
Abstract

Parameter identification problems are frequently occurring within biomedical applications.
These problems are often ill-posed, and thus challenging to solve numerically. Previously,
it has been suggested that minimization of the Tikhonov functional using a time-adaptive
finite element method could be useful for determining the drug efficacy for treatment of HIV
infection. In this thesis, the suggested method was implemented and numerically tested in
MATLAB. The results, however, suggested that the method might be unsuitable for these
kinds of problems; instead, elementary methods were found to be more plausible.
The methods presented in the thesis can eventually be used by clinicians to determine the
drug-response for each treated individual. The exact knowledge of the personal drug efficacy
can aid in the determination of the most suitable drug as well as the most optimal dose for
each individual, in the long run resulting in a personalized treatment with maximum efficacy
and minimum adverse drug reactions.

Sammanfattning

Parameteridentifieringsproblem är vanligt förekommande inom biomedicinska tillämpningar.
Dessa är ofta illaställda, och därmed sv̊ara att lösa numeriskt. I ett tidigare arbete föreslogs
att minimering av Tikhonovfunktionalen med hjälp av en tidsadaptiv finita elementmetod
kunde användas för att identifiera läkemedelseffektiviteten vid behandling av HIV-infektion.
I detta arbete har den föreslagna metoden implementerats och testats numeriskt i MATLAB.
Resultaten antydde emellertid att metoden är olämplig för denna typ av problem; istället
visade sig elementära metoder vara mer lämpade.
Metoderna som presenteras i denna uppsats skulle i framtiden kunna användas av läkare för
att bestämma det individuella läkemedelssvaret för varje patient. Detta skulle i det l̊anga
loppet kunna leda till en personlig behandling med maximal effektivitet och minimal inci-
dens av biverkningar.

i

Acknowledgments

First and foremost, I want to sincerely thank associate Professor Larisa Beilina, who has
allowed me to do this project, and been wisely guiding me through it. She has been the
most friendly and encouraging supervisor imaginable.
I also want to thank my family from the bottom of my heart, for the financial support that
has made my studies possible - thank you so much for believing in me. And finally, my
friends, and in particular my very special friend Johanna Hörberg, who has had patience
with my absent-mindedness when writing my thesis, deserve my heartfelt gratitude.

ii

Contents

1 Introduction 1

2 Preliminaries 2
2.1 Inverse problems and ill-posedness . 2

2.1.1 Quasi-solution . 3
2.1.2 The Tikhonov functional . 4

2.2 Curve fitting . 7
2.2.1 Numerical solution of linear least squares problems 7
2.2.2 Interpolating splines and smoothing splines 9

3 The model problem 11
3.1 Existence, uniqueness and stability of forward problem 12

3.1.1 Existence and Lyapunov stability of steady state 12
3.1.2 Well-posedness of the forward problem 15

3.2 Tikhonov functional and Lagrangian . 16
3.2.1 Fréchet differential and derivation of the adjoint system 17

3.3 Finite element approximation of the model problem 18
3.3.1 A posteriori error estimates . 19

4 Numerical methods 20
4.1 Newton’s method for forward and adjoint problems 20

4.1.1 Forward problem . 20
4.1.2 Adjoint problem . 21

4.2 Minimization algorithms . 23
4.2.1 The conjugate gradient algorithm . 23
4.2.2 Choice of regularization parameter γ 23

4.3 Analytical determination of η at observation points 25
4.3.1 Error estimates for central differences 25
4.3.2 Improving accuracy of differentiation 27

5 Computational results 29
5.1 Numerical study of the forward problem . 29
5.2 Direct solution methods for the inverse problem 32

iii

5.2.1 Sparsely distributed observations . 33
5.2.2 Continuous observations at a time-subinterval 39

5.3 Improving the results . 42
5.3.1 Cases when solution can be improved 43
5.3.2 Cases when the solution cannot be improved 44

6 Discussion and conclusion 47

A Reverse transcriptase inhibitors 49

B Matlab programs 51
B.1 Programs used in both problems . 51

B.1.1 η calculator . 51
B.1.2 Forward problem solver . 52

B.2 Identification of η with sparsely distributed observations 54
B.2.1 Main program . 54

B.3 Identification of η with continuous observations 58
B.3.1 Main program . 58
B.3.2 Subprograms . 66

Bibliography 80

iv

Abbreviations

CGM = conjugate gradient method
FEM = finite element method
HIV = human immunodeficiency virus
LHS = left hand side
ODE = ordinary differential equation
PIP = parameter identification problem
RHS = right hand side
RT = reverse transcriptase
SVD = singular value decomposition

v

Index of notation

Since I do not strive to be possible to understand, but rather impossible to misunderstand,
I think it is appropriate to clarify the exact meaning of certain symbols used in this thesis.
Symbol Meaning
⊆ ... is a subset of ...
⊂ ... is a proper subset of ...
N {1,2,3, ...}.
R(F) Range of F .
D(F) Domain of F .
Bε[p] {x : ||x− p|| ≤ ε}.
C(Ω) Continuous functions defined on Ω.
Ck Space of k times continuously differentiable functions.
C∞0 Space of compactly supported smooth functions.
Pk Space of k’th degree polynomials.
Srk Spline space: {s ∈ Cr : s|τ ∈ Pk}.
Sk Same as Srk with r = k − 1.

H1(Ω) W 1
2 (Ω) = {u ∈ L2(Ω) : ∂u

∂xj
∈ L2(Ω), j = 1, ..., n}, with corresponding Sobolev norm.

L2(Ω) Space of square integrable functions on Ω, with scalar product (f, g) =
∫

Ω fḡdx <∞.

vi

Chapter 1

Introduction

Inverse problems are of great importance in many applications, but unfortunately, they are
often ill-posed and therefore regularization methods are required for their numerical solution.
To solve these problems efficiently, adaptive finite element methods (FEM) for coefficient in-
verse problems [2, 5] and parameter identification problems [13, 15, 16] have been developed.
In this thesis we will test the adaptive FEM method suggested in [3, 4] to solve systems of
initial value ODE problems, in particular for identifying the drug efficacy parameter in a
model of HIV infection under treatment of a reverse trancriptase (RT) inhibitor.

The thesis is organized as follows. Chapter 2 gives the reader an introduction to ill-
posed problems and Tikhonov regularization, and also a brief review of the curve fitting
techniques that are used in this work. In Chapter 3, the model problem is presented, and
it is argued that Tikhonov regularization is applicable to this problem; furthermore, the
Lagrangian corresponding to the problem is defined and the adjoint problem is derived. In
Chapter 4, the numerical methods used in the thesis are presented: Newtons method, for
solving the forward and adjoint problems; the conjugate gradient method (CGM) for finding
the minimum of the Tikhonov functional; and numerical differentiation, which is required for
direct solution of the inverse problem. In Chapter 5 the computational results are presented,
demonstrating the possibility of the reconstruction of drug efficacy for different number of
observations in time, and different noise levels at measured data, using only elementary
methods. Finally, in Chapter 6 we discuss the results and their utility in clinical practice.
The appendices contain an introduction to the mechanism of HIV infection and the MATLAB
programs used in our numerical simulations.

1

Chapter 2

Preliminaries

2.1 Inverse problems and ill-posedness

Let us consider the following problem:
Let B1 and B2 be Banach spaces. Let G ⊆ B1 be an open set in B1 and F : G → B2 an
operator. Let y ∈ B2 be given, and suppose we want to find x ∈ G such that

F (x) = y. (2.1)

Problems of this sort, when you want to identify x in (2.1), given observations, y, are called
inverse problems. A special class of inverse problems are called parameter identification
problems (PIP), i.e. x is some parameter of a differential equation, and F (x) is the solution
of the differential equation, with this parameter.

Definition 1. Problem (2.1) is said to be well-posed by Hadamard if it satisfies the following
conditions [18]:

1. Existence: For each y ∈ B2 there is an x = x(y) such that F (x) = y.

2. Uniqueness: For each y ∈ B2 there is not more than one x = x(y) such that F (x) = y.

3. Stability: For each y such that a unique solution of (2.1) exists, the solution x = x(y)
is a continuous function of y 1.

Definition 2. Problem (2.1) is said to be ill-posed if it is not well-posed.

PIP and other inverse problems are often ill-posed. Ill-posedness means that it is difficult
to solve (2.1) numerically, since measurement errors, or even errors induced by finite-precision
computer arithmetic, can have disastrous consequences. Let y∗ denote noiseless observations,

1We will call a problem well-conditioned if it is well-posed and such that a small change in data results
in a small change in the solution. A problem may be well-posed but still ill-conditioned; even if x(y) is
continuous it might still be very sensitive to changes in y.

2

δ > 0 be the noise level, and Bδ[y
∗] = {y : ||y − y∗||B2 ≤ δ}. The solution to the slightly

perturbed equation F (x) = yδ (with yδ ∈ Bδ[y
∗]) could be entirely different from the solution

to F (x) = y∗. Perhaps a solution to F (x) = yδ does not even exist. No matter how small δ
is. A generally ill-posed problem (2.1) can be well-posed if we consider the restriction of F
in (2.1) to certain subsets of its domain.

Definition 3 (Conditional well-posedness). Let B1 and B2 be Banach spaces. Suppose
G ⊂ B1 is the closure of an open subset in B1. Let F : G → B2 be a continuous operator.
Assume that y∗ ∈ F (G) is our ideal noiseless data, and pick a noise level δ > 0. Suppose we
want to solve

F (x) = yδ, (2.2)

where yδ ∈ Bδ[y
∗]. This problem is called conditionally well-posed on G if it satisfies the

following conditions [18]:

1. Existence: It is a priori known2 that there exists an ideal solution x∗ = x∗(y∗) ∈ G
for an ideal noiseless data y∗.

2. Uniqueness: The operator F : G→ B2 is one-to-one.

3. Stability: The inverse operator F−1 is continuous on F (G).

Definition 4. The set G in Definition 3 is called the correctness set of the problem (2.2).

Continuity of the inverse operator F−1 can be guaranteed if the domain of F is compact.
Hence, any compact set with nonempty interior such that F is one-to-one is a correctness
set. This suggests a method to solve (2.2) by choosing a suitable correctness set, G, and
then finding a x ∈ G such that ||F (x)− yδ|| is as small as possible.

Theorem 1 (Tikhonov [29]). Let B1 and B2 be Banach spaces, and U ⊂ B1 a compact set.
Let F : U → B2 be a continuous one-to-one operator and V = F (U). Then F−1 : V → B1

is a continuous operator.

For a proof of this important theorem see, for example [7, 29].

2.1.1 Quasi-solution

Let H1 and H2 be Hilbert spaces3, and assume that F : G → H2 is a continuous mapping
defined on a compact correctness set, G ⊂ H1. Let δ > 0 and assume, as before, that we
want to solve

F (x) = yδ, (2.3)

2The rationale behind this is the assumption that the problem to be solved is a model of some natural
phenomenon. And since the phenomenon apparently exists, a solution of the equation describing it must
also exist. At least if we assume that the natural phenomenon in question is exactly represented by the
mathematical model.

3We require that the spaces are Hilbert spaces, rather than arbitrary Banach spaces in order for the
closest point property to hold. However, it suffices that they are so-called reflexive Banach spaces, see [12].

3

with yδ defined as before. We know that a solution exists for perfect data y∗, but in general
(2.3) has no solution, since yδ /∈ F (G) (implying that we are dealing with an ill-posed
problem). Our goal in this, and the following subsection is to sketch how to construct a
family of approximate solutions {xδ} in G that converges to x∗ as δ → 0. Let us define

Jyδ(x) = ||F (x)− yδ||2B2
. (2.4)

Since F is continuous, it takes compact sets to compact sets, thus F (G) is compact in B2.
And since F (G) is a compact subset of a Hilbert space, and therefore closed, a minimum of
(2.4) exists (and if F (G) also happens to be convex, this minimum is unique). Any x ∈ G,
unique or not, that minimizes Jyδ in (2.4) is called a quasi-solution to (2.3).
Since the inverse mapping, F−1, is continuous by Theorem 1 and defined on a compact
metric space, it admits a modulus of continuity, ωF−1

4 From Theorem 1.5 in [7] it follows
that, given yδ ∈ B2, then for any xqδ ∈ arg minx∈G Jyδ(x) the following error estimate holds:

||xqδ − x
∗||B1 ≤ ωF−1(2δ), (2.6)

where ωF−1(z) is the modulus of continuity of the inverse operator F−1. Thus xqδ → x∗ as
δ → 0. Hence, we can take a sequence of quasi-solutions to be our desired family.
However, sometimes the set of all plausible solutions, to (2.3) does not form a compact
set. In these cases, the inverse mapping F−1 need not be continuous on the image of the
plausible solutions F (G), and the minimum of (2.4) may not exist. Such problems are called
essentially ill-posed.
Furthermore, even if the set of plausible solutions is compact, there is no guarantee that
the minimum of (2.4) is unique (unless G is also convex), and even if the global minimum
is unique, there might exist local minima, or regions where the gradient of the functional is
very small, such that a minimization algorithm could get trapped. In the next subsection,
we will discuss how a stable solution to essentially ill-posed problems could be obtained in
practice.

2.1.2 The Tikhonov functional

The Tikhonov functional makes sure that when minimizing (2.4), we will stay in the neigh-
bourhood of some point, x0, which is a priori known to be close to the true solution, x∗. A
general Tikhonov functional is given below

Jγ(x) =
1

2
||F (x)− y||2B2

+
γ

2
||x− x0||2B1

. (2.7)

4A modulus of continuity is a function ω : [0,∞]→ [0,∞] such that

lim
x→0+

ω(x) = ω(0) = 0. (2.5)

The function f admits ω as a modulus of continuity if and only if ||f(x)−f(y)|| ≤ ω(||x−y||). In particular,
f has a modulus of continuity if and only if it is uniformly continuous.

4

The first term is essentially the same as in (2.4), the second term is the regularization term
and γ := γ(δ) is the regularization parameter.
In this subsection, we will show that minimization of the Tikhonov functional is a powerful
tool for solving many ill-posed problems. We will start by proving that there exists a min-
imizing sequence. The proposition below is conceptually equivalent to the construction of
the minimizing sequence in Section 1.7 of [7], except that we do not require that the set Q is
a proper dense subset of H1. The proposition stays true with the same proof if H1 and H2

are Banach spaces, but let us stick to Hilbert spaces from now on. We say that a subspace
A ⊆ B is compactly embedded in B, if the embedding operator is a compact operator.

Proposition 1. Let H1 and H2 be Hilbert spaces. Let Q ⊆ H1 be a compactly embedded
subspace of H1 with nonempty interior, and assume that G ⊆ Q is a closed set with nonempty
interior and no isolated points. Let F : G→ H2 be a one-to-one operator that is continuous
in the norms of H1 and H2. Assume that F (x∗) = y∗ for some x∗ ∈ G and y∗ ∈ H2. Let
{δk}∞k=1 be a sequence of noise levels such that δk > 0 ∀k and δk → 0 as k → ∞. Let
γ : (0,∞)→ (0,∞) be a function such that

δk → 0 =⇒ γ(δk)→ 0 ∧ δ2
k

γ(δk)
→ 0. (2.8)

Define the Tikhonov functional as

Jk(x) =
1

2
||F (x)− yδk ||2H2

+
γ(δk)

2
||x− x0||2Q, (2.9)

where ||yδk − y∗|| < δk, and x0 ∈ G. Then there exists a sequence, {xk}, corresponding to
Jk(x), such that xk → x∗ as k →∞.

Proof. For y such that ||y − y∗|| < δk, we obtain

Jk(x
∗) =

1

2
||y∗ − y||2Q +

γ(δk)

2
||x∗ − x0||2Q ≤

δ2
k

2
+
γ(δk)

2
||x∗ − x0||2Q. (2.10)

Let
mk = inf

x∈G
Jk(x), (2.11)

by (2.10)

mk ≤ Jk(x
∗) ≤ δ2

k

2
+
γ(δk)

2
||x∗ − x0||2Q, (2.12)

then there exists an xk such that

mk ≤ Jk(xk) ≤
δ2
k

2
+
γ(δk)

2
||x∗ − x0||2Q. (2.13)

Using (2.13) in (2.9) for x = xk yields

1

2
||F (xk)− y∗||2H2

+
γ(δk)

2
||xk − x0||2Q ≤

δ2
k

2
+
γ(δk)

2
||x∗ − x0||2Q. (2.14)

5

This implies that for all δk > 0 such that limk→∞ γ(δk) and
δ2k

γ(δk)
→ 0 we have

||xk − x0||2Q ≤
δ2
k

γ(δk)
+ ||x∗ − x0||2Q → ||x∗ − x0||2Q. (2.15)

Thus, {xk} is bounded in G ⊆ Q. Since Q is compactly embedded in H1, there exists a
subsequence to {xk} that converges in (H1, || · ||H1) (without loss of generality, and for ease
of notation, we can assume that it is {xk} itself). And since all xk ∈ G and G is closed, it
must actually converge in G. Assume that it converges to x̂ ∈ G. Then, since yδk → y∗ and
γ(δk)→ 0 as k →∞

lim
k→∞

Jk(xk) =
1

2
||F (x̂)− y∗||2H2

, (2.16)

but from (2.13) it follows that
lim
k→∞

Jk(xk) = 0, (2.17)

thus
1

2
||F (x̂)− y∗||2H2

= 0, (2.18)

and since we assumed that F was one-to-one we can conclude that x̂ = x∗.

The regularization parameter satisfying conditions (2.8) can be chosen as, for instance

γ(δ) = δ2µ, (2.19)

where µ ∈ (0, 1). However, the proposition does not tell us how to find a minimizing sequence
in practice. So, assume that we have a single noise level and our goal is to minimize (2.7).
Assume the same conditions as in the previous proposition, and let γ be defined as above
(2.19). Choose a ξ ∈ (0, 1), then it can be proven [17] that there exists a δ0 such that

δ ∈ (0, δ0) =⇒ ||xk − x∗|| ≤ ξ||x0 − x∗||, (2.20)

in particular it follows that if (2.7) attains a minimum, any x ∈ arg min J(x) would be a
better approximation to x∗ than x0, if the noise level is small enough.
In general, the Tikhonov functional (2.7) might not actually attain its infimum; we can only
guarantee the existence of the minimizing sequence, {xk}. However, without loss of gener-
ality, we can assume that G is the closure of an open and bounded set containing the initial
guess, x0, the (bounded) minimizing sequence, {xk}, and the exact solution, x∗. Hence, if we
consider finite dimensional Hilbert spaces, the Tikhonov functional, defined on G, would have
a minimum, since closed and bounded sets on finite dimensional Hilbert spaces are compact,
and functionals defined on compact sets attain their infimum according to the Weierstrass’
extreme value theorem. In numerical mathematics, we always work in finite dimensional
spaces, so in practice (2.7) always has a minimum if the initial guess is contained in G.

6

Suppose now that G is convex and that (2.7) is Fréchet differentiable5, with a Fréchet deriva-
tive that is uniformly bounded and Lipschitz continuous. Then one can prove [7, 8] that
for given noise level and regularization parameter (2.7) is locally strongly convex in a neigh-
bourhood of its minimum and that x∗ is also contained in this neighbourhood if ||x∗ − x0||
is small enough. Thus, if x0 is chosen properly, the unique zero of the Fréchet derivative of
(2.7) is its global minimum.
Thus, to sum up, under reasonable assumptions discussed above, a minimum of (2.7) exists
and is a better approximation than the starting guess, x0. And under reasonable assump-
tions, and if the initial guess is good enough, there is only one unique point that is the
global minimum, and we do not need to worry about local minima. These facts explain why
Tikhonov regularization is so useful for solving ill-posed problems.
To find the zero of the Fréchet derivative, one can use common minimization techniques,
such as the conjugate gradient method (CGM) or the method of steepest descent.
Obviously, the minimum of the Tikhonov functional will not be exactly the same as the
quasi-solution if the noise level and regularization parameter are constants. On the other
hand, by letting γ decrease for each iteration of the minimization algorithm we will have
a minimum of the Tikhonov functional that approaches the quasi-solution. In [1] it was
suggested that γ can be updated as

γk =
γ0

(k + 1)p
, (2.22)

where p ∈ (0, 1] and k = 0, 1, 2,
From what have been discussed, it is clear that a good first guess is essential for successful
identification of the desired parameter. Of course, we do not in general have any idea at
all what the solution to (2.1) might be, and therefore, in general, we need to devise some
kind of globally convergent algorithm to solve ill-posed PIP. This is beyond the scope of this
thesis, however. But we will discuss how to obtain a reasonable first guess for this particular
problem in later chapters.

2.2 Curve fitting

In this section we will briefly review the curve fitting techniques used in the thesis.

2.2.1 Numerical solution of linear least squares problems

By the Stone-Weierstrass theorem, any continuous function defined on a closed interval of
the reals, [a, b] may be arbitrarily closely approximated by a polynomial. And by Taylor’s

5A continuous linear operator between Banach spaces A : B1 → B2 is called the Fréchet derivative of the
operator T : B1 → B2 at x ∈ B1 if

lim
||h||→0

||T (x+ h)− T (x)−Ah||
||h||

= 0. (2.21)

7

theorem any k times differentiable function can be approximated by a polynomial of degree
k − 1 or less in the neighbourhood of some point, a, with an error of at most Ra(x) =
fk(ξ)
k!

(x − a)k with ξ ∈ (min{x, a},max{x, a}) (these well-known facts can be found in any
textbook on analysis, such as [25]).
These theoretical results suggest that polynomials are very versatile for fitting function
graphs to sets of data, which they indeed are. The typical first step to fit a polynomial,
p(x) = c1 + c2x + ... + cnx

n−1 to data, y = (y1, y2, ..., ym)T , by linear least squares, is to
construct the so-called Vandermonde matrix

A =


1 x1 x2

1 x3
1 . . . xn−1

1

1 x2 x2
2 x3

2 . . . xn−1
2

...
...

...
...

. . .
...

1 xm x2
m x3

m . . . xn−1
m

 , (2.23)

of the time-mesh x1 < x2 < ... < xm, and then consider finding c = (c1, c2, ..., cn)T such that

Ac = y, (2.24)

with y = (y1, y2, ..., ym)T , which in general has no solution, since the system is usually pur-
posefully overdetermined in order to smooth out noise or inaccurate measurements. There-
fore we want to find the solution c that is, in some sense, closest to solving (2.24); more
precisely, we want to minimize:

f(c) = ||Ac− y||22, (2.25)

where y = (y1, y2, ..., ym)T are the observations, and c = (c1, c2, ..., cn)T are the coefficients
of the fitting polynomial.
The most common methods, which can be used to minimize (2.25), are the method of nor-
mal equations, QR-factorization and singular value decomposition (SVD) [6, 11]. The most
accurate, but also most computationally demanding method is SVD.
The problem with the solution of the minimization problem minc ||Ac−y||22, using the Vander-
monde matrix, is that as the degree of the polynomial increases, the Vandermonde matrix
quickly becomes very ill-conditioned, and eventually so ill-conditioned that it is indistin-
guishable from a singular matrix within machine precision. As a rule-of-thumb one can fit
polynomials up to degree 18 by using the Vandermonde matrix and standard techniques for
solving linear least squares, such as QR factorization or SVD; beyond that, erratic results
are obtained due to ill-conditioning of the Vandermonde matrix [6].
Various methods have been suggested to deal with matrices so severely ill-conditioned that
even SVD fails, including methods based on Tikhonov regularization, or various iterative
methods [30]. But since the Vandermonde matrix might be ill-conditioned beyond working
precision, not even these sophisticated methods will do if you are required to fit a very high
degree polynomial to obtain reasonable accuracy. Furthermore fitting a high degree polyno-
mial to data frequently results in undesirable oscillating behaviour of the interpolant, known
as Runge’s phenomenon (Figure 2.1).

8

0 200 400 600 800 1000
Time

0

500

1000

1500

2000

2500

3000

3500

4000

H
IV

 p
ar

tic
le

s

Runge's phenomenon

Exact solution
Best 19th degree polynomial approximation

Figure 2.1: Runge’s phenomenon exhibited by the model problem (3.1) considered in Chapter 3 of
this thesis. The figure shows how the number of viruses changes over time under treatment of a
RT-inhibitor with efficacy η = 0.7.

To overcome these pitfalls, it is often better to use piecewise polynomials of low degree,
so-called spline functions, rather than a single high degree polynomial. Splines of degree n
are functions in Cn−1, which are also piecewise Pn; we will denote the set of all spline func-
tions as Sn. The basis functions, B-splines, for Sn have bounded support, and hence unlike
the Vandermonde matrix, the coefficient matrix of the B-splines is a (well-conditioned) band
matrix. Another advantage with B-splines over the Vandermonde matrix is that, whereas a
single outlier in the data could have potentially huge impact on the interpolant if the Van-
dermonde matrix is used, outliers will only affect points in the neighbourhood of the outlier
if B-splines are used, due to their bounded support.

2.2.2 Interpolating splines and smoothing splines

The accuracy when fitting splines to data points increases as the number of B-splines used
increases. If you have n data points, you can at most use n+2 cubic B-splines. If you use the
maximum number of B-splines, the function will pass exactly through each of the data points.
However, since the data obtained is typically contaminated with noise in most practical
situations, a curve exactly fitted to the data points would actually not be a particularly
good approximation to the true noiseless data; one would say that the curve is overfitted to

9

the data. To avoid overfitting, we may use regularization techniques to add a penalty term
that forces the interpolant to be a sufficiently smooth function.

Cubic smoothing splines

Assume that we have noisy observations, y1, y2, ..., ym of an unknown function, f : R → R,
at the points x1, x2, ..., xm. The least squares problem is to find the c = (c1, c2, ..., cn) that
best fits the data

min
c

m∑
i=1

[yi − f̂(xi, c)]
2, (2.26)

where f̂(x, c) = c1φ1(x) + c1φ1(x) + ...+ cnφn(x), and φj are cubic B-splines. That is, to find

the f̂ ∈ S3 that is closest to f .
Cubic smoothing splines are regularized, such that the cubic spline function, f̂ , has a bounded
second derivative (indicating that there are not too many abrupt changes in the curvature
of the function graph). More formally, our goal is to minimize the functional J : S3 → R
defined as:

J(c) =
m∑
i=1

[yi − f̂(xi, c)]
2 + λ

∫ xm

x1

f̂ ′′(x, c)2dx, (2.27)

that is, find c0 such that
c0 = arg min

c∈Rn
J(c). (2.28)

When the parameter λ = 0, we have just ordinary interpolating splines, and when λ → ∞
we obtain linear regression. Typically, it is best when λ is a small number, just sufficient to
avoid overfitting, but still obtaining a good fit to the data points.

10

Chapter 3

The model problem

Our model problem, which was developed in [27], is the system of ODE given by:
u̇1 = s− ku1u4 − µu1 + (ηα + b)u2,

u̇2 = ku1u4 − (µ1 + α + b)u2,

u̇3 = (1− η)αu2 − δu3,

u̇4 = Nδu3 − cu4,

(3.1)

where u1 represents uninfected T cells, u2 – pre-RT infected T cells, u3 – post-RT infected
T cells, and u4 virus (see Appendix A for explanation of the terms).

Parameter Value Units Description

s 10 mm−3day−1 inflow rate of T cells

µ 0.01 day−1 natural death rate of T cells

k 0.000024 mm3day−1 interaction-infection rate of T cells

µ1 0.015 day−1 death rate of infected cells

α 0.4 day−1 transition rate from pre-RT infected T cells class
to post-RT class

b 0.05 day−1 reverting rate of infected cells return to uninfected
class

δ 0.26 day−1 death rate of actively infected cells

c 2.4 day−1 clearance rate of virus

N 1000 virions/cell total number of viral particles produced by an in-
fected cell

Table 3.1: Table of parameters.

11

Let the time domain considered in our problem be denoted as

ΩT = [0, T] (3.2)

Let us assume that the parameter η in (3.1), corresponding to the drug efficacy, is unknown,
but contained in the set of admissible functions, Mη:

Mη = {η ∈ C(ΩT) : t ∈ ΩT =⇒ η(t) ∈ (0, 1), t /∈ ΩT =⇒ η(t) = 0}, (3.3)

furthermore, we will assume that all the other parameters, {s, µ, k, µ1, α, b, δ, c, N}, are
known and defined as in Table 3.1, and that the solution to (3.1) in a certain subset, Ωobs,
of the entire time domain, ΩT , is known through noisy observations, g.

Inverse Problem 1. Assume that all parameters, {s, µ, k, µ1, α, b, δ, c, N}, in the model
problem (3.1) are known, and defined as in Table 3.1. Find η(t) ∈ Mη, satisfying (3.3),
assuming that the following function is known

u(t) = g(t), t ∈ Ωobs ⊆ ΩT . (3.4)

The function g(t) represents observations of the function u(t), which solves (3.1), inside the
observation set Ωobs.

Remark 1. It is easy to see that Mη is a convex set: take α ∈ [0, 1] and η1, η2 ∈ Mη. Set
c(t) = αη1(t) + (1− α)η2(t), then for each t ∈ ΩT it is obvious that 0 < min{η1(t), η2(t)} ≤
c(t) ≤ max{η1(t), η2(t)} < 1. That is c(t) ∈Mη.

3.1 Existence, uniqueness and stability of forward prob-

lem

According to the discussion in the previous chapter, Tikhonov regularization is useful for
solving a PIP if the forward problem is well-posed by Hadamard, and the set of possible
parameters is a convex set. In this section we will prove that the required conditions are
fulfilled. But let us first review and elaborate on the results from [27].

3.1.1 Existence and Lyapunov stability of steady state

Let us now assume that the parameter η in system (3.1) is constant. That is, η(t) ≡ c ∈ (0, 1).
Setting the LHS in (3.1) to zero and solving for u1, u2, u3 and u4 we can see that there are
two possible steady states: an infected and an uninfected one [27].
The uninfected steady state is given by

u1 = s
µ
,

u2 = 0,

u3 = 0,

u4 = 0,

(3.5)

12

and the infected steady state is achieved when
u1 = (µ1+α+b)c

Nαk(1−η)
,

u2 = s−µu1
µ1+α(1−η)

,

u3 = α(1−η)u2
δ

,

u4 = Nδu3
c
.

(3.6)

In [27] was shown that the infected steady state can exist only when η is less than the
following critical value

ηcrit = 1− µc(µ1 + α + b)

Nαks
. (3.7)

For our system of parameters, presented in Table 3.1, this critical value is ηcrit ≈ 0.88375.
Whenever η ≥ ηcrit only the uninfected steady state can exist.
Plugging in the values of Table 3.1 into (3.6) when η < ηcrit, or (3.5) if η ≥ ηcrit, we obtain
the numerical values for solutions (u1, u2, u3, u4)T of (3.1) presented in the Table 3.2.

η u1 u2 u3 u4

0.0 116 21 33 3549
0.1 129 23 32 3483
0.2 145 26 31 3402
0.3 166 28 30 3298
0.4 194 32 29 3162
0.5 233 36 27 2975
0.6 291 41 25 2702
0.7 388 45 21 2269
0.8 581 44 14 1469
0.9 1000 0 0 0
1.0 1000 0 0 0

Table 3.2: Stable steady states for different values of η, while keeping the other parameters fixed.

Boundedness and stability of solutions

Let us define 
µm = min{µ, µ1},
Ξ = s

µm
,

Φ := Φ(η) = αs(1−η)
µmδ

,

Ψ := Ψ(η) = Nαs(1−η)
µmc

,

(3.8)

where µ, µ1, s etc. are the parameters of (3.1). Consider the set

Γ(η) = {(u1, u2, u3, u4) ∈ R4 : 0 ≤ u1 ≤ Ξ, 0 ≤ u2 ≤ Ξ, 0 ≤ u3 ≤ Φ, 0 ≤ u4 ≤ Ψ}. (3.9)

13

It can be proven [27] that if u(0) ∈ Γ(η), then the solution trajectories of (3.1) will stay
inside Γ(η) for all t ∈ ΩT .

Remark 2. It is not required that η is constant. As long as η ∈ Mη, we may allow η(t) to
vary with time.

For our parameters presented in Table 3.1, these bounds are quantitatively defined as
0 ≤ u1 ≤ 1000,

0 ≤ u2 ≤ 1000,

0 ≤ u3 ≤ 1538.5(1− η),

0 ≤ u4 ≤ 166667(1− η).

(3.10)

For various values of η, the following upper limits apply for u3 and u4:

η 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
u3 1538 1384 1230 1076 923 769 615 461 307 153
u4 166666 150000 133333 116666 100000 83333 66666 50000 33333 16666

Table 3.3: Upper limit for the positive invariant set Γ(η). The integer parts of fractional numbers
is always reported as the upper bound.

It can furthermore be proven that if and only if η ≥ ηcrit the uninfected state is globally
asymptotically Lyapunov stable. On the other hand, if the steady state exists, then it is
locally asymptotically Lyapunov stable whenever the following condition is satisfied [27]

∆C − A2D > 0, (3.11)

where

A = µ+ ku4 + µ1 + α + b+ δ + c,
B = (c+ δ)(α + µ1 + µ+ ku4 + b) + cδ + µ(µ1 + α + b) + ku4(µ1 + (1− η)α),
C = cδ(µ+ ku4) + (c+ δ)(µµ1 + µα + µb+ µ1ku4 + (1− η)αku4),
D = cδku4(µ1 + α(1− η)),
∆ = AB − C.

(3.12)

We can calculate that, when η is constant and the other parameter values are chosen as in
Table 3.1, then the infected steady state is locally asymptotically stable for all values of η
such that η is less than the critical value, ηcrit ≈ 0.88 (Figure 3.1).

14

0 0.2 0.4 0.6 0.8 1
Value of η

-1

-0.5

0

0.5

1
2
D

2 D as a function of η

2D
Critical value of η

Figure 3.1: ∆C −A2D plotted as a function of η. Note that ∆C −A2D > 0 ∀η < 0.88.

Thus, if η is constant, and less than the critical value ηcrit ≈ 0.88, it suffices to know the
solution of (3.1) at steady state to deduce η.
Although it is often a reasonable assumption that the drug efficacy is constant for a given
individual, viruses mutate readily, which can alter the efficacy of a RT-inhibitor. Thus, it is
interesting to know how to determine η(t) when it is not constant. So let us for the remainder
of this thesis consider the case when η(t) is not necessarily constant.

3.1.2 Well-posedness of the forward problem

Let us define f = (f1, f2, f3, f4)T as the RHS of (3.1):
f1 = s− ku1u4 − µu1 + (ηα + b)u2,

f2 = ku1u4 − (µ1 + α + b)u2,

f3 = (1− η)αu2 − δu3,

f4 = Nδu3 − cu4.

(3.13)

Let η0 = η(0). Assume that we have an initial value u(0) ∈ Γ(η0), where Γ(η) is defined
as in (3.9) and ΩT = [0, T]. Then f(u, t) is clearly Lipschitz continuous on the compact
set Γ(η) × ΩT (and now η is allowed to vary with time). Thus, using the Picard-Lindelöf
theorem (Theorem 2.2 in [28]) one can prove that, for given u(0), (3.1) has a unique solution.
Furthermore, the solution depends continuously on η in the following sense (Theorem 2.8 in
[28]): if ||f(t, u, η1)− f(t, u, η2)|| < ε, then

||u(t, η1)− u(t, η2)|| ≤ ||u(0, η1)− u(0, η2)||eLt +
ε

L

(
eLt − 1

)
, (3.14)

where L is the Lipschitz constant. If the initial values are equal, then on ΩT = [0, T], we
have

||u(t, η1)− u(t, η2)|| ≤ ε

L

(
eLT − 1

)
= Cε. (3.15)

15

And since f is clearly continuous with respect to η it follows that the solution to (3.1) must
be continuous with respect to η.
Hence, we can define a continuous operator F (η) = u(η), such that the initial value is chosen
in the set Γ. To see when F is one-to-one, suppose that there exists η1(t) 6= η2(t) such
that u(t, η1) = u(t, η2), then it follows from (3.1) that u̇(t, η1) 6= u̇(t, η2) unless u2(t, η1) =
u2(t, η2) = 0. But if u2(t) = 0 then it must also be the case that u3(t) = 0 and u4(t) = 0. In
practical terms, this means that for our model problem, we can guarantee that F is one-to-
one whenever a HIV infection is present (that is, if at least one of u2, u3 or u4 is nonzero).
To sum up, we have shown that:

1. For each η ∈ Mη there exists a unique solution, u(η) to (3.1), such that we can define
an operator F : Mη → C1 as F (η) = u(η).

2. F is one-to-one whenever the initial value of (3.1) is not of the type (x, 0, 0, 0).

3. F is continuous with respect to η.

4. Mη is a convex set.

And from this we can conclude that it is theoretically possible to solve Inverse Problem 1
by the methods described in Chapter 2.

3.2 Tikhonov functional and Lagrangian

Let H be the Hilbert space of functions defined in ΩT . It has previously been suggested
[3, 4] that η could be determined by minimizing the following Tikhonov functional

J(η) =
1

2

4∑
i=1

∫ T2

T1

(ui(t)− gi(t))2zζ(t)dt+
1

2
γ

∫ T

0

(η − η0)2dt, (3.16)

where u(t) is the solution calculated from (3.1), g(t) is the observed solution and η0 is a first
guess for the desired parameter η. The function zζ ∈ C∞0 is a bump function introduced to
make J(η) continuous in the entire time interval [0,T]:

zζ(t) =


1, for t ∈ [T1 + 2ζ, T2 − 2ζ],

0, for t ∈ [T2 − ζ, T2] ∪ [T1, T1 + ζ],

∈ (0, 1), for t ∈ (T2 − 2ζ, T2 − ζ) ∪ (T1 + ζ, T1 + 2ζ),

(3.17)

where ζ > 0 is some very small number (for a construction of such a function, see e.g.
Chapter 2 of [19], Lemma 2.20, 2.21 and 2.22). It can be proven that (3.16) is Fréchet
differentiable and locally strongly convex in a neighbourhood of the exact solution η∗ (see [8]
or Chapter 1.9 of [7]). This, together with the convexity of Mη, implies that, if η0 is chosen
to be close enough to η∗, a necessary and sufficient condition for a point to be the (unique)

16

global minimum of (3.16) in Mη is that it is a stationary point with respect to η.
Since we want to minimize (3.16) under the condition that u is a solution to (3.1), we will
introduce the Lagrangian

L(ν) = J(η) +
4∑
i=1

∫ T

0

λi(u̇i − fi)dt, (3.18)

where λ is the Lagrange multiplier, ν = (η, u, λ) and f is defined as in (3.13).

3.2.1 Fréchet differential and derivation of the adjoint system

Let us define the following spaces

H1
u(ΩT) = {f ∈ H1(ΩT) : f(0) = 0},

H1
λ(ΩT) = {f ∈ H1(ΩT) : f(T) = 0},

U = C(ΩT)×H1
u(ΩT)×H1

λ(ΩT).
(3.19)

We use the same ”heuristic” approach to find the Fréchet differential as in [3, 4], where we
assume that u, λ and η can be varied independently. The result is the same as for a rigorous
calculation of the Fréchet differential. Let us consider the difference L(ν + ν̄)− L(ν):

L(η + η̄)− L(η) = γ

∫ T

0

(ηη̄ + η0η̄ +
1

2
η̄2)dt− α

∫ T

0

u2(λ1 − λ3)η̄dt. (3.20)

Neglecting 1
2
η̄2, we get

L′η(η)(η̄) = 0,∀η̄ ∈ C(ΩT) =⇒ γ

∫ T

0

(η + η0)η̄dt− α
∫ T

0

u2(λ1 − λ3)η̄dt = 0,

∀η̄ ∈ C(ΩT). (3.21)

We also have

L′λ(λ)(λ̄) = 0,∀λ̄ ∈ H1
λ(ΩT) =⇒

=⇒


∫ T

0
(u̇1 − s+ ku1u4 + µu1 − (ηα + b)u2)λ̄1dt = 0,∫ T

0
(u̇2 − ku1u4 + (µ1 + α + b)u2)λ̄2dt = 0,∫ T

0
(u̇3 − (1− η)αu2 + δu3)λ̄3dt = 0,∫ T

0
(u̇4 −Nδu3 + cu4)λ̄4dt = 0,

∀λ̄ ∈ H1
λ(ΩT). (3.22)

Finally, note that∫ T

0

λi(u̇i − fi)dt = λi(t)ui(t)
∣∣∣T
t=0
−
∫ T

0

λ̇iui −
∫ T

0

λifidt =

= C −
∫ T

0

λ̇iui −
∫ T

0

λifidt,

(3.23)

17

by partial integration. C is a constant that vanish when taking the difference L(u+ū)−L(u),
thus neglecting nonlinear terms we get:

L′u(u)(ū) = 0,∀ū ∈ H1
u(ΩT) =⇒

=⇒



∫ T2
T1

(u1 − g1)zζ ū1dt−
∫ T

0
(λ̇1 − λ1ku4 − λ1µ+ λ2ku4)ū1dt = 0,∫ T2

T1
(u2 − g2)zζ ū2dt−

∫ T
0

(λ̇2 − λ2(µ1 + α + b) + λ1(ηα + b) + (1− η)αλ3)ū2dt = 0,∫ T2
T1

(u3 − g3)zζ ū3dt−
∫ T

0
(λ̇3 − λ3δ + λ4Nδ)ū3dt = 0,∫ T2

T1
(u4 − g4)zζ ū4dt−

∫ T
0

(λ̇4 − λ4c+ λ1ku1 + λ2ku1)ū4dt = 0,

∀λ̄ ∈ H1
u(ΩT). (3.24)

To find minimum of (3.18) we should have

L′(η, u, λ)(η̄, ū, λ̄) = 0,∀(η̄, ū, λ̄) ∈ U. (3.25)

From (3.22) it follows that we should solve the forward problem (3.1), and from (3.24) it
follows that we also should solve the following adjoint problem

λ̇1 = λ1ku4 + λ1µ− λ2ku4 + (u1 − g1),

λ̇2 = λ2(µ1 + α + b)− λ1(ηα + b)− (1− η)αλ3 + (u2 − g2),

λ̇3 = λ3δ − λ4Nδ + (u3 − g3),

λ̇4 = λ4c+ λ1ku1 − λ2ku1 + (u4 − g4),

λi(T) = 0, i = 1, . . . , 4.

(3.26)

which should be solved backwards in time, with λ(T) = 0. Existence and uniqueness is
proved similarly to the forward problem.

What remains, in order to minimize (3.18) is thus to solve equation (3.21).

3.3 Finite element approximation of the model prob-

lem

We introduce the piecewise linear (for u and λ) and piecewise constant (for η) finite element
spaces

W u
τ (ΩT) = {f ∈ H1

u : f |J ∈ P 1(J)∀Jτ},
W λ
τ (ΩT) = {f ∈ H1

λ : f |J ∈ P 1(J)∀Jτ},
W η
τ = {f ∈ L2(ΩT) : f |J ∈ P 0(J)∀Jτ}.

(3.27)

The norms are the ones induced from the spaces H1 and L2; since the FEM spaces are finite
dimensional, the norms for all three spaces will be equivalent. We also define the space

Uτ = W u
τ ×W λ

τ ×W η
τ . (3.28)

18

The finite element method of (3.25) is: find ντ ∈ Uτ such that ∀ν̄ ∈ Uτ

L′(ντ)(ν̄) = 0. (3.29)

This FEM formulation can be used to formulate a time-adaptive algorithm for the PIP [3, 4].
But since regularization was not found to be very useful for this particular problem, we will
not do this in this thesis.

3.3.1 A posteriori error estimates

Refinement of the time mesh, if it was used, would be based on the following theorem.

Theorem 2 (A posteriori error estimate for the Tikhonov functional [4]). Assume there
exists a η ∈ H1(ΩT) such that η = arg min J(η), where J is defined as (3.16). Let ητ ∈ W q

τ

be a finite element approximation of η. Then

||J(η)− J(ητ)||L2(ΩT) ≤ CIC||J ′(ητ)||L2(ΩT) max
τJ

τ−1
J ||[ητ]||L2(ΩT) (3.30)

with C and CI being positive constants, [ητ] being the jump of ητ over [tk−1, tk] and [tk, tk+1],
and

J ′(ητ) = γ(ητ − η0)− αu2τ (λ1τ − λ3τ) (3.31)

In [4] it was recommended that the time mesh is refined where (3.31) is largest.

19

Chapter 4

Numerical methods

4.1 Newton’s method for forward and adjoint prob-

lems

The Newton-Raphson method, or just Newton’s method, is a well-known iterative method
of finding approximations to the zeroes of a real-valued function. It is used as the basis for
our algorithms for solving the forward (3.1) and adjoint (3.26) problems.

4.1.1 Forward problem

Let f be chosen as in (3.13), and let us rewrite (3.1) as

∂u

∂t
= f(u(t)). (4.1)

First, we discretize (4.1) in time (0,T) as

uk+1 − uk

τ
= f(uk+1), (4.2)

where uk+1, uk are discrete values of the function u at time moments k + 1, k, respectively,
and τ is the uniform time step, τ := tk+1 − tk. Now we extract uk+1 value from (4.2) to get

uk+1 = τf(uk+1) + uk. (4.3)

The equation (4.3) can also be written as

uk+1 − τf(uk+1)− uk = 0. (4.4)

To solve the nonlinear equation (4.4) we will use Newton’s method. Let us introduce the
new variable υ and define υ := uk+1. Then (4.4) can be written as

F (υ) := υ − τf(υ)− uk = 0. (4.5)

20

Now we apply Newton’s method to (4.5) for finding the function υ:

υn+1 = υn − (F ′(υn)−1) · F (υn). (4.6)

Using definition of F (υ) we can find F ′(υn) in (4.6) as:

F ′(υn) = I − τf ′(υn), (4.7)

where I is the identity matrix and f ′(υn) is the Jacobian of f at υn, or J(υn) = f ′(υn).
In the case of our function f given by (3.13), the Jacobian can be computed as

J(υn) =



∂f1

∂u1

∂f1

∂u2

∂f1

∂u3

∂f1

∂u4
∂f2

∂u1

∂f2

∂u2

∂f2

∂u3

∂f2

∂u4
∂f3

∂u1

∂f3

∂u2

∂f3

∂u3

∂f3

∂u4
∂f4

∂u1

∂f4

∂u2

∂f4

∂u3

∂f4

∂u4


(υn), (4.8)

or computing all partial derivatives in the above matrix, we can get the following expression
of the Jacobian:

J(υn) =


−kuk+1

4 − µ (ηα + b) 0 −kuk+1
1

kuk+1
4 −(µ1 + α + b) 0 kuk+1

1

0 (1− η)α −δ 0

0 0 Nδ −c

 . (4.9)

4.1.2 Adjoint problem

We define RHS of the (3.26) as:
y1 = λ1ku4 + λ1µ− λ2ku4 + (u1 − g1),

y2 = λ2(µ1 + α + b)− λ1(ηα + b)− (1− η)αλ3 + (u2 − g2),

y3 = λ3δ − λ4Nδ + (u3 − g3),

y4 = λ4c+ λ1ku1 − λ2ku1 + (u4 − g4).

(4.10)

We can rewrite the system (3.26) in the form

∂λ

∂t
= y(λ(t)). (4.11)

First, to solve (4.11) numerically, we discretize (4.11) in time as

λk+1 − λk

τ
= y(λk), (4.12)

21

where λk+1, λk are discrete values of the function λ(t) at time moments k+1, k, respectively,
and τ is the uniform time step τ := tk+1− tk. Since we solve the adjoint problem backwards
in time from t = T to t = 0, we extract λk from (4.12) for the already known values of λk+1

to get
λk = λk+1 − τy(λk), (4.13)

which also can be written as
λk + τy(λk)− λk+1 = 0. (4.14)

The equation (4.14) is nonlinear, and we will use Newton’s method to solve it. Let us
introduce the new variable w and define

w := λk. (4.15)

Then (4.14) can be written as

Q(w) := w + τy(w)− λk+1 = 0. (4.16)

The Newton’s method applied to (4.16) for finding the function w will be:

wn+1 = wn − (Q′(wn)−1) ·Q(wn). (4.17)

Using definition of Q(w) in (4.16) we can get Q′(wn) in (4.17) as:

Q′(wn) = I + τy′(wn), (4.18)

where I is the identity matrix and y′(wn) is the Jacobian of y at wn, or J(wn) = y′(wn). In
the case when the function y is given by (4.10), the Jacobian can be computed as

J(wn) =



∂y1

∂λ1

∂y1

∂λ2

∂y1

∂λ3

∂y1

∂λ4
∂y2

∂λ1

∂y2

∂λ2

∂y2

∂λ3

∂y2

∂λ4
∂y3

∂λ1

∂y3

∂λ2

∂y3

∂λ3

∂y3

∂λ4
∂y4

∂λ1

∂y4

∂λ2

∂y4

∂λ3

∂y4

∂λ4


(wn). (4.19)

Taking into account (4.10) together with (4.15) the Jacobian in (4.19) can be explicitly
computed as

J(wn) =


kuk4 + µ −kuk4 0 0

−(ηα + b) µ1 + α + b (η − 1)α 0

0 0 δ −Nδ

kuk1 −kuk1 0 c

 . (4.20)

22

4.2 Minimization algorithms

4.2.1 The conjugate gradient algorithm

The Fréchet derivative of the Tikhonov functional is (3.31), so the gradient at the observation
point ti is

gm(ti) = γ(ηm(ti)− η0(ti))− αum2 (ti)(λ
m
1 (ti)− λm3 (ti)), (4.21)

where um and λm are obtained by Newton’s method, as described above. The conjugate
gradient method (CGM) is as follows:

Algorithm 1.

0. Choose a time partition, Jτ of ΩT , and an initial guess η0.

1. Compute the solutions to forward and adjoint problems corresponding to ηm on Jτ .

2. Compute gm on Jτ according to (4.21).

3. Compute βm = ||gm||2
||gm−1||2 .

4. Compute dm = −gm + βmdm−1 (or if m = 0 then d0(ti) = −g0(ti)).

5. Set ηm+1 = ηm + σmdm.

6. Stop computing new η if ||gm|| < θ, where θ is the tolerance level, or if ||gm|| grows,
which means that we have passed the minimum, or if ||ηm|| is stabilized. Otherwise go
to step 1.

The optimal step length, σm, can be calculated according to [24] as

σm = − (gm, dm)

γ(dm, dm)
, (4.22)

where γ is the regularization parameter, and (., .) denotes the L2 scalar product.

4.2.2 Choice of regularization parameter γ

Lower bound for γ

We recall that the Lagrangian is explicitly

L(ν) =

=
1

2

4∑
i=1

∫ T2

T1

(ui(t)− gi(t))2zζ(t)dt+
1

2
γ

∫ T

0

(η(t)− η0(t))2dt+
4∑
i=1

∫ T

0

λi(t)(u̇i(t)− fi)dt.

(4.23)

23

In order to ensure that ηm ∈ Mη, i.e. the set of admissible functions (3.3), we must set the
regularization parameter sufficiently large, such that the regularization term, γ

2
||η− η0||L2 is

of about the same order of magnitude as the other terms in the Lagrangian (4.23). Otherwise
the Tikhonov functional might be such that η is taken outside the set of admissible functions,
Mη, during the CGM algorithm. In the following we will derive a lower bound for γ. Consider
the gradient (4.21). From the first step of CGM (Algorithm 1) we will find that

η1 = η0 + σ0αu2(λ1 − λ3). (4.24)

But if η1 is supposed to be a better approximation of the exact solution, η∗, than η0 was,
then we must have:

η0 ∈ {η : ||η − η∗||L∞ < ε0} =⇒ η1 ∈ {η : ||η − η∗||L∞ < ε0}, (4.25)

where 0 < ε0 < min{1− η0, η0} is some error estimate of the initial guess. That is,

||η1 − η0||L∞ = ||σ0αu2(λ1 − λ3)||L∞ < 2ε0. (4.26)

From (4.22) it follows that

σ0 =
1

γ
. (4.27)

Thus, by combining (4.26) and (4.27), it follows that we must have for the first step of CGM
(Algorithm 1)

γ0 >
α

2ε0
||u2(λ1 − λ3)||L∞ . (4.28)

If γ0 does not obey (4.28) the first step of the CGM would not improve the solution, but
potentially take η1 outside the set of admissible functions. The reason that we use the L∞-
norm here, is that we want γ0 to be just sufficiently large to keep η1 ∈ Mη. Other norms,
such as the L2-norm, would make γ0 too large, and as a consequence the convergence rate
of the algorithm would be very poor.

Recommendation for iteratively updated γi

We have seen that γ must not be too small. On the other hand, if γ is too big, minimization
of (4.23) would do little to improve the first guess. Actually, if δ > 0 is the noise level of
the observations, we should have that γ(δ) → 0 as δ → 0. Therefore - assuming that each
iteration of the CGM (Algorithm 1) will lead to a better approximation of η - we will choose
a decreasing sequence, {γi}, of regularization parameters, according to [1], such that

γ0 = α
δ0
||u2τ (λ1τ − λ3τ)||L∞ ,

γi = γ0√
i+1
, i ∈ N. (4.29)

24

4.3 Analytical determination of η at observation points

Suppose that the problem of identifying η is well-posed. Then, if one knows η at the entire
time domain, ΩT , one can simply calculate η explicitly from either the first or the third row
of (3.1) as:

η =
(u̇1 − s+ ku1u4 + µu1

u2

− b
)/
α, (4.30)

or as:

η = 1− u̇3 + δu3

αu2

. (4.31)

We will use the third row (4.31), since that expression involves less computations than (4.30).
The derivatives, u̇i in (4.31), can be approximated by central finite differences

u̇(t) ≈ u(t+ τ)− u(t− τ)

2τ
. (4.32)

However, we need to be careful, because numerical differentiation is one of the most well-
known examples of potentially ill-posed problems. Thus, let us discuss (4.32) more carefully,
especially since ill-posed problems is the main subject of this thesis.

4.3.1 Error estimates for central differences

There are two factors contributing to the error in the approximation (4.32). Firstly, it is
error caused from the fact that (4.32) is only an approximation to the perfect derivative:
as τ → 0 we approach the true derivative. So the smaller τ is, the smaller is the error.
Secondly, it is round-off errors, which increases with decreasing τ ; since we need to perform
subtraction on two almost equally large quantities much accuracy is lost due to cancellation.
Thus, the best results are obtained when τ is small, but not too small. Let us consider these
errors more precisely in the following.

Truncation error of central differences

Let us in this section assume that u ∈ C∞(ΩT). Those functions are dense in C1(ΩT), so
if the solution to (3.1) is not smooth we can just approximate it by a smooth function.
Consider the Taylor series

u(t+ τ) = u(t) + u̇(t)τ +
ü(t)

2!
τ 2 +

...
u (t)

3!
τ 3 +

u(4)(t)

4!
τ 4 +O(τ 5), (4.33)

and

u(t− τ) = u(t)− u̇(t)τ +
ü(t)

2!
τ 2 −

...
u (t)

3!
τ 3 +

u(4)(t)

4!
τ 4 +O(τ 5), (4.34)

thus, we have
u(t+ τ)− u(t− τ)

2τ
= u̇(t) +

...
u (t)

3!
τ 2 +O(τ 4). (4.35)

25

Hence the approximation error in the estimate (4.32), which we will call the truncation error,
is defined as:

e(t) =

...
u (t)τ 2

6
+O(τ 4). (4.36)

Thus, the truncation error of (4.32) is O(τ 2), and is minimized if τ and
...
u (t) are as small

as possible. But there is another factor also that contributes to the error, which we need to
consider.

Ill-posedness of numerical differentiation at small step sizes

Suppose that the function u is observed with noise, uδ, and let δ(t) be the noise at the
point t, so uδ(t) = u(t) + δ(t). Let Mδ = supt∈ΩT

|δ(t)|. Then, using estimate (4.36) and the
definition of Mδ, we get

∣∣e(t)∣∣ =
∣∣u̇(t)− u̇δ(t)

∣∣ =

∣∣∣∣u̇(t)−
(u(t+ τ)− u(t− τ)

2τ
+
δ(t+ τ)− δ(t− τ)

2τ

)∣∣∣∣
≤
∣∣∣∣u̇− u(t+ τ)− u(t− τ)

2τ

∣∣∣∣+

∣∣∣∣δ(t+ τ)− δ(t− τ)

2τ

∣∣∣∣ ≤ ∣∣∣∣ ...u (t)τ 2

6

∣∣∣∣+
Mδ

τ
+O(τ 4). (4.37)

If the step size, τ , is too small, the second term in (4.37) will be very big. Thus, there exists
an optimal step size for the problem. In particular we can conclude that a requirement for
the problem to be well-posed is that δ

τ
→ 0 as δ → 0, thus giving us the estimate τ(δ) ≥ δµ

with µ ∈ (0, 1). To find the optimal step-size, we set e(t, τ) = |...u (t)|
6

τ 2 + Mδ

τ
and differentiate

with respect to τ to obtain

e′τ (t, τ) =
|...u (t)|

3
τ − Mδ

τ 2
, (4.38)

which has a stationary point, e′τ = 0, when

τ =

(
3Mδ

|...u (t)|

)1/3

. (4.39)

If we allow the step size to change with the third derivative, we can obtain the best possible
accuracy of the derivatives. However, this requires that third derivatives are calculated
first, which is of course even more difficult than first derivatives. For the error estimates in
this study, we will simply content ourselves with using the following formula for the third
derivative, which is analogous to (4.32).

...
u (t) ≈ 1

2τ 3
[u(t+ 2τ)− 2u(t+ τ) + 2u(t− τ)− u(t− 2τ)], (4.40)

with truncation error O(τ 2) and round-off error O(τ−3).

26

Adaptivity

It would be interesting to compare the explicit calculation of η using (4.31) with results
obtained by Tikhonov regularization (i.e. Algorithm 1). To do this properly, we will differ-
entiate with near-optimal accuracy. More precisely, we will in general use a step size of 1,
but refine with optimal step size where the truncation error is estimated to be high compared
to the round-off error.
We will consider the truncation error to be high whenever

|...u 3(t)|
6

τ 2 > α, (4.41)

at the same time as
τ >

√
δ(t), (4.42)

where α > 0 is the error tolerance for the truncation error, which is set by the user. Note
that we only consider the third component of u, since it is the derivative of this component
that occurs in (4.31). So the following algorithm is suggested for explicit computation of η:

Algorithm 2.

0. Choose a uniform coarse time partition, Jτ , of ΩT , and an error tolerance level, α > 0.

1. Use (4.31) to compute ητ . Derivatives can be computed using either the central fi-
nite difference formula (4.32), or Richardson extrapolation (4.43) described in next
subsection.

2. Calculate the truncation error, e = |...u 3(t)|
6

τ 2 (4.36) for each point of the time mesh.
Use (4.40) to compute approximate third derivatives.

3. Refine the time mesh at those points where both (4.41) and (4.42) are true. We suggest
that optimal step length is used for those points, which τ can be computed via (4.39).

4. Compute η using (4.31) on the refined time-mesh.

For Inverse Problem 1, refinement of the time mesh turned out to be especially useful at
time moments where the parameter η(t) changes fast, or where the solution of the forward
problem (3.1) is far from equilibrium.

4.3.2 Improving accuracy of differentiation

Richardson extrapolation

The truncation error when performing numerical differentiation can be further decreased
by using Richardson extrapolation. Richardson extrapolation means that you calculate the

27

central differences for both τ and 2τ , and then subtract them in such a way that the O(τ 2)-
term in their Taylor series cancels. Thus we will obtain the following estimate for the
derivative:

u̇ ≈ u(t− 2τ) + 8u(t+ τ)− 8u(t− τ)− u(t+ 2τ)

12τ
. (4.43)

Here, the truncation error is O(τ 4), but an analysis similar to the one above shows that
the round-off error has increased to 3

2
Mδ

τ
. Since Richardson extrapolation apparently is most

useful in reducing errors when both the noise and step size are small, we will use this method
to calculate the derivatives only when the noise level is smaller than 1%.

Smoothing noise

So far we, have only discussed how to reduce the truncation error. But if the noise level is
large, which it often is in practice, it is typically the round-off errors that dominate. Then
the step size should be large (actually the optimal step size for noisy data is often greater
than 1), and we get little help from techniques such as Richardson extrapolation. So we need
other tools than those mentioned above to deal with these kinds of problems. Many methods
have been proposed for stable numerical differentiation of noisy data over the years, see for
example [10, 14, 21, 22].
For this problem we will smooth the graphs using LOESS [9] or moving average filtering
from MATLAB’s curve fitting toolbox, in addition spikes will be removed using the Hampel
filter [20] from MATLAB’s signal processing toolbox. Numerical studies suggested that it
was best to remove noise after η had been calculated analytically, rather than directly on the
noisy observations. Otherwise there was the risk that the filters smoothed out the solution
trajectories too much at the initial time steps. We used moving average smoothing for
time-adaptive methods and LOESS smoothing otherwise.

28

Chapter 5

Computational results

In the computational studies we set ΩT = [0, 500], and partition it into a uniform time mesh,
Jτ , with step length τ = 1. The forward and adjoint problems are solved using Newton’s
method on the time partition Jτ , with maximum number of iterations set to 1000.
Observations are simulated by defining an η(τ) on Jτ and then computing the forward
solution g, for this ητ , additive uniform noise is simulated according to

gδi = gi + δXigi,
i ∈ {1, 2, 3, 4}, (5.1)

where δ is the noise level, and Xi are uniformly distributed pseudo-random numbers in
[−1, 1].
The computations were performed on a computer with AMD E2-1800 APU (1.70 GHz),
64-bit system, 4.00 GB RAM.

5.1 Numerical study of the forward problem

An initial guess for η0 can be obtained by formula (4.31), that is

ητ = 1− u̇3τ + δu3τ

αu2τ

, (5.2)

with derivatives computed according to formula (4.32). Then the forward solution can again
be computed for this particular ητ , to obtain the forward solution corresponding to the
approximate η. We can calculate the relative errors as

e2(x) =
||x− xδ||2
||x||2

, (5.3)

for the 2-norm, and similarly for the ∞-norm

e∞(x) =
||x− xδ||∞
||x||∞

. (5.4)

29

The relative errors suggest that the both the forward and inverse problems are fairly well-
conditioned. However, the forward solution is huge compared to η, which means that we have
to be very careful when choosing the regularization parameter for the Tikhonov functional
(3.16). In fact we will see that the PIP (Inverse Problem 1) is difficult to solve by minimizing
the Tikhonov functional due to the difficulty of choosing a suitable regularization parameter.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

η

 η exact

(a) Exact η(t).

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

η

 η guess

(b) Calculated η.

0 100 200 300 400 500
Time

-6

-4

-2

0

2

4

6

8

η
0
 -

 η
*

×10-3 Error in guess η

(c) Error in η(t). Relative errors:
e2 = 0.0067, e∞ = 0.025.

0 100 200 300 400 500
Time

-150

-100

-50

0

50

100
u

1
 -

 g
Forward solution difference

(d) Error in forward solution. Rel-
ative errors: e2 = 0.0077, e∞ =
0.0039.

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

5000

6000

7000

g(
t)

Forward solution

(e) Forward solution.

0 100 200 300 400 500
Time

-1

-0.5

0

0.5

1

1.5

2

2.5

λ
(t

)

×105 Adjoint solution

(f) Adjoint solution

Figure 5.1: Computer simulations of PIP with η(t) = 0.8e−3t/T .

30

0 100 200 300 400 500
Time

0.88

0.9

0.92

0.94

0.96

0.98

1

η

 η exact

(a) Exact η(t).

0 100 200 300 400 500
Time

0.88

0.9

0.92

0.94

0.96

0.98

1

η

 η guess

(b) Calculated η.

0 100 200 300 400 500
Time

-2

0

2

4

6

8

10

12

η
0
 -

 η
*

×10-3 Error in guess η

(c) Error in η(t). Relative errors:
e2 = 0.0076, e∞ = 0.019.

0 100 200 300 400 500
Time

-10

0

10

20

30

40

u
1
 -

 g

Forward solution difference

(d) Error in forward solution. Rel-
ative errors: e2 = 0.011, e∞ =
0.0084.

0 100 200 300 400 500
Time

0

500

1000

1500

g(
t)

Forward solution

(e) Forward solution.

0 100 200 300 400 500
Time

-20000

-15000

-10000

-5000

0

5000

λ
(t

)

Solution of adjoint problem

(f) Adjoint solution

Figure 5.2: Computer simulations of PIP with η(t) = 0.94 + 0.05 sin(9t/T).

31

0 100 200 300 400 500
Time

-0.2

0

0.2

0.4

0.6

0.8

1

η

 η guess

(a) Calculated η(t). The exact one
is very similar.

0 100 200 300 400 500
Time

-0.05

0

0.05

η
0
 -

 η
*

Error in guess η

(b) Error in η(t). Relative errors:
e2 = 0.0076, e∞ = 0.017.

0 100 200 300 400 500
Time

-1

-0.5

0

0.5

1

G
ra

di
en

t

Gradient

(c) Sign of gradient of the Tikhonov
functional.

0 100 200 300 400 500
Time

-1000

-500

0

500

1000

u
1
 -

 g

Forward solution difference

(d) Error in forward solution. Rel-
ative errors: e2 = 0.0048, e∞ =
0.0028.

0 100 200 300 400 500
Time

0

0.5

1

1.5

2

g(
t)

×104 Forward solution

(e) Forward solution.

0 100 200 300 400 500
Time

-20

-15

-10

-5

0

5

λ
(t

)

×108Solution of adjoint problem

(f) Adjoint solution

Figure 5.3: Computer simulations of PIP with η(t) = 0.9 sin(3t/T).

5.2 Direct solution methods for the inverse problem

The inverse problem is, in fact, quite well-conditioned, and in the most cases it can easily be
solved by elementary methods. Just as before, we solve the inverse problem simply by using
(4.31) and (4.32).

32

5.2.1 Sparsely distributed observations

Suppose that we only have measurements at certain discrete and sparsely distributed time
moments. This is a situation likely to occur in practice, since the physicians usually measure
the concentrations of viruses and T cells only at certain times. Computer simulations showed
that, by the use of smoothing splines one could interpolate to a finer time mesh with good
accuracy, given that η stays below the critical value.

In the following examples, we will consider two different initial values for the model
problem (3.1): the equilibrium values that would eventually have been obtained for constant
η ≡ 0.0, i.e. no treatment, and the equilibrium values that would be obtained for η ≡ 0.8.
For convenience, we will call these equilibrium 1 and equilibrium 2, respectively. See Table
5.1 for quantitative values. Furthermore, we will consider different η(t), different noise lev-
els and different number of observation points. The observations are always assumed to be
equidistributed over the time domain, ΩT .

Initial value u1 u2 u3 u4

Equilibrium 1 (for η ≡ 0.0) 120 22 35 3700
Equilibrium 2 (for η ≡ 0.8) 581 44 14 1469

Table 5.1: Numerical values of the two equilibrium states considered.

In Figure 5.4, we see study reconstruction of η(t) = 0.8
(

1−
(

3t
T

)2
)

. The reconstruction

at 15% noise level is quite good, but reconstruction is poor at early time moments, if the
initial value for (3.1) is such that η(t) cannot be assumed to change continuously at t = 0.
Equilibrium 2 corresponds to a smooth decay in drug efficacy over time, whereas equilib-
rium 1 corresponds to an abrupt change of drug efficacy from 0.0 to 0.8 at t = 0, and then
a smooth decay to 0.

It is clear that the optimal number of observation points depend on the properties of η.
For the exponential function (Figure 5.5), it seems that only 5 points on the time interval
ΩT = [0, 500] are quite sufficient for good accuracy. For the sine function observations at 10
different time moments is much better than at 5 time moments, and if the data are noisy,
observations at 20 time moments are still better (Figures 5.6 and 5.7).
But noise and observation points have little effect on the results, compared to the smoothness
of the solution trajectories. Figure 5.8 shows reconstruction of three different η(t), with all
other factors identical. In this simulation, the initial value of (3.1) equals the uninfected
equilibrium, such that Figure 5.8 a) and b) shows a continuously increasing drug efficacy
over time; Figure 5.8 c) and d) shows an abrupt change from 0.0 to 4.0 at t = 0 followed by
constant efficacy and Figure 5.8 e) and f) shows an abrupt change from 0.0 to 0.8 followed
by linear decay to 0.

33

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

H
IV

 p
ar

tic
le

s

whole line = interpolated; dashed = exact

(a) Forward solution: 5% noise, 20
observations, initial value at equi-
librium 2.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

1

η

Solution of inverse problem

Smoothing splines
Exact

(b) Estimated η: 5% noise, 20 ob-
servations, initial value at equilib-
rium 2.

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

H
IV

 p
ar

tic
le

s

whole line = interpolated; dashed = exact

(c) Forward solution: 15% noise, 20
observations, initial value at equi-
librium 2.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

1

η

Solution of inverse problem

Smoothing splines
Exact

(d) Estimated η: 15% noise, 20 ob-
servations, initial value at equilib-
rium 2. Maximal error is 0.079

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

5000

6000

H
IV

 p
ar

tic
le

s

whole line = interpolated; dashed = exact

(e) Forward solution: 5% noise, 20
observations, initial value at equi-
librium 1.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

1

η

Solution of inverse problem

Smoothing splines
Exact

(f) Estimated η: 5% noise, 20 obser-
vations, initial value at equilibrium
1.

Figure 5.4: Computer simulations of PIP with η(t) = 0.8(1−
(

3t
T

)2
).

34

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

5000

6000

7000

H
IV

 p
ar

tic
le

s

whole line = interpolated; dashed = exact

(a) Forward solution: 5% noise, 5
observations, initial value at equi-
librium 2.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

η

Solution of inverse problem

Smoothing splines
Exact

(b) Estimated η: 5% noise, 5 obser-
vations, initial value at equilibrium
2. Maximal error: 0.037

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

5000

6000

7000

H
IV

 p
ar

tic
le

s

whole line = interpolated; dashed = exact

(c) Forward solution: 5% noise, 10
observations, initial value at equi-
librium 2.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

η

Solution of inverse problem

Smoothing splines
Exact

(d) Estimated η: 5% noise, 10 ob-
servations, initial value at equilib-
rium 2. Maximal error: 0.067

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

5000

6000

7000

H
IV

 p
ar

tic
le

s

whole line = interpolated; dashed = exact

(e) Forward solution: 5% noise, 20
observations, initial value at equi-
librium 2.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

η

Solution of inverse problem

Smoothing splines
Exact

(f) Estimated η: 5% noise, 20 obser-
vations, initial value at equilibrium
2. Maximal error: 0.060

Figure 5.5: Computer simulations of PIP with η(t) = 0.8e−3t/T . Despite considerable improvement
in the approximation of the forward solution, with increasing number of observations, no significant
improvement in the approximation of η occurred for this function.

35

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

H
IV

 p
ar

tic
le

s

whole line = interpolated; dashed = exact

(a) Forward solution: no noise, 10
observations, initial value at equi-
librium 1.

0 100 200 300 400 500
Time

0

0.1

0.2

0.3

0.4

0.5

η

Solution of inverse problem

Smoothing splines
Exact

(b) Estimated η: no noise, 10 obser-
vations, initial value at equilibrium
1. Maximal error: 0.018

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

H
IV

 p
ar

tic
le

s

whole line = interpolated; dashed = exact

(c) Forward solution: 10% noise, 10
observations, initial value at equi-
librium 1.

0 100 200 300 400 500
Time

0

0.1

0.2

0.3

0.4

0.5

η

Solution of inverse problem

Smoothing splines
Exact

(d) Estimated η: 10% noise, 10 ob-
servations, initial value at equilib-
rium 1. Maximal error: 0.099

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

H
IV

 p
ar

tic
le

s

whole line = interpolated; dashed = exact

(e) Forward solution: 20% noise, 10
observations, initial value at equi-
librium 1.

0 100 200 300 400 500
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

η

Solution of inverse problem

Smoothing splines
Exact

(f) Estimated η: 20% noise, 10 ob-
servations, initial value at equilib-
rium 1. Maximal error: 0.143

Figure 5.6: Computer simulations of PIP with η(t) = 0.8 sin(3t/T). The accuracy in estimation of
the parameter η deteriorates as the noise increases.

36

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

H
IV

 p
ar

tic
le

s

whole line = interpolated; dashed = exact

(a) Forward solution: no noise, 5
observations, initial value at equi-
librium 1.

0 100 200 300 400 500
Time

0

0.1

0.2

0.3

0.4

0.5

η

Solution of inverse problem

Smoothing splines
Exact

(b) Estimated η: no noise, 5 obser-
vations, initial value at equilibrium
1. Maximal error: 0.027

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

H
IV

 p
ar

tic
le

s

whole line = interpolated; dashed = exact

(c) Forward solution: 10% noise, 20
observations, initial value at equi-
librium 1.

0 100 200 300 400 500
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

η

Solution of inverse problem

Smoothing splines
Exact

(d) Estimated η: 10% noise, 20 ob-
servations, initial value at equilib-
rium 1. Maximal error: 0.055

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

5000

H
IV

 p
ar

tic
le

s

whole line = interpolated; dashed = exact

(e) Forward solution: 20% noise, 20
observations, initial value at equi-
librium 1.

0 100 200 300 400 500
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

η

Solution of inverse problem

Smoothing splines
Exact

(f) Estimated η: 20% noise, 20 ob-
servations, initial value at equilib-
rium 1. Maximal error: 0.087

Figure 5.7: Computer simulations of PIP with η(t) = 0.8 sin(3t/T). If the number of observation
points are doubled, the accuracy in estimation of η increases considerably for noisy data. If the
number of observation points are halved for the perfect data, the accuracy decreases, but is still
good.

37

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

H
IV

 p
ar

tic
le

s

whole line = interpolated; dashed = exact

(a) Forward solution: η(t) =
0.8t/T .

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

1

η

Solution of inverse problem

Smoothing splines
Exact

(b) Estimated η: η(t) = 0.8t/T .
Maximal error: 0.029

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

H
IV

 p
ar

tic
le

s

whole line = interpolated; dashed = exact

(c) Forward solution: η(t) ≡ 0.4.

0 100 200 300 400 500
Time

0

0.1

0.2

0.3

0.4

0.5

η

Solution of inverse problem

Smoothing splines
Exact

(d) Estimated η: η(t) ≡ 0.4. Maxi-
mal error: 0.400

0 100 200 300 400 500
Time

0

1000

2000

3000

4000

5000

6000

7000

H
IV

 p
ar

tic
le

s

whole line = interpolated; dashed = exact

(e) Forward solution:
η(t) = 0.8(1− t/T).

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

η

Solution of inverse problem

Smoothing splines
Exact

(f) Estimated η:
η(t) = 0.8(1− t/T). Maximal er-
ror: 0.800

Figure 5.8: Computer simulations of PIP with various η(t). Observation points: 10. Noise: 5%.
Initial value at equilibrium 1.

It is clear from these plots that the perhaps most important factor for accurate curve
fitting is the initial value. If the efficacy of the drug changes smoothly, interpolation with
sparsely located observations is sufficient to obtain a good reconstruction of the drug efficacy
parameter η, even for large noise level, see Fig. 5.6 and 5.7. But if the efficacy has jumped
abruptly, for instance if the drug has been recently introduced or if the dose has been changed,
it is more difficult to reconstruct η accurately (see Fig. 5.8). In these cases measurement

38

of virus and T-cell concentrations must be made at much smaller time intervals until the
concentrations of viruses and T-cells stabilize.

5.2.2 Continuous observations at a time-subinterval

This situation is perhaps less likely to occur in practice, but since this was how the problem
was originally formulated in [4], we will consider this case also. We will use the adaptive al-
gorithm for calculating derivatives. We will first consider the case that we have observations
on the entire domain, ΩT , which should be easier than the previous problem (Fig. 5.9). And
then we will consider observations on I = [100, 400] ⊂ [0, 500] = ΩT (Fig. 5.10).
If we only have observations on the subinterval I ⊂ ΩT , we are using linear extrapolation
to extend to the entire time domain, using 10% at each endpoint of the function graph for
fitting a straight line. In this case, it is the time moments 101-131 and 370-400 that are used.

As one can see, the reconstruction of η is excellent, if sufficient observations are available.
This applies even if the initial value is such that η cannot be assumed to change continuously
at t = 0; see Fig. 5.11.

39

Observations at the entire time domain

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

η
Calculated drug efficiency

Exact
Optimized finite difference

(a) η(t) = 0.8e−3t/T . No noise.
Maximal error: 5.56 · 10−3.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

η

Calculated drug efficiency

Exact
Optimized finite difference

(b) η(t) = 0.8(1− t/T). No noise.
Maximal error: 1.51 · 10−2.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

1

η

Calculated drug efficiency

Exact
Optimized finite difference

(c) η(t) = 0.8e−3t/T . 5% noise.
Maximal error: 2.10 · 10−2.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

1

η

Calculated drug efficiency

Exact
Optimized finite difference

(d) η(t) = 0.8(1− t/T). 10% noise.
Maximal error: 2.42 · 10−2.

0 100 200 300 400 500
Time

-0.2

0

0.2

0.4

0.6

0.8

1

η

Calculated drug efficiency

Exact
Optimized finite difference

(e) η(t) = 0.8e−3t/T . 15% noise.
Maximal error: 5.94 · 10−2.

0 100 200 300 400 500
Time

-0.2

0

0.2

0.4

0.6

0.8

1

η

Calculated drug efficiency

Exact
Optimized finite difference

(f) η(t) = 0.8(1− t/T). 20% noise.
Maximal error: 4.63 · 10−2.

Figure 5.9: Computer simulations of PIP with η(t) exponential (left) or quadratic (right) function.
Initial value at equilibrium 2. Observations assumed to be known at the entire time interval.

40

Observation at smaller intervals

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

η
Calculated drug efficiency

Exact
Optimized finite difference

(a) η(t) = −0.8t/T . No noise. Max-
imal error: 5.38 · 10−2.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

1

η

Calculated drug efficiency

Exact
Optimized finite difference

(b) η(t) = 0.8(1− t/T). No noise.
Maximal error: 5.20 · 10−2.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

1

η

Calculated drug efficiency

Exact
Optimized finite difference

(c) η(t) = −0.8t/T . 3% noise.
Maximal error: 2.31 · 10−2.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

1

η

Calculated drug efficiency

Exact
Optimized finite difference

(d) η(t) = 0.8(1− t/T). 3% noise.
Maximal error: 4.47 · 10−2.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

η

Calculated drug efficiency

Exact
Optimized finite difference

(e) η(t) = −0.8t/T . 10% noise.
Maximal error: 2.82 · 10−2.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

1

η

Calculated drug efficiency

Exact
Optimized finite difference

(f) η(t) = 0.8(1− t/T). 10% noise.
Maximal error: 5.03 · 10−2.

Figure 5.10: Computer simulations of PIP with η(t) linear (left) or quadratic (right) function. Initial
value at equilibrium 2. Observations assumed to be contained in the interval [100, 400] ⊂ [0, 500].

41

Effect of initial values

0 100 200 300 400 500
Time

-0.2

0

0.2

0.4

0.6

0.8

1

η
Calculated drug efficiency

Exact
Optimized finite difference

(a) Observations in [0, 500]. Maxi-
mal error: 2.83 · 10−2.

0 100 200 300 400 500
Time

0

0.2

0.4

0.6

0.8

1

η

Calculated drug efficiency

Exact
Optimized finite difference

(b) Observations in [100, 400].
Maximal error: 9.24 · 10−2.

Figure 5.11: Computer simulations of PIP with η(t) = 0.8(1− t/T). Initial value at equilibrium 1.
10% noise.

5.3 Improving the results

We will test the two methods presented in this thesis for improving the results. That is:

1. Algorithm 1: Minimization of the Lagrangian (3.18).

2. Algorithm 2: Refinement of the time mesh, such that the derivatives are computed
with optimal accuracy.

When solving inverse problems in general, the regularization parameter, γ, is typically a
small number, but in this case it is not small. The previous results suggest that we already
can determine η with an error of about ε0 ∼ 10−2 for continuous observations, or ε0 ∼ 0.1 for
discrete observations. The L∞-norm of the gradient is typically of the order of magnitude
∼ 106. So, according to (4.29) we should choose γ0 ∼ 108. More precisely, we will set

γ0 = −α||uτ2(λτ1 − λτ3)||L∞N, (5.5)

where N is either 10, 100 or 1000.
Some improvements could be observed with these settings, but the Lagrangian never quite
converged to the correct value, except for one case. In fact, it turned out to be extremely
difficult to choose a proper regularization parameter: either it was too small and took η
outside of Mη (leading to very peculiar results) or it was too large and did almost nothing
to improve η.

42

5.3.1 Cases when solution can be improved

As an example to demonstrate that the Tikhonov functional has potential to be useful in
some cases, consider Figure 5.12, where η ≡ 0.9. Regularization gives an almost perfect
reconstruction of η, much better than the direct method (Fig. 5.12 c), even if the optimal
time mesh is used (Fig. 5.12 d).

(a) Regularization of η. (b) Gradient of Tikhonov func-
tional.

0 100 200 300 400 500
Time

0.892

0.894

0.896

0.898

0.9

0.902

η

Calculated drug efficiency

After regularization
Before regularization
Exact

(c) Calculated η before and after
regularization. Maximal error of
regularized solution: 1.26 · 10−7.

0 100 200 300 400 500
Time

0.892

0.894

0.896

0.898

0.9

0.902

η

Calculated drug efficiency

Optimized finite difference
Exact

(d) Calculated η efter optimizing
step lengt for finite differences.
Maximal error: 3.54 · 10−4.

Figure 5.12: Computer simulations of PIP with η(t) ≡ 0.9. Both Tikhonov regularization and
optimal step-size for finite differences improves the solution, but Tikhonov regularization is better.

When considering the function η(t) ≡ 0.7, the good results demonstrated in Fig. 5.12
are not quite achieved, however, see Fig. 5.13. But even this time, the method based on
Tikhonov regularization delivers a more accurate reconstruction of η than the direct solution
on the adaptive time mesh. Furthermore, Algorithm 1 is several times faster than Algorithm
2.

43

0 100 200 300 400 500
Time

0.59

0.592

0.594

0.596

0.598

0.6

0.602

η

Calculated drug efficiency

Exact
Optimized finite difference

(a) Calculated η efter optimizing
step length for finite differences.
Computing time: 146.2 s.

0 100 200 300 400 500
Time

0.592

0.594

0.596

0.598

0.6

0.602

η

Calculated drug efficiency

Exact
Regularized
Initial guess

(b) Calculated η before and af-
ter regularization. Compuing time:
3.06 s.

Figure 5.13: Computer simulations of PIP with η(t) ≡ 0.6. Both Tikhonov regularization and
optimal step-size for finite differences improves the solution, but Tikhonov regularization is better.
No noise is present and the initial value of (3.1) is chosen as equilibrium 1.

5.3.2 Cases when the solution cannot be improved

Noisy or sparse observations

When we consider observations of the solution to (3.1) with 10% noise, none of the methods
are better than the direct solution on the coarse time partition, Jτ . See Figure 5.14) for an
example, using η(t) = 0.6e3t/T . Similar results occurs if we try to use Tikhonov regularization
to improve the smoothing splines interpolated solution from sparse observations. For the
adaptive mesh method, it is not surprising that no improvement can be seen, since the
optimal step size is quite large for such noisy observations. However, there is almost no
difference between the initial guess and the regularized solution either (Fig. 5.14 b).

0 100 200 300 400 500
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

η

Calculated drug efficiency

Exact
Optimized finite differences

(a) Calculated η efter optimizing
step lengt for finite differences.
||e||2 = 0.10. ||e||2 = 0.11. Com-
puting time: 0.96 s.

0 100 200 300 400 500
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

η

Calculated drug efficiency

Exact
Regularized
Initial guess

(b) Calculated η before and after
regularization. Computing time:
1.95 s.

Figure 5.14: Computer simulations of PIP with η(t) = 0.6e3t/T at 10% noise level.

44

Extrapolation outside observation interval

If we try to apply Tikhonov regularization on an approximation where we have extended η
beyond the observation interval, no improvement can be observed, see Figure 5.15. Here, it
should be noted that the initial value of (3.1) is assumed known in the algorithms used in
this study. If we only have observations in an interval [T1, T2] ⊂ [0, T], then we obviously
do not know the initial value. It is therefore likely that better results, in this case, could be
achieved when also the initial value is considered an unknown parameter, which should be
estimated.

0 100 200 300 400 500
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

η

Calculated drug efficiency

Exact
Optimized finite differences

(a) Calculated η efter optimizing
step lengt for finite differences.
||e||2 = 0.056. ||e||∞ = 0.16. Com-
puting time: 1.16 s.

0 100 200 300 400 500
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

η

Calculated drug efficiency

Exact
Regularized
Initial guess

(b) Calculated η before and af-
ter regularization. ||e||2 = 0.066.
||e||∞ = 0.14. Computing time:
2.09 s.

Figure 5.15: Computer simulations of PIP with η(t) = 0.6 sin(3t/T) at 3% noise level, and obser-
vation interval [100, 400].

Initial guess far from true solution

If we have not obtained a good first guess by solving for η by elementary methods, we will
not be able to obtain the correct solution by the gradient method. For an example of this,
see Figure 5.16 (a), where we have simulated Algorithm 1 with η0(t) = 0.5, whereas the true
η(t) = 0.6 sin(3t/T). Although some steps are taken in the correct direction, the algorithm
eventually terminates because ηn stops changing. An explanation is suggested if we look
at Figure 5.16 (b): the gradient is initially huge at the first few time-steps, but soon levels
out to a more moderate size (∼ 105), and since we were required to set the regularization
parameter to suit this huge gradient, little change occurs to η for other gradient values.

45

0 100 200 300 400 500
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

η
Calculated drug efficiency

Exact
Regularized
Initial guess

(a) Calculated η before and after
regularization. Computing time:
3.57 s.

(b) Evolution of gradient during
simulation. The 2-norm of the gra-
dient at last iteration is about 105.

Figure 5.16: Computer simulations of PIP with η(t) = 0.6 sin(3t/T). No noise, η0(t) = 0.5.

All in all, these results suggest that the usefulness of Tikhonov regularization for recon-
struction of the drug efficacy parameter is very limited. In practice it is more advisable to
use elementary techniques to get a rough estimate of the drug efficacy, combined with some
signal processing technique, to remove noise.

46

Chapter 6

Discussion and conclusion

Our numerical tests show that Inverse Problem 1 can accurately be solved by elementary
methods. Sparsely distributed observations can be interpolated to a finer time mesh by
smoothing splines. Then, the parameter η can be reconstructed by simply solving equation
(4.31) explicitly, using central finite differences (4.32). If desired, this can subsequently be
followed by linear extrapolation to a wider time domain.

Methods based on minimizing the Tikhonov functional (3.16) has turned out to be chal-
lenging to implement, due to the importance of both an accurate choice of an exceptionally
large regularization parameter, γ, and an accurate initial guess of the drug efficacy, η0. For
most choices of γ, the methods either take η outside the set of admissible functions, Mη,
(i.e. too small regularization parameter) or fails to improve the initial guess (i.e. too large
regularization parameter).

Perhaps the Tikhonov regularization procedure could better extrapolate the parameter
η backwards in time if also the initial value, t0, is considered an unknown parameter, that
should be estimated. Actually, that is a more plausible situation, since we cannot assume
that we know the initial values of (3.1), if we do not have any observations at t = 0.

Nevertheless, for low noise levels, Algorithm 1 improves the solutions obtained by the
direct methods - although it does not improve the solutions from noisy observations, and
it requires that a first guess, η0, previously has been obtained by solving (4.31). Another
algorithm, Algorithm 2, based on refining the time mesh where the truncation errors of fi-
nite differences is large, also improves the results, albeit at a higher computational cost and
slightly lower accuracy than Algorithm 1. It is recommended that Algorithm 1 is used if
higher accuracy is desired, but for most applications explicit solution of (4.31) on a coarse
time partition is probably adequate. It is more likely that improved signal processing tech-
niques, to remove noise are more useful here than improved regularization techniques.

Once the efficacy, η, has been determined, the drug dose can be optimized. In [26] a
functional is suggested which might be used in this case. The authors of [26] simultaneously
minimized the dose of chemotherapeutic and immunotherapeutic drugs at the same time as
the drug response was maximized.

47

Drugs for HIV-treatment has to be taken for the rest of the life, and might cause side-
effects, and it is therefore of great interest to reduce the drug-burden of the patient, just as
it is for anti-cancer drugs. We propose that a functional analogous to functional (7) in [26]
should be minimized for this task:

I(d) =

∫
ΩT

(w1d+ w2V + w3T̄pre−RT + w4T̄post−RT)2dx. (6.1)

Here, wi are weights, d is the drug dose and V, T̄pre−RT and T̄post−RT corresponds to viruses
and pre- and post-RT infected T-cells, correspondingly. Thus, the dose will be minimized
along with viral particles as well as infected cells. To use this in practice, a model linking
dose and efficacy to the clinical response is required, such that suitable weights, w1, w2, w3, w4

can be determined.

Finally, it should be pointed out that the model of the dynamics of HIV infection under
treatment of an RT-inhibitor, suggested in [27], is only for mono-therapy with a single drug.
Usually, HIV-treatment consists of a combination of drugs to enhance the drug response and
suppress development of drug resistance of HIV. This model ought thus to be completed
with a model for several drugs simultaneously, which the authors of [27] claims that they
will work on in the future. Perhaps, that model could also be subject for the techniques
presented in this thesis.

48

Appendix A

Reverse transcriptase inhibitors

The central dogma of molecular biology states that the flow of genetic information in organ-
isms goes from the storage in DNA, through mRNA (messenger-RNA) to protein synthesis
in the ribosomes. The process of converting the genetic information from DNA to mRNA is
called transcription.
Unlike non-viral organisms however, the genetic material of HIV - a virus targeting certain
cells of the immune system called T cells (more specifically CD4+ T cells) - is stored in RNA
rather than DNA. From there, it is reversely transcribed into DNA, which is incorporated
into the DNA of the infected cell. Once the genetic material of the HIV is incorporated into
the infected T cell’s genome, new viruses will be produced by the cell, together with the
cell’s own proteins [23].
To perform the reverse transcription of RNA into DNA, HIV carries an enzyme called reverse
transcriptase, that catalyzes the reverse transcription. Drugs inhibiting this enzyme will pre-
vent the virus from reproducing. Such drugs are called reverse transcriptase inhibitors and
is one of two main classes of drugs that are usually combined when HIV infection is treated
pharmacologically - the other class of drugs inhibit another viral enzyme known as protease
[23].
In the ODE model discussed in this thesis, which was developed by [27], there are three
kinds of CD4+ T cells considered: completely healthy and uninfected T cells, T cells that
are infected, but where reverse transcription has not yet occurred, and T cells where reverse
transcription has already occurred.
The life-cycle of HIV, including reverse transcription, is illustrated in Figure A.1.

49

Figure A.1: Life cycle of HIV. The reverse transcription of viral RNA into
DNA is catalysed by reverse transcriptase. The figure was obtained from:
https://upload.wikimedia.org/wikipedia/commons/5/57/HIV-replication-cycle-en.svg

50

Appendix B

Matlab programs

There will be two different main programs, used for the two cases when observations are
either sparsely distributed or continuous.

B.1 Programs used in both problems

B.1.1 η calculator

1 %Creates a vec to r o f f unc t i on va lue s f o r va r i ous r ea l−valued
f u n c t i o n s

2 %de f ined on some time mesh .
3 %ETA = ExactEta (SCALING,FLAG,TIME MESH) re tu rn s a vec to r

conta in ing the
4 %d e s i r e d func t i on va lue s g iven : SCALING = a s c a l i n g f a c t o r which

should be
5 %between 0 and 1 , TIME MESH = the d e s i r e d time mesh and FLAG = a

number
6 %in {0 ,1 ,2 ,3 ,4 ,5 , 6} r e p r e s e n t i n g the f o l l o w i n g kinds o f f u n c t i o n s :
7 %0 . const . 1 . x 2 . −x 3 . c∗ s i n 4 . c∗exp(−x) 5 . c ∗(1 − xˆ2) 6 . 2c +
8 %c∗ s i n (x) .
9 f unc t i on e x t e t a = ExactEta (s ca l i ng , f l a g , time mesh)

10 %Input : 1 . s c a l i n g f a c t o r
11 %2 . func t i on f l a g (0 . const . 1 . +l i n e a r 2 . − l i n e a r 3 . s i n 4 . exp(−

x)
12 %5 . quadrat i c 6 . a l t e r n a t i v e s i n e)
13 %time = 0 ;
14 i f s c a l i n g > 1 | | s c a l i n g < 0
15 e r r o r (’Non−admi s s i b l e va lue s o f \ eta ’)
16 end
17 s = ze ro s (1 , l ength (time mesh)) ;

51

18 f o r i = 1 : l ength (time mesh)
19 s (i) = 3∗ time mesh (i) / time mesh (end) ;
20 end
21 i f f l a g == 1
22 e x t e t a = s c a l i n g ∗ s /3 ;
23 e l s e i f f l a g == 2
24 e x t e t a = s c a l i n g ∗(1− s /3) ;
25 e l s e i f f l a g == 3
26 e x t e t a = s c a l i n g ∗ s i n (s) ;
27 e l s e i f f l a g == 4
28 e x t e t a = s c a l i n g ∗exp(−s) ;
29 e l s e i f f l a g == 5
30 e x t e t a = s c a l i n g ∗(1−(time mesh/ time mesh (end)) . ˆ 2) ;
31 e l s e i f f l a g == 6
32 i f s c a l i n g > 0 .6666
33 e r r o r (’Some va lues o f \ eta are not admi s s ib l e ! ’)
34 end
35 e x t e t a = s c a l i n g + (s c a l i n g /2)∗ s i n (3∗ s) ;
36 e l s e
37 e x t e t a = s c a l i n g ∗ones (1 , l ength (time mesh)) ;
38 end
39 end

B.1.2 Forward problem solver

1 %Computes the exact s o l u t i o n o f the model problem .
2 %[G, G NOISE] = ExactNewton (ETA,TIME MESH,RAND,SYST) r e tu rn s both

i d e a l no i se−
3 %f r e e data , G, and no i sy data , G NOISE . Required input i s the

exact va lue o f
4 %the e f f i c a c y parameter , ETA, the time mesh , TIME MESH, and the

l e v e l s o f
5 %random (RAND) and sys temat i c (SYS) e r r o r .
6 f unc t i on [g , g brus] = ExactNewton (eta , time mesh , n o i s e l e v e l ,

e r r s y s)
7

8 nodes = length (time mesh) ; % Number o f nodes in the time p a r t i t i o n
9

10 u s t a r t = [1 2 0 ; 2 2 ; 3 5 ; 3 7 0 0] ; %I n i t i a l va lue s f o r u
11 %u s t a r t = [5 8 1 ; 4 4 ; 1 4 ; 1 4 6 9] ;
12 %u s t a r t = [5 ; 5 ; 5 ; 5] ;
13 %Equi l ibr ium va lues without treatment are approximately

[1 2 0 ; 2 2 ; 3 5 ; 3 7 0 0] .

52

14 %Equi l ibr ium va lues at eta = 0 .8 i s about [5 8 1 ; 4 4 ; 1 4 ; 1 4 6 9] .
15

16 v=u s t a r t ;
17 MaxIter = 1000 ; % maximal number o f i t e r a t i o n s in Newton method
18

19 u=ze ro s (4 , nodes) ;
20 u (: , 1) = u s t a r t ;
21

22 brus = ze ro s (4 , nodes) ;
23 dt = ze ro s (1 , l ength (time mesh)) ;
24 f o r i = 1 : l ength (dt)−1
25 dt (i) = time mesh (i +1)−time mesh (i) ; %Time step
26 end
27

28 f o r i = 1 : nodes−1
29 t o l =1;
30 i t e r =0;
31 whi le to l >10ˆ(−5) && i t e r < MaxIter %Newton i t e r a t i o n s
32 F= v−u (: , i)−dt (i)∗Forwardfunc (v , eta (i)) ;
33 J=eye (l ength (u s t a r t)) − dt (i)∗ForwardfuncJac (v , eta (i)) ;
34 dv = −J\F;
35 v=v+dv ; %The Newton i t e r a t i o n
36 i t e r = i t e r + 1 ;
37 t o l = norm(dv , i n f) ;
38 end
39 i f i t e r == MaxIter %I f the Newton meth . does not

converge
40 warning (’No convergence in the Newton method at time step

’)
41 time mesh (i)
42 u (: , i +1) = u (: , i) ;
43 cont inue
44 end
45 i f v (1) < 0 | | v (2) < 0 | | v (3) < 0 | | v (4) < 0
46 e r r o r (’ Exact s o l u t i o n a lgor i thm y i e l d s i n v a l i d s o l u t i o n .

Try i n c r e a s i n g the number o f nodes . ’)
47 end
48 brus (1 , i) = (2∗ rand−1)∗ n o i s e l e v e l ; %Generate random no i s e .
49 brus (2 , i) = (2∗ rand−1)∗ n o i s e l e v e l ;
50 brus (3 , i) = (2∗ rand−1)∗ n o i s e l e v e l ;
51 brus (4 , i) = (2∗ rand−1)∗ n o i s e l e v e l ;
52 u (: , i +1) = v ; %Update u .

53

53 end
54

55 g=u ;
56 g brus = g + g .∗ brus + g .∗ e r r s y s ; %Add random and sys temat i c

e r r o r .
57 end

B.2 Identification of η with sparsely distributed obser-

vations

B.2.1 Main program

1 %% Clear v a r i a b l e s and windows
2 c l e a r a l l
3 c l o s e a l l
4

5 %% Create obse rvat i on va lue s
6 T = 500 ;
7 time mesh = 0 :T;
8 f u n c t i o n f l a g = 4 ;
9 %0 . const . 1 . +l i n e a r 2 . − l i n e a r 3 . s i n 4 . exp(−x) 5 . quadrat i c

10 %6 . a l t e r n a t i v e s i n e
11 s c a l i n g = 0 . 8 ; %Sca l i ng f o r func t i on .
12 n o i s e l e v e l = 0 ; %Random e r r o r in ob s e rva t i on s . Should be

in [0 , 1) .
13 e r r s y s = 0 ; %Systematic e r r o r . Should be in (−1 ,1)

.
14 o b s e r v a t i o n p o i n t s = 5 ; %Number o f obse rvat i on po in t s .
15

16 eta = ExactEta (s ca l i ng , f u n c t i o n f l a g , time mesh) ;
17 [g , g brus] = ExactNewton (eta , time mesh , n o i s e l e v e l , e r r s y s) ;
18

19 s t e p s i z e = f l o o r (l ength (time mesh) / o b s e r v a t i o n p o i n t s) ;
20

21 g obs = g brus (: , 1 : s t e p s i z e : end) ;
22 t obs = time mesh (1 : s t e p s i z e : end) ;
23

24 no i s e = f l o o r (100∗ n o i s e l e v e l) ; %For output f i l e names
25 %% I n t e r p o l a t e to get approximate obse rvat i on va lue s
26 %I n t e r p o l a t i o n and smoothing o f data us ing smoothing s p l i n e s

−−−−−−−−−−−−−
27 [p smooth1 , P1] = csaps (t obs , g obs (1 , :)) ;

54

28 [p smooth2 , P2] = csaps (t obs , g obs (2 , :)) ;
29 [p smooth3 , P3] = csaps (t obs , g obs (3 , :)) ;
30 [p smooth4 , P4] = csaps (t obs , g obs (4 , :)) ;
31

32 Y = ze ro s (4 , l ength (time mesh)) ;
33

34 Y(1 , :) = ppval (p smooth1 , time mesh) ;
35 Y(2 , :) = ppval (p smooth2 , time mesh) ;
36 Y(3 , :) = ppval (p smooth3 , time mesh) ;
37 Y(4 , :) = ppval (p smooth4 , time mesh) ;
38

39 %Force the i n t e r p o l a t e d s o l u t i o n to be nonnegat ive
40 f o r i = 1 :T+1
41 i f Y(1 , i) < 0
42 Y(1 , i) = 0 ;
43 end
44 i f Y(2 , i) < 0
45 Y(2 , i) = 0 ;
46 end
47 i f Y(3 , i) < 0
48 Y(3 , i) = 0 ;
49 end
50 i f Y(4 , i) < 0
51 Y(4 , i) = 0 ;
52 end
53 end
54 %V i s u a l i z a t i o n o f the r e s u l t s

−−−
55 %Parameters f o r p i c tu r e s

−−
56 width = 3 . 5 ;
57 he ight = 2 . 8 ;
58 alw = 0 . 7 5 ; % AxesLineWidth
59 f s z = 8 ; % Fonts i ze
60 lw = 1 . 5 ; % LineWidth
61 msz = 8 ; % MarkerSize
62 %

−−−

63 f i g u r e (1)
64 pos = get (gcf , ’ Po s i t i on ’) ;
65 s e t (gcf , ’ Po s i t i on ’ , [pos (1) pos (2) width ∗100 , he ight ∗100]) ; %Set

55

s i z e
66 s e t (gca , ’ FontSize ’ , f s z , ’ LineWidth ’ , alw) ; %Set

p r o p e r t i e s
67

68 p lo t (time mesh , g , ’−− ’ , ’ LineWidth ’ , 2)
69 hold on
70 p lo t (time mesh ,Y, ’ LineWidth ’ , 2)
71 t i t l e (’ whole l i n e = i n t e r p o l a t e d ; dashed = exact ’ , ’ FontSize ’ , 10)
72 x l a b e l (’Time ’ , ’ FontSize ’ , 8)
73 y l a b e l (’HIV p a r t i c l e s ’ , ’ FontSize ’ , 8)
74

75 s e t (gcf , ’ InvertHardcopy ’ , ’ on ’) ;
76 s e t (gcf , ’ PaperUnits ’ , ’ i n che s ’) ;
77 p ap e r s i z e = get (gcf , ’ PaperSize ’) ;
78 l e f t = (p ap e r s i z e (1)− width) /2 ;
79 bottom = (pa pe r s i z e (2)− he ight) /2 ;
80 myf i gu r e s i z e = [l e f t , bottom , width , he ight] ;
81 s e t (gcf , ’ PaperPos i t ion ’ , my f i gu r e s i z e) ;
82

83 s t r t i t l e 1 = [’ for−f ’ , num2str (f u n c t i o n f l a g) , ’n ’ , num2str (no i s e) ,
’ o ’ , num2str (o b s e r v a t i o n p o i n t s)] ;

84 pr in t (s t r t i t l e 1 , ’−depsc ’ , ’−r500 ’) ;
85 %% Deduce parameter Eta , by s o l v i n g t h i s system
86

87 de l t a = 0 . 2 6 ; %Value o f parameter de l t a .
88 a l f a =0.4 ; %Value o f parameter alpha .
89 nodes = length (time mesh) ;
90 t ime s t ep = ze ro s (1 , nodes−1) ;
91 f o r i = 1 : nodes−1
92 t ime s t ep (i) = time mesh (i +1)−time mesh (i) ;
93 end %Time step f o r d i s c r e t e

d e r i v a t i v e s .
94 Y prim = ze ro s (4 , nodes) ;
95 e t a c a l c = ze ro s (1 , nodes) ;
96

97 %Compute d e r i v a t i v e s o f g .
98 f o r i = 2 : nodes−1
99 Y prim (: , i) = (Y(: , i +1)−Y(: , i −1)) /(2∗ t ime s t ep (i)) ;

100 end
101 Y prim (: , 1) = (Y(: , 2)−Y(: , 1)) / t ime s t ep (1) ;
102 Y prim (: , end) = (Y(: , end)−Y(: , end−1)) / t ime s t ep (end) ;
103

56

104 %Compute a n a l y t i c eta i n s i d e obse rvat i on i n t e r v a l .
105 f o r i = 1 : nodes
106 e t a c a l c (i) = 1 − (d e l t a ∗Y(3 , i)+Y prim (3 , i)) /(a l f a ∗Y(2 , i)) ;
107 end
108

109 %Remove s i n g u l a r i t i e s by Hampel f i l t e r i n g
110 i f min (Y(2 , :)) < 0 .1
111 e t a f i l t e r = hampel (e t a c a l c , f l o o r (0 . 1∗ nodes) ,2) ;
112 e l s e
113 e t a f i l t e r = e t a c a l c ;
114 end
115

116 %Perform smoothing on data
117 smoothing window = 2∗ round (T/20) +1;
118 eta smooth = smooth (e t a f i l t e r , smoothing window , ’ l o e s s ’) ;
119 e t a f i l t e r = eta smooth ;
120

121 %Force eta to belong to [0 , 1]
122 f o r i = 1 : nodes
123 i f e t a f i l t e r (i) < 0
124 e t a f i l t e r (i) = 0 ;
125 e l s e i f e t a f i l t e r (i) > 1
126 e t a f i l t e r (i) = 1 ;
127 end
128 end
129

130 %% V i s u a l i z e data
131

132 f i g u r e (2)
133 pos = get (gcf , ’ Po s i t i on ’) ;
134 s e t (gcf , ’ Po s i t i on ’ , [pos (1) pos (2) width ∗100 , he ight ∗100]) ; %Set

s i z e
135 s e t (gca , ’ FontSize ’ , f s z , ’ LineWidth ’ , alw) ; %Set

p r o p e r t i e s
136

137 p lo t (time mesh , e t a f i l t e r , ’ LineWidth ’ , 2)
138 hold on
139 p lo t (time mesh , eta , ’ LineWidth ’ , 2)
140 t i t l e (’ So lu t i on o f i n v e r s e problem ’ , ’ FontSize ’ ,10)
141 l egend ({ ’ Smoothing s p l i n e s ’ , ’ Exact ’ } , ’ FontSize ’ , 8)
142 l egend (’ Locat ion ’ , ’ s outheas t ’)
143 x l a b e l (’Time ’ , ’ FontSize ’ , 8)

57

144 y l a b e l (’\ eta ’ , ’ FontSize ’ , 9)
145

146 s e t (gcf , ’ InvertHardcopy ’ , ’ on ’) ;
147 s e t (gcf , ’ PaperUnits ’ , ’ i n che s ’) ;
148 p ap e r s i z e = get (gcf , ’ PaperSize ’) ;
149 l e f t = (p ap e r s i z e (1)− width) /2 ;
150 bottom = (pa pe r s i z e (2)− he ight) /2 ;
151 myf i gu r e s i z e = [l e f t , bottom , width , he ight] ;
152 s e t (gcf , ’ PaperPos i t ion ’ , my f i gu r e s i z e) ;
153

154 s t r t i t l e 2 = [’ inv−f ’ , num2str (f u n c t i o n f l a g) , ’n ’ , num2str (no i s e) ,
’ o ’ , num2str (o b s e r v a t i o n p o i n t s)] ;

155 pr in t (s t r t i t l e 2 , ’−depsc ’ , ’−r500 ’) ;
156

157 e r r = norm(e t a f i l t e r − eta ’ , I n f) ;
158 s t r t i t l e 3 = [’maximum e r r o r in PIP i s ’ , num2str (e r r)] ;
159 di sp (s t r t i t l e 3)
160 %End o f f i l e

B.3 Identification of η with continuous observations

B.3.1 Main program

1 %%This i s the main program f o r s o l v i n g the i n v e r s e problem in t h i s
t h e s i s .

2 t i c
3 %% Spec i f y f i x e d parameter va lue s .
4 c l e a r a l l
5 %Time parameters

−−
6 f i n a l t i m e = 500 ;
7 o b s s t a r t = 0 ; %Sta r t i ng time f o r ob s e rva t i on s o f t rue

s o l u t i o n .
8 obs end = 500 ; %End time f o r ob s e rva t i on s o f t rue

s o l u t i o n .
9 %Parameters from the model problem

−−
10 a l f a =0.4 ; %Value o f parameter alpha .
11 %Optimizat ion parameters

−−
12 %gamma start = 10 e+7; %I n i t i a l va lue o f r e g u l a r i z a t i o n

parameter .

58

13 optim maxiter = 20 ; %Maximum i t e r a t i o n s o f opt imiza t i on a lg .
14 %Noise

−−

15 n o i s e l e v e l = 0 . 0 0 ; %Noise l e v e l o f ob s e rva t i on s .
16 e r r s y s = 0 ; %Systematic e r r o r o f measurements .
17 n o i s e f l a g = 0 ; % 0 = no noise , 1 = random noise , 2 =

a d d i t i v e no i s e .
18 method = 1 ; % 1 = CGM; 2 = Adaptive mesh FD; other =

bas i c .
19

20 %% Create i n i t i a l time mesh , ob s e rva t i on s and s t a r t i n g guess f o r
parameter eta .

21 time mesh = [0 : 0 . 0 0 1 : 1 0 , 1 0 . 0 1 : 0 . 0 1 : 2 0 , 2 0 . 1 : 0 . 1 : 3 0 , 3 1 : f i n a l t i m e] ;
% w i l l be adapt ive ly updated .

22 s c a l i n g f a c t o r = 0 . 7 ;
23 f u n c t i o n f l a g = 3 ; %eta (t) = s c a l i n g f a c t o r ∗ f unc t i on
24 e x t e t a = ExactEta (s c a l i n g f a c t o r , f u n c t i o n f l a g , time mesh) ; %Exact

eta .
25 [e ta gues s , g] = Analyt i cEta des t royed (ext e ta , time mesh , ob s s t a r t ,

obs end , n o i s e f l a g , n o i s e l e v e l , e r r s y s) ; %Observat ions and
f i r s t guess f o r eta .

26 e t a g u e s s = 0.5∗ ones (1 , l ength (time mesh)) ;
27 i f method == 1
28 %Run algor i thm
29 %nodes = length (time mesh) ; %

Number o f nodes in the pre sent time mesh .
30 eta = e t a g u e s s ;
31 [u1 , f f a i l] = ForwardNewton (eta , time mesh) ;

%Compute i n i t i a l forward s o l .
32 [lambda1 , l f a i l] = AdjointNewton (eta , u1 , g , time mesh , ob s s t a r t ,

obs end) ; %Compute a d j o i n t s o l .
33 g0 = −a l f a ∗u1 (2 , :) . ∗ (lambda1 (1 , :)−lambda1 (3 , :)) ; %

Compute grad .
34 gamma start = norm(g0 , I n f) ∗100 ;
35 bm = 1/ gamma start ;

%For
Conjugate Gradient a lgor i thm .

36 gn = −g0 ;
37 dn = gn ;
38 eta = eta + bm∗dn ;
39 e t a o l d = e t a g u e s s ;

59

40 i = 0 ;
41 %gamma start = max(n o i s e l e v e l ,10∗ eps) ;
42 whi le norm(gn , 2) > 0 .01 && i < optim maxiter && norm(eta−

e t a o l d) > 0 .0001
43 i = i + 1 ;
44 gamma = gamma start/ s q r t (i +1) ;
45 u = ForwardNewton (eta , time mesh) ; %

Update forward and a d j o i n t s o l .
46 lambda = AdjointNewton (eta , u , g , time mesh , ob s s t a r t , obs end

) ;
47 gm = gamma∗(eta−e t a o l d) − a l f a ∗u (2 , :) . ∗ (lambda (1 , :)−

lambda (3 , :)) ; %Update g rad i en t .
48 %gamma start = norm(gm, I n f) ∗10 ;
49 %gamma = gamma start/ s q r t (i +1) ;
50 bs = (norm(gm) /norm(gn)) ˆ2 ;
51 dm = −gm + bs .∗ dn ;
52 bm = −(gm∗dm’) /(gamma∗(dm∗dm’)) ;

%beta = −<g , d>/gamma<d , d>
53 i f norm(gm, 2) > norm(gn , 2)
54 di sp (’ Gradient grows ’)
55 eta new = (e t a o l d + eta) /2 ;
56 e t a o l d = eta ;
57 eta = eta new ;
58 cont inue
59 e l s e
60 eta new = eta + bm∗dm;
61 end
62 e t a o l d = eta ;
63 eta = eta new ;
64 dn = dm;
65 gn = gm;
66 end
67 e l s e i f method == 2
68 [re f mesh , h opt , d i f f e r r o r] = mesh r e f i n e r2 (time mesh , g ,

n o i s e l e v e l , ob s s t a r t , obs end) ;
69 ex t e t a2 = ExactEta (s c a l i n g f a c t o r , f u n c t i o n f l a g , re f mesh) ;
70 [eta , g2] = Ana lyt i cEta des t royed (ext e ta2 , ref mesh , ob s s t a r t ,

obs end , n o i s e f l a g , n o i s e l e v e l) ;
71 e l s e
72 eta = e t a g u e s s ;
73 r e turn
74 end

60

75 toc

Identification of η using only elementary methods

1 %% Solves f o r parameter eta us ing elementary methods .
2 time mesh = 0 : 5 0 0 ;
3 f u n c t i o n f l a g = 4 ;
4 s c a l i n g = 0 . 8 ;
5 o b s s t a r t = 0 ;
6 obs end = 500 ;
7 n o i s e f l a g = 0 ;
8 n o i s e l e v e l = 0 ;
9 ex t e t a1 = ExactEta (s ca l i ng , f u n c t i o n f l a g , time mesh) ;

10 [e ta gues s1 , g obs1] = Ana lyt i cEta des t royed (ext e ta1 , time mesh ,
ob s s t a r t , obs end , n o i s e f l a g , n o i s e l e v e l) ;

11 [re f mesh , h opt , d i f f e r r o r] = mesh r e f i n e r2 (time mesh , g obs1 ,
n o i s e l e v e l , ob s s t a r t , obs end) ;

12 ex t e t a2 = ExactEta (s ca l i ng , f u n c t i o n f l a g , re f mesh) ;
13 [e ta gues s2 , g obs2] = Ana lyt i cEta des t royed (ext e ta2 , re f mesh ,

ob s s t a r t , obs end , n o i s e f l a g , n o i s e l e v e l) ;

Gradient method

1 %%This i s the main program f o r CGM s imu la t i on s o f the Tikhonov
f u n c t i o n a l

2 %%of the model problem , cons ide r ed in the t h e s i s .
3

4 %% Spec i f y f i x e d parameter va lue s .
5 c l e a r a l l
6 %Time parameters

−−
7 f i n a l t i m e = 500 ;
8 o b s s t a r t = 0 ; %Sta r t i ng time f o r ob s e rva t i on s o f t rue

s o l u t i o n .
9 obs end = 500 ; %End time f o r ob s e rva t i on s o f t rue

s o l u t i o n .
10 %Parameters from the model problem

−−
11 a l f a =0.4 ; %Value o f parameter alpha .
12 %Optimizat ion parameters

−−
13 %gamma start = 10 e+7; %I n i t i a l va lue o f r e g u l a r i z a t i o n

parameter .
14 optim maxiter = 100 ; %Maximum i t e r a t i o n s o f opt imiza t i on a lg .

61

15 %Noise
−−

16 n o i s e l e v e l = 0 . 0 3 ; %Noise l e v e l o f ob s e rva t i on s .
17 n o i s e f l a g = 1 ; % 0 = no noise , 1 = random noise , 2 =

a d d i t i v e no i s e .
18

19 %% Create i n i t i a l time mesh , ob s e rva t i on s and s t a r t i n g guess f o r
parameter eta .

20 time mesh = 0 : f i n a l t i m e ; % w i l l be adapt ive ly updated .
21 s c a l i n g f a c t o r = 0 . 6 ;
22 f u n c t i o n f l a g = 3 ; %eta (t) = s c a l i n g f a c t o r ∗ f unc t i on
23 e x t e t a = ExactEta (s c a l i n g f a c t o r , f u n c t i o n f l a g , time mesh) ; %Exact

eta .
24 [e ta gues s , g] = Analyt icEta (ext e ta , time mesh , ob s s t a r t , obs end ,

n o i s e f l a g , n o i s e l e v e l) ; %Observat ions and f i r s t guess f o r eta .
25 %e t a g u e s s = 0.5∗ ones (1 , l ength (time mesh)) ;
26 %Run algor i thm
27 nodes = length (time mesh) ; %

Number o f nodes in the pre sent time mesh .
28 eta = ze ro s (opt im maxiter +1, nodes) ; %

P r e a l l o c a t i o n o f eta (f o r use in for−loop) .
29 eta (1 , :) = e t a g u e s s ;
30 [u1 , f f a i l] = ForwardNewton (eta (1 , :) , time mesh) ;

%Compute i n i t i a l forward s o l .
31 [lambda1 , l f a i l] = AdjointNewton (eta (1 , :) , u1 , g , time mesh , ob s s t a r t ,

obs end) ; %Compute a d j o i n t s o l .
32 g0 = −a l f a ∗u1 (2 , :) . ∗ (lambda1 (1 , :)−lambda1 (3 , :)) ; %

Compute grad .
33 gamma start = norm(g0 , I n f) ∗1000;
34 g r a d h i s t = ze ro s (optim maxiter +1, nodes) ;
35 g r a d h i s t (1 , :) = g0 ; %Save

grad i en t f o r l a t e r p l o t .
36 bm = 1/ gamma start ;

%For Conjugate Gradient a lgor i thm .
37 gn = −g0 ;
38 dn = gn ;
39 eta (2 , :) = eta (1 , :) + bm∗dn ;
40 nodes = length (time mesh) ;
41 t e s t g r a d = ze ro s (1 , nodes) ;
42 f o r i = 2 : optim maxiter
43 gamma = gamma start/ s q r t (i) ;

62

44 u = ForwardNewton (eta (i , :) , time mesh) ; %
Update forward and a d j o i n t s o l .

45 lambda = AdjointNewton (eta (i , :) ,u , g , time mesh , ob s s t a r t ,
obs end) ;

46 gm = gamma∗(eta (i , :)−eta (1 , :)) − a l f a ∗u (2 , :) . ∗ (lambda (1 , :)
−lambda (3 , :)) ; %Update g rad i en t .

47 gamma start = norm(gm, I n f) ;
48 bs = (norm(gm) /norm(gn)) ˆ2 ;
49 dm = −gm + bs .∗ dn ;
50 bm = min(−(gm∗dm’) /(gamma∗(dm∗dm’)) , 0 . 1) ;

%beta = −<g , d>/gamma<d , d>
51 g r a d h i s t (i , :) = gm;

%Save grad i en t
f o r l a t e r p l o t .

52 i f norm(gm, I n f) > norm(gn , I n f)
53 di sp (’ Gradient grows ’)
54 eta (i +1 , :) = (eta (i −1 , :) + eta (i , :)) /2 ;
55 g r a d h i s t (i +1 , :) = g r a d h i s t (i , :) ;
56 %dn = dm;
57 %gn = gm;
58 cont inue
59 e l s e i f norm(gm, I n f) < 0 .01
60 di sp (’ Algorithm has converged . ’)
61 eta (i +1:end , :) = ones (l ength (i +1: opt im maxiter +1) ,1) ∗ eta (i

, :) ;
62 g r a d h i s t (i +1:end , :) = ones (l ength (i +1: optim maxiter +1) ,1)

∗ g r a d h i s t (i , :) ;
63 break
64 e l s e
65 eta (i +1 , :) = eta (i , :) + bm∗dm;
66 end
67 dn = dm;
68 gn = gm;
69 end

While version of gradient method

1 %%This i s the main program f o r CGM s imu la t i on s o f the Tikhonov
f u n c t i o n a l

2 %%of the model problem , cons ide r ed in the t h e s i s .
3

4 %% Spec i f y f i x e d parameter va lue s .
5 c l e a r a l l

63

6 %Time parameters
−−

7 f i n a l t i m e = 500 ;
8 o b s s t a r t = 0 ; %Sta r t i ng time f o r ob s e rva t i on s o f t rue

s o l u t i o n .
9 obs end = 500 ; %End time f o r ob s e rva t i on s o f t rue

s o l u t i o n .
10 %Parameters from the model problem

−−
11 a l f a =0.4 ; %Value o f parameter alpha .
12 %Optimizat ion parameters

−−
13 %gamma start = 10 e+7; %I n i t i a l va lue o f r e g u l a r i z a t i o n

parameter .
14 optim maxiter = 20 ; %Maximum i t e r a t i o n s o f opt imiza t i on a lg .
15 %Noise

−−

16 n o i s e l e v e l = 0 . 0 5 ; %Noise l e v e l o f ob s e rva t i on s .
17 n o i s e f l a g = 0 ; % 0 = no noise , 1 = random noise , 2 =

a d d i t i v e no i s e .
18

19 %% Create i n i t i a l time mesh , ob s e rva t i on s and s t a r t i n g guess f o r
parameter eta .

20 time mesh = 0 : f i n a l t i m e ; % w i l l be adapt ive ly updated .
21 s c a l i n g f a c t o r = 0 . 6 ;
22 f u n c t i o n f l a g = 0 ; %eta (t) = s c a l i n g f a c t o r ∗ f unc t i on
23 e x t e t a = ExactEta (s c a l i n g f a c t o r , f u n c t i o n f l a g , time mesh) ; %Exact

eta .
24 [e ta gues s , g] = Analyt icEta (ext e ta , time mesh , ob s s t a r t , obs end ,

n o i s e f l a g , n o i s e l e v e l) ; %Observat ions and f i r s t guess f o r eta .
25

26 %Run algor i thm
27 nodes = length (time mesh) ; %

Number o f nodes in the pre sent time mesh .
28 eta = e t a g u e s s ;
29 [u1 , f f a i l] = ForwardNewton (eta , time mesh) ; %

Compute i n i t i a l forward s o l .
30 [lambda1 , l f a i l] = AdjointNewton (eta , u1 , g , time mesh , ob s s t a r t ,

obs end) ; %Compute a d j o i n t s o l .
31 g0 = −a l f a ∗u1 (2 , :) . ∗ (lambda1 (1 , :)−lambda1 (3 , :)) ; %

Compute grad .

64

32 gamma start = norm(g0 , I n f) ∗1000;
33 bm = 1/ gamma start ;

%For Conjugate Gradient a lgor i thm .
34 gn = −g0 ;
35 dn = gn ;
36 eta = eta + bm∗dn ;
37 e t a o l d = e t a g u e s s ;
38 i = 0 ;
39 whi le norm(gn , I n f) > 0 .01 && norm(eta−e t a o l d) > 0 .0001 && i <

optim maxiter
40 i = i + 1 ;
41 gamma = gamma start/ s q r t (i +1) ;
42 u = ForwardNewton (eta , time mesh) ; %Update

forward and a d j o i n t s o l .
43 lambda = AdjointNewton (eta , u , g , time mesh , ob s s t a r t , obs end

) ;
44 gm = gamma∗(eta−e t a o l d) − a l f a ∗u (2 , :) . ∗ (lambda (1 , :)−

lambda (3 , :)) ; %Update g rad i en t .
45 bs = (norm(gm) /norm(gn)) ˆ2 ;
46 dm = −gm + bs .∗ dn ;
47 bm = min(−(gm∗dm’) /(gamma∗(dm∗dm’)) , 0 . 1) ;

%beta = −<g , d>/gamma<d , d>
48 i f norm(gm, I n f) > norm(gn , I n f)
49 di sp (’ Gradient grows ’)
50 eta new = (e t a o l d + eta) /2 ;
51 e t a o l d = eta ;
52 eta = eta new ;
53 cont inue
54 e l s e i f norm(gm, I n f) < 0 .01
55 di sp (’ Algorithm has converged . ’)
56 break
57 e l s e
58 eta new = eta + bm∗dm;
59 end
60 e t a o l d = eta ;
61 eta = eta new ;
62 dn = dm;
63 gn = gm;
64 end

65

B.3.2 Subprograms

Forward solver

1 %Computes the forward s o l u t i o n o f the model problem .
2 f unc t i on [u , f f a i l] = ForwardNewton (eta , time mesh)
3 f f a i l = 0 ;
4 t =0; % i n i t i a l time
5

6 nodes = length (time mesh)−1;
7

8 %u s t a r t = [1 2 0 ; 2 2 ; 3 5 ; 3 7 0 0] ;
9 %u s t a r t = [2 3 3 ; 3 6 ; 2 8 ; 2 9 7 5] ; %I n i t i a l va lue s f o r u − wr i t e

c o r r e c t va lue s
10 %u s t a r t = [3 0 0 ; 1 0 ; 1 0 ; 1 0] ;
11 u s t a r t = [3 0 0 ; 0 ; 0 ; 5 0] ;
12 %u s t a r t = [5 8 1 ; 4 4 ; 1 4 ; 1 4 6 9] ;
13 %u s t a r t = [0 ; 0 ; 0 ; 0] ;
14 %u s t a r t = [−10;−10;−10;−10];
15 %u s t a r t = [3 0 0 ; 0 ; 0 ; 2] ;
16

17 v=u s t a r t ;
18

19 %nodes = 100 ;
20 MaxIter = 1000 ; % maximal number o f i t e r a t i o n s in Newton method
21

22 u = ze ro s (4 , nodes+1) ;
23 u (: , 1) = u s t a r t ;
24 %u h i s t =[u] ; %Save a l l u va lue s f o r l a t e r p l o t
25

26 %f i n a l t i m e = 1000 ; % here we choose f i n a l time
27 dt = ze ro s (1 , l ength (time mesh)) ;
28 f o r i = 1 : l ength (dt)−1
29 dt (i) = time mesh (i +1)−time mesh (i) ; %Time step
30 end
31

32 f o r i = 1 : nodes % Here we d e f i n e f i n a l time
33 t o l =1;
34 i t e r =0;
35 whi le to l >10ˆ(−5) && i t e r < MaxIter %Newton i t e r a t i o n s
36 % F= v−u (: , i)−dt∗Forwardfunc (v , eta (i)) ;
37 % J=eye (l ength (u s t a r t)) − dt .∗ ForwardfuncJac (v , eta (i)) ;
38 F= v−u (: , i)−dt (i)∗Forwardfunc (v , eta (i)) ;

66

39 J=eye (l ength (u s t a r t)) − dt (i)∗ForwardfuncJac (v , eta (i)) ;
40 dv = −J\F;
41 v=v+dv ; %The Newton i t e r a t i o n
42 i t e r = i t e r +1;
43 t o l = norm(dv , i n f) ;
44 end
45 i f i t e r==MaxIter %I f the Newton meth . does not converge
46 di sp (’No convergence in the Newton method ’)
47 break
48 end
49 % disp (’ Newton method converged at i t e r a t i o n : ’)
50 % i t e r
51 i f v (1) < 0 | | v (2) < 0 | | v (3) < 0 | | v (4) < 0
52 warning (’ Forward s o l u t i o n a lgor i thm y i e l d s i n v a l i d

s o l u t i o n . Try i n c r e a s i n g the number o f nodes in the
time p a r t i t i o n . ’)

53 f f a i l = 1 ;
54 r e turn
55 end
56 u (: , i +1) = v ;
57 t=t+dt ;
58 %u h i s t =[u h i s t , u] ;
59

60 end
61

62 % to see only u2 :
63 % plo t (0 : 1/ l ength (u (1 , :)) :(1−1/ l ength (u (1 , :))) ,u (2 , :))
64

65 %here we d e f i n e mesh f o r time
66 %time mesh =0: dt : f i n a l t i m e ;
67

68 %f i g u r e
69 %plo t (time mesh , u , ’ LineWidth ’ , 2)
70

71 %x l a b e l (’ time i n t e r v a l ’) ;
72 %y l a b e l (’ s o lu t i on ’) ;
73

74 %legend (’ u 1 ’ , ’ u 2 ’ , ’ u 3 ’ , ’ u 4 ’) ;
75

76 %s t r t i t l e = [’ forward s o l u t i o n f o r eta = ’ , num2str (eta)] ;
77 %t i t l e (s t r t i t l e)
78

67

79 end

1 f unc t i on [f] = func (u , eta)
2 %The func t i on f in the problem : u’= f (u)
3

4 f=ze ro s (4 , 1) ;
5

6 s =10;
7 mu=0.01;
8 k=2.4e−5;
9 mu1=0.015;

10 a l f a =0.4 ;
11 b=0.05;
12 de l t a =0.26;
13 c =2.4 ;
14 N=1000;
15

16

17 f (1)=s−k∗u (1) ∗u (4)−mu∗u (1)+eta ∗ a l f a ∗u (2)+b∗u (2) ;
18 f (2)=k∗u (1) ∗u (4)−mu1∗u (2)−a l f a ∗u (2)−b∗u (2) ;
19 f (3)=a l f a ∗u (2)−eta ∗ a l f a ∗u (2)−de l t a ∗u (3) ;
20 f (4)=N∗ de l t a ∗u (3)−c∗u (4) ;
21 end

1 f unc t i on [Jac] = funcJac (u , eta)
2 % The Jacobian f o r our problem
3 % Input : u (po int)
4 % Output : Jac (Jacobian in po int u)
5

6 k=2.4e−5;
7 mu=0.01;
8 mu1=.015;
9 alpha =0.4;

10 b=0.05;
11 de l t a =0.26;
12 c =2.4 ;
13 N=1000;
14

15

16 Jac=[−k∗u (4) − mu, eta ∗alpha + b , 0 , −k∗u (1) ;
17 k∗u (4) , −(mu1 + alpha + b) ,0 , k∗u (1) ;
18 0 , (1− eta)∗alpha , −de l ta , 0 ;

68

19 0 ,0 , N∗de l ta , −c] ;
20

21 end

Adjoint problem solver

1 %Computes the a d j o i n t s o l u t i o n o f the model problem .
2 f unc t i on [lambda , l f a i l] = AdjointNewton (eta , u , g , time mesh ,

ob s s t a r t , obs end)
3 l f a i l = 0 ;
4 f i n a l t i m e = time mesh (end) ; % here we choose the f i n a l time
5 nodes = length (time mesh) ;
6

7 t=f i n a l t i m e ; % f i n a l time in a d j o i n t so lv e r , the same f i n a l
time i s in the forward problem

8

9 lambdastart = [0 ; 0 ; 0 ; 0] ; % va lues f o r lambda (T)= 0 at the f i n a l
time

10

11 w = lambdastart ;
12

13 MaxIter = 1000 ; % maximal number o f i t e r a t i o n s in Newton ’ s method
14

15 lambda = ze ro s (4 , nodes) ;
16 lambda (: , nodes) = lambdastart ;
17

18 %dt = f i n a l t i m e / nodes ; %Time step
19 dt = ze ro s (1 , l ength (time mesh)) ;
20 f o r i = 1 : l ength (dt)−1
21 dt (i) = time mesh (i +1)−time mesh (i) ; %Time step
22 end
23 dt (end) = time mesh (end)−time mesh (end−1) ;
24

25 %i = nodes + 1 ;
26 %c = ones (10 , nodes) ;
27 f o r i = nodes :−1:2
28 a d j t o l =1;
29 a d j i t e r =0;
30 i t e r = 1 ;
31 whi le ad j to l >10ˆ(−5) && a d j i t e r < MaxIter %Newton i t e r a t i o n s
32 %i f low < i && high > i

69

33 % adjF = w − lambda (: , i) + dt∗ adj func (w, u (: , i) , g (: , i) , e ta (i
)) ;

34 i f t > o b s s t a r t && t < obs end
35 adjF = w − lambda (: , i) + dt (i)∗ adj func (w, u (: , i) , g (: , i)

, e ta (i)) ;
36 e l s e
37 adjF = w − lambda (: , i) + dt (i)∗ adj2 func (w, u (: , i) , e ta (i

)) ; %Do not inc lude obs e rva t i on s out s id e
obse rvat i on i n t e r v a l .

38 end
39 % adjJ = eye (l ength (lambdastart)) + dt .∗ adj funcJac (u (: , i) ,

e ta (i)) ;
40 adjJ = eye (l ength (lambdastart)) + dt (i)∗ adj funcJac (u (: , i) ,

e ta (i)) ;
41 %c (i t e r , i) = cond (adjJ) ;
42 dw = −adjJ\adjF ;
43 w=w+dw; %The Newton i t e r a t i o n
44 a d j i t e r = a d j i t e r + 1 ;
45 a d j t o l = norm(dw, i n f) ;
46 i t e r = i t e r + 1 ;
47 end
48 i f a d j i t e r==MaxIter %I f the Newton meth . does not

converge
49 l f a i l = 1 ;
50 di sp (’No convergence in the Newton method f o r a d j o i n t

problem ’)
51 break
52 end
53 %disp (’ Newton method f o r a d j o i n t problem converged at

i t e r a t i o n : ’)
54 %i t e r
55 %i = i − 1 ;
56 lambda (: , i −1) = w;
57 t=t−dt (i) ;
58 %lambda hist =[lambda hist , lambda] ;
59 %t i m e h i s t = [t , t i m e h i s t] ;
60

61 end
62

63 %plo t (t ime h i s t , lambda , ’ LineWidth ’ , 2)
64

65 %x l a b e l (’ time i n t e r v a l ’) ;

70

66 %y l a b e l (’ s o lu t i on ’) ;
67

68 %legend (’ lambda 1 ’ , ’ lambda 2 ’ , ’ lambda 3 ’ , ’ lambda 4 ’) ;
69

70 %s t r t i t l e = [’ ad j o i n t s o l u t i o n f o r eta = ’ , num2str (eta)] ;
71 %t i t l e (s t r t i t l e)
72

73 end

1 f unc t i on [a d j f] = adj func (lambda , u , g , eta)
2 %The rhs f (lambda) in the a d j o i n t problem : lambda ’= f (lambda)
3

4 a d j f=ze ro s (4 , 1) ;
5

6 s =10;
7 mu=0.01;
8 k=2.4e−5;
9 mu1=0.015;

10 a l f a =0.4 ;
11 b=0.05;
12 de l t a =0.26;
13 c =2.4 ;
14 N=1000;
15

16 a d j f (1)= lambda (1) ∗k∗u (4) +lambda (1) ∗mu − lambda (2) ∗k∗u (4) + u (1)
− g (1) ;

17 a d j f (2)= lambda (2) ∗(mu1 + a l f a + b) − lambda (1) ∗(eta ∗ a l f a + b)
−(1−eta)∗ a l f a ∗ lambda (3) + u (2) −g (2) ;

18 a d j f (3)= lambda (3) ∗ de l t a −lambda (4) ∗N∗ de l t a + u (3) − g (3) ;
19 a d j f (4)= lambda (4) ∗c + lambda (1) ∗k∗u (1) −lambda (2) ∗k∗u (1) + u (4)

−g (4) ;
20

21 %a d j f = a d j f + [2 3 3 ; 3 6 ; 2 8 ; 2 9 7 5] ;
22

23 end

1 f unc t i on a d j f = adj2 func (lambda , u , eta)
2 %The rhs f (lambda) in the a d j o i n t problem : lambda ’= f (lambda)
3

4 a d j f=ze ro s (4 , 1) ;
5

6 mu=0.01;

71

7 k=2.4e−5;
8 mu1=0.015;
9 a l f a =0.4 ;

10 b=0.05;
11 de l t a =0.26;
12 c =2.4 ;
13 N=1000;
14

15

16 a d j f (1)= lambda (1) ∗k∗u (4) +lambda (1) ∗mu − lambda (2) ∗k∗u (4) ;
17 a d j f (2)= lambda (2) ∗(mu1 + a l f a + b) − lambda (1) ∗(eta ∗ a l f a + b) −

(1− eta)∗ a l f a ∗ lambda (3) ;
18 a d j f (3)= lambda (3) ∗ de l t a − lambda (4) ∗N.∗ de l t a ;
19 a d j f (4)= lambda (4) ∗c + lambda (1) ∗k∗u (1) − lambda (2) ∗k∗u (1) ;
20

21 %a d j f = a d j f + [2 3 3 ; 3 6 ; 2 8 ; 2 9 7 5] ;
22

23 end

1 f unc t i on [adjJac] = adj funcJac (u , eta)
2 % The Jacobian f o r the a d j o i n t problem
3 % Input : u (po int)
4 % Output : adjJac (Jacobian f o r the a d j o i n t equat ion in po int u)
5

6 k=2.4e−5;
7 mu=0.01;
8 mu1=.015;
9 alpha =0.4;

10 b=0.05;
11 de l t a =0.26;
12 c =2.4 ;
13 N=1000;
14

15

16 adjJac =[k∗u (4) + mu,−k∗u (4) , 0 , 0 ;
17 −(eta ∗alpha + b) , mu1 + alpha + b , (eta−1)∗alpha , 0 ;
18 0 , 0 , de l ta , −N∗ de l t a ;
19 k∗u (1) , −k∗u (1) , 0 , c ;] ;
20

21

22 end

72

Analytic η solver

1 %[eta , e ta gues s , g obs , g prim]
2 f unc t i on [e ta gues s , g obs] = Ana lyt i cEta des t royed (ext e ta ,

time mesh , ob s s t a r t , obs end , n o i s e f l a g , n o i s e l e v e l , e r r s y s)
3 de l t a = 0 . 2 6 ; %Value o f parameter de l t a .
4 a l f a =0.4 ; %Value o f parameter alpha
5 nodes = length (time mesh)−1;
6 t ime s t ep = ze ro s (1 , l ength (time mesh)) ;
7 f o r i = 2 : l ength (t ime s t ep)−1
8 t ime s t ep (i) = (time mesh (i +1)−time mesh (i −1)) /2 ;
9 end %Time step f o r d i s c r e t e

d e r i v a t i v e s .
10 t ime s t ep (1) = time mesh (2)−time mesh (1) ;
11 t ime s t ep (end) = time mesh (end)−time mesh (end−1) ;
12 g prim = ze ro s (4 , nodes+1) ;
13 eta = ze ro s (1 , nodes+1) ;
14 %Simulate the t rue va lue s o f the model problem , with and

without no i s e .
15 [g , g brus] = ExactNewton (ext e ta , time mesh , n o i s e l e v e l , e r r s y s

) ;
16 i f n o i s e f l a g == 1
17 g obs = g brus ;
18 %e l s e i f n o i s e f l a g == 2
19 % g obs = g add ;
20 e l s e
21 g obs = g ;
22 end
23

24 %Compute d e r i v a t i v e s o f g .
25 f o r i = 2 : nodes
26 g prim (: , i) = (g obs (: , i +1)−g obs (: , i −1)) /(2∗ t ime s t ep (i))

;
27 %g prim (: , i) = (8∗ g obs (: , i +1) − 8∗ g obs (: , i −1) + g obs (: , i −2)

− g obs (: , i +2)) /(12∗ t ime s t ep (i)) ;
28 end
29 g prim (: , 1) = (g obs (: , 2) − g obs (: , 1)) / t ime s t ep (1) ;
30 %g prim (: , 2) = (g obs (: , 3) − g obs (: , 1)) /(2∗ t ime s t ep (2)) ;
31 g prim (: , end) = (g obs (: , end) − g obs (: , end−1)) / t ime s t ep (end)

;
32 %g prim (: , end−1) = (g obs (: , end) − g obs (: , end−2)) /(2∗

t ime s t ep (end−1)) ;

73

33

34 %Compute a n a l y t i c eta i n s i d e obse rvat i on i n t e r v a l .
35 f o r i = 1 : nodes+1
36 eta (i) = 1 − (d e l t a ∗ g obs (3 , i)+g prim (3 , i)) /(a l f a ∗g (2 , i)) ;
37 end
38 %Smooth no i s e
39 golayframe = round (l ength (time mesh) /20) ∗2+1;
40 eta smooth = smooth (time mesh , eta , golayframe , ’ sgo lay ’) ;
41 eta hampel = hampel (eta smooth , 1 0) ;
42 eta smooth = eta hampel ;
43

44 time = 0 ;
45 s t a r t i n d = 1 ;
46 whi le time <= o b s s t a r t
47 time = time + t ime s t ep (s t a r t i n d) ;
48 s t a r t i n d = s t a r t i n d + 1 ;
49 end
50 s t a r t i n d = s t a r t i n d − 1 ;
51 time = 0 ;
52 end ind = 0 ;
53 whi le time <= obs end
54 end ind = end ind + 1 ;
55 time = time + t ime s t ep (end ind) ;
56 end
57

58 i f n o i s e f l a g ˜= 0
59 e ta obs = eta smooth (1+ s t a r t i n d : end ind) ;
60 e l s e
61 e ta obs = eta (1+ s t a r t i n d : end ind) ’ ;
62 end
63

64 Lin ext = f l o o r (nodes /10) ;
65

66 V2 = ones (Lin ext , 2) ;
67 V1 = V2 ;
68 x = ze ro s (1 , L in ext) ;
69 y = x ;
70 x (end) = obs end ;
71 y (1) = o b s s t a r t ;
72 f o r i = 1 : Lin ext−1
73 x (Lin ext−i) = x (L in ext+1− i) − t ime s t ep (end ind − i) ;
74 y (i +1) = y (i) + t ime s t ep (s t a r t i n d + i − 1) ;

74

75 end
76 V2 (: , 2) = x ’ ;
77 V1 (: , 2) = y ’ ;
78 l e x t 2 = V2\ e ta obs (end−(Lin ext −1) : end) ;
79 l e x t 1 = V1\ e ta obs (1 : L in ext) ;
80 e t a g u e s s = ze ro s (1 , l ength (eta)) ;
81 f o r i = 1+s t a r t i n d : end ind
82 e t a g u e s s (i) = eta obs (i−s t a r t i n d) ;
83 end
84

85 l = 0 ;
86

87 f o r i = 1 : s t a r t i n d
88 e t a g u e s s (i) = l e x t 1 (1) + l e x t 1 (2) ∗ l ;
89 l = l + t ime s t ep (i) ;
90 end
91

92 k = obs end + t ime s t ep (end ind) ;
93

94 f o r i = 1+end ind : nodes+1
95 e t a g u e s s (i) = l e x t 2 (1) + l e x t 2 (2) ∗k ;
96 k = k + t ime s t ep (i) ;
97 end
98

99 end

Mesh refiner

1 f unc t i on [r e f i n ed , h opt , d i f f e r r o r] = mesh r e f i n e r2 (time mesh , g ,
n o i s e l e v e l , ob s s t a r t , obs end)

2 e r r o r t o l e r a n c e = max(n o i s e l e v e l , 0 . 1) ;
3 %e r r o r t o l e r a n c e (1)
4 n o i s e l e v e l = max(n o i s e l e v e l , eps) ;
5 i f l ength (time mesh) ˜= length (g)
6 di sp (’ERROR: l ength o f time mesh and input func t i on must be

equal ! ’)
7 r e turn
8 end
9

10 t ime s t ep = ze ro s (1 , l ength (time mesh)) ;
11 f o r i = 2 : l ength (t ime s t ep)−1
12 t ime s t ep (i) = (time mesh (i +1)−time mesh (i −1)) /2 ;
13 end %Time step f o r d i s c r e t e

75

d e r i v a t i v e s .
14 t ime s t ep (1) = time mesh (2)−time mesh (1) ;
15 t ime s t ep (end) = time mesh (end)−time mesh (end−1) ;
16

17 time = 0 ;
18 s t a r t i n d = 1 ;
19 whi le time < o b s s t a r t
20 time = time + t ime s t ep (s t a r t i n d) ;
21 s t a r t i n d = s t a r t i n d + 1 ;
22 end
23

24 time = 0 ;
25 end ind = 1 ;
26 whi le time < obs end
27 time = time + t ime s t ep (end ind) ;
28 end ind = end ind + 1 ;
29 end
30 %s t a r t i n d
31 %end ind
32 %pause
33 t ime mesh o = time mesh (s t a r t i n d : end ind) ;
34 g o = g (: , s t a r t i n d : end ind) ;
35 t ime s tep2 = ze ro s (1 , l ength (time mesh o)) ;
36 f o r i = 2 : l ength (t ime s tep2)−1
37 t ime s tep2 (i) = (time mesh o (i +1)−t ime mesh o (i −1)) /2 ;
38 end %Time step f o r d i s c r e t e

d e r i v a t i v e s .
39 t ime s tep2 (1) = time mesh o (2)−t ime mesh o (1) ;
40 t ime s tep2 (end) = time mesh o (end)−t ime mesh o (end−1) ;
41

42 t h i r d d = ze ro s (4 , l ength (time mesh o)) ;
43 f o r i = 3 : l ength (time mesh o)−2
44 t h i r d d (: , i) = (g o (: , i +2) − g o (: , i −2) + 2∗ g o (: , i −1) − 2∗ g o

(: , i +1)) /(2∗ t ime s tep2 (i) ˆ3) ;
45 end
46 t h i r d d (: , 1) = (g o (: , 4) − g o (: , 1) + 2∗ g o (: , 2) − 2∗ g o (: , 3)) /(2∗

t ime s tep2 (1) ˆ3) ;
47 %th i r d d (: , 1)
48 %pause
49 t h i r d d (: , 2) = (g o (: , 4) − g o (: , 1) + 2∗ g o (: , 2) − 2∗ g o (: , 3)) /(2∗

t ime s tep2 (2) ˆ3) ;
50 t h i r d d (: , end−1) = (g o (: , end) − g o (: , end−3) + 2∗ g o (: , end−2) −

76

2∗ g o (: , end−1)) /(2∗ t ime s tep2 (end−1)ˆ3) ;
51 t h i r d d (: , end) = (g o (: , end) − g o (: , end−3) + 2∗ g o (: , end−2) − 2∗

g o (: , end−1)) /(2∗ t ime s tep2 (end) ˆ3) ;
52 t h i r d d = abs (t h i r d d) ;
53 %th i r d d (: , 1)
54 %pause
55 d i f f e r r o r = ze ro s (s i z e (th i r d d)) ;
56 d i f f e r r o r (1 , :) = th i r d d (1 , :) .∗ t ime s tep2 /3 ; %+ n o i s e l e v e l . /

time mesh . ˆ 2 ;
57 d i f f e r r o r (2 , :) = th i r d d (2 , :) .∗ t ime s tep2 /3 ; %+ n o i s e l e v e l . /

time mesh . ˆ 2 ;
58 d i f f e r r o r (3 , :) = th i r d d (3 , :) .∗ t ime s tep2 /3 ; %+ n o i s e l e v e l . /

time mesh . ˆ 2 ;
59 d i f f e r r o r (4 , :) = th i r d d (4 , :) .∗ t ime s tep2 /3 ; %+ n o i s e l e v e l . /

time mesh . ˆ 2 ;
60 l a r g e e r r o r = ze ro s (4 , l ength (time mesh)) ;
61 %d i f f e r r o r (3 , 1)
62 %time s tep2 (1)
63 %e r r o r t o l e r a n c e (2)
64 %pause
65 i f t ime s tep2 (1) > s q r t (n o i s e l e v e l ∗g (3 , 1)) && d i f f e r r o r (3 , 1) >

e r r o r t o l e r a n c e
66 l a r g e e r r o r (: , 1) = ones (4 , 1) ;
67 end
68 %s i z e (g)
69 %s i z e (d i f f e r r o r)
70 %s i z e (e r r o r t o l e r a n c e)
71 %pause
72 i f t ime s tep2 (2) > s q r t (n o i s e l e v e l ∗g (3 , 2)) && d i f f e r r o r (3 , 2) >

e r r o r t o l e r a n c e
73 l a r g e e r r o r (: , 2) = ones (4 , 1) ;
74 end
75 %e r r o r t o l e r a n c e = e r r o r t o l e r a n c e /2 ;
76 f o r i = 3 : l ength (time mesh o)
77 i f d i f f e r r o r (1 , i) > e r r o r t o l e r a n c e && t ime s tep2 (i) > s q r t (

n o i s e l e v e l ∗ g o (1 , i))
78 l a r g e e r r o r (1 , i) = 1 ;
79 end
80 i f d i f f e r r o r (2 , i) > e r r o r t o l e r a n c e && t ime s tep2 (i) > s q r t (

n o i s e l e v e l ∗ g o (2 , i))
81 l a r g e e r r o r (2 , i) = 1 ;
82 end

77

83 i f d i f f e r r o r (3 , i) > e r r o r t o l e r a n c e && t ime s tep2 (i) > s q r t (
n o i s e l e v e l ∗ g o (3 , i))

84 l a r g e e r r o r (3 , i) = 1 ;
85 end
86 i f d i f f e r r o r (4 , i) > e r r o r t o l e r a n c e && t ime s tep2 (i) > s q r t (

n o i s e l e v e l ∗ g o (4 , i))
87 l a r g e e r r o r (4 , i) = 1 ;
88 end
89 end
90 %l a r g e e r r o r
91 %pause
92 h opt = nthroot (6∗ n o i s e l e v e l . / th i rd d , 3) ;
93

94 r e f i n e d = [] ; %Star t re f inement o f time mesh . . .
95 r e f i n i n g = [] ;
96 k = 1 ;
97 r = 1 ;
98 whi le r < l ength (time mesh o)
99 i f l a r g e e r r o r (3 , r+1) == 1 && l a r g e e r r o r (3 , r) == 0

100 r e f i n e d = [r e f i n ed , t ime mesh o (k : r)] ;
101 end
102 i f l a r g e e r r o r (3 , r) == 0
103 r = r + 1 ;
104 i f r == length (time mesh o)
105 r e f i n e d = [r e f i n ed , t ime mesh o (k : r)] ;
106 end
107 cont inue
108 e l s e
109 %j = i ;
110 whi le l a r g e e r r o r (3 , r) == 1 && r < l ength (time mesh o)
111 s t e = h opt (r)+h opt (r+1) ;
112 r e f i n i n g = [r e f i n i n g , t ime mesh o (r) : s t e :

t ime mesh o (r+1)] ;
113 r = r + 1 ;
114 i f r == length (time mesh o)
115 r e f i n i n g = [r e f i n i n g , t ime mesh o (r)] ;
116 end
117 end
118 r e f i n e d = [r e f i n ed , r e f i n i n g] ;
119 k = r ;
120 end
121 r e f i n i n g = [] ;

78

122 end
123

124 r e f i n e d = [time mesh (1 : s t a r t i n d −1) , r e f i n ed , time mesh (end ind
+1:end)] ;

79

Bibliography

[1] A. Bakushinsky, M. Y. Kokurin, and A. Smirnova, Iterative methods for ill-posed prob-
lems, Inverse and Ill-Posed Problems, vol. 54, De Gruyter, 2011.

[2] W. Bangerth and A. Joshi, Adaptive finite element methods for the solution of inverse
problems in optical tomography, Inverse Problems 24 (2008), 034011.

[3] L. Beilina and I. Gainova, Time-adaptive FEM for distributed parameter identification
in biological models, Applied Inverse Problems, Springer Proceedings in Mathematics &
Statistics, vol. 48, Springer, 2013, pp. 37–50.

[4] , Time-adaptive FEM for distributed parameter identification in mathematical
model of HIV infection with drug therapy, Inverse Problems and Applications, Springer
Proceedings in Mathematics & Statistics, vol. 120, Springer, 2015, pp. 111–124.

[5] L. Beilina and C. Johnson, A posteriori error estimation in computational inverse scat-
tering, Mathematical Models and Methods in Applied Sciences 15 (2013), 37–50.

[6] L. Beilina, E. Karchevskii, and M. Karchevskii, Numerical linear algebra: Theory and
applications, Springer, New York, 2017.

[7] L. Beilina and M.V. Klibanov, Approximate global convergence and adaptivity for coef-
ficient inverse problems, Springer, New York, 2012.

[8] L. Beilina, M.V. Klibanov, and M. Yu Kokurin, Adaptivity with relaxation for ill-posed
problems and global convergence for a coefficient inverse problem, Journal of Mathemat-
ical Sciences 167 (2010), 279–325.

[9] W. S. Cleveland and S. J. Devlin, Locally weighted regression: an approach to regression
analysis by local fitting, Journal of the American Statistical Association 83 (1988), 596–
610.

[10] J. Cullum, Numerical differentiation and regularization, SIAM Journal on Numerical
Analysis 8 (1971), 254–265.

[11] J. W. Demmel, Applied numerical linear algebra, Society of Industrial and Applied
Mathematics, 1997.

80

[12] F. Deutsch, Existence of best approximations, Journal of Approximation Theory 28
(1980), 132–154.

[13] T. Feng, N Yan, and W Liu, Adaptive finite element methods for the identification of
distributed parameters in elliptic equation, Advances in Computational Mathematics 29
(2008), 27–53.

[14] B. Fornberg, Numerical differentiation of analytic functions, ACM Transactions on
Mathematical Software 7 (1981), 512–526.

[15] A. Griesbaum, B. Kaltenbacher, and B. Vexler, Efficient computation of the tikhonov
regularization parameter by goal-oriented adaptive discretization, Inverse Problems 24
(2008), 025025.

[16] B. Kaltenbacher, A. Kirchner, and B. Vexler, Adaptive discretizations for the choice of
a tikhonov regularization parameter in nonlinear inverse problems, Inverse Problems 27
(2011), 125008.

[17] M. V. Klibanov, A. B. Bakushinsky, and L. Beilina, Why a minimizer of the Tikhonov
functional is closer to the exact solution than the first guess, Journal of Inverse and
Ill-Posed Problems 19 (2011), 83–105.

[18] M. M. Lavrentiev, Some improperly posed problems of mathematical physics, Springer
Tracts in Natural Philosophy, vol. 11, Springer Verlag, Berlin, 1967.

[19] J. M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, Springer,
New York, 2012.

[20] H. Liu, S. Shah, and W. Jiang, On-line outlier detection and data cleaning, Computers
and chemical engineering 28 (2004), 1635–1647.

[21] J. N. Lyness and C. B. Moler, Numerical differentiation of analytic functions, SIAM
Journal on Numerical Analysis 4 (1967), 202–210.

[22] M. Mboup, C. Join, and M. Fliess, Numerical differentiation with annihilators in noisy
environment, Numerical Algorithms 50 (2009), 439–467.

[23] G. L. Patrick, An introduction to medicinal chemistry, Oxford University Press, Oxford,
2013.

[24] C. Persson, Iteratively regularized finite element method for conductivity reconstruction
in a waveguide, Master’s thesis, Chalmers University of Technology, 2016.

[25] W. Rudin, Principles of mathematical analysis, 3 ed., McGraw-Hill, 1976.

[26] S. Sharma and G. P. Samanta, Analysis of the dynamics of a tumor-immune system with
chemotherapy and immunotherapy and quadratic optimal control, Differential Equations
and Dynamical Systems 24 (2016), 149–171.

81

[27] P.K. Srivastava, M. Banerjee, and P. Chandra, Modelling the drug therapy for HIV
infection, Journal of Biological Systems 17 (2009), 213–223.

[28] G. Teschl, Ordinary differential equations and dynamical systems, Graduate Studies in
Mathematics, vol. 140, American Mathematical Society, 2012.

[29] A. N. Tikhonov, On the stability of inverse problems (in Russian), Doklady of the USSR
Academy of Science 39 (1943), 195–198.

[30] D. Xingsheng, Y. Liangbo, P. Sichun, and D. Meiqing, An iterative algorithm for solving
ill-conditioned linear least squares problems, Geodesy and Geodynamics 6 (2015), 453–
459.

82

