
Formalizing Constructive Quantifier
Elimination in Agda
Master’s thesis in Computer Science

Jeremy Pope

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden 2018

Master’s thesis 2018

Formalizing Constructive Quantifier
Elimination in Agda

Jeremy Pope

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Formalizing Constructive Quantifier Elimination in Agda
Jeremy Pope

© Jeremy Pope, 2018.

Supervisors: Thierry Coquand and Simon Huber, Department of Computer Science
and Engineering
Examiner: Andreas Abel, Department of Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Formalizing Constructive Quantifier Elimination in Agda
Jeremy Pope
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In this thesis a constructive formalization of quantifier elimination is presented,
based on a classical formalization by Tobias Nipkow [16]. The formalization is im-
plemented and verified in the programming language/proof assistant Agda [1]. It
is shown that, as in the classical case, the ability to eliminate a single existential
quantifier may be generalized to full quantifier elimination and consequently a deci-
sion procedure. The latter is shown to have strong properties under a constructive
metatheory, such as the generation of witnesses and counterexamples. Finally, this
is demonstrated on a minimal theory on the natural numbers.

Keywords: Agda, decidability, semantics, constructive, successor.

v

Acknowledgements
I would like to thank my supervisors Thierry Coquand and Simon Huber for the
idea of the project, and for helping me to understand constructive logic, semantics,
and how to navigate the distinction between theory and metatheory.

I would also like to thank my family for their love and support, and the oppor-
tunity to study in Göteborg and work on this project.

Jeremy Pope, Gothenburg, November 2017

vii

Contents

1 Introduction 1
1.1 Predicate Logic and Quantifier Elimination 1
1.2 Formalization . 1
1.3 History of Quantifier Elimination . 2
1.4 Relevant Work . 3
1.5 Organization . 3

2 Theoretical Background 5
2.1 Quantifier Elimination . 5
2.2 Constructive Logic . 6
2.3 Propositions as Types . 7
2.4 Theory, Metatheory, and Semantics 7

2.4.1 Reflection . 8
2.5 De Bruijn Indices . 9

3 Theory-Independent Work 11
3.1 Atoms . 11
3.2 Representation of Propositions . 12
3.3 Semantics of Propositions . 13
3.4 Quantifier-Free Propositions . 13
3.5 Quantifier Elimination . 14

3.5.1 Correctness . 15
3.6 Decidability . 18
3.7 Disjunctive Normal Form and Products 19

4 The Theory of Successor 23
4.1 Overview . 23
4.2 Elimination on Products . 25
4.3 Formalization . 27

4.3.1 Procedure . 27
4.3.2 Correctness . 30

4.4 Demonstration . 32

5 Conclusion 35
5.1 Remarks and Improvements . 35
5.2 Conclusion . 36

ix

Contents

Bibliography 37

x

Chapter 1

Introduction

1.1 Predicate Logic and Quantifier Elimination
A proposition in predicate logic is formed in one of three ways: from an atom, by
linking propositions together using a connective (such as ∨ or ⇒), or by quantifying
a proposition with ∀ or ∃. Neglecting the internal structure of atoms, it is the
third that sets predicate logic apart from propositional logic; the quantifiers greatly
enhance the expressiveness of the language.

A drawback is that the truth of a proposition is no longer easy to determine.
With propositional logic an exhaustive enumeration is possible, but this is not so
in predicate logic: to do so on a proposition such as ∀x.(x 6= x + 1) would require
verifying x 6= x+1 for every possible value of x, which—depending on our choice of
domain—could be infinite.

There is not always a way around this; predicate logic is indeed undecidable in
the general case. However, a number of specific theories within predicate logic are
in fact decidable—and not simply by admitting exhaustive enumeration. Rather,
decidability is shown through quantifier elimination.

The idea behind quantifier elimination is to devise a method to transform any
given proposition into an equivalent one without quantifiers. The latter can typically
be decided very easily, and by virtue of the equivalence the decision applies to the
original proposition as well. This allows any proposition in the theory to be decided,
rendering the theory decidable.

1.2 Formalization
The difficulty of quantifier elimination depends on the theory in question, but even
for simple theories it is quite high—great care must be taken to ensure that the
method is sound. Moreover, applying the procedure to a complicated proposition is
likely impractical for a human (especially if it involves conversion to disjunctive nor-
mal form, which can result in a large growth in the number of terms). These factors
encourage computer formalization of quantifier elimination—both in implementing
the procedures, and verifying that they are correct.

Implementation by itself is conceptually straightforward: propositions are repre-
sented by some datatype, and quantifier elimination as procedure(s) that manipulate

1

1. Introduction

objects of that datatype. Verification makes matters more complicated; the imple-
mentation must be accompanied by a proof of its correctness, which certifies that
the quantifier elimination procedure always produces a proposition that is equiva-
lent to the input (and quantifier-free). To facilitate this, both the implementation
and correctness proof are typically written in a proof assistant.

1.3 History of Quantifier Elimination

According to Doner and Hodges [10] the technique of quantifier elimination was first
shown by Leopold Löwenheim in 1915, and developed further by Thoralf Skolem in
1919. It was then used by Cooper Harold Langford in 1927 to prove the decidability
of (some variations on) dense linear orders, a result built upon shortly thereafter by
Tarski.

In 1930, Tarski discovered a decision procedure for real closed fields (fields that
are elementarily equivalent to R), by way of quantifier elimination [10]. This theory
is also modeled by Tarski’s axiomatization of Euclidean geometry, thereby proving
the decidability of the latter [21]. Around the same time, Tarski also found a de-
cision procedure for algebraically closed fields (fields for which every non-constant
polynomial has a root) [10].

In the world of discrete numbers, Mojżesz Presburger (a student of Tarski) used
quantifier elimination in his 1930 Master’s thesis [20] to prove the completeness and
decidability of Presburger arithmetic, a theory of addition on the natural numbers.
That same year Jacques Herbrand [12] employed the technique to prove that several
simpler theories on the natural numbers are consistent, complete, and decidable
under a constructive metatheory.

Following Gödel’s incompleteness theorems [11] came several negative results in
decidability. Church [6] and Turing [24] independently showed in 1936 that Hilbert’s
Entscheidungsproblem is unsolvable; there are undecidable problems in first-order
arithmetic. In 1949, it was proven that Robinson arithmetic [18] (addition and
multiplication on the natural numbers) is moreover essentially undecidable—any
system that can even interpret it is undecidable. These results impose very strong
limitations on the decidability of theories on the natural numbers, ruling out the
possibility of quantifier elimination on general arithmetic.

The first known use of computers for quantifier elimination (and theorem prov-
ing in general), according to Stansifer [20], is a program written in 1954 by Martin
Davis to “prove theorems of Presburger arithmetic”. Since then there have been a
number of computer implementations of quantifier elimination, with and without
verification. Two examples relevant to this project are the formalizations of quanti-
fier elimination by Tobias Nipkow [16] (for several theories) and Guillaume Allais [3]
(for Presburger arithmetic), discussed further in the following section. There have
also been formalizations of Tarski’s famous results, notably those carried out in the
proof assistant Coq [8] by Assia Mahboubi and Cyril Cohen for algebraically closed
fields [15] and real closed fields [7].

2

1. Introduction

1.4 Relevant Work
As mentioned previously, quantifier elimination under a constructive metatheory was
explored by Jacques Herbrand in his 1930 doctoral thesis [12], in which he proved
the consistency, completeness, and decidability of various (classical) theories on the
natural numbers. While much of the paper is not amenable to formalization,1 a
technique specific to one theory serves as the basis of the method used in Chapter 4.

Nipkow’s formalization [16], in which he implements and verifies quantifier elim-
ination on a number of theories, serves as the primary basis of this project. The
formalization is quite general—the core is entirely theory-independent, and is sim-
ply instantiated for each of the specific theories. It differs significantly from the one
presented here in that it is carried out in the proof assistant Isabelle [14], under a
classical metatheory.

Correspondence with Guillaume Allais [3] revealed that he had in fact developed
a constructive formalization of quantifier elimination in Agda, specifically on Pres-
burger arithmetic (a small part of which available online [4]). While this would have
served as a good basis for this thesis, it was not discovered until after the project
had been mostly completed. With respect to Allais’ work, this thesis hopes to con-
tribute primarily through generality: constructive quantifier elimination is explored
largely irrespective to the theory under consideration, and as a result is applicable
to many theories in first-order logic.

1.5 Organization
The remainder of this thesis is organized as follows: First, background information
is given on theoretical aspects relevant to the project (Chapter 2). Next, a theory-
independent formalization of quantifier elimination is shown (Chapter 3), followed
by an application to a theory on the natural numbers (Chapter 4). Finally, the
project’s results and possible improvements are discussed (Chapter 5).

The source code for the project (excluding the Agda standard library) is available
on GitHub2.

1The treatment of variables in particular poses challenges.
2https://github.com/guspopje/agda-qelim

3

1. Introduction

4

Chapter 2

Theoretical Background

2.1 Quantifier Elimination
Rather than attempting to remove all quantifiers at once, an incremental approach
can be taken, dramatically reducing the scope of the problem. A procedure is devised
to remove a single quantifier, often ∃, from an otherwise quantifier-free proposition:

∃x.φ ⇐⇒ ψ,

where φ and ψ are quantifier-free. Using the quantifier duality ∀x.φ ⇐⇒ ¬∃x.¬φ
(in a classical theory) this can be adapted to remove ∀ as well. If the full proposition
in question (which may contain many quantifiers) is placed into prenex form, where
all of its quantifiers are pushed as far out as possible, then repeated application of
the single-step procedure can clearly be used to eliminate all quantifiers from the
“inside out”:

∃z.∀y.∃x.φ ⇐⇒ ∃z.∀y.ρ ⇐⇒ ∃z.σ ⇐⇒ ψ,

noting that φ, ρ, σ, and ψ are all quantifier-free. The same recursive strategy can
just as well be used without placing the proposition into prenex form, at the cost of
being less clearly inductive.

To narrow the problem even further, the quantifier-free sub-proposition φ can be
placed into disjunctive normal form (DNF):

φ ⇐⇒ C1 ∨ C2 ∨ . . . ∨ Cn

where each Ci is a conjunction of literals (a literal being an atomic formula or
its negation). This is useful because existential quantification distributes across
disjunction:

∃x.φ ⇐⇒ ∃x.(C1 ∨ C2 ∨ . . . ∨ Cn) ⇐⇒ (∃x.C1) ∨ (∃x.C2) ∨ . . . ∨ (∃x.Cn).

As a result, elimination can be carried out on each conjunction separately, reducing
the problem to quantifier elimination on conjunctions of literals.

Once a quantifier elimination procedure has been shown, decidability of the the-
ory is obtained—provided that all quantifier-free propositions are decidable. The
latter requirement is trivially true for theories where atomic formulae represent de-
cidable relations (e.g. equality on the natural numbers), such as the theory to be
presented in Chapter 4.

5

2. Theoretical Background

Proposition Proof

A ∧B A proof of A and a proof of B.

A ∨B Either a proof of A or a proof of B.

A→ B A way of transforming a proof of A into a
proof of B.

¬A A way of transforming a proof of A into a
proof of ⊥ (¬A is shorthand for A→ ⊥).

⊥ (No proof.)

∃x.A(x) An object e and a proof of A(e).

∀x.A(x) A way to, given any object e in the domain
of quantification, produce a proof of A(e).

Table 2.1: The BHK interpretation.

2.2 Constructive Logic
Constructivism is based on the idea that existence (and truth) is shown by construc-
tion [23]. In other words, a proof of existence must provide a means to construct
such an object, as opposed to merely proving that its non-existence is impossible.

Constructive/intuitionistic logic reflects this by, in relation to classical logic, re-
jecting the law of excluded middle (A ∨ ¬A) or equivalent. This eliminates proof
by contradiction, as well as quantifier dualities such as ∃x.A(x) ⇐⇒ ¬∀x.¬A(x)
which would yield non-constructive proofs.1

To illustrate this, the following is a canonical example of a non-constructive proof,
attributed to Dov Jarden [13]:

Claim: There exist two irrational numbers a and b such that ab is rational.

Proof: Consider
√
2
√
2. If it is rational, then let a = b =

√
2. If it is irrational, then

the choice of a =
√
2
√
2, b =

√
2 is satisfactory, since (

√
2
√
2
)
√
2 = (

√
2)2 = 2,

which is rational. Either way, the desired result is proven.

This proof is non-constructive because without further knowledge it does not
provide a means to construct a specific pair (a, b)—it is not possible a priori to
determine which of the two cases holds.

The Brouwer-Heyting-Kolmogorov (BHK) interpretation gives an informal defini-
tion of what does constitute a constructive proof, defined recursively on the structure
of the proposition in question. Table 2.1 shows the cases of the BHK interpretation
(adapted from Troelstra [23] and Bridges [5]).

Two cases that stand out are disjunction and existential quantification. Disjunc-
tion differs from its classical counterpart in that a constructive proof of A∨B must

1For that particular duality, the left-to-right direction is constructively provable, but the right-
to-left direction is not.

6

2. Theoretical Background

Propositions Types

Conjunction (∧) (Cartesian) product type (×)

Disjunction (∨) Sum type (disjoint union,])

Implication (→) Function type (→)

Absurdity (⊥) Empty type (⊥)

Existential quantification (∃) Dependent sum (pair) type (Σ)

Universal quantification (∀) Dependent product (function) type (Π)

Table 2.2: Correspondence between propositions and types.

be a proof of one of the two, implying that the disjunction is decidable. A proof
of existence, as discussed previously, must provide (construct) a witness—an object
for which the quantified proposition holds. The latter in particular has strong im-
plications in the context of quantifier elimination: if a decision procedure produces
a constructive proof that ∃x.φ(x) is true, that proof comes with such a value for x.

2.3 Propositions as Types
Proofs in intuitionistic logic correspond to well-typed terms of typed lambda calcu-
lus [23], a result known as the Curry-Howard correspondence. Martin Löf’s Intu-
itionistic Type Theory (ITT) [17] takes this a step further, providing a system which
may be seen as both an intuitionistic logic and a programming language. What is
viewed as a proposition in the former perspective is viewed as a type in the latter.

The correspondence, given in Table 2.2, follows the BHK interpretation described
in the previous section; if a type T corresponds to a proposition P , then the objects
of T precisely match the informal definition of proofs for P .

The programming language/proof assistant Agda, based on intuitionistic type
theory, makes it possible to write proofs as programs and verify them by way of
type-checking: a well-typed program corresponds to a valid proof.

As it would be virtually impossible to give a sufficient introduction to the lan-
guage itself in this thesis, readers unfamiliar with it are instead referred to the
collection of tutorials linked to on the Agda Wiki webpage [2].

2.4 Theory, Metatheory, and Semantics
In quantifier elimination, and proofs about logic systems in general, there are often
two “layers”: the theory T under consideration, expressed in the object language,
and the metatheory M in which T is analyzed, expressed in the metalanguage.

The notions of equivalance and decidability (as related to quantifier elimination)
necessitate that a notion of provability or truth be associated with T . One option
is to define a proof system directly for T , as in Herbrand’s thesis [12]. This allows

7

2. Theoretical Background

a syntactic treatment, notions such as “equivalent in T” and “provable in T”, and
consequently strong separation between theory and metatheory.2

Another option, as taken by Tarski [22], Nipkow [16], and this project, is to
instead define the semantics (or interpretation) of propositions of T , as propositions
in M :

[[·]] : T →M.

This is typically accomplished recursively, mapping each each connective or quan-
tifier in T to the corresponding one in M . In the case of this project, since M is
ITT, the correspondence given in Table 2.2 is used. A consequence is that since M
is constructive, and disjunction in T is mapped to disjunction in M , the semantics
of T are constructive as well.

With this approach, quantifier elimination produces a proposition that is seman-
tically equivalent to the original, and in the end it is the semantics of T that are
proven to be decidable (as opposed to T itself, which is not possible without a proof
system). As the semantics lie in M , this means that decidability is shown for a
fragment of M .

In the context of this project, the object language is a datatype Prop, representing
propositions in predicate logic, and the metalanguage is the entirety of Agda. The
semantics of Prop are propositions in Agda, so roughly:

[[·]] : Prop objects → Agda propositions.

Semantic equivalence on Prop is therefore logical equivalence on the corresponding
Agda propositions, and decidability of the semantics of a Prop is decidability of the
Agda proposition it represents. Prop is thus said to code for (a subset of) propositions
in Agda.

2.4.1 Reflection
One interesting benefit of the semantic approach is that if an inverse of [[·]] can be
provided—only possible with help from the “meta-metatheory”—then M may effec-
tively operate on a fragment of itself, a process referred to as reflection. Reflection
allows (among other things) a suitable proposition in M to be decided without man-
ually converting it to its representation in T ; the representation is rather derived
from the quoted (reflected) structure of the proposition. In doing so, the need for
the user to be familiar with the underlying representation (T) is removed, resulting
in simpler invocations of the decision procedure(s).

While reflection is not implemented in this project, it is in Nipkow’s work [16],
and a great deal of information on the reflection mechanisms in Agda and their uses
is available in Paul van der Walt’s Master’s thesis [25].

Similar (but non-reflective) metaprogramming is used to provide tactics, a pow-
erful tool in interactive theorem proving. One such example is the omega [9] tactic
in Coq, which solves propositions of Presburger arithmetic.

2In Herbrand’s case, this allows the analysis of a classical theory under a constructive meta-
theory.

8

2. Theoretical Background

2.5 De Bruijn Indices
While the general structure of propositions—atoms, connectives, and quantifiers—is
readily formalizable, a number of concerns arise surrounding variables.

Each variable in a proposition is said to be either bound or free. Bound variables
are ones that reference a quantifier in the proposition, and free variables are ones
that do not. For example, in (∃x.x = y + 1) ∧ x = 6, the first x is bound, while
y and the second x are free.3 This property depends on context; if only the (sub-
)proposition y = x+ 1 is considered, then both variables are considered free.

With that in mind, we turn our attention to how variables themselves are rep-
resented. The typical and most readable approach is to give variables names, such
as x or y. As it turns out, this introduces considerable difficulty in the context of
formalized systems, even the names are chosen from an amenable set such as the
natural numbers.

De Bruijn indices are an alternative way to refer to variables in a proposition,
without using names (in the usual sense). The idea is that each reference to a vari-
able is replaced with a natural number indicating how many binders—in this case,
quantifiers—are between it and the quantifier to which it refers. The proposition

∀x.(x ≤ 4 ∨ (∃y.x = y + 5))

is therefore represented using de Bruijn indices as

∀.(0 ≤ 4 ∨ (∃. 1 = 0 + 5)).

The first 0 indicates skipping zero quantifiers, and thus refers to the variable as-
sociated with the ∀. The subsequent 1 indicates that one quantifier, the ∃, should
be skipped, and likewise refers to the ∀. The last index, 0 , indicates to skip zero
quantifiers, and therefore refers to the ∃.

Free variables are ones where the de Bruijn index extends past the head of the
proposition. In the example above, if the scope is narrowed to

0 ≤ 4 ∨ (∃. 1 = 0 + 5),

then the first 0 and the single 1 are considered free.
While the appeal of “one variable, one name” is lost, several advantages are

found. First, there is no longer any concern about the naming of bound variables.
For example, the equivalent propositions ∃y.x+1 = y and ∃z.x+1 = z are encoded
identically; there is no need to convert between one and the other.

Second, it is much easier to avoid the issue of free variable capture, where a
clash between free and bound variables during a substitution produces “unexpected”
results. Consider the proposition ∀y.∃x.x 6= y—if it is applied to z, one obtains
∃x.x 6= z, as expected. However, if it is instead applied to x, the result is ∃x.x 6= x.
This occurs because the existential quantifier has “captured” the substituted x.
With named variables the solution is to restrict the rules of substitution so that
such substitutions may not be made, which complicates manipulation considerably.

3Note that the two instances of x in fact refer to different variables.

9

2. Theoretical Background

If de Bruijn indices are used, however, all that needs to be done to ensure a safe
substitution is to adjust the indices in the substituted expression appropriately (to
take into account being inside more/fewer quantifiers). The latter therefore results
in a cleaner and simpler treatment of substitution.

A third benefit of de Bruijn indices relates to free variables and their association
with values. If one considers a proposition φ with free variables x, y, and z, it is
clear that the semantics of φ is a function of those variables. On the other hand, the
semantics of ∃x.φ is only a function of y and z. This dependence on the values of free
variables necessitates an environment; a mapping from variables to values. With
named variables, this means an association between variable names and values, such
as a list of (name, value) pairs. With de Bruijn indices the environment may merely
be a list of values—element i in the list corresponds to the variable with de Bruijn
index i. As will be seen in Section 3.3, this also leads to an elegant definition of the
semantics of ∃ and ∀.

An immediate concern with the use of a list of values as an environment is that
the list is of sufficient length.4 To ensure that this is the case, a notion of “arity” is
introduced for propositions:

• The arity of an atom is any natural number n such that all de Bruijn indices
in the atom are less than n.

• ⊥ may have any arity.

• ∧, ∨, and ⇒ join two propositions with the same arity n to produce a propo-
sition with arity n.

• Quantifiers ∃ and ∀, when applied to a proposition of arity n + 1, produce a
proposition of arity n.

Defined as above, the arity of a proposition provides an upper bound on the necessary
length of the environment to guarantee that each free variable is associated with a
value. It is consequently also an upper bound on the number of distinct free variables
in the proposition.

4The analogous concern with named variables is ensuring that every variable used in the propo-
sition is defined in the environment.

10

Chapter 3

Theory-Independent Work

3.1 Atoms
In the interest of generality, atomic formulae are not represented by a fixed type,
but by a type given as a module parameter. The type is indexed by a natural
numbers n representing its arity (an upper bound on its free variables, as discussed
in Section 2.5):

Atom : ℕ → Set

The internal structure of an Atom is completely unspecified.
The semantics of Atom are also given by way of module parameters. First, the

set of values which variables may take:

Y : Set

Then, a function which gives the semantics for an atom:

⟦_⟧ₐ : {n : ℕ} → Atom n → Vec Y n → Set

The implicit parameter n : ℕ is the arity of the atom, and the following parameter
of type Atom n is the atom itself. The last parameter, of type Vec Y n, is the
environment: a list (“vector”) of length n of values for the free variables in the atom
(see Section 2.5). This, in a sense, forces Atom to use de Bruijn indices internally—
no names are associated with the values in the enviroment. Moreover, since the
enviroment for an Atom n is a list of n values, the effective arity of the atom is
restricted to n, as intended.

Additionally, it is required that the semantics of Atom be decidable under any
given enviroment. This is often the case (as discussed in Section 2.1, and is equivalent
to the semantics of all quantifier-free propositions being decidable. As it turns out,
for a constructive theory this is important not only for decidability but for quantifier
elimination itself, as will be seen later on. Another module parameter is used to
implement this requirement:

⟦_⟧ₐ? : {n : ℕ} (a : Atom n) (e : Vec Y n) → Dec (⟦ a ⟧ₐ e)

11

3. Theory-Independent Work

The Dec type family, from Agda’s standard library, is indexed by a type (A). An
object of type Dec A is a decision for A: either a proof that A is inhabited (yes a,
where a : A), or a proof that it is not (no x, where x : ¬ A, i.e. x : A → ⊥).

For organizational purposes the above are grouped into a record type, forming
an abstract representation of atoms with decidable semantics:

record DecAtom : Set₁ where
field
Atom : ℕ → Set
Y : Set
⟦_⟧ₐ : {n : ℕ} → Atom n → Vec Y n → Set
⟦_⟧ₐ? : {n : ℕ} (a : Atom n) (e : Vec Y n) → Dec (⟦ a ⟧ₐ e)

A single module parameter of type DecAtom is used in lieu of four separate parame-
ters.

3.2 Representation of Propositions
Propositions are represented by following datatype. Constructors allow the forma-
tion of a proposition from an atom, or from other propositions by way of the typical
connectives and quantifiers.1

data Prop (n : ℕ) : Set where
atom : Atom n → Prop n
⊥⊥ : Prop n
∪ : Prop n → Prop n → Prop n
& : Prop n → Prop n → Prop n
⇒ : Prop n → Prop n → Prop n
E_ : Prop (suc n) → Prop n
A_ : Prop (suc n) → Prop n

Negation is defined for convenience:

~_ : {n : ℕ} → Prop n → Prop n
~ φ = φ ⇒ ⊥⊥

It is noted that because the semantics of a proposition is not a priori decidable,
under a constructive (meta)theory propositions cannot be reduced to a more minimal
set of connectives/quantifiers, as they typically would be in a classical setting.

The quantifiers E_ and A_ reflect the use of de Bruijn indices (Section 2.5): neither
constructor accepts any indication of which variable is to be quantified (recall that
with de Bruijn indices this is not needed), and both decrement the arity (by virtue
of binding one of the free variables in the quantified proposition).

1The notation used in the constructors is an attempt to avoid clashing with reserved symbols
(such as ∀ and →) and symbols from Agda’s standard library which are used extensively in the
proof (such as ⊥).

12

3. Theory-Independent Work

3.3 Semantics of Propositions
The semantics of propositions are then defined recursively from ⟦_⟧ₐ in accordance
with the BHK interpretation:

⟦_⟧ : {n : ℕ} → Prop n → Vec Y n → Set
⟦ ⊥⊥ ⟧ ys = ⊥
⟦ atom a ⟧ ys = ⟦ a ⟧ₐ ys
⟦ φ₁ ∪ φ₂ ⟧ ys = (⟦ φ₁ ⟧ ys) ⊎ (⟦ φ₂ ⟧ ys)
⟦ φ₁ & φ₂ ⟧ ys = (⟦ φ₁ ⟧ ys) × (⟦ φ₂ ⟧ ys)
⟦ φ₁ ⇒ φ₂ ⟧ ys = (⟦ φ₁ ⟧ ys) → (⟦ φ₂ ⟧ ys)
⟦ E φ ⟧ ys = Σ Y (λ y → ⟦ φ ⟧ (y ∷ ys))
⟦ A φ ⟧ ys = (y : Y) → (⟦ φ ⟧ (y ∷ ys))

Absurdity, disjunction, conjunction, and implication are respectively mapped to
the empty, disjoint union, cartesian product, and function types.

The semantics of existential quantification are represented using a Σ (dependent
sum/pair) type. Members of the resulting type are pairs consisting of a value y:Y and
an element of the inner proposition’s semantics with y prepended to the environment,
i.e., proof that the inner proposition is true with the first free variable “set to y”.

The semantics of universal quantification are defined similarly, but use a (depen-
dent) function type2 in place of the Σ type—all values for y must result in the inner
proposition being true.

3.4 Quantifier-Free Propositions
As quantifier-free propositions are of importance, a representation of this quality is
defined:

data QFree {n : ℕ} : Prop n → Set where
⊥⊥ : QFree ⊥⊥
atom : (a : Atom n) → QFree (atom a)
∪ : {φ₁ φ₂ : Prop n} → QFree φ₁ → QFree φ₂ → QFree (φ₁ ∪ φ₂)
& : {φ₁ φ₂ : Prop n} → QFree φ₁ → QFree φ₂ → QFree (φ₁ & φ₂)
⇒ : {φ₁ φ₂ : Prop n} → QFree φ₁ → QFree φ₂ → QFree (φ₁ ⇒ φ₂)

~-qf_ : {n : ℕ} {φ : Prop n} → QFree φ → QFree (~ φ)
~-qf qf = qf ⇒ ⊥⊥

The constructors are chosen with the same names as those in Prop; this empha-
sizes the fact that QFree can be thought of both as a proof that a proposition is
quantifier-free (QFree φ is inhabited if and only if φ is quantifier-free), and as an
actual datatype for quantifier-free propositions.

Semantically speaking, all of the connectives preserve decidability: the result
of joining two semantically decidable propositions with _∪_, _&_, or _⇒_ is also
semantically decidable. This is shown for _⇒_ (with semantics →) as follows:

2A Π type, though Agda’s syntax makes it of little use to write it as such.

13

3. Theory-Independent Work

→? : {A B : Set} → Dec A → Dec B → Dec (A → B)
_ →? (yes b) = yes (λ _ → b)
(yes a) →? (no ¬b) = no (λ f → ¬b (f a))
(no ¬a) →? (no ¬b) = yes (λ a → contradiction a ¬a)

The same property can be shown for _∪_ and _&_ (with semantics _⊎_ and _×_) in
a similar manner, resulting in the following two functions:

⊎? : {A B : Set} → Dec A → Dec B → Dec (A ⊎ B)
×? : {A B : Set} → Dec A → Dec B → Dec (A × B)

It is also noted that the semantics of ⊥⊥, namely ⊥, is trivially decidable.
Given the above and that the semantics for atoms are decidable (⟦_⟧ₐ?), it follows

by induction that the semantics of any quantifier-free proposition is decidable:

qfree-dec : {n : ℕ} → (φ : Prop n) → QFree φ → (e : Vec Y n) →
Dec (⟦ φ ⟧ e)

3.5 Quantifier Elimination
As discussed in Section 2.1, quantifier elimination is typically accomplished by elim-
inating existential quantifiers one by one, from the “inside out”. It is performed in
that order so that when a quantifier is being eliminated, the enclosed proposition is
already quantifier-free, simplifying the problem significantly.

The method by which a single quantifier is eliminated depends on the theory
under consideration, making it impossible to directly define (whilst maintaining
generality). Instead—in a similar manner to DecAtom—it is defined abstractly with
a record type QE which captures the necessary properties of a single-step elimination
procedure. A specific implementation takes the form of an object qe : QE.

record QE : Set where
field
step : {n : ℕ} (φ : Prop (suc n)) → QFree φ → Prop n
qfree : {n : ℕ} (φ : Prop (suc n)) (qf : QFree φ) →

QFree (step φ qf)
equiv : {n : ℕ} (φ : Prop (suc n)) (qf : QFree φ) (e : Vec Y n) →

⟦ E φ ⟧ e ↔ ⟦ step φ qf ⟧ e

The field step represents the single-step elimination procedure itself, accepting a
quantifier-free proposition with up to n+1 free variables and producing one with up
to n. It is noted that the input to step does not contain the existential quantifier
to eliminate, rather it is implied—for example, to eliminate the quantifier from E
φ, the step procedure is invoked on just φ. The field qfree represents a proof that
step always produces a quantifier-free proposition. Finally, equiv establishes step’s
correctness—that the propositions E φ and step φ ... are semantically equivalent.3

3The notation A ↔ B is defined as (A → B) × (B → A).

14

3. Theory-Independent Work

Such a single-step procedure can then be “lifted” to eliminate all quantifiers from
a proposition via recursion on the proposition’s structure (the general approach, as
stated before, being to eliminate quantifiers from the inside out). The cases are as
follows:

1. The absurd proposition (⊥⊥); it is left unchanged.

2. An atom; it is left unchanged.

3. A proposition formed from disjunction, conjunction, or implication (∪, &, or
⇒); the sub-proposition(s) are quantifier-eliminated recursively.

4. An existentially-quantified proposition (E φ); φ is quantifier-eliminated recur-
sively, and step is applied to the result.

5. A universally-quantified proposition (A φ); φ is quantifier-eliminated recur-
sively, and the quantifier is treated as its (classical) existential dual (~E~).4

This procedure is formalized as the function lift-qe:

lift-qe : {n : ℕ} → QE → Prop n → Prop n
lift-qe-qfree : {n : ℕ} (qe : QE) (φ : Prop n) → QFree (lift-qe qe φ)

lift-qe _ ⊥⊥ = ⊥⊥
lift-qe _ (atom atm) = atom atm
lift-qe qe (φ₁ ∪ φ₂) = (lift-qe qe φ₁) ∪ (lift-qe qe φ₂)
lift-qe qe (φ₁ & φ₂) = (lift-qe qe φ₁) & (lift-qe qe φ₂)
lift-qe qe (φ₁ ⇒ φ₂) = (lift-qe qe φ₁) ⇒ (lift-qe qe φ₂)
lift-qe qe (E φ)

= QE.step qe (lift-qe qe φ) (lift-qe-qfree qe φ)
lift-qe qe (A φ)

= ~ (QE.step qe (~ lift-qe qe φ) (~-qf lift-qe-qfree qe φ))

The function lift-qe-qfree (contents omitted) simply affirms that lift-qe does
indeed eliminate quantifiers, via recursion on the proposition’s structure and use of
QE.qfree.

3.5.1 Correctness
The correctness of the lifted procedure—that lift-qe qe φ is equivalent to φ—is
proven recursively based on the correctess of the single-step procedure. This takes
the form of two functions, proving each direction of the equivalence:

lift-qe-fwd : {n : ℕ} (qe : QE) (φ : Prop n) (e : Vec Y n) →
⟦ φ ⟧ e → ⟦ lift-qe qe φ ⟧ e

lift-qe-bwd : {n : ℕ} (qe : QE) (φ : Prop n) (e : Vec Y n) →
⟦ lift-qe qe φ ⟧ e → ⟦ φ ⟧ e

4The validity of this under a constructive metatheory is not immediately obvious, and will be
addressed Section 3.5.1.

15

3. Theory-Independent Work

For both directions, the cases ⊥⊥ and atom are trivial; the former is impossible
and the latter is unchanged by lift-qe. For ∪, &, and ⇒, correctness of lift-qe is
proven recursively on each sub-proposition, and then combined:

lift-qe-fwd qe (φ₁ ∪ φ₂) e
= Sum.map (lift-qe-fwd qe φ₁ e) (lift-qe-fwd qe φ₂ e)

lift-qe-fwd qe (φ₁ & φ₂) e
= Product.map (lift-qe-fwd qe φ₁ e) (lift-qe-fwd qe φ₂ e)

lift-qe-fwd qe (φ₁ ⇒ φ₂) e
= λ f → lift-qe-fwd qe φ₂ e ∘ f ∘ lift-qe-bwd qe φ₁ e

lift-qe-bwd qe (φ₁ ∪ φ₂) e
= Sum.map (lift-qe-bwd qe φ₁ e) (lift-qe-bwd qe φ₂ e)

lift-qe-bwd qe (φ₁ & φ₂) e
= Product.map (lift-qe-bwd qe φ₁ e) (lift-qe-bwd qe φ₂ e)

lift-qe-bwd qe (φ₁ ⇒ φ₂) e
= λ f → lift-qe-bwd qe φ₂ e ∘ f ∘ lift-qe-fwd qe φ₁ e

In the case of existential quantification, lift-qe recurses on φ, producing an
equivalent, quantifier-free ψ, which QE.step is applied to. The reasoning behind this
is as follows:

∃x.φ ⇐⇒ ∃x.ψ ⇐⇒ step(ψ).

The first equivalence is justified by the correctness of lift-qe on φ, obtained
recursively, and the second by the correctness of the the single-step procedure, given
by QE.equiv. Formalized:

lift-qe-fwd qe (E φ) e =
proj₁ (QE.equiv qe (lift-qe qe φ) (lift-qe-qfree qe φ) e)
∘ Σ-map (λ y → lift-qe-fwd qe φ (y ∷ e))

lift-qe-bwd qe (E φ) e =
Σ-map (λ y → lift-qe-bwd qe φ (y ∷ e))
∘ proj₂ (QE.equiv qe (lift-qe qe φ) (lift-qe-qfree qe φ) e)

where Σ-map proves that if B(x) ⇒ C(x), then ∃x.B(x) ⇒ ∃x.C(x), in this case
used to obtain ∃x.φ ⇐⇒ ∃x.ψ from φ ⇐⇒ ψ:

Σ-map : {A : Set} {B C : A → Set}
((a : A) → B a → C a) → Σ A B → Σ A C

Σ-map f (a , b) = (a , f a b)

The case of universal quantification is cause for mild concern, however: lift-qe
treats the quantifier A as its classical dual ~ E ~.

In a classical metatheory, correctness could be obtained as follows (once again
taking ψ to be the quantifier-free equivalent of φ):

∀x.φ ⇐⇒ ¬∃x.¬φ ⇐⇒ ¬∃x.¬ψ ⇐⇒ ¬step(¬ψ).

16

3. Theory-Independent Work

The first equivalence is justified by quantifier duality, the second by the correctness of
lift-qe on φ (φ ⇐⇒ ψ, obtainable via recursion), and the third by the correctness
of QE.step (QE.equiv). Conceptually, this corresponds to the idea of treating ∀ as
¬∃¬ from the start.

Under a constructive metatheory, though, the first equivalence is not valid due
to the lack of complete quantifier duality: while ∀x.φ ⇒ ¬∃x.¬φ, the converse is
not provable. However, in this case this can be neatly sidestepped by rearranging
things slightly:

∀x.φ ⇐⇒ ∀x.ψ ⇐⇒ ¬∃x.¬ψ ⇐⇒ ¬step(¬ψ).

The difference here is that the quantifier duality is applied to ψ, instead of φ. ψ,
being quantifier-free, has decidable semantics (by qfree-dec), and as a consequence
the necessary quantifier duality can in fact be proven. General forms of the duality
are formalized as follows:

∀-duality-fwd : {A : Set} {B : A → Set} →
((a : A) → B a) → ¬ Σ A (¬_ ∘ B)

∀-duality-fwd all-true (a , is-false) = is-false (all-true a)

∀-duality-bwd : {A : Set} {B : A → Set} → ((a : A) → Dec (B a)) →
¬ Σ A (¬_ ∘ B) → ((a : A) → B a)

∀-duality-bwd decide none-false a with decide a
... | yes a-true = a-true
... | no a-false = ⊥-elim (none-false (a , a-false))

It is noted that the “backward” direction requires that B be decidable.5 The cor-
rectness then proceeds as outlined above:

lift-qe-fwd qe (A φ) e =
contraposition

(proj₂ (QE.equiv qe (~ lift-qe qe φ) (~-qf lift-qe-qfree qe φ) e))
∘ ∀-duality-fwd
∘ Π-map (λ y → lift-qe-fwd qe φ (y ∷ e))

lift-qe-bwd qe (A φ) e =
Π-map (λ y → lift-qe-bwd qe φ (y ∷ e))
∘ ∀-duality-bwd

(λ y → qfree-dec (lift-qe qe φ) (lift-qe-qfree qe φ) (y ∷ e))
∘ contraposition

(proj₁ (QE.equiv qe (~ lift-qe qe φ) (~-qf lift-qe-qfree qe φ) e))

where Π-map is the dependent product/universal quantification counterpart of Σ-map:

Π-map : {A : Set} {B C : A → Set} →
((a : A) → B a → C a) → ((a : A) → B a) → ((a : A) → C a)

Π-map f g a = f a (g a)
5While it could have been formulated to use the weaker requirement that ¬ ¬ B a → B a, there

is no particular benefit to doing so in this case.

17

3. Theory-Independent Work

3.6 Decidability
Given a single-step elimination procedure qe : QE, the decidability of any proposi-
tion φ follows: lift-qe qe φ produces an equivalent, quantifier-free proposition ψ.
As such, ψ is decidable (qfree-dec). Because φ and ψ are semantically equivalent
(lift-qe-fwd, lift-qe-bwd), this immediately results in the decidability of φ.

⟦_⟧? : {n : ℕ} → (φ : Prop n) → (e : Vec Y n) → Dec (⟦ φ ⟧ e)
⟦ φ ⟧? e with qfree-dec (lift-qe qe φ) (lift-qe-qfree qe φ) e
... | yes ⟦ψ⟧ = yes (lift-qe-bwd qe φ e ⟦ψ⟧)
... | no ¬⟦ψ⟧ = no (¬⟦ψ⟧ ∘ lift-qe-fwd qe φ e)

With decidability, a number of interesting “classical” results can be proven. Under
a constructive metatheory, however, these results are considerably stronger than
under a classical one, due to the stricter notion of proof (see Section 2.2).

First, the law of excluded middle is proven:

LEM : {n : ℕ} (φ : Prop n) (e : Vec Y n) → ⟦ φ ∪ (~ φ) ⟧ e
LEM φ e with ⟦ φ ⟧? e
... | yes ⟦φ⟧ = inj₁ ⟦φ⟧
... | no ¬⟦φ⟧ = inj₂ ¬⟦φ⟧

Recall that under a constructive metatheory, this is the same as decidability; a proof
that φ is true, or a proof that φ is false.

Second, for any proposition φ, (∃x.φ) ∨ (∀x.¬φ):

∃-or-∀¬ : {n : ℕ} (φ : Prop (suc n)) (e : Vec Y n) →
⟦ (E φ) ∪ (A (~ φ)) ⟧ e

∃-or-∀¬ φ e with ⟦ E φ ⟧? e
... | yes ⟦Eφ⟧ = inj₁ ⟦Eφ⟧
... | no ¬⟦Eφ⟧ = inj₂ (λ y → λ ⟦φ⟧ → contradiction (y , ⟦φ⟧) ¬⟦Eφ⟧)

This produces either (i) a value (witness) y and a proof that it renders φ true, that
is to say a “solution”, or (ii) a proof that φ is false for any given y.

Third, it can be proven that (∀x.φ) ∨ (∃x.¬φ):

∀-or-∃¬ : {n : ℕ} (φ : Prop (suc n)) (e : Vec Y n) →
⟦ (A φ) ∪ (E (~ φ)) ⟧ e

∀-or-∃¬ φ e with ⟦ E (~ φ) ⟧? e
... | yes ⟦E~φ⟧ = inj₂ ⟦E~φ⟧
... | no ¬⟦E~φ⟧ = inj₁ (λ y →

[id , (λ ¬⟦φ⟧ → contradiction (y , ¬⟦φ⟧) ¬⟦E~φ⟧)]′
(LEM φ (y ∷ e)))

Under a constructive metatheory this produces either (i) a function which proves φ
to be true for any given value y, or (ii) a counter-example; a value y and a proof
that it makes φ false.

18

3. Theory-Independent Work

3.7 Disjunctive Normal Form and Products
Having proven that a single step of existential quantifier elimination can be gener-
alized to full quantifier elimination, our attention turns to the details of the former.

The most basic formulation of a single-step procedure is one that accepts a
quantifier-free proposition φ, and produces a quantifier-free proposition ψ such that
(∃x.φ) ⇐⇒ ψ. There are no restrictions on the form of φ, other than that it is
quantifier-free. In practice, many quantifier elimination procedures require that φ
be transformed into a special form first, as seen in the work of Herbrand [12] and of
Nipkow [16].

As discussed in Section 2.1 one such form is Disjunctive Normal Form (DNF),
where propositions take the shape of a disjunction of conjunctions of literals. Lit-
erals are often referred to here as “factors”, terminology borrowed from Herbrand’s
thesis [12]. For example, if A, B, C and D are atoms, the proposition

A⇒ (B ∧ (C ⇒ D))

can be transformed into the proposition in DNF

(¬A) ∨ (B ∧ ¬C) ∨ (B ∧D).

The transformation makes extensive use of double negation elimination and De
Morgan’s laws, which are available in a constructive theory if quantifier-free propo-
sitions are decidable (which is the case here; see Section 3.4).

Disjunctive normal form is particularly useful for existential quantifier elimination
because the quantifier distributes across disjunction:

∃x.(C1 ∨ C2 ∨ . . . ∨ Cn) ⇐⇒ (∃x.C1) ∨ (∃x.C2) ∨ . . . ∨ (∃x.Cn)

This allows elimination to be carried out separately on each of the conjunctions
(“products”) C1, C2, . . . , Cn, reducing the problem to elimination on conjunctions
of factors. Disjunctive normal form can therefore be viewed in this context as a
means by which single-step elimination on products can be generalized to single-step
elimination on any quantifier-free proposition.

From the standpoint of actually carrying out quantifier elimination (as opposed
to only proving that it is possible), there is a downside: conversion to DNF causes
an (exponential) explosion in the size of the proposition. As conversion to DNF is
performed every time a quantifier is removed, nested quantifiers cause this explosion
to be iterated, resulting in a tower-of-exponents proposition size [16]. While there
are some single-step procedures that mitigate this by using less explosive normal
forms, they are outside the scope of this project (but could well be integrated at a
later time).

Because of the rigid structures of DNF and CNF, propositions in these forms
can be represented as two-layer list structures—in the case of DNF, a list (implicit
disjunction) of lists (implicit conjunction) of factors. While they could also be
represented by a standard Prop along with a proof that it is in the specified form,
this often makes manipulation awkward, so the list-based approach is used instead:

19

3. Theory-Independent Work

-- An atom or its negation
data Factor : ℕ → Set where

+_ : {n : ℕ} → Atom n → Factor n
-_ : {n : ℕ} → Atom n → Factor n

-- Product (conjunction) of factors
Prod : ℕ → Set
Prod n = List (Factor n)

-- Sum (disjunction) of factors
Sum : ℕ → Set
Sum n = List (Factor n)

-- Disjunctive Normal Form
DNF : ℕ → Set
DNF n = List (Prod n)

-- Conjunctive Normal Form
CNF : ℕ → Set
CNF n = List (Sum n)

The downside of this choice is that interpretation functions are necessary to
convert each of the above forms into the proposition (in the Prop sense) that it rep-
resents. The respective interpretation functions are F.i, P.i, S.i, D.i, and C.i, and
are defined as expected. Prod and Sum, and CNF and DNF are given different names—
despite representing the same types—in order to clarify the intended interpretations
of propositions in those forms.

Conversion to DNF/CNF is then defined (mutually) recursively:

dnf : {n : ℕ} (p : Prop n) (qf : QFree p) → DNF n
cnf : {n : ℕ} (p : Prop n) (qf : QFree p) → CNF n

dnf _ ⊥⊥ = []
dnf .(atom a) (atom a) = [[+ a]]
dnf (p₁ ∪ p₂) (qf₁ ∪ qf₂) = dnf p₁ qf₁ ++ dnf p₂ qf₂
dnf (p₁ & p₂) (qf₁ & qf₂) = mix (dnf p₁ qf₁) (dnf p₂ qf₂)
dnf (p₁ ⇒ p₂) (qf₁ ⇒ qf₂) = (dual₂ (cnf p₁ qf₁)) ++ (dnf p₂ qf₂)

cnf _ ⊥⊥ = [[]]
cnf .(atom a) (atom a) = [[+ a]]
cnf (p₁ ∪ p₂) (qf₁ ∪ qf₂) = mix (cnf p₁ qf₁) (cnf p₂ qf₂)
cnf (p₁ & p₂) (qf₁ & qf₂) = cnf p₁ qf₁ ++ cnf p₂ qf₂
cnf (p₁ ⇒ p₂) (qf₁ ⇒ qf₂) = mix (dual₂ (dnf p₁ qf₁)) (cnf p₂ qf₂)

The function dual₂ produces the dual of a DNF/CNF by negating each factor. mix
is similar to a cartesian product, but concatenates each of the resulting pairs of lists.
It is perhaps best shown by example, in this case on two DNF formulae. From a list
perspective:

20

3. Theory-Independent Work

mix [A₁, A₂, A₃] [B₁, B₂, B₃]
= [A₁ ++ B₁, A₁ ++ B₂, ... , A₃ ++ B₂, A₃ ++ B₃]

and in terms of the represented propositions:

mix(A1 ∨ A2 ∨ A3, B1 ∨B2 ∨B3)

= (A1 ∧B1) ∨ (A1 ∧B2) ∨ . . . ∨ (A3 ∧B2) ∨ (A3 ∧B3).

Correctness of dnf and cnf is proven in a straightforward but tedious manner,
noting that classical results such as De Morgan’s laws can be used because the
propositions being converted are quantifier-free (and thus decidable). The signatures
of the resulting lemmas are:

dnf-fwd : {n : ℕ} (p : Prop n) (qf : QFree p) (e : Vec Y n) →
⟦ p ⟧ e → ⟦ D.i (dnf p qf) ⟧ e

dnf-bwd : {n : ℕ} (p : Prop n) (qf : QFree p) (e : Vec Y n) →
⟦ D.i (dnf p qf) ⟧ e → ⟦ p ⟧ e

cnf-fwd : {n : ℕ} (p : Prop n) (qf : QFree p) (e : Vec Y n) →
⟦ p ⟧ e → ⟦ C.i (cnf p qf) ⟧ e

cnf-bwd : {n : ℕ} (p : Prop n) (qf : QFree p) (e : Vec Y n) →
⟦ C.i (cnf p qf) ⟧ e → ⟦ p ⟧ e

Single-step elimination on DNF and on products may now be defined. The types
closely resemble QE, but accept propositions in DNF/product form. equiv is modified
accordingly.

record DNFQE : Set where
field
step : {n : ℕ} → DNF (suc n) → Prop n
qfree : {n : ℕ} (φ : DNF (suc n)) → QFree (step φ)
equiv : {n : ℕ} (φ : DNF (suc n)) (e : Vec Y n) →

⟦ E (D.i φ) ⟧ e ↔ ⟦ step φ ⟧ e

record ProdQE : Set where
field
step : {n : ℕ} → Prod (suc n) → Prop n
qfree : {n : ℕ} (φ : Prod (suc n)) → QFree (step φ)
equiv : {n : ℕ} (φ : Prod (suc n)) (e : Vec Y n) →

⟦ E (P.i φ) ⟧ e ↔ ⟦ step φ ⟧ e

Single-step elimination on products (ProdQE) can be lifted to single-step elimi-
nation on DNF (DNFQE) by applying it to each disjunct of the DNF. Correctness of
this follows from the distribution of ∃ across disjunction. The result is a function
Prod⇒DNF.lift : ProdQE → DNFQE.

Elimination on DNF can be generalized to single-step elimination on any quantifier-
free proposition (QE) by simply first converting the given proposition to DNF:

21

3. Theory-Independent Work

lift-dnf-qe : DNFQE → QE
lift-dnf-qe qe = record

{ step = λ φ qf → DNFQE.step qe (dnf φ qf)
; qfree = λ φ qf → DNFQE.qfree qe (dnf φ qf)
; equiv = λ φ qf e →
(proj₁ (DNFQE.equiv qe (dnf φ qf) e)

∘ Σ-map (λ y → dnf-fwd φ qf (y ∷ e))
, Σ-map (λ y → dnf-bwd φ qf (y ∷ e))

∘ proj₂ (DNFQE.equiv qe (dnf φ qf) e))
}

Combining these stages, a proof is obtained that single-step elimination on prod-
ucts can be generalized to single-step elimination on arbitrary quantifier-free propo-
sitions:

lift-prod-qe : ProdQE → QE
lift-prod-qe = lift-dnf-qe ∘ Prod⇒DNF.lift

22

Chapter 4

The Theory of Successor

4.1 Overview
An example theory to which this framework is applied is the theory of successor
on the natural numbers (SN). Atoms are equalities between terms, which in turn
take one of three forms: a variable, a constant, or a variable plus a constant. All
constants are natural numbers, and variables take on natural numbers as values.
The following is an example of a proposition in SN:

∀x.(x = 0 ∨ ∃y.x = y + 1).

An equivalent formulation for terms—which leads to a more convenient representation—
is to define a term as a natural number plus a “base”, the latter being either the
constant zero or a variable. As it simplifies the proof somewhat, this alternative
formulation is used.

As discussed in Section 3.1, the definitions and behaviors of Prop, ⟦_⟧, and ⟦_⟧ₐ to
a great degree force the use of de Bruijn indices for variables. This is convenient for
the theory-dependent code as well: the variable to eliminate has index zero, which
(as well as removing the necessity of a “variable-to-eliminate” parameter) allows
dependence on the variable—by a term or atom, for example—to be determined by
pattern-matching, rather than more involved comparisons.

Moving forward with de Bruijn indices, we recall that atoms (and propositions)
are indexed by an upper bound n : ℕ on the number of free variables they have
(i.e., their arity). This means that any variables in an atom of type Atom n have de
Bruijn indices in the range 0, 1, . . . , n− 1. This suggests the use of the indexed type
Fin for variables,1 as Fin n represents exactly that set.

The following datatypes are therefore used to represent SN:

data Base (n : ℕ) : Set where
∅ : Base n
var : Fin n → Base n

data Term (n : ℕ) : Set where
S : ℕ → Base n → Term n
1Data.Fin from the Agda standard library.

23

4. The Theory of Successor

data Atom (n : ℕ) : Set where
== : Term n → Term n → Atom n

The constructors for Base (∅ and var) respectively represent the constant zero
and a variable. The constructor used for terms, S, takes after the notation Sk(x), i.e.
iteration of the successor function, and was chosen in lieu of _+_ to avoid ambiguity
with the (metatheory-level) addition function on natural numbers.

Various helper function are defined on Base and Term, in the respective modules
B and T. First, a predicate dep₀ to indicate that a base (or term) contains variable
zero. For bases (B.dep₀), it is defined as:

dep₀ : {n : ℕ} → Base n → Set
dep₀ ∅ = ⊥
dep₀ (var zero) = ⊤
dep₀ (var (suc _)) = ⊥

A trivial decision procedure B.dep₀? is defined as well. The definitions for terms
(T.dep₀, T.dep₀?) simply apply the above to the term’s base.

Second, functions ξ and ξ⁻¹ are defined to (respectively) increment and decrement
the de Bruijn indices of variables. They are first defined on bases (B.ξ and B.ξ⁻¹):

ξ : {n : ℕ} → Base n → Base (suc n)
ξ ∅ = ∅
ξ (var i) = var (suc i)
ξ⁻¹ : {n : ℕ} (b : Base (suc n)) → ¬ dep₀ b → Base n
ξ⁻¹ ∅ _ = ∅
ξ⁻¹ (var zero) x = contradiction tt x
ξ⁻¹ (var (suc i)) _ = var i

It is noted that ξ⁻¹ requires that the base is not var zero. Versions for terms are
also defined; they apply B.ξ or B.ξ⁻¹ to the term’s base.

The semantics for bases and terms—in both cases natural numbers—are then
defined:2

⟦_⟧b : {n : ℕ} → Base n → Vec ℕ n → ℕ
⟦ ∅ ⟧b _ = zero
⟦ var k ⟧b e = lookup k e

⟦_⟧ₜ : {n : ℕ} → Term n → Vec ℕ n → ℕ
⟦ S k b ⟧ₜ e = k + ⟦ b ⟧b e

The semantics of atoms can be defined from the above using the equality relation
≡:

⟦_⟧ₐ : {n : ℕ} → Atom n → Vec ℕ n → Set
⟦ t₁ == t₂ ⟧ₐ e = ⟦ t₁ ⟧ₜ e ≡ ⟦ t₂ ⟧ₜ e

2As of this time, Unicode appears not to have a subscript “b” character, hence the slightly
inconsistent notation.

24

4. The Theory of Successor

It is noted here that this produces an Agda-proposition, rather than a boolean,
as discussed in Section 2.4. The requisite decision procedure is obtained from the
decidability of equality on natural numbers, _≟_:

⟦_⟧ₐ? : {n : ℕ} (a : Atom n) (e : Vec ℕ n) → Dec (⟦ a ⟧ₐ e)
⟦ t₁ == t₂ ⟧ₐ? e = ⟦ t₁ ⟧ₜ e ≟ ⟦ t₂ ⟧ₜ e

The choice of natural numbers as values, Atom, ⟦_⟧ₐ, and ⟦_⟧ₐ? together meet
the requirements for atoms as set out in Section 3.1:

sn-da : DecAtom
sn-da = record

{ Y = ℕ
; Atom = Atom
; ⟦_⟧ₐ = ⟦_⟧ₐ
; ⟦_⟧ₐ? = ⟦_⟧ₐ?
}

Given the lifting procedures developed in the previous sections (specifically lift-prod-qe
: ProdQE → QE, and lift-qe : QE → Prop n → Prop n), full quantifier elimination—
and therefore decidability—of this theory can be obtained if a single-step elimination
procedure on products can be formalized as a ProdQE.

4.2 Elimination on Products
In contrast with previous sections, for much of the elimination procedure (and its
accompanying correctness proofs) the formal representations do not convey the un-
derlying reasoning nearly as effectively as a slightly more abstract mathematical
notation. One of the main causes of this is “constructor bloat”, as exemplified by
the difference between:

- (S a (var zero) == S b (var (suc zero)))

and:
x+ a 6= y + b.

Consequently, the latter notation is used when possible. In this notation, the symbol
x is used to denote var zero, the variable to eliminate.3

To restate the problem, there is a product φ = F1 ∧ F2 ∧ . . . ∧ Fm, possibly con-
taining the variable x, and the goal is to produce a proposition ψ that is equivalent
to ∃x.φ and does not contain x. The approach used is a simplified form of the one
used by Herbrand [12].

There are two main cases, depending on whether or not the product contains a
factor Fsub of the form x+ k = term (or, symmetrically, term = x+ k), where term
does not contain x. A factor of this form is referred to as a “substitutable factor”,
or a “non-trivial equality”.

3x is not to be confused with x as used in code.

25

4. The Theory of Successor

Case 1
If no such factor is present, then x may only occur in three kinds of factors: (i)
trivial equalities (x + a = x + b), (ii) trivial inequalities (x + a 6= x + b), and (iii)
non-trivial inequalities (x + a 6= term or symmetrical, where x /∈ term). As x can
be eliminated from factors of the first two kinds by simplifying them, this leaves
only non-trivial inequalities.

To deal with those, it is noted that each non-trivial inequality is satisfied by all
but perhaps one value for x—the value for which both sides of the inequality are in
fact equal (if such a value exists). For example,

x+ 3 6= y + 4

is satisfied for every value of x other than y + 1. More generally, for a factor
x + a 6= term, this value is term− a if term ≥ a (and does not exist if not). Since
there are a finite number of such factors in the product, this presents a finite set of
values which x must avoid in order to satisfy the factors in which it appears. As there
are an infinite number of natural numbers, this is always possible (a constructive
approach is to let m denote the maximum “forbidden” value,4 and let x take on the
value m+ 1). Therefore there always exists an x that makes the factors containing
it true, so these factors (along with the quantifier) can be dropped, leaving only the
factors that do not depend on x. Symbolically:

ψ = filterx/∈(simplify(φ))

Correctness in the “forward” direction ((∃x.φ) ⇒ ψ) is trivial, as factors are only
removed from the product (or simplified). For the “backward” direction (ψ ⇒ ∃x.φ),
the value of x can be chosen as discussed above to satisfy the inequalities that are
present in φ but not ψ.

Case 2
In the case that such a factor Fsub, of the form x + k = term with x /∈ term (or
symmetrical) does occur in the product, it is first observed that Fsub implies that
term ≥ k. The inequalities term 6= 0, term 6= 1, . . . , term 6= (k − 1) are added to
the product accordingly. Then, Fsub is used as a basis for substitution throughout
the product: when an x is encountered, it is replaced by term and k is added to the
other side of the factor. For example:

x+ a 6= y + b

becomes
term+ a 6= y + (k + b).

It is noted that a is absorbed into the constant portion of term, and k+b is condensed
into one natural number, so the result is still a valid factor. Such substitution having

4The value of m depends on the valuation of the other variables, but the approach works for
any valuation.

26

4. The Theory of Successor

been carried out on every factor, x is no longer present in the product, and the
procedure is complete. Symbolically:

ψ = (term 6= 0) ∧ (term 6= 1) ∧ . . . ∧ (term 6= k − 1) ∧ substitute(x, k, term, φ)

As for correctness, the substitution process is easily proven sound with basic
arithmetic (given that x + k = term, which is a priori the case in the forward
direction). The introduced factors term 6= 0, term 6= 1, . . . , term 6= (k − 1) are
trivially true in the forward direction, and in the backward direction ensure that
a value for x can be chosen that satisfies x + k = term, thereby rendering the
substitution sound for the backward direction as well.

4.3 Formalization
As the code directly implements the higher-level descriptions above, but with greatly
increased verbosity, this section focuses on the involved types and structure, glossing
over some of the less conceptually valuable implementation details.

4.3.1 Procedure
An important first consideration is that since variable zero (x) is being eliminated
and its quantifier removed, the de Bruijn indices of the other variables must be
decremented in order to continue pointing to their respective quantifiers. One way
of handling this is to eliminate variable zero from the product without changing
the indices of other variables, and then to decrement them afterward (the latter
step typically requiring a proof that variable zero is no longer present in order to
guarantee correctness).

Another approach is to “decrement as you go”, where each factor of arity n + 1
is transformed into one with arity n as the elimination is being carried out. This
removes the need to prove that variable zero is gone (instead, it is implicit in the
reduction in arity). Due to the relative simplicity of the elimination procedure, this
method is used.

The primary cases of the elimination procedure detailed in the previous subsection
depend on whether or not a “substitutable factor”—a factor of the form x+k = term
(or symmetrical, with x /∈ term)—is in the product. Therefore, a predicate for such
factors is introduced:

SubFactor : {n : ℕ} → Factor n → Set
SubFactor (+ (t₁ == t₂))

= (T.dep₀ t₁ × ¬ T.dep₀ t₂) ⊎ ((¬ T.dep₀ t₁) × T.dep₀ t₂)
SubFactor (- _) = ⊥

SubFactor therefore holds for any equality where x occurs on just one side. It is
shown that SubFactor is decidable via SubFactor? (omitted). The relevant details
of a factor for which SubFactor holds, namely k and term, can be stored in a record
Sub:

27

4. The Theory of Successor

record Sub (n : ℕ) : Set where
constructor Subst
field
k : ℕ
term : Term n

A function getSub is used to extract a Sub from a factor for which SubFactor holds,
and a function iSub turns a Sub into the corresponding factor (x+ k = term). iSub
and getSub are shown to be inverses of each other (up to semantic equivalence).

To assist in searching for a SubFactor in a product, a datatype for locating an
item in a list is created:

data _∈_ {A : Set} (a : A) : List A → Set where
here : (as : List A) → a ∈ (a ∷ as)
there : {as : List A} (b : A) → a ∈ as → a ∈ (b ∷ as)

It is used to define a function first which, given a list and a decidable predicate P ,
either finds the first item in the list for which P holds, or produces a proof that P
does not hold for any item in the list:

first : {A : Set} (P : A → Set) → ((a : A) → Dec (P a)) →
(as : List A) →
(Σ A (λ a → (P a × a ∈ as))) ⊎ (allP (¬_ ∘ P) as)

This is used in conjunction with SubFactor? to determine whether or not the product
contains a substitutable factor, and therefore which of the two cases described in
the previous subsection applies.

Case 1

If no such factor exists, a function reduce-factor-nosubs is mapped to every factor
in the product. The function has two effects: trivial (in)equalities involving variable
zero (such as x+a = x+b) are reduced by dropping the variable from both sides, and
non-trivial inequalities involving variable zero (such as x+ a 6= y+ b) are effectively
dropped from the product entirely by being replaced by a trivially true factor:5

reduce-factor-nosubs : {n : ℕ}
(f : Factor (suc n)) → ¬ SubFactor f → Factor n

reduce-factor-nosubs (+ (S a x == S b y)) ¬sub
with B.dep₀? x | B.dep₀? y

... | yes x0 | yes y0 = + (S a ∅ == S b ∅)

... | yes x0 | no ¬y0 = contradiction (inj₁ (x0 , ¬y0)) ¬sub

... | no ¬x0 | yes y0 = contradiction (inj₂ (¬x0 , y0)) ¬sub

... | no ¬x0 | no ¬y0 = + (S a (B.ξ⁻¹ x ¬x0) == S b (B.ξ⁻¹ y ¬y0))
reduce-factor-nosubs (- (S a x == S b y)) _

with B.dep₀? x | B.dep₀? y

5While this is convenient for proofs, it is very inefficient. Such considerations are discussed in
Section 5.1.

28

4. The Theory of Successor

... | yes x0 | yes y0 = - (S a ∅ == S b ∅)

... | yes x0 | no ¬y0 = + trueₐ

... | no ¬x0 | yes y0 = + trueₐ

... | no ¬x0 | no ¬y0 = - (S a (B.ξ⁻¹ x ¬x0) == S b (B.ξ⁻¹ y ¬y0))

The cases are divided based on whether the factor represents an equality or an
inequality (+ ... or - ...), and whether or not the left and/or right term contain
variable zero. Trivial (in)equalities are therefore the yes/yes cases (variable zero is
on both sides), non-trivial (in)equalities the yes/no and no/yes cases (variable zero
occurs on just one side), and (in)equalities without variable zero the no/no cases.
Non-trivial equality is not possible, as the factor would then constitute a SubFactor,
which we know not to be present. trueₐ, substituted in the non-trivial inequality
cases, is the trivially true atom 0 = 0.

Case 2

If, on the other hand, such a factor does exist, then substitution is carried out on
each factor:

reduce-atom-sub : {n : ℕ} → Sub n → Atom (suc n) → Atom n
reduce-atom-sub (Subst k term) (S a x == S b y)

with B.dep₀? x | B.dep₀? y
... | yes x0 | yes y0 = S a ∅ == S b ∅
... | yes x0 | no ¬y0 = T.add a term == S (k + b) (B.ξ⁻¹ y ¬y0)
... | no ¬x0 | yes y0 = S (k + a) (B.ξ⁻¹ x ¬x0) == T.add b term
... | no ¬x0 | no ¬y0 = S a (B.ξ⁻¹ x ¬x0) == S b (B.ξ⁻¹ y ¬y0)

reduce-factor-sub : {n : ℕ} → Sub n → Factor (suc n) → Factor n
reduce-factor-sub sub (+ a) = + (reduce-atom-sub sub a)
reduce-factor-sub sub (- a) = - (reduce-atom-sub sub a)

Once again, trivial terms involving variable zero are simplified, and de Bruijn indices
of other variables are decremented. When variable zero occurs on just one side of
the (in)equality, substitution is performed using k and term.

The inequalities term 6= 0, term 6= 1, . . . , term 6= (k − 1) are generated by the
following functions:

ineqs′ : {n : ℕ} → ℕ → Term n → List (Factor n)
ineqs′ zero _ = []
ineqs′ (suc m) term = (- (term == S m ∅)) ∷ (ineqs′ m term)

ineqs : {n : ℕ} → Sub n → List (Factor n)
ineqs (Subst k term) = ineqs′ k term

They are prepended to the results of substitution:

elim-with-sub : {n : ℕ} → Sub n → List (Factor (suc n)) → List (Factor n)
elim-with-sub sub fs = (ineqs sub) ++ (map (reduce-factor-sub sub) fs)

29

4. The Theory of Successor

Assembling the two cases, the single-step elimination procedure is obtained:6

elim-prod : {n : ℕ} → List (Factor (suc n)) → List (Factor n)
elim-prod fs with first SubFactor SubFactor? fs
elim-prod fs | inj₁ (f , fsub , _) = elim-with-sub (getSub f fsub) fs
elim-prod fs | inj₂ none-sub = mapWithP reduce-factor-nosubs fs none-sub

4.3.2 Correctness
The correctness proof is broken into the two directions, forward (∃x.φ ⇒ ψ) and
backward (ψ ⇒ ∃x.φ):

elim-prod-fwd : {n : ℕ} (φ : Prod (suc n))
→ (e : Vec ℕ n)
→ ⟦ E (P.i φ) ⟧ e
→ ⟦ P.i (elim-prod φ) ⟧ e

elim-prod-bwd : {n : ℕ} (φ : Prod (suc n))
→ (e : Vec ℕ n)
→ ⟦ P.i (elim-prod φ) ⟧ e
→ ⟦ E (P.i φ) ⟧ e

Each direction is broken into the same two cases as the elimination procedure.

Forward, case 1

As the only substantial effect of the procedure is the replacement of certain factors
by trueₐ, correctness in this direction is trivial.

Backward, case 1

In the backward direction, it must be proven that a value v for variable zero can
be chosen so that the (non-trivial) inequalities in which it occurs in φ are satisfied
(recall that these were dropped by the elimination procedure; otherwise φ and ψ
are the same7). This is accomplished by determining the set of values which fail to
satisfy the inequalities, and then choosing a natural number not in that set.

For a single factor, the list of “forbidden” values is computed by the forbidden
function:

forbidden : {n : ℕ} → Vec ℕ n → Factor (suc n) → List ℕ

For factors which (when simplified) do not depend on the value of variable zero,
the empty list is returned. For non-trivial inequalities, the forbidden value (if any)
is computed as described in Section 4.2. Non-trivial equalities are, as discussed
previously, impossible; they would constitute SubFactors, which are known not to
be present.

6Technically, as the result is a product it must be turned back into a Prop using P.i.
7Trivial simplification nonwithstanding.

30

4. The Theory of Successor

It is proven (forbidden-lemma) that a non-trivial inequality Q, containing vari-
able zero, is false (equal) only when the value for variable zero is in forbidden(Q).
Contraposition proves that Q is true (not equal) if the value is not in forbidden(Q).

These values can be aggregated (concatenated) for each factor in the product,
resulting in a list of all values which variable zero cannot be:

forbiddens : {n : ℕ} → Vec ℕ n → List (Factor (suc n)) → List ℕ

A function fresh provides a way to select a number not in a list:

fresh : List ℕ → ℕ
fresh-∉ : (xs : List ℕ) → ¬ (fresh xs) ∈ xs

Choosing the value v = fresh (forbiddens φ) for variable zero is then proven
to satisfy each of the inequalities: fresh-∉ proves that v ∉ forbiddens φ, which
implies that v ∉ forbidden f for each factor f, which means each f is satisfied by
virtue of forbidden-lemma.

Forward, case 2

The forward direction is straightforward: the presence of the equality x+ k = term
justifies the substitutions performed on each term:

reduce-factor-sub-fwd : {n : ℕ} → (sub : Sub n) (f : Factor (suc n))
→ (v : ℕ) (e : Vec ℕ n)
→ ⟦ iSub sub ⟧ₐ (v ∷ e)
→ ⟦ F.i f ⟧ (v ∷ e)
→ ⟦ F.i (reduce-factor-sub sub f) ⟧ e

It also justifies the introduction of the inequalities term 6= 0, term 6= 1, . . . ,
term 6= (k − 1):

ineqs-fwd : {n : ℕ} (sub : Sub n) (v : ℕ) (e : Vec ℕ n)
→ ⟦ iSub sub ⟧ₐ (v ∷ e)
→ ⟦ P.i (ineqs sub) ⟧ e

Backward, case 2

First it is proven that the added inequalities term 6= 0, term 6= 1, . . . , term 6= (k−1)
imply that k ≤ term:

ineqs′-bwd : {n : ℕ} (k : ℕ) (term : Term n) (e : Vec ℕ n)
→ ⟦ P.i (ineqs′ k term) ⟧ e
→ k ≤ ⟦ term ⟧ₜ e

Further manipulation proves that a value v exists such that v + k = term:8

ineqs-bwd : {n : ℕ} (sub : Sub n) (e : Vec ℕ n)
→ ⟦ P.i (ineqs sub) ⟧ e
→ Σ ℕ (λ v → ⟦ iSub sub ⟧ₐ (v ∷ e))
8Recall that sub : Sub encapsulates k and term, and iSub sub is the factor x+ k = term.

31

4. The Theory of Successor

This value v is chosen for variable zero, and the proof that v + k = term is used to
justify the (reverse) substitutions on each of the other factors:

reduce-factor-sub-bwd : {n : ℕ} → (sub : Sub n) (f : Factor (suc n))
→ (v : ℕ) (e : Vec ℕ n)
→ ⟦ iSub sub ⟧ₐ (v ∷ e)
→ ⟦ F.i (reduce-factor-sub sub f) ⟧ e
→ ⟦ F.i f ⟧ (v ∷ e)

The elimination procedure, a proof that the result is quantifier-free,9 and its
proofs of equivalence constitute a ProdQE:

sn-prod-qe : ProdQE
sn-prod-qe = record

{ step = P.i ∘ elim-prod
; qfree = P.qf ∘ elim-prod
; equiv = λ φ e → (elim-prod-fwd φ e , elim-prod-bwd φ e)
}

This can then be lifted to a general single-step elimination procedure:

sn-qe : QE
sn-qe = lift-prod-qe sn-prod-qe

And finally, the “box of results” from Section 3.6 that follow can be opened:

open WithQE sn-qe public

4.4 Demonstration
The resulting decision procedure and consequences are demonstrated on several
small propositions in order to give a sense of the benefits offered by a constructive
approach. First, a simple “system of equations”:

test₀ : Prop zero
test₀ = E E (-- ∃x.∃y.

(atom (S 3 (var (fsuc fzero)) == S 1 (var fzero))) -- 3+x=1+y
& (atom (S 8 ∅ == S 4 (var fzero)))) -- 8=4+y

Normalizing ⟦ test₀ ⟧? [] (i.e., running the decision procedure) yields:10

yes (2 , 4 , refl , refl)

The 2 and 4 are witnesses to the existential quantifiers, which is to say values for x
and y, and the pair of refl constitute a proof of the inner conjunction (under the
environment [4,2]).

Next, a proposition with a universal quantifier is decided:
9An immediate consequence of the fact that the result is a product of factors.

10Technically, each refl appeared as .Agda.Builtin.Equality._≡_.refl, but as such fluff is of
little value it will be ignored in this section.

32

4. The Theory of Successor

-- ∀x.(x=0 ∨ ∃y.x=y+1)
test₁ : Prop zero
test₁ = A ((atom (S 0 (var fzero) == S 0 ∅))

∪ (E (atom (S 0 (var (fsuc fzero)) == S 1 (var fzero)))))

⟦ test₁ ⟧? [] normalizes to yes followed by a (424-line) function that proves the
inner proposition for any given x.

Finally, a proposition with a free variable is examined:

-- x=0 ∨ ∃y.x=y+2
test₂ : Prop 1
test₂ = ((atom (S 0 (var fzero) == S 0 ∅))

∪ (E (atom (S 0 (var (fsuc fzero)) == S 2 (var fzero)))))

The function ∀-or-∃¬ (Section 3.6) is run on test₂. As test₂ is not true for all
values, a counterexample is produced instead: inj₂ (1 , ...), where ... is a
trivial proof that 1 6= 0 and a lengthy proof that no y exists such that 1 = y + 2.

33

4. The Theory of Successor

34

Chapter 5

Conclusion

5.1 Remarks and Improvements

While the majority of the code for the theory-independent portion (except perhaps
the DNF conversion) appears to be concise and effective, the application to SN has a
number of drawbacks. In the elimination procedure, several steps were merged into
a single pass: simplification of trivial factors, elimination of the quantified variable,
and decrementing other variables’ de Bruijn indices. This makes the procedure and
accompanying correctness proof difficult to read, and masks the fact that several
parts could likely be factored out into a theory-independent module which other
theories could make use of. Adjustment of the interface between theory-independent
and theory-specific portions, in line with Nipkow’s implementation [16], could result
in the elimination procedure and proof being cleaner and also more efficient than at
present.

On the topic of efficiency, the handling of trivially true or false factors is sub-
optimal: those that are trivially true can (and should) be removed from products,
as they have no effect other than fueling future DNF explosion, and those that are
false imply that the product as a whole is false and therefore equivalent to ⊥ (the
recognition of which would greatly speed up the procedure, as well as contributing
less to aforementioned DNF explosion). While the decision procedure for SN has
not been tested on deeply nested quantifiers, it is expected to be extremely slow (to
the point of intractability) for the reasons stated above.

On a higher level, a significant improvement would be the application of the
framework to a more expressive theory, such as Presburger Arithmetic. While more
challenging to implement and verify, the constructive decidability of this theory has
more practical uses than that of SN. Ideally, the formalization by Allais [3] could be
adapted to use our framework.

Finally, as decidability is shown for the semantics of Prop, which are Agda-
propositions, there is a good opportunity for reflection, as in Nipkow’s work [16].
This would effectively give the ability to directly decide certain Agda-propositions
from within the language. This possibility benefits further from the advantages of
a constructive metatheory as outlined in Section 3.6.

35

5. Conclusion

5.2 Conclusion
In this thesis, quantifier elimination under a constructive metatheory is formalized
in a theory-independent manner. Specifically, it is proven that for a given theory
T in intuitionistic predicate logic, a procedure to remove a single existential quan-
tifier (necessarily theory-specific) can be transformed into a procedure to perform
full quantifier elimination on arbitrary propositions in T . This yields a decision
procedure for the semantics [[·]] of T (a fragment of Agda propositions), from which
several powerful results follow:

• The law of excluded middle holds (constructively) for the semantics of T ,
implying equivalence to a classical formulation.

• For a proposition φ of suitable arity, either a witness to ∃x.[[φ]] can be produced,
or a proof to the contrary.

• For a proposition φ of suitable arity, either a proof that [[φ]] holds for all x can
be produced, or a counterexample.

The above is applied to the theory of successor on the natural numbers, resulting
a verified decision procedure, and the properties described above.

36

Bibliography

[1] The Agda Wiki. (2017, September 11). The Agda Wiki [Online]. Available:
http://wiki.portal.chalmers.se/agda/pmwiki.php

[2] The Agda Wiki. (2015, December 14). The Agda Wiki - Tutorials [Online].
Available:
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Othertutorials

[3] G. Allais, private communication, June 2017.

[4] G. Allais. (2012, July 11). Deciding Presburger arithmetic in agda [Online].
Available: https://github.com/gallais/agda-presburger

[5] D. Bridges and E. Palmgren, “Constructive Mathematics”, in The Stanford
Encyclopedia of Philosophy (Winter 2016 Edition), E.N. Zalta, Ed [Online].
Available:
https://plato.stanford.edu/archives/win2016/entries/mathematics-
constructive/

[6] A. Church, “An Unsolvable Problem of Elementary Number Theory”, in Amer-
ican Journal of Mathematics, vol. 58, no.1, Apr., pp. 345-363, 1936.

[7] C. Cohen and A. Mahboubi, “Formal Proofs in Real Algebraic Geometry: from
Ordered Fields to Quantifier Elimination”, in Logical Methods in Computer
Science, vol. 8, pp.1–40, 2012. Available: https://arxiv.org/abs/1201.3731

[8] Coq developers. The Coq Proof Assistant [Online]. Available:
https://coq.inria.fr

[9] P. Crégut. Omega: a solver of quantifier-free problems in Presburger Arithmetic
[Online]. Available: https://coq.inria.fr/refman/omega.html

[10] J. Doner and W. Hodges, “Alfred Tarski and Decidable Theories”, in The Jour-
nal of Symbolic Logic, vol. 53, no. 1, Mar., pp. 20–35, 1988.

[11] K. Gödel, “Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme, I”, in Monatshefte für Mathematik und Physik, vol. 38,
pp. 173–198, 1931.

[12] J. Herbrand and W.D. Goldfarb, Logical Writings. Dordrecht: D. Reidel Pub-
lishing Company, 1971.

37

Bibliography

[13] J. R. Hindley. (2015). The root-2 proof as an example of non-constructivity [On-
line]. Available: http://www.users.waitrose.com/ hindley/Root2Proof2015.pdf

[14] Isabelle developers. (2017, October 27). Isabelle [Online]. Available:
http://isabelle.in.tum.de

[15] A. Mahboubi and C. Cohen, “A Formal Quantifier Elimination for Algebraically
Closed Fields”, in Intelligent Computer Mathematics, Calculemus 2010, Paris,
France, pp. 189–203, 2010.

[16] T. Nipkow. “Reflecting Quantifier Elimination for Linear Arithmetic”, in For-
mal Logical Methods for System Security and Correctness, O. Grumberg, T.
Nipkow, C. Pfaller. IOS Press, 2008, pp.245–266.

[17] B. Nordström, K. Petersson, J.M. Smith, Programming in Martin-Löf’s Type
Theory. Oxford University Press, 1990, pp.9–11.

[18] R. M. Robinson, “An Essentially Undecidable Axiom System”, in Proceedings
of the International Congress of Mathematics, vol. 1, pp. 729–730, 1950.

[19] K. Simmons, “Tarski’s Logic”, in Logic from Russell to Church, D. Gabbay, J.
Woods, Eds. Elsevier, 2009, pp.511–616.

[20] R. Stansifer, “Presburger’s Article on Integer Arithmetic: Remarks and Trans-
lation”, Cornell University, 1984.

[21] A. Tarski, “A Decision Method for Elementary Algebra and Geometry”, RAND
Corporation, 1948.

[22] A. Tarski, “The semantic conception of truth”, in Philosophy and Phenomeno-
logical Research, vol. 4, pp. 341–376, 1944.

[23] A.S. Troelstra, “History of Constructivism in the Twentieth Century”, Univ. of
Amsterdam, ITLI Prepublication Series ML-91-05, 1991.

[24] A. M. Turing, “On Computable Numbers, With An Application To The
Entscheidungsproblem”, in Proceedings of the London Mathematical Society,
ser. 2, vol. 42, pp. 230–265, 1937.

[25] P. van der Walt, “Reflection in Agda”, M.Sc. thesis, Universiteit Utrecht,
Utrech, Netherlands, 2012.

38

	Introduction
	Predicate Logic and Quantifier Elimination
	Formalization
	History of Quantifier Elimination
	Relevant Work
	Organization

	Theoretical Background
	Quantifier Elimination
	Constructive Logic
	Propositions as Types
	Theory, Metatheory, and Semantics
	Reflection

	De Bruijn Indices

	Theory-Independent Work
	Atoms
	Representation of Propositions
	Semantics of Propositions
	Quantifier-Free Propositions
	Quantifier Elimination
	Correctness

	Decidability
	Disjunctive Normal Form and Products

	The Theory of Successor
	Overview
	Elimination on Products
	Formalization
	Procedure
	Correctness

	Demonstration

	Conclusion
	Remarks and Improvements
	Conclusion

	Bibliography

