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ABSTRACT 

Popular wisdom holds that antioxidants protect against cancer because they 

neutralize reactive oxygen species (ROS) and other free radicals which can 

otherwise cause cancer by damaging DNA. This has been the rationale behind 

many clinical trials with antioxidants, which in most cases failed to show a 

beneficial effect and in others even increased cancer incidence. Our group 

believes that these inconsistencies can be explained by the idea that 

antioxidants have opposite effects on tumor initiation and progression, and 

that tumor cells benefit from low ROS levels which is facilitated by 

antioxidant supplementation.  In this thesis we describe the effects of two 

widespread antioxidants, N-acetylcysteine and vitamin E, on malignant 

melanoma progression, a cancer known to be sensitive to redox alterations, 

using a transgenic mouse model and a panel of human cell lines. Because 

strong evidence links mitochondria-associated ROS to tumor progression, 

we also define the impact of targeting mitochondrial ROS on malignant 

melanoma and lung cancer progression. The results show that dietary 

antioxidant supplementation increases metastasis in malignant melanoma, and 

that this is dependent on new glutathione synthesis and activated RHOA.  

The data also indicates that mitochondria-targeted antioxidants do not inhibit 

cancer progression. These results suggest that cancer patients and people 

with high risk of developing cancer should avoid the use of antioxidant 

supplements. 
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SAMMANFATTNING PÅ SVENSKA 

Det är allmänt vedertaget att antioxidanter skyddar mot cancer eftersom de 

neutraliserar reaktiva syreföreningar (ROS) och andra fria radikaler som 

annars kan orsaka cancer genom att skada DNA. Detta har varit grunden till 

många kliniska prövningar med antioxidanter, vilka i de flesta fall misslyckades 

med att visa en fördelaktig effekt och där vissa även ökade cancerincidensen. 

Vår grupp anser att dessa inkonsekvenser kan förklaras av att antioxidanter 

har motsatta effekter på tumörinitiering och progression, och att 

tumörcellerna drar nytta av låga ROS-nivåer, vilket underlättas av 

antioxidanttillskott. I denna avhandling beskrivs effekterna av två väl använda 

antioxidanter, acetylcystein och E-vitamin, på malignt melanomprogression, 

en cancer som är känd för att vara känslig för redoxförändringar, genom att 

använda en transgen musmodell och en panel av humana cellinjer. Eftersom 

starka bevis kopplar mitokondrie-associerade ROS till tumörprogression 

definierar vi också effekten av att rikta antioxidanter specifikt mot 

mitokondriella ROS på malignt melanom och lungcancerprogression. 

Resultaten visar att kosttillskott av antioxidanter ökar metastasering i malignt 

melanom och att detta är beroende av ny glutationsyntes och aktiverad 

RHOA. Uppgifterna indikerar också att mitokondrie-riktade antioxidanter 

inte hämmar cancerprogression. Dessa resultat tyder på att cancerpatienter 

och personer med hög risk att utveckla cancer bör undvika användning av 

kosttillskott som innehåller antioxidanter.
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ABBREVIATIONS 

BSO Buthionine sulfoximine 

COPD Chronic obstructive pulmonary disease 

DHE Dihydroethidium 

DHR Dihydrorodamine 

DNA Deoxyribonucleic acid 

EGF Epidermal growth factor 

ETC Electron transport chain 

GFP Green fluorescent protein 

roGFP Redox-sensitive green fluorescent protein 

GRX Glutaredoxin 

GSH Reduced glutathione 

GSSG Oxidized glutathione 

H2DCF 2´,7´-dihydrodichlorofluorescein 



 

 

4-HT 4-hydroxytamoxifen 

MAPK Mitogen-activated protein kinase 

NAC N-acetylcysteine 

NOX NAD(P)H oxidase 

PDGF Platelet-derived growth factor 

PRX Peroxiredoxin 

PTP Protein tyrosine phosphatase 

ROCK Rho-associated protein kinase 

ROS Reactive oxygen species 

SOD Superoxide dismutase 

dTPP Decyltriphenylphosphonium 

TRX Thioredoxin 

UV Ultra-violet 
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If I had a world of my own, everything would be nonsense. Nothing would be what 

it is, because everything would be what it isn't. And contrary wise, what is, it 

wouldn't be. And what it wouldn't be, it would. You see? – Lewis Carroll 
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ANTIOXIDANTS AND ROS: REACHING 
FOR THE GOLDEN MEAN 

The concept of balance as a centerpiece of harmony and wellbeing is common 

to most societies and cultures. And thus we read of virtue and aurea 

mediocritas or Golden Mean from classic Greek philosophers like Aristotle, 

the Middle Path from Buddha, moderation in all monotheistic religions, and 

we even encounter the notion of “lagom” in the everyday Swedish life. 

This idea is but a reflection of life itself where organisms adapt to their 

environment and find stability to exist, and where cells regulate their internal 

state in search for an equilibrium or homeostasis. This homeostasis however, 

is not static and it is subjected to necessary fluctuations; hence, there is a 

need for systems with the ability to detect these alterations in the equilibrium 

and counteract the extremes.   

An example of environmental adaptation would be the evolutionary selective 

pressure occurred during the “Great Oxidation” around 2.4 billion years ago, 

which favored life adjusted to the presence of oxygen [1, 2]. Although a toxic 

agent, oxygen increased the production of energy in aerobic organisms by 

becoming the final electron acceptor in the electron transport chain (ETC), 

and consequently some oxygen biproducts were generated during the 

process [3]. These agents are known as reactive oxygen species (ROS) 

because they have the capability to interact with other molecules and alter 

their oxidative status and their function [4]. Upon excessive activity of these 

ROS, a situation known as oxidative stress, and in order to reach back to 

homeostasis, cells have developed antioxidant defenses that neutralize ROS 

by giving back the electrons taken [5, 6]. These antioxidants can be produced 

endogenously, but they can also be supplied in the diet [7]. 



 

 

ROS were initially regarded as purely damaging agents, the toll we paid for 

using oxygen to produce more energy. But thanks to advances in the redox 

field, in charge of studying reduction-oxidation reactions, we now know that 

they also regulate a wide variety of cell signaling events that are essential to 

the normal function of cells and organisms [8]. Therefore, understanding 

their role in health and disease is of great interest in medicine.    

ROS CAN CAUSE CANCER 

As previously mentioned ROS can modify proteins and DNA and therefore 

regulate signaling pathways. For example, they can inhibit or activate them by 

reversible oxidation of cysteine residues in proteins. The advantage of this 

type of regulation is that ROS have a short half-life and are able to easily 

diffuse across membranes, making available both intra- and intercellular 

control [9]. Examples of ROS mediated signaling are the response to growth 

factors, such as EGF or PDGF, which upon binding to their receptors increase 

ROS production through NAD(P)H oxidases (NOXes) located in the cellular 

membrane or the response to steroid hormones, which can change 

intracellular levels of calcium and dephosphorylate cytochrome c oxidase, 

thereby increasing the mitochondrial membrane potential and consequently, 

the production of superoxide (O2
· ) [10-12]. Conversely, antioxidants can 

inhibit growth factor signaling. One way in which ROS regulate these signaling 

cascades is the inhibition of neighboring phosphatases. Hydrogen peroxide 

(H2O2) is a well-known inhibitor of protein tyrosine phosphatases (PTPs), 

such as RPTP-α, PTP-1B, SHP-2 and MKPs. ROS can also inhibit antioxidant 

proteins that are normally bound to kinases, like thioredoxins (Trx) or 

peroxiredoxins (Prx)[13]. 

Increased ROS production has been observed in a variety of cancers [14, 15]. 

This exacerbated production can come from NOXes in the cellular 
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membrane, the ETC in the mitochondria or from xanthine oxidase [6]. A 

decrease in endogenous antioxidant activity can also increase ROS content 

in the cell. The exact mechanisms that trigger the uncontrolled production 

of ROS remain largely unknown. Nevertheless, altered ROS levels can cause 

mitochondrial and genomic DNA damage.  It also affects the regulation of 

transcription factors that are involved in apoptotic signaling by regulating 

their DNA binding activity. For instance, the tumor suppressor p53 requires 

its reactive cysteines to be reduced in order to bind to DNA [16]. 

Since ROS can modify proteins and DNA, they can cause the formation of 

protein and DNA adducts, that in turn favor the propagation of mutations in 

the highly proliferative cancer environment [17, 18]. The formation of these 

adducts can affect gene expression by interfering with methyltransferases and 

producing hypomethylation of promoters, such as those of oncogenes [19, 

20]. Combined with the mutational silencing of tumor suppressor genes, 

there is no question that ROS can contribute to carcinogenesis [21]. 

ROS LOCALIZATION AFFECTS THEIR ROLE 

Mitochondria largely contribute to the production of ROS in the cells; in fact, 

they are the major source due to the production of O2
· in the ETC from 

complexes I, II and III [3]. The O2
· produced is taken care of by the 

antioxidant enzymes superoxide dismutases (SODs) and rapidly turned into 

H2O2 [22]. This mitochondrial-associated H2O2 can diffuse from the 

mitochondria into the cytosol and the extracellular environment and trigger 

signaling pathways [9]. In addition to cell signaling, mitochondrial ROS 

contribute to carcinogenesis by mutating mitochondrial DNA (mtDNA). This 

mtDNA is susceptible to mutations because of its proximity to the source of 

ROS, lower level of histones and limited proofreading [23-26]. Mutations in 

the ETC have been reported in many forms of cancer [27, 28]. 



 

 

Hence, cancer cells could use mitochondrial ROS production to their 

advantage [29]. Along those lines, several mitochondria-targeting antioxidant 

compounds have been developed and some promising results have been 

reported [30-32]. However, their impact on endogenous mouse models of 

cancer with an intact immune system has yet to be evaluated. 

ANTIOXIDANT SUPPLEMENTS AFFECT CELL 
SIGNALING BY TARGETING ROS 

As presented so far, the dual character of ROS, cell signaling molecules vs 

damaging agents, requires some fine tuning to keep cellular balance. It has 

also been shown that high oxidative stress levels correlate with malignant 

progression. Thus it was thought that antioxidant supplementation would 

counteract the damaging effects of ROS and promote a healthy cellular state. 

In addition, several epidemiological studies show an inverse correlation 

between cancer and antioxidant-rich diets [33]. 

To that end, numerous clinical trials have been conducted to test whether 

antioxidant supplementation could be used to fight and prevent cancer. But 

the results are somewhat mixed and it would seem that general conclusions 

cannot be drawn. The effects varied depending on the population, the type 

of cancer and the type of antioxidant used. For instance, the Linxian Nutrition 

Intervention Trial showed a decrease in gastric cancer incidence for 

participants who were supplemented with beta-carotene, vitamin E and 

selenium, but not with retinol and zinc, riboflavin and niacin, or vitamin C and 

molybdenum [34, 35]. However, the protective effect of beta-carotene, 

vitamin E and selenium was lost after 10 years post-intervention and 

increased risk for esophageal cancer was observed in participants who were 

55 years old or above at the time of inclusion [36]. In an independent study 

where Finnish male smokers were given alpha-tocopherol and beta-carotene 
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(ATBC trial), higher incidence of lung cancer was observed in the beta-

carotene treated group [37, 38]. The results were additionally confirmed in 

another large trial involving men and women at risk of developing lung cancer 

who were given beta-carotene and retinol (CARET trial); the trial had to be 

prematurely stopped due to significantly higher incidence and death rate in 

the antioxidant-supplemented group [39]. In a third study where apparently 

healthy women were given beta-carotene to assess its usefulness in 

preventing cancer and cardiovascular diseases, no harm nor benefit was 

observed [40]. In another large trial where the effects of selenium and vitamin 

E on prostate cancer prevention were assessed (SELECT trial) no significant 

differences were seen at first between treatment groups. However a 

statistically significant increase in tumor incidence was later observed in the 

vitamin E treated group [41, 42]. 

These inconsistencies are perhaps a result of a vague scientific question: “are 

antioxidants beneficial in fighting cancer?” which we think should be split into 

two different ones: 

1. Can antioxidants prevent tumor initiation? 

2. Do antioxidants hinder tumor progression? 

The answer to these questions is not an easy one. Tumor cells do have 

elevated levels of ROS in comparison to normal cells, but they are also 

vulnerable to further increases, and therefore are dependent on the use of 

antioxidant defenses. In addition, decreases in reduced glutathione (GSH) and 

increases in ROS have been shown to delay cell cycle progression through 

G1 & S phases and led to G2 cycle arrest [43]. Nonetheless, the metabolic 

plasticity of cancer cells allows them to adjust pathways to ensure the supply 

of antioxidant molecules and regulate multiple antioxidant enzymes [44, 45].  



 

 

CHOOSING CANCER MODELS TO DEFINE 
EFFECTS OF ANTIOXIDANTS ON CANCER 

Melanoma is the deadliest form of skin cancer and its prevalence has 

increased over the past decades [46, 47]. It can develop anywhere in the body 

and most commonly does in the skin (cutaneous melanoma). However, it is 

the metastases that arise from the primary skin tumor which determine 

patient prognosis and survival [48-50]. 

Our current knowledge and understanding of the genetic changes present in 

melanoma is vast, but the molecular mechanisms that trigger and regulate the 

progression of the disease remain largely unknown [51]. Some oncogenic 

mutations have been well described; For instance, the BRAF p.V600E mutation 

that leads to the activation of the mitogen-activated protein kinase (MAPK) 

pathway is present in roughly 50% of all cutaneous melanomas. Another 

classical melanoma oncogene is NRAS, which is found mutated in 15-20% of 

melanomas; In addition to activating the MAPK pathway, oncogenic NRAS also 

triggers the phosphatidyl-inositol 3-kinase (PI3K) pathway [52, 53]. However, 

expression of mutant BRAF alone does not progress into melanoma unless 

accompanied by other events [54], such as loss or alteration of tumor 

suppressors like PTEN or CDKN2A [55]. 

The primary identified mutagen in malignant melanoma is UV light exposure, 

but it does not account for the driving mutations that regulate known 

oncogenes in melanoma at the molecular level, leaving room for other 

processes such as oxidative stress to have an important role in the 

development of the disease [56, 57]. In addition, the skin can be exposed to 

antioxidant supplementation from different sources, such as topical and 

dietary [58]. 

Lung cancer has also caught the attention of the antioxidant field. Being the 

deadliest and most common form of cancer, it is not strange that one of the 
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largest clinical trials on antioxidant supplementation ever conducted assessed 

their efficacy in preventing it. Although its incidence among men has declined 

over the years, it is still the leading cause of cancer death among this gender 

[59]. 

The use of tobacco is the main risk factor associated with the disease [59], 

and longtime smokers are at high risk of developing chronic obstructive 

pulmonary disease (COPD) [60, 61]. To those affected, N-acetylcysteine 

(NAC) is often prescribed as a mucolytic to facilitate respiration.  

In order to evaluate the impact of antioxidant supplementation and redox 

modulation on these forms of cancer, we need to make use of specific 

research tools. 





 

 

RESEARCH METHODS 

 

 

 

 

 

 

 

 

 

 

 

 

Climate is what we expect, weather is what we get. – Mark Twain 
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THE MOUSE AS A RESEARCH TOOL 
Since the times of Ancient Greece, scientists have used animal 

experimentation to study and understand the complexity of life and biological 

processes. As early as in the 4th century BC, Aristotle observed differences 

in the anatomical content and placement of organs across species through 

dissections, and Erasistratus was the first to document experiments on living 

organisms. Science and medicine have been able to develop to their current 

state thanks to the use of animal models. These organisms have offered the 

possibility of researching questions that were relevant to another species 

without direct intervention, and they have contributed to the validation of 

the scientific method in multiple disciplines [62]. However, the model chosen 

to answer to a specific physiological or pathological question should be 

carefully considered and should be relevant to the research problem at hand 

[63]. 

For this theis, I used one particular and well-known model organism to 

understand and monitor key events in cancer progression: Mus musculus, 

commonly known as the house mouse. 

Humans and mice have shared habitats since about 12,000 years ago, by the 

time of the Neolithic Revolution. It is not surprising then that these animals 

were picked as research models in the early stages of science. They are small, 

easy to breed, strains can be highly standardized through inbreeding, and their 

genetic mutations often represent human disease. 

MICE ARE VALUABLE IN CANCER RESEARCH 

Given that around 99% of the mouse genes have a human homologue, we 

can model a large variety of human pathologies by altering the mouse genome 

[64]. Additionally, although a rare event in wildlife, every mouse tissue is 



 

 

potentially subjected to the development of neoplastic events, just like their 

human counterparts. In order for that to happen, two types of genes can be 

manipulated: tumor suppressor genes (loss of function) and oncogenes (gain 

of function) [65].   

THE CRE-LOXP SYSTEM ALLOWS FOR GENOME 
EDITING 

One of the most common methods used to modify genes is the Cre-loxP 

technique, which relies on the use of the bacteriophage P1 cyclic recombinase 

(Cre) which recognizes DNA sequences called locus of crossing over (loxP). 

The loxP sites consist of 34 base pair (bp) long DNA fragments formed by 

two 13 bp inverted repeats separated by an 8 bp spacer region. The enzyme 

Cre cleaves sequences of DNA flanked by two loxP sites with the same 

orientation, and the resulting cleaved sequence is excised in a circular loop 

of DNA. The expression of Cre can be regulated temporally and/or spatially 

by exogenous Cre expressing vectors (plasmid or viral particles) or by 

inserting Cre behind tissue-specific promoters. 

A MOUSE MODEL TO STUDY METASTASIS 

With the aim of studying the effects of antioxidant supplementation on 

metastasis, we used the Braf CA/+ Pten f/f Tyrosinase-Cre (BPT) mouse model of 

malignant melanoma. This model is used in both paper I and II. 
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The BPT mice conditionally express oncogenic mutant BrafV600E and loose 

expression of Pten. The conditional Braf transgene expresses normal BRAF 

until activated by Cre, upon which wiltype exons 15-18 and a STOP cassette 

flanked by loxP sites are excised and replaced by a mutant exon 15 followed 

by wildtype exons 16-18. Additionally, both alleles of the tumor suppressor 

Pten have their exon 5 flanked by loxP sites, which leads to the expression of 

a non-functional PTEN protein when cleaved by Cre [66]. In this model the 

expression of Cre is spatially limited to melanocytes and some cells of the 

central nervous system, as it falls under the control of the Tyrosinase 

promoter, which regulates the expression of the skin pigment melanin [67, 

68].  

Figure 1. Genetic strategy to generate mice with malignant melanoma. After painting the skin 
of 2 days-old pups with 4-HT, the mice express mutant BRAF and inactive PTEN in 
melanocytes, which will lead to the formation of skin tumors and eventually metastases.  



 

 

By painting the right flank of the animals at postnatal day 2 with 4-

hydroxytamoxifen (4-HT), Cre is induced in melanocytes and thus mutant 

protein BRAF is expressed and PTEN is lost; all of which leads to the 

formation of skin tumors that eventually metastasize to regional lymph nodes 

and in some cases lungs. Despite recapitulating most of the events leading to 

the development of the disease in humans, this model is limited by the fact 

that the mice often come to a humane endpoint due to the size of the primary 

tumor and not due to the metastatic burden, which is the leading cause of 

death in humans. 

THE KRASLSL MODEL RECAPITULATES EVENTS IN 
HUMAN LUNG CANCER 

To analyze the effects of mitochondria-targeted antioxidants on tumor 

proliferation, we used a mouse model of lung cancer in paper II. 

In this model, the expression of the oncogenic Kras allele, KrasLSL-G12D, is 

controlled by exogenous Cre expressing virus which can be delivered by 

intratracheal instillation directly to the lungs or inhaled through the nose; in 

this study we used nasal inhalation of adenovirus. The mice carry a Kras allele 

with a LoxP flanked STOP cassette (LSL) followed by an activating KrasG12D 

mutation, which results in a null mutation. Without Cre expression the mice 

only produce one copy of wildtype K-RAS and are unaffected; with Cre 

expression, the STOP cassette is cleaved and mice express one copy of K-

RASG12D, which is enough to induce disease. 
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Figure 2. Genetic strategy to generate mice with KRAS-induced lung cancer. After inhaling 
adenovirus into the lungs, mice will express one copy of wildtype Kras plus one copy of mutant 
Kras, which is enough to induce the development of tumors in the lungs.  

The consequent activation of the oncogene in the lung epithelium leads to 

increased proliferation and progression to atypical adenomatous hyperplasia, 

adenomas and, finally, adenocarcinomas [69, 70]. 

ETHICAL CONSIDERATIONS ARE NEEDED 
WHEN WORKING WITH ANIMAL MODELS 

Even though animal experimentation has led to enormous advances in the 

field of scientific medicine, it has been accompanied since its origins by a 

growing criticism of the use of animals in science. These concerns were 

aggravated after the publication of Darwin´s theory of evolution, which made 

many question the line that separated animals and humans and prompted the 

creation of societies against animal cruelty [71]. 



 

 

Nevertheless, in comparison to other industries where animals are exploited 

for human benefit, such as farming, the use of animals in experimental 

research is tightly regulated and controlled at several levels. 

All animal experiments performed during the development of this thesis were 

evaluated and approved by the Research Animal Ethics Committee in 

Gothenburg, and all researchers involved strived to follow the 3Rs principle.    

ANALYZING ROS IN CELLS: WHEN AND 
WHERE? 
Contrary to popular belief, redox couples are not found in thermodynamic 

equilibrium in cells; they vary in their subcellular localization and differ in their 

kinetics [72]. Hence, it is necessary to use tools that allow us to gain a better 

understanding of the context in which redox reactions occur. However, 

whole-cell extract based assays can be useful to obtain an overall look and 

determine whether certain conditions are pro-oxidative or reducing at a 

general level, for example, by measuring glutathione; and even though they 

are usually specific, reproducible and sensitive, they do not give any 

information about specific compartments.  

FLUORESCENT PROBES FACILITATE 
MONITORING OF ROS IN CELL CULTURES 

A variety of redox-active fluorescent probes that are triggered by different 

oxidative species are commercially available. They enable monitoring of 

redox processes in the cell through microscopy techniques, and can be 

combined with compartment-specific dyes to increase spatial-specificity of 

the reactions studied. They are easy to use in culture and some of them can 

be used to stain tissues too. The use of general probes, such as 2´,7´-

dihydrodichlorofluorescein (H2DCF), dihydroethidium (DHE), cellROX, 
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dihydrorodamine (DHR) or mitochondria-targeting ones, like mitoSOX or 

mitoPY1, are widely spread in the literature. Though useful, a major caveat is 

their partial non-specific behavior, meaning that they can be triggered by 

several oxidative reactions, and their activation is irreversible, making the 

analysis of redox kinetics impossible.   

GENETICALLY ENCODED BIOSENSORS 
INCREASE SPATIO-TEMPORAL RESOLUTION 

In order to define redox processes in their natural context, genetically 

encoded redox probes based on green fluorescent protein (GFP) were 

developed. In this thesis redox-sensitive GFP (roGFP) biosensors were used, 

but there are other biosensors available, such as redox-sensitive yellow FP 

(rxYFP) and HyPer. Some of the major advantages of roGFP is its ratiometric 

fluorogenic behavior, and the possibility of engineering redox relays between 

redox enzymes and roGFPs to increase its specificity and sensitivity, and equal 

response of the fluorescent protein in different tissues. 

In papers I and II we used biosensors based on enhanced GFP (EGFP) 

developed by Tobias Dick´s lab [73]. Briefly, two reactive cysteines were 

engineered in positions S147 and Q204, located on β-strands 7 and 10 of 

EGP. Excitation maxima from GFP are preserved (400 nm for A-band and 

475-490 nm for B-band), but oxidation results in an increase in excitability in 

the A-band and a decrease in the B-band and a reverse behavior during 

reducing conditions. Analyzing the ratio of fluorescence intensity between 

the 405 and 488 excitation maxima, one can conveniently visualize oxidative 

processes (increased ratio) or reducing reactions (decreased ratio). By fusing 

roGFP with human glutaredoxin-1 (Grx1) real-time equilibration between 

the sensor protein (Grx1-roGFP) and the glutathione redox 



 

 

couple (GSH/GSSG) is facilitated, [74], and fusion to the yeast peroxidase 

Orp1 mediates oxidation of roGFP by H2O2 [75]. Versions of the probes that 

target specifically to the mitochondrial matrix are also available. 

Figure 3. roGFP2 excitation is dependent upon redox changes (Meyer and Dick, 2010). When 
roGFP is oxidized, the fluorescence intensity increases when excited at 405 nm (blue line). 
When it is reduced, its maximum fluorescence peak appears when excited at 488 nm (red line). 
Increases in the 405/488 fluorescence ratio, indicate an oxidative condition or process. 
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Trust those who seek the truth, doubt those who found it; doubt everything; but 
don’t doubt yourself. – André Gide  
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RATIONALE 
The overall aim of this thesis was to evaluate the effect of antioxidant 

supplementation in the progression of cancer, with special focus on malignant 

melanoma.  

The specific aims of the two papers included in the thesis were: 

I. Antioxidants can increase melanoma metastasis in mice 

The rationale behind this first paper was to assess the impact of NAC 

and vitamin E as dietary antioxidants on the progression of a 

malignant melanoma mouse model, in order to validate the 

hypothesis that tumors, with high endogenous ROS levels, benefit 

from additional antioxidant supplementation.  

II. Mitochondria-targeted antioxidants do not influence 

malignant melanoma and lung cancer progression in mice  

The aim of this second study was to determine whether targeting 

mitochondria, the main source of cellular ROS, with antioxidant 

compounds would hinder cancer progression in mouse models of 

lung cancer and malignant melanoma.  

  



 

 

PAPER I: ANTIOXIDANTS CAN INCREASE 
MELANOMA METASTASIS IN MICE 
Following up on a study published by Sayin and colleagues in 2014 [76], we 

decided to investigate whether the accelerated proliferation observed upon 

antioxidant treatment was exclusive to lung cancer or if it could be 

extrapolated to other forms of cancer. 

THE GENERAL ANTIOXIDANTS NAC AND 
VITAMIN E ACCELERATE METASTASIS 

In this study we show that, dietary supplementation of NAC in the drinking 

water doubled the number of lymph metastases in BPT mice [77]. In addition, 

these metastases showed increased S100B and Nestin staining, both markers 

of malignancy [78, 79].   

Concordant to our in vivo observations, NAC and Trolox, an analogue of 

vitamin E, increased migrating and invasive properties in a panel of human 

melanoma cell lines. 
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Figure 4. NAC administration increases metastasis in mice with malignant melanoma. NAC 
was administered in the drinking water to newly weaned BPT mice. Upper panel shows number 
of lymph metastases (left) and surface lung metastases (right). Lower panel shows 
immunochemical detection of S100B and Nestin in lymph metastases. 



 

 

Figure 5. NAC and Trolox increase migrating and invasive properties of human melanoma 
cells.Real-time analysis of migration (upper panel) and invasion (lower panel) of cell line sk-
mel-28. Right panels show migration and invasion indices at the 10-hour time point from real-
time analyses of these parameters in seven melanoma cell lines incubated with control medium 
or medium supplemented with NAC. 

Follow-up studies revealed that: dietary vitamin E markedly increased the 

number of lymph metastases but not primary tumors in mice, which was in 

agreement with our previous in vitro observations. 

Figure 6. Vitamin E increases metastasis in mice with malignant melanoma. Vitamin E was 
supplemented in the chow diet to newly weaned BPT mice. Left panel shows the number of skin 
tumors and right panel shows the number of lymph metastases. 
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THE INCREASED MIGRATION DEPENDED ON GSH 
SYNTHESIS 

Consequent with NAC supplementation, the levels of GSH were increased, 

but only significantly in the lymph metastases. These results were supported 

by in vitro analyses of GSH/GSSG content of antioxidant treated cell lines, and 

unexpectedly they were also elevated by Trolox. 

Figure 7. Levels of reduced glutathione are increased by antioxidant treatment. Left panel 
shows markedly increased GSH/GSSG ratios in lymph metastases of NAC treated mice. Center 
and right panels show increased GSH/GSSG ratios in human melanoma cells treated with NAC 
or Trolox.  

We then proceeded to investigate whether the increased migration was 

dependent on GSH by inhibiting de novo synthesis of glutathione with 

buthionine sulfoximine (BSO). Indeed, upon BSO treatment migration was 

brought back to baseline, indicating that the increased antioxidant-triggered 

migration depended on GSH. 



 

 

Figure 8. NAC- and Trolox-triggered migration depends on GSH. Real-time analyses of sk-mel-
28 migration in response to NAC, BSO, and NAC +BSO (left panel) and Trolox, BSO, and 
Trolox + BSO (right panel). 

Next, we looked into the RHO family proteins RHOA and RAC1, which 

mediate cytoskeletal changes during migration and invasion and have been 

shown to be redox regulated [80]. RAC1 oxidation increases its activity and 

promotes lamellipodia formation [81]. In opposition, oxidative stress leads to 

the formation of an intramolecular disulfide bridge in RHOA which prevents 

guanine nucleotide exchange, therefore inactivating the protein. Disulfide 

formation can be reversed by the addition of reductants [82]. Indeed, RHOA 

activity was elevated in antioxidant treated cells and further downstream 

signaling inhibition of Rho-associated protein kinase (ROCK) reverted the 

antioxidant-dependent increased migration. 



 

23 

 

Figure 9. Antioxidant increased migration correlates with elevated levels of active RHOA. 
Human melanoma cells treated with antioxidants show higher levels of GTP-bound RHOA 
(upper and middle panels). The increased migration is reverted when cells are subjected to 
treatment with a ROCK inhibitor (lower panels). 

CANCER PATIENTS AND SURVIVORS SHOULD 
AVOID ANTIOXIDANT SUPPLEMENTS 

In this study we use two different antioxidants with distinct chemical 

structures and properties: NAC which is hydrophilic and can act as a 

precursor of cysteine and glutathione synthesis, and Trolox, which is a soluble 

analogue of the lipophilic peroxyl radical scavenger vitamin E. We additionally 

treated mice with chow diet containing supplementary vitamin E (in the form 

of Dl-α-tocopheryl acetate), although this was not included at the time in the 

publication. In all cases the net result was the same: mice had significantly 



 

 

more metastases at endpoint, and human malignant melanoma cells migrated 

and invaded more.  

In order to ensure that the doses administered in vivo were in accordance 

to human doses, we used a body surface area conversion [83]. NAC 

supplementation was in range of what it is prescribed to COPD patients and 

vitamin E doses were adjusted to 20 times the recommended daily intake, 

which can be found in vitamin supplements. 

Shortly after the release of this article, other publications showed that 

oxidative stress limits metastasis of human malignant melanoma cells injected 

into immunocompromised mice [84], and it also impairs tumor invasion in 

vivo by suppressing Rho-ROCK activity through mechanisms involving p53 

[85], all of which further supported our findings. Additionally, another group 

reported that several antidiabetic drugs with antioxidant properties 

accelerated metastasis in mouse models of cancer [86].  

Although it remains to be seen whether these results can be directly 

translated into the context of human health care, all of the studies above 

mentioned together with the lack of evidence showing beneficial effects of 

antioxidant supplementation in the vast majority of cancer clinical trials 

suggest that cancer patients and people at risk of developing cancer should 

avoid the use of antioxidant supplementation [29].  
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PAPER II: MITOCHONDRIA-TARGETED 
ANTIOXIDANTS DO NOT INFLUENCE 
MALIGNANT MELANOMA AND LUNG 
CANCER PROGRESSION IN MICE 
Following our observations that dietary antioxidant supplementation 

accelerated proliferation and metastasis in lung cancer and malignant 

melanoma respectively, we decided to target ROS at its main production site. 

Previous studies hypothesize that mitochondria-associated and not cytosolic 

ROS are responsible for the pro-tumorigenic signaling [87-89]. This raises 

the possibility of using mitochondria-targeted antioxidants to inhibit tumor 

growth. 

In order to target mitochondrial ROS we used two different antioxidant 

compounds conjugated to a lipophilic cation, which ensures uptake through 

the phospholipid bilayer and mitochondrial accumulation by plasma 

membrane potential. 

 



 

 

Figure 10. Chemical structure of the mitochondria-targeted antioxidants used in Paper II. The 
compounds mitoQ and dTPP share the same 10-carbon lipophilic cation moiety, while 
mitoTEMPO has a shorter chain. 

MitoQ is a ubiquinone conjugated to a decyltriphenylphosphonium (dTPP) 

cation [90-92], that is recycled by the ETC. Its main antioxidant function is 

preventing mitochondrial lipid peroxidation [93], although it is also suggested 

that it acts upstream of H2O2 production [94]. MitoTEMPO on the other 

hand, is the combination of the antioxidant piperidine nitroxide with a 

lipophilic cation. It acts as a SOD mimetic and detoxifies O2
· [95].  

MITOCHONDRIA-TARGETED ANTIOXIDANTS 
DO NOT INHIBIT CANCER PROGRESSION 

In this study we added mitoQ and its control compound dTPP to the drinking 

water of BPT and lung cancer mice. MitoQ treatment did not increase 

survival nor reduced other parameters of progression such as tumor growth 

or metastasis. Intra-peritoneal injection of mitoTEMPO in BPT mice 

however, reduced survival and accelerated the kinetics of primary tumor 

growth.   
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Figure 11.  Mitochondrial antioxidants do not slow down malignant melanoma progression in 
mice. Upper panels show number of skin tumors, lymph metastases and survival of mice treated 
with mitoQ, dTPP and water controls. Lower panels show number of skin tumors, lymph 
metastases and survival of mice injected with mitoTEMPO, PBS or controls. 

Figure 12. MitoQ does not decrease tumor burden in a mouse model of lung cancer. Left panel 
shows proliferation index in tumors, central panel shows tumor burden per mouse and right 
panel shows hematoxylin and eosin staining of mouse lungs. 

In vitro results indicate that mitoQ and dTPP disrupt the ETC and affect tumor 

cell proliferation. As these effects are achieved by both substances, we 

hypothesize that they are due to non-antioxidant related cytotoxic effects. 

Indeed, accumulation of lipophilic cations in the mitochondrial matrix surface 



 

 

of the inner membrane can disrupt membrane permeability and affect 

enzymatic transporter activity [96-98]. 

Figure 13. MitoQ effects on proliferation and ETC are non-antioxidant related. Upper panels 
show proliferation of mitochondria-targeted antioxidant-treated human melanoma cells over a 
course of 48hours. Lower panels show the effects on the extracellular acidification rate (ECAR) 
and oxygen consumption rate (OCR) of mitochondria targeted antioxidants on human 
melanoma cells. 
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Figure 14. The mitochondria-targeting cation dTPP disrupts proliferation and ETC in human 
lung cancer cells. Upper panels show proliferation of mitochondria-targeted antioxidant-
treated human lung cancer cells. Lower panels show the effects of antioxidant treatment on the 
extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) in human lung 
cancer cells. 

In addition, treatment of human melanoma cells with antioxidants show 

significant hyperpolarization of the mitochondria at the concentrations used 

during proliferation assays as indicated by JC-1 staining. Furthermore, 

increases in membrane potential are associated with a lower respiration rate 

and increased ROS production at complexes I and III of the ETC [99-101], 

indicating that the accumulation of the compound in the mitochondria might 

render an effect opposite to the one desired.  

 



 

 

Figure 15. Accumulation of JC-1 aggregates in the mitochondria of antioxidant-treated human 
melanoma cells and melanocytes. Upper panel shows the mean of 4 different melanoma cell 
lines with 3 wells per treatment and cell line and 15 fields of view per well. Lower panel shows 
the mean of human C4 melanocyte with 3 wells per condition and 15 fields of view per well. 
Increases in aggregates indicate higher mitochondrial membrane polarization. 

Interestingly, oxygen consumption was not affected by mitochondria-targeted 

antioxidants in lung cancer cells, and only mitoQ but not mitoTEMPO 

affected it in melanoma cells.  

To look at the possibility that mitochondria-targeted antioxidants might 

increase ROS production, we used different genetically encoded biosensors 

in human melanoma cells. We found that cytosolic oxidation was increased 
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at basal levels after 48 hours of treatment with mitoTEMPO in both cell lines 

assayed. 

Figure 16. Ratio of cytosolic glutathion oxidation/reduction in human melanoma cells assessed 
with a Grx1-roGFP2 biosensor. Red arrows indicate addition of diamide to induce further 
oxidation. Incubation of cells with 100 nM mitoTEMPO for 48 hours induced cytosolic 
oxidation in both cell lines. 



 

 

MITO-TEMPO INCREASES CYTOSOLIC OXIDATION 

Our results suggest that by acting as a SOD mimetic, mitoTEMPO might 

detoxify O2
· to H2O2 which can then diffuse to the cytosol where it can act 

as a signaling pathway regulator. In order to look further into the role of 

mitoTEMPO as a ROS scavenger, we used genetically encoded biosensors to 

look into differences in H2O2 content in the mitochondria of human 

melanoma cells. 

Figure 17. Ratio of mitochondrial oxidation assessed with the H2O2- sensitive Orp1-roGFP2 
biosensor in human melanoma cells. Red arrows indicate addition of diamide to induce further 
oxidation. Incubation of cells with 100 nM mitoTEMPO and dTPP for 48 hours induced 
mitochondrial oxidation in both cell lines. 

Additionally, gene expression analysis of primary tumors from mitoTEMPO 

–treated mice showed increased expression of Krt1, Alb, Gpx2, Duox1, Ucp3, 

Mb and Hspa1a when compared to their control counterparts. Although 

indirectly, these gene expression changes indicate a response to increased 

ROS levels; Keratin 1 (Krt1) levels have been shown to increase under H2O2 

stimulation [102], albumin (Alb) is a reported oxygen scavenger in vivo [103, 

104], glutathione peroxidase 2 (Gpx2) is a H2O2-reducing enzyme that has 

been linked to increased metastasis [105, 106], and the uncoupling protein 3 

(Ucp3) can mildly uncouple the ETC to reduce mitochondrial ROS levels 

[107-110]. Myoglobin (Mb) is inactivated at protein level by oxidation, 

although it has also been reported to propagate oxidation by interacting with 

hydrogen peroxide, and the increased transcriptional levels observed might 
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be a compensatory mechanism to such protein inhibition [111, 112]. The heat 

shock protein family A member 1A (Hspa1a) has been reported to participate 

in the removal of proteins damaged by oxidation [113]. Interestingly, the 

H2O2 producing dual oxidase 1 (Duox1) was also overexpressed. This result 

is in opposition to what Dikalov and colleagues have previously described on 

how blocking mitochondrial O2
· production with mitoTEMPO 

downregulated cytosolic O2
· production by NOXes, breaking a forward feed 

loop [114]. 

Overall we conclude that mitoTEMPO acts as a mitochondrial 

antioxidant/cytosolic pro-oxidant in our system. To validate such hypothesis 

we could isolate mitochondria and look at excreted H2O2 upon mitoTEMPO 

treatment. If our hypothesis was confirmed, we could conditionally 

overexpress catalase in human melanoma cells in vitro or in BPT mice in vivo 

to see whether the phenotypes observed can be reverted. 

MITOCHONDRIA-TARGETED ANTIOXIDANTS: 
THESE ARE NOT THE COMPOUNDS YOU ARE 
LOOKING FOR 

Previous studies have shown that mitochondria-targeted antioxidants could 

potentially inhibit tumor development. Indeed, combined inhibition of 

mitochondrial ROS and glycolysis successfully decreased ATP production and 

induced apoptosis in hepatocellular carcinoma [30]; targeting mitochondrial 

ROS decreased KRAS-mediated tumorigenicity by increasing ERK 1/2 

signaling [32]: it also reversed superoxide-dependent migration upon partial 

ETC inhibition [31]. 

Although promising, none of these studies have evaluated the impact of such 

compounds in transgenic mouse models. Even with similar doses, neither 

mitoQ nor mitoTEMPO blocked disease progression. In fact, mitoTEMPO 



 

 

decreased survival which is in concordance with the work of Wang and 

colleagues, where mitochondria-targeted antioxidants aggravated 

tumorigenesis by affecting DNA-damage repair in a chemically induced model 

of hepatocellular carcinoma [86].   

In addition, our in vitro results show that no direct translation can be drawn 

to an in vivo context, which might explain the conflict with previous studies. 

Furthermore, the effects observed with mitoQ treatment were recapitulated 

by the control substance, suggesting that the decrease in proliferation 

observed is related to cytotoxic effects coupled to the targeting moiety 

rather than to antioxidant properties of the ubiquinone. It has been proposed 

that genetic therapy with alternative oxidase, an enzyme present in plants and 

lower animals, could potentially reduce mitochondrial ROS formation by 

bypassing the ETC when disrupted and maintaining the electron flow and 

redox homeostasis in the cell [115, 116]. However, preliminary histological 

data indicates that the ETC complexes remain unaltered in the mitochondria-

targeted antioxidant-treated mice, questioning the usefulness of such 

treatment in our model (data not shown). 

Mitochondrial antioxidants have been successfully used in other areas and 

models, such as in acute hypoxia, inflammation, cardiovascular diseases, and 

ischemia reperfusion [117-120], but our results demonstrate that they are 

unlikely to be useful in cancer therapy.  

 

 



 

 

GENERAL DISCUSSION 

& 

FUTURE WORK 

 

 

 

 

 

 

 

 

 

 

 

 

One never notices what has been done; one can only see what remains to be 
done. – Marie Sklodowska-Curie 
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THE ANTIOXIDANT/ROS DOGMA NEEDS 
TO BE RECONSIDERED 
ROS are not only damaging products, they are important players in the 

maintenance of cell signaling and homeostasis. 

Antioxidant supplementation has been traditionally seen as a way to protect 

against oxidative stress-related damage. However, antioxidants protect both 

healthy and tumor cells. The latter have elevated levels of ROS and rely on 

antioxidant defenses to protect themselves from further damage. 

Antioxidants give them the additional help they need. 

In paper I we show that general antioxidants supplied in the diet accelerate 

metastasis in in vivo and in vitro models of malignant melanoma. 

In paper II we show that mitochondria-targeted antioxidants did not inhibit 

cancer progression in vivo. In fact, one of the compounds, mitoTEMPO, 

reduced survival of mice with malignant melanoma and this was accompanied 

by increased levels of cytosolic H2O2. 

ARE HYPOTHETICAL BENEFITS OF 
ANTIOXIDANTS WORTH THE RISK? 

Clinical trials have consistently failed at showing the value of antioxidant 

supplementation for the prevention and treatment of cancer. In fact, meta-

analysis studies of clinical trials show that antioxidant supplementation lacks 

support for beneficial effects and may increase mortality of certain forms of 

cancer [121-124]. 

In addition, there is a widespread use of antioxidant supplements by cancer 

patients [125-128] partially to alleviate toxic radiotherapy and chemotherapy 

side-effects, but also prompted by the popular conception that antioxidants 

help fighting cancer. Interestingly, the published literature suggests growing 



 

concern and debate amongst clinicians on the potential interference of such 

supplements with therapy that relies on the production of ROS and induction 

of apoptosis [129-133]. 

Furthermore, although some experimental studies of chemically- and 

radiation-induced cancers have displayed potential therapeutic effects of the 

use of antioxidants [134, 135], there is an increasing body of evidence 

showing their role in the acceleration of progression [136-138].  

Overall, there is no doubt that redox regulation plays an important role in 

the development and progression of cancer. We therefore think that the 

study of redox-regulated pathways, proteins and genes might reveal new drug 

targets and offer new and reliable therapeutic possibilities [139].  

FUTURE WORK 
One of the main difficulties in the field is the study of redox reactions in vivo. 

Indeed, we have to rely on methods that can give an overall idea of whether 

certain conditions are pro-oxidative or reductive. As described in the 

methods section, the use of genetic encoded biosensors has revolutionized 

the field by giving the possibility to analyze when and where in the cell these 

redox reactions occur. This tool is now being expanded to in vivo models in 

Tobias Dick´s group, where genetically encoded biosensors have been stably 

expressed in mouse tissues [140]. This opens many possibilities if combined 

with our cancer models, since it would be easier to pinpoint where and when 

during the development of the disease redox alterations occur with and 

without the use of antioxidants.  

For instance, in Paper I we saw that the increased migrating and invasive 

properties of cancer cells were dependent on new synthesis of GSH [141]. 

We also saw that the GSH/GSSG ratio was increased in lymph metastases of 

NAC treated mice according to a whole cell extract assay. It would be 
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interesting to combine the BPT model with the expression of a glutathione 

biosensor to observe whether this increase is particular to the cells that 

survive transit from the primary tumor to the lymph nodes, or whether it is 

only those cells within the primary tumor that show increased GSH that 

migrate.  It would also allow us to see what happens with the rest of the cells 

in the neoplastic niche. For instance, it is well known that redox regulation 

plays an important role in the vascularization of tissue. It has been proposed 

that low levels of ROS can stimulate angiogenesis and therefore influence 

tumor progression [142]. Indeed, the accelerated growth kinetics observed 

in mitoTEMPO-treated mice might be related not so much to tumor cell 

proliferation in itself as to a better vascularization of the neoplastic tissue, 

prompted by the excretion of H2O2. 

Another important point from Paper I was that migration was also dependent 

on RHOA signaling, and we hypothesize that this increase in signaling is due 

to either the inhibition by reduction of RAC1 (and hence de-repression of 

RHOA) or activation of RHOA by reduction. But we cannot rule out other 

effects of redox regulation of the cytoskeleton. One way of analyzing this 

would be to study the thiol proteome by mass spectrometry and study 

potentially GSH-regulated cysteines.  

We could combine these results with RNAseq analysis of primary tumors 

and lymph metastases from NAC and vitamin E treated mice, to get a better 

landscape of redox regulation by antioxidant supplementation. Although the 

phenotype exhibited by both treatments is the same, we cannot rule out that 

the underlying mechanisms are different. 

To that end, it would be interesting to perform the same experiments in 

immunodeficient mice to rule out the possibility that effects on the immune 

system are responsible for the observed metastasis.  



 

In Paper II we observed a decreased survival by mitoTEMPO and we argue 

that growth kinetics were affected by the treatment. To challenge this idea, 

we are now repeating a new study where mice will be sacrificed after five 

weeks of treatment. We also observed that scavenging of mitochondrial O2
· 

resulted in increased levels of cytosolic ROS and we hypothesize that this in 

turn triggers cellular signaling cascades that accelerate growth. To verify the 

hypothesis we could overexpress a mitochondrial catalase to decrease pro-

tumorigenic signaling from mitochondrial H2O2 or isolate mitochondria and 

measure H2O2 excretion. 

In addition to these studies, we are interested in comparing different methods 

of antioxidant delivery to the skin in the context of malignant melanoma. Skin 

lotions often contain different forms of antioxidants, whether with the 

purpose of stabilizing formulation and avoiding rancidity or with the promise 

of improving skin texture and condition. We are interested in studying how 

these will affect malignant melanoma progression. I have administered vitamin 

E in the diet, and as a lotion to BPT mice, and I am going to test dietary 

mitochondrial targeting with mitoE.  
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