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Abstract 

We examine the accuracy of forecast models for the monthly Euro area inflation, focusing on               

the MIDAS approach. We compare two mixed frequency models with four low frequency             

models, using fourteen mixed frequency variables sampled at daily or monthly frequency. Our             

data set covers the period of February 1999 until August 2017, and we use a 10-year rolling                 

window to construct the forecasts. We use MIDAS models with one- respectively five-month             

lags, as these specifications provide the lowest average MSEs. Our findings show that the              

MIDAS model with five month lags perform better in-sample compared to the MIDAS model              

with one-month lag. The opposite applies for our out-of-sample forecasts. Furthermore, our            

findings suggest, in line with previous findings, that the MIDAS models perform well for              

short forecast horizons. On the contrary to previous research, we find that the MIDAS models               

provide worse forecasts than an AR(1) for longer forecast horizons.  
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1. Introduction 

It is important that accurate and reliable inflation forecasts are provided. Policy makers, such              

as central banks and governments, who implement monetary and fiscal policies depend on             

reliable inflation forecasts. Similarly, investors trying to provide profitable investments and           

firms trying to set prices rely on accurate inflation forecasts (Ang, Bekaert & Wei, 2007). The                

importance of forecasting inflation more often as new information emerges has become            

increasingly important for market participants over the last years. From the perspective of             

central banks it is important to continuously consider updates about inflation when conducting             

monetary policies. Private market participants tend to update their market expectations more            

frequently as new information becomes available and as a result they adjust their investment              

strategies (Monteforte & Moretti, 2013; Andrade, Fourel, Ghysels & Idier, 2014 ). 

 

Inflation data are reported at monthly frequency and as a result the usual way to forecast                

inflation have been based on models with monthly explanatory variables. Models that are             

based only on variables that are sampled with monthly frequency or averaged to the monthly               

frequency might conceal data that are released within months because of their initial             

construction. If only monthly data is considered when forecasting inflation this might provide             

less accurate forecasts compared to allowing for mixed frequency variables in the forecasting             

analysis (Monteforte & Moretti, 2013). 

 

In this paper, we use monthly and daily time series data to examine the accuracy of different                 

forecast models for the Euro area inflation, the Harmonised Index of Consumer Prices             

(HICP). The traditional procedure for time series regression analysis has been to use data              

sampled at the same frequency. To manage datasets of different frequencies it is common to               

use temporal aggregation to transform the higher frequency variable into a low frequency             

variable. In the transformation process, higher frequency time series lose much of the             

underlying information about the data (Rossana & Seater, 1995). 

  

Macroeconomic variables are collected at low frequencies, either monthly or quarterly. In            

order to incorporate daily data series when conducting regression analysis for low frequency             

 

 



 

macroeconomic variables, there is an increased interest in using models with mixed-frequency            

data (Andreou, Ghysels & Kourtellos, 2012). Regression models that permit variables to be             

sampled at different frequencies are proposed. Ghysels, Santa-Clara, and Valkanov (2004)           

develop the Mixed Data Sampling (MIDAS) model, where the dependent variable and the             

independent variables are allowed to be sampled at different frequencies. This enables a new              

set of analyses where more information can be extracted from higher frequency time series              

which can be used together with low frequency series. 

  

During a month, new data is released continuously and this data may contain new information               

about the inflation. To improve and update inflation forecasts in real time, it might be               

favourable to incorporate financial indicators sampled at a higher frequency, such as            

movements in yield curves and interest rate spreads. This type of data is available on a daily                 

basis and can capture current information about the inflation (Monteforte & Moretti, 2013;             

Mondugo, 2013). Recently, researchers apply the MIDAS approach in order to study inflation             

forecasting. The approach provides more accurate inflation forecasts compared to univariate           

models and low frequency Vector Autoregressive (VAR) models (Monteforte & Moretti,           

2013). 

  

In this paper, we test whether a mixed frequency model increase the forecast accuracy              

compared to low frequency models. Specifically we compare the monthly inflation forecast            

accuracy between two daily frequency MIDAS models and four models using data sampled at              

a monthly frequency. The dataset consist of 14 independent variables, 9 sampled monthly and              

5 sampled daily.  

 

Our results indicate that the models using daily data produce more volatile forecasts. For short               

forecasting horizons the mixed frequency models perform better than the others, as can be              

seen from the forecast's tracking performance of the realized inflation. For longer forecasting             

horizons however, a simple autoregressive model prove to produce the most accurate forecast.  

 

We conclude that the use of a MIDAS model for monthly inflation forecasting might not be                

 

 



 

optimal for a central bank, at least not using our variables and model specifications. This since                

they produce quite volatile forecasts and are more prone to overfitting. 

  

The remainder of the paper is organized as follows: the next section provides an overview of                

the theories and literature within this field. The following section describes the dataset and the               

subsequent section explains the methods that we use. In the last two sections we present our                

results and conclusions. 

  

  

 

 



 

2. Theory and concepts 

2.1 Taylor rule and Phillips curve 

Economic theory shows that there are different relations between inflation and other variables             

(Taylor, 1993; Phillips, 1958) and central banks are increasingly building their monetary            

policy on forms of the Taylor rule (Castro, 2011; Chen, Turnovsky & Zivot, 2014). Taylor               

(1993) proposes that monetary policies in the US can be explained by a relation between               

interest rates, inflation, and output gap. The Taylor rule implies that inflation can be              

controlled for through reactions in short term interest rates. For the purpose of forecasting              

inflation, the Phillips curve is more often used in the empirical literature compared to the               

Taylor rule. The Phillips curve is initially introduced by Phillips (1958) who shows that there               

is a relation between changes in wage rates and unemployment. Modern interpretations of the              

Phillips curve relate the actual unemployment rate to changes in the inflation rate, or relate an                

aggregated measure of economic activity to changes in the inflation rate (Atkeson & Ohanian,              

2001; Stock & Watson 1999). Several researchers conduct studies based on different forms of              

the Phillips curve for forecasting inflation, see (Ang et al., 2007; Stock & Watson, 2007,               

2008; Rumler & Valderrama, 2010; Dotsey, Fujita & Stark, 2015).  

 

Stock and Watson (1999) conduct an extensive study where they use the conventional Phillips              

curve based on unemployment and an alternative generalized Phillips curve based on the real              

aggregated economic activity to study inflation forecasts. They find that the generalized            

Phillips curve provide more accurate inflation forecasts compared to the conventional Phillips            

curve. Other studies provide different results for forecasts based on the Phillips curve. Some              

findings show that the Phillips curve provides less accurate forecasts compared to different             

benchmark models (Atkeson & Ohanian, 2001; Dotsey et al., 2015; Rumler & Valderrama,             

2010). Other findings show that the Phillips curve provides better forecast accuracy than             

benchmark models in some time periods and worse accuracy in other time periods (Stock &               

Watson, 2008).  

 

 

 

 



 

2.2 Previous studies 
Stock and Watson (2001) investigate the accuracy of VAR models when forecasting quarterly             

inflation. The study is conducted on quarterly data for the US using inflation, degree of               

unemployment and interest rate for the time period of 1969 to 2000. Similarly, Ang, Bekart               

and Wei (2007) use quarterly data for the variables inflation, GDP and unemployment rate. In               

their analysis, they also incorporate financial data for term structure for both short- and              

long-term together with data from three different inflation expectation surveys. Based on this             

data they compare several forecasting methods for quarterly inflation. In order to compare the              

outcome of different methods they use VAR and Autoregressive Moving Average (ARMA)            

models, forecast models containing information on term structures and forecast models based            

on the Phillips curve. Ang et al. (2007) either use the last observations or calculate the                

quarterly averages to include the monthly variables in the models.  

  

Averaging of time series is also applied by Stock and Watson (2003, 2007). Stock and Watson                

(2007) forecast quarterly inflation in the US based on quarterly and monthly variables. In              

order to generate data series sampled at the same frequency they incorporate the quarterly              

average of the monthly variables. The macroeconomic variables included in their analysis are,             

among others, unemployment rate, logarithm of real GDP, capacity utilization rates and            

building permits. Similarly, Stock and Watson (2003) use macroeconomic variables and a            

large set of financial variables sampled at quarterly or monthly frequency in order to forecast               

quarterly inflation and GDP. The financial variables are variables such as nominal exchange             

rates, oil price, and stock price indices. They either incorporate the quarterly average of the               

monthly variables or use the last observation in each quarter to create data series with the                

same frequency.  

  

2.3 The MIDAS approach 

The availability of higher frequency data creates an increased interest in mixed-frequency            

models (Andreou et al., 2012). The MIDAS approach, which initially was introduced by             

Ghysels et al. (2004), is one approach that makes it possible to conduct regression analysis for                

mixed-frequency data. The original application of the MIDAS model was based on predicting             

 

 



 

stock market volatility (Ghysels Santa-Clara & Valkanov, 2006; Ghysels, Sinko & Valkanov,            

2007). Findings show that the MIDAS approach provide accurate out-of-sample forecasts for            

volatility (Ghysels et al., 2006). Asgharian, Hou and Javed (2013) provide similar results             

when studying short- and long-term volatility. They show that inclusion of low frequency             

macroeconomic variables within a GARCH-MIDAS regression improve the forecast ability of           

the long-term volatility compared to using a traditional volatility benchmark model such as a              

GARCH(1,1).  

  

The use of the MIDAS approach increases as the MIDAS approach shows to be a proper                

method to use for both macroeconomic and finance related issues in order to handle the               

problem of mixed frequency time series (Ghysels et al., 2006; Andreou, Ghysels & Kourtellos              

2013). Asimakopoulos, Paredes and Warmedinger (2013) compare fiscal time series forecasts           

provided by the MIDAS approach with forecast estimations from other models. Their findings             

suggest that the MIDAS-method, performs better than the other models and they conclude             

that the best way of conducting forecasts for fiscal time series is to incorporate data as it gets                  

available over time. 

  

Several more studies have adopted the MIDAS approach in order to forecast quarterly GDP              

based on a set of monthly explanatory variables, and found the method to provide forecasts of                

better quality. Marcellino and Schumacher (2011) conduct an analysis based on German            

quarterly GDP and perform forecasts using three different types of MIDAS models. Kuzin,             

Marcellino and Schumacher (2011) use 20 monthly variables to forecast quarterly GDP for             

the euro area. They examine if different MIDAS methods, a MIDAS and an AR-MIDAS,              

obtain more accurate forecasts in comparison with a mixed frequency VAR model. The             

findings show that the models work as complements to one another as the MIDAS performs               

better in short term and the mixed frequency VAR better on a longer forecasting horizon.               

Similarly, Clements and Galvão (2008) perform quarterly GDP forecasts but for the US. They              

use an Autoregressive (AR) model and an Autoregressive Distributed Lag (ADL) model to             

perform quarterly benchmark forecasts. These quarterly forecasts are compared with the           

forecasts from their MIDAS model, which includes monthly data. In their MIDAS-method            

they also incorporate an autoregressive (AR) term and estimates a AR-MIDAS model. The             

 

 



 

empirical results show that when they incorporate monthly data and use the MIDAS approach              

the accuracy of the forecasts improves. 

  

Andreou, Ghysels and Kourtellos (2013) provide a forecast analysis for quarterly GDP based             

on a large dataset of daily financial variables, monthly macroeconomic variables and quarterly             

variables. They investigate whether univariate models, models with macroeconomic data,          

models with financial data or if models that combine quarterly macroeconomic data with daily              

financial data obtain the best forecasts. Their findings suggest that quarterly forecasts of US              

GDP improve when daily data is included in a MIDAS model compared to the forecasts from                

models that only use low frequency variables. The root mean squared forecast errors are lower               

for MIDAS models compared to the outcome of a quarterly AR(1) model and a quarterly               

ADL model. 

  

2.4 High frequency models for inflation 

Mixed frequency models are also applied to test whether the accuracy of forecasting models              

for inflation increases. Modugno (2013) aim to forecast the monthly US and euro area              

inflation and include mixed frequency data that are sampled at monthly, weekly and daily              

frequencies. For the euro area Modugno (2013) uses oil bulletin price that is sampled at               

weekly frequency and data of world market prices for raw materials that is sampled at daily                

frequency. The findings suggest that models that only incorporate monthly data perform            

worse than models with mixed frequency data. Especially, the mixed frequency model            

provides the most accurate forecasts compared to the low frequency model and a random              

walk at a short horizon. 

  

Some studies are conducted where the MIDAS approach is used to forecast inflation. Andrade              

et al. (2014) argue that frequent attention for macroeconomic conditions are important when             

conducting monetary policy decisions. They conduct a study where inflation risk in the euro              

area is predicted for two following quarters using daily data for financial variables such as oil                

prices, stock prices, exchange rates, money markets and bond markets. Their findings show             

that when only averages of variables with higher frequency are used for forecasting inflation              

 

 



 

risk the forecast tend to be less accurate compared to when mixed frequencies are taken into                

account. They conclude that financial data contribute when inflation risks are forecasted. 

  

Similarly, Monteforte and Moretti (2013) focus on inflation in a mixed frequency context but              

aim to study inflation forecasts for the euro area. They use the monthly variables lagged               

inflation, oil price and core inflation index together with the daily variables short- and              

long-term interest rates, spreads of interest rate, commodity prices and exchange rates. They             

construct three models that are forecasted using the MIDAS approach, and besides these three              

models univariate models such as a random walk and an AR(1) are used. Their findings show                

that when variables with daily frequencies are included, the MIDAS model obtains lower root              

mean squared forecast errors compared to univariate models.  

 

  

 

 



 

3. Data  

We use data that we collect from several sources (see Appendix 1). Our data covers the period                 

of February 1999 until August 2017. Based on economic theory and previous literature we use               

14 variables to forecast the Euro area inflation, HICP. Nine of the variables are sampled at                

monthly frequency and five variables are sampled at daily frequency. 

  

3.1 Dependent variable 

The European Central Bank (ECB) measures inflation using the Harmonised Index of            

Consumer Prices (HICP). This index ensures that the same method for calculating inflation is              

used for all countries within the European Union. HICP represents the average change in what               

households pay for a basket consisting of both goods and services (ECB, 2017a). HICP is               

used by researchers to forecast the monthly European area inflation (Monteforte & Moretti,             

2013; Modugno, 2013) and therefore we use this measure as the dependent variable in our               

forecasting analysis. 

  

3.2 Independent variables 

Our set of 14 predictor variables are known to affect the inflation rate. By using this dataset,                 

we aim to incorporate variables that contain information that affect the inflation and as a               

result contribute to our forecasts of the Euro area inflation. 

  

We consider the monthly variable unemployment since unemployment is shown to affect the             

inflation rate (Stock & Watson, 2001; Ang et al., 2007). We use the unemployment rate,               

defined as the proportion of the population in the European area that is between 15 to 74 years                  

and without work (Eurostat, 2017b). Another variable included in our model that can help to               

explain the inflation is the number of building permits (Stock & Watson, 2007; Sousa &               

Falagiarda, 2017), this since inflation usually rises when the economy flourishes and when the              

capacity of production gets strained (Andrade et al., 2014).  

  

We also consider monetary aggregates such as M1, M2, and M3 since these aggregates are               

shown to be important for forecasting inflation (Falagiarda & Sousa, 2017) and other             

 

 



 

macroeconomic variables that in turn affect inflation like GDP (Marsilli, 2014). M1 is defined              

by ECB (2017b) as a monetary aggregate that includes currency that is in circulation together               

with overnight deposits. M2 is the sum of M1 plus additional deposits with a maturity of up to                  

two years, and deposits which can be redeemable up to three months. The last monetary               

aggregate, M3, is the broadest aggregate (that we consider) and includes M2 together with              

repurchase agreements, fund shares in the money market and debt securities that have a              

maturity of at most two years (ECB, 2017b). 

  

We include a set of monthly variables for different types of interest rates, such as the short                 

term 3-month EURIBOR rate and the long-term government bond interest rate. We also             

consider the interest spread, as the difference between long-term government bond interest            

rate in the Euro area and the 3-month short-term EURIBOR rate. We also include ECB’s               

daily refinancing rate, the minimum interest rate on interbank loans (ECB, 2014).  

  

We include a monthly data series for Production Price Index (PPI) since changes in PPI can                

help when forecasting consumer price indices (Clark, 1995). Furthermore, we include the            

daily USD/EUR exchange rate because of its effect on import and export prices (Monteforte              

and Moretti, 2013). 

 

An additional factor that can be important for explaining the HICP index are changes in oil                

prices, such as changes in Brent oil price. Economic theory shows that shocks in oil prices                

affect the inflation rate (Gottfries, 2013) and researchers use the Brent oil prices for              

forecasting inflation (Andrade et al., 2014; Modugno, 2013; Monteforte & Moretti, 2013).            

Therefore, we include a daily data series for European Brent oil prices in our analysis. Other                

daily variables that we include are indices for the stock market, as stock market indices can                

provide valuable information about inflation expectations (Andrade et al., 2014; Stock &            

Watson, 1999). We consider both the Eurostoxx50 index and the S&P500 index, to represent              

the Euro area and US stock market respectively.  

 

 

 



 

3.3 Descriptive statistics 

Table 1 illustrates the descriptive statistics for our dataset during the period of February 1999               

until August 2017. Our monthly data series consist of 223 observations and our daily data               

series consist of 6787 observations. Initially, the daily data series consisted of different             

numbers of observations, so we use interpolation to fill in the missing observations.  

 

Table 1: Descriptive statistics for all variables in the analysis over the period of February 1999 until                 

August 2017. The table include the mean, median, maximum and minimum values together with the               

standard deviations and the total number of observations for each variable.  

 
Variables Mean Median Max Min Std. dev. Obs. 

HICP 89.62 91.37 101.84 74.12 8.75 223 
Unemployment 9.57 9.27 12.08 7.25 1.27 223 
Building permits 172.87 160.5 342.30 73.40 81.84 223 
M1 86.61 81.80 157.02 40.95 31.40 223 
M2 85.85 91.74 128.99 47.97 24.35 223 
M3 86.40 95.50 125.18 48.76 22.85 223 
Euribor 2.00 2.12 5.11 -0.33 1.68 223 
Long term interest rate 3.75 4.09 5.73 0.77 1.27 223 
Interest spread 1.74 1.69 3.41 -0.55 0.97 223 
PPI 169.84 174.10 208.30 122.30 27.44 223 
Oil price 62.05 55.92 143.95 9.77 32.61 6787 
Exchange rate 1.21 1.24 1.60 0.83 0.17 6787 
Refinancing rate 1.94 2.0 4.75 0.05 1.45 6787 
Eurostoxx 3258.80 3084.68 5464.43 1809.98 740.92 6787 
S&P500 1409.74 1314.54 2482.76 679.28 393.61 6787 

  

3.4 Data processing 

We conduct an augmented Dickey Fuller (ADF) test to examine the stationarity of our time               

series. The null hypothesis for the test is that the data series is nonstationary (Gujarati &                

Porter, 2009). Based on the results of these tests and by observing plots of the data series, we                  

include the data series for unemployment in second differences and the rest of the data series                

in first differences. The test results are presented in Appendix 2.  

 

 



 

3.5 Data quality 

The data that we include in our analysis have different characteristics. Some of the data series                

are not seasonally adjusted but due to lack of available data we use both. The series affected                 

are oil prices, commodity prices and stock market prices. We leave it for future work to                

extend this study with data that is fully seasonally adjusted.  

 

A weakness with the data is that we use revised data and not real-time data. The problem with                  

using revised data is that it is not representative of the information available for real-time               

forecasters (Stark & Croushore, 2002; Bouwman & Jacobs, 2011). Furthermore, the accuracy            

of forecasting models for inflation is shown to be sensitive to the data vintage (Stark &                

Croushore, 2002).  

 

One more weakness is that we have missing observations for some of the daily variables               

which is solved by interpolation. However the data show some strength with the choice of               

HICP as our dependent variable, since we ensure that inflation is measured in the same way                

across the Euro area.  

 

 



 

4. Method 

Traditionally regression models are applied on time series that is sampled at the same              

frequency, examples of such models are the AR- and VAR-models. Since many            

macroeconomic variables are released at different frequencies this has made it problematic to             

model e.g., the quarterly released GDP figures on monthly variables such as unemployment or              

inflation. To solve this problem different time aggregation schemes are used to convert             

variables to the same frequency, i.e., converting high frequency variables to a lower             

frequency, the most popular being that of a simple time average: 

 

xxt = 1
m ∑

m

j=1
L 

j/m
t 
(m)   

 

Where denotes a variable sampled m times more frequent than the basic (low) frequency xt
(m)               

time variable t. is a lag operator with superscript in the equation’s basic frequency. The   Li
             

lags of the higher frequency variables will then be denoted as fractions in the superscript, e.g.,                

L​(t-1/m)​x​t​= x​t-1/m​ will be the first high frequency lag at time t.  

 

This time averaging has the drawback that the same weight is put on all the m past                 

realizations of X, which means that we are not just missing out on the volatility of the variable                  

but also the timing. This contradicts the common perception that more recent realizations of              

variables should be weighted differently. 

 

4.1 MIDAS 

Drawing on theory of distributed lag models, Ghysels et al. (2004) introduce an approach to               

incorporate data with different sampling frequencies. This approach use a more nuanced            

weighting scheme than the simple time average by imposing a distributional restriction on the              

weights. A simple version of their Mixed Data Sampling (MIDAS) regression model can be              

seen below, with one dependent variable y and one independent variable x. Here the are              β 
i   

the regression coefficients and is the weighting function, where k is the lag number    (k; )b θ            

and is a vector of hyperparameters defining the shape of the weighting function. By θ              

 

 



 

normalizing the weight, i.e. forcing to to sum to unity, the coefficient can be      (k; )b θ       β 
1   

identified.  

 

β  β (k; )L x  εyt + h 
=  0 +  1 ∑

m

k=1
b θ  

k/m
t 
(m) +   

t + h  

 

Optimizing the weights based on the hyperparameters of the weighting function decrease the             

amount of parameters to estimate, which otherwise could be a problem when incorporating a              

large number of independent variables (Ghysels et al., 2007). As an example, modelling a              

monthly sampled variable on two months’ worth of data generated by a daily sampled              

variable would amount to about 40 parameters to estimate. Further adding other independent             

variables sampled at daily frequency would rapidly increase the amount of parameters. The             

MIDAS approach would in such a scenario create a more parsimonious regression model             

given that the model is optimized over a few hyperparameters .θ , ...,  ]θ = [ 1 θ2 θj  

 

The distribution functions predominantly used in the MIDAS framework are the exponential            

Almon lag and Beta lag functions. The two procedures are popular in the MIDAS literature               

because of their ability to depict various distributional shapes requiring only a few parameters              

(Ghysels et al., 2007). Ghysels et al. (2007) argue that the exponential Almon lag is better                

suited for long horizon forecasting, hence that will be the distribution used in this paper.  

 

The exponential Almon lag function is based on the Almon lag polynomial used in the               

distributed lag models literature (Almon, 1965) and defined by Ghysels et al. (2004) as:  

 

(k; , ) b θ1 θ2 = exp(θ k +θ k )1 2
2  

xp(θ j +θ j )∑
m

j=1
e 1 2

2   

 
The specification of the function by Ghysels et al. (2004) use two parameters and but             θ1  θ2  

the number of parameters can be increased if the problem at hand benefits from a more                

complex weighting function. However, two parameters is the more popular choice and the             

flexibility of that specification is shown in Figure 1. There we can see that determines the              θ1   

location of the polynomial while  specifies the slope.θ2   

 

 



 

 
Figure 1: Plot of the exponential Almon lag function for different parameter values.  

 

4.2 Forecasting 

In our analysis we divide our time series into two parts, one in-sample and one out-of-sample                

period. This creates a pseudo out-of-sample forecast, where we use the first part to train our                

models, i.e., estimating the parameters that best fit the data and the second part for testing the                 

models' forecasting performance.  

 

A rolling forecast window is also implemented. This means that the number of in-sample              

observations is fixed but the time frame is shifted when the forecasting horizon shifts. This is                

done by dropping the oldest observation in the in sample period, adding the first observation               

in the out-of-sample period instead and consequently dropping that observation from the            

out-of-sample period.  

 

4.3 Measure of Accuracy 

To evaluate the model performance both in- and out-of-sample we will use the Mean Square               

Error (MSE) and the Mean Absolute Percentage Error (MAPE)(as seen, e.g., in Chen, C.,              

Twycross, J., & Garibaldi, J. M.(2017)). MSE of an estimation is the average squared              

difference between the realized and the estimated value, i.e., average squared error. The MSE              

used in our analysis can be seen below, with representing the inflation at time and         y 
t       t   y 

t

︿

 

being the estimated value of the same during the time period t = [1,T].  

 

 



 

SE(y )  (y )M  
t

︿

=  1
T ∑

T

t=1

 
t − y 

t

︿
2  

MAPE also use a sum of the errors, but set in absolute terms and put in relation to the realized 

values by division, as can be seen below. 

AP E(y ) M  
t

︿

=   T
100 ∑

T

t=1 y 
t

|y −y | 
t

 
t

︿
 

 

4.4 Diebold-Mariano test 

To evaluate if the difference in performance between two forecasts is statistically significant             

we use the Diebold and Mariano (DM) test (1995). The forecasts performance is measured              

with a chosen loss function that is denoted by where is the forecast error at time         (e )L  
it  e 

it       t  

associated with model i. When comparing two forecasts the test use the loss differential             d 
12t =

 to compute the DM test statistic:(e ) (e )L  
1t − L  

2t  

  DM 12 =  d
 
12

σ︿d 
12

  

Where is the sample mean and the sample variance of the loss differential. A d
 
12      σ︿

d 
12

        

quadratic loss function would thus be and then the mean square error with T      (e ) eL  
it =  it

 2          

observations can be written .d
 
12 = (e ) (e )1

T ∑
T

t = 1
L  

1t − L  
2t   

 

The test assumes the loss differential to be covariance stationary, which implies finite and              

constant mean and variance. As a consequence the test statistic can be compared to a standard                

normal distribution. (Diebold, 2015).  

 

To test for equal forecast performance the null hypothesis is that the expected mean of the                

loss differential is zero, that is . When the test statistic is negative the first      (d ) 0E  
12t =           

forecast performs better on average. But to see if the difference in performance is statistically               

significant for a chosen significance level the DM test statistic will be compared to the               

standard normal distribution.  

 

 



 

5. Results  

We use the first ten years of our data set, February 1999 to February 2009, as the in-sample                  

period and the remaining observations until August 2017 as the out-of-sample period. This             

results in 120 monthly in-sample observations and 103 out-of-sample observations. The           

forecasts is further constructed with a 10 year rolling window. 

 

5.1 MIDAS lag selection 

We compare the in-sample and out-of-sample MSE for different lag lengths over a span of               

forecast horizons to find the optimal lag length in our MIDAS model. The resulting MSEs can                

be seen in Figure 2 and 3. The forecasts seem to perform similarly in-sample, the exception                

being a positive deviation at the nine month forecast horizon for the one month lag               

specification. The same deviation is present in the out-of-sample period, this time with a              

lower MSE compared to the others. A more stable forecast but not resulting from better               

pattern matching in-sample might be the result from accuracy measure characteristics. Larger            

deviations from the training data will be more heavily penalized with the MSE and might               

indicate that the 1 month lag forecast has some outliers but on average performs well. This                

interpretation is further strengthened by the out-of-sample MSE. 

 

In addition, we test for heteroscedasticity of the MSE with a Bartlett’s test. Since the               

forecasting horizon 12-24 months ahead is of special importance for central banks, this period              

is analyzed separately. For both time frames the null hypothesis, that the variances between              

the models differ significantly, is rejected at a 5% significance level with respective p-values              

of 0.9827 and 0.6003 (Table 2). Since the MSE variance is not significantly different between               

the models the lag length will be based on the MSE bias. The two model specifications with                 

the lowest average MSE are, according to Table 3, the models that considered information              

from the previous month (MIDAS(1)) and the one with 5 month lag (MIDAS(5)). These are               

the mixed frequency models considered in the remainder of our analysis. 

 
  

 

 



 

Table 2: Bartlett’s test for heteroskedasticity, forecast MSE between models. The forecasts used was              
that for the first month, third month and then every third consecutive month up to the forecast 24                  
months ahead. 

 All horizons 12-24 months ahead 

Bartlett’s K-squared 0.3977 2.7514 

p-value 0.9827 0.6003 
 
Table 3: Descriptive statistics forecast MSE using MIDAS models with different lag specifications. The              
forecasts used was that for the first month, third month and then every third consecutive month up to                  
the forecast 24 months ahead.  

Lag length Mean MSE,  
all horizons 

Mean MSE, 
12-24 months 

Variance MSE, 
all horizons 

Variance MSE, 
12-24 months 

1 0.0381 0.0455 0.0000810 0.00001907 

2 0.0417 0.0486 0.0000901 0.00004266 

3 0.0421 0.0512 0.0001202 0.00003912 

4 0.0415 0.0496 0.0001097 0.00002650 

5 0.0408 0.0470 0.0000911 0.00009386 
 

 

Figure 2: MSE for different MIDAS model specifications using a ten year rolling window starting at                

February 1999. 

 

 

 



 

 

Figure 3: MSE for forecasts using different MIDAS specifications. Forecasting from 2009-03 to             

2017-08 using a 10 year rolling window. 

 

5.2 Forecast Comparison 

The models we compare our two MIDAS models with are an AR(1) and three MIDAS models                

using data sampled at the same (monthly) frequency. Two of the MIDAS models are              

implemented with a two month lag and an exponential Almon lag weight restriction. The time               

aggregates we use in these models is the monthly average, MIDAS(Mean), and the last              

observation in each month, MIDAS(Last Obs). The last MIDAS model use a two month lag               

but without a weighting function, this unrestricted model also use the monthly average of the               

daily data, U MIDAS(Mean). 

 

5.2.1 MSE 

The difference in goodness of fit in the in-sample period can be seen in Figure 4 and the                  

forecasting performance in Figure 5, both measured by MSE. The AR(1) exhibit the worst              

goodness of fit considering the in-sample data but in contrast shows most promise in keeping               

the out-of-sample forecasting errors low and stable. Comparing the two high frequency            

MIDAS specifications the MIDAS(5) performs better in-sample than MIDAS(1) and in the            

out-of-sample it is the other way around. In the out-of-sample the worst forecast performance              

is produced by U MIDAS(Mean).  

 

 



 

 

Figure 4: MSE for forecasts using five different models using a ten year rolling window starting at                 

February 1999. 

 

 

Figure 5: MSE for monthly forecasts using five different models. Forecasting from 2009-03 to 2017-08               

using a 10 year rolling window.  

 

 



 

 

5.2.2 Forecast plots 

The resulting forecast from the six models can be seen in Figure 6 and Figure 7. The AR(1)                  

displays consistently flat forecasts compared to the others, with the 1 month forecast horizon              

most variable, showing some lagged reaction to dips and highs.  

 

Both the mixed frequency models show some good forecast performance for the 1 month              

horizon, but for other horizons MIDAS(5) display some significant deviation from the            

realized values and a high variance. In contrast MIDAS(1) show lower variance in the              

forecasts and some capability in predicting the ups and downs. Comparing the models for the               

12 month horizon we observe that the MIDAS(1) provide a more flat forecast compared to               

MIDAS(5). Also comparing the two models for the 24 month forecast horizon, we see that the                

MIDAS(1) provide the best forecasts with MIDAS(5) showing quite large deviations from the             

realized change in HICP. 

 

The MIDAS specifications using the monthly averages performs similarly to each other,            

differing in forecast variability with the U MIDAS(Mean) seemingly reacting more strongly            

to indications in the data for HICP movements. For the 1 month ahead forecast horizon the                

two models forecast the HICP quite well, on par with MIDAS(1) and better than MIDAS(5).               

MIDAS(1) seem to perform slightly better than the both mean-models however.  

 

MIDAS(Last obs) often produce forecasts with less variance than the other same-frequency            

MIDAS models, showing more predictive power for some horizons and worse for others.             

MIDAS(mean) provide a somewhat better forecast on the 1 month horizon compared to the              

MIDAS(last obs) for instance. 

 

The model displaying the least forecasts variation is thus the AR(1) and MIDAS(5) the one               

showing the most. 

 

 

 

 



 

 
Figure 6: Forecast plots using AR(1), MIDAS(1), and MIDAS(5) for nine different forecasting             
horizons. The black line represents the realized change in HICP and the colored lines the model                
forecasts, the x-axis represents time and the y-axis the change. 

 

 



 

Figure 7: Forecast plots using U MIDAS(Mean), MIDAS(Mean), and MIDAS(Last obs) for nine             
different forecasting horizons. The black line represents the realized change in HICP and the colored               
lines the model forecasts, the x-axis represents time and the y-axis the change. 

 

 



 

5.2.3 DM-tests 

In order to evaluate if the difference in performance is statistically significant we conduct              

DM-tests. The accuracy measures we use are MSE and MAPE. Our forecasts predict the              

change in inflation and since the actual change in HICP is zero for two months in our                 

out-of-sample we will omit these observations to be able to calculate the MAPE measure for               

this period.  

 

Results for the two-sided DM tests comparing the forecasting performance of MIDAS(1)            

against all the other models can be seen in Table 4. A negative value indicate that the                 

MIDAS(1) performs better than the model it is compared to and we can thus see that it is                  

evaluated to be the better model almost twice as many times if we look at the MAPE as                  

opposed to the MSE. The difference between MIDAS(1) and the models AR(1) and             

MIDAS(5) show more statistical significance than the rest. Where the AR(1) perform better             

overall but MIDAS(1) seem to have more predictive power in the short term. The comparison               

also seem to come out in favour of MIDAS(5) looking at the MSE and number of significant                 

test statistics, but the number of negative statistics in the MAPE column favour MIDAS(1).              

The comparison between the two is thus a bit inconclusive. 

 

We also compared all models against each other, Table 5,6, and 7 show the results for the                 

time horizons 12, 24, and the averaged result for all the nine forecasting horizons used in the                 

analysis. The results indicate that for the chosen time periods the AR(1) mostly produce              

significantly better forecasts than the other models. The forecasting performance of AR(1)            

also seem to be stable across all the forecast horizons. 

 

MIDAS(1) show better relative results for 24 months ahead than 12 and the other way around                

for MIDAS(5). Looking at the forecast plots in Figure 6 this is to be expected for these                 

horizons. This since they both display less volatility for forecast horizon 12, which in this case                

benefits MIDAS(5). 

 

The models using monthly time aggregates and the MIDAS lag structure performs better than              

 

 



 

MIDAS(1) and U MIDAS(Mean) for the chosen horizons. They also perform better than             

MIDAS(5) for the 24 months horizon. This trend is further seen on the aggregated level, with                

MIDAS(Last Obs) demonstrating the slightly better performance of the two. Combining this            

result with the forecast plots in Figure 7 we attribute this to the lower volatility for                

MIDAS(Mean) and MIDAS(Last Obs). 

 

 
Table 4: Comparing the forecasts of the different models against the MIDAS(1) with a two-sided DM 
test. The table shows the test statistics for two measures of accuracy, MSE and MAPE. The statistical 
significance is indicated by “*” - 10% “**” - 5% and “***” - 1%. 

 AR(1) MIDAS(5) U MIDAS 
(Mean) 

MIDAS 
(Mean) 

MIDAS 
(Last obs) 

Horizon MSE MAPE MSE MAPE MSE MAPE MSE MAPE MSE MAPE 

1 -1.05 
 

-0.92 
 

2.54 
** 

 2.52 
** 

0.70 -0.71  0.76 0.53  -1.56 -0.16 

3 0.70 -0.41 1.93 
* 

2.28 
** 

-1.21 -0.94 -0.26 0.26 0.66 1.58 

6 1.96 
* 

-0.98 -2.63 
** 

-3.72  
*** 

-0.59 -2.34 
** 

-0.25 -1.13  1.70 -1.15 

9 2.33 
** 

 2.08 
** 

0.54 -1.26 1.07 -0.92 1.64 -0.02 1.82 
* 

2.20 
** 

12 2.24 
** 

1.93 
* 

 1.33 3.49 
*** 

-0.68 0.11 1.73 
* 

1.77  
* 

 0.92 1.30 

15 2.14 
** 

2.59 
** 

2.17 
** 

3.25 
*** 

0.09 0.46 0.45 1.40 1.55 1.16 

18 2.30  
** 

 0.59 0.21 -1.80 
* 

-0.64 -1.98 
* 

1.23 -0.20 0.69 -0.44 

21 1.94 0.81 -1.94 -4.72 
*** 

0.18  -1.34 1.48 -0.10 0.32 0.80 

24  1.81 
* 

1.65 -0.68 -0.50 -1.15 -1.40 0.54  -0.74 0.71 0.32 

 
  

 

 



 

 

 

Table 5:​ ​Comparing the forecasts for the 12 months ahead horizon using a two-sided DM-test. In 
compliance with the notation in the method chapter the rows represent model 1 and the columns model 
2. MSE and MAPE are used as accuracy measures and the significance levels are represented by “*” 
- 10% “**” - 5% and “***” - 1% 

  
AR(1) 

 
MIDAS(1) 

 
MIDAS(5) 

 
U MIDAS 

(Mean) 

 
MIDAS 
(Mean) 

 
MIDAS (Last 

Obs) 

 MSE MAPE MSE MAPE MSE MAPE MSE MAPE MSE MAPE MSE MAPE 

 
AR(1) 

0 0 -2.24 
** 

-1.93  
* 
 

-1.24 
 

1.60 
 

-2.08 
** 

-1.87 
* 

-2.07 
** 

-0.88 -1.77 
* 

-1.50 

 
MIDAS(1) 

 2.24 
** 

  1.93 
* 

0 0 1.33 3.49  
*** 

-0.68  0.11  1.73 
* 

1.77 
* 

 0.92 1.30 

 
MIDAS(5) 

1.24 
 
 

-1.60 -1.33 
 

-3.49 
*** 

0 0 -1.42 -3.69 
*** 

-0.58 -3.09 
*** 

-0.59 -2.45 
** 

 
U MIDAS 
(Mean) 

 2.08 
**  

 1.87 
* 

 0.68  
 

-0.11 1.42 3.69 
*** 

0 0 1.89  
* 

2.59 
** 

1.16 1.12 

 
MIDAS 
(Mean) 

 2.07 
** 

 0.88 
 
 

-1.73 
* 

-1.77 
* 

0.58  3.09 
*** 

-1.89  
* 

-2.59 
** 

0 0 -0.10 0.03 

 
MIDAS  
(Last Obs) 

1.77 
* 

 1.50 
 

-0.92 -1.30  0.59  2.45 
** 

-1.16 -1.12  0.10 -0.03 0 0 

 
 
 
 
 
 
 
 
 
 
 
  

 

 



 

Table 6:​ ​Comparing the forecasts for the 24 months ahead horizon using a two-sided DM-test. In 
compliance with the notation in the method chapter the rows represent model 1 and the columns model 
2. MSE and MAPE are used as accuracy measures and the significance levels are represented by “*” 
- 10% “**” - 5% and “***” - 1% 

  
AR(1) 

 
MIDAS(1) 

 
MIDAS(5) 

 
U MIDAS 

(Mean) 

 
MIDAS 
(Mean) 

 
MIDAS (Last 

Obs) 

 MSE MAPE MSE MAPE MSE MAPE MSE MAPE MSE MAPE MSE MAPE 

 
AR(1) 

0 0 -1.81 
* 

-1.65 
 

-1.93 
* 

-1.97 
* 

-3.18 
*** 

-2.44 
** 

-2.93 
*** 

 -1.96 
* 

-2.28 
** 

-1.28 

 
MIDAS(1) 

1.81 
* 

1.65 0 0 -0.68 
 

-0.50 -1.15 
 

1.40 0.54 -0.74  0.71 0.32 

 
MIDAS(5) 

1.93 
* 

1.97 
* 

0.68 
 

 0.50 0 0 0.08 -0.82 1.05 -0.23 1.24  0.74 

 
U MIDAS 
(Mean) 

3.18 
*** 

 2.44 
** 

1.15 1.40 -0.08 0.82 0 0 2.31 
** 

2.40 
** 

1.94 
* 

1.58 

 
MIDAS 
(Mean) 

2.93  
*** 

1.96 
* 

-0.54 0.74 -1.05  0.23 -2.31 
** 

-2.40  
** 

0 0 0.46 0.95 

 
MIDAS  
(Last Obs) 

2.28 
** 

1.28 
 

-0.71 -0.32 
 
 

-1.24  -0.74 -1.94 
* 

-1.58 
 

-0.46 -0.95 0 0 

 
  

 

 



 

 
Table 7: Aggregated results from all horizons using the two-sided DM-test. In compliance with the 
notation in the method chapter the rows represent model 1 and the columns model 2. MSE and MAPE 
are used as accuracy measures and the significance levels are represented by “*” - 10% “**” - 5% 
and “***” - 1% 

  
AR(1) 

 
MIDAS(1) 

 
MIDAS(5) 

 
U MIDAS 
(Mean) 

 
MIDAS 
(Mean) 

 
MIDAS (Last 
Obs) 

 MSE MAPE MSE MAPE MSE MAPE MSE MAPE MSE MAPE MSE MAPE 

 
AR(1) 

0 0 -1.60 
 

-0.82 
 

-1.11 
 

-0.86 
** 

-2.05 
** 

-1.69  -1.56 
* 

-0.66 -1.54 -0.46 

 
MIDAS(1) 

 1.60 
 

0.82 0 0 0.38 -0.05 -0.25  -1.01 0.81  0.20  0.76 0.62 

 
MIDAS(5) 

1.11  0.86 
** 

-0.38 0.05 0 0 -0.53  -0.53  0.01 0.25  0.10 0.52 
* 

 
U MIDAS 
(Mean) 

2.05 
** 

1.69 0.25  1.01 0.53 0.53  0 0 1.64 2.27 
** 

1.08  1.41 

 
MIDAS 
(Mean) 

 1.56 
* 
 

 0.66 -0.81 -0.20 -0.01 -0.25 -1.64 -2.27 
** 

0 0  0.07 0.46 

 
MIDAS  
(Last Obs) 

 1.54  0.46 -0.76 -0.62 -0.10 -0.52 
* 

-1.08 -1.41 -0.07 -0.46 0 0 

 
 
 
 

 

  

 

 



 

6. Conclusion 

In this paper we compare the forecast performance of six different models, using two high               

frequency MIDAS specifications, three low frequency MIDAS models and an AR(1) model.            

For the two high frequency models we use nine monthly and five daily variables, whereas in                

the other three MIDAS models all variables are included at monthly frequency, either by              

averaging or using the last observation. We find that the MIDAS(1) and the MIDAS(5)              

specifications provide the lowest average MSE, and we use these two models in our analysis               

to study the performance of MIDAS models that incorporate both daily and monthly data. 

 

Our results for the goodness of fit in the in-sample period, shown in Figure 4, are in line with                   

the findings by Andrade et al., (2014). Similar to their result the in-sample goodness of fit is                 

improved when incorporating variables sampled at daily frequency. Which is to be expected,             

since more parameters can create a more intricate parameter structure making it possible to              

better emulate the data. On the contrary to the results by Andrade et al., (2014) we find that                  

for our out-of-sample forecasts, shown in Figure 5, the AR(1) provides the lowest MSEs. The               

different results regarding the MSEs for the in-sample goodness of fit and the out-of-sample              

forecasts can occur as a consequence from the included variables in the analysis. This as the                

variables that are informative for the in-sample goodness of fit might not be as informative for                

the out-of-sample forecasts (Andrade et al. 2014). This might also result from overfitting, the              

model parameters more optimized for fitting known values than extracting information about            

general trends. 

 

The findings from our analysis differs from findings in previous research. Previous research             

tend to show that the MIDAS approach outperforms same-frequency models and simpler            

univariate models when forecasting financial or macroeconomic variables (Asgharian et al.,           

2013; Asimakopoulos et al., 2013; Clements & Galvão, 2008; Andreou et al., 2013).             

Similarly, previous inflation forecasting research show that the MIDAS approach is better            

both for shorter and longer horizons (Monteforte & Moretti, 2014; Andrade et al., 2014). On               

the contrary to this, our analysis show that the MIDAS approach using daily data does not                

consistently outperform the other models, especially not for longer forecast horizons. The            

 

 



 

mixed frequency MIDAS models, MIDAS(1) and MIDAS(5), does however provide more           

accurate forecasts in shorter horizons which is in line with previous research (Kuzin et al.,               

2011; Clements & Galvão, 2008). 

 

According to our research the AR(1) model produce stable and more accurate monthly             

inflation forecasts than the other models. Consequently we argue that for a central bank this               

model would be the best to use out of the six in our analysis, when considering the specified                  

time period and variables. But due to these opposing results to previous research we              

emphasize that it is important to conduct more research about inflation forecasting using the              

MIDAS approach. 

 

Possible continuation and improvement to the research in this paper could look into             

improving accuracy and stability of forecasts by combining different ones from different            

methods. In our case it could prove interesting to, e.g., combine the stable AR(1) with the                

more volatile MIDAS(1). Further it could also be interesting to see if a combination of               

forecasts of the dependent variable using one independent variable at a time would provide a               

significant difference in forecasting performance, as suggested by Andreou et al. (2013)  

 

Also, during our research we noticed that the algorithm estimating the model coefficients had              

some difficulties, sporadically resulting in substantial forecast errors. The instability might           

derive from the non-linear optimization algorithm. The models could consequently benefit           

from forecast trimming (Marcillino, 2007), you could for instance restrict the size of the              

allowed forecast difference between two consecutive periods. This will introduce more inertia            

for the more volatile forecasts. For a central bank this could prove valuable since they would                

rather have a stable forecasting model than a highly volatile one.  
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Appendix 1 

 

Table A1: List of variables, frequency and source of collection. 

Data series Frequency Collected from 

HICP Monthly ECB data warehouse (2017)  

Unemployment Monthly ECB data warehouse (2017)  

Building permits Monthly ECB data warehouse (2017)  

M1 Monthly ECB data warehouse (2017)  

M2 Monthly ECB data warehouse (2017)  

M3 Monthly ECB data warehouse (2017)  

Long term interest rate Monthly   

Euribor 3 month Monthly Quandl (2017)  

Interest rate spread Monthly ECB data warehouse (2017)  

PPI Monthly FRED (2017)  

Eurostoxx50 Daily YAHOO Finance (2017)  

Exchange rate USD/EUR Daily EUROSTAT (2017a)  

Oil price Daily FRED (2017)  

Refinancing rate EURO Daily ECB data warehouse (2017)  

S&P500 Daily YAHOO Finance (2017)  

 

 

 

  

 

 



 

Appendix 2 

In table A2, the p-values from the ADF test is presented. If the p-value is smaller than the                  

level of significance equal to 0,05 we reject the null hypothesis. All data series except M1,                

M2, M3 and unemployment are stationary in first differences. For M1, M2 and M3 we study                

the plots of the data and conclude that there is a positive trend in the data series. The                  

ADF-tests show that the data series M2 and M3 are stationary in first differences and that M1                 

is not stationary in either level or first differences. The plots of these three data series show                 

that there is a positive trend in level but not in first difference. Therefore, we choose to                 

include M1, M2 and M3 in first differences. For unemployment, we study the plot of the data                 

in both level and first difference and find that there is a pattern over time. We conduct the                  

ADF test on the second difference and find the data series to be stationary.  

 

Table A2: The table shows the p-values from the ADF-test in level and first difference. For                

unemployment the result from taking the second difference is also presented. 
Variable ADF test with trend and intercept 

 Level 1​st​ Difference 2​nd​ Difference 

HICP 0.99 0.00   

Unemployment 0.37 0.12 0.00 

Building permits 0.87 0.00   

M1 0.99 0.33   

M2 0.01 0.83   

M3 0.03 0.45   

Euribor 0.22 0.00   

Long term interest rate 0.25 0.00   

Interest spread 0.34 0.00   

PPI 0.48 0.00   

Oil price 0.87 0.00   

Exchange rate 0.81 0.00   

Refinancing rate 0.80 0.00   

Eurostoxx 0.49 0.00   

S&P500 0.88 0.00   

 

 

 


