the common view that
Frege understood his quantifiers in Begriffsschrift to range over all objects
and discusses Michael Dummett’s analysis of the inconsistent system of
Grundgesetze, which generalises into his famous argument against absolute
quantification from indefinite extensibility. Chapter 3 explores the possib-
ility to adapt Tarski’s first definition of truth to hold for sentences with
absolute quantification. Taking the concept of logical consequence into ac-
count results in an argument for adopting a set-theory with an ill-founded
membership relation as a metatheory. Chapter 4 reviews and deflates an
influential argument due to Timothy Williamson against the coherence of
absolute quantification. Chapter 5 discusses three important contemporary
semantic theories for absolute quantification that tackle Williamson’s argu-
ment in different ways. Chapter 6 challenges the widespread view that it is
impossible to give a model-theoretic semantics for absolute quantification
simply by providing such a semantics in NFUp. This semantic framework
provides models with the universal class as domain. I show, furthermore,
that the first-order logical consequence relation stays the same in this set-
ting, by proving the completeness theorem for first-order logic in NFUp.
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1 Introduction

We seldom intend to speak about all there is. On the contrary, in our
everyday conversations, quantification is almost always restricted in one
way or the other; be it implicitly, by some background domain given by con-
text, or explicitly, by some syntactic mechanism. But there are occasions
when we strive to quantify over absolutely everything. For example, only
an uncharitable interpreter would understand a metaphysician as quantify-
ing over less than absolutely everything when explaining that “Everything
belongs to some ontological category”. Likewise, a set-theorist explaining
that “nothing is a member of the empty set”, does not mean to use the
quantifier as restricted to some limited domain outside of which there lurk
potential members that would make the set non-empty after all. Even more
obviously, the Aristotelian law of identity has no bite unless it applies to
everything.

But even though absolute quantification seems to be present in natural
languages it is nevertheless framed with difficulties. The most challen-
ging problem for absolute quantification stems from the classical paradoxes.
Thus, Cantor’s paradox of the greatest cardinal, Burali-Forti’s paradox of
the greatest ordinal, and Russell’s paradox of classes, have all been used to
argue that the very idea of absolute quantification is incoherent. Typically,
this kind of argument assumes that quantification requires a domain of
the things quantified over, and that the reasoning in the paradoxes shows
that any such domain can always be extended to a larger domain. Michael
Dummett calls such concepts indefinitely extensible and Russell (1907) calls
the classes, or extensions, corresponding to such concepts self-reproductive.1

According to this line of argument, then, there will be no such thing as a
truly universal domain, and hence, nothing like absolute quantification.

1The notion of indefinite extensibility is recurrent in Dummett’s writings; our main source
here is Dummett (1991). See also Shapiro and Wright (2006) for a rewarding discus-
sion.
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all there is

A natural response to the argument from indefinite extensibility would
be to accept the conclusion that, despite appearances, quantification is
always limited to something less than absolutely everything. The posi-
tion that quantification is always limited is often referred to as generality-
relativism. The opposite view, i.e., that quantification is not always thus
limited, is called generality-absolutism.

However, the position of a generality-relativist is severely problematic.
Timothy Williamson shows in his thought-provoking and highly influen-
tial Everything (2003) that, not only is the relativist incapable of coher-
ently articulating his position, he is also incapable of providing adequate ac-
counts for kind generalisations and, more importantly, truth and meaning.
For instance, Williamson shows that, given some very natural assumptions
on context and natural languages, the relativist cannot state the truth con-
ditions for context-sensitive universally quantified sentences in a context-
sensitive metalanguage. What the relativist wants to say is that,

(∗) for any context C, and any sentence of the form ∀xφ, ∀xφ is true in
C if and only if, every member of the domain of C satisfies φ in C.

But since quantification in the metalanguage is context-sensitive, the
context in which (∗) is uttered, CT say, provides a domain. Thus, as Willi-
amson points out, for some particular contextC instantiating (∗), the result-
ing condition would be that ∀xφ is true in C if and only if, every member
of the intersection of the domain of C and the domain of CT satisfies φ
in C. Hence, in order to get the right truth conditions for each context C,
the domain of CT needs to contain all members of the domain of every C
in which ∀xφ may be uttered. But this looks dangerously close to asking
for a context with a domain of everything there is or, alternatively, that
there is something not within any of the domains of the possible contexts
for ∀xφ. But that there would be some object outside of each possible con-
text for ∀xφ, if ∀xφ stands for a natural language sentence, seems highly
implausible, and is in any case not an option for a generality-relativist.

This and a number of other pertinent arguments makes Williamson
claim that generality-relativism leads to meta-linguistic pessimism, that
is, “it endangers the possibility of a reflective understanding of our own

2
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thought and language, even from the standpoint of a meta-language.”2 The
task for the generality-absolutist, then, is to show that, given his under-
standing of the quantifiers, coherent meta-linguistic reflection is in fact
possible.

Interestingly, Williamson claims that model-theoretic semantics is prob-
lematic in a similar way:

Speaking in the metalanguage of first-order model theory, one
says: every model has a set for its domain; since no set con-
tains everything, no model has everything in its domain; but
each thing belongs to some sets (such as its own singleton)
and therefore to the domain of some model or other. Con-
sequently, no model has every model in its domain. Thus a
formalization of the meta-theory in a first-order language has
no intended model, in the standard sense. (Williamson, 2003,
p. 446)

Standard model-theoretic semantics is inadequate for absolute quantifica-
tion according to Williamson, not only because of the lack of a universal set
for the domains of the models, but also because of the lack of an intended
model for the semantic theory itself.

In this thesis I will argue that we don’t have to give up the idea of a first-
order model-theoretic semantics for absolute quantification. That is, I ar-
gue that the absolutist may indeed construct a model-theoretic semantics to
meet Williamson’s challenge. A first-order formulation of such a semantics
will contain ‘model’, ‘assignment’ and ‘satisfaction’ among its predicates
and relations. A model, MΠ, for such a language will, like any model for
a first-order language, have a domain of quantification, MΠ, and a func-
tion IΠ interpreting the predicates and relation symbols. I define MΠ in
the set theory NFUp that results from Quine’s NF if we add urelements
and, for convenience, a primitive pairing operator, in Chapter 6.3 The

2Williamson (2003, p. 452). But see also Studd (2017) for a defence of generality-
relativism with regard to semantic pessimism.

3‘NF’ abbreviates the title of Quine’sNew Foundations for Mathematical Logic (1937). The
theory that results from adding urelements, NFU, was first suggested in Jensen (1968-
69), wherein the consistency of NFU, NFU with infinity and choice, is proven (relative
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models in MΠ that have the universal set as their domain of quantifica-
tion will serve as interpretations of absolute quantification. Furthermore,
the resulting semantics is shown to be complete with regard to standard
proof-systems. Thus the concept of first-order consequence in the new sense
will be co-extensional with the concept of derivability, which, in turn, im-
plies that it is co-extensional with the standard model-theoretic concept of
consequence as well. Thus, despite using a non-standard set theory, the
resulting model-theoretic semantics will be standard in this important re-
spect.

But can does not imply ought and the construction of a model-theoretic
semantics in NFUp needs motivation. Chapters 2–5 are meant to provide,
in various ways, a motivation of sorts, partly by commenting on discussions
and objections in the literature. Below I summarise the main theme of each
of these chapters.

A good starting point for a discussion on absolute quantification is the
works of Gottlob Frege. One reason is that he adopted a logical system
in his Grundgesetze der Arithmetik (1893,1903) that allowed the derivation
of Russell’s paradox. Hence, he inadvertently provided one of the most
influential arguments against absolute quantification. Another reason is
that he, according to the common view, employed, or intended to employ,
absolute quantification by taking his first-level quantifiers to range over
absolutely all objects.

Frege was clear about the syntax and, to some extent, the semantics of
quantification already in his first book on logic, Begriffsschrift, eine der arit-
metischen nachgebildete Formelsprache des reinen Denkens (1879). In the first
part of Chapter 2 I challenge the common view that Frege took his quantifi-
ers as ranging over absolutely everything in that book, by arguing that they
are best understood as substitutional. That is, rather than saying that the
sentence ∀xφ is true if φ is true for all values of x, I claim that the quantifi-
ers in Begriffsschrift render it true if φ is true for all legitimate substitution
instances of x. Hence, since we only quantify over named objects—if any-

to ZFC). Type levelled ordered pairs are defined for NF in Quine (1945) but that defin-
ition assumes infinity and is thus not suitable in NFU. A primitive type levelled pairing
operator was added to NFU in Feferman (1974). The resulting theory is referred to as
NFUp.
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thing at all—when applying substitutional quantification, the only further
assumption needed in order to refute absolute quantification (objectually
understood) is that some objects have no names.

In the second part of Chapter 2 I discuss Dummett’s influential argu-
ment from indefinite extensibility in the historical context of Grundgesetze.
Richard Cartwright’s Speaking of Everything (1994) is an interesting re-
sponse to Dummett’s argument. Cartwright argues that it is misguided
to assume, as Dummett needs to do, that there ought to be a completed
collection of the things we quantify over in addition to the things them-
selves. Cartwright’s response is interesting in its own right, but it also gives
us reason to discuss the relation between model-theoretic semantics and
the ontological commitments in the object language. One worry is that,
since we quantify over domains in the metalanguage, an object language
with absolute quantification will inherit commitments to domains from
the metalanguage. We close Chapter 2 by sorting out this question.

To provide a model-theoretic semantics one needs to define the relation,
M |= φ, of a sentence φ being true in a model M. Alfred Tarski is rightly
acknowledged for the now standard definition of truth in a model, but he
did not give that definition, as is sometimes claimed, in his The Concept of
Truth in Formalized Languages (1935).4 In that work Tarski defines plain
truth for interpreted formalised languages. Interestingly, Tarski imposes
no explicit restriction on the quantifiers in his definition and it is therefore
tempting to try to adapt his method to languages with absolute quantific-
ation. We discuss this possibility in the first part of Chapter 3 and find
that the main obstacle is Tarski’s use of Husserl’s semantic categories in the
metalanguage. Since the variables in the metalanguage for variable assign-
ments and the variables in the object language necessarily belong to dif-
ferent categories, it seems in principle impossible for the object language
quantifiers to range over the variable assignments. Thus, from the perspect-
ive of the metalanguage, there is something over which the object language
quantifiers does not range, and hence they fall short of being absolute.

The second part of Chapter 3 provides two alternative ways of circum-

4The first printed definition of truth in a model seems to be that in Tarski and Vaught
(1957). See Hodges (1985/6) for a discussion.
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venting the problem raised by using Husserl’s semantic categories in the
context of absolute quantification. The first alternative is to argue that
Husserl’s semantic categories bring no new ontology. One can do that in
the same way as higher-order languages are sometimes said to bring new
ideology (or expressive power) rather than new ontological commitments
in addition to those following from the first-order quantifiers. This comes
close to using semantic theories based on some ontologically innocent type
theory. We discuss two such theories in Chapter 5. The second alternative
consists in trading Husserl’s categories for ZF.

Much of the interest in model-theoretic semantics lies in its ability to
provide adequate definitions of logical relations between sentences. Of fun-
damental interest is the relation of logical consequence. In the third part
of Chapter 3 we show that the semantics that results from trading Husserl’s
categories for ZF, although it provides a truth definition, fails with regard
to the definition of logical consequence. One interesting reason for this is
the axiom of foundation in ZF, which makes ∈ well-founded. This sug-
gests that we should use, as we do in Chapter 6, a set theory where ∈ is not
well-founded as our metatheory.

Dummett’s argument from indefinite extensibility against the coherence
of absolute quantification is set-theoretic in spirit. Accordingly it is highly
dependent on one’s adopted set theory. However, Williamson (2003) gives
an argument in the same spirit that makes no assumptions on sets or classes.
The argument is presented as a reductio of the assumption of absolute quan-
tification. In addition to the assumption of absolute quantification the ar-
gument uses two further premisses. The first premise is that there is an
interpretation that interprets a predicate of the object language in accord-
ance with any possible semantic value suitable for that predicate; in partic-
ular this holds for the semantic values of the predicates in the (interpreted)
metalanguage. The second premise is that a definition of a particular predic-
ate in the metalanguage is legitimate. Even though it involves no assump-
tions on sets or classes it has been analysed, notably in Glanzberg (2004)
and Parsons (2006), in terms of indefinite extensibility.

Williamson’s argument plays a major role in the contemporary discus-
sion of absolute quantification and I devote Chapter 4 to it. Having presen-
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ted the argument I review Glanzberg’s and Parsons’ analyses in terms of
indefinite extensibility. I also give an analysis that is closer to Dummett’s
use of indefinite extensibility. Finally I show that the argument is best un-
derstood as a reductio of the definition of the purported predicate in the
metalanguage rather than the assumption of absolute quantification. As
long as we don’t impose some principle making that faulty definition legit-
imate the project of giving a model-theoretic semantics for absolute quan-
tification is unhampered by Williamson’s argument. This chapter relies on
joint work with Christian Bennet.

The theories that have been proposed as a response to Williamson’s chal-
lenge of constructing a semantics for absolute quantification have all taken
Williamson’s argument seriously. They also adhere to the requirement that
a semantics should be strictly adequate, roughly in the sense that for any
possible semantic value a predicate may have, there ought to be some in-
terpretation that interprets it accordingly, or general in the sense that it
should be applicable to any legitimate first-order language. In Chapter 5
I critically review three theories aiming at meeting these requirements in
different ways. Two of the theories are type-theoretical. Thus, both Wil-
liamson (2003) and Rayo (2006) suggest that we should use higher-order
resources to set up a semantic theory, while they differ in their interpreta-
tions of the higher-order quantifiers. Williamson suggests that we should
take our higher-order quantifiers as ranging over concepts and Rayo sug-
gests that they can be interpreted in a higher-order plural language. Both
Williamson and Rayo resist any claim that higher-order quantification en-
tails commitment to entities in addition to the entities that the first-order
quantifiers range over.

Williamson’s and Rayo’s accounts require an infinite hierarchy of lan-
guages of different orders and some well-known problems of stating truths
about such hierarchies from somewhere within the hierarchy become relev-
ant. The inability to express certain truths makes it look like these theories
are at the brink of violating the idea of strict adequacy. This shows that, al-
though it is possible to show that the hierarchy provides a strictly adequate
semantics for each level in the hierarchy, there is no strictly adequate se-
mantics for the language consisting of all levels. Moreover, I argue, the

7
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notion of strict adequacy itself cannot be expressed from within the hier-
archies. It is therefore doubtful that the idea of strict adequacy can be
used to motivate the higher-order approach. Furthermore, I present a di-
lemma that the type-theorist faces if we are allowed to form predicates of
the metalanguage in any way we want. For then we may construct a con-
tradiction that shows, either that the higher-order account is contradictory,
or that some predicate is illegitimate, which would make a similar response
to Williamson’s argument possible and hence neutralise an important argu-
ment for turning to higher-order resources in the first place.

Due to the lack of a universal set and the set-theoretic paradoxes, stand-
ard set theory, ZFC, constitutes a poor framework for a semantics adequate
for absolute quantification. A natural response is thus to give up ZFC as
a metatheory. However, Linnebo (2006) takes a stand against such a con-
clusion. Rather than giving up ZFC he suggests that it should be supple-
mented with a theory of properties. According to Linnebo, the resulting
theory must be strong enough to construct an adequate semantics and the
theory of properties must avoid Williamson’s argument in a natural, non
ad hoc way.

Inspired by Linnebo’s first-order approach I proceed in Chapter 6, after
a brief discussion of the most common objections, to construct the model-
theoretic semantics mentioned above.

8



2 Frege: General Statements and
Quantification

In the last section of Rayo and Williamson (2003) the following historical
note is made:

The formal system which Frege set forth in the Begriffsschrift
was meant to be a universal language; it was intended as a
vehicle for formalising all deductive reasoning. Accordingly,
Frege took the first-order variables of his system to range over
all individuals. So much is beyond dispute. (Rayo and Willi-
amson, 2003, p. 354, italics in the original)

This view on general judgements in the Begriffsschrift is not uncommon,
but, as stated above, it carries an ambiguity. ‘Begriffsschrift ’ is sometimes
used to abbreviate the title of Frege’s first book on logic, which is how
we will use the word, and sometimes to refer to the formal language of
that book. Frege used that language, with important amendments, in later
texts, e.g., Grundgesetze.1 Though the symbols and formation rules used
in Begriffsschrift are fully incorporated in Grundgesetze, they are given a
radically different semantics in that later work. Indeed, the differences are
so profound that one can hardly speak of one formal system. Hence it is
imprecise to speak of the Begriffsschrift, as if there is only one; that is, unless
one intends to refer to Frege’s first book on logic.

It follows that there are at least two ways of understanding the second
sentence of the quote, depending on whether it concerns the first-order
variables in Begriffsschrift or in Grundgesetze. In this chapter we investigate
both alternatives.

In Section 2.1 we present an interpretation of Begriffsschrift according to
which the first-order variables, or equivalents of such variables, may not be

1When referring to Frege’s texts I use Begriffsschrift to refer to the translation Frege (1879),
and Grundgesetze to refer to the edited translation Frege (1893,1903).
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understood to range over absolutely all individuals. This follows from an ar-
gument showing that quantification in Begriffsschrift, properly understood,
is substitutional (as opposed to objectual). Thus, only named objects are
quantified over. Given the plausible assumption that not all individuals
have names, the non-absoluteness of the quantifiers follows.

This is a small historical observation in the over-all discussion of the
question of the possibility of an absolutely general enquiry. It gives a neg-
ative answer, for a particular formal system, to a specific interpretation of
what Rayo and Uzquiano calls the availability question: “Could an all-
inclusive domain be available to us as a domain of enquiry?” (Rayo and
Uzquiano, 2006, p. 2) If Frege wanted his quantifiers to range over abso-
lutely everything, a natural and simple solution would have been to keep
the formal part of Begriffsschrift and interpret quantification objectually in-
stead. Actually, this is roughly what Frege does in Grundgesetze, although
for other reasons. A large part of the formal system is kept intact while
some new notation is introduced to match his new semantics which had
become much more involved.

However, due to the derivability of Russell’s paradox in Grundgesetze,
the assumption of variables ranging unrestrictedly becomes non-trivial.2

The paradox shows that the system of Grundgesetze is inconsistent. Mi-
chael Dummett has argued that Frege’s mistake lay in the failure of ac-
knowledging the existence of indefinitely extensible concepts.3 Roughly,
a concept is said to be indefinitely extensible if the hypothesis that it has
a determinate extension gives rise to entities that, although falling under
the concept, cannot belong to the extension. As an example, Russell’s para-
dox may be used to show that the notion of set is indefinitely extensible.
Assume thus that the concept set has a definite extension E. Then, among
the Es, there will be sets that are not members of themselves, and, using
comprehension, we may form the set of all those sets that are not members
of themselves. Russell’s paradox then shows that this set cannot be among
the Es. Consequently, E did not consist of all sets.

2Note that the formal system of Begriffsschrift is consistent. For a proof, see Russinoff
(1987).

3Dummett argues along such lines in a number of places, but we mainly confine ourselves
to Dummett (1991).
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This actualises the metaphysical counterpart of the availability question,
“Is there an all-inclusive domain of discourse?” (Rayo and Uzquiano, 2006,
p. 2). These two questions form the core of the modern discussion of abso-
lute generality. Thus, the problems identified in the modern discussion of
the possibility of an absolutely general inquiry were present at the dawn of
modern quantificational logic.

In Section 2.2 we look at the concept of indefinite extensibility as applied
toGrundgesetze and in what way it may be thought of as a problem for abso-
lute quantification. We also consider an argument by Cartwright (1994) ac-
cording to which this problem is not insurmountable. Furthermore, we dis-
cuss what consequences indefinite extensibility and Cartwright’s argument
might have for a putative model-theoretic semantics for absolute quantific-
ation.

2.1 General statements in Begriffsschrift

Begriffsschrift consists of three parts. In the first part a general presentation
of the notational system is given; in the second part, fifty-nine propositions
are derived from nine axioms by means of modus ponens and substitution;
in the third part, finally, some general propositions about sequences are
derived from four definitions and the propositions derived in the second
part.

Our main concern here is universal quantification and the question if
Frege took his quantifiers to range over absolutely everything in Begriffs-
schrift. We start in Section 2.1.1, by rehearsing some basic notions and
distinctions. In Section 2.1.2 we briefly discuss the much debated distinc-
tion between function and argument in Begriffsschrift. As it turns out, the
argument given in Section 2.1.3 is intertwined with this thorny debate.
What we show in Section 2.1.3 is, basically, that the way Frege introduces
the identity sign in Begriffsschrift gives us a strong reason for adopting a
substitutional reading of the quantifiers. In Section 2.1.4, we discuss what
the substitutional reading implies with regard to absolute quantification.
We find that it is implausible to regard quantification in Begriffsschrift as
absolute.

11
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2.1.1 Preliminaries

A reader of Begriffsschrift who is only familiar with Frege’s later texts may
find its semantics rather crude and unanalysed. For instance, the distinc-
tion between an expression having a Bedeutung and expressing a Sinn, intro-
duced inÜber Sinn und Bedeutung (1892), is lacking. Instead, in retrospect,
these semantic categories are merged into the one single category of content
(‘Inhalt’).

The conditional and negation are explicitly designated in the formal lan-
guage, call it LBs, of Begriffsschrift and are understood to operate on con-
tents. The affirmation of A’s content standing in the conditional relation
toB’s content is explained as (i) the affirmation of the content ofA and the
affirmation of the content of B, or (ii) the affirmation of the content of A
and the denial of the content ofB, or (iii) the denial of the content ofA and
the denial of the content of B.4 Hence, rather than being truth-functional,
the sentential calculus in Begriffsschrift, that is, the calculus involving only
negation and the conditional, is content-functional. Furthermore, the sen-
tential calculus is compositional: given the contents of the parts of an ex-
pression of a complex sentence in LBs, the content of the whole expression
is a function of those parts and their mode of composition.

Frege distinguishes signs for logical constants from letters:

I […] divide all signs that I use into those by which we may
understand different objects and those that have a completely de-
terminate meaning. The former are letters and will serve chiefly
to express generality. But no matter how indeterminate the
meaning of a letter, we must insist that throughout a given
context the letter retain the meaning once given to it. (Frege,
1879, p. 10, italics in the original)

It is unfortunate that Frege does not take the opportunity to list, or at least
exemplify, the two kinds of symbols he considers in this passage.

Frege employs a horizontal stroke to indicate that we use an expression
A of LBs, instead of using inverted commas in order to mention it. That is,

4Frege also requires that the contents of A and B are judgeable, but we may ignore this
slight complication here.
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the horizontal stroke takes us from the expression to its content, very much
as one may say that inverted commas take us from a symbol to its name.
Thus ‘ A’ marks the content expressed by A. The conditional relation
between two contents expressed by A and B is then readily expressed:

(1) A

B

In (1) the vertical stroke marks that the content of A is implied by the
content of B. The leftmost horizontal stroke is the content stroke for the
combination of signs to the right of it. Negation of the content of A is
expressed by a small vertical stroke dividing A’s content stroke:

(2) A

The affirmation of a content is marked by a vertical stroke added to the
leftmost content stroke. Thus

(3) A

B

expresses the affirmation of the content of the conditional.
The use of signs for the conditional and negation is thus unambiguously

explained in Begriffsschrift. Unfortunately, this is not true for Frege’s use
of letters like ‘A’ and ‘B’. We are told in a footnote that the capital Greek
letters employed (‘A’ is a capital alpha and ‘B’ a capital beta) are “abbre-
viations” and that we “should attach an appropriate meaning when I do
not expressly give them a definition” (Frege, 1879, p. 11 n.). However, in
the course of reading Begriffsschrift it becomes reasonably clear that capital
Greek letters are used as schematic letters for expressions in LBs.5

5Not everyone agrees. Baker and Hacker (1984, p. 171) seem to understand the Greek
capitals as denoting objects and concepts, treating them as if they belonged to LBs. It
is true that capital Greek letters appear in part two and three of Begriffsschrift, i.e. not
only in the part that explains the symbolism, but then only as schematic letters in tables
for substitutions. It is natural to think of them as merely schematic also in the first part
of Begriffsschrift.
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That the meanings of Greek letters have to be “appropriate” means that
whatever combination of signs in LBs we understand them to stand for, the
combination of signs to the right of the judgement sign ‘ ’ must have
a content that is capable of becoming a judgement.

An important distinction in Begriffsschrift (p. 3) is that between contents
and conceptual contents. Consider

(4) If John loves Mary, then John is happy.

and

(5) If Mary is loved by John, then John is happy.

Frege would say that (4) and (5) have different contents, even though this
difference is of no logical significance. That part of the content playing
a role in logical inferences Frege calls the conceptual content and thus he
may say that (4) and (5) have the same conceptual content. A conceptual
content expressed by two different natural language expressions may thus
be formalised by the same expression in LBs.

2.1.2 The function-argument distinction

Consider (4) again. If ‘Mary’ is viewed as replaceable, then the expression
splits up into a replaceable part, ‘Mary’, and a constant part, ‘If John loves
(Mary), then John is happy’. The constant part Frege calls a function and
the replaceable part he calls an argument (to the function):

If in an expression, whose content need not be capable of becoming
a judgement, a simple or compound sign has one or more occur-
rences and if we regard that sign as replaceable in all or some of
these occurrences by something else (but everywhere by the same
thing), then we call the part that remains invariant in the ex-
pression a function, and the replaceable part the argument of the
function. (Frege, 1879, p. 22, italics in the original)

Symbolically, in the first part of Begriffsschrift, an arbitrary function of one
argument is written Φ(A), and a function of two arguments as Ψ(A,B).

14
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Now, having a natural language statement n, expressing a content, the con-
ceptual content of which we may denote by ‘C(n)’, it is possible to form a
function in the above sense by considering a part of n as being replaceable.
Thus, if a (one-place) function is formed from n, n is viewed as consisting of
one constant part (the function) and one replaceable part (the argument),
and it is only natural to assume that C(n) splits up into two parts in a sim-
ilar fashion. Indeed, this is more or less Frege’s standpoint in his later texts
were he explicitly distinguishes functions from objects in the contents of
statements.6 However, such a distinction among the conceptual contents
is not explicitly endorsed in Begriffsschrift.

But consider now the following quote in which ‘Cato killed Cato’ is
analysed:

If we here think of “Cato” as replaceable at its first occurrence,
“to kill Cato” is the function; if we think of “Cato” as replace-
able at its second occurrence, “to be killed by Cato” is the
function; if, finally, we think of “Cato” as replaceable at both
occurrences, “to kill oneself ” is the function. (Frege, 1879,
p. 22)

In this quote Frege may be interpreted as speaking of parts of C (Cato killed
Cato). For instance, ‘to be killed by Cato’ is not literally a part of ‘Cato
killed Cato’, and hence, it does not result from the decomposition of the
sentence into a function part and an argument part in accordance with
the procedure described above. Instead it seems plausible to assume that it
is the conceptual content of ‘Cato killed Cato’ that is decomposed in the
quote, and that these parts are denoted by ‘to be killed by Cato’ and ‘Cato’.

Examples like this have been taken to show that the function-argument
distinction is in fact not unambiguously introduced in Begriffsschrift. Offi-
cially it is introduced as applicable at a syntactic level, but Frege sometimes
speaks as if it is also applicable at a semantic level.

It should be said that the ‘Cato killed Cato’ example is not the only argu-
ment for a non-syntactic reading of the distinction. Notably Baker (2001)
and Baker and Hacker (1984, 2003) provide arguments relying on close

6See Frege (1891).
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readings of Frege’s use of quotation marks in Begriffsschrift and elsewhere,
as well as Frege’s retrospective comments on the distinction. While Baker
and Hacker defend a strictly non-syntactic understanding of the distinc-
tion, others disagree. Dummett (1984), for instance, argues in his detailed
review of Baker and Hacker (1984) that Frege saw the distinction applic-
able at both a syntactic and a semantic level (p. 380), and that it is far from
certain that Frege was clear about the nature of functions at the time of
writing Begriffsschrift (p. 381).

Surprisingly, as we shall see next, a rather straightforward reading of
Frege’s treatment of identity and quantification sheds light on this debate.
In fact, it provides a strong argument for the syntactic reading.

2.1.3 Quantification and identity

Consider the following passage of Begriffsschrift where Frege introduces the
notation for quantification.

In the expression of a judgement we can always regard the
combinations of signs to the right of as a function of
one of the signs occurring in it. If we replace this argument
by a German letter and if in the content stroke we introduce a
concavity with this German letter in it, as in

a Φ(a)

this stands for the judgement that, whatever we may take for its
argument, the function is a fact.7(Frege, 1879, p. 24, italics in
the original)

There are two content strokes involved in the notation for quantification.
The one to the left of the concavity Frege explains to be the content stroke
“for the circumstance that, whatever we may put in place of a, Φ(a) holds”
and “the horizontal stroke to the right of the concavity is the content stroke

7The notion of a function being a fact does not really make sense here. Either it is the value
of the function that is a fact, or the content of that value, depending one’s understanding
of functions.
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of Φ(a), and here we must imagine that something definite has been sub-
stituted for a.” (Ibid., p. 24)

Given the first sentence of the quote, where Frege explicitly talks about
the “expression of a judgement” and “combination of signs,” it seems quite
clear that Frege gives an account of substitutional quantification. That is,
anachronistically put,

a Φ(a)

if and only if

Φ(a) for all substitution instances of a.

Despite such textual evidence Dummett defends the view that Frege ac-
tually meant to give an account for objectual quantification:

The much more loosely expressed stipulation in Begriffsschrift,
§11, concerning the quantifier reads:

a Φ(a) signifies (bedeutet) the judgement that the
function is a fact whatever we take as its argument.

Fairly clearly, this too, is intended to express an objectual in-
terpretation of the first-order quantifier, an interpretation that
Frege appears to have put on it throughout his career. (Dum-
mett, 1991, p. 206)

A similar view seems to be embraced by Michael Beaney who explains the
notation for first-order quantification in an appendix to The Frege Reader:

This is understood as representing the judgement that ‘the
function [Φ] yields a fact whatever is taken as its argument’,
i.e. that everything has the propertyΦ (for all x Fx – ‘∀xFx’ as
it would be formalized in modern notation). (Beaney, 1997,
p. 379)

The understanding of quantification in Begriffsschrift also depends on the
function-argument distinction. If that distinction only applies at the level
of syntax there seems to be no alternatives save for a substitutional reading
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of the quantifiers. On the other hand, if one thinks that the distinction
does not apply on a syntactic level, or at least not only on a syntactic level,
then the objectual reading of the quantifiers makes perfect sense.8 Thus,
quantification seems to be ambiguous in the very same way as the function-
argument distinction.

We now turn to Frege’s treatment of identity in Begriffsschrift. When
introducing identity Frege speaks of it as being of another kind than the
conditional and negation:

Identity of content differs from conditionality and negation in
that it applies to names and not contents. Whereas in other
contexts signs are merely representatives of their content, so
that every combination into which they enter expresses only a
relation between their respective contents, they suddenly dis-
play their own selves when they are combined by means of the
sign for identity of content. (Frege, 1879, p. 20)

The introduction of the identity sign into the formula language is motiv-
ated by the need to take care of the informativeness of sentences of the kind
‘Scott is the author of Waverley’, but also for enabling stipulated abbrevi-
ations (i.e. definitions) in the formula language. If identity were a relation
between contents, there would be no difference between ’Scott is the au-
thor of Waverley’ and ’Scott is Scott’—two judgements that arguably differ
as to their content. Hence, the sign is introduced and explained:

Now let

A ≡ B

mean that the sign A and the sign B have the same conceptual
content, so that we can everywhere put B for A and conversely.
(Frege, 1879, p. 21, italics in the original)

There is no doubt that Frege puts the relation of identity at the level of syn-
tax. This is clear, both from the actual words introducing it, and from the

8Accordingly, Baker and Hacker (1984, p. 181), who favour a non-syntactic understand-
ing of the distinction, may embrace an objectual reading.
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fact that it simply wouldn’t do the job if it was a relation between contents.9

Although identity is unambiguously introduced, it is sometimes thought
to raise internal problems in the formal system of Begriffsschrift. Thus, in
the introduction to his translation of Grundgesetze, Montgomery Furth
comments on the use of the identity sign in Begriffsschrift :

It has the merit of accounting for the interest of true “A = B”
as against the uninformativeness of “A = A”. But the price
is exorbitantly high, for the device renders it practically im-
possible to integrate the theory of identity into the formalised
object-language itself; e.g. to state generally such a law as that
if F(a) and a = b then F(b). (p. xix, Furth’s introduction to
Frege (1893,1903))

In LBs such a general law would be expressed by

(6) f (d)

f (c)

c ≡ d

Now, (6) is actually axiom (52) in the deductive system in part two of
Begriffsschrift. The use of Latin letters in (6) is explained by a convention
that they are universally quantified with the whole judgement as their scope
(p. 21). Thus, this axiom may also be written:

(7) c d f (d)

f (c)

c ≡ d

Furth’s worry is that this does not express a general law because the ante-
cedent with the identity sign seems to restrict the content of the judgement
to signs. But, of course, this problem appears only if we read the quantifiers

9In later texts, Frege would say that in sentences such as ’Scott is the author of Waverley’,
‘Scott’ and ‘the author of Waverley’ share their Bedeutung but have different Sinn. But,
as we said, such a distinction is not present in Begriffsschrift.
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objectually.
Indeed, to substantiate Furth’s problem, one needs more than objec-

tual quantification in Begriffsschrift. First, we must identify the parts in
the conceptual contents that correspond to the arguments in the syntactic
function-argument distinction. For simplicity, call such alleged parts ob-
jects.10 Second, assuming that conceptual contents may have argument
places, we have to acknowledge that such argument places, in case they
appear in the conceptual content of an identity, must be filled by signs.
That is, we need to recognise signs among the objects. Then we could say
that (7) is tacitly restricted to that subcategory of objects which consists of
the signs that may appropriately flank the sign for identity. That is to say,
we are then in a position to claim that Frege failed, due to the syntactic
character of the identity relation, to properly express such general laws as
∀a∀b(a = b → (F(a) → F(b))).

However, under the substitutional interpretation of quantification none
of these problems appear. Rather than perceiving the relation of identity
as giving rise to internal problems of the kind Furth suggests, we may use
it to argue for a substitutional reading of quantification: Frege succeeds in
stating axiom (52) with its intended meaning precisely because quantification
is substitutional.

The substitutional reading of quantification implies that the function-
argument distinction applies primarily at the level of syntax. But then, in
order to avoid a reductio-argument, we need to explain the ‘Cato-killed-
Cato’ example. The problem is that, taking the first occurrence of ‘Cato’ to
be the argument, Frege explains the function to be ‘to be killed by Cato’,
an expression which is not literally a part of the decomposed expression,
i.e. of ‘Cato killed Cato’. Thus, one may argue, this example shows that
the function-argument distinction applies at a non-syntactic level. How-
ever, this argument is rather weak. One need only acknowledge that two
different natural language expressions may have the same formal rendering
in LBs.11 Thus, when Frege speaks of expressions, in the course of stating
the process of decomposing an expression into function and arguments,

10This is consonant with the terminology of Baker and Hacker (1984, ch. 7).
11A similar point is made in Baker and Hacker (2003, p. 277).
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he speaks of expressions of LBs rather than natural language expressions.
Accordingly, in the ‘Cato-killed-Cato’ example we may understand ‘to be
killed by Cato’ as ‘the formalisation into LBs of “to be killed by Cato” ’.

There is no telling what Frege’s intention was regarding the quantifiers
in Begriffsschrift. The passages introducing quantification do not give un-
ambiguous support for either the substitutional or the objectual reading.
There are other arguments for the objectual reading, but they all rely on
close readings of passages in the first part of Begriffsschrift, or comparat-
ive readings of contemporary sources, or retrospective comments in later
sources. In contrast, the above argument from the accuracy of axiom (52)
is simple and straightforward, assuming nothing that isn’t explicitly and
officially stated in Begriffsschrift, and it embraces only the quite harmless
presumption that Frege intended to say what he actually says in axiom (52).
This is a strong argument for the view that quantification in Begriffsschrift
is, in fact, substitutional.

2.1.4 Absolute generality in the Begriffsschrift.

Let us recall a standard account of substitutional quantification.12 Assume
that L is a first-order language and let an interpretation I be a mapping of
atomic L -sentences onto {T, F }. Define an I-valuation, vI, by recursion
on the complexity of formulas in the following way:

1. If ψ is an atomic sentence, then vI(ψ) = I(ψ), and

2. if ψ is ¬ϕ, then vI(ψ) = T if and only if vI(ϕ) = F, and

3. if ψ is ϕ∨χ, then vI(ψ) = T if and only if vI(ϕ) = T or vI(χ) = T,
and

4. if ψ is ∀xϕ, then vI(ψ) = T if and only if vI(ϕ(n)) = T for all n ∈
C, where ϕ(n) is the result of substituting n for all free occurrences
of x and C is some denumerable class of suitable L -terms.

Though it is quite possible to understand substitutional quantification as
ontologically committing by requiring that the items in C refer to objects
12The account given here is essentially the same as in Dunn and Belnap (1968).
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of some sort, one of the main attractions with this kind of quantification
is that such an understanding is not forced upon us. For instance, if the
sentence ‘∃x(x defeated the Hydra)’ is true under an interpretation I, this
is not so because there is someone who defeated the Hydra, but because
the sentence has at least one instance that vI maps to T.

The ontological innocence of substitutional quantification has been con-
sidered an advantage since it allows for a semantics without requiring a
specifiable extra-lingual domain of quantification. A truth definition for
L requires nothing but the syntax of L and a mapping of atomic sen-
tences to truth-values. Here is how Ruth Barcan Marcus defends this kind
of quantification:

The impetus for the initial proposal [of substitutional quanti-
fication] was not, as sometimes suggested, grounded in find-
ing a way of quantifying into and out of modal contexts. […]
It is rather the much more general observation that there is a
genuine question about the appropriateness or even the mean-
ingfulness of supposing that there is a clear connection between
the standard interpretation of the quantifiers and any para-
phrase into and out of ordinary and philosophical discourse.
The standard semantics demands a clearly specifiable domain
over which the variables range and which are its values. […]
Then what, if we are dealing with ordinary or philosophical
discourse, is the clearly specifiable domain over which the vari-
ables range? (Marcus, 1972, p. 244)

The point is thus that since we cannot always specify a domain of quanti-
fication, we shouldn’t adopt a semantics requiring such a domain. Instead
we should adopt a semantics free from ontological commitments, e.g., a
semantics interpreting the quantifiers substitutionally.

Though it is doubtful that Frege ever thought along these lines when de-
fining quantification in Begriffsschrift, it is nevertheless consistent with his
exposition of the formal system expressed in LBs. An anachronistic conclu-
sion would then be that, contrary to the common view that quantification
in Begriffsschrift is over absolutely everything, rather, it is over nothing.

Another question regarding substitutional quantification is if we can al-
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ways decide whether we, in colloquial language, use substitutional or objec-
tual quantification.13 Surely, if we are able to conclude that¬∀xϕ(x) is true
even though ϕ(n) holds for all n ∈ C, we can safely say that we use objec-
tual quantification. But if we find ourselves in a situation where there is a
true instance ψ(n) for any true existential sentence ∃xψ, we will no longer
be able to separate the unnamed objects from the named ones. In particu-
lar, given that C contains a witness for each true existential sentence, there
is no such formula as ϕ(x) above; since ¬∀xϕ(x) entails ∃x¬ϕ(x), there
is an instance ¬ϕ(n) contradicting the assumption that ϕ(n) holds for all
n ∈ C. Accordingly, by merely knowing the truth-values of the sentences
considered, there would be no way of distinguishing substitutional form
objectual quantification.

If we cannot tell if we use substitutional or objectual quantification, the
range of our quantifiers seems to be indeterminate. There is simply no
way to tell if we quantify, substitutionally or objectually, solely over named
objects, or if there are also unnamed objects, inseparable from the named
ones, which are anyway within the range of our quantifiers. Clearly, in the
latter case, quantification ought to be objectual, even though we are not in
a position to know that.14

The problem in Begriffsschrift, however, is not that we cannot tell the
two types of quantification apart. Hence there is no risk of accidentally
quantifying over unnamed objects. Furthermore, if we consider the expres-
sions substituted for variables as referring, there is still an indeterminacy
concerning the range of quantification in Begriffsschrift since the expres-
sions allowed for substitutions are not unambiguously delineated. Despite
this indeterminacy, the plausible assumption that quantification is substitu-

13See Quine (1968).
14McGee (2000) shows that the disturbing situation can be resolved for the special case

where the substitution instances are proper names by considering counterfactual reas-
oning. Assume that there is an unnamed individual not living in our world that has a
property P and that nobody in our world has P. In a world w where all the inhabitants
of our world lives in harmony with our unnamed friend, the sentence ∃xPx is true if
quantification is objectual and false if substitutional. As McGee puts it, “Inseparabil-
ity is an accidental feature of this world, and once we begin looking at other worlds,
Quine’s problem disappears”(p. 57).

For further discussions, see McGee (2000) and Lavine (2006).
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tional seems to make it fairly clear that the generalisations in Begriffsschrift
are less than absolute. The only further assumption needed is that not
everything, objectually understood, is denoted by an expression in LBs.

2.2 Grundgesetze: Russell’s paradox and indefinite
extensibility

Grundgesetze, it is often claimed, contains an early but unsuccessful account
of absolute quantification.15 The quantifiers therein range over absolutely
all objects. Among the objects, Frege counts extensions of concepts which,
together with Basic Law V, allows the derivation of Russell’s paradox. Scru-
tinising the semantic underpinnings of Grundgesetze and the adoption of
Basic Law V, Dummett has argued that Frege’s failure consisted in not
being aware of the existence of indefinitely extensible concepts. This ar-
gument generalises into his highly influential claim that absolute quanti-
fication in general, not only in Grundgesetze, is untenable because of the
indefinitely extensible concepts.

After presenting the argument in Dummett (1991) and the counter-
argument in Cartwright (1994) we discuss the implications of these ar-
guments for the possibility of providing a model-theoretic semantics for
absolute quantification.

2.2.1 The logical system of Grundgesetze

At the level of syntax Grundgesetze uses the same formal system as Begriffss-
chrift except for two new primitive symbols: the symbol for the abstraction
operator ‘έ ’ and the symbol for the definite article ‘\’. In ‘έ ’ the purpose
of ‘ε’ is to bind occurrences of this sign in the expression that follows ‘έ ’.
Thus, for instance, in ‘έΦ(ε)’, the first occurrence of ‘ε’ binds the second.

Despite syntactic similarities, the system of Grundgesetze is given a radic-
ally different semantics than the system of Begriffsschrift . One striking dif-
ference is that the syntactic distinction in Begriffsschrift between function
and argument is now paralleled by a corresponding semantic distinction.

15One example might be the quote at the beginning of this chapter.
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Another, equally important, distinction is that between Sinn and Bedeu-
tung.

Roughly, the Sinn expressed by a sign is the way in which the Bedeu-
tung is established, and the Bedeutung is what the sign refers to. Having
the same Sinn entails having the same Bedeutung, whereas having the same
Bedeutung by no means entails that the signs in question share their Sinn.
Thus, instead of analysing identity statements such as ‘∆ = Γ’ as ‘the sign
∆ has the same content as the sign Γ’ Frege now says that the identity state-
ment has as Bedeutung the True if, and only if, ‘∆’ has the same Bedeutung
as ‘Γ’, but this does not entail that ‘∆’ has the same Sinn as ‘Γ’. For Frege,
the identity relation is now a relation between objects, not between signs.16

The syntactic distinction between function and argument in Begriffs-
schrift appears inGrundgesetze as a distinction between function-names and
argument-names.17 Function-names are characterised by being incomplete,
or unsaturated, and when completed with appropriate argument-names
they become names of objects.18 Just as function-names are incomplete, so
are the functions they denote; functions are incomplete objects, i.e., they
are not really objects. An object denoted by a name resulting from the com-
pletion of a function-name, Frege calls the value of the function designated
by the function-name.

The concepts form a sub-collection of the functions. The value of a
concept for any argument, or arguments, is always a truth-value.

Although a function is designated by a function-name, we said that it is
not counted as an object. To be designated is not a sufficient criterion for
objecthood:

Objects stand opposed to functions. Accordingly I count as
objects everything that is not a function, for example, num-
bers, truth-values, and courses-of-values to be introduced be-
low. The names of objects—the proper names—therefore carry
no argument-places; they are saturated, like the objects them-

16For a detailed defence of this claim, see Heck (2003), and for a discussion of the evolve-
ment of Frege’s views on identity, see May (2001).

17Grundgesetze §1.
18Grundgesetze §2.
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selves. (Grundgesetze §2, italics in the original)

If objects were the only arguments to functions, the function-argument
distinction would accomplish a partition of the Bedeutungs. However, it
is not a necessary condition for arguments to be saturated, and hence, the
function-argument distinction does not agree with the function-object dis-
tinction. Functions too can be arguments.19

Among the primitive functions that take objects as arguments we have
ξ which sends the True to the True and everything else to the False.
ξ on the other hand sends the True to the False and everything else to

the True. Thus, the True and the False are the only possible values of the
functions just considered. Furthermore, the truth-values are conceived of
as saturated and hence count as objects.

An example of a function which takes functions as arguments is the (first-
order) universal quantifier. Whereas we found strong reasons to understand
quantification in Begriffsschrift as substitutional it is clearly objectual in
Grundgesetze. Thus:

a Φ(a) is to denote the True if for every argument the value
of the function Φ(ξ) is the True, and otherwise is to denote
the False, […] (§8)

In ‘ a Φ(a)’, the function-name ‘Φ(ξ)’ may be considered a mark
of an argument-place.20 Thus, ‘ a Φ(a)’ is a mark of a function which
takes functions as arguments and it denotes a function which sends every
function which is true for every argument to the True.

Now, according to Frege, a function that takes objects as arguments is
of another kind than a function that takes functions as arguments. From
§21 it seems clear that at least one aspect of this matter rests upon syntactic
considerations. In place of ‘Φ(ξ)’,

[…] only names of functions of one argument—not proper
names, nor names of functions of two arguments—may be

19§19–§24.
20Just as in Begriffsschrift, capital Greek letters occur in the general outline of the system as

meta-variables which on each occasion must be thought of as having a definite value.
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substituted, for the combinations of signs being substituted
must always have open argument-places to receive the letter
“a”, and if on the other hand we wanted to substitute a name
of a function of two arguments, then the ζ-argument-places
would remain unfilled. (§21)

Hence there are syntactical reasons to separate different types of functions,
at least when they appear as arguments.21 But as Frege’s syntax is meant to
fully reflect the structure of the underlying semantics the syntactic distinc-
tions correspond to distinctions at the level of semantics. Functions that
take objects (and only objects) as arguments are called first-level functions,
functions taking first-level functions as arguments are second-level functions,
and so forth. The arguments are then divided into types:

• arguments of type 1: objects

• arguments of type 2: first-level functions of one argument

• arguments of type 3: first-level functions of two arguments22

Corresponding to this semantic hierarchy, Frege also divides the argument-
places into types in an analogous syntactic hierarchy. Thus, for example,
the universal quantifier is a second-level function of arguments of type 2.
Frege also defines quantification over first-level functions of one argument.
Such a quantifier is a third-level function of second-level functions.

This embryo of a theory of types is interesting for at least two reasons.
First, it is not motivated by the paradoxes as many of the subsequent type
theories, e.g. the theory of types in Principa Mathematica (Russell and
Whitehead, 1910). This may indicate that type theories are less ad hoc
than one might think.23 Secondly, it seems to imply that Frege did not
understand his quantifiers as ranging over absolutely everything; since no
quantifier in the formal system ofGrundgesetze ranges across different types,
it follows that no quantifier ranges over both objects and functions. In
other words, generalisations are always confined to one, and only one, of
21§23.
22Frege does not consider functions of more than two arguments.
23See Maddy (1997, ch. 1) for a discussion.
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the several mutually exclusive types. We will have reason to return to this
observation in Section 5.1, when discussing a semantics proposed in Willi-
amson (2003).

Falling short of quantifying over absolutely everything, Frege clearly took
some of his quantifiers as ranging over all objects. Interestingly, Dummett’s
analysis of the inconsistency in Grundgesetze already makes quantification
over all objects doubtful. Then, if Dummett is right and we cannot quantify
over all Fregean objects, it seems unlikely that we should be able to quantify
over the possibly greater totality of everything there is.

Besides the truth-values, Frege counts courses-of-values among the ob-
jects. If ϕ(ξ) is a first-level function of one argument, then the course-of-
values of ϕ(ξ) is denoted by έϕ(ε). The identity criteria for courses-of-values
is the Basic Law V:

(8) (έf (ε) = άg(α)) = ( a f (a) = g(a))

This axiom settles the denotations for identity statements for courses-of-
values as long as each course-of-values is given on the form έϕ(ε). However,
in §10, Frege raises the question if we can recognise a course-of-values as
such if it is not given on the form έϕ(ε). This is crucial in order to sort out
the truth-value of functions like έf (ε) = ξ for different arguments.

Dummett notes that Frege’s solution in §10 is based on a context prin-
ciple saying that a singular term has a reference only if “the result of insert-
ing it into the argument-place of any functional expression of the language
has a reference.”(Dummett, 1991, p. 212) Frege shows that it is enough
to consider identity statements since the other functions reduce to such
statements in the relevant cases. Furthermore, since the only objects in-
troduced up to that point are the truth-values the question boils down
to whether these objects may be identified as particular courses-of-values.
Thus, in §10, Frege identifies the True with έ( ε), and the False with
έ(( a a = a) = ε). This solves the problem of determining the value of
έf (ε) = ξ for all arguments.

To get the result that a term for a course-of-values designates some object
Dummett recognises that Frege also tacitly assumes a principle of compos-
itionality for having a reference:
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[…], if the result of inserting a term into the argument-place
of every primitive functional expression has a reference, then
the result of inserting it into the argument-place of any func-
tional expression will have a reference. We may call this the
‘compositional assumption’. (Dummett, 1991, p. 212, italics
in the original)

Frege uses this principle also in §§29–31 when arguing that each proper
name, and each first-level function of the language in Grundgesetze has a
denotation.24

We now proceed to the derivation of Russell’s paradox in Grundgesetze.

2.2.2 Russell’s paradox

Frege gives two formal derivations and discusses Russell’s paradox in Ap-
pendix II of the second volume of Grundgesetze. We follow Frege’s first
derivation using a slightly modernised terminology.

Call an extension a class whenever it is an extension of a concept. The
concept class of all classes not belonging to themselves is designated by means
of

(9) ¬∀G(έG(ε) = ξ → G(ξ))

Its extension is designated by:

(10) ά(¬∀G(έG(ε) = α→ G(α))

By the preceding discussion (10) has a denotation. Let W abbreviate (10).
Using Basic Law V, from left to right, we obtain

(11) έf (ε) = W → ( f (W) ↔ ¬∀G(έG(ε) = W → G(W)))

That is, this follows by instantiation from the left-to-right direction of

έf (ε) = άg(α) ↔ ∀x( f (x) ↔ g(x))

where ¬∀G(έG(ε) = α→ G(α)) is substituted for g(α).
24See also Dummett (1991, pp. 209–216).
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Note that, if W is not a class, i.e. if it were an object other than a course-
of-values, (11) would involve the Julius Caesar problem.25 What bars this
problem here is the austere ontology inGrundgesetze, which, by the context
principle and the principle of compositionality, secures that (11) denotes a
truth-value.26

The rest of the derivation is straightforward. From (11) and proposi-
tional logic we have

(12) ¬∀G(έG(ε) = W → G(W)) → (έf (ε) = W → f (W))

which in turn, by second-order generalisation, gives

(13) ¬∀G(έG(ε) = W → G(W)) → ∀G(έG(ε) = W → G(W))

Next, an instance of second-order instantiation is

(14) ∀G(έG(ε) = W → G(W)) → (έf (ε) = W → f (W))

which by substituting (9) for f (ξ), together with the definition of W, gives

(15) ∀G(έG(ε) = W → G(W)) → ¬∀G(έG(ε) = W → G(W))

Now (13) and (15) yields the contradiction.
Frege concludes that the only possible error lies in Basic Law V and that

[…] we must take into account that possibility that there are
concepts having no extension—at any rate, none in the ordin-
ary sense of the word. Because of this, the justification of our
second-level function έψ(ε) is shaken; yet such a function is
indispensable for laying the foundation of arithmetic. (Frege,
1893,1903, pp. 131–132)

25The Julius Caesar problem, as applied here, consists in the problem of deciding the de-
notation, i.e. the truth-value, of an identity statement έf(ε) = W where W is not given
as a course-of-values. In that case the right hand side of Basic Law V doesn’t determine
its denotation.

26See §31.
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2.2.3 Dummett’s argument and the All-in-One Principle

The non-ordinary sense of the word ‘extension’ that Frege speaks of in the
preceding quote is explained by Dummett in terms of indefinite extensib-
ility:

It is clear that Frege’s error did not lie in considering the no-
tion of an extension of a concept to be a logical one, for that
it plainly is. Nor did it lie in his supposing every definite
concept to have an extension, since it must be allowed that
every concept defined over a definite totality determines a def-
inite subtotality. We may say that his mistake lay in suppos-
ing there to be a totality containing the extension of every
concept defined over it; more generally, it lay in his not hav-
ing the glimmering of a suspicion of the existence of indefinite
extensible concepts. (Dummett, 1991, p. 317)

A concept is indefinitely extensible if its having a definite extension gives
rise to new instances of the concept in question. Thus, for instance, the
concept of non-self-membered class qualifies as an indefinitely extensible
concept. For assume it had an extension R, then, on pain of contradic-
tion, R cannot be a member of R, which makes it a new instance of the
concept.27

Clearly, elucidations as the above do not fully characterise the concept
of indefinite extensibility. For one thing, explaining indefinite extensibility
in terms of having a definite extension seems dangerously circular. In fact,
characterising indefinite extensibility has turned out quite a challenge that,
however, we will not delve into here.28 For our purposes, it will be enough
to assume that the explanation above is sufficiently clear.

Dummett argues that in order to “obtain a determinate interpretation
of a formal language we must first specify, without circularity, what the
elements of the domain are to be, before we go on to specify the intended
interpretations of the primitive predicates […]” (Dummett, 1991, p. 221).
Frege did not specify such a domain. Instead, as Dummett points out, he
27Dummett (1991, p. 317). Indeed, Russell expressed similar ideas in Russell (1907).
28See Shapiro and Wright (2006) for a rewarding discussion.
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tried to fix the references of names of objects by means of an ill-founded
application of the context principle. Thus,

[a]lthough there is in fact no danger of inconsistency in the
fragment of Frege’s system with only first-order quantification,
he has provided no valid proof of its consistency, because he
has not succeeded in specifying the references to all its terms.
For that reason, he failed to justify the introduction of value-
ranges. (Dummett, 1991, p. 222)

Since the first-order fragment is consistent it has a model. Let us for the sake
of argument assume that the domain of this model, i.e., the domain over
which the first-order quantifiers range, encompasses absolutely all objects.
Second-order quantification gives us the means to construct a determinate
concept such as (9). The extension of (9) as defined over the domain of
all objects may instantiate Basic Law V and, thus, gives rise to a contra-
diction. What the argument shows, according to Dummett, is thus that
the extension of (9) wasn’t among the objects in the first place. That is, it
wasn’t within the range of the first-order quantifiers. For if it were, since
(9) is definite according to Frege, we have the contradiction. It follows that
the domain that supposedly contained all objects could be extended and,
hence, that the first-order quantifiers didn’t range over all objects after all.

One line of critique, articulated by Cartwright (1994), of using this type
of argument against unrestricted quantification, claims that it rests upon a
false principle, viz. the All-in-One Principle:

[…] to quantify over certain objects is to presuppose that those
objects constitute a “collection,” or “completed collection”—
some one thing of which those objects are the members. (Cart-
wright, 1994, p. 7)

Cartwright’s argues that this principle is false in a way that is reminiscent
of Boolos (1984, 1985):

There would appear to be every reason to think it false. Con-
sider what it implies: that we cannot speak of the cookies in
the jar unless they constitute a set; that we cannot speak of
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the natural numbers unless there is a set of which they are the
members; that we cannot speak of all pure sets unless there is
a class having them as members. I do not mean to imply that
there is no set the members of which are the cookies in the
jar, nor that the natural numbers do not constitute a set, nor
even that there is no class comprising the pure sets. The point
is rather that the needs of quantification are already served by
there being simply the cookies in the jar, the natural numbers,
the pure sets; no additional objects are required. (Cartwright,
1994, p. 8)

What the set-theoretic paradoxes may have revealed is the existence of
indefinitely extensible concepts, and thus, that there cannot be a totality of
everything that might be a possible value of our first-order variables, i.e.,
no universal domain. But without the All-in-One Principle, Cartwright
argues, the general argument is not conclusive. Thus,

Dummett’s argument seems to be simply that since there is no
universal “domain,” and since the All-in-One Principle is true,
unrestricted quantification is illegitimate. (Cartwright, 1994,
p. 17)

In the next section we discuss what consequences the falsity (or truth)
of the All-in-One Principle might have for the possibility of providing a
model-theoretic semantics for absolute quantification.

2.2.4 The All-in-One Principle and model-theoretic semantics

Here is a natural but unsound argument that the adoption of a model-
theoretic semantics entails the truth of the All-in-One Principle: A model
M of a first-order language L is an ordered pair ⟨M, I⟩ of a setM to which
the quantifiers of L are restricted and a function I interpreting the non-
logical vocabulary. Thus, since the quantifiers in L are always restricted to
some set of the model interpreting L, quantification always presupposes,
in a model-theoretic semantics, that the objects quantified over constitute
a set, or a completed collection. Hence the All-in-One Principle holds.
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The above argument is not conclusive since it fails to distinguish between
the use of quantifiers and the mentioning of them, e.g. in semantic theor-
ising. It seems clear enough, as Cartwright points out, that when we use
our quantifiers, all we have to acknowledge as existing are the entities quan-
tified over, not the collection of them as an additional entity. This is true
even if we adopt a model-theoretic semantics in which we do quantify over
domains of quantification. For the All-in-One Principle concerns the use,
rather than the mention of quantifiers in theories, and as such it seems to
be a false principle.

The situation is slightly different when a quantifier is used to express
absolute generality. For if we want to interpret such a quantifier faithfully,
whatever is within the range of the quantifiers of the metalanguage, e.g.,
domains of quantification, must also be within the range of the interpreted
quantifier. In a way then, the quantifiers in the object language inherit the
ontological commitment attached to the quantifiers in the metalanguage.
Thus we might think that, given a model-theoretic semantics, any use of
quantifiers to express absolute generality makes us committed to domains
of quantification after all. At least this seems to be the case if such domains
are quantified over in the metatheory. Since quantification over domains
is necessary for an adequate definition of logical consequence, one might
argue that the adequacy of model-theoretic semantics seems to entail the
All-in-One Principle after all.

But this would be a mistake. For, typically, in semantic theory, we use
certain set-theoretic constructions to represent other entities, but that does
not mean that the entities represented are those set-theoretic constructions.
For instance, just because we standardly represent the natural numbers
, , , . . . by the sets ∅, {∅}, {∅, {∅}}, . . ., we do not identify the natural

numbers with those sets. The same holds for domains of quantification.
Hence, rather than domains of quantification, the inherited ontological
commitment in the object language is of the representatives of such do-
mains, i.e., in case of model-theoretic semantics, sets.

Thus, when quantifying over absolutely everything in an object language,
we are not committed to domains of quantification, just because we say
that we quantify over such domains in the metalanguage, for what we
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really quantify over are the representatives of such domains. Thus, model-
theoretic semantics imposes in such an object language commitment to
sets rather than sets-as-domains of quantification. Hence, model-theoretic
semantic does not support the All-in-One Principle just by using sets to
represent domains of quantification in its models.

One may, at this point, wonder why we should bother with the truth of
the All-in-One Principle at all. We saw that, according to Cartwright, the
All-in-One Principle, together with the impossibility of a universal domain
of quantification, constitutes the core of Dummett’s argument against the
coherence of absolute quantification. Given the impossibility of a universal
domain, the strength of Dummett’s argument hinges on the truth or falsity
of the All-in-One Principle. But we will argue that the impossibility of
a universal domain of quantification is far from given. On the contrary,
our ultimate aim in Chapter 6 is the construction of a model-theoretic
semantics in a set theory that has a universal set playing the role of such a
domain. Thus Dummett’s argument is blocked regardless of whether the
All-in-One Principle turns out to be true or false. Hence, once we have
seen that model-theoretic semantics does not entail the truth of the All-in-
One Principle by the argument above, that principle may seem irrelevant
for our purposes.

But then again, the All-in-One Principle might still turn out to be rel-
evant for a model-theoretic semantics for absolute quantification. For, as
Cartwright notices, “the All-in-One Principle may be thought to derive
support from current model-theoretic accounts of first-order logical truth
and consequence.” (Cartwright, 1994, p. 11)

To explain the idea Cartwright uses the notion of a set-theoretic analogue
of a logical schema29. The set-theoretic analogue of a formulaφ of some lan-
guage L is reached in two steps: first, uniformly assign variables y to each
predicate letter P of L , and then replace each occurrence of P(x , . . . , xn)
in φ by ⟨x , . . . , xn⟩ ∈ y.

It is tempting, Cartwright says, to identify the logical truths with those
sentences whose set-theoretic analogues have true universal closures. That
would amount to saying that “a sentence of a first-order language is a logical

29The notion comes from Quine (1970), see in particular p. 51.
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truth just in case it is true on any assignment of extensions to its predicates
[…].” (Cartwright, 1994, p. 9) But, Cartwright continues, this would lead
us astray, e.g. by implying that¬∀xPx is a logical truth. For its set-theoretic
analogue is the formula ∀y¬∀x(x ∈ y) which is true according to standard
set theory. Thus, since ¬∀xPx is certainly not a logical truth, the identific-
ation between logical truths and sentences with true universal closures of
their set-theoretic analogues is mistaken.

It is perhaps telling that this counterexample is invalid in set theories
with a universal set. Indeed, it is not at all straightforward to tell whether
there are such counterexamples for the alleged identification in, for in-
stance, Quine’s set theory NF, or NFUp, the theory we will eventually
use as our metatheory.

But Cartwright makes his point in relation to standard set theories where
the counterexample works. He continues to note that what is missing in
the definition of logical truth by means of set-theoretic analogues is the re-
lativisation to universes. The relativisation to a universeU of a set-theoretic
analogue of some formula φ is simply the set-theoretic analogue with its
quantifiers restricted to appropriate constructs on U. Thus, the quantifiers
of φ will be restricted to U, and, taking the polyadicity of the predicate
letters into account, the remaining quantifiers of the set-theoretic analogue
are restricted to sets of pairs, triples, etc. of elements of U. Logical truth is
then defined as truth of the set-theoretic analogue under all relativisations.

Returning to the counterexample, we see that the relativised set-theoretic
analogue of ¬∀xPx now becomes

∀U∀y(y ⊆ U → ∃x(x ∈ U ∧ x ̸∈ y)),

which is easily seen to be false: pick a U and put y = U. Thus the set-
theoretic analogue of ¬∀xPx is not true under all relativisations, and the
sentence is not a logical truth.

Of course, defining logical truth as truth of the set-theoretic analogues
under all relativisations is just to define it as truth in all structures of the
right signature. The point, however, of taking the detour via the unrelativ-
ised set-theoretic analogues, to reach that familiar definition, is to show the
necessity of universes. That necessity may, in turn, be taken to support the
All-in-One Principle in the following way:
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[T]he amended definition may encourage the idea that among
the relativizations of the universal closures of the set-theoretic
analogues of the first-order sentence φ there must be one that
expresses the intended interpretation of φ, or at least a pro-
position equivalent in some strong sense to the intended in-
terpretation of φ. It might be thought that otherwise truth of
the relativizations would give no guarantee even of the plain
truth of φ.30 (Cartwright, 1994, p. 10, italics in the original)

Thus, given that the intended interpretation ought to be, or correspond
closely to, one of the relativised set-theoretic analogues, then it seems as if
the intended interpretation necessarily involves a universe of quantification,
in this case represented by a set. Thus, we seem to have an argument for the
All-in-One Principle from the model-theoretic account of logical truth.

Notice that this might turn out a problem regardless of which set the-
ory we use to construct our model theory. That model-theoretic semantics
supports a false principle is potentially a problem in itself. Indeed, if we
are prepared to take ‘support’ to mean something close to entail, we would
have a reductio for the adequacy of logical truth and consequence as defined
in model-theoretic semantics.

But, Cartwright continues, due to the completeness theorem for first-
order logic, the above argument is not binding. For, clearly, provability of
a sentenceφ entails the plain truth ofφ, and if the set-theoretic analogue of
this sentence is true on all relativisations, then it follows from completeness
that it is provable. Hence, the logical truth of a sentence entails its plain
truth even if the intended interpretation of it is not among its relativised
set-theoretical analogues.31

After this lengthy discussion, my general conclusion is that if we choose
to adopt a model-theoretic semantics for absolute quantification we are not
thereby automatically committed to the All-in-One Principle.

30Cartwright uses p instead of φ.
31Of course this is Kreisel’s (1967) famous squeezing argument, which, in other contexts,

has received a lot of attention recently; see e.g. Smith (2011). Cartwright reports that
his version is derived from Quine (1970, pp. 54–55).
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3 Tarski’s Definition of Truth and Logical
Consequence

As all students of logic and philosophy know, Tarski gave the first math-
ematically acceptable definition of truth in his monograph The Concept
of Truth in Formalized Languages (CTFL).1 Despite this there seems to
be, as Feferman (2008, p. 76) puts it, a “prima facie discrepancy between
what logicians nowadays usually say Tarski did, and what one finds in the
Wahrheitsbegriff [CTFL].” What one does not find was pointed out by
Wilfrid Hodges:

A few years ago I had a disconcerting experience. I read Tarski’s
famous monograph ‘The concept of truth in formalized lan-
guages’ [Tarski (1935)] to see what he says himself about the
notion of truth in a structure. The notion was simply not
there. This looked curious, so I looked in other papers of
Tarski. […]

I believe that the first time Tarski explicitly presented his math-
ematical definition of truth in a structure was his joint paper
with Robert Vaught [Tarski and Vaught (1957)]. (Hodges,
1985/6, p. 137–138)

Hodges asks why Tarski didn’t define the concept of truth in a structure in
CTFL. After all, by then he seems to have had all the tools needed for such
a definition.2

1CTFL was first published in Polish in 1933, though most of the results stem from 1929.
It was translated to German in 1935 and to English in 1956. All references made here
are to the English translation Tarski (1935).

2See Hodges (1985/6, p. 138). Feferman (2008) claims that Tarski “worked comfortably
with the informal notion of model for first-order and second-order languages at least
since 1924.”
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Part of an answer to Hodges’s question lies in the pre-theoretical concept
of truth that Tarski sets out to define in CTFL. Here is a telling passage:

Amongst the manifold of efforts which the construction of a
correct definition of truth for the sentences of colloquial lan-
guage has called forth, perhaps the most natural is the search
for a semantical definition. By this I mean a definition which
we can express in the following words:

(1) a true sentence is one which says that the state of affairs is so
and so, and the state of affairs indeed is so and so. (CTFL
p. 155. Italics in the original.)

This kind of truth definition aims at defining truth for meaningful lan-
guages, i.e., languages that contain sentences that actually say that states
of affairs do or don’t uphold. Tarski regards the problem of defining the
semantic concept of truth for purely formal languages as irrelevant, or even
meaningless, since sentences of formal languages do not express something
determinate about reality and therefore cannot, in the semantic sense, be
true or false.3 Hence Tarski sets out to define truth for languages whose
signs have, as he puts it, “intelligible meanings” (CTFL, p. 167) which ex-
cludes purely formal languages. This explains why Tarski did not define the
concept of truth in a structure in CTFL. For, if only meaningful languages
are considered, no structures are needed for sentences to have contents, and
hence the concept of truth in a structure is simply uncalled-for.

Structures, or models, standardly restrict quantification to a set—the do-
main of quantification—and are usually considered to be inept to interpret
absolute quantification. That Tarski doesn’t make use of structures to define
truth is thus hardly a loss from the perspective of absolute quantification.
On the contrary, CTFL provides a context in which it is rather natural to
formulate questions regarding absolute quantification. For instance, given
that a definition of the semantic concept of truth is relevant only for lan-
guages that are meaningful in the sense of somehow being about reality,
one may ask if there are among these languages those for which we may
construct a truth definition according to which there are true sentences

3See CTFL, p. 166–7. See also Hodges (1985/6, p. 148).

40



tarski’s definition of truth and logical consequence

about the whole of reality, i.e., true sentences which are about absolutely
everything.

In Section 3.1 this question is discussed with respect to the general frame-
work in CTFL, and we give a negative answer. In Section 3.2 two natural
proposals of how to tweak the definition to allow for absolute quantifica-
tion are suggested and briefly discussed. One of these suggestions lies close
to type-theoretic semantics that we discuss further in Chapter 5. The other
suggestion uses set-theoretic constructions in the definition. In Section 3.3,
we show that the resulting definition of truth has unwanted implications
for the concept of logical consequence. At least it has such consequences if
we require that the membership relation is well-founded.

3.1 Absolute quantification and truth in CTFL

Tarski considers at some length in CTFL the feasibility of constructing an
adequate definition of truth for natural language but concludes that such a
definition is problematic in at least two ways. One problem is the apparent
lack of a firm structure in natural language:

[Natural] language is not something finished, closed, or bound-
ed by clear limits. It is not laid down what words can be added
to this language and thus in a certain sense already belong to
it potentially. We are not able to specify structurally those ex-
pressions of the language which we call sentences, still less can
we distinguish among them the true ones. (CTFL, p. 164).

This lack of structure is problematic for Tarski since he sets out to define
true sentence ultimately in purely structural, non-semantic terms.4 And
indeed, if natural language is like Tarski says it is, a structural specification
of sentence, and a fortiori, a definition of true sentence, seems remote.

The second problem that Tarski identifies with natural language is, what
he calls, the property of universality:

A characteristic feature of colloquial language (in contrast to
various scientific languages) is its universality. It would not be

4See CTFL, p. 153.
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in harmony with the spirit of this language if in some other lan-
guage a word occurred which could not be translated into it; it
could be claimed that ‘if we can speak meaningfully about any-
thing at all, we can also speak about it in colloquial language’.
[…] it is presumably just this universality of everyday language
which is the primary source of all semantical antinomies, like
the antinomies of the liar or of heterological words. (CTFL,
p. 164)

Tarski famously avoids the semantic paradoxes by developing the semantics
for a language, the object language, in another language, the metalanguage.
The metalanguage has to be systematically separated from the object lan-
guage in order for this distinction to function as a guard against the se-
mantic paradoxes. The main problem with universality then seems to be
that it blurs this distinction and, hence, spoils Tarski’s guard against the
paradoxes.

Typically, a metalanguage of an object language possesses resources to
speak about the syntax of the object language and contains translations
of the expressions of the object language. In particular, assuming that ‘true
sentence’ has been defined, the metalanguage contains Tarski’s T-sentences,
i.e., sentences of the form

(T) x is a true sentence if and only if p,

where x is a name of a sentence in the object language and p is the transla-
tion of that sentence in the metalanguage.5 In fact, a definition of truth is
said to be adequate only if all instances of (T) follow from it.6 Now, if an
object language possesses the property of universality, all that can be said
in the metalanguage can also be said in the object language and, in partic-
ular, given an adequate definition of truth, all instances of the T-schema,
which normally belong only to the metalanguage, are available already in
the object language.7 Thus, the distinction between the languages collapses

5Tarski does not use the name ‘T-sentences’ in CTFL, but see Tarski (1944).
6This is one part of convention T, CTFL, p. 187. See also p. 46.
7See CTFL, p. 167.
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and, given some natural assumptions, the liar paradox becomes derivable.8

Hence, the assumption of an adequate definition of truth for a language
with universality leads to inconsistency.

Tarski concludes that

[…]the very possibility of a consistent use of the expression ‘true
sentence’ which is in harmony with the laws of logic and the
spirit of everyday language seems to be very questionable, and con-
sequently the same doubt attaches to the possibility of constructing
a correct definition of this expression. (CTFL, p. 165. Italics in
the original.)

Consequently, no further efforts of defining truth for natural language are
made in CTFL. Instead Tarski turns to formalised languages.

A formalised language is explained as the result of a formalisation, i.e.,
the replacing of a language with an imprecise syntax, or part of such a lan-
guage, by a language with a precise syntax, but which, in other aspects,
diverge as little as possible from the language formalised.9 In particular,
a formalised language contains a vocabulary from which composite expres-
sions may be formed by means of structural formation rules. The sentences
form a distinguished sub-category of the expressions.

A precise and complete characterisation of the notion of formalised lan-
guage in CTFL is a matter of some delicacy and we shall not attempt to
give one here.10 For our purposes we may think of a formalised language as
a first- or higher-order language (in its modern sense) where the signs used,
save for the variables, have fixed meanings. It is important to note, how-
ever, that a formalised language, as opposed to a formal one, is meaningful

8Let ‘c’ name ‘c is not a true sentence’ so that c = ‘c is not a true sentence’ and instantiate
(T) to get:

‘c is not a true sentence’ is a true sentence if and only if c is not a true sentence.

Using the identity we get the contradiction:

c is a true sentence if and only if c is not a true sentence.

9See Tarski (1944, p. 347).
10See CTFL, p. 166. For a discussion of the slightly wider question of what languages have

truth definitions of the type Tarski constructs in CTFL, see Hodges (2004).
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on its own. No interpretation, or structure, is needed to give meanings to
the non-logical vocabulary and the sentences are regarded simply as being
true or false, rather than true or false in this or that interpretation.

Since no interpretations are needed to give meaning to the languages
considered in CTFL, the concept of truth therein is not relative to inter-
pretations in the way we are used to from model-theoretic semantics. But
it is nevertheless a relative concept since each definition of truth is given for
a particular object language. Thus, one may say, rather than being relative
to interpretations, the concept of truth in CTFL is relative to languages.
And just as there is a multiplicity of languages, there is a parallel multipli-
city of truth definitions. This makes Tarski hesitant about giving a detailed
general abstract description of how to define truth for arbitrary languages.11

Instead he gives a detailed example of a definition of truth for the partic-
ular language, Lc, of the calculus of classes. He trusts the reader to make
the necessary changes and amendments if some other language of a similar
kind would be considered.12

We briefly sketch Tarski’s definition of truth for Lc in a metalanguage,
L m

c . Lc is one sorted and besides the variables x, y, z, . . ., it contains the
sign for negation ‘N’, disjunction ‘A’, universal quantification ‘Π’, and in-
clusion ‘I’. Disregarding the variables, these symbols are translated into
L m

c as ‘not’, ‘or’, ‘for all’ and ‘is included in’ or ‘⊆’, respectively. Com-
plex expressions of Lc, and in particular sentences, is formed in accordance
with the formation rules of Polish notation and have straightforward trans-
lations into L m

c . Thus, for instance, ‘Ixx ’, ‘NAIxyIzx ’ and ‘ΠxIxx ’, are
well formed expressions that translate into ‘x ⊆ x’, ‘not (x ⊆ y or z ⊆ x)’,
and ‘for all x, x ⊆ x’.13

Besides translations of the expressions in Lc, L m
c contains what Tarski

calls structural descriptive names of those expressions, that is, names that
mirror the syntactic structure of the expressions named. To simplify the

11See Tarski (1935, pp. 167–168).
12See Tarski (1935, pp. 209–210).
13We avoid indexing the variables in the metalanguage if possible. Also we let the same

signs x, y, z, . . . be variables in both languages. We sometimes even let the variables
figure as names of themselves. In what role a variable appears should always be clear
from the context.
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exposition we use φ and ψ as variables ranging over expressions in Lc. We
also anachronistically allow mixed expressions such as ‘Πxφ’ as part of L m

c .
The definition of truth uses infinite sequences which Tarski identifies

with one-many relations having the set of variables as their converse domain.
That is, given a class in the domain of a sequence f, it may bear the relation
f to any number of variables. By fx we mean the class that is related by f
to x.

With the sequences in place, the definition of truth goes via the concept
of satisfactionwhich is defined by recursion on the complexity of the expres-
sions of Lc. The detour via satisfaction is necessary since truth is applicable
only to sentences and the components of sentences include sentential func-
tions which are neither true nor false.

We formulate the definition of satisfaction for Lc:14

Definition 3.1.1. Let φ,ψ and χ be sentential functions in Lc. Then, the
sequence f satisfies the sentential function φ if and only if f is an infinite
sequence of classes and φ is a sentential function such that either

1. φ is of the form Ixy and fx ⊆ fy, or

2. φ is of the form Nψ and f does not satisfy ψ, or

3. φ is of the form Aψχ and f satisfies ψ or f satisfies χ, or

4. φ is of the form Πxψ and every infinite sequence of classes that is
like f, except possibly for fx, satisfies ψ.

A sentence of Lc is now said to be true, or a true sentence, if it is satisfied
by all sequences in accordance with the above definition.

Thus defined truth concerns Lc-sentences, and clearly, if some other
language were considered, we would have to define truth, or rather satisfac-
tion, differently. Were there, for instance, additional primitive vocabulary
in Lc, the number of clauses similar to the one for I, would multiply. For
instance, if ‘∈’ were added as a new primitive symbol to Lc, we would need
an additional clause governing the satisfaction of sentential functions such
as ∈xy in the definition. Thus, as we said, the semantic concept of truth
14This definition is given in CTFL, p. 193. We do not use Tarski’s original terminology.
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that Tarski defines is relative to the object language to which it is meant to
apply.

We also said that a definition of truth is adequate if it implies all instances
of the T-schema. This is the essence of Tarski’s convention T which is
officially stated for the particular example of defining truth for Lc:

Convention T. A formally correct definition of the symbol
‘Tr’, formulated in the metalanguage, will be called an adequate
definition of truth if it has the following consequences:

(α) all sentences which are obtained from the expression ‘x ∈ Tr
if and only if p’ by substituting for the symbol ‘x’ a structural-
descriptive name of any sentence of the language in question and
for the symbol ‘p’ the expression which forms the translation of this
sentence into the metalanguage;

(β) the sentence ‘for any x, if x ∈ Tr then x ∈ S’ (in other words
‘Tr ⊆ S’). (Tarski, 1935, p. 187, italics in the original.)

S is understood as the collection of sentences of the object language con-
sidered.

Even though convention T is stated in the particular context of defining
truth for Lc, it is clearly meant to be a general convention.15 Any semantic
definition of truth, for any object language, must allow for the deduction of
each instance of (α) and (β) in order to be adequate. The generality results
from a certain amount of indeterminacy. If one reads the convention as its
stands, it is by no means clear, in the general case, what metatheory is to be
employed to deduce the T-sentences as consequences of the definition of
Tr.16 In the particular case of Lc this poses no troubles since the metalan-
guage in which the definition of Tr is carried out is explicitly stated in §2.
But generally, given an object language, in order to make convention T
determinate, some metalanguage has to be provided.

Tarski discusses in §§4–5 if there is always a suitable metalanguage for
each possible object language. That is, if there is, for any given object lan-
15For example, see CTFL, p. 246, and Tarski (1944, p. 344).
16See David (2008), especially the section named The double life of convention T, for a

discussion.
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guage, a metalanguage in which an adequate definition of truth for that
language can be carried out. A related question of particular interest for us,
though perhaps not for Tarski, is to consider the possibility of a metalan-
guage allowing for a Tarski style truth definition for an object language
with absolute quantification.

A quick glance at the definition of satisfaction for Lc indicates that the
situation, at least initially, looks quite promising. For, thoughΠ is explicitly
restricted to classes in the fourth clause of that definition, this seems like
an incidental feature of the definition. Prima facie it seem quite possible
to construct a truth definition for absolute quantification by dropping the
restriction of the quantifier, replacing the equivalent of 4 in 3.1.1 with

4′. φ is of the form Πxψ and every infinite sequence that is like f, except
possibly for fx, satisfies ψ.

To show that this is a successful method we need to carry out the details
of at least one truth definition for at least one object language with abso-
lute quantification. Thus, to begin with, we need an object language in
which we quantify over absolutely everything. Also, having such an object
language in place, we need to state explicitly what metalanguage we use to
construct the definition of truth. But here problems emerge. According to
Tarski, all languages obey a variant of Husserl’s theory of semantic categories.
This, in fact, implies that there cannot be a suitable metalanguage in which
a definition of truth is possible for a language with absolute quantification.

According to Tarski’s version of the theory of semantic categories, two
expressions are said to belong to the same semantic category if, in any sen-
tential function containing one of the expressions, the other expression is
substituted for this expression, the sentential function remains a sentential
function.17 Consider, for example, ‘Ixy’. Since substituting ‘x’ for ‘y’ res-
ults in the well-formed ‘Ixx’, and similarly for any other (free) occurrence
of ‘x’ in a sentential function, it follows that ‘x’ and ‘y’ belong to the same
semantic category. But, since ‘IxI’ is not well-formed, ‘I’ and ‘y’ belong to
different semantic categories.

Husserl does not characterise the semantic categories in terms of sen-
tential functions. Instead he uses the notion of meaningfulness, saying
17CTFL, p. 216.
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that two expressions belong to the same semantic category if a meaningful
expression containing the one expression as (proper) part, remains mean-
ingful if the other expression is substituted for it.18 Presumably Tarski’s
characterisation in terms of sentential functions is motivated by his pledge
not to use semantic terms in the course of defining truth.19

The semantic categories together with their elements are divided into
orders and types in a way similar to the simple theory of types in Principia
Mathematica. But though Tarski regards the concept of semantic category
as close to the simplified concept of logical type of Principia Mathematica,
he also points out that the two theories differ in important aspects with
regard to their origin and content:

Whilst the theory of types was thought of chiefly as a kind of
prophylactic to guard the deductive sciences against possible
antinomies, the theory of semantical categories penetrates so
deeply into our fundamental intuitions regarding the mean-
ingfulness of expressions, that it is scarcely possible to imagine
a scientific language in which the sentences have a clear and in-
tuitive meaning but the structure of which cannot be brought
in harmony with the above theory. (CTFL, p. 215)

Tarski uses ‘scientific language’ as a synonym to ‘formalised language’ and it
is clear from this passage that, not only is the theory of semantic categories
differently motivated than the theory of types, it also “penetrates so deeply
into our fundamental intuition” that all formalised languages must obey
this theory. In particular, all object languages and metalanguages in CTFL
adhere to the theory of semantic categories.

While Tarski discusses at great length problems that the semantic cat-
egories bring about for the definition of truth for higher-order languages
in §§4–5 of CTFL, a related problem for absolute quantification appears
already in the first-order case. To see this, consider a dyadic relation W and
suppose we want to express that

‘ΠxWxx’ is a true sentence.
18See Simons (2001).
19As a result, his semantic categories are really syntactic.
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For instance, W may be a universal linear ordering, i.e., W may be antisym-
metric, transitive and total, and we might want to conclude that W is also
reflexive.

As usual a sentence is true if there is a sequence satisfying it. Thus,

‘ΠxWxx’ is a true sentence if, and only if, it is satisfied by an infinite
sequence f.

Assume for simplicity that the metalanguage in this example contains a
copy of the object language. In accordance with 4′ we then have that

‘ΠxWxx’ is a true sentence if, and only if, every infinite sequence
that is like f, except possibly for fx, satisfies Wxx.

Corresponding to the first clause of 3.1.1 we have that

f satisfies ‘Wxx’ if, and only if Wfx fx.

Now, since we quantify over absolutely everything in the object language
there can be nothing over which we quantify in the metalanguage that is
not already quantified over in the object language. That is, whatever we
quantify over in the metalanguage, we also quantify over in the object lan-
guage. In particular, we quantify over sequences in the metalanguage, and
hence the sequences may be related to the variables in our alleged semantic
theory. However, according to Tarski, sequences are relations and relations
never belong to the same semantic categories as their terms, and thus (the
signs for) sequences, or variables ranging over them, necessarily belong to
another semantic category than the signs we may substitute into their ar-
gument places.20 In particular, f belongs to a different category than fx.
It follows that putting f for fx in Wfx fx would violate the grammar of the
metalanguage used. Thus, allowing sequences to be possible values of the
first-order variables of an object language leads to problems of formulating
an adequate truth definition for that object language.

In a little more relaxed language we may express the situation as follows.
Since a sequence is a relation and relations never belong to the same se-
mantic category as any of its arguments, a sequence assigning objects to
20See CTFL p. 219.
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variables of some semantic category will never be one among the objects
being assigned to variables of the category in question. It follows that quan-
tification is never absolute.

3.2 Two alternatives

We just saw that, following CTFL, we never quantify in an object language
over the sequences that assign values to variables of that object language.
But those sequences are necessarily quantified over in the metalanguage.
Hence, from the perspective of the metalanguage there is always something
that is not within the range of the quantifiers of the object language and,
consequently, they do not range over absolutely everything.

Tarski’s adoption of the theory of semantic categories as a framework for
any truth definition in CTFL is crucial for this result. But the theory of
semantic categories is not the only possible framework. Indeed, Tarski him-
self hesitates concerning the theory of semantic categories in a postscript
added to the German translation of CTFL:

In writing the present article I had in mind only formalized
languages possessing a structure which is in harmony with
the theory of semantical categories and especially with its ba-
sic principles. […] Today I can no longer defend decisively
the view I then took of this question. In connection with
this it now seems to me interesting and important to inquire
what the consequences would be for the basic problems of the
present work if we included in the field under consideration
formalized languages for which the fundamental principles of
the theory of semantical categories no longer hold. (CTFL,
p. 268)

Tarski’s main problem consists in giving a definition of truth for languages
containing variables of arbitrarily high orders and, in particular, the treat-
ment of sequences satisfying sentential functions in that context. However,
the partitioning of variables into different categories remains an integrated
part of the general framework of the postscript, which makes this line of de-
velopment less attractive in the course of providing a semantics for absolute
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quantification.
The problem with absolute quantification and semantic categories con-

sists in the partitioning of the expressions in general, and variables in par-
ticular, into mutually exclusive classes, and a corresponding partitioning
of the world. One alternative to this framework takes seriously Tarski’s
hesitation of partitioning the objects alongside the expressions of language,
which is articulated in the following passage:

We sometimes use the term ‘semantical category’ in a derivat-
ive sense, by applying it, not to the expressions of the language,
but to the objects which they denote. Such ‘hypostatizations’
are not quite correct from a logical standpoint, but they sim-
plify the formulation of many ideas. (CTFL, p. 219.)

Tarski’s use of ‘denote’ here is somewhat peculiar. For the expressions of
a formalised language are variables, which do not denote anything, and
constants, which, although they may be taken to denote, need not be thus
understood. The general idea is nevertheless clear: the structure of language
need not be the structure of reality. Alternatively put: grammaticality is one
thing, ontology is possibly another.

In accordance with this observation one may argue that quantification
over sequences, e.g., in the definition of truth for first-order object lan-
guages, brings about no new ontology, but rather new ideology. That is to
say that it enhances the expressive powers without imposing new ontolo-
gical claims.

There are to my knowledge no arguments along these lines for the the-
ory of semantic categories, but there are attempts to interpret higher-order
languages accordingly. Perhaps the most well-known is George Boolos’s
plural interpretation of monadic second-order logic.21 We return to these
kinds of theories in Chapter 5 and leave the matter for now.

If we confine ourselves to one-sorted formalised object languages it may
seem unnecessary to use higher-order resources in the metalanguages. After
all, what is needed is a theory of sequences to enable the use of variables
in the object languages and such a theory of sequences may be developed

21See Boolos (1984, 1985).
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within standard set theory, ZFC, or perhaps ZFCU, if urelements need to
be accounted for.

The definition of satisfaction may be used ad verbum with the proviso
that the object language considered is one-sorted and that a sequence is
understood to be a set of ordered pairs of the form ⟨a, v⟩, were a is an object
and v a variable, such that, for any given object a, we may have several pairs
⟨a, x⟩, ⟨a, y⟩, . . ., in the set, but for each variable v there is one, and only
one, object a such that ⟨a, v⟩ belongs to the sequence.

Furthermore, if no external restriction is imposed, there is no principled
reason for not allowing sets in general, and sequences in particular, in the
ordered pairs of a sequence. That is to say, if s is a sequence for some object
language, a sequence s ′ such that ⟨s, y⟩ ∈ s ′, where y is a variable of the
object language, is perfectly in order.

The set-theoretic approach differs in a fundamental way from the idea of
using a higher-order language for the theory of sequences needed. For if a
second-order language is used to provide sequences for some first-order ob-
ject language, then, according to the above, we either impose some new ir-
reducible ontology by quantifying over sequences, or such quantification is
only illusory over entities different from the first-order entities since higher-
order quantification brings new ideology rather than new ontology. The
set-theoretical approach, on the other hand, reckons sequences as particu-
lar sets of ordered pairs alongside any other entity which may be a value of
the variables of the object language.

In standard model-theoretic semantics the quantifier is always restric-
ted to some set and, since there is no universal set in standard set theory,
quantification over absolutely everything cannot be adequately represen-
ted. Tarski’s approach in CTFL, on the other hand, need not involve any
explicit restriction of the quantifiers in the metalanguage. A quantified
sentence ∀xφ is true if satisfied by some sequence s, i.e., if all sequences
that differ from s for at most sx, satisfy φ. If quantification is to be over
absolutely everything, then absolutely everything has to be related to x by
some sequence which is just like s save for the pair having x as its second
component.

This natural suggestion comes rather close to the view of what William-
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son (2003) calls the naive theorist of absolute generality. The naive theorist
is an imagined defender of absolute quantification that Williamson uses to
motivate an argument to the effect that absolute quantification is paradox-
ical. This argument has been widely discussed in the literature on absolute
quantification and we devote the next chapter to it.

As we see in the next section there are strong reasons to shun the sug-
gestion of a set-theoretic definition even without Williamson’s more subtle
argument. At least this is so if we use a set theory with a well-founded
membership relation.

3.3 Logical consequence

Once the concept of truth has been defined it is natural to turn to the
concept of logical consequence. Truth and logical consequence are inter-
twined in fundamental ways. For one thing, a characteristic property of
logical consequence is truth preservation: all logical consequences of a set
Γ of sentences are true provided each sentence in Γ is true. We also say that
if a sentence φ is a logical consequence a set Γ of sentences then the truth
of φ is necessitated by the truth of the sentences in Γ. Thus, a semantic
theory would be severely hampered if it somehow made the concepts of
truth and logical consequence jointly inconsistent. We thus formulate the
following desiderata for any theory of semantics:

Desiderata for any semantic theory A semantic theory should allow for
the definition of fundamental semantic concepts, in particular truth
and logical consequence, in a consistent way.

The task of providing a semantics of absolute quantification thus turns into
a problem of providing a semantic theory, which ought to include a truth
definition and a definition of logical consequence, for such quantification.

When ‘consequence’ is used in CTFL, e.g., in convention T, it denotes
the concept of derivability, or being derivable from, rather than the semantic
concept of logical consequence. The latter concept is, in fact, not even
defined in CTFL. Tarski notes in foresight, however, that the reduction of
it to that of derivability may be unsatisfying:
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The reduction of the concept of consequence to concepts be-
longing to the morphology of language is a result of the de-
ductive method in its latest stages of development. When we
in everyday language say that a sentence follows from other
sentences we no doubt mean something quite different from
the existence of certain structural relations between these sen-
tences. In the light of the latest results of Gödel it seems doubt-
ful whether this reduction has been effected without reminder.
(CTFL, p. 252n.)

In Tarski (1936b) the concept of logical consequence is defined within the
“scientific semantics” and the notion of semantics, in turn, is explained in
his contemporary (1936a):

We shall understand by semantics the totality of considera-
tions concerning those concepts which, roughly speaking, ex-
press certain connexions between the expressions of a language
and the objects and states of affairs referred to by these ex-
pressions. As typical examples of semantical concepts we may
mention the concepts of denotation, satisfaction, and definition,
[…]. (Tarski, 1936a, p. 401, italics in the original.)

Tarski further notices that truth belongs to semantics according to this ex-
planation. That is, it is a semantic concept since it “express[es] certain con-
nexions between expressions of a language,” in this case sentences, “and
states of affairs.”

Logical consequence is not mentioned among the examples of typical se-
mantic concepts in the quoted passage and, in fact, given the above explan-
ation one may say that, in a sense, it fails to be a semantic concept. Having
explained that in order for a sentence φ to be a logical consequence from
a collection of sentences Γ, if the sentences in Γ are true, then φ ought to
be true, Tarski continues:22

Moreover, since we are concerned here with the concept of lo-
gical, i.e. formal, consequence and thus with a relation which

22Tarski uses X and K instead of φ and Γ.
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is to be uniquely determined by the form of the sentences
between which it holds, this relation cannot be influenced in
any way by empirical knowledge, and in particular by know-
ledge of the objects to which the sentence φ or sentences of
the class Γ refer. (Tarski, 1936b, pp. 414–415.)

Thus, contrary to being a semantic concept in the above sense, i.e. by
expressing relations, or connexions, between the expressions of some lan-
guage and the objects referred to by those expressions, the concept of logical
consequence is, according to Tarski (1936b), completely independent from
those objects.

Tarski does not argue in (1936b) that the concept of logical consequence
is a semantic concept, but shows how it can be defined within semantic
theories. The definition uses the concept of satisfaction from CTFL and
though it comes close to the modern model-theoretic definition it is not
quite the same. One difference consists in Tarski’s working with formal-
ised, rather than formal, languages and, thus, that no interpretation, or
reinterpretation, of the non-logical vocabulary is accounted for in the se-
mantics. Hence the modern definition of logical consequence as preser-
vation of truth under reinterpretations of the non-logical vocabulary is a
non-starter. Instead the idea is to construct from the sentences in Γ a set
Γ′ of sentential functions by replacing each non-logical symbol with an ap-
propriate variable, the same symbols being replaced by the same variables.
A sequence that satisfies all sentences in Γ′ is then said to be a model of Γ.
φ is said to be a logical consequence of Γ only if every model of Γ is also a
model of φ.23

Just as in CTFL, Tarski employs the theory of semantic categories in
Tarski (1936b) and the variables are restricted accordingly. Thus, though
no domain of quantification is imposed in the definition of logical con-
sequence, just as it is not imposed in the definition of truth in CTFL, the
implicit restriction of the variables to types, orders or semantic categories,
blocks quantification from being truly absolute.

We saw in the previous section that if we drop the type-theoretical frame-
work and employ a one-sorted set-theoretical metalanguage, it is possible,
23See Tarski (1936b, pp. 416–417) for details.
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at least for first-order languages, to provide a definition of truth that does
not employ a partitioning of the possible values of the variables. Referring
to this possibility we said that a Tarski style definition of truth that is con-
sonant with the idea of absolute quantification seems to be quite tenable.

Unfortunately, the definition of logical consequence for a language with
absolute quantification in such a set-theoretical metalanguage is not as in-
nocent as the definition of truth seems to be. In fact, it may be hard to
meet the desiderata we formulated at the beginning of this section. To
see this it is easier to consider the concept of logical truth rather than lo-
gical consequence. We say as usual that φ is a logical truth if it is a logical
consequence from the empty collection of sentences, i.e., if every sequence
is a model of it. Similarly, φ is logically false if no sequence is a model
of it. Now, consider the sentence ‘everything is abstract’, which we may
formalise into

(1) ∀xRx.

(1) expresses a contingent state of affairs. Thus (1) should neither be lo-
gically false, nor logically true. It would be a logical truth if the sentential
function

(2) ∀xXx.

were satisfied by all sequences. Also, (1) is logically false if no sequence
satisfies (2). Now, let ‘sx’ denote the object that the sequence s relates to
the variable x. Let ‘s[x/d ]’ denote the sequence which is like s except that
it relates d to x instead of sx. We then have that

s is a model of (1), iff,

s satisfies (2), iff,

for everything d, s[x/d ] satisfies Xx, iff,

for everything d, s[x/d ]x ∈ s[x/d ]X.

But if we put d = sX and acknowledge the identities s[x/d ]x = d and
s[x/d ]X = sX we get as a particular case that

56



tarski’s definition of truth and logical consequence

if s is a model of (1) then sX ∈ sX.

Since x ̸∈ x is a theorem in standard set theory it follows that no sequence
is a model of (1), making it logically false. But (1), expressing a contingent
fact, is certainly not logically false. Hence, this way of defining logical con-
sequence fails when we use standard set theory as metatheory for a language
with absolute quantification.

A first reaction to this result might be to question the desiderata we for-
mulated in the beginning of this section, i.e. we may question that a se-
mantic theory for a language should enable the definition of both truth
and logical consequence in a consistent way. One way of doing this would
be to argue that the concept of logical consequence, though definable in a
semantic theory, does not qualify as a semantic concept in the sense Tarski
sets forth in the quote on page 54. However, this would obviously lead to
an unwanted narrow view on semantic theorising.

A second more constructive reaction is to claim that the failure of de-
fining logical consequence in the present setting is incidental, depending,
as it does, on features of the metatheory employed. According to this re-
action the merit of the argument does not lie in its showing that standard
set theory is ill-suited for constructing a semantics for absolute quantifica-
tion. Due to the lack of a universal set, and the common way of restricting
quantification to a set in standard model-theoretic semantics, this theory is
often regarded as a dead end anyway. Rather, the argument is interesting by
indicating that it might be the requirement that every set ought to be well-
founded that is the fundamental problem of using a set-theoretic frame-
work for a semantics for absolute quantification. A remedy that immedi-
ately suggests itself is to make use of a non-standard set theory in which
x ̸∈ x is not a theorem. We explore this line of thought in Chapter 6.

While the argument above concerns the adoption of a particular kind
of set theory as metalanguage for constructing semantic theories for inter-
preted first-order languages, Williamson (2003) has provoked us with a
more general argument to the end that regardless of the metatheory ad-
opted, the notion of logical consequence, or logical truth, is paradoxical
under the assumption that quantification is absolute. Before proceeding to
develop a semantics in a theory of non-well-founded sets, we will, in the
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next two chapters, take a close look at Williamson’s argument and some
theories that have been developed in its aftermath.
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4 Williamson’s Argument

The old paradoxes of Cantor, Russell, Burali-Forti, etc. are traditionally
considered to constitute the most severe problem for giving a formal se-
mantics consistent with absolute quantification. Given a domain D, it can-
not be all-inclusive by Cantor’s Theorem, for this would violate |D| <
|℘D|; it cannot include a class of all classes not belonging to themselves,
for that would lead to Russell’s paradox; it cannot contain all ordinals as a
subclass, since such a subclass would itself be an ordinal distinct from each
member of the subclass.

All these examples presuppose the notion of a domain of quantification
as a set, or set-like object, and hence, open up for a critique along the lines of
Cartwright (1994). However, in his thought-provoking paper Everything
Williamson (2003), Timothy Williamson presents an argument to the end
that even if we reject domains altogether we may still find ourselves trapped
in a variant of Russell’s paradox of classes, assuming that quantification is
over absolutely everything. Williamson posits himself as a defender of ab-
solute quantification and, accordingly, he does not consider the argument
conclusive. Rather, it is presented as a challenge for any defender of abso-
lute quantification.

Two main reactions to Williamson’s argument may be identified in the
contemporary literature: either one thinks that the argument shows that
absolute quantification is untenable, or that it merely shows that some un-
derlying assumption or principle is faulty, and hence that absolute quanti-
fication is tenable once this flaw is fixed.

In this chapter we argue that both positions result from a misapprehen-
sion of the argument taking it too seriously. Accordingly, rather than speak-
ing of Williamson’s paradox, or variant of Russell’s paradox, which has be-
come the custom in the literature, we shall henceforth say Williamson’s
argument, or WA for short.

Section 4.1 gives an account of the argument and provides a brief dis-
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cussion of the dialectical context in which it is formulated. Section 4.2
discusses some attempts to analyse the argument in terms of indefinite ex-
tensibility. In particular we look closely at a discussion in Glanzberg (2004),
but we also consider a more Dummettian suggestion as well as an analysis
given by Charles Parsons (2006). Section 4.3, finally, points out why WA
fails to be conclusive.1 In light of this discussion, the arguments in Section
4.2 are re-evaluated.

4.1 The argument

In this section we give an account of WA as it is presented in Williamson
(2003). A less general version, primarily directed against the possibility
of constructing a model-theoretic semantics for absolute quantification, is
given in Rayo and Williamson (2003).2

To set the stage, Williamson invites us to ponder the views of a naive
theorist. Absolutely general statements, he notes, expressed by means of
‘everything’ and ‘something,’ may standardly be given a first-order formal-
isation by means of ‘∀’ and ‘∃’. It is generally acknowledged that the set-
theoretical paradoxes show that there cannot be a universal set and, hence,
that they prevent standard model theory to be an alternative for the naive
theorist to interpret the quantifiers as ranging over absolutely everything.
But, Williamson explains, playing the role of the naive theorist, despite the
lack of a universal domain,

[…] I can state the truth-conditions for quantified formulas,
used in my way. As usual, it is done for truth under an assign-
ment of values to variables. For any assignment A, variable x
and thing d, let A[x/d] be the assignment just like A except
that it assigns d to x.

[∀] ∀xα is true under A if and only if everything d is such
that α is true under A[x/d].

[∃] ∃xα is true under A if and only if something d is such
that α is true under A[x/d].

1The main result of that section appeared in Bennet and Filin Karlsson (2008).
2We return to this particular instance of the argument in Chapter 6.
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Naturally, ‘everything’ and ‘something’ in these clauses must
be read unrestrictedly. (Williamson, 2003, p. 418)

In standard model-theoretic semantics ‘assignment’, often understood to
abbreviate ‘variable-assignment’, usually denotes a function from the vari-
ables of the language interpreted to the domain of quantification of the
model interpreting it. Here, things seem less clear. For, apparently, we
neither have a model interpreting the language in question, nor a domain
in relation to which assignments may be defined.

Williamson himself leaves no details of how to understand the naive
theorist’s concept of assignment, but one possibility seems to be to explore
the idea from the previous chapter, taking assignments to be set-theoretic
functions having the first-order variables as their domain. Although no
assignment will have the totality of everything as its converse domain, we
may still argue that [∀] and [∃] give the truth conditions of the quantifiers
as ranging over absolutely everything. At least we may argue to that end if
we are also prepared to argue that everything belongs to the range of at least
one assignment. Furthermore, in the absence of interpretations, ‘α’ has to
be an expression of some interpreted language. Otherwise it would make
little sense to speak of the truth of ‘∀xα.’ But this would put the naive the-
orist in a situation we found ourselves in the previous chapter, Section 3.3,
and in a parallel way [∀] and [∃] would give no straightforward generalisa-
tion to a definition of logical consequence. We shall not repeat the details
of that discussion here, but merely notice that it motivates an alternative
understanding of the position of the naive theorist.

We need to take seriously the need to interpret the object language, and
yet adhere to the fact that [∀] and [∃] are formulated without any reference
to interpretations. One option seems to be to understand the naive theorist
as using a concept of assignment according to which the non-logical con-
stants are assigned values alongside the first-order variables. Unorthodox
as it may be, merging the functions interpreting the non-logical vocabu-
lary with standard assignments is a technically harmless modification of
standard methods in model theory. In fact, Rayo and Williamson (2003)
develop the traditional domain-based model-theoretic semantics with such
a conception of assignments.
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However, the naive theorist is not doing standard model theory and, in
the absence of domains, merging the functions interpreting the non-logical
vocabulary with standard assignments is far from a harmless modification.
Actually, we once more find ourselves in a situation that parallels the one
we found in Section 3.3. To see this, consider

∀xPx

This is a consistent formula of first-order predicate logic. Yet there cannot
be an assignment A under which it is true. At least this is so if we want A
to be a set-theoretic function of some standard set theory, e.g., ZFC. For if
A is such an assignment we would get

A|= ∀xPx, if and only if,

for everything d, A[x/d] |= Px, if and only if,

for everything d, d ∈ A(P), only if,

A(P) ∈ A(P),

which makes ∈ ill-founded. Hence, ∀xPx would be logically false given a
standard set-theoretic understanding of assignments as functions from the
variables and non-logical vocabulary. This is a rather startling consequence.

The above discussion shows that Williamson’s account of the naive the-
orist’s understanding of the concept of assignment, and hence the clauses
[∀] and [∃], is too brief to be completely satisfactory. It is not so much the
general way of formulating the naive theorist’s position that is problematic,
but the lack of ways of explicating it in such a way that it would constitute
a position that needs an argument like WA in order to be refuted. As long
as such an explication is lacking, additional arguments against the naive
theorist’s position might seem redundant.

Yet WA is stated in connection with the naive theorist’s alleged consider-
ations surrounding the Tarskian definition of logical consequence and the
quantification over interpretations it involves:

Sooner or later the naive theorist will want to generalize over
all (legitimate) interpretations of various forms in the language.
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For example, the inference from ∀xPx and ∀x(Px ⊃ Qx)
to ∀xQx is truth-preserving however one interprets the pre-
dicate letters P and Q. Such generalizations are the basis of
Tarski’s account of logical consequence [Tarski (1936b)] and
its model-theoretic descendants. […] The naive theorist wants
to make such generalizations when ∀x is read as unrestric-
ted. In principle, when we apply the definition of logical
consequence, it must be possible to interpret a predicate let-
ter according to any contentful predicate, since otherwise we
are not generalizing over all the contentful arguments of the
right form. Thus, whatever contentful predicate we substitute
for ‘F’, some legitimate interpretation (say, I(F)) interprets the
predicate letter P accordingly:

(1) For everything o, I(F) is an interpretation under which P
applies to o if and only if o Fs. (Williamson, 2003, p. 426)

It seems clear that (1) is a schema of the form ∀oΦ(F, o), where ‘F’ is a
placeholder for contentful predicates.

The somewhat unexpected talk of interpretations in this passage (the
word ‘interpretation’ makes its first appearance in the paper with this quote)
may be taken to indicate that Williamson thinks of interpretations and as-
signment as interchangeable as was suggested above. It may also be taken
to show that WA may be understood quite independently from the context
of the naive theorist. Either way, WA is thought to gain generality if the no-
tion of interpretation is not further specified. In particular, interpretations
need not be set-theoretic entities.

Also, Williamson’s allusion to Tarski (1936b) might need a word of clari-
fication. We saw in Section 3.3 that Tarski came close to the now standard
model-theoretic definition of logical consequence. In Tarski’s definition we
quantify over sequences of objects which may, or may not, satisfy sentential
functions resulting from other sentential functions by uniformly replacing
the non-logical vocabulary by variables of appropriate categories. Since we
do not quantify over interpretations in (1), which would be the equivalents
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of Tarski’s sequences, but merely over contentful predicates, which are most
naturally understood as syntactic entities of the metalanguage, one might
suspect that Williamson’s account is rather different from Tarski’s.

However, before arriving at the final definition of logical consequence
in (1936b) Tarski tentatively suggests a definition based on uniform sub-
stitution in the object language rather than reinterpreting it. He rejects it
as a definition since it would make the relation of logical consequence un-
duly dependent on the language under consideration, but recognises it as
a necessary, but not sufficient, condition on logical consequence. Though
Tarski does not consider truth under uniform substitution in the metalan-
guage, we may still understand (1) in a similar way as the preservation of
truth under substitutions in the object language, i.e. as a necessary, but
not sufficient, condition. For whatever contentful predicates are available
in the metalanguage, a possible requirement on any semantics is that it
contains interpretations interpreting ‘P’ according to those contentful pre-
dicates. That seems to be what (1) aims at saying.

The next step of the argument consists of a definition of a contentful
predicate which, under substitution for ‘F’, yields a contradictory instance
of (1):

(2) For everything o, o Rs if and only if o is not an interpret-
ation under which P applies to o.

The naive theorist is committed to treating ‘R’ as a content-
ful predicate, since it is well-formed out of materials entirely
drawn from the naive theory itself. (Williamson, 2003, p. 426)

Here ‘the naive theory’ seems to embrace (1), so that the commitment to
accept R as a contentful predicate rests upon the fact that no new concepts
are introduced in its definition.

Next, substitute ‘R’ for ‘F’ in (1) and apply (2) to get:

(3) For everything o, I(R) is an interpretation under which
P applies to o if and only if o is not an interpretation under
which P applies to o. (Ibid.)
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Instantiation gives:

(4) I(R) is an interpretation under which P applies to I(R) if
and only if I(R) is not an interpretation under which P applies
to I(R). (Ibid.)

This is a contradiction.
The reasoning leading to the contradiction seems rather straightforward.

Williamson assumes that we may interpret the quantifiers of some (first-
order) language to range over absolutely everything. Next he notices that,
given some predicate letter ‘P’, we need to be able to interpret it as any
contentful predicate. Otherwise, he claims, we cannot get the definition
of logical consequence right. Thus, for each contentful predicate there is
an interpretation interpreting ‘P’ accordingly. In particular, this holds for
the contentful predicate R that Williamson defines and its corresponding
interpretation I(R). From this the contradiction follows by plain logic.

A first analysis that Williamson gives runs as follows: Since we do gen-
eralise over interpretations in the metalanguage, the (first-order) variables
of the object language have to range over interpretations if quantification
is absolute—absolute quantification entails quantification over interpreta-
tions. This is used in the step from (3) to (4). Hence, it may be argued, the
variables of the object language may not, on pain of contradiction, range
over all interpretations. It follows that quantification in the object language
is not over absolutely everything.

4.2 Indefinite extensibility and WA

We said that WA is generally considered a variant of, or of the same kind
as, Russell’s paradox of classes.3 Russell argued, in (1907), that his paradox
may be understood to show the existence of self-reproducing properties.

3Williamson himself says that “the argument is obviously a variant of Russell’s Paradox”
(Williamson, 2003, p. 426), and uses phrases such as ‘the Russellian paradox’ and ‘the
version of Russell’s paradox’ when referring to it. Michael Glanzberg (2004, p. 552) too
calls it “a version of Russell’s paradox”. There is even a sub-entry to ‘Paradoxes’ in Rayo
and Uzquiano (2006) where it is listed as ‘Williamson’s variant of Russell’s’. See however
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These properties are close to Dummett’s indefinitely extensible concepts.
According to Dummett, it was the failure of recognising the existence of
such concepts together with the assumption of a domain of quantification
containing the extension of every definable concept, that made Frege adopt
the inconsistent system of Grundgesetze.4

WA’s resemblance to Russell’s paradox has been taken to indicate that
it too may be analysed in terms of indefinitely extensible concepts. The
general idea is that it shows that some concept, which ought to be definite
if absolute quantification is tenable, is in fact indefinitely extensible. Thus
analyses of this kind tend to accept the sceptical conclusion from WA. They
may differ, however, in which concept is understood to be indefinitely ex-
tensible.

4.2.1 Indefinite extensibility and the logical concept of object

One example of an analysis of WA in terms of indefinite extensibility is
given by Michael Glanzberg in his Quantification and Realism (2004). Ac-
tually the analysis is embedded in a larger argument against absolute gener-
ality. Very briefly, and in rough terms, this argument may be put as follows:
In order to generalise over some things, or alternatively, in order to interpret
an utterance involving a quantifier as ranging over some things, we need
to have a determinate conception of the things in question. In the case of
absolute generality we would need a determinate conception of all things.
But WA shows, Glanzberg argues, that there is no determinate conception
of all things. Hence, we cannot generalise over absolutely everything.

This looks like a familiar line of argument: substitute ‘set’ for ‘determ-
inate conception’, and ‘Russell’s paradox’ for ‘WA’, and we get a familiar
formulation of a traditional argument against absolute quantification: In
order to generalise over some things, or alternatively, in order to interpret
an utterance involving a quantifier as ranging over some things, we need to
have a set of the things in question. In the case of absolute generality we

Bennet and Filin Karlsson (2008), and Section 4.3, where it is shown that, even if WA
and Russell’s Paradox are similar they differ in aspects that are crucial for the discussion
on absolute quantification.

4See Chapter 2.
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would need a set of all things. But Russell’s paradox implies that there is no
set of all things. Hence, we cannot generalise over absolutely everything.

The model-theoretic argument is robust in the sense that, if the premises
are accepted, i.e., if there ought to be a set the members of which are pre-
cisely the things we generalise over, and if there cannot be a universal set,
then the conclusion seems inevitable. In this section we discuss Glanzberg’s
analysis of WA in order to judge whether it gives rise to an argument that
is as robust as the argument from Russell’s paradox. Such a reading also has
the merits of clarifying the precise role of WA in this argument.

Three truisms of meaning

Glanzberg invites us to consider three principles, or truisms, of meaning
which he takes to be almost self-evident. The first principle tells us that “ut-
terances only have the meanings they do because they are interpreted as having
them.” (Glanzberg, 2004, p. 543, Glanzberg’s italics) Hence, utterances are
meaningful only if they are interpreted.

Glanzberg intends to be neutral on the nature of meanings, i.e. on what
it is that an utterance has once it is interpreted. Thus, without taking
a stand on that issue, the second truism tells us that, whatever they are,
“meaning determines truth conditions.” (p. 544, Glanzberg’s italics). A con-
sequence of the first and second truism is that interpretations determines
the truth conditions for utterances.

The third, and final, truism tells us what is needed of an interpretation
to fix the truth conditions for utterances involving quantification: “inter-
pretation must provide a domain of quantification.” Glanzberg adds that
“[he does] not yet claim the domain cannot be absolutely everything, only that
some domain must be provided.” (Ibid).

The third truism is, in contrast to the first and second, somewhat harder
to accept as a truism, i.e., as almost self-evident. By requiring a domain
of quantification it would seem that Glanzberg blatantly adheres to Cart-
wright’s All-in-One Principle: “the values of the variables must be in, or be-
long to, some one thing.” (Cartwright, 1994, p. 7) We saw in Section 2.2.3
that, according to Cartwright, the All-in-One Principle is, not only false,
but that it also figures as a fundamental assumption in Dummett’s argu-
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ment from indefinite extensibility to the impossibility of absolute quantific-
ation. Glanzberg’s argument is, just like Dummett’s, an argument against
absolute quantification from indefinite extensibility and it appears that by
using the third truism it too may become vulnerable to Cartwright’s cri-
tique.

Specifications of domains and avoiding the All-in-One Principle

Interestingly, Glanzberg argues that stating the third truism does not neces-
sarily entail adherence to the All-in-One Principle as formulated and criti-
cised by Cartwright.5 To see this we need to have a clear understanding of
what it means for an interpretation to provide a domain. Unfortunately,
Glanzberg’s explanation of this notion is not completely clear. For instance,
he sometimes speaks as if domains are provided by speakers, even though
it seems perfectly clear from the third truism that it is interpretations that
provide domains.6 Here is a telling passage:7

Interpretation, as I stressed, is something done by speakers.
Thus, the question whether absolutely unrestricted quantifica-
tion can be accomplished comes down to the question of what
is required for a speaker to provide a domain, and whether it
can be done for a domain of ‘absolutely everything’. The point
of the argument so far has been to show that this is the ques-
tion we really need to answer.

[…]

So, let us try to answer it. Is it possible for speakers to spe-
cify the domain of ‘absolutely everything’? (Glanzberg, 2004,
p. 545, Glanzberg’s italics.)

The first sentence of the quote reminds us that interpretation is something
that speakers perform, it is an activity. It would be odd to identify this act

5See Glanzberg (2004), p. 555, n. 8.
6It would be more natural to replace ‘speaker’ by ‘hearer’ in this context, but we follow

Glanzberg in ignoring the hearer/speaker distinction for reasons of simplicity. Nothing
important hinges on this distinction in the present context.

7The left out part is a section heading: “1.3. Domains for unrestricted Quantifiers”.
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of interpreting with the speaker performing it. For instance, it is natural
to presume that two distinct speakers may perform the same act of inter-
pretation. But, in light of the third truism, Glanzberg may be taken to
suggest this identity when asking “what is required for a speaker to provide
a domain”.8 A more benevolent understanding seems possible however: a
speaker may be said to provide a (particular) domain by performing one of
the acts of interpreting that, in turn, provides the particular domain in ques-
tion. Speakers may in that way be said to provide domains in a derivative
sense.

This view, that speakers provide domains of quantification by means of
performing acts of interpretation, may also explain why Glanzberg puts
requirements on the speaker rather than the act of interpretation when do-
mains are provided. A speaker may need to possess certain faculties in order
to be capable of performing particular acts of interpretation. The question
whether absolute quantification is possible then comes down to the ques-
tion what is required of a speaker in order for him to perform an act of
interpretation that provides the domain of ‘absolutely everything’. Glan-
zberg answers in the last sentence of the quote that a speaker must specify
the domain in order to provide it. That is, if speakers provide domains
in a derivative sense by performing acts of interpretation, the act of inter-
preting a sentence that involves quantification must somehow contain a
specification of a domain of quantification.

We said that Glanzberg, despite requiring specifications of domains of
quantification, does not regard himself as committed to the All-in-One
Principle, i.e., to the existence of some one thing that collects together the
things quantified over. The situation seems to be that while the arguments
against absolute quantification from the set-theoretic paradoxes rely on the
notion of a domain of quantification as an object, WA makes this assump-
tion redundant. There is simply no talk of domains in WA. Thus, equipped
with WA, Glanzberg need not postulate domains as objects in order to de-
rive a contradiction from the assumption that quantification is absolute.
Furthermore, in light of Cartwright’s critique, he is well motivated to resist
that specifications of domains automatically give rise to domains as objects.

8Note that the emphasis is Glanzberg’s.
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There are certainly some delicate philosophical subtleties going on here, for
what do we specify if not the range for the quantifiers? We shall not review
Glanzberg’s arguments regarding this however, but, for the sake of argu-
ment, we simply accept that the requirement of specifications to provide
domains of quantification does not entail commitment to the All-in-One
Principle.9

Now, if a speaker interprets a quantifier in an utterance as being abso-
lute, the third truism says that the interpretation must provide a domain of
quantification that embraces absolutely everything. Furthermore, domains
are provided by being specified according to Glanzberg. Precisely how the
domain of absolutely everything may be specified is, however, a matter of
some delicacy and, in fact, the overall conclusion of Glanzberg’s argument
is that such a specification cannot be provided.

Two observations

We make two observations before proceeding to the argument that there
cannot be a specification of the domain of absolutely everything. First
we note that while WA is clearly an argument that is primarily directed
against the possibility of giving an explicit semantics for absolute quanti-
fication, Glanzberg seems to be involved in the bigger question if it is pos-
sible to talk about absolutely everything.10 These questions are related, but
certainly not the same. For one thing, to construct a semantics for abso-
lute quantification we presumably need to be able to talk about absolutely
everything, but in order to talk about absolutely everything we need not an
articulated semantic theory for absolute quantification. Thus, when using
WA to show that absolute quantification is contradictory Glanzberg seems
to restrict himself to the question if it is possible to articulate an explicit
semantics for absolute quantification.

Second we note that, while Glanzberg sometimes considers what is re-
quired of a speaker to specify different domains, it is clear from other pas-
sages of his paper that the real requirements are put on the specifications.
When discussing the part of the paper where WA comes into play, we may

9See (Glanzberg, 2004, note 8, p. 555–556).
10See, for instance, the beginning of the second part of Glanzberg (2004).
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thus benefit from skipping the talk of speakers performing acts of inter-
pretations and specifying domains; instead we speak of interpretations and
specifications directly.

Determinate specifications

Now, Glanzberg’s tactics when arguing for the impossibility of a semantics
for absolute quantification is to show that there cannot be a specification
of a domain of quantification embracing absolutely everything. This takes
us back to the question on precisely how domains are provided. However,
this time domains are not understood as being provided in, or by, an act of
interpretation, but rather by some specification in a semantic theory.

Starting out in known territory, Glanzberg identifies two fundamental
properties that specifications of domains that result from applying predic-
ates to some background domain ought to have. First, a specification needs
to be sharp. In the case of specification from a background domain this
means that, for every object in the background domain it ought to be de-
terminate whether or not it meets the specification and belongs to the spe-
cified domain. That is, for any object, it is determinate whether or not
the predicate used to specify the domain is true of that object. The second
property is that a specification of a domain ought to be exhaustive. The
idea, it seems, is to rule out specifications that are, in Russell’s sense, self-
reproductive:

…there are what we may call self-reproductive processes and
classes. That is, there are some properties such that, given any
class of terms all having such a property, we can always define
a new term also having the property in question. Hence we
can never collect all the terms having the said property into a
whole; because, whenever we hope that we have them all, the
collection which we have immediately proceeds to generate a
new term also having the same property. (Russell, 1907)

Thus, given an exhaustive specification Σ of a domain DΣ, the assumption
that this domain contains all objects meeting the specification Σ must not
provide means to identify objects that cannot be among objects in DΣ, but

71



all there is

nevertheless satisfy the specification Σ.11

A specification that is both sharp and exhaustive, Glanzberg calls determ-
inate. To show that there cannot be a consistent semantics for absolute
quantification, Glanzberg now proceeds by showing that there cannot be a
determinate specification of a domain of absolutely everything. Of course,
we can never specify a domain of absolutely everything by means of ap-
plying predicates to some background domain. But, while the notion of
determinateness is given in relation to such specifications, Glanzberg ex-
plains that it is also reasonable to require determinateness from specifica-
tions not using background domains, e.g., any purported domain of abso-
lutely everything.

The impossibility of a determinate specification of the domain of absolutely
everything

To get his argument off the ground, Glanzberg tentatively suggests that
the logical concept of object, as introduced by Charles Parsons12, may be
used to give a determinate specification of the all-inclusive domain. As
Glanzberg points out, there can be no doubt that the ordinary concept of
object is much too vague to yield a sharp specification. The logical concept
of object, however, uses the idea that there is a determinate specification of
the possible referents of the singular terms. Then the objects, and hence
the domain of objects, may be sharply specified: “the objects are all and
only the potential referents of singular terms” (Glanzberg, 2004, p. 550).
Needless to say, such a specification may be challenged on many points,
but it is part of the dialectic of Glanzberg’s argument to treat it as “the best
case” for the defender of absolute quantification, and thus accept it to be
at least sharp.

Glanzberg now uses WA to show that the domain specified by means of
the logical concept of object is sharp but non-exhaustive:

11As we have said, Russell’s notion of self-reproductiveness is a forerunner to Dummett’s
notion of indefinite extensibility. We shall have more to say on how these two concepts
relate in the present context in Section 4.2.2.

12This concept is recurring in Parsons works, but see his (1982) for a particularly rewarding
presentation.
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[WA] shows that if we have a determinate specification of a
plausible candidate domain, we can use it to find another ob-
ject, which cannot on pain of contradiction be in the domain
specified. Thus, the paradox shows that plausible determin-
ately specified domains cannot be absolutely everything.
(Glanzberg, 2004, p. 552)

The object referred to as falling outside the domain of quantification is
I(R). To secure that this is a proper singular term Glanzberg relies on the
method of nominalisation. According to this method, rather than treating
predicates themselves as referring to objects, we may transcribe the context
in which they occur so that they become nominalised, i.e., names on par
with singular terms.13 Glanzberg explains that

[w]e do not really need the full nominalizing power of English
to argue against absolutely unrestricted quantification. What
we need is to be able to nominalize the process of interpreta-
tion, as the more general version of the Russell argument [i.e.,
WA] showed. This gives us objects which cannot fall within
the domain of the unrestricted quantifiers of the interpreta-
tion, even if the domain endeavored to be maximal. (Glan-
zberg, 2004, p. 555)

Thus, when applying WA to a purported interpretation of absolute quan-
tification Glanzberg shows that by nominalising the interpretation, or pro-
cess of interpreting, we get a potential referent of a singular term, and hence
a quantifiable object in the logical sense of that concept, that cannot lie
within the domain provided by the interpretation in question.

Later, reference is made to Dummett’s notion of indefinitely extensible
concepts:

The logical notion of object thus exhibits what Dummett […]
has called indefinite extensibility. Insofar as the logical notion
of object can be used to produce a determinate specification of
a domain of quantification, it produces not just one, but an

13See Parsons (1982) for a discussion on the method of nominalisation.
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indefinitely increasing sequence of them. (Glanzberg, 2004,
p. 557)

Formalising the argument

To make this a little more precise it is instructive to spell out the details of
the argument leading to this conclusion by formalising WA.

Assume thus a first-order language L which contains a one-place predic-
ate symbol ‘P’. Let ‘P’ be a name of ‘P’, i.e. ‘P’ is a term in the metalanguage
L m of L . Furthermore, we need to be able to say, in the metalanguage,
that x is an interpretation, which is accomplished by ‘INT(x)’, and that x
applies to y under z, for which we use ‘z |= x [ y ]’. Also, let ‘I ’ denote the
operator taking contentful predicates to interpretations. Syntactically, ‘I ’
is a term forming operator.

In formalising (1) we have that, for each contentful predicate F of L m,14

(5) ∀x(INT(I(F)) ∧ (I(F) |= P [x]) ↔ F(x))

The definition of R becomes:

(6) ∀x(R(x) ↔ ¬(INT(x) ∧ (x |= P [x])))

Applying I to R gives the interpretation I(R) of L . By Glanzberg’s third
truism, it must provide a domain of quantification, D, and by assump-
tion we take D to be the domain specified by the logical concept of object.
Furthermore, I(R) is an object in the logical sense of this concept, being
referred to by means of the singular term ‘I(R)’, and hence, it must be a
possible value of the variables of L .

Substituting R for F in (5) gives:

(7) ∀x(INT(I(R)) ∧ (I(R) |= P [x]) ↔ ¬(INT(x) ∧ (x |= P [x])))

14Indeed, this is not the only way of formalising (1), but it brings to the surface the logical
structure needed in Glanzberg’s argument. Alternatives will be suggested below.
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which, since I(R) belongs to D, may be instantiated by I(R).15 But that
gives the contradiction. Hence, we may conclude, I(R) does not belong to
D after all and D does not consist of absolutely everything.

This line of reasoning seems to generalise. Let D be any purported do-
main of absolutely everything. Define R over D as above. Then, as above,
we may show that I(R) /∈ D. Even if D is enlarged by adding I(R) to
get D ′, we may define R ′ in a similar way as R was defined, and go on to
show that I(R ′) /∈ D ′. Thus we get a sequence of larger and larger domains
specified by means of the logical concept of object, and in that sense this
concept exhibits the property of being indefinitely extensible.

The logical concept of object constituted the most promising specifica-
tion of an all-inclusive domain of quantification. If it is indefinitely extens-
ible, it may not specify an exhaustive domain of quantification. “Hence,
no determinate [i.e. sharp and exhaustive] specification gives ‘absolutely
everything’ ” (Glanzberg, 2004, p. 557). Since a determinate domain of
quantification is needed to interpret quantified sentences, by the third tru-
ism, there will be no interpretation interpreting the quantifiers as ranging
over absolutely everything.

4.2.2 Alternative indefinitely extensible concepts

Glanzberg’s use of ‘indefinite extensible’ in arguing against absolute quan-
tification, is slightly different from how this term is used by Dummett, e.g.,
in his (1991). Consider what Dummett says about the indefinite extensib-
ility of the concept of ordinal number:

What the paradoxes revealed was not the existence of concepts
with inconsistent extensions, but of what may be called indef-
initely extensible concepts. The concept of an ordinal number
is a prototypical example. The Burali-Forti paradox ensures
that no definite totality comprises everything intuitively re-
cognisable as an ordinal number, where a definite totality is
one quantification over which always yields a statement de-
terminately true or false. For a totality to be definite in this

15If I(R) /∈ D, then I(R) |= P [I(R)] would presumably not make sense.
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sense, we must have a clear grasp of what it comprises: but,
if we have a clear grasp of any totality of ordinals, we thereby
have a conception of what is intuitively an ordinal number
greater than any member of that totality. Any definite totality
of ordinals must therefore be so circumscribed as to forswear
comprehensiveness, renouncing any claim to cover all that we
might intuitively recognise as being an ordinal. (Dummett,
1991, p. 316)

Thus, having a determinate domain D of quantification over which the
concept Ord of ordinal number is defined, Burali-Forti’s paradox ensures
that there is an ordinal number outside of D. Thus the definition of Ord
over D immediately gives rise to a new domain of quantification D ′ con-
sisting of D and the new ordinal. Ord will naturally have a new extension
over D ′, and will again give rise to a new ordinal. An endless sequence of
more and more inclusive domains D,D ′,D ′′, . . ., is accomplished. Like-
wise, Russell’s paradox may be taken to show that there is no domain of
quantification containing all classes.

According to Dummett, Frege’s mistake consists in supposing that there
is a domain containing the extension of every concept defined over it.16

In Glanzberg’s analysis the “mistake” leading to the contradiction in WA
consists rather in assuming that there is a domain containing every object
defined over it.

In comparison, it is quite clear that Glanzberg’s line of argument is af-
flicted with a certain kind of weakness that an analysis of WA along the
lines of Dummett could avoid. For one thing, by ruling out the particular
specification of a domain by means of the logical concept of object, only
one suggested domain of quantification has been rejected. There may be
other specifications that actually do the job. In fact, the domain of quanti-
fication as specified by means of the logical concept of object seems to suit
Williamson’s argument a little too well. A necessary condition for the con-
tradiction, as it is derived above, is that ‘I(R)’ is a singular referring term,
which it is thanks to the method of nominalisation. Then, according to the
logical conception of objects, whatever ‘I(R)’ refers to, it has to be counted
16Dummett (1991), p. 317
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as an object. Given this, it is possible to instantiate (7) with I(R).
Moreover, Williamson’s argument can be stated without the assumption

that ‘I(R)’ is a singular referring term. Consider (1) again. Roughly, this
principle aims at saying that whatever contentful predicate F is, there is
some interpretation y that interprets ‘P’ as F. There is no need to construct
singular terms referring to interpretations since, by assumption, they are
within the range of our quantifiers:

(8) ∃y∀x((INT(y) ∧ (y |= P [x])) ↔ F(x))

With R defined as in (6) we have:

(9) ∃y∀x((INT(y) ∧ (y |= P [x])) ↔ ¬(INT(x) ∧ (x |= P [x])))

A contradiction is reached in the obvious way.
How the background domain is specified, be it with the logical concept

of object or in some other way, seems immaterial as long as it includes
INT.17 In particular, the specified domain need not purport to contain
everything there is. Minimally, let INT be the domain of quantification
for L . Then, we may delete the occurrences of ‘INT(y)’ in (8) and (6)
and proceed to derive a contradiction in the same way as above. That is,
rather than (8) and (9), we get,

(10) ∃y∀x((y |= P [x]) ↔ F(x))

and

(11) ∃y∀x(y |= P [x] ↔ (x ̸|= P [x]))

where the definition of R is

(12) ∀x(R(x) ↔ (x ̸|= P [x]))

Hence, to get a contradiction, there is no need to assume, with Glan-

17If the domain does not include INT the argument simply shows that I(R) is outside the
domain.
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zberg, an all-inclusive domain of objects that is sharply specified. A sharp
specification of INT is quite sufficient, and such a specification is assumed
anyway since ‘INT ’ is a monadic predicate in L m.

It is tempting to take this to indicate that, rather than the logical concept
of object, it is the concept of interpretation that WA shows to be indefinitely
extensible. For what it’s worth, this would lead us to an analysis more
similar to Dummett’s analysis of Burali-Forti’s paradox.

4.2.3 Parsons’s diagnosis

Parsons (2006) suggests yet another alternative as to which concept is shown
to be indefinitely extensible by WA, namely the concept of being true under
an interpretation. Parsons’s analysis rests upon a slightly different termino-
logy than the original formulation of WA, but L m is still suitable for form-
alising it. The meta-logical principle corresponding to (1) is rendered:18

(13) P is true of x according to I(F)↔ Fx.

In the language of L m this becomes:

(14) ∀x((I(F) |= P [x]) ↔ F(x)).

The corresponding definition of R becomes:

(15) ∀x(R(x) ↔ (x ̸|= P [x])).

A contradiction is reached in the obvious way.
We may take this to indicate that I(R) isn’t a possible value of x, and

hence that the quantifiers do not range over all interpretations. But this
need not be considered an argument for the indefinite extensibility of the
concept of interpretation. One may grant the possibility of quantifying
over all interpretations (of L ) if one is simultaneously prepared to restrict
the range of applicability of |=. For once we allow quantification over all
interpretations, the argument shows that there is at least one interpreta-

18For Parsons’s account of the argument, see Parsons (2006), p. 212.
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tion, I(R), for which the concept of P is true of x according to I(R) is not
determinate.

This indeterminateness is intertwined with the notion of indefinite ex-
tensibility:

The friends of absolute quantification owe us a resolution of
the tension between quantification over all interpretations and
the absence of a determinate notion of truth under an inter-
pretation. One way of putting the point is that the position
seems to be that ‘interpretation’ is not an indefinitely extens-
ible concept while ‘truth under an interpretation’ is. (Parsons,
2006, p. 213.)

The indefinite extensibility of the concept of truth under an interpretation
comes from the fact that, if we assume that this concept is determinate,
that is, if we assume that x |= y [z] is determinate, then we may define a
new object, I(R), in terms of x |= y [z] (and ‘P’), such that I(R) |= P [x]
is not applicable to this object. Of course, this does not prevent us from
adopting a wider concept of truth under an interpretation, x |=′ y [z] say.
But then there will be just another problematic object I(R ′ ) defined from
R ′(x) ↔ (x ̸|=′ P [x]). And so on and so forth.

4.3 Deflating WA

In the previous sections we have seen how WA is analysed to show that
some concept involved in the argument is indefinitely extensible. This, in
turn, is taken to show that absolute quantification is untenable. Thus, on
the surface, the role WA plays in arguments against absolute quantification
from indefinite extensibility is similar to the role Russell’s paradox plays
in such arguments. Indeed, as we stressed, WA is itself often considered a
variant of Russell’s paradox. We argue in this section that the analyses from
the previous sections result from a misapprehension, taking the argument
too seriously in the discussion of absolute quantification. This becomes
evident when we clarify just how similar WA and Russell’s paradox of classes
really are.
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We begin this section by recalling some well known facts about Russell’s
paradox and comparing it to the alleged paradox of the barber. Next, we
proceed to show that WA is more like the non-paradox of the barber than
Russell’s paradox. We close the chapter by some reflections about just what
this means for the possibility of giving a semantics for absolute quantifica-
tion.19

4.3.1 Russell’s paradox

Russell’s paradox is derived by considering the class r consisting of all those
classes that do not belong to themselves. That is, ∀x(x ∈ r ↔ x /∈ x).
By instantiation we get the absurdity r ∈ r ↔ r /∈ r. Now, since the
assumption of r implies a contradiction, this assumption cannot be true—
there is no such r. We seem to have accomplished a reductio ad absurdum
of the existence of a class of all classes that do not belong to themselves.

So far there is nothing paradoxical about Russell’s argument. However,
the paradox is apparent once it becomes clear that the existence of a class
such as r is not an assumption, but a consequence of a fundamental prin-
ciple, viz. the principle of comprehension. This principle, the formal ren-
dering of which is ∃y∀x(x ∈ y ↔ φ(x)) for each formula φ(x), guarantees
that there is such a class r, by letting φ(x) be x /∈ x.

Thus, if the principle of comprehension is regarded as a sound principle,
and hence gives us a strong reason to believe in the existence of r, and
the argument from the assumption of the existence of r to the absurdity
r ∈ r ↔ r /∈ r is regarded as a correct reductio, we have a paradox.

The situation may be clarified if we consider in this connection the well
known (alleged) paradox of the barber. Thus, consider a barber, living in
some village, who shaves all and only those villagers who do not shave them-
selves. That is, we are asked to consider a barber b such that ∀x(S(b, x) ↔
¬S(x, x)). Instantiating the formula thus gives the false statement S(b, b)↔
¬S(b, b) This resembles the first part of Russell’s paradox. However, since
we have no independent reason to believe in the existence of the barber, the
argument simply shows that there is no such barber.

Thus, Russell’s reductio of the existence of r, i.e. the derivation of r ∈ r ↔
19A large part of this section is taken from sections 4–5 of Bennet and Filin Karlsson (2008).
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r /∈ r, unlike the barber argument, becomes a paradox in the presence of an
independent and apparently plausible principle from which the existence
of r follows. Now, one may ask, is Williamson’s argument like Russell’s
paradox of classes, or is it merely of the barber kind, viz. a simple reductio?

4.3.2 Williamson’s barber

To clarify the structural similarities between Russell’s paradox and Willi-
amson’s variant it is helpful to use the formalised version of the argument.
Or perhaps we should use the plural and say versions. So far we have seen
three different formalised versions of the principle (1) of WA. First, in the
discussion of Glanzberg’s analysis, we gave it a rather head on formalisation:

(5) ∀x(INT(I(F)) ∧ (I(F) |= P [x]) ↔ F(x)).

Here ‘F ’ is a placeholder for syntactic entities of the metalanguage, the con-
tentful predicates, and is thus a schema instantiated by different contentful
predicates for ‘F ’.

In Section 4.2.2 we made the simple observation that the operation I,
taking contentful predicates to interpretations is redundant. This gave us

(8) ∃y∀x(INT(y) ∧ (y |= P [x]) ↔ F(x)).

Both (5) and (8) are faithful to Williamson’s original formulation of the
argument in the sense that the contradiction follows with R defined as in
(2), which is straightforwardly formalised into

(6) ∀x(R(x) ↔ ¬(INT(x) ∧ (x |= P [x]))).

We saw also that Parsons’ uses a somewhat different version of (1),

(16) ∀x((I(F) |= P [x]) ↔ F(x)),

which is just an instance of (10).
However, one might also argue that (5), or (8), does not really capture the

intended meaning of (1). Instead one might want to suggest the following
alternative:

(17) ∃y(INT(y) ∧ ∀x((y |= P [x]) ↔ F(x))).
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In each of (10), (16), and (17), a contradiction follows directly by sub-
stituting ‘x ̸|= P [x]’ for ‘F ’.

Now each of these formalised versions of (1) is structurally similar to the
principle of comprehension, being of the form ∃y∀x(ψ(x, y) ↔ F(x)), or
of the form of an instance, ∀x(ψ(x, I(F)) ↔ F(x)), of it. But whereas
the principle of comprehension, in the case of Russell’s paradox, entails
the existence of the class r, (1) does not seem to have anything to do with
the existence of R in any of its versions above. We may deny its existence
without giving up (1) as a true principle, while it was precisely the impossib-
ility of making such a move in Russell’s argument that made it paradoxical.
In this sense Williamson’s argument is more like the non-paradox of the
barber, i.e. it is a reductio of R, or, more precisely, it is a reductio of R being
a contentful predicate.

But, one may ask, why should we deny that R is a contentful predic-
ate? The definition looks fairly innocent, and surely there are many things
that do not satisfy INT(x). But this is precisely one of the lessons of
Russell’s paradox: writing down a definition does not guarantee that the
definiendum exists. If a paradox appears, something has gone wrong. The
definition may be ill-formed (as Russell concluded), or it may turn out that
nothing satisfies the defining condition. To show that something does sat-
isfy it requires an independent argument, and in the case of R, none has
been given.

4.4 Concluding remarks

Once Williamson’s alleged paradox is shown to be of the harmless kind, the
analyses in terms of indefinite extensibility that we elaborated on in Section
4.2 lose much of their force. For now WA is seen to show, not that the lo-
gical concept of object is indefinitely extensible because some object, I(R),
can be found outside its allegedly definite extension, but that some predic-
ate, R, cannot be counted among the permissible substitution instances to
(1). For similar reasons WA neither shows the indefinitely extensibility of
INT nor the indefinite extensibility of |=. It simply shows that given the
truth of (1) in some of its versions, there is some predicate that, despite
appearances, cannot be counted among the contentful predicates.
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We could, of course, argue that it is the principle expressed in (1) rather
than the definition of R that is mistaken. Formally this would certainly be
possible, but then we would have to argue for the falsity of a principle that
we said expresses a necessary condition for a Tarskian definition of logical
consequence. In light of that, the renunciation of R being a contentful
predicate seems much more natural.

Linnebo (2006) also argues that the most natural way to meet WA is
to reject the definition of R. But whereas he requires additional arguments
for doing so, the moral of this chapter is that WA is in itself a sufficient
argument. We do not need to develop a theory of concepts and properties
that explains precisely why we are justified in rejecting the definition of R,
although we certainly agree such a theory will be very interesting. We will
have more to say about Linnebo’s theory in the next chapter. The point we
make here is simply that the truth of (1) rules out the definition of R.
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5 Some Alternative Semantics

In this chapter we review three semantic theories that are consistent with
absolute quantification. In addition to standard requirements it is often
required that such a semantics is strictly adequate or a that it is a general
semantics. Strict adequacy, as we shall see, may be understood in two ways,
but the basic idea is clear enough: a semantics is strictly adequate if, for
any possible way a non-logical constant may be interpreted, there is an
interpretation interpreting it in that way. Loosely speaking, a semantics is
a general semantics if it allows the, in some sense, intended semantics for
any legitimate language.1

The paradoxes, WA, and the requirement of strict adequacy have all been
used to argue for the necessity of typed languages in the construction of
a semantics for absolute quantification. But, under the assumption that
our first-order quantifiers range over absolutely everything, the question
over what the higher-order quantifiers range becomes non-trivial. In this
chapter we consider two theories that give different answers to this question.
Thus, in Section 5.1 Williamson’s (2003) suggestion that the higher-order
quantifiers may be taken to range over Fregean concepts is presented and
briefly discussed, and in Section 5.2, Rayo’s (2006) account, suggesting
that higher-order quantifiers may be understood to range over higher-order
pluralities, is given.

Both Williamson’s and Rayo’s accounts provide a hierarchy of languages
in which each language has a strictly adequate semantics, in one sense of
that word, formulated in some language higher up in the hierarchy. How-
ever, there seems to be no way of providing a strictly adequate semantics
for the language of type theory itself. This is due to the need for expressing
facts whose formulation requires that we violate the type restrictions in one
way or the other. Russell, e.g. in (1908), was well aware of this problem.

1See (Linnebo, 2006, p. 150).
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In Section 5.3 we rehearse the main argument against type-theoretic se-
mantics by considering how Linnebo (2006) applies these problems to the
semantic theories suggested by Rayo and Williamson. We also show, in that
section, by applying an argument reminiscent of Grelling’s paradox, that
another type of inexpressibility puts the motivation of the typed semantics
in some doubt. One conclusion of this chapter is, thus, that we should
not rest content with the suggested typed semantics, but that we should
proceed to search for yet other semantics for absolute quantification.

To construct a semantics for absolute quantification we need a suitable
theory to work in. As we have said, due to the lack of a universal set and
the set-theoretic paradoxes, standard set theory, ZFC, constitutes a poor
framework for a semantics adequate for absolute quantification. Indeed,
the set-theoretic paradoxes have even been taken to warrant the impossib-
ility of absolute quantification as such, i.e., not merely the impossibility of
providing an adequate semantics within ZFC. Thus one natural response is
to at least give up ZFC as a means to our ends, that is, if one does not already
agree to give up absolute quantification as a consequence of the paradoxes
in the first place. Linnebo (2006) takes a stand against such a conclusion.
Rather than giving up ZFC he suggests that it should be supplemented
with a theory of properties. The resulting theory should be strong enough
to construct an adequate semantics and the theory of properties must avoid
WA in a natural, non ad hoc way. We discuss this in Section 5.4.

5.1 Williamson’s semantics

Williamson (2003, IX) argues that a semantics for first-order quantifica-
tion over absolutely everything is best developed in a second-order metalan-
guage.2 In particular the truth definition for a first-order language should
be formulated in a second-order language. In general, an (n + )th-order
language may be used as a metalanguage for a semantics for an nth-order
language.3

This section begins with a brief account of Williamson’s most important

2This view is also defended in Rayo and Williamson (2003).
3As a matter of fact, we are only forced to the next order, n+ say, if the object language

contains predicates taking variables of order n.
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arguments for using higher-order metalanguages. One is derived from WA
and one from the notion of strict adequacy. In Section 5.1.2, we give a
variant of Williamson’s definition of truth for first-order object languages.
The definition involves second-order quantification and thus raises ques-
tions about the range of the second-order variables. In Section 5.1.3 we
briefly consider Quine’s critical view on second-order logic, i.e., that the
second-order quantifiers really are first-order, ranging over sets. That view
threatens to collapse Williamson’s hierarchical approach and we explore his
defence together with some of its consequences in Section 5.1.4.

5.1.1 WA and strict adequacy as arguments for higher-order
metalanguages

The argument fromWA for the appropriateness of a second-order semantics
is an indirect argument, showing that first-order languages are ill-suited for
semantic theorising in ways that second-order languages are not. For, given
that we use our first-order quantifiers unrestrictedly, WA shows, accord-
ing to this argument, that first-order quantification over interpretations is
paradoxical. Since we standardly quantify over interpretations in semantic
theories, it follows that WA rules out first-order languages as vehicles of se-
mantic theorising. In particular it rules out a first-order Tarskian definition
of logical truth and consequence in terms of interpretations. Indeed, if we
merge interpretations and assignments as in Section 4.1 it also rules out a
Tarskian definition of truth.

Although the argument from WA is indirect, Williamson’s view that we
should use a second-order metalanguage for unrestricted first-order quanti-
fication is not merely a normative standpoint, telling us what is the best
practice when defining truth for absolute first-order quantification. In-
stead, once interpretations are properly understood they are to be com-
pletely shunned as first-order quantifiable entities; when generalising over
them, Williamson explains, we quantify into predicate position rather than
name position.

Accordingly, Williamson suggests that we should define truth in relation
to denotational relations rather than first-order quantifiable interpretations.
Denotational relations are the second-order analogues of interpretations.
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Thus, according to this idea, the problematic first-order quantification over
interpretations is replaced by second-order quantification over relations.

To get a grip on what relations count as denotational, assume that L m

is a second-order metalanguage of some first-order object language L . For
simplicity, assume that L lacks function symbols and that all its predicates
are monadic. A dyadic relation D is now said to be a denotational relation
for L if it relates each singular term t (including the first-order variables)
of L to one, and only one, object, and relates each predicate P of L to
zero, or more, objects.4 The idea is then to define, in L m, a truth predicate
‘Tr’ relative to denotational relations for L by recursion on the complexity
of formulas. A predicate is defined as true of an object according to a
denotational relation D if D holds between the predicate and the object in
question.

Note that, while ‘Tr’ is an L m-predicate, ‘P’ and ‘t ’ are variables in L m

ranging over L -predicates and L -terms respectively. We will also use ‘v’
as a meta-variable ranging over the variables of L .

One important feature of this type of semantics that Williamson stresses
is that an L -predicate need not be taken to denote a set of objects. Nor
do we have to assume that a semantic value of a predicate is any other
kind of object that somehow collects many things into one. For, rather
than denoting the collection of objects of which it is true, a predicate is
interpreted by a denotational relation D to denote each object of which
it is true according to D. One might think that this is a mere triviality
since the image of a relation R from an object o, in this case a predicate, is
normally regained by means of the set { x | R(o, x) }. However, we are not
always at liberty to assume that this is possible. We may want to interpret a
predicate as being true of a collection of objects that, according to standard
set theory, do not form a set, e.g., the class of all sets. And indeed, from
a second-order perspective there is prima facie nothing that prevents the
adoption of a denotational relation making a predicate true of all sets.

This actually illustrates the second of the two main arguments that Wil-
liamson presents for turning to second-order semantics. It starts from the
quite plausible idea that our semantics should not restrict our ways of in-

4Polyadic predicates would stand in the relation D to sequences of objects.
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terpreting predicates. That is to say, given a predicate P and a semantics S,
for any possible interpretation of P, we want there to be an interpretation
interpreting P accordingly in S. A semantics meeting this criterion is said
to be strictly adequate.5

To formulate the criterion of strict adequacy in a clear and distinct way is
quite laborious. A first attempt may be the formulation of the first premise
of WA:

[…] whatever contentful predicate we substitute for ‘F’, some
legitimate interpretation (say, I(F)) interprets the predicate let-
ter P accordingly:

For everything o, I(F) is an interpretation under which P ap-
plies to o if and only if o Fs. (Williamson, 2003, p. 426)

Thus formulated, in terms of substitution of predicates, it becomes highly
dependent on what contentful predicates are available in our metalanguage.
Since there may be more interpretations of predicates than there are con-
tentful predicates, this formulation is ill suited as a sufficient criteria for
strict adequacy. But since each contentful predicate of the metalanguage
reasonably corresponds to a possible interpretation of predicates in the ob-
ject language, this version of strict adequacy constitutes a necessary criterion.

Here is an attempt at a general formulation of a sufficient criterion:

Say that a semantics based on Υ-interpretations is strictly ad-
equate for a language L only if every semantic value that a
non-logical expression in L might take is captured by some Υ-
interpretation. (Rayo and Williamson, 2003, p. 353, italics in
the original)

Here, talk of contentful predicates is replaced by talk of semantic values of
the non-logical expressions of the object language. Presumably there are no
contentful predicates lacking semantic values. If so, the semantic version
entails the syntactic version.

Both versions may be used to argue for the need of higher-order metalan-
guages. The substitutional version is used in WA to argue for higher-order

5See, e.g., Rayo and Williamson (2003) or Rayo (2006).
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semantics. The semantic version opens up for what we may call the cardin-
ality argument for higher-order languages. The idea is to use some version
of Cantor’s theorem, i.e., the cardinality of the power set of a set is strictly
greater than the cardinality of the set. In the set-theoretic version we may
argue as follows. Assume that interpretations are individuals and that the
semantic values of monadic predicates are sets of individuals. Then the
number of semantic values of predicates is strictly greater than the number
of interpretations, which has to be less than or equal to the total number
of individuals. It follows that interpretations cannot be constructed as first-
order objects in a strictly adequate semantics.6

Rayo and Williamson (2003) introduce the concept of strict adequacy
when arguing that the semantics based on interpretations formulated in
a metalanguage containing second-level predicates, i.e., predicates that take
second-order variables in their argument places, is not sufficient for provid-
ing a strictly adequate semantics for object languages containing second-
level predicates. More generally, say that a language with nth-order quanti-
fication, but with no predicates taking nth-order variables in their argument
places, is a basic nth-order language. If, in addition, an nth-order language
has predicates with nth-order variables in their argument places, call it a
full nth-order language. It is then possible to show that a basic (full) nth-
order language cannot be given a strictly adequate semantics in a basic (full)
nth-order language. But a basic nth-order language may be given a strictly
adequate semantics in a full nth-order language, and a full nth-order lan-
guage may be given a strictly adequate semantics a basic (n + )th-order
language.7

First-order languages may be given a strictly adequate semantics within a
basic second-order language according to the above, but not within a first-
order language. This is thus the third way the requirement that a semantics
for absolute quantification ought to be strictly adequate provides an argu-
ment for turning to second- or higher-order languages. Just how strong
these arguments are hinges on how prone one is to accept the requirement
that a semantics ought to be strictly adequate. We return to that question

6See Rayo (2002, 2006) for formulations of this argument when predicates are interpreted
as pluralities.

7See Rayo and Uzquiano (1999) and Rayo (2006).
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in Section 5.3.
To summarise, Williamson’s suggestion of using a second-order metalan-

guage to construct a semantics for first-order languages is motivated, first,
by the immunity of such a semantics to WA and, secondly, by its ability to
provide a strictly adequate semantics.

5.1.2 Williamson’s truth definition

In this section we turn to Williamson’s truth definition, or rather, a variant
of his definition. It takes the form of an inductive definition of the L m-
predicate ‘Tr’. We also briefly consider why WA cannot be derived from
this definition and take notice of a pitfall that, Williamson warns, might
lead back to paradox if we diverge from the strictly higher-order perspective.

The variant of Williamson’s definition presented here draws heavily on
the original presentation given in Williamson (2003, Section X), both in
notation and content.

Let us establish some convenient notational abbreviations. If D is a de-
notational relation for L , let D‘t be the x such that D(t, x), for any term
t in L .8 Furthermore, to deal with quantified L -sentences, let:

D[v/x](y, z) ↔ (y ̸= v ∧ D(y, z)) ∨ (y = v ∧ z = x)

Thus, D[v/x] is just like D with the (possible) exception that it relates the
variable of L which v names to x rather than D‘v.

We may now give the following version of Williamson’s definition of a
formula φ being true according to D:9

Definition 5.1.1. Let φ be a formula of L and D a denotational relation
of L m. Then φ is true according to D, Tr(D, φ), if and only if:

1. φ is P(t) and D(P,D‘t); or

2. φ is ti = tj and D‘ti is identical to D‘tj; or

3. φ is ¬ψ and not Tr(D, ψ); or
8Recall our use of ‘P’ and ‘t ’ as variables in L m, ranging over L -predicates and L -terms

respectively, and ‘v’ as ranging over the variables of L .
9For simplicity, L is assumed to contain no function symbols.
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4. φ is ψ ∧ χ and both Tr(D, ψ) and Tr(D, χ); or

5. φ is ∀vψ and for all x, Tr(D[v/x], ψ)
10

If quantification in L is over absolutely everything, then 5.1.1 is not
adequate unless quantification in L m is equally over absolutely everything.
On the other hand, given such an understanding of L m, if quantification
in L is over less than everything, then this definition would be inadequate
unless we somehow make it possible to restrict the range of quantification in
the fifth clause. One way to do that is to specify a domain of quantification.
In this kind of semantics, this need not amount to the introduction of sets
or set-like entities in the semantic theory. Rather than restricting the fifth
clause by some set we may impose a criterion for belonging to the range
of quantification. A generic way of doing this is to expand the concept
of denotational relation in such a way that D must have, in addition to
predicates and singular terms, the universal quantifier in its domain. Then
we may treat all objects x such that D(‘∀’, x) as falling within the range of
the L -quantifiers according to D, and impose this condition as a criterion
in the clause mentioned.11

The predicates ‘Tr’ and ‘denotational relation’—abbreviated ‘DR’—are
both second-level predicates in L m by taking second-order terms as argu-
ments. This is of some importance when considering the derivability of
WA in this type of semantics.

The upshot of WA in the present setting is the substitutional version of
strict adequacy, i.e., that the following principle holds, for any monadic
L -predicate P, whatever monadic predicate of L m we substitute for ‘F ’:12

∃D(DR(D) ∧ ∀x(Tr(D[v/x], P(v)) ↔ F(x)))

By means of the first clause of Definition 5.1.1 we may simplify this into
10This definition deviates only slightly from Williamson’s. While we define a dyadic predic-

ate ‘Tr’ taking dyadic relations and formulas as arguments Williamson defines a mon-
adic predicate ‘TrD’, or ‘true-D’ as he prefers to call it, treating D more like an index.
Nothing of significance will be derived from this difference.

11See Rayo and Uzquiano (1999) or Rayo and Williamson (2003).
12To avoid mistakes of use and mention one usually use Quine corners, or some similar

device, in contexts like these. To enhance readability, Quine corners are not used here.
Whether a symbol is used or mentioned should be clear from the context.
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∃D(DR(D) ∧ ∀x(D(P, x) ↔ F(x)))

The next step in WA consists in defining a predicate R such that, for all x, R
is true of x if x is not an interpretation under which some specific monadic
predicate of L , P say, is true of x. The proxy of ‘interpretation’ in L m is
‘denotational relation’, and if we try to formalise the definition of R head
on we end up with something like the following:

∀x(R(x) ↔ ¬(DR(x) ∧ Tr(x[v/x], P(v)))

But this is not a well-formed formula of L m since x occurs both as a second-
order variable in ‘DR(x)’ and a first-order variable, e.g., in the second oc-
currence in‘x[v/x]’. This has made some, e.g., Linnebo (2003), suggest that
WA is blocked because the definition of R is not well-formed.

However, this head on formalisation of R’s definition need not be the
only possible route to contradiction. Williamson notes that one way to
make the definition of R well-formed is to use, what we may call, a type-
lifting operator. Although, our setting of the second-order semantics differs
from Williamson’s, it is still possible to give an argument in his spirit.

Thus, let f be a function from objects to denotational relations, and
define

∀x(R(x) ↔ ¬(DR( f (x)) ∧ Tr( f (x)[v/x], P(v)))

which is equivalent to

∀x(R(x) ↔ ¬(DR( f (x)) ∧ f (x)(P, x)))

Substitution gives

∃D(DR(D) ∧ ∀x(D(P, x) ↔ ¬(DR( f (x)) ∧ f (x)(P, x)))

Let DR be a witness of the existential quantification. Then, clearly, if we
can find an object r such that f (r) = DR, we would have a contradiction.
But this is simply a reductio ad absurdum of the existence of such an r, i.e.
we have that ¬∃x(DR = f (x)). Hence, WA is blocked.

Thus it seems that the contradiction in WA cannot be derived in this
kind of semantics. But there are other pressing challenges to be addressed.
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In standard model-theoretic semantics the assumption of absolute quan-
tification poses well-known problems. Not only is there the problem of
representing the domain of quantification, but also, since monadic predic-
ates have sets as their semantic values, perfectly sound definitions such as

P(v) ↔ v = v

must fail if vmay take any value without restriction. That is to say, P would
then have to be interpreted as a proper class.

These problems reappear in second-order semantics if second-order lan-
guages are interpreted by means of standard model-theoretic semantics
based on standard set theory. For given such an understanding of the
second-order metalanguage the domain and semantic values of predicates
will still be sets. Thus, accepting 5.1.1 as an adequate definition of truth
for L , we have merely elevated the problem of interpreting languages with
absolute (first-order) quantification from first-order languages to second-
order languages.

Williamson further notes that if we interpret our second-order metalan-
guage in a first-order meta-metatheory, e.g., set theory, WA may reappear.
To avoid this he suggests that we should climb the hierarchy of higher-
order languages when providing semantics for the metalanguages, meta-
metalanguages, and so on.

Generality-absolutists may fall back into paradox if they some-
how commit themselves to a reduction of quantification into
predicate position to quantification into name position, by
giving the semantics of the second-order meta-language in a
first-order meta-meta-language or otherwise. But if they stick
resolutely to the higher-order viewpoint throughout the hier-
archy of meta-languages, they can avoid paradox. In partic-
ular, they should reject Quine’s insistence on regimenting a
theory into a first-order language as the test of its ontological
commitments. (Williamson, 2003, p. 454–455)
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5.1.3 From a Quinean point of view

Before we proceed to the details of Williamson’s higher-order account, it is
helpful to rehearse some of the ingredients of Quine’s ideas of ontological
commitment and his critique of higher-order quantification.

Consider the following telling passage:

To be assumed as an entity is, purely and simply, to be reckon-
ed as the value of a variable. […] The variables of quanti-
fication, ‘something’, ‘nothing’, ‘everything’, range over our
whole ontology, whatever it may be; and we are convicted of
a particular ontological presupposition if, and only if, the al-
leged presupposition has to be reckoned among the entities
over which our variables range in order to render one of our
affirmations true. (Quine, 1948, p. 13)

The variables spoken of in this passage are not explicitly required to be first-
order. However, this becomes clear once we appreciate Quine’s critique of
second-order quantification.

The elaboration on this critique in the often quoted Quine (1970) begins
by an explanation of the fallacy of confusing the schematic use of predicates
with talk about predicates and what predicates may be taken to denote:

Consider first some ordinary quantification: ‘(∃x)(x walks)’,
‘(∀x)(x walks)’, ‘(∃x)(x is a prime)’. The open sentence after
the quantifier shows ‘x’ in a position where a name could
stand; a name of a walker, for instance, or of a prime num-
ber. The quantifications do not mean that names walk or are
prime; what are said to walk or to be prime are things that
could be named by names in those positions. To put the pre-
dicate letter ‘F ’ in a quantifier, then, is to treat predicate posi-
tions suddenly as name positions, and hence to treat predicates
as names of entities of some sort. The quantifier ‘(∃F)’ or ‘(F
)’ says not that some or all predicates are thus and so, but that
some or all entities of the sort named by predicates are thus
and so. The logician who grasps this point , and still quantifies
‘F ’, may say that these entities are attributes; attributes are for
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him the values of ‘F ’, the things over which ‘F ’ ranges. The
more confused logician, on the other hand, may say that these
entities, the values of ‘F ’, are predicates. He fails to appreci-
ate the difference between schematically simulating predicates
and quantificationally talking about predicates, let alone talk-
ing about attributes. (Quine, 1970, p. 66–67, italics in the
original.)

Quine continues by rejecting the idea that attributes, or concepts, may
be considered possible values of ‘F ’ mainly because they have unclear iden-
tity criteria. Sets, on the other hand, are individuated by the principle of
extensionality, and may thus be suggested as an alternative to attributes as
values of ‘F ’. But thus understood, Quine explains, quantification of ‘F ’
would just be a deceptive way of writing set theory:

But I deplore the use of predicate letters as quantified vari-
ables, even when the values are sets. Predicates have attrib-
utes as their “intension” or meanings (or would have if there
were attributes), and they have sets as their extensions; but
they are names of neither. Variables eligible for quantification
therefore do not belong in predicate positions. They belong
in name positions. (Ibid.)

That is to say, instead of writing ‘F ’ Quine suggests that we should write
‘x has y ’ in case of ‘F ’ taking attributes as values, and ‘x ∈ y ’ if the values are
sets. In both cases quantification into the position of ‘F ’ would be reduced
to first-order quantification. But that is precisely the type of reduction that
Williamson wants to reject in order to avoid paradox in the meta-meta-
language.

5.1.4 The higher-order point of view

Williamson’s recipe to avoid the Quinean reduction by systematically using
higher and higher-order languages clearly imposes a need to explain over
what the higher-order variables are supposed to range. But such an explan-
ation is not immediately at hand. Williamson is sometimes considered a
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conceptualist on a par with Frege.13 A conceptualist in that sense under-
stands the second-order variables as ranging over concepts of individuals,
third-order variables over concepts of such concepts, and so forth. How-
ever, such a formulation of what the variables range over runs into familiar
problems. We might, for instance want to deny that concepts are individu-
als by uttering “concepts are not individuals”, which seems to entail, since
‘concept’ here takes the place of a concept of individuals, that concepts are
individuals after all.

What is really needed is a higher-level predicate that stands
to first-level predicates as the first-level predicate ‘is an object’
stands to names. For the same reason, the attempt to contrast
objects and concepts as saturated and unsaturated respectively
is deeply misleading, for ‘unsaturated’ is the negation of ‘sat-
urated’ and the two adjectives belong to the same grammatical
category; but whereas ‘is saturated’ is a first-level predicate, we
need a higher-level predicate in place of ‘is unsaturated’ to do
the required work. The distinction must remain one of gram-
mar and not of ontology, because one cannot use first-level
and second-level expressions in the same grammatical context
to articulate an ontological distinction without violating con-
straints of well-formedness. (Williamson, 2003, p. 458.)

Williamson continues to explain what this view implies for the suggested
account of quantification:

On this view of second-order quantification, we must reject
as misconceived the questions ‘What does quantification into
predicate position quantify over?’ and ‘What are the values of
variables in predicate position?’; in particular, we must not an-
swer ‘Concepts’. If second-level analogues of those questions
make sense, the answer to them will be the second-level ana-
logue of ‘Objects’ as an answer to the questions ‘What does
quantification into name position quantify over?’ and ‘What

13See, e.g. (Linnebo, 2006, Section 6.3).
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are the values of variables in name position?’ (Williamson,
2003, p. 459.)

This reveals a tension between higher-order semantics and natural lan-
guage. Recall Tarski’s idea that natural languages possesses the property
of universality: ‘if we can speak meaningfully about anything at all, we
can also speak about it in colloquial language’.14 Let us make a somewhat
weaker version of this a working hypothesis:

WU If we can speak meaningfully about anything in an interpreted formal
language, we can also speak about it in natural language.

The tension now consists in the shortage of second-level predicates in nat-
ural languages. We may, of course, claim that a given symbol of L m is to
be used as the second-level analogue to ‘Objects’, but there seems to be no
natural language expression for paraphrasing such a symbol. Indeed, there
seems to be very few second-level predicates in natural language, and even
fewer, if any, of higher levels. Thus Williamson explains that:

Perhaps no rendering in natural language of quantification
into predicate position is wholly satisfactory. If so, that does
not show that something is wrong with quantification into
predicate position, for it may reflect an expressive inadequacy
in natural languages. We may have to learn second-order lan-
guages by the direct method, not by translating them into a
language with which we are already familiar. […] We must
learn to use higher-order languages as our home language.
Having done so, we can do the semantics and metalogic of
a higher-order formal language in a higher-order formal meta-
language of even greater expressive power. (Williamson, 2003,
p. 458)

Thus this view entails the negation of WU and its plausibility will be in-
versely proportional to the plausibility of that hypothesis. For those prone
to accept WU, Williamson’s proposal will thus appear to be very bold.

14See page 41.
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We return to Williamson’s conceptual approach in Section 5.3. There we
discuss some familiar problems concerning concepts that apparently cannot
be restricted to some one type. This kind of problem was originally noted
by Russell, e.g., in (1908; 1910), and has been further discussed by Linnebo
(2006). We also present a new dilemma for the motivation of using a type-
theoretic framework.

Let me close this section with a brief note on the requirement that the
distinction between concepts and individuals, as well as the distinctions
between concepts of different orders, must belong to grammar rather than
ontology. This is not to say that the conceptual approach is merely formal-
istic. The concepts partitioned into types form ranges of the higher order
variables even though this fact may be impossible to express properly in
natural language. But such a view on concepts raises the question of their
precise nature. This need not be a problem, but giving up natural language
as our home language for semantic theorising makes a fully worked out po-
sition hard to formulate. Any alternative avoiding this implication is thus
preferable. In the next section we take a look at an attempt at using plurals
as an alternative to the conceptual approach.

5.2 Rayo’s plural logic approach

George Boolos (1984; 1985) suggests that we may use plural logic to in-
terpret monadic second-order logic. The advantage, Boolos argues, is that
we get the semantics for monadic second-order logic without introducing
any entities in addition to those already assumed by the use of first-order
quantifiers. In particular we need not assume classes or concepts among
the values of the second-order variables.

In light of the preceding section a natural suggestion would be to employ
Boolos’s ideas by using plural logic to interpret the second-order metalan-
guage of Definition 5.1.1. Again the advantage would be the availability
of a second-order language at the price of a first-order ontology. However,
we cannot use Boolos’s account without alteration. For one thing, the lan-
guage of Definition 5.1.1 is not a monadic second-order language. Thus,
to get the idea off the ground, a more general version of Boolos’s account
is needed.
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In Section 5.2.1 we recall some details of Boolos’s account of plurals and
monadic second-order languages. We proceed in Section 5.2.2 to consider
a few critical points from Williamson (2003) concerning plural logic as a
metatheory. To some extent, these points form a minimal requirement for
any theory of plurals to construct a semantics for absolute quantification.
In Section 5.2.3 we review Agustín Rayo’s (2006) proposal to provide such
a metatheory, and a fully stated semantics, as a generalisation of Boolos’s
plural logic.15

5.2.1 Boolos on plurals

Boolos’s project of ridding monadic second-order logic from classes or con-
cepts may be considered an application of Russell’s version of Occam’s
razor:

Entities are not to be multiplied without necessity. (Russell,
1914, p. 112)

In fact, Boolos expresses the matter in the same way, save for one word,
though without referring to neither Russell nor Occam:

Entities are not to be multiplied beyond necessity. (Boolos,
1984, p. 72)

The omission of providing the historical references may be for a good reason.
While Russell refers to Occam’s razor when replacing entities by logical
constructions of other entities in order to reduce the number of primitives
needed to explain the external world, Boolos uses the principle in a much
more drastic way. Thus, he does not try to replace the values of second-order
15It should be said that Rayo, in recent texts, no longer defends absolutism, but argues

that the assumption of absolute quantification rests on a misconception of the relation
between our language and reality. The core of the argument in Rayo (2012), as I un-
derstand it, is that the metaphysical reality may be represented in a variety of ways, and
this may give rise to a number of different totalities of quantifiable “objects”. An all-
inclusive domain would have to include all objects of each of these possible totalities.
But, since the notion of representation is not sufficiently constrained to provide a defin-
ite collection of the totalities of quantifiable objects, the conception of an all-inclusive
domain is defective. See also Rayo (2017).
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variables with constructions from values of first-order variables—such an
approach would presumably lead back to classes, concepts or something
similar—but argues that no additional entities, constructed or not, besides
the values of first-order variables are required by either monadic second-
order statements, or statements containing plural quantification. Here is
how he sums up the findings of his (1984):

The lesson to be drawn from the foregoing reflections on plur-
als and second-order logic is that neither the use of plurals nor
the employment of second-order logic commits us to the exist-
ence of extra items beyond those to which we are already com-
mitted. We need not construe second-order quantification as
ranging over anything other than the objects over which our
first-order quantifiers range […] Ontological commitment is
carried by our first-order quantifiers; a second-order quantifier
needn’t be taken to be a kind of first-order quantifier in dis-
guise, having items of a special kind, collections, in its range.
(Boolos, 1984, p. 72, italics in the original.)

These conclusions rest mainly on two results, one technical and one
philosophical. The technical result is the interpretability of monadic second-
order logic in a fragment of English that contains plural quantification and
predication.16

The philosophical result concerns the ontological commitments induced
by plural quantification, i.e., that it requires nothing in addition to whatever
is within the range of the first-order quantifiers.

Boolos’s argument for this result starts with a critique of Quine’s ideas
on ontological commitment, and in particular the two ideas that the on-
tological commitment of a theory may be revealed only if the theory is
regimented in a first-order formalism and that second-order variables must
range over classes of whatever the first-order variables takes as values.17

To illustrate that the requirement of a first-order regimentation is un-
wanted, Boolos notices that there are examples of English sentences that
16The converse is also true, i.e., that the fragment identified by Boolos is interpretable in

monadic second-order logic, but this is of lesser importance here.
17See quote on page 96 and Boolos (1985, p. 77).
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arguably cannot be regimented in a first-order framework. One such sen-
tence is the Geach-Kaplan sentence:

(1) Some critics admire only one another.

If we assume that the universe of discourse consists solely of critics, (1)
has a rather straightforward second -order regimentation:

(2) ∃X(∃xX(x) ∧ ∀x∀y(X(x) ∧ A(x, y) → x ̸= y ∧ X(y))).

But there is no first-order equivalent to (2).
Boolos credits Kaplan for the method of showing this. Find an instance

of (2) that is true in all and only the non-standard models of arithmetic.
This may be achieved by putting ‘x = ∨x = y+ ’ for A. Then, given any
non-standard model, we may take X to be the class of all the non-standard
elements in the model. That the instance is false in the standard model is
seen if we let X be any set of natural numbers. Then X has a least element
x. If x is , then put y = and otherwise let x = y + . Since x is least, y
cannot belong to X. Now, if there was a first-order sentence φ equivalent
to the instance of (2) under discussion, its negation would be a first-order
characterisation of the standard model of arithmetic. Hence there is no
such φ.18

Examples like (1), which requires second-order quantification for its re-
gimentation, make Boolos suggest that we should reject Quine’s idea that
ontological commitment requires a first-order regimentation.

It is not immediately clear, however, that such a liberalised view on regi-
mentation helps. (1) has a straightforward second-order regimentation in
(2), but, according to Quine, second-order logic is just a misleading way
of writing set-theory. Thus (3) would be a more perspicuous formulation
of (2):

(3) ∃α(S(α)∧∃x(x ∈ α)∧∀x∀y(x ∈ α∧A(x, y) → x ̸= y∧ y ∈ α))

where ‘S’ is supposed to hold for all sets. Now, (3) is first-order and, by

18See Boolos (1984, p. 57).
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Quine’s standards, we would be committed to sets when asserting (1).
But, according to Boolos, this is obviously an unwanted consequence.

We shouldn’t be committed to sets by asserting (1). For instance, it would
be absurd if a hard-headed nominalist that shuns abstract objects in general,
and perhaps sets in particular, argued for the falsity of (1) from its commit-
ment to sets.19 Having said that, Boolos needs to reject that regimenta-
tion ought to be first-order together with Quine’s set-theoretic reading of
second-order formulas.

That (1) cannot be regimented in first-order logic together with the ob-
servation that it nevertheless seems to involve quantification over first-order
entities rather than second-order entities such as sets or properties of indi-
viduals, indicates that there are two distinct types of first-order quantific-
ation over individuals in English, namely ordinary singular quantification
and quantification into plural noun position, or plural quantification for
short.

That it is the occurrence of plural quantification which causes the im-
possibility to give certain sentences a first-order regimentation is nicely il-
lustrated by Boolos in the following pair of sentences:

(4) There is a horse that is faster than Zev and also faster than the sire of
any horse that is slower than it.

(5) There are some horses that are faster than Zev and also faster than
the sire of any horse that is slower than them.

These sentences differ only by (5) being a plural variant of (4). Yet (4) may
be formalised in first-order logic, while (5) cannot.20

Thus, rather than providing arguments for second-order regimentation
in the search for the ontological commitment of sentences, considerations
of (1) and similar sentences are taken to vindicate Boolos’s intuitions that
the plural quantification they involve ranges only over individuals. This
19See Boolos (1985, pp. 76–77).
20Again we may prove this by giving a second-order regimentation of the sentence involving

plural quantification that is true in all non-standard models of arithmetic but false else-
where. See Boolos (1984, pp. 57–58) for details.
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neatly comes to use when Boolos turns to his main concern, viz. second-
order set theory. Without introducing proper classes, how is it possible
to claim, he asks, that ∃X ∀x(Xx ↔ x ̸∈ x), an instance of the valid
∃X ∀x(Xx ↔ Ax), is true when our first-order quantifiers range over all
sets? His answer is to employ plural quantification:

Abandon, if one ever had it, the idea that use of plural forms
must always be understood to commit one to the existence of
sets (or “classes,” “collections,” or “totalities”) of those things
to which the corresponding singular forms apply. The idea
is untenable in general in any event. There are some sets of
which every set that is not member of itself is one, but there
is no set of which every set that is not a member of itself is a
member, as the reader, understanding English and knowing
some set theory, is doubtless prepared to agree. Then, using
the plural forms that are available in one’s mothers tongue,
translate the formulas into that tongue and see that the result-
ing English (or whatever) sentences express true statements.
(Boolos, 1984, p. 66)

The suggested translation ∗ for second-order set theory is as follows.

• (Xx)∗ = “itx is one of themX”

• (x ∈ y)∗ = “itx is a member of ity”

• (x = y)∗ = “itx is identical to ity”

• Translation commutes with the propositional connectives as usual.

Furthermore, we restrict attention to formulas Φ that have no vacuous
quantifiers and no quantifier within the scope of a quantifier with which it
shares its variable. Let Φ[φ/ψ] be the result of replacing each occurrence of
φ in Φ by ψ. Then,

• (∃xΦ)∗ = “there is a set thatx is such that Φ∗”

• (∃XΦ)∗ = “either there are some sets thatX are such that Φ∗ or
Φ[Xx/x ̸=x]”
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The translation is slightly complicated by the existential import the plural
reading of ‘∃X ’ invokes. If we read ‘∃X ’ as ‘there is a class X such that’
this does not in general entail that the class should be non-empty. On the
other hand, the plural reading, ‘there are some thingsX such that,’ seems to
entail the existence of at least one such thing. Hence Boolos suggests that
a formula ∃XΦ should be translated with the extra disjunct added where
occurrences of Xx are replaced by ‘x ̸= x ’.21

If this semi-formal fragment of English really is ontologically innocent,
as Boolos claims, then arguably, monadic second-order logic may be taken
as carrying no ontological commitment in addition to whatever its first-
order variables take as values. To argue for that conclusion Boolos relies on
our intuitions about natural language sentences involving plural quantific-
ation. These intuitions may be right, of course, but other authors, notably
Resnik (1988) and Parsons (1990), have expressed contrary intuitions. The
existence of conflicting intuitions regarding plural quantification makes it
hard to reach a decisive conclusion about its ontological commitment.22 It
is rather clear that, such intuitions about natural language are not sufficient
to show that the version of plural logic used in this chapter brings about
no new ontology. Thus, we shall not enter this debate here, but tentatively
accept Boolos views in the remainder of this chapter.

It is important to be clear about the structure of Boolos’s argument.
There are two types of quantification over individuals in English, singular
and plural quantification. We may interpret second-order logic in plural
logic (and vice versa). Hence we need not assume the existence of sets
or classes to interpret monadic second-order statements. Simply interpret
such statements by means of the plural devices given in English. Of course,
we may extrapolate any such argument to any pair of logics, given that, at
least, one is interpretable in terms of the other. Such an approach will be
interesting only if there are external arguments showing that the languages
ultimately commit us to different ontologies. In Boolos’s case such external
arguments come from inspection of certain natural language sentences and
our intuitions concerning them. Even if one is hesitant regarding the valid-
21See Boolos (1984, p. 68).
22See Linnebo (2003, 2012) for rewarding discussions about this theme in the philosophy

of plural logic.
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ity of Boolos’s findings regarding these sentences, it is quite possible to
accept the ontological innocence as a working hypothesis.

A natural idea, we said, is now to put the plural reading, or some more
general alternative of it, to work when quantifying into the position of D
in Definition 5.1.1. For, if Boolos is right, the adoption of a second-order
metalanguage need not impose additional ontology. Furthermore, WA can
be avoided.

5.2.2 Williamson’s critique of the plural approach

Indeed, Williamson does consider the possibility of using some general
version of Boolos’s plural reading to interpret his suggested metalanguage
but concludes, having identified five problematic points, that it is in fact
not satisfactory.23 Thus Williamson points out that second-order monadic
variables stand in predicate position, whereas they get translated into name
position.24 This indicates that plural quantification differs in kind from
second-order quantification. He also argues that the need for the extra
clause for handling predicates that apply to nothing “gives [a] hint of Pro-
crustean activity” (Ibid. p. 456). There is also a problem with quantification
into polyadic predicate places since there seems to be no natural language
reading corresponding to such quantification.25 The fourth point is that
a plural reading of second-order quantification in modal contexts would,
since the plural variable is naturally rigid, make the second-order variables
rigid as well.

The most important of Williamson’s points is the fifth:

A fifth point is that the plural reading has no natural gener-
alization to nth-order quantification for n greater than two.
But, by a generalization of the Russellian paradox, we need
to use (n+ )th-order quantification in the meta-language to
define logical consequence for an nth-order object-language
that contains nth-level non-logical predicates. For example,

23See Williamson (2003, pp. 456–458).
24For a discussion, see Simons (1997), which is also the reference Williamson gives.
25However, see Rayo and Yablo (2001) for a discussion.
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the formula Π(F) in which the second-level predicate Π is ap-
plied to the first-level predicate ‘F’ might have the reading ‘the
things that F collectively lifted a piano’. A Tarskian defini-
tion of logical consequence for a second-order language with
the second-level predicate P in the spirit of the account above
would involve third-order quantification into the position of
P, for which the plural reading would not suffice. (William-
son, 2003, p. 457)

Note that Williamson merely points out that the plural reading does not
generalise to higher-order quantification. That is, if first-order existential
quantification corresponds to natural language quantification by means of
‘something’, and second-order quantification corresponds to ‘some things’,
there is no natural language expression corresponding to third-order quan-
tification. In that sense, the plural reading is not available for higher-order
languages. But, expressibility in natural language need not be taken as a
necessary condition for the intelligibility of higher-order plural quantifica-
tion.

Moreover, Williamson uses WA to motivate the need of (n+ )th-order
quantification to define logical consequence for nth-order languages. But
in Chapter 4 we argued that WA is inconclusive as an argument against first-
order quantification over absolutely everything. Thus, in order for William-
son’s fifth point to have force, the hierarchy of higher-order metalanguage
needs to be motivated by some other means. Rayo uses the semantic ver-
sion of strict adequacy to argue for the necessity of the higher-order plural
account by means of the cardinality argument. Moreover, while the cardin-
ality argument is taken to show that first-order languages are insufficient
for our purposes, Rayo argues that we can provide an adequate semantics
for plural languages if we help ourselves to higher and higher levels of plural
predication and quantification.

5.2.3 Rayo’s account of higher-order plural logic and absolute
quantification

Williamson’s fifth point concerns the possibility of interpreting the second-
order metalanguage in terms of plural quantification and predication. But,
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if we want a semantics for first-order quantification, the detour over second-
order logic may be unnecessarily indirect. That is, rather than using a
second-order metalanguage to interpret the first-order languages and then
translate the metalanguage into a plural language one may use the plural
language as a metalanguage in the first place.

Boolos, as we saw, relies on natural language expressions involving plural
locutions to interpret monadic second-order languages. But, as Williamson
hints at, we may need nth-order metalanguages for arbitrarily large values of
n, and while first- and second-order existential quantification corresponds
quite naturally to something and some things, there are no corresponding nat-
ural language expressions for third-, or higher-order quantification. Hence,
once we proceed beyond (monadic) second-order languages the available
plural quantifiers in natural language no longer give us guidance for how to
read the higher-order quantifiers. There is no part of English, more inclus-
ive than the part identified by Boolos, that can be used to read higher-order
plural equivalents.26

Lacking the natural language reading, an alternative way to get a plural
metalanguage is to set forth a formal language with higher-order equival-
ents of plural quantification and argue that it, in fact, can be used for se-
mantic theorising even without natural language correspondents to some
of its expressions. Rayo (2006) advocates this possibility suggesting that
the semantic categories of a categorial grammar for a given language may
be legitimate even if there is no translation into natural language. It might
even be the case that such a translation is in principle impossible and that
the suggested language is irreducible to natural language. Instead, Rayo
suggests,

[…] a semantic category C is legitimate just in case it is in
principle possible to make sense of a language whose semantic
properties are accurately described by a categorial semantics
employing C. (Rayo, 2006, p. 222)

26However, see Linnebo and Nicolas (2008) for a discussion that there are superplural
predication in English. This might provide some support that there may be third-order
plural quantification. The argument given does not seem to generalise to arbitrarily high
orders of plural predication and quantification however.
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Of course, this needs further elaboration to become sufficiently clear and
distinct. In particular, it needs to be clear precisely what it means to make
sense of a language, what semantic properties are required to have an accur-
ate description, what such a description may look like, and how we may
decide whether or not it is accurate. But for now, this informal explanation
suffices.

The notion of reference is important. Following Rayo we call a predicate
‘P’ that only takes singular terms as arguments a first-level predicate. Rayo
argues that, under the assumption that quantification is over absolutely
everything, one should reject the idea that the semantic value of ‘P’ is the
set of individuals it is true of. For taking sets as semantic values of predicates
implies that predicates such as ‘…is self-identical’ lack semantic value.27

Rayo continues:

Rather than taking ‘…is an elephant’ to stand for the set of
elephants, I would like to suggest that one should take it to
stand for the elephants themselves. It is grammatically infeli-
citous to say that the semantic value of ‘…is an elephant’ is
the elephants. So I shall state the view by saying that ‘…is an
elephant’ refers to the elephants. (Rayo, 2006, p. 225, italics
in the original)

Formally, this is expressed as follows.

(6) ∃xx(∀y(y ≺ xx ↔ Elephant(y)) ∧ Ref(‘…is an elephant’, xx))

(6) extends the fragment of English that Boolos identified by containing a
predicate ‘Ref’ that takes a plural term in its second argument place. Thus,
besides first-level predicates, i.e., predicates taking only singular terms in
their argument places, we need to accept predicates taking plural terms in
at least one argument place, i.e., second-level predicates. We add a sequence
i , i , . . . , in− as a superscript to predicates to indicate the level of its ar-
guments. Thus, for instance, ij = if it takes singular individual terms (of
level ) as arguments at place j, and ij = if it takes plural terms (of level
) as arguments at that place. In case of (6) we get

27Rayo (2006, p. 224). We tentatively argued in a similar way on page 94.
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(7) ∃xx(∀y(y ≺ , xx ↔ Elephant (y))∧
Ref , (‘…is an elephant’, xx))

Monadic second-level predicates, i.e. predicates taking first-level plural
terms as arguments, are understood to refer in an analogous way as first-
level predicates refer to pluralities. Say that ‘…are scattered’ is a monadic
second-level predicate. Rayo claims that we should resist the temptation of
employing sets of pluralities as its semantic values:

I propose instead that the reference of ‘…are scattered on the
table’ should be characterised as follows:

(8) ∃xxx(∀yy(yy ≺ , xxx ↔ Scattered (yy))∧
Ref , (‘…are scattered’, xxx))

where treble variables are used for super-plural terms and quan-
tifiers. There are, of course, no super-plural terms of quantifi-
ers in English, but I would like to suggest that the relevant se-
mantic category is nonetheless legitimate: super-plural quan-
tifiers are to third-order quantifiers what plural quantifiers are
to second-order quantifiers.28 (Rayo, 2006, p. 227, italics in
the original)

Note the distinction between ‘order’ and ‘level’ in this section. A second-
order predicate takes first-order predicates as arguments, while a second-
level predicate takes first-level terms as arguments.29

The first-level terms come in two variants: the plural variables, e.g. xx,
and the result of applying the definite article to a plural noun, e.g., ‘the
elephants’. Rayo’s semantic analysis of first-level terms is on a par with the
semantic analysis of first-level predicates, putting

(9) ∃xx(∀y(y ≺ , xx ↔ Elephant (y)) ∧ Ref , (‘the elephants’, xx))

28The numbering of the formula has been changed.
29This generalises in a straightforward way: An (n + )th-order predicate is a predicate

which takes nth-order predicates as arguments, while a (n + )th-level predicate is a
predicate that takes nth-level terms as arguments.
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Thus first-level predicates and first-level terms, though grammatically dis-
tinct, share semantic values.

Second-level terms are constructed from second-level predicates in a sim-
ilar fashion. There is no definite article applying to second- or higher-level
predicates, so Rayo introduces a saturation operator, ‘σ’ applying to predic-
ates to form terms. Thus we may form a second-level term σ[P (. . .)] from
a second-level predicate P such that they are grammatically distinct, but
have the same semantic value (which will be a super-plurality).

Proceeding in the same manner Rayo continues to introduce nth-level
predicates and nth-level terms, for each natural number n, to get what he
calls limitω languages. A limitω language contains

1. Logical connectives: ∧,¬

2. Variables: vni , for each level n ≥

3. Individual constants: c i

4. Predicates: Pis where s is a sequence of natural numbers indicating
how many arguments the predicate in question takes and to what
level they belong

5. Logical predicate letters: = , ,≺n− ,n and Exn. ‘Ex’ is short for exists

6. The term forming operator σn
i

The terms of a limitω language are the variables, the individual constants
and the result of applying the term forming operator σn to formulas φ to
get terms σnφ of level n + . Well-formed formulas are defined as one
expects: Predicate letters, logical as well as non-logical, apply to terms of
appropriate levels in relation to the sequence they have as superscript. Thus
for instance Ex (σ (φ)) is well-formed (if φ is) saying, roughly, that the
super-plurality xxx of φ’s exist.

Just as in Frege’s original notation for quantificational logic, limitω lan-
guages treat quantifiers as (higher-level) predicates. But, as Rayo points
out, quantification over individuals, pluralities, super-pluralities, etc., may
be defined:
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∃vni (φ) ↔ Exn+ (σn(φ))

∀vni (φ) ↔ ¬∃vni (¬φ)

Next, Rayo stratifies the limitω languages:30

1. Basic first-level languages: The fragment containing the variables v i
and no others, the logical predicates = and Ex , the instance σi of
the term forming operator but not ≺.

2. Full first-level languages: basic first-level languages with non-logical
first-level predicates added.

3. Basic (n + )-level languages result from full nth-level languages
by enriching them with variables vni , logical predicates ≺n,n+ and
Exn+ , together with the saturation symbol σn

i .

4. A full (n+ )-level language is the result of enriching a basic (n+ )-
level language with non-logical predicates of level n+ .

In order to make the limitω languages acceptable for semantic theorising
about absolute quantification Rayo, by his own standards, has to show, first,
that the semantic categories of limitω languages are legitimate, secondly,
that the ontology of higher-order plural quantification is the same as the on-
tology of first-order quantification, and thirdly, that it is possible to provide
a strictly adequate semantics for the limitω languages.

Rayo presents an argument that, for each n, the nth-level predicates and
terms belong to legitimate semantic categories. The argument assumes that
we can quantify over absolutely everything and proceeds by showing that,
under that assumption, we cannot translate a second-level language into a
first-level language in a truth-preserving way without facing certain diffi-
culties. Rayo admits that the argument only provides preliminary evidence
for its conclusion and we shall not enter into the details of it here.31

Though some less preliminary argument for the legitimacy of the se-
mantic categories Rayo suggests is surely needed, there seems to be no prima
30See Rayo (2006, p. 237). We sometimes ignore the superscripts.
31The argument is given in Section 9.5.2 of Rayo (2006).
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facie reason for rejecting the possibility that such an argument can be given
and that the higher-level terms and predicates may, in the end, be found
to be members of legitimate semantic categories. So, let us assume that
such an argument has been given. Then, Rayo shows, we may construct
a strictly adequate model theory with respect to the categories in question
for each level of a limitω language.32

Rayo uses the following instance of the semantic version of strict ad-
equacy:

[A] model-theory for a language L is strictly adequate just in
case it agrees with one’s categorial semantics for L in the fol-
lowing sense: any reference a (non-logical) predicate might
take by the lights of one’s categorial semantics corresponds to
the semantic value the predicate gets assigned by some model
of one’s model-theory. Thus, given a model-theory whereby
the reference of a first-level predicate is a plurality, a model-
theory for the relevant language can only be strictly adequate
if, for any plurality, there is a model on which a given first-
level predicate is assigned a semantic value corresponding to
that plurality. (Rayo, 2006, p. 243, italics in the original)

Let L be a first-level language of just one monadic predicate P. A model
of that language is then basically a plurality mm of pairs of the two forms
⟨P, x⟩, where x belongs to the extension of P under mm, and ⟨∀, y⟩, where
y belongs to the range of the variables in mm.

Now, if M(xx) expresses that the plurality xx forms a model of L in the
sense just outlined, then this semantics is strictly adequate for L if:33

(10) ∀xx∃mm∀y((M(mm) ∧ ⟨P, y⟩ ≺ mm) ↔ y ≺ xx)
32For the technical details of the construction, see the appendix of Rayo (2006).
33The types are left out in this formula for readability, but clearly we must treat ⟨P, y⟩

as a first-level term. In type-theoretic set theory the Wiener-Kuratovski ordered pair,
{{x}, {x, y}}, is of type two levels above the type of its constituents x and y. Such an
option, treating the ordered pair as a third-level term would make the formula, as well
as the notion of model explained, ill-formed. Thus, although Rayo does not explicitly
say so, he seems to adopt ‘⟨ , ⟩n,n’ as a term forming operator taking terms of level n to
ordered pairs of level n.

113



all there is

This version of semantic adequacy may then be seen as an elaboration
of the semantic version which was formulated without any reference to
particular semantic categories at page 89.

Now, Rayo (2006, p. 244) claims that the nth-level languages, for all
n, basic and full, are ordered with respect to the possibility of providing
strictly adequate semantics:

(a) It is impossible to give a strictly adequate model theory
for a full nth-level language in an nth-level language

(b) It is possible to give a strictly adequate model theory for
full nth-level languages in a basic (n + )th-level lan-
guage

(c) It is impossible to give a strictly adequate model theory
for a basic (n+ )th-level language in a basic (n+ )th-
level language

(d) It is possible to give a strictly adequate model theory for
basic (n+ )th-level languages in a full (n+ )th-level
language

Thus any language of a finite level can be given a strictly adequate model
theory in some language belonging to the hierarchy.

However, as Rayo points out, it follows from (a) and (c), together with
the observation that a limitω language contains an nth-level language as part
for each n, that it is impossible to give a strictly adequate model theory for
a limitω language in a limitω language. For, assume that φ of some limitω
language captures the notion of truth-in-a-model. Then φ, having finitely
many symbols, is a formula of an nth-level language for some n, which
contradicts the conjunction of (a) and (c).

We are thus faced with two options according to Rayo: either we ac-
cept that there are languages for which we, despite their legitimacy, cannot
provide an adequate model theory, i.e., we settle for semantic pessimism,
or we accept an open-ended hierarchy of languages. An open ended hier-
archy requires that we give up the limitω languages, showing them to be
illegitimate somehow, or that we proceed into transfinite levels beyond ω.
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Despite known counterarguments Rayo suggests that an open ended hier-
archy might be the least unattractive option.

The most important contribution from Rayo’s investigations, it seems
to me, is not his conclusion that an open-ended hierarchy of languages
is preferable, but that there is a real tension between avoiding semantic
pessimism and keeping strict adequacy in type-theoretic semantics. That
tension may alone serve as an impetus for further investigations of available
alternative meta-theories. In the next section we make this impetus even
stronger by pointing to some further challenges for both Williamson’s and
Rayo’s approaches.

5.3 Critical remarks on typed semantics

In this section we look at some problems inherent to the typed semantics
for absolute quantification. We begin in Section 5.3.1 with the problem
of expressing facts, by means of the type-theoretic language, that seem to
inevitably cut across types. In Section 5.3.2 we argue that the motivation
of typed semantics from semantic adequacy is not as solid as one might
expect.

5.3.1 Linnebo’s critique

Russell was well aware of the problem of expressing facts about all types
within the type-theoretic language itself. His analysis of the paradoxes—
the disease for which type theory was meant to be a cure—concludes that
they all violate the vicious-circle principle:

‘Whatever involves all of a collection must not be one of the
collection’; or, conversely: ‘If, provided a certain collection
had a total, it would have members only definable in terms
of that total, then the said collection has no total.’ (Russell,
1908, p. 225, italics in the original)

But, as Russell notices, adopting the vicious-circle principle has some un-
wanted consequences:
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The first difficulty that confronts us is as to the fundamental
principles of logic known under the quaint name of ‘laws of
thought’. ‘All propositions are either true or false’, for ex-
ample, has become meaningless. If it were significant, it would
be a proposition, and would come under its own scope. Never-
theless, some substitute must be found, or all general accounts
of deduction become impossible. (Ibid.)

Similar problems apply to the type-theoretic languages suggested by Wil-
liamson and Rayo. Linnebo (2006) picks up this theme when he argues that
the type-theorists are committed to certain general insights that they will
not be able to express. In particular, Linnebo gives the following examples
(Linnebo, 2006, pp. 154–155):

• Infinity. There are infinitely many different kinds of semantic values.

• Unique Existence. Every expression of every syntactic category has
a semantic value which is unique, not just within a particular type,
but across all types.

• Compositionality. The semantic value of a complex expression is de-
termined as a function of the semantic values of the expression’s sim-
pler constituents.

The common trait of these examples is that they, in essential ways, require
generalisations across types for their intended meanings to get through. But
if each quantifier is constrained within some particular type such general-
isations are impossible. It follows that the type-theorists cannot express the
intended meanings of the general insights that Linnebo claims them to be
committed to.

This kind of critique has been met by arguments saying that we may have
to live with the lack of a firm point from which we may determinately ex-
press such semantic insights that require generalisations across types. Rayo,
we said, argues that there are two strategies available. The first strategy is
to settle for semantic pessimism in the sense that there are, in fact, legitim-
ate languages (e.g. Lω) for which we cannot provide a strictly adequate
semantics. Furthermore,
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[t]he second strategy is to avoid semantic pessimism by claim-
ing that the legitimate languages—the languages it is in prin-
ciple possible to make sense of—form an open-ended hier-
archy such that any language in the hierarchy can be given a
strictly adequate model-theory in some other language higher-
up in the hierarchy. So there is no legitimate language with
respect to which semantic pessimism would threaten. […]
Whatever the details of the hierarchy, what is crucial is that
there is no such thing as an absolute-level language. (Rayo,
2006, p. 246, italics in the original)

But, as Linnebo’s examples show, the postulation of a hierarchy merely leads
to yet another form of semantic pessimism, i.e., that certain insights needed
for a systematic development of an adequate semantics cannot be expressed.
Rayo suggests that we just might have to bite that bullet:

The postulation of an open-ended hierarchy of languages faces
a familiar difficulty: it leads to the result that statements of the
form ‘the hierarchy is so-and-so’ are strictly speaking nonsense.
[…]

In spite of its problems, the postulation of an open-ended hier-
archy of languages may turn out to be the least unattractive of
the options on the table. (Rayo, 2006, p. 247)

Williamson’s conceptual hierarchy is challenged by Linnebo’s examples in
the same way.

Linnebo’s examples concern insights that we want to be able to express
when developing the semantic theory in the type-theoretic language. The
problems of expressing them shows that the development of a semantics
for absolute quantification in a type-theoretic language is less straightfor-
ward than it first may appear. Thus, facing these insights, the type-theorist
finds himself in the position of having, on the one hand, strong arguments
for going type-theoretic, and on the other hand, new problems attached to
the employment of such languages. If the arguments for turning to type-
theoretic semantics seem strong enough a type-theorist may find Rayo’s po-
sition attractive, i.e., that the type-theoretic languages (in an open-ended
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hierarchy) is the most plausible option at hand. Thus, if the motives are
strong enough, the type-theorist may be willing to accept the inexpressibil-
ity of certain insights.

To evaluate the plausibility of a typed semantics in light of the problems
that Linnebo and Russell present we need to evaluate the motives for go-
ing type-theoretic in the first place. We said that the main arguments for
typed semantics are WA, strict adequacy, and, if the semantic version of
strict adequacy is employed, the cardinality argument. The attractiveness
of the open-ended hierarchy of languages hinges to a great extent on just
how convincing one finds WA to be, and how prone one is to accept strict
adequacy as a virtue for any semantics for absolute quantification. We dis-
cussed WA at length in Chapter 4. In this section we focus on the notion
of strict adequacy.

Let us recapitulate the two versions of strict adequacy, i.e., the semantic
and the substitutional version, and give them a slightly more precise for-
mulation.

Semantical strict adequacy A semantics is semantically strictly adequate
if, for any possible semantic value of a non-logical constant, there is
an interpretation interpreting the constant as that value.

Substitutional strict adequacy A semantics is substitutionally strictly ad-
equate if, for any contentful predicate φ, some interpretation inter-
prets a predicate letter P as true of an object whenever φ is true of
that object.

These general formulations of strict adequacy may be instantiated in par-
ticular semantic frameworks. Thus, for instance, as we pointed out in the
previous section,

(10) ∀xx∃mm(M(mm) ∧ ∀y(⟨P ⟨ ⟩, y⟩ ≺ mm ↔ y ≺ xx))

is an instance of the general formulation of the semantic version of strict
adequacy in the framework of plural logic. Or, rather, it is part of such a
formulation since it takes into account only semantic values of first-level
predicates. There is no way to formulate this principle in its full general-
ity in a type-theoretic framework since the notion of semantic value must

118



some alternative semantics

always be restricted to a type. Thus, according to the type-theorist’s own
standards, the notion of semantic strict adequacy is inexpressible.

A similar argument is possible for any instantiation of the substitutional
version of strict adequacy. For in its general version it says that for any
contentful predicate, of any type, there is an interpretation that interprets
the predicate accordingly. But such quantification over all contentful pre-
dicates violates the type-restrictions.

Thus, both versions of strict adequacy are targeted by the same kind
of critique that Linnebo presents regarding the general semantic insights.
However, in contrast to those insights, strict adequacy has previously been
used to motivate the move to type-theoretic semantics in the first place.
Thus, once the type-theorist take the hierarchical language to heart the
argument from strict adequacy will no longer be available.

Let us set these matters of inexpressibility aside and consider a prob-
lem with the semantic version of strict adequacy. Some instances of that
concept seem to lead away from what seems to be the intuitive idea behind
it. Consider, for instance, standard model-theoretic semantics as construc-
ted within some set theory. It is semantically strictly adequate since models
in standard model theory assign sets to first-order predicates and, for any
set, there is some model assigning that set to the predicate in question. In
other words, no set is ruled out as a possible semantic value due to the lack
of a model assigning it to a given predicate.34 But, one may argue, stand-
ard model-theoretic semantics shouldn’t be strictly adequate since it uses
words, e.g., model, whose intended meaning cannot be the meaning of a
predicate expression of the object language according to the suggested se-
mantics. Thus, formulated as above, semantic strict adequacy is too weak
to rule out standard model theory as inadequate in the strict sense.

However, that there ought to be some interpretation interpreting a pre-
dicate of our object language in accordance with any acceptable predicate of
the metalanguage, in this case ‘model’, is entailed by the substitutional ver-

34Thus, given this understanding, the problem with standard model-theoretic semantics
is not that it is not semantically strictly adequate. Rather it is the absence of a model
representing quantification over absolutely everything that is problematic. The chal-
lenge, then, is to find a semantics that is strictly adequate and according to which the
quantifiers may range over absolutely everything.
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sion of strict adequacy. Model-theoretic semantics is then, as formulated
within standard set theory, not substitutionally strictly adequate.35

In the next section we shall see how the requirement of substitutional
strict adequacy adapted to arbitrary well formed expressions of the metalan-
guage opens up for another critique of the motivation for turning to type-
theoretic languages.

5.3.2 A dilemma

That strict adequacy and Linnebo’s properties are inexpressible as properties
in the kinds of type-theoretic semantics that Williamson and Rayo suggest
is an interesting fact in its own right. The inexpressibility of these examples
results from the necessity of quantification across types. But there are other
kinds of examples as well. In fact, it is possible to derive a contradiction
reminiscent of the Grelling-Nelson paradox of heterological words.

Consider the property of not denoting itself. Let ‘P’ abbreviate this prop-
erty. Then, intuitively, ‘P’ is true of an object x exactly when x does not
denote x. Formally, using the framework of Section 5.1 we put this

∀x(Tr(D[v/x], P(v)) ↔ ¬D[v/x](D[v/x]‘v,D[v/x]‘v)).

But this immediately leads to a contradiction. Instantiation gives

Tr(D[v/P], P(v)) ↔ ¬D[v/P](D[v/P]‘v,D[v/P]‘v).

Since

D[v/P]‘v = P

we get

Tr(D[v/P], P(v)) ↔ ¬D[v/P](P, P).

But, by the truth definition

Tr(D[v/P], P(v)) ↔ D[v/P](P,D[v/P]‘v).

35In this case, since not all contentful predicates of the meta-language have semantic values,
the semantic version of strict adequacy does not entail the syntactic version.
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Using the identity D[v/P]‘v = P again we get

¬D[v/P](P, P) ↔ D[v/P](P, P)

which is a contradiction.
One might try a number of ways to avoid the contradiction. One could,

for instance, argue that there is, for each collection of objects such that
¬D(x, x), another denotational relation, D∗, such that

∀x(Tr(D∗
[v/x], P(v)) ↔ ¬D[v/x](D[v/x]‘v,D[v/x]‘v))

But then, ‘P’ would not really have the intended meaning.
Another way to block the contradiction would be to argue that there

cannot be a denotational relation of the sort required. But, since it seems
to be unproblematic to assume the existence of a denotational relation D
such that a predicate ‘Q ’ is true of all objects x such that D(x, x), and since
P is definable in terms of Q in an obvious way, denying the existence of
such a D is not immediate. That is, to argue for the non-existence of a de-
notational relation that interprets a predicate as does not denote itself, would
also be an argument that, for a given predicate letter ‘Q ’, there cannot be
a denotational relation D such that

∀x(D(Q, x) ↔ D(x, x))

Indeed, we could use the above argument just to that end.
When faced with a parallel situation in WA, having defined ‘R’, Willi-

amson explained that “the naive theorist is committed to treating ‘R’ as a
contentful predicate, since it is well-formed out of materials entirely drawn
from the naive theory itself ” (Williamson, 2003, p. 126). Thus, if we are
justified in rejecting ‘D’ as a contentful denotational relation, despite it
being well-formed out of materials drawn from the type theory itself, one
wonders why we are not so entitled in case of ‘R’.

This actually constitutes a dilemma, not so much for type-theoretic se-
mantics, as for the way such a semantics is motivated. For if we reject ‘D’ as
a contentful denotational relation, there seems to be nothing that keeps us
from ruling out ‘R’ as a contentful predicate for similar reasons. However,
if ‘R’ is so ruled out, one of the main reasons for turning to type-theoretical
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semantics in the first place, i.e. WA, becomes neutralised. On the other
hand, if we must accept ‘R’ as a contentful predicate, and thereby restore
the strength of WA as an argument for going type-theoretic, then, since no
interpretation interprets ‘P’ as not denoting itself on pain of contradiction,
the resulting semantics is contradictory if strictly adequate.

The observations in this section are by no means conclusive arguments
against the type-theoretic approach, but they motivate further investiga-
tions into alternative semantic theories. In the next section we discuss one
such suggestion that gives up the type-theoretical approach.

5.4 Linnebo on sets and properties

If we give up the type-theoretic approach to a semantics for absolute quan-
tification there seems to be no other option but to let semantic values of the
expressions in the object language be possible values of the first-order vari-
ables in the metalanguage. That is to say, whatever we take the semantic
values of, e.g., predicate expressions of an object language L to be, the
metalanguage of L must count the values as some kind of objects. Simil-
arly, interpretations of L need to be reckoned as objects. Linnebo (2006)
shows how this may be accomplished by augmenting standard set theory
with urelements, ZFCU, with a theory of properties. Linnebo’s idea is then
to let properties, rather than sets, be the semantic values of the predicates of
L . In this section we take a look at the principal features of this intriguing
proposal.

The route to properties goes via the notion of a concept. A concept,
Linnebo explains, is “most fundamentally specified by means of some com-
pletely general condition” (Linnebo, 2006, p. 159) and two such condi-
tions, ϕ(u) and ψ(u) say, determine the same concept if they stand in
some suitable equivalence relation Eqvu. Using second-order lambda cal-
culus, Linnebo (Ibid.) then lays down the following identity criterion for
concepts specified by ϕ and ψ:

(Λ) Λu.ϕ(u) = Λu.ψ(u) ↔ Eqvu(ϕ(u), ψ(u))

Thus, when individuating concepts, Linnebo focuses on the conditions
rather than on what objects satisfies these conditions. A further character-
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istic of concepts is that their application conditions remain completely gen-
eral under the basic algebraic operations of negation, conjunction and ex-
istential generalisation. This, Linnebo claims, makes concepts better suited
than sets (in ZFCU) as semantic values of predicates.

But concepts, as explained above, are denoted by second-order terms
and thus, in order to enable first-order quantification over them they need
to somehow be treated as objects. Linnebo suggests that we should nomin-
alise second-order Λ-terms to first-order λ-terms, which are understood as
referring to properties. He proceeds to lay down the following three axioms
for the theory of properties:

(λ) λu.ϕ(u) = λu.ψ(u) ↔ Eqvu(ϕ(u), ψ(u))

(P) P(λu.ϕ(u))

(η) v η λu.ϕ(u) ↔ ϕ(v)

Here (λ) gives the identity criteria for properties, which are the same as
for concepts, (P) introduces a predicate true of all properties, and (η) the
relation of property possession.

Linnebo’s main concern in the paper is mathematical concepts, which are
most naturally regarded as extensional, and hence he suggests the following
simplification of (λ):

(V) λu.ϕ(u) = λu.ψ(u) ↔ ∀u(ϕ(u) ↔ ψ(u))

which is, as Linnebo makes clear, just a variant of Frege’s Basic Law V.36

Thus some restriction on what properties there are is needed in order to
avoid contradiction.

Suppose that such a restriction has been given. Linnebo’s idea is then to
let objects and properties (which are just a special kind of objects) be the
semantic values of non-logical constants of first-order languages. More pre-
cisely, given that L is a first-order language, Linnebo understands by a lex-
icon of L a set-theoretic function that maps singular L -terms to (singular)
objects and L -predicates to properties. A lexicon may then be expanded

36See page 28.
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to an interpretation by means of set-theoretic recursion on the complexity
of formulas.

Semantic theorising involving interpretations of the sort described takes
place in a theory T formulated in the language of ZFCU with identity,
expanded with the language of the theory of properties. We follow Linnebo
and add 1 as a subscript for this language L . The L -theory T is now said
to beminimally adequate if it contains enough set theory to handle n-tuples
and recursion on the syntax of at least first-order languages together with
what Linnebo calls the minimal theory of properties, or V− for short.37 V−

contains an axiom for the existence of the identity property, the following
‘part’ of (V),

(V=) Px ∧ Py → (x = y ↔ ∀u(u η x ↔ u η y)),

and a number of axioms that close the property of being a property under
certain basic operations. These operations handle the algebraic operations
corresponding to the logical constants of the object language when applied
to properties. Thus, for example, in order to handle negation, we need an
axiom saying that if p is a property, then so is the complement of p. Like-
wise, we need to secure the existence of the conjunction of two properties,
permutation of n-tuples, projecting n-tuples, etc.38

V− does not prove the existence of all the properties we would like to
have in a semantic theory T. For instance, it does not prove the existence
of the property of being an interpretation. It is true, as Linnebo points out,
that given a Gödel numbering of T, we may construct a syntactic prop-
erty, that will take the form of a number theoretic formula, of being an
interpretation in T. As usual we may proceed to prove results about the
arithmetised theory. Without further axioms in T, however, there is no
way to prove the existence of the proper property of being an interpreta-
tion, i.e., the existence of an object i such that for all x, x η i if and only if
x is an interpretation.

Besides the property of being an interpretation it is natural to ask for in-
terpretations that interpret certain object languages in their intended ways.
37Linnebo (2006, p. 164).
38Linnebo (2006, p. 163). See also Holmes (1998, ch. 6) where a similar idea is worked

out in detail with NFU plus pairing playing the role of T.
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For instance, Linnebo points out that we might want to add a property
comprehension axiom for the existence of the property of being an ordered
pair ⟨x, y⟩ such that x ∈ y. That is an instance of

(V∃) ∃x(Px ∧ ∀u(u η x ↔ ϕ(u))),

where ϕ(u) expresses that u is an ordered pair where the first component is
an element of the second component.

Not all instances of (V∃) give rise to properties however. For instance,
it is immediate that ‘¬u η u’ cannot be allowed since it gives rise to a
contradiction in familiar ways. Likewise, the property used in WA, i.e.,
the property of not being an interpretation such that a predicate letter ‘P’
is true of that interpretation under that very interpretation, must somehow
be barred from being an instance. Thus, the theory Linnebo proposes needs
to be supplemented with a restrictive theory of properties.

To be acceptable, a proposed restriction on the property com-
prehension scheme must satisfy two potentially conflicting re-
quirements. Firstly, the restriction must be liberal enough to
allow the properties we need in order to carry out the desired
semantic theorizing. Secondly, the restriction must be well
motivated. As an absolute minimum, the restriction must
give rise to a consistent theory. But ideally, the restriction
should be a natural one, given an adequate understanding of
properties. The restriction should be one it would have been
natural to impose anyway, even disregarding the fact that para-
dox would otherwise ensue. (Linnebo, 2006, p. 166)

In a note Linnebo points out that the idea of augmenting ZFCU with a the-
ory of properties to enable semantic theorising is compatible with a range
of different understandings of properties. The particular suggestion he ad-
vocates involves a restriction on what properties there are that is based on a
requirement that the individuation of properties needs to be well-founded.
This means that the fundamental specifications of an object and the equi-
valence relation, or unity relation that settles when two such specifications
determine the same object, are well-founded in the sense that they must
not involve, or presuppose any object not yet individuated. In particular,

125



all there is

the individuating of an object must not involve, or presuppose, the object
itself.

Linnebo makes this mathematically precise by saying that a condition
ϕ(u) presupposes only those objects that have already been individuated,
and no others, if it is invariant under permutations π that fix all objects
that have already been individuated and respect all relations that have been
individuated in the sense that

∀x , . . . xn(R(x , . . . , xn) → R(π(x ), . . . , π(xn))).

Such conditions, i.e., conditions presupposing only already individuated
objects, define properties. The philosophical motivation behind this is that
if properties are given by such conditions they are specified in a non-circular
way. One effect of the requirement is that a condition determines a prop-
erty (by nominalising the concept defined by the condition) only if it does
not distinguish between objects that have not yet been individuated. If a
condition distinguishes between objects not yet individuated, the condi-
tion does not determine a property.

In particular, Linnebo points out, this means that conditions that in-
volves η are problematic. For in its intended sense, η distinguish every
property from every other, by means of (V=), and thus “maximally violat-
ing the well-foundedness constraint” (Ibid., p. 171). This makes Linnebo
suggest that property comprehension for the condition ‘u η x’ may come
with a restriction that x must be a property already individuated. Then
the condition cannot distinguish between objects not yet individuated and,
hence, satisfies the well-fondedness criterion. A drawback is that the inten-
ded property of η is no longer available and, thus, that semantic pessimism
threatens. Linnebo solves the lack of a real η-property by suggesting a hier-
archy of more and more inclusive properties interpreting ‘η’. These proper-
ties give rise to a hierarchy of theories, each of which allows the definition
of an interpretation for its predecessor. He concludes:

Many people will no doubt feel this as a loss. But it should
be kept in mind that the rejection of such a property is not an
ad hoc trick to avoid paradox but follows from the independ-
ently motivated well-foundedness requirement. So perhaps
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we must give up as illusory our apparent grasp of an absolutely
general relation of property application. (Ibid., p. 175, italics
in the original)

In light of the conclusions of Chapter 4, Linnebo’s approach is indeed
appealing. However, some further points need to be addressed. Linnebo
himself points to the need of further investigations into just how unnatural
the lack of an absolutely general relation of property application is. Also,
just how natural the well-foundedness requirement is needs to be investig-
ated, as well as if it really delimits the properties appropriately.

5.5 Concluding remarks

The type-theoretic semantic theories and Linnebo’s proposal with sets and
properties are all based on the idea that what is needed, or wanted, is a
strictly adequate, or completely general semantics. Otherwise semantic
pessimism threatens. This requirement entails the idea of a semantic theory
that is maximally liberal as to the possible semantic values of the non-logical
vocabulary of the object language. In case of type-theoretic semantics this
leads to certain expressive limitations which may be taken to challenge those
theories on the very point of being strictly adequate. If we use some concept
in the metalanguage, this concept should also be available in the object lan-
guage as a possible interpretation of an appropriate predicate. We saw that
the concept of strict adequacy itself is not so available, nor are other ex-
amples that are both natural and important for the type-theorist.

In the next chapter we develop a semantic theory which is inspired by
Linnebo’s, in many ways appealing, approach. The main differences res-
ult from the diverse analyses of what lessons should be drawn from WA.
While Linnebo acknowledges the need to provide a theory of properties
that shows why the alleged property designated by ‘R’ is illegitimate, we
argued in Chapter 4 that WA itself is sufficient to that end. Thus, without
formulating a separate theory of properties, we develop a model-theoretic
semantics very much in the standard way using a non-standard set theory
as our metalanguage.
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6 Model Theory with a Universal Domain

Model-theoretic semantics of both formal and natural languages has gen-
erally been very successful. Of particular interest is that it has proven its
usefulness in the semantic analysis of quantifier expressions, again both in
formal and natural languages.1 However, as pointed out many times by
now, model-theoretic semantics as formulated within standard set theory
is not sufficient for our purposes. The lack of a universal set simply makes
it impossible to adequately represent the universal domain of quantifica-
tion. But due to the general success of the model-theoretic approach, and
the arbitrariness of the fact that the metatheory we are accustomed to—
standard set theory—happens to lack the means to represent the universal
domain, it is well motivated to investigate the model-theoretic approach
within some alternative metatheory. That is, it is well motivated to consider
the idea of constructing a model-theoretic semantics for absolute quantific-
ation within a set theory with a universal set.

Such an approach can be met with two types of critique. First, one may
criticise the very idea of providing a model-theoretic semantics for absolute
quantification, and, secondly, one may criticise the adopted metatheory
in which such an approach is developed. In Section 6.1 critique of both
kinds is discussed. We then briefly introduce NFUp, our metatheory, and
develop a model-theoretic semantics in Section 6.2. We take care that our
defined concepts, e.g., model and the relation of satisfaction, correspond to
sets. Thus we are able to show that there is a model in our semantics for a
first-order formulation of the semantic theory we construct. A complete-
ness theorem for first-order logic in the resulting semantics is also given.

1Indeed, Peters and Westerståhl (2006) employ a model-theoretic framework in Quantifi-
ers in Language and Logic, which up to date is the most comprehensive treatment of the
semantics of quantification.

129



all there is

6.1 Two lines of critique

6.1.1 Williamson’s argument and the notion of strictly adequate
model-theoretic semantics

Williamson’s argument, WA, which we discussed in Chapter 4, is often
celebrated as one of the most general arguments against absolute quantific-
ation. General, that is, in the sense that it makes minimal presuppositions
about the concepts it employs. Thus the argument may be adapted to suit
any suggested semantics that accepts its premisses: simply use the concepts
of the suggested semantics and run through each step of the argument. In
particular, if WA is general in this way, one may think it should be possible
to apply it as an argument against any model-theoretic semantics of abso-
lute quantification as developed within a set theory with a universal set.
In fact, this is precisely what Rayo and Williamson (2003) do. Although
we have already explained why WA is inconclusive as an argument against
absolute quantification, it is nevertheless instructive to dwell upon some
parts of Rayo and Williamson’s formulation of this particular instance of
the argument.

Having concluded that model-theoretic semantic as formulated within
ZF is insufficient due to the lack of a universal set V, and that imposing V
as a proper class is of no help since it will not contain itself and thereby fail
to be truly universal, Rayo and Williamson proceed to comment on the
possibility of using set-theories with a universal set:

Unfortunately, set theories that allow for a universal set must
impose restrictions on the axiom of separation to avoid para-
dox. So, as long as an MT-interpretation [model-theoretic
interpretation] assigns a subset of its domain as the interpreta-
tion of a monadic predicate, some intuitive interpretations for
monadic predicates will not be realized by any MT-interpreta-
tion. (Rayo and Williamson, 2003, p. 333)

Clearly, the axiom of separation

(1) ∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ φ), y not free in φ
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must fail in any set theory with a universal set. Otherwise we could regain
naive comprehension

(2) ∃y∀z(z ∈ y ↔ φ), y not free in φ

by putting V for x to get

(3) ∃y∀z(z ∈ y ↔ z ∈ V ∧ φ)

Since naive comprehension is inconsistent one must either give up V as a
set or the axiom of separation. One way to give up the axiom of separation
is to impose restrictions on it: hence the first sentence of the quote.

However, thus explained, the quote may be understood to indicate that
each of the founders of a set theory with a universal set, at a certain point,
faced the situation we reached through (1) and (2), i.e. that they had to
choose between restricting the axiom of separation or giving up V as a set.
But this is at least historically misleading. Quine (1937), for instance, de-
veloped NF with an eye to the simplified theory of classes in PrincipiaMath-
ematica, and the problem there was not the lack of a universal class, but
rather that there were too many of them, viz. one for each type.2 Moreover,
there is no axiom of separation to be restricted in Principia Mathematica,
but rather a multiplicity of comprehension schemes, again one for each
type. Thus, taking NF as an example, it would be a mistake to understand
the first sentence of the quote to implicate that Quine at some point restric-
ted the axiom of separation to get V.

Indeed, it is true that we get NF from the schema of naive comprehen-
sion if we restrict the permitted substitution instances of φ to the so-called
stratified formulas, a subclass of well-formed formulas, and add the axiom
of extensionality. But then again, taking the historical point of view, we
don’t get NF from Z, the set theory of Zermelo (1908), which would have
been Quine’s natural alternative point of departure besides Principia Math-
ematica, even if we rid it of urelements and explicate the Axiom of Assonder-

2This is an anachronistic remark since signs for classes are contextually defined in Principia
Mathematica so that any such expression’s purported reference to a class vanishes when
the notation is expanded into primitive notation. However, Quine (1937) explicitly
refers to the simplified theory of types in Principia Mathematica for which the claim
holds. See Quine (1941) for a discussion.
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ung as the axiom of separation. For Z contains the axiom of choice (AC),
and, as shown by Specker (1953), NF ⊢ ¬AC.

Of course, none of this proves Rayo and Williamson wrong in stating
that the set theories with a universal set “must impose restrictions on the
axiom of separation to avoid paradox,” but it shows that, if not read with
care, it may blur interesting conceptual distinctions.

The point made in the quoted passage seems to be that, since separation
fails in set theories with a universal set, not all subclasses will be subsets,
and thus there will be intuitive interpretations of monadic predicates, i.e.,
the proper subclasses, that will lack a corresponding subset realising the
interpretation. Rayo and Williamson go on to claim that this situation
is just an instance of Williamson’s general argument from paradox. We
have already discussed that argument in Chapter 4 and shall not repeat the
details here.

Having derived the contradiction, Rayo and Williamson conclude:

It follows that there are legitimate assignments of semantic
values to [predicates] that cannot be captured by any MT-
interpretation. (It is worth noting that, although the argu-
ment is structurally similar to standard derivations of Russell’s
paradox, it does not rest on any assumptions about sets. As
long as the variables in the metalanguage range over every-
thing, all we need to get the problem going is the observa-
tion that MT-interpretations are individuals, and the claim
that, whatever it is to G, there are legitimate assignments of
semantic values to variables according to which the predicate-
letter P applies to something if and only if it Gs.) (Rayo and
Williamson, 2003, p. 334).

The last sentence of the quote may be equated with either the substitutional
or the semantic version of strict adequacy.3 Thus, given a set theory T with
a universal set, it may be formalised, using the terminology from Chapter
4, in two different ways:

(4) ∃y(INT(y) ∧ ∀x((y |= P [x]) ↔ ϕ(x))) holds for all ϕ
3See page 118.
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which corresponds to the substitutional version of strict adequacy, and

(5) ∀z∃y(INT(y) ∧ ∀x((y |= P [x]) ↔ x ∈ z))

which corresponds to the semantic version.
Let’s take seriously that the semantic values of the non-logical vocabulary

are sets of some set theory T. Then, under the semantic version of strict
adequacy, the claim that there are legitimate assignments of semantic values
that cannot be captured by any model means that there are sets that cannot
be the semantic values of predicates according to any model. But x ̸|= P [x],
which is the predicate used to derive the contradiction in WA, determines
a semantic value in T only under the additional assumption that

(6) T ⊢ ∃y∀x(x ∈ y ↔ (x ̸|= P [x]))

However, as we shall see, in NF, or any of its descendants, x ̸|= P [x] need
not determine a set. Consequently, WA, interpreted with the semantic ver-
sion of strict adequacy as one of its premisses, is inapplicable to such theor-
ies, contrary to the conclusion in the quote that there are legitimate assign-
ments of semantic values that cannot be captured by any model-theoretic
interpretation.

Alternatively we may understand Rayo and Williamson as claiming that,
just as there are formulas in T that fail to determine sets, there are formulas
in the language of any model-theoretic semantics such that their intuitive
semantic values cannot be equated as real semantic values in the adopted
semantic theory. Note that this is a problem only if we have an additional
argument that such formulas should determine a semantic value. But, as
we saw in Chapter 4, there is no conclusive argument that x ̸|= P [x] should
define a set, or, more generally, signify a semantic value. On the contrary,
we concluded that what WA shows is that x ̸|= P [x] should not be con-
sidered a legitimate substitution instance of (4).

It is tempting at this point to ask for a characterisation of what formulas
count as legitimate instances of (4). A natural suggestion would be to use
the notion of semantic value. An LT-formula φ is then legitimate if

T ⊢ ∃x∀y(y ∈ x ↔ φ)
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But this suggestion might turn out to be problematic. Assume that we
adopt some metatheory T and start to construct our model-theoretic se-
mantics by defining semantic concepts such as satisfy, model,…, etc. If it
turns out that some of these semantic concepts cannot have their intended
meanings according to the semantic theory one might argue that the the-
ory fails to be sensitive to the idea behind substitutional strict adequacy.
In case x ̸|= P[x] we have a separate argument to the effect that it should
not be a legitimate substitution instance to (4), but as long as we have no
such arguments for the concepts we define, they should not be ruled out
beforehand.

At the same time, as WA shows, we cannot adopt (4) as it stands. What
we do construct in this chapter is a model-theoretic semantics for which
the following holds for all formulas ϕ that define semantic concepts in our
semantic theory:

(7) ∃y(INT(y) ∧ ∀x((y |= P [x]) ↔ ϕ(x)))

6.1.2 Metatheories with a universal set

In this section we discuss some critical remarks that have been made con-
cerning the possible meta-theories for a model-theoretic semantics with a
universal domain.

Despite the naturalness of the idea, the employment of a set theory with
a universal set is generally rather swiftly rejected in the literature. The most
common counterarguments to the employment of such set-theories have
been nicely summed up by Linnebo (2006, p. 156):

[…] all known set theories with a universal set, such as Quine’s
New Foundations, are not only technically unappealing but
have lacked any satisfactory intuitive model or conception of
the entities in question. It would therefore be folly to trade
traditional ZFC for one of those alternative theories.

Since trading ZFC for an alternative set theory is precisely what we do later
in this chapter, we will have to address each of the points made by Linnebo
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in order to see whether they constitute valid arguments against the idea of
set-theories with a universal set.

Consider the statement that set-theories with a universal set are technic-
ally unappealing. I am not sure exactly what Linnebo has in mind here, and
different theories may be considered technically unappealing for different
reasons. However, one common feature of all such theories is that none of
them has full ∈-induction; they cannot since ∈ is not well-founded, allow-
ing e.g. V ∈ V. This may certainly be seen as a technical inconvenience
that makes such theories unappealing.4

On the other hand, the lack of full ∈-induction in the metatheory is
the kind of inconvenience that one would expect in any semantic theory
with the universal domain; such a domain must be a member of itself in
order to be truly universal, and, as a consequence, the metatheory can-
not have a well-founded membership relation. There seems to be no a
priori reason to require that a set theory adopted as metatheory should
have full ∈-induction. Thus, although the lack of full ∈-induction may
be considered an inconvenience, it is hardly something we can count as an
argument against using a set theory with the universal set in the present
context. In fact, the need of a truly universal domain in the semantic the-
ory, and thus a representation thereof in the metatheory, indicates that, to
a certain degree, one should expect that any suitable metatheory has to be
technically inconvenient to some extent.

Also, just as different theories may be considered technically unappealing
because they have, or lack, certain properties, a theory may also gain or lose
its technical attractiveness with regard to its utility, which again is a relative
notion; relative, that is, to the kind of work one asks of the theory.

Let us return to Zermelo’s theory Z in this context. One aspect of that
theory is that only relative complements of sets are available. Otherwise, if
A is a set and its complement Ac = { x | x ̸∈ A } is also a set, so is V by
the union axiom. But V cannot exist as a set because of Assonderung and
Russell’s paradox.

For Zermelo, this is not something which makes his theory unappealing,

4For instance, as Forster (1995) notes, ill-founded set-theories have no (transfinite) recurs-
ive method of deciding identity between sets.

135



all there is

since the lack of (real) complements is not an obstacle for what he sets out
to be his project:

Set theory is that branch of mathematics whose task is to in-
vestigate mathematically the fundamental notions “number”,
“order”, and “function”, taking them in their pristine, simple
form, and to develop thereby the logical foundations of all of
arithmetic and analysis; thus it constitutes an indispensable
component of the science of mathematics. (Zermelo, 1908,
p. 200)

But there are other ideas about the task of set theory. We, for instance,
want to say that set theory is that branch of mathematics which permits us
to investigate, with mathematical precision, fundamental semantic notions
such as truth and logical consequence. This does not rule out that we also
want our set theory to be the branch of mathematics in which the mathem-
atical notions Zermelo mentions are investigated. Still, it provides a point
of view from which the presence of non-relative complements, as well as
the presence of V, may be considered technically appealing.

Linnebo’s remark that it would be folly to trade ZFC for some alternative
set theory because such theories are technically unappealing is hardly meant
as a conclusive argument. But even as a critical remark, it stands in need of
further elaboration. Our short discussion seems to show that the attribute
technically unappealing is relative to, among other things, the job the set
theory is supposed to do. In light of that it is perhaps better to postpone the
estimation of the technical attractiveness of the theory until it has proven
its utility.

At this point one could argue that the lack of a universal set, or the lack
of real complements, is not really a technical aspect of a theory, but typically
results from one’s conception of sets. Thus we are led to Linnebo’s second
and third lines of critique, that set theories with a universal set “have lacked
any satisfactory intuitive model or conception of the entities in question.”

This should be contrasted with the situation in ZFC where the iterative
conception of sets is commonly regarded as giving rise to the cumulative
universe of sets which, in turn, standardly serves as its intuitive model. Fur-
thermore, as (Boolos, 1971, p. 16) puts it: “the iterative conception of set
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[…] often strikes people as entirely natural, free from artificiality, not at all
ad hoc, and one they might perhaps have formulated themselves.”

The iterative conception of sets is often taken to be so closely related to
the cumulative hierarchy that one does not bother to tell them apart. But,
as Forster (2008) demonstrates, an iterative conception of sets may give
rise to structures other than the cumulative hierarchy. Indeed, Forster’s
construction gives rise to a model of “roughly” the set theory of Church
(1974) which, incidentally, has V as a set.5 This may be taken to show
that the iterative conception is less sharp than usually assumed and that
there are, in fact, several possible iterative conceptions of sets. Hence the
following disclaimer: in the sequel, ‘the iterative conception of sets’ is taken
to refer to that conception which gives rise to the cumulative hierarchy.

It is not known if Zermelo had the iterative conception of sets in mind
when axiomatising Z. What seems to be clear, however, is that, whatever
conception of sets Quine saw as underlying the axioms of Z, he considered
it unsatisfactory when working on NF. In a brief note circulated at the
colloquium on NF’s 50th birthday, in Oberwolfach 1987, he comments
in retrospect on the motivations behind his theory. Having explained two
drawbacks he saw in the simplified version of the set theory of Principia
Mathematica, he continues:

Zermelo’s system itself was free of both drawbacks, but in
its multiplicity of axioms it seemed inelegant, artificial, and
ad hoc. I had not yet appreciated how naturally his system
emerges from the theory of types when we render the types
cumulative and describe them by means of general variables.
I came to see this only in january 1954, […]. If I had ap-
preciated it in 1936, I might not have pressed on to “New
Foundations.”

But I might have still. For I disliked the lack of a universe
class in Zermelo’s system, and the lack of complements of

5Forster suggests that we create both sets and their complements at each stage. Thus, at
the first stage, when there is nothing yet created, we get ∅ and its complement V, at the
second stage we get in addition to what we already have { ∅ }, {V }, V\{ ∅ }, V\{V },
V \ { ∅,V } and { ∅,V }. And so on through the ordinals.
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classes, and in general the lack of big classes. (Quine, 1995,
p. 287–288, italics in the original.)

Thus, whatever conception of classes Quine had back in 1936, it was not
the same conception as Zermelo must have had when axiomatising Z: that
much is clear from the final sentence of the quote.

As it turned out, Z can in fact be seen as an early axiomatisation of the
cumulative hierarchy based on an iterative conception of set. Linnebo’s
critical remark amounts to asking: if we are to trade standard set theory
for some alternative, NF say, what then are the conceptions and structures
corresponding to the iterative conception and the cumulative hierarchy?
For it seems to be Linnebo’s view that, if we are to abandon standard set
theory, we should at least look for something equally well motivated in
terms of intuitive models and conceptions of sets. If we can’t find such a
theory, we shouldn’t make the trade at all.

Consider now the notion of an intuitive model. The situation seems reas-
onably clear when it comes to affirming the existence of an intuitive model,
e.g., of standard set theory, but claiming that alternative set theories lack
intuitive models is less straightforward. For we have no precise definition
of intuitive model and without a definition it is hard to make the claim that
there are no intuitive models for the theories in question.

To some extent the situation parallels the situation before Turing’s and
Church’s analyses of the concept of decision procedure in the thirties. To
show that a problem is decidable amounts to providing some decision pro-
cedure, e.g. an algorithm, for its solution. In the very same way, to claim
that a set theory has an intuitive model, amounts to giving such a model.
On the other hand, in order to claim that some problem is undecidable one
needs to prove that there is no decision procedure for that problem, and,
of course, this cannot be accomplished unless we have a precise definition
of what a decision procedure is. In the same way, the statement that some
set theory lacks an intuitive model calls for a precise definition of what an
intuitive model would be.

Now, we do have an exact definition of the concept of algorithm, e.g.,
in terms of Turing machines, and are thus entitled to claim that certain
problems are undecidable via the identification of decision procedures and
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Turing machines. However, the situation is less clear when we turn to
intuitive models of set theories. One problem has to do with circularity.
We are accustomed to talk about models in terms of certain sets, and it is
hard to imagine an explication of intuitive model that is very different from
our ordinary models. Another problem is that the concept of set is a basic
concept. It is hard to see what other basic concepts we may use to explicate
the notion of intuitive model. Thus, we may conclude, until we have a
clear conception of what the alternative set theories lack, i.e., until we have
a clear conception of what an intuitive model is, it seems premature to rule
out all such theories as possible metatheories.

Linnebo does not really claim, in the quoted passage, that all alternat-
ive set theories hitherto presented lack intuitive models of the right kind.
Rather he says that, so far no satisfactory intuitive models have been presen-
ted. This is of course consistent with there being undiscovered intuitive
models.

In any case, the situation calls for further analysis of the consequences
of using a set theory lacking intuitive models. Dummett suggests that the
lack of a model, intuitive or otherwise, equals the lack of a subject-matter.
Interestingly he claims this with an eye to NF:

Whatever mathematicians profess, mathematical theories
conceived in a wholly formalist spirit are rare. One such is
Quine’s New Foundation system of set theory, devised with
no model in mind, but on the hunch that a purely formal
restriction on the comprehension axiom would block all con-
tradictions. The result is not a mathematical theory, but a
formal system capable of serving as an object of mathematical
investigation: without some conception of what we are talk-
ing about, we do not have a theory, because we do not have
a subject-matter. […] if an angel from heaven assured us of
its consistency, we should still not have a mathematical the-
ory until we attained a grasp of the structure of a model for it.
(Dummett, 1991, p. 230).

Suppose we trade standard set theory for NF. If Dummett is right we would
find ourselves working in a theory destitute of a subject-matter; it would
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not be about anything in the sense that Peano arithmetic, or ZFC, is about
the structure of natural numbers, or the cumulative hierarchy of sets, re-
spectively. An awkward position indeed. On the other hand, if we instead
trade standard set theory for NFUp, i.e., the theory that results from NF
by adding urelements and a pairing operator, the situation is slightly dif-
ferent. First, NFUp is provably consistent relative to ZFC and, second,
even though there is no intuitive model available, we do have some grasp
of some of its models.

But even with no model in mind, it may be still be possible to argue
that we can use NF-like theories in a non-formalistic way, i.e. as theories
about sets. NF belongs to the logicist tradition where classes are considered
to be properties in extension.6 Thus conceived it is quite natural that ∈,
now a relation between individuals and extensions, isn’t well founded. For
there are doubtlessly extensions that belong to themselves; the extension of
‘extension’ being one example. Also, for any property, there is the property
of not having that property, so full complements are natural under such a

6To see this remember that type theory, as presented in Russell (1908) and in Russell
and Whitehead (1910), is a ramified hierarchy of propositional functions which are
categorised according to (i) what kind of, and how many, arguments they take, and
(ii) what bound variables they contain. Thus, for instance, a propositional function
of one variable taking individuals as values will be of the first order if it involves no
bound variables except variables ranging over individuals; it will be of the second order
if it contains only bound individual variables and at least one variable ranging over
first-order functions of one variable, and so on. The hierarchy of orders provides an
intensional character to the propositional functions, for two equivalent propositional
functions, i.e. two functions true of the same arguments, may belong to distinct orders
and thereby fail to satisfy the same propositional functions.

Also, consider the following instructive passages:

A propositional function of x may, as we have seen, be of any order;
hence any statement about ‘all properties of x’ is meaningless. (A ‘prop-
erty of x’ is the same thing as a ‘propositional function which holds of
x’.)
[…]
Hence, we must find, if possible, some method of reducing the order of
a propositional function without affecting the truth or falsehood of its
values [i.e. propositions]. This seems to be what common sense effects
by the admission of classes.(Russell, 1908, pp. 241–242)

Thus, it is clear that Russell understood classes as properties in extension.
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conception. Likewise is it natural to assume an extension, V, of the property
of being self-identical.7

Thus, even though we may have no clear understanding of what the
universe of NF-sets may be like, there is still room, via our intuitions of
properties in extension, for non-formalistic reasoning about such sets.

6.2 A model-theoretic semantics for absolute
quantification

In this section we carry out our plan of using a set theory with a universal
set and construct a model-theoretic semantics for first-order languages in
NFUp. This theory is introduced in Section 6.2.1. The definition of the
model-theoretic semantics is given in Section 6.2.2, and a completeness
result is given in Section 6.2.3.

6.2.1 NFUp

NFUp is a classical first-order theory with the membership relation, ∈, and
an operator, ⟨ , ⟩, taking objects to ordered pairs.8

NFUp shares with NF its strategy to avoid the set-theoretical paradoxes.
The idea is to circumscribe the naive axiom schema of comprehension,
∃y∀x(x ∈ y ↔ φ(x)), by restricting the class of formulas instantiating
it to the so-called stratified formulas.

Definition 6.2.1. A formula φ in LNFUp is stratified if there is a function
τ from the (not necessarily free) variables in φ to N such that

• if ‘x = y’ or ‘⟨x, y⟩’ occurs in φ, then τ(x) = τ(y);

• if ‘x ∈ y’ occurs in φ, then τ(y) = τ(x) + ’.

τ is a stratification if it fulfils the conditions above.

Thus, for example, ‘x ̸∈ x ’ and ‘x = y ∧ z ∈ x ∧ y ∈ z ’ are unstratified,
whereas ‘x ̸∈ y ’ and ‘x = y ∧ x ∈ z ∧ y ∈ z ’ are stratified. Given a formula

7Informal discussions on these matters have appeared on the “FOM-list”. For a published
formulation, see Forster (1995).

8The standard reference for NFUp-studies is Holmes (1998).
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φ, the value of an associated stratification τ for a variable x inφ is called the
type of x in φ under τ . Most often we just talk about the type of x, assuming
the rest to be clear from the context.

The axiom schema of naive comprehension is now restricted to stratified
formulas:

Axiom 6.2.2 (Stratified comprehension). ∃x∀y(y ∈ x ↔ φ(y)), where φ
is a stratified formula in which x is not free.

We use { x | φ } to denote a set whenever φ is a stratified formula. Note,
also, that even if φ has no stratification, it may be equivalent to a strati-
fied formula, so that it is understood to specify a set { x | φ } in an indirect
way. Note also that, though stratified comprehension gives us the means to
prove the existence of a great number of sets, it provides no direct method
of proving the non-existence of a certain alleged set. Stratification is a suffi-
cient, but not necessary, condition for sethood. Thus, even if the existence
of a set { x | x ̸∈ x } does not follow from stratified comprehension, since
x ̸∈ x is not stratified, we need Russell’s argument, i.e. that the existence
of such a set leads to contradiction, to conclude that it cannot exist.

If sets are perceived as extensions of predicates, the requirement of strat-
ification thus induces a principle of precaution: any extension defined in a
stratified way exists, and if there is no stratification for an alleged extension,
accept it as existing only if there is no strong argument to the contrary.

It follows from the axiom of stratified comprehension that there is a
universal set V = { x | x = x }, and for any set y, its complement y c =

{ x | x ̸∈ y } exists.
The axiom of stratified comprehension together with the axiom of ex-

tensionality constitutes the set-theoretic part of NF. We could choose to
adopt NF as our metatheory, but then we would face at least two problems.
First, as was shown by Specker (1953), NF proves the negation of the ax-
iom of choice, which makes it an unfriendly theory to work in. Second,
and more importantly, the consistency of NF remains an open problem.
To argue that NF is a suitable metatheory would be to beg the question on
its consistency.

Also, though Quine (1937, pp. 81–82) understood the variables of NF
as ranging over absolutely everything, including urelements, or non-sets,
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the axiom of extensionality in NF seems to imply that there can be at most
one urelement; urelements have no elements, so, under extensionality, they
are all identical. Quine solved this problem by stipulating that x ∈ y ↔
x = y whenever y is an urelement. If extensionality holds, this has as a
consequence that, if x is a urelement, x = {x}; for, clearly, x ∈ x ↔ x ∈
{x} for all urelements x. Thus, since {x} ̸= {y} for x ̸= y, urelements
are differentiated in a roundabout way by extensionality. But even if this
solution has the right consequences, it is nevertheless somewhat ad hoc.

Another way of imposing urelements in NF, suggested by Jensen (1968-
69), is to weaken the axiom of extensionality by restricting it to non-empty
sets:

Axiom 6.2.3 (Weak extensionality).

∀x∀y(∃z(z ∈ x) ∧ ∀z(z ∈ x ↔ z ∈ y) → x = y)

Weak extensionality together with stratified comprehension constitutes
NFU, which in many respects is quite different from NF. Jensen (1968-
69) proved that NFU + AC + Inf is consistent relative to ZFC.9 Thus, the
problems that made us avoid the adoption of NF as our metatheory are not
relevant as arguments against the adoption of NFU.

The binary operator ‘⟨ , ⟩’ was not part of NFU as originally formulated
by Jensen (1968-69), but is added for convenience. It is governed by

Axiom 6.2.4. ∀x, y, z,w(⟨x, y⟩ = ⟨z,w⟩ → x = z ∧ y = w)

In Definition 6.2.1 we stipulated that, if a formula contains an ordered
pair ⟨x, y⟩, the formula cannot be stratified unless the type of x is also the
type of y. We did not assign a type to the ordered pair itself—only variables
are assigned types—but we need some rule governing how to assign a type
to z in a stratified formula containing z = ⟨x, y⟩. It is convenient to let
pairs have the same type as their objects. I.e., if z = ⟨x, y⟩ appears in a
stratified formula with a stratification τ , then τ(z) = τ(x) = τ(y).

NFUp is NFU with the ordered pair operator ⟨ , ⟩, and Axiom 6.2.4.

9In fact, Jensen showed that NFU + AC + Inf is consistent relative to the simple theory
of (finite) types with AC and Inf.
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We construct complex names by means of definite descriptions in, more
or less, the standard way

ψ[(�x)(φ)] ⇔(∃!xφ→ ∀x(φ→ ψ))∧
(¬∃!xφ→ ∀x(x = ∅ → ψ))

Thus, if the condition φ of the description is satisfied by nothing, or by
more than one object, the definite description denotes the empty set.

Once we have ordered pairs, finite sequences may be inductively defined,
and n-ary relations may in turn be defined as sets of ordered n-tuples (i.e.
sequences with n terms), and n-ary functions as sets of ordered n+ -tuples
in the standard way. If a unary function f is defined as a set of ordered pairs
⟨x, y⟩, the type of f, in a stratified sentence, will be one higher than the type
of x and y; especially f (x) is of one type lower than f.

We define π as the projection function mapping ⟨x, y⟩ 7→ x. Thus, in
a stratified sentence, π (x), if defined for x, will have the same type as x.
The same holds for π , which is defined as the map ⟨x, y⟩ 7→ y. Given an
n-sequence y = ⟨y , y , . . . yn⟩, the function proj(i, y) = yi is definable in a
stratified way.10

It is worth noting that Peano Arithmetic (PA) is interpretable in NFUp.
The natural numbers are defined in Frege-Russell style as equivalence classes
on V under equipotence.11 is defined as {∅}. The successor (Sc) of a set
X of sets is defined as {x ∪ {y}|x ∈ X ∧ y ̸∈ x}. Thus, for instance, the
successor of = { x | x has exactly three members } will be the set =

{ x | x has exactly four members }. The set N of natural numbers is then
defined as the intersection of all inductive classes, i.e. classes Y such that
∈ Y ∧ ∀x(x ∈ Y → Sc(x) ∈ Y).12 The definitions of addition and

multiplication present no difficulties.

10See Holmes (1998, p. 40). A finite sequence ⟨y , y , . . . yn⟩ is defined as usual as
⟨y , ⟨y , ⟨. . . ⟨yn− , yn⟩ . . .⟩. proj(i, y) is defined as π (y) for i = , as πi− |π (y) for
< i < n, and as πn− for i = n. Here R |Q is the relative product of R and Q, Rn is

the nth power of R.
11Two sets are equipotent if there is a bijection between them.
12The existence of a set of the inductive classes follows immediately from stratified compre-

hension, and so does the intersection over any set of sets.

144



model theory with a universal domain

One worry here is that, since NFUp contains no explicit axiom of infin-
ity, we may find ourselves in the situation that there is a greatest natural
number. However, Rosser (1952) showed that the existence of ordered
pairs with the same type as their constituents implies the axiom of infinity.

The interpretability of PA in NFUp secures that we may use inductive
definitions. That is, if φ holds for 0 and, if it holds for the natural number
n, then it holds for n + , it follows that φ holds for all natural numbers.
The only requisite is that φ is stratified. In fact, since all formulas in the
language of PA are stratified, interpretability here implies that NFUp is a
conservative extension of PA, which in turn warrants the use of formulas
such as “x is a proof of φ”, in inductive proofs. We may also use recursion
to define a function F from a function G on natural numbers by means of
G(n, F(n)) = F(n+ ) if the arguments and the values are given the same
type in a stratification.13 This provides the tools we need in the next two sec-
tions, which introduce standard model-theoretic concepts and prove some
results about them.

6.2.2 Definitions of semantic concepts in NFUp

In this section we present a new semantics for absolute quantification by
constructing a model-theoretic semantics for first-order languages in NFUp.
As usual we arrive at a definition of truth in a model via satisfaction and
valuation. We make sure that all semantic concepts are given stratified
definitions. In that way their extensions in NFUp can be used to define
models and the intended extensions of the semantic concepts in the meta-
language become available in interpretations of the object language.

Though the study of a stratified satisfaction relation is a novel approach
to the study of absolute quantification, the idea of using a standard sat-
isfaction relation between formulas and structures in NFUp is not new.
Solomon Feferman (1974, 2011) uses NFUp to provide a foundation for
category theory and the general theory of structures.14 A first-order struc-
ture, A, is defined as a tuple of the following form

13See Holmes (1998, Chapter 12).
14Actually Feferman starts in NFUp, but eventually shows that an extension of that theory

is better suited for his project.
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A = ⟨M,R , . . . ,Rj, F , . . . , Fk,K , . . . ,Kl⟩

where each Ri is a relation on M, each Fi a function on M, and each Ki

a unit set {mi} of some element in M. Given a satisfaction relation, |=,
the model class, model(θ), of a formula θ is defined in the usual way as
{A | A |= θ}. Feferman associates with each formula θ a stratified formula
θ∗ such that model(θ) = {X | θ∗(X) }. Then, for example, Feferman can
express that the structure ⟨PO, Sub⟩, of all partially orderings, PO, ordered
under the substructure relation, Sub, is itself a partial ordering,

⟨PO, Sub⟩ ∈ PO,

by defining θ∗ in the right way. In that way certain natural statements in
the informal general theories of structures may be given a straightforward
formal representation. Similarly for certain category-theoretic statements.

However, Feferman makes no efforts to stratify |= and his structures, as
defined, are of finite signature. Thus, although Feferman’s investigations
are of considerable importance, further work needs to be done in order to
get what we want.

In certain respects interpretations, as defined here, may be conceived as
nominalisations of the second-order interpretations defined in Rayo and
Williamson (2003). The underlying idea is to take an interpretation to be
an ordered couple of a domain and a relation, where the relation is to hold
between an individual constant and the object named by it, and between
an n-ary predicate and the n-tuples of which it is true, and similarly for
function symbols. Thus, in contrast to standard first-order models, where
a unary predicate is interpreted as a subset of the domain of the interpreta-
tion, the relation in the interpretation as defined here relates the predicate
with each object in the domain of which it is true.

Assume that a generic syntax for first-order languages has been defined
in NFUp. In particular, assume for each n that the sets pred; n of n-ary
predicate symbols, func; n of n-ary function symbols as well as the sets
cons of individual constants and var of variables, are defined. For a par-
ticular language L , the set of n-ary predicates will then be the intersection
Lpred;n = L ∩ pred; n. Likewise for the other syntactic categories.

146



model theory with a universal domain

Definition 6.2.5.

INTL (M) ⇔ ∃M∃I(M = ⟨M, I⟩ ∧ ∃x(x ∈ M) ∧ I ⊆ L × V∧
∀x∀y∀n ∈ N(x ∈ Lpred;n ∧ ⟨x, y⟩ ∈ I → y ∈ Mn)∧
∀x∀y(x ∈ Lcons ∧ ⟨x, y⟩ ∈ I → y ∈ M ∧ ∀z(⟨x, z⟩ ∈ I → y = z))∧
∀x∀y∀n ∈ N(x ∈ Lfunc;n ∧ ⟨x, y⟩ ∈ I → y ∈ Mn+ ∧
∀z(z ∈ Mn+ ∧ ∀i ≤ n(proj(i, y) = proj(i, z)) ∧ ⟨x, z⟩ ∈ I →

proj(n+ , z) = proj(n+ , y))))

To stratify this, put τ(M) = τ(M) = τ(I) = and let every other
variable in the formula receive type . Note that, since a finite sequence
has the same type as its elements, M will receive the same type as M and I
in a stratified sentence. Note also that Mn, i.e. the n-time iterated product
of M, receives the same type as M.

Since INTL (M) has a stratified definition, it follows from stratified
comprehension that there is a set INTL in NFUp of L -interpretations.
Below we sometimes drop the subscript L .

Next we define the concept sequence inM:

Definition 6.2.6. ⟨x, y⟩ ∈ SEQ ⇔ x ∈ INT ∧ y : N → π (x)

We freely use the convention of writing M,N, etc. for π (M), π (N ),

etc., wheneverM,N are interpretations. Likewise, we use I for the second
component in an interpretationM, and if it is not clear from context which
I belongs to which interpretation, we index it with the interpretation.

Furthermore, since y in Definition 6.2.6 is a function from the natural
numbers to the domain of x, in a stratified sentence τ(x) = τ(y). Hence,
SEQ is stratified.

Definition 6.2.7. If INTL (M) for some language L , then the set of
sequences in M, SEQM, is defined as the set co-domain(SEQ ↾ {M}).

The next step consists in defining a valuation (of terms) under some given
M and s ∈ SEQM:

Definition 6.2.8. Let INTL (M) and s ∈ SEQM. Then x ∈ VALM,s if
and only if x is an ordered pair ⟨t, v⟩, t ∈ Lterm and
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1. if t is a variable xi, then v = s(i)

2. if t is a constant c, then v = (�z)(⟨t, z⟩ ∈ I)

3. if t = f n(t , . . . , tn) then
v = (�z)(⟨ f n, ⟨VALM,s(t ), . . .VALM,s(tn), z⟩⟩ ∈ I)

where VALM,s(t) = (�z)(⟨t, z⟩ ∈ VALM,s).

This formula is stratified with τ(x) = τ(t) = τ(v), and thus, given an
interpretation M and a sequence s in M, NFUp proves the existence of
VALM,s. Furthermore, an easy induction on the complexity of t shows that
VALM,s is a function. It is also (quite) easy to see that there is a function
VAL taking an interpretation and a sequence as arguments and giving a
valuation. VALM,s is the value of this function for the arguments M and
s.

Definition 6.2.9. The relation |= between an interpretationM, a sequence
s ∈ SEQM and a formulaφ,M, s |= φ, is inductively defined on the com-
plexity of φ:

1. if φ is ti = tj : M, s |= φ⇔ VALM,s(ti) = VALM,s(tj)

2. if φ is Pn(t , . . . , tn):
M, s |= φ⇔ ⟨Pn, ⟨VALM,s(t ), . . . ,VALM,s(tn)⟩⟩ ∈ I

3. φ is ¬ψ: M, s |= φ⇔ not M, s |= ψ

4. φ is ψ ∨ ξ: M, s |= φ⇔ M, s |= ψ or M, s |= ξ

5. φ is ∃xiψ: M, s |= φ⇔ ∃m ∈ π (M)(M, s[m/i ] |= ψ)

The definition of |= will be stratified if τ(M) = τ(s) = τ(φ). The
only tricky part is VALM,s(ti) which is supposed to have one type below I,
which in turn has the same type as M. But since

VALM,s(ti) = (�v)(⟨ti, v⟩ ∈ VALM,s)

= (�v)(⟨ti, v⟩ ∈ (�x)(⟨M, s, x⟩ ∈ VAL)
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we see that this is as it should: τ(x) = τ(M) = τ(I) = τ(v) + , where
τ(v) + is the type of VALM,s(ti) in a stratified sentence.

We define some standard semantic concepts:

Definition 6.2.10.

1. A sentence φ is true in M, M |= φ, if, and only if, there is a
s ∈ SEQM such that M, s |= φ.

2. φ is a logical consequence of Γ, Γ |= φ, if, and only if, M |= Γ

entails that M |= φ.

3. φ is a logical truth, |= φ, if it is a logical consequence of the empty
set.

As usual, ‘|=’ is ambiguous between the relation of a formula being sat-
isfied by a sequence in an interpretation and the relation of logical con-
sequence. There is also an intensional difference between ‘|=’ as defined
in NFUp, and ‘|=’ as defined in ZFC; a difference that supervenes on the
difference in the conception of sets in NFUp and ZFC. A natural question
is if there is also an extensional difference as to which sentences come out
as logical truths and which are logical consequences of which.

Before we tackle that question in the next section, we close this section
with some further facts:

Fact 6.2.11. Let MΠ = ⟨V, IΠ⟩, where IΠ is a relation between the sym-
bols of our semantic theory, i.e. ‘|=’, ‘INT’, ‘SEQ’, ‘VAL’ and their cor-
responding sets. Then MΠ ∈ INT.

Proof. Stratified comprehension and inspection of the definition of INT.

Fact 6.2.12. NFUp does not prove the existence of a model ⟨V, I∈⟩, where
I∈ holds between ‘∈’ and pairs ⟨s(i), s( j)⟩ if and only if NFUp ⊢ xi ∈ xj[ s ].

Proof. The existence of I∈ would make NFUp inconsistent by Russell’s
paradox: the complement of I∈[∈] ∩ { ⟨x, x⟩ | x ∈ V } is the Russell class.
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Fact 6.2.13. { x | x ̸|= P [x ] }, where P ∈ pred; , is not a set in NFUp.

Proof. Since NFUp proves ∃y(INT(y) ∧ ∀x(y |= P [x ] ↔ x ∈ F))
whenever F is a set, the existence of { x | x ̸|= P [x ] }, which has an un-
stratified membership condition, would make NFUp inconsistent. This is
essentially Williamson’s argument.

6.2.3 Completeness

One way to prove that the two consequence relations, i.e., the one in NFUp

and the one in ZFC, are extensionally equivalent is to use soundness and
completeness. We know that |= as defined in ZFC is coextensive with ⊢,
for some appropriate first-order calculus. So, if |= as defined in NFUp is
coextensive with ⊢ as well, the two relations are extensionally indistinguish-
able.

Now, while the soundness part of this argument is obvious, the com-
pleteness part needs an argument. One way to prove completeness is to
show, as a lemma, that each consistent theory has a model. We may then
use the fact that, if a sentence φ is not deducible from a set of sentences Γ,
Γ∪¬φ is consistent. It follows from the lemma that Γ∪¬φ has a model,
which implies that φ is not a logical consequence of Γ. Hence, Γ ̸⊢ φ

implies Γ ̸|= φ. Contraposition gives that Γ |= φ implies Γ ⊢ φ.15

The standard proof of the lemma involves a function taking individual
constants to their equivalence classes (assuming that identity belongs to
the language). However, the existence of such a function is problematic in
NFUp since its (obvious) definition is not stratified. So the needed function
may not exist. Hence, to prove the lemma, we cannot simply mimic the
standard proof. Moreover, intuitively it is far from obvious that a first-order
calculus should be complete with regard to our semantics. After all, some
classes that are sets in ZFC fail to be sets in NFUp, and vice versa, and thus,
some models of the one theory have no counterparts in the other.

It is thus an interesting fact that we nevertheless may prove the following
lemma:

15Since NFUp interprets PA, another, more direct, but perhaps less informative, way to
argue for completeness goes via the arithmetised Henkin proof.
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Lemma 6.2.14. Let T be a consistent theory in a denumerable language
LT. Then NFUp proves that T has a denumerable model.

Informal proof sketch. As usual, to get a witness complete extension of T
we make sure that each existential sentence is witnessed by some possibly
new individual constant. But, instead of adding a denumerable set of indi-
vidual constants and using the class of equivalence classes under provable
identity as the domain of quantification, we will use the individual con-
stants themselves as objects in the domain. Thus, whenever we need to add
a constant to witness a formula we also add that constant to the domain
and make sure that the extended theory does not prove it to be identical
to some individual constant already added. Consistency is then proved in
relation to the set of sentences saying that each constant in the domain is
different from every other constant in the domain. Once that has been
accomplished the proof proceeds in a standard way.

Proof. Let θ (x̄), θ (̄y), . . . be an enumeration of the LT-formulas such
that each formula occurs infinitely many times in a cofinal manner. Let
d , d , d , . . . be an enumeration of infinitely many individual constants
not in LT. We construct a maximally consistent and witness complete
theory T∞ such that T ⊆ T∞, and a set D∞ of individual constants not
in LT.

Let

T = T, and

D = {d }, where d ̸∈ LT

Assume that Tk andDk = {d , . . . dnk} have been constructed and consider
θk(x , . . . , xlk), where x , . . . , xlk are the free variables of θk. Substituting
the elements in Dk for the variables in θk yields nklk sentences which we
may assume to be ordered in some suitable way:

θk, , θk, , . . . , θk,nklk

Let D ̸= be {dx ̸= dy | dx, dy ∈ D ∧ x ̸= y}, put Tk, = Tk, Dk, = Dk,
and define
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T′
k,i =

{
Tk,i ∪ {θk,i} if Tk,i ∪ {θk,i} is consistent with D ̸=

k,i
Tk,i ∪ {¬θk,i} otherwise

We then proceed to define Tk,i+ .16

Tk,i+ =



T′
k,i ∪ {φ(d)} if θk,i is ∃yφ(y) and d is the smallest in-

dividual constant in Dk,i such that
T′
k,i ∪ {φ(d)} is consistent with D̸=

k,i

T′
k,i ∪ {φ(d)} if θk,i is ∃yφ(y), d is the smallest indivi-

dual constant not in Dk,i and T′
k,i ∪

{φ(d ′)} is inconsistent with D ̸=
k,i for

all d ′ ∈ Dk,i

T′
k,i otherwise

We also put

Dk,i+ =


Dk,i ∪ {d} if d /∈ Dk,i is used in the construction

of Tk,i+

Dk,i otherwise

Now, let

Tk+ = Tk,nk lk

and

Dk+ = Dk,nk lk

Finally, put

T∞ =
∪

k Tk

and

D∞ =
∪

kDk

16The kind of recursion used here is allowed since we do not violate the condition of strat-
ification explained on page 145.

152



model theory with a universal domain

To show that T∞ is consistent, we prove the stronger claim that T∞ is
consistent with D̸=

∞. This relative consistency is shown by induction over
k in

Tk is consistent with D̸=
k

When k = , Tk = T and D ̸=
k = ∅, so the claim holds. Assume that the

claim holds for some k. We show that it holds also for k+ , this time, by
induction over i in

Tk,i is consistent with D ̸=
k,i

Clearly, this holds for i = (by assumption). Assume it holds for some i
and consider θk,i. In order to show that Tk,i+ is consistent with D ̸=

k,i+ we
need to consider a number of cases:

1. θk,i is of the form ∃xφ.

a) There is a d ∈ Dk,i such that T′
k,i ∪ {φ(d)} is consistent with

D ̸=
k,i. Then Tk,i+ = T′

k,i ∪ {φ(d)} and Dk,i+ = Dk,i, which
gives the result.

b) There is no d ∈ Dk,i such that T′
k,i∪{φ(d)} is consistent with

D ̸=
k,i. Then we have two possibilities:

i. There is a d ′ ̸∈ Dk,i such that T′
k,i ∪{φ(d ′)} is consistent

with (Dk,i ∪ {d ′})̸=. Then Tk,i+ = T′
k,i ∪ {φ(d ′)} and

Dk,i+ = Dk,i∪{d ′}, which gives the relative consistency.

ii. There is no d ′ such that T′
k,i ∪ {φ(d ′)} is consistent with

(Dk,i ∪ {d ′}) ̸=. Then Tk,i+ = T′
k,i and Dk,i+ = Dk,i.

Thus, the relative consistency follows from the construc-
tion of T′

k,i.

2. θk,i is not of the form ∃xφ(x). Then, again, Tk,i+ = T′
k,i and

Dk,i+ = Dk,i so the relative consistency follows from the construc-
tion of T′

k,i.

Thus, if Tk is consistent with Dk, then Tk,i is consistent with D ̸=
k,i for all i,

and it follows that Tk+ is consistent with D ̸=
k+ . Hence, T∞ is consistent

with D ̸=
∞, so T∞ is consistent.
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T∞ is maximal if, for each LT∞-formula θ, either θ or ¬θ belongs to
T∞. Assume thus that θ ̸∈ T∞, meaning that, for all k, θ ̸∈ Tk. Now, for
some k andm, θ is θk,m. Since T′

k,m ⊆ Tk,m+ and θk,m ̸∈ Tk,m+ , it follows
that θk,m ̸∈ T′

k,m. But then, by the construction of T′
k,m, ¬θk,m ∈ T′

k,m,
which, again by the construction, gives that ¬θ ∈ T∞.

The witness completeness of T∞ follows directly from the construction.
Thus, T∞ is maximal, consistent and witness complete.

Next we want to construct a modelM such that, for each LT∞-sentence
θ, T∞ ⊢ θ iff M |= θ. If we put M = ⟨D∞, I⟩ the problem turns into a
problem of defining I. Define:

1. for all d ∈ D∞, ⟨d, d⟩ ∈ I

2. for all c ∈ Lcons, let ⟨c, d⟩ ∈ I for the unique d ∈ D∞ s.t.
T∞ ⊢ c = d

3. For all Pn ∈ Lpred let, for all di , . . . , din ∈ D∞,
⟨Pn, ⟨di , . . . , din⟩⟩ ∈ I if, and only if T∞ ⊢ Pn(di , . . . , din)

4. For all f n ∈ Lfunc let, for all di , . . . , din , din+ ∈ D∞,
⟨f n, ⟨di , . . . , din , din+ ⟩⟩ ∈ I if, and only if T∞ ⊢ f n(di , . . . , din) =
din+ .

T∞ ⊢ θ iff M |= θ is now proved by induction on the complexity of θ,
which shows that M is a model for T∞.

We restrict I to LT to get ⟨D∞, I ↾ LT⟩, which is a model for T.

Corollary 6.2.15. T |= φ⇒ T ⊢ φ

Corollary 6.2.16. Let T be a theory in a denumerable language. If T has
model, then it has a denumerable model.

6.3 Concluding remarks

The construction of a model-theoretic semantics in NFUp for absolute
quantification is a comforting result. It gives us the means to model the
semantics for any first-order language in such a way that the quantifiers
are interpreted to range over absolutely everything. Moreover, since each
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semantic concept is defined by a stratified formula, there is a model for
the semantic theory itself, formulated as a first-order theory. This takes
us as close as we can get to a first-order formulation of a strictly adequate
model-theoretic semantics for absolute quantification.

We cannot, in NFUp, hope for a model ⟨V, I⟩ for LNFUp such that
⟨V, I⟩ |= NFUp since the complement of the intersection of the image of
I under {∈} and the identity set, i.e. the set of all pairs ⟨x, x⟩, would be
the set of all pairs ⟨x, x⟩ such that x ̸∈ x, which we know doesn’t exist. But
this is not surprising. To construct a model-theoretic semantics we need
to pick a metatheory T to work in and by Gödel’s results we cannot, in T,
prove the existence of a model of T since that would constitute a proof of
the consistency of T.17

Just as Williamson suggests that we should learn to use higher-order lan-
guages as our home language we would suggest that one should use LNFUp

as our home language.18 And just as Williamson cannot provide a semantics
for the hierarchy of languages he suggests, we cannot provide a model for
LNFUp in NFUp. But whereas Williamson needed to go beyond natural
languages for semantic theorising, LNFUp is a first-order language that can
easily be couched in natural language.

The lack of an extension of ∈ in NFUp is reminiscent of Linnebo’s lack
of a property for η. We too must yield to the fact that we may not provide
the intended model for our adopted metalanguage within our constructed
semantics. This shows that the semantics fails to be syntactically strictly
adequate, but it is, which is a remarkable fact, semantically strictly adequate
with regard to sets as extensions of predicates.19 In particular, it resists the
argument from cardinality. The reason is that Cantor’s theorem does not
hold for |V | in NFUp, i.e., we do not have |V | < |℘V |. Moreover, because
of fact 6.2.13, the constructed semantics is not vulnerable to WA.

Finally, the completeness result shows that logical consequence behaves
in the right way for first-order languages in our meta-theory.

17That is, assuming that T is, in fact, consistent.
18We discussed Williamson’s suggestion in Chapter 5.
19As the reader recalls, we said on page 90 that semantic adequacy entails syntactic adequacy

if all contentful predicates have semantic values. In this case the antecedent fails for the
predicate for the membership relation and thus, so does the entailment.
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7 Concluding Remarks and Further Questions

Let us recapitulate. In Chapter 2 we discussed the theory of quantification
in Begriffsschrift and the notion of indefinite extensibility in Grundgesetze.
Indefinite extensibility has been taken to warrant the impossibility of ab-
solute quantification under the assumption that the quantifiers are always
restricted to a domain of quantification. But the commitment to a domain
of quantification as an entity over and above the objects quantified over is, it
may be argued, untenable. We said that the adoption of a model-theoretic
semantics, although it takes sets as domains of quantification, imposes no
new ontological commitments in addition to the objects quantified over
in the object languages. The key observation is that a model-theoretic se-
mantics uses sets to represent entities and structures without any claims of
being those entities and structures.

In Chapter 3 we discussed at some length the possibility of adopting
a set-theoretic version of Tarski’s domain free truth definition in CTFL
for absolute quantification. However, the requirement that our semantics
must allow for a definition of logical consequence made it impossible to
carry out the definition in a set theory with a well-founded membership
relation.

In Chapter 4 WA was discussed in detail. The main conclusion of that
chapter was that WA shows a particular definition to be faulty, rather than
constituting a reductio of absolute quantification. Moreover, no independ-
ent reason for the correctness of that definition has been given.

In Chapter 5 we critically reviewed three theories that in different ways
meet Willaimson’s challenge of providing an adequate semantics for abso-
lute quantification. Two of these theories adopt a type-theoretic framework
which is mainly motivated in three ways. First, WA is understood to say
that first-order quantification over interpretations (of first-order languages)
is paradoxical. Second, a variant of Cantor’s theorem is taken to show that
there must be more interpretations of predicates than individuals in order

157



all there is

for a semantics to be strictly adequate which, in turn, is taken to show that
we cannot use first-order quantification over individuals to generalise over
interpretations. Third, for a given language in the hierarchy it is possible to
show that there is a language with greater expressive power higher up in the
hierarchy that allows for a strictly adequate semantics for the first language.

The third theory we discussed, Linnebo’s theory on sets and properties,
resists the move to type-theoretic languages by adopting a restrictive theory
of properties that makes a premise of WA false.

We saw that the type-theorists face some difficulties. Since natural lan-
guage lacks higher-order quantifiers, concepts, and plural terms, it turns
out to be hard for the type-theorists to give a stringent presentation of their
semantics. Moreover, as Linnebo reminded us, certain concepts naturally
cut across types and are thus not available in a type-theoretic framework.
This holds for important semantic concepts, but also, as we saw, for the
concept of strict adequacy. We analysed strict adequacy into a semantic
and a substitutional version. The substitutional version was seen to give
rise to a Grelling type paradox which constitutes a dilemma for the type-
theorist: either he blocks the Grelling type paradox in a way that will block
WA as well, or his semantic theory will be inadequate in the substitutional
sense. Linnebo’s approach, which is not type-theoretic, is not affected by
these arguments.

Very much in sympathy with Linnebo’s approach, but in spite of his
reservations about NF style set theory, we argued in Chapter 6 that it is
possible use a non-standard set theory to develop a semantics for absolute
quantification. We saw how to construct a respectable first-order model-
theoretic semantics that allows for domains of quantification containing
absolutely everything. The semantics is strictly adequate in the semantic
sense. That is, for any possible semantic value of a predicate, there is a
model interpreting the predicate accordingly. It is not, however, strictly
adequate in the syntactic sense. In particular, the membership relation
cannot be given its intended extension. Thus, what we may claim to have
shown is that, given the membership relation and, for convenience, the
pairing operator, as primitives, one can construct a strictly adequate model-
theoretic semantics for first-order languages with absolute quantification.
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In particular, the concepts of the semantics may themselves be given their
intended interpretations in the semantics constructed.

7.1 Further questions

It is important to note in this context that stratified comprehension is not
by itself restrictive as to the existence of classes. Any class that has a strat-
ified definition exists and any alleged class lacking a stratified definition
may exist unless we have an argument why it shouldn’t exist. As long as the
resulting theory is consistent we are free to add classes that lack stratified
definitions. Indeed, Feferman (1974, 2011) uses an extension S∗ of NFUp

that has ZFC as a sub-theory. The idea is to add to LNFUp a constant for
the ZFC-universe and add variables ranging over this universe that may
have different types at different occurrences in the same stratified formula.
It is an interesting question if Linnebo’s theory can be interpreted by our
semantics as developed in S∗, or vice versa.

A second issue of interest concerns the consequence relation. A worry
that has been expressed concerning the possibility of developing a model-
theoretic semantics in NFUp is that, since not every subclass of V is a set,
the consequence relation would be inadequate. Corollary 6.2.15 proves
that this worry is uncalled-for in the first-order case. However, for other
cases, the relationship between the standard consequence relation and the
one defined in NFUp remains to be investigated. Such an investigation is
not completely straightforward. For instance, to define INT to include
models interpreting, e.g., second-level predicates, i.e., predicates taking
second-order variables as arguments, by letting I hold between such pre-
dicates and subsets of the domain would make the definition unstratified.
Thus, in order to compare the consequence relations in NFUp and ZFC
for higher-order languages, some semantics in NFUp for higher-order lan-
guages need to be constructed. That work remains to be done.

Finally, once we have the model-theoretic semantics for absolute first-
order quantification in place we may start asking questions about what it
would mean to have the domain of absolutely everything available as a do-
main of inquiry. Say that the extension of a formula φ with one free vari-
able in a model M, φM, is the set of all objects in the domain of M for
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which φ is true in M. Then we may define a quantifier corresponding to
‘absolutely everything’, QV, by

M |= QV xφ(x) if and only if φM = V

It is then natural to proceed to investigate what it would mean to add QV

to first-order logic.
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Sammanfattning

Sällan har vi för avsikt att prata om absolut allt som finns. Tvärtom, i vå-
ra vardagskonversationer är kvantifikation nästan alltid begränsad på ett
eller annat vis. Begränsningarna kan vara implicita, till exempel via en kon-
textuellt given bakgrundsdomän, eller explicita via syntaktiska mekanismer.
Men det verkar samtidigt finnas tillfällen då vi faktiskt strävar efter att kvan-
tifiera över absolut allting. Bara en illvillig lyssnare skulle förstå kvantifika-
torn som begränsad om en metafysiker påstod att ”Allting tillhör någon
ontologisk kategori”. På samma sätt gäller att en mängdteoretiker som för-
klarar att ”Ingenting är element i den tomma mängden” inte menar att
kvantifikatorn bara gäller för en begränsad domän utanför vilken det kan
finnas potentiella element som skulle kunna göra den tomma mängden
icke-tom trots allt. Ett tredje exempel är Aristoteles identitetslag – för all-
ting A gäller att A är A – som är tandlös om kvantifikatorn vore begränsad.

Men även om kvantifikation över absolut allting ter sig oproblematisk
i vardagsspråket är sådan kvantifikation likväl behäftad med intrikata och
svåra filosofiska problem. De mest utmanande härrör från de matematisk-
logiska paradoxerna. Så har Cantors paradox om det största kardinaltalet,
Burali-Fortis paradox om det största ordinaltalet och Russells klassparadox
alla använts i försök att visa att själva idén med absolut kvantifikation är
inkoherent. Argument av detta slag antar vanligen att kvantifikation alltid
förutsätter en domän bestående av de ting över vilka vi kvantifierar. Reso-
nemangen i paradoxerna används för att visa att varje sådan domän kan
expanderas till en mer omfattande domän och på så vis kan det inte finnas
någon största domän, än mindre en domän av absolut allting. Dummett
(1991) har kallat de begrepp med vilka vi bestämmer sådana domäner för
indefinit expanderbara och Russell (1907) har kallat de klasser, eller exten-
sioner, som hör till de begreppen, för självreproduktiva. Enligt argument
av detta slag finns det alltså ingen universell domän och följaktligen heller
inget sådant som absolut kvantifikation.
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En möjlig reaktion på argument som utgår från indefinit expanderbar-
het är att utmana intuitionerna om kvantifikatorerna i exemplen ovan och
acceptera slutsatsen att kvantifikation alltid är begränsad till något som är
mindre omfångsrikt än totaliteten av absolut allting. En sådan position kal-
lar vi generalitetsrelativism. Motsatt position, att kvantifikation kan vara sant
universell, benämns generalitetsabsolutism. Vi använder ’relativist’ respekti-
ve ’absolutist’ för respektive positions försvarare.

Trots att generalitetsrelativismen kan tyckas vara en naturlig position i
ljuset av indefinit expanderbarhet så är den samtidigt djupt problematisk.
Timothy Williamson visar i sin tankväckande och inflytelserika Everything
(2003) att, inte bara är relativisten oförmögen att artikulera sin egen posi-
tion på ett koherent sätt, han är också oförmögen att ge adekvata teorier
om generaliseringar över sorter och, vilket är viktigare, mening och sanning.
Williamson visar vidare att, givet vissa naturliga antaganden om kontexter
och språk, kan relativisten inte formulera sanningsvillkoren för en kontext-
känslig universellt kvantifierad utsaga i ett kontextkänsligt metaspråk.

Det relativisten önskar säga, enligt Williamson, är

(∗) för varje kontext C, och varje sats på formen ∀xφ, gäller att ∀xφ är
sann i C om och endast om varje element i C :s domän satisfierar φ i C.

Eftersom kvantifikation i metaspråket är kontextkänsligt gäller att den kon-
text i vilken (∗) yttras, låt oss kalla den CT, har en domän. Williamson på-
pekar att för en kontext C som instantierar (∗) erhåller vi villkoret att ∀xφ
är sann i C om och endast om varje element i snittet av C :s domän och
CT :s domän satisfierar φ i C. Alltså, för att (∗) ska ge rätt sanningsvillkor
för varje kontext C måste CT :s domän innehålla varje element i unionen
av domänerna för de C i vilken ∀xφ kan yttras. Men ett krav på en sådan
kontext ligger farligt nära ett krav på en kontext vars domän inbegriper ab-
solut allting. Alternativet att det finns något objekt som inte tillhör någon
av domänerna i de möjliga kontexterna för ∀xφ skulle innebära att CT :s
domän inte behöver inbegripa absolut allting. Men att det skulle finnas ett
sådant objekt, om ∀xφ är en sats i naturligt språk, ter sig osannolikt och
det är hursomhelst något som relativisten inte kan uttrycka.

Detta och liknande argument får Williamson att hävda att generalitets-
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relativism leder till en slags metalingvistisk pessimism i meningen att den
undergräver möjligheten till en reflexiv förståelse av vårt eget tänkande och
språk, även från ett metaspråkligt perspektiv.1 Uppgiften för absolutisten
blir att visa att givet hans förståelse av kvantifikation, så är en koherent
metalingvistisk reflektion faktisk möjlig.

Williamson hävdar att vanlig modellteoretisk semantik kan kritiseras på
samma grunder: i metaspråket för första ordningens modellteori säger vi
att varje modell har en mängd som domän; men varje objekt tillhör någon
mängd (så som sin egen enhetsmängd) och därför också någon domän till
en eller annan modell. Det följer att ingen modell har varje modell i sin do-
män. Alltså saknar varje formalisering av metateorin i ett första ordningens
språk en standardmodell.2 Enligt Williamson är modellteoretisk semantik
i sin standardformulering alltså inte bara inadekvat för absolut kvantifika-
tion på grund av avsaknaden av en universell mängd, utan också eftersom
det inte finns en standardmodell för teorin själv.

I avhandlingen argumenterar jag för att vi inte behöver ge upp idén om
en första ordningens modellteoretisk semantik för absolut kvantifikation.
Absolutisten kan mycket väl formulera en modellteoretisk semantik som
inte drabbas av Williamsons kritik. En sådan formulering kommer innehål-
la ”modell”, ”satisfierar” och ”evaluering” bland sina predikat. En modell,
MΠ, för ett sådant språk kommer, likt varje modell för ett första ordning-
ens språk, innehålla en domän, MΠ, för kvantifikation och en funktion IΠ

som tolkar predikaten i språket. I kapitel 6 definierar jag MΠ i mängdteo-
rin NFUp som är Quines NF med urelement och en primitiv paroperator.
De modeller i MΠ som har den universella mängden som sin domän är
modeller för absolut kvantifikation. Semantiken som definierats visas vara
fullständig med avseende på vedertagna klassiska bevissystem. Sålunda är
begreppet första ordningens konsekvens i den nya semantiken extensionellt
ekvivalent med begreppet härledbar, vilket i sin tur implicerar att det är
extensionellt ekvivalent med första ordningens konsekvens i vanlig modell-
teoretisk semantik. Alltså avviker inte den i NFUp definierade modellteo-
retiska semantiken väsentligen från vanlig modellteoretisk semantik.

1Williamson (2003, s. 452).
2Williamson (2003, s. 446).
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Men att vi kan definiera en semantik i NFUp implicerar inte att vi bör
göra det och det är klart att vår nya semantik behöver motiveras ytterligare.
Kapitel 2–5 är ämnade att ge en slags motivering, delvis genom att kom-
mentera diskussioner och motargument som återfinns i litteraturen. Nedan
följer en kort summering av de viktigaste diskussionerna i respektive kapi-
tel.

En naturlig utgångspunkt för ett arbete om semantiken för absolut kvan-
tifikation är Gottlob Freges arbeten. En anledning är att han införde ett lo-
giskt system i sin Grundgesetze der Arithmetik (1893,1903) i vilket Russells
paradox kan härledas. Sålunda försåg han oss (oavsiktligt) med ett av de
mest inflytelserika argumenten mot absolut kvantifikation. Ytterligare ett
skäl är att han, enligt gängse läsningar, begagnade, eller avsåg att begagna,
absolut kvantifikation genom att låta sina första ordningens kvantifikatorer
kvantifiera över absolut alla objekt.

Frege var klar över syntaxen och i viss utsträckning även semantiken för
kvantifikation redan i sin första bok om logik, Begriffsschrift, eine der arit-
metischen nachgebildete Formelsprache des reinen Denkens (1879). I första
delen av kapitel 2 utmanar jag den allmänt vedertagna uppfattningen att
Frege ämnade kvantifiera över absolut allting i det verket. Närmare bestämt
argumenterar jag för att kvantifikatorerna däri bäst förstås i termer av sub-
stitution. Det vill säga, istället för att ∀xφ är sann om och endast om φ är
sann för alla värden på x, så hävdar jag att kvantifikatorerna i Begriffsschrift
gör den sann om och endast om φ är sann för alla legitima substitutions-
instanser av x. Då vi endast kvantifierar över namngivna objekt – om vi
överhuvud taget kvantifierar över något – vid substitutionskvantifikation,
så räcker det att anta existensen av ett objekt som inte denoteras av något
uttryck i Begriffsschrift, för att vederlägga absolut kvantifikation däri.

I andra delen av kapitel 2 diskuterar jag Dummetts inflytelserika argu-
ment, som stammar ur hans analys av Grundgesetze, att absolut kvantifi-
kation är inkoherent då det finns indefinit expanderbara begrepp. Richard
Cartwrights Speaking of Everything (1994) ger ett intressant svar på det-
ta argument. Cartwright gör gällande att det är missvisande att anta, som
Dummett gör, att det måste finnas en definit kollektion av de objekt vi
kvantifierar över utöver objekten själva. Cartwrights svar är intressant i sig,
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men det ger oss också skäl att diskutera relationen mellan modellteoretisk se-
mantik och ontologiska åtaganden i objektspråket. Ett potentiellt problem
som tycks följa ur att vi kvantifierar över, och därmed antar existensen av,
domäner i metaspråket är att ett objektspråk med absolut kvantifikation
verkar ärva metaspråkets ontologiska åtagande till domäner. Därmed tycks
det som att vi trots allt, via en omväg i metaspråket, förutsätter just en
definit kollektion av de objekt vi kvantifierar över när vi i objektspråket
kvantifierar över absolut allting. Vi avslutar kapitel 2 med en diskussion
som reder ut denna fråga.

För att konstruera en modellteoretisk semantik behöver vi definiera rela-
tionen, M |= φ, som råder mellan en sats φ och en modell M när φ är
sann i M. Alfred Tarski var först med att ge en formell definition av den-
na relation, men han gav den inte, som det ibland påstås, i The Concept of
Truth in Formalized Languages (1935).3 Däri definierar Tarski sanning för
formaliserade språk, alltså språk som liknar formella språk i det att de har
en precis syntax men skiljer sig från dem i det att de är meningsfulla utan att
stå i en relation till en tolkning eller modell. En intressant aspekt av Tarskis
definition är att den inte innehåller någon explicit begränsning på kvantifi-
katorerna. Frågan om det är möjligt att modifiera hans metod att definiera
sanning till att passa språk med absolut kvantifikation är därför naturlig.
Jag diskuterar den frågan i första delen av kapitel 3 och visar att Tarskis
användning av Husserls semantiska kategorier i metaspråket omöjliggör en
sådan modifikation. Eftersom variablerna (i metaspråket) för evalueringar
med nödvändighet tillhör en annan semantiska kategori än variablerna i ob-
jektspråket, verkar det i princip omöjligt att kvantifiera över evalueringar
i objektspråket. Alltså, från det metaspråkliga perspektivet finns det något
som vi inte kvantifierar över i objektspråket, och följaktligen kvantifierar vi
inte över absolut allting.

I den andra delen av kapitel 3 föreslås två sätt att komma runt problemet
som Husserls kategorier ger upphov till i samband med absolut kvantifika-
tion. Det första alternativet gör gällande att Husserls semantiska kategorier
inte nödvändigtvis behöver innebära nya ontologiska åtaganden i metasprå-

3Den första tryckta definitionen av begreppet sann i en modell tycks förekomma i Tarski
och Vaught (1957). Se Hodges (1985/6) för en diskussion.
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ket. Detta alternativ ligger nära typhierarkiska semantiska teorier som söker
undvika en ontologi utöver den som är given i den lägsta typen. Jag disku-
terar två sådana teorier i kapitel 5. Den andra lösningen består i att ersätta
Husserls kategorier med mängdteoretiska konstruktioner.

Intresset för modellteoretisk semantik förklaras till stor del av dess för-
måga att ge adekvata definitioner av logiska relationer mellan satser. Till
exempel är den modellteoretiska definitionen av logisk konsekvens av fun-
damental betydelse. I tredje delen av kapitel 3 visar jag att semantiken som
följer av att ersätta Husserls kategorier med ZF, även om den ger en korrekt
sanningsdefinition, inte ger en definition av logisk konsekvens. En intres-
sant orsak till detta är regularitetsaxiomet, som gör ∈ välgrundad. I kapitel
6 använder vi istället NFUp vars ∈-relation inte är välgrundad.

Dummetts argument, att indefinit expanderbara begrepp visar på inko-
herensen hos absolut kvantifikation, är formulerat i en mängdteoretisk anda
och vilar på antaganden om mängder och klasser. Ett liknande argument,
som däremot inte gör några antaganden om mängder eller klasser, ges av
Williamson (2003). Argumentet presenteras som ett reductio av antagan-
det om absolut kvantifikation. Utöver antagandet om absolut kvantifika-
tion används ytterligare två premisser. Den första gör gällande att, givet
ett 1-ställigt predikat i objektspråket, så finns, för varje möjligt semantiskt
värde på predikatet, en tolkningsfunktion som tilldelar predikatet det se-
mantiska värdet ifråga; särskilt gäller detta för de semantiska värdena som
predikaten i (det tolkade) metaspråket antas ha. En semantik med denna
egenskap sägs vara strikt adekvat. Den andra premissen är att en viss defi-
nition av ett metaspråkligt predikat är legitim. Även om argumentet inte
gör några antaganden om mängder eller klasser har det analyserats i termer
av indefinit expanderbarhet av till exempel Glanzberg (2004) och Parsons
(2006).

Williamsons argument har en central roll i den samtida diskussionen om
absolut kvantifikation och hela kapitel 4 ägnas åt det. Efter att ha presen-
terat argumentet diskuterar jag Glanzbergs och Parsons olika analyser. Jag
ger också en alternativ analys som ligger närmare Dummetts användning av
indefinit expanderbarhet. Slutligen visar jag att Williamsons argument bäst
förstås som ett reductio av legitimiteten av definitionen av det föreslagna
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predikatet i metaspråket, snarare än antagandet om absolut kvantifikation.
Det betyder särskilt att så länge vi inte inför en princip som garanterar de-
finitionens legitimitet så påverkas inte projektet att ge en modellteoretisk
semantik för absolut kvantifikation av Williamsons argument. Kapitel 4
vilar på ett gemensamt arbete med Christian Bennet.4

I kapitel 5 diskuterar jag tre teorier som på olika sätt tar sig an Willi-
amsons utmaning om att konstruera en strikt adekvat semantik för absolut
kvantifikation. Två av teorierna är typteoretiska: både Williamson (2003)
och Rayo (2006) använder högre ordningens språk i konstruktionen av se-
mantiken, men de skiljer sig åt i sina analyser av de högre ordningarnas
kvantifikatorer. Williamson föreslår att högre ordningens kvantifikatorer
ska tolkas som att de kvantifierar över begrepp och Rayo föreslår att de kan
tolkas i högre ordningens plurallogik. Både Williamson och Rayo argumen-
terar för att högre ordningens kvantifikatorer inte nödvändigtvis medför att
vi förskriver oss till entiteter utöver de objekt som faller inom räckvidden
för första ordningens kvantifikation.

Både Williamsons och Rayos teorier innehåller en oändlig hierarki av
högre ordningens språk. Det är möjligt att ge en strikt adekvat semantik
för varje nivå i hierarkin, men det finns ingen nivå som tillåter en strikt
adekvat semantik för ett språk som innehåller alla nivåer i hierarkin. Det
visar sig också att begreppet strikt adekvans inte är definierbart från någon
nivå i hierarkin, vilket gör det tveksamt om det kan användas för att mo-
tivera ett typteoretiskt angreppssätt. Det faktum att vissa tillsynes oproble-
matiska begrepp inte kan definieras inifrån en typhierarki tillåter konstruk-
tionen av ett dilemma för en typteoretiker som motiverar det typteoretiska
angreppssättet med hjälp av Williamsons argument. Dilemmat utgår ifrån
en motsägelse som visar att antingen är det typteoretiska angreppssättet i
sig motsägelsefullt, eller så är ett tillsynes väldefinierat predikat illegitimt.
Men om ett predikat kan sägas vara illegitimt på sådana grunder möjliggörs
ett liknande svar på Williamsons argument. Därmed neutraliseras William-
sons argument som skäl att anamma det typteoretiska angreppssättet.

Linnebo (2006) föreslår ett intressant alternativ till det typteoretiska an-
greppssättet. I avsaknad av en universell mängd, och på grund av de mängd-

4Se Bennet och Karlsson (2008).
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teoretiska paradoxerna, utgör ZFC ett otillräckligt ramverk för en adekvat
semantik för absolut kvantifikation. En naturlig reaktion är därför att ge
upp idén om ZFC som metateori. Linnebo argumenterar dock för att en
sådan reaktion är alltför drastisk och föreslår att ZFC utökas med en teori
om egenskaper. Den resulterande teorin behöver vara tillräckligt stark för
att tillåta konstruktionen av en adekvat semantik och samtidigt undvika
Williamsons argument på ett sätt som visar att teorin för egenskaper inte är
en ad hoc-lösning. Kapitel 5 avslutas med en diskussion av Linnebos idéer.

Efter en kort diskussion om de vanligaste invändningarna utvecklar jag
i kapitel 6, delvis inspirerad av Linnebos angreppssätt, den modellteoretis-
ka semantiken för absolut kvantifikation som beskrivits tidigare i denna
sammanfattning.
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