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Genetic studies of the regulation of bone
parameters and serum testosterone

ABSTRACT

Osteoporosis is a common disease characterized by low bone mass and
microarchitectural deterioration of bone tissue leading to increased risk of
fracture and represents a huge economic burden on health care systems. The
main aim of this thesis was therefore to try to identify new genetic variants
associated with different bone parameters that could serve as potential
pharmaceutical targets in the future and to evaluate the clinical utility of these
variants for fracture prediction.

We used several well-characterized cohorts and performed the largest
genome-wide association studies to that date on DXA-derived areal bone
mineral density (aBMD), which is used clinically, and trabecular and cortical
volumetric BMD, measured by the more specific peripheral quantitative
computed tomography. We identified many genetic variants associated with
bone parameters and the clinical endpoint fractures. The genetic variants
associated with aBMD predicted incident fractures, but the magnitude of
these associations was substantially reduced after adjustment for aBMD.
Thus, the clinical utility of these genetic variants for fracture prediction is
limited when aBMD is known.

Low serum testosterone (T) levels have been linked to an increased risk of
osteoporosis in men. Observational studies have also demonstrated that
obesity is strongly associated with low serum T, but the direction and
causality of this relationship is unclear. The second objective of this thesis
was therefore to determine whether low T causes obesity, or vice versa.
Hence, using a bi-directional Mendelian randomization analysis, we found
evidence of a causal effect of body mass index (BMI) on serum T, whereas
no evidence was found supporting a causal effect of serum T on BMI in men.
The studies herein have identified a number of novel loci associated with
different bone parameters and, hence, fracture risk. These findings may result
in the development of novel pharmaceutical therapies for osteoporosis and
the improvement of prediction models with new biomarkers to identify
patients at risk. In addition, we demonstrated that there is a causal effect of
BMI on serum T in men, suggesting that population-level interventions to
reduce BMI are expected to increase serum T in men.

Keywords: osteoporosis, bone mineral density, genetics, genome-wide
association study, testosterone, body mass index, Mendelian randomization






SAMMANFATTNING PA SVENSKA

Benskorhet (osteoporos) dr en folksjukdom som kostar samhéllet enorma
summor arligen. Den kénnetecknas av mikrostrukturella forandringar i benet
samt av att benmassan minskar, vilket tillsammans okar risken for fraktur.
Det huvudsakliga syftet med den hér avhandlingen har dérfor varit att
identifiera nya genetiska varianter som skulle kunna utgéra méal for framtida
lakemedel mot benskdrhet, samt att utvdrdera den kliniska nyttan av dessa for
frakturprediktion.

I forsta delarbetet anvinde vi ett flertal véldefinierade kohorter och
genomforde den da storsta genomtéckande associationsstudien (eng. GWANS)
pa bentdthet mitt med tvadimensionell rontgenteknik (s.k. DXA). 56
genetiska omraden associerade med bentéthet i hoften och/eller lindryggen
identifierades, varav 14 dven var associerade med fraktur. Dessa fynd kan i
framtiden bidra till upptidckten av nya ldkemedel mot benskorhet och till en
forbattring av de modeller som anvénds idag for att identifiera patienter med
hog risk for en framtida fraktur.

I det andra delarbetet utviarderades den kliniska nyttan av de genetiska
varianter som identifierats i delarbete I for tvadimensionell bentéthet, forlust
av tvadimensionell bentédthet 6ver tid, samt for frakturer i en population
bestdende av dldre médn och kvinnor. For detta berdknades tva genetiska
risksummor for varje individ. En for de genetiska varianter som var
associerade med bentdthet och en for de som var associerade med frakturer.
Bada risksummor var associerade med bentdthet, men inte med
bentdthetsforlust vilket talar for att olika genetiska mekanismer styr vér
maximala bentdthet kontra hur snabbt vi tappar i bentdthet med stigande
alder. Bada genetiska risksummor var associerade med fraktur, men denna
association forsvagades markant ndr modellerna justerats for uppmétt
bentdthet. Den kliniska nyttan av dessa genetiska varianter for att prediktera
frakturer dr déarfor begransad nér bentitheten &r kénd.

Dé tvadimensionell bentdthet inte kan skilja pd kortikalt (kompakt) och
trabekuldrt (spongidst) ben utforde vi i delarbete III en genomtdckande
associationsstudie pa tredimensionell bentdthet métt med datortomografi som
kan separera kortikalt och trabekulért ben. Fyra kohorter med kaukasiska mén
och kvinnor i olika aldrar ingick i studien och vi identifierade olika genetiska
omraden for kortikalt ben jamfort med trabekuldrt ben.



Laga nivder av det manliga konshormonet testosteron har visats vara
associerat med benskorhet och frakturer hos mén. Observationsstudier har
ocksa visat att dvervikt dr associerat med lagt testosteron hos mén, men det &r
oklart om det ror sig om ett orsakssamband och iséfall i vilken riktning det
sker. Det andra syftet med den hdr avhandlingen var ddrfor att avgdra om
overvikt orsakar laga testosteronnivaer eller tvirtom. I delarbete IV anvénde
vi déarfor mendelsk randomisering pa fem kohorter av kaukasiska mén. Vi
fann att en standarddeviation ligre BMI hojde testosteronet med 13-15%,
men fann inga bevis for att laga testosteronnivaer gav 6vervikt.

Sammantaget sa har studierna i denna avhandling identifierat ett antal
omraden i det ménskliga DNA:t som dr associerade med olika benparametrar
och ddrmed frakturrisk. Dessa fynd kan resultera i nya
lakemedelsbehandlingar for benskorhet och en forbéttring av modellerna som
anvénds for att identifiera patienter med hog risk. Utover detta har vi visat att
overvikt orsakar en sdnkning av det manliga kdnshormonet testosteron hos
min. Detta innebdr att interventioner som minskar Overvikt pé
populationsniva forvintas hoja testosteronnivaerna hos mén.
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1 INTRODUCTION

Osteoporosis is a common disease characterized by low bone mass and
microarchitectural deterioration of bone tissue leading to increased risk of
fracture. The risk of an osteoporotic fracture is believed to be as high as
46.4% for women and 22.4% for men in Scandinavia after the age of 50 (1).
It has been estimated that the disease accounts for more than one million new
fracture cases each year, representing a huge economic burden on health care
systems, with costs of several billions of dollars each year in the United
States alone and expected to rise considerably by the year 2025 (2).

Today s available osteoporosis treatments have led to a substantial
reduction in vertebral fracture risk in patients with osteoporosis. However,
non-vertebral fracture risk has only been marginally improved (3). Hence,
there is a dire need for new pharmaceutical targets for non-vertebral fractures
as well as improved prediction models that identify those patients who would
benefit most from osteoporotic treatment.

Sex hormones have been linked to a number of diseases, including
osteoporosis (4-7) and an increased risk of falls (8). Loss of estrogens or
androgens increases the rate of bone remodeling by removing restraining
effects on osteoblastogenesis and osteoclastogenesis, and also causes a focal
imbalance between bone resorption and bone formation (9). In fact, low
serum estradiol (E2) and low serum testosterone (T) predict clinical vertebral
fractures, nonvertebral osteoporosis fractures, and hip fractures in older men
(8, 10).

Low T has also been linked to high body mass index (BMI) and high risk
of cardiovascular disease (CVD) (11), but causality has not yet been
established. This constitutes an important clinical challenge, since we are
either aiming to reduce weight to increase T, or to increase T, via T treatment,
to reduce BMI and risk of CVD. Potentially dangerous side effects also need
to be addressed. For instance, some studies have indicated potentially

dangerous side effects of T treatment on the prostate as well as an increased
risk of CVD (12).
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1.1 BONESTRUCTURE

Bones can be categorized as flat (skull, scapulae, sternum etc) or long,
tubular bones (vertebras, appendicular bones etc). Regardless of their shape
and localization, virtually all bones consist of two types of bone tissue: the
compact outer surface called cortical bone and the spongy inside called
trabecular bone (Figure 1). Cortical bone is stiffer, harder and due to its
compact structure, heavier, than trabecular bone. It is composed of lamellae
concentrically arranged around a centrally situated canal. This is referred to
as an osteon, or a Haversian system. Between the lamellae are cavities, where
bone cells called osteocytes are embedded (13). Each cavity is connected to
others through small channels called canaliculi. This structure makes up a
porous appearance. The volume fraction of these pores, referred to as cortical
porosity, correlates well with the natural decrease in bone density in adults
(14). Microscopically, trabecular bone consists of plates (trabeculae) and bars
of bone adjacent to small, irregular cavities that contain bone marrow. The
trabeculae are organized in a way to provide maximum strength similar to
braces that are used to support a building and are aligned towards the
mechanical load distribution that the bone experiences (15). Due to different
requirements, bones differ in their distribution of cortical and trabecular
bones.

Bone biology

Bones undergo constant reconstruction, where resorption (performed by
osteoclast cells) and formation (performed by osteoblast cells) occur at
different sites of the bone simultaneously. During the first two decades of our
lives, known as the modeling phase, formation exceeds resorption, resulting
in a net increase in bone mass. During this time there are also major changes
to the gross morphology of the bone, including longitudinal growth of the
long bones by bone formation at the endplates of the bones (epiphyseal
growth plates) as well as radial growth due to bone formation on the outer
surface (periosteal apposition) of the cortex and resorption on the inner
surface (endosteal resorption). Following the modeling phase, is the
remodeling phase, where there is a balance between bone formation and bone
resorption. Remodeling enables the bone to respond and adapt to load-
induced strain, replace old or damaged bone tissue and to maintain calcium
homeostasis (16). While it occurs in both cortical and trabecular bone, there
is evidence that suggests that cortical and trabecular bone are affected
differently throughout life, indicating that the genetic control of cortical and
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trabecular bone might differ (17). For example, in mice it has been
demonstrated that the WNT16 gene has a large effect on cortical bone, via
increased cortical thickness and decreased cortical porosity, and the risk of
non-vertebral fractures, while no substantial effect has been seen on
trabecular bone volume fraction (18).

Cortical
(hard) bone Trabecular

Periosteum (spongy) bone

(membrane covering bone)

| Avrticular
cartilage

Blood Marrow

vessels Epiphyseal plate

Medullary cavity

Figure 1. Bone structure. Source: Pbroks13, via Wikimedia Commons, CC BY 3.0
License

1.2 BONE ASSESSMENT

Dual-energy X-ray Absorptiometry (DXA) is the golden standard for
assessing areal bone mineral density (aBMD), i.e. the amount of bone
mineral in bone tissue. It uses two low radiation X-ray beams with different
energy levels. Using the fact that absorbed energy is a function of density, it
is possible to differentiate between different tissues. The resulting image
produced by the 2-dimensional DXA, therefore provides aBMD as grams per
square centimeter, as well as bone mineral content and bone area. Although
the DXA method is a robust method that provides reproducible results that
strongly correlate to fracture risk, it cannot provide information on the
geometrical structure and true volumetric bone mineral density (vBMD) and,
thus, cannot distinguish between cortical and trabecular bone. With the three
dimensional technique quantitative computed tomography (QCT) it is
possible to study macro-structural properties like cortical geometry and
vBMD (mg per cm’) of both the cortical and trabecular compartment (19).
Due to factors such as price, inconvenience for the patient and radiation dose,
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peripheral QCT (pQCT) is often only used in a research setting for
assessment of appendicular bones, e.g. arm or leg. A high resolution pQCT
(HR-pQCT) or high resolution magnetic resonance imaging (HR-MRI) offers
higher resolution (50-100 um) enabling quantification of trabecular
microstructure and an estimate of cortical porosity in humans. Whereas DXA
can be found in a clinical setting, pQCT, HR-pQCT and HR-MRI are
presently solely used in research (20-22).

1.3 DEFINITION OF OSTEOPOROSIS

Osteoporosis is defined as having an areal BMD (aBMD) at the hip or
lumbar spine at least 2.5 SD values below the population average in young
healthy individuals as measured by DXA (23). Although osteoporosis
increases the risk of fractures in general, typical osteoporotic sites include the
hip, wrist, humerus and vertebra (24). Of all fractures, hip and vertebral
fractures have the greatest negative impact on quality of life and mortality
(25, 26). The risk for hip fractures increases exponentially with age, which is
believed to be due to both a decrease in aBMD at the proximal femur,
decreased bone quality, as well as an increased risk of falls (27)

Although aBMD explains about 60-70% of the variance in bone strength
(28, 29), only about half of the women with a hip fracture had total hip
aBMD values consistent with osteoporosis (30). Part of the explanation might
be that DXA cannot distinguish between cortical and trabecular bone.
Another explanation might be found in differences in bone size as we've
demonstrated that although individuals with a constitutive predisposition to
higher rates of bone resorption have a lower areal and/or cortical BMD, any
adverse effect on bone strength and fracture risk may be at least partially
compensated for by greater bone size (31).

1.4 HERITABILITY OF OSTEOPOROSIS

There is compelling evidence that our genetic heritage is a major
contributor to overall risk of osteoporosis and fractures. In fact, twin and
family studies have provided evidence of substantial (50-85 %) heritability
for aBMD and, thus, risk of osteoporosis (32, 33). Twin and family studies
have also demonstrated a clear heritability for aBMD loss (40-50%) (34-36),
=50% for hip and forearm fractures and lower (=24%) for vertebral fractures
(37-39).
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1.5 FRACTURE PREDICTION

In order to identify patients with the highest risk of osteoporotic
fractures, tools, such as Fracture Risk Assessment Tool (FRAX,
https://www.sheffield.ac.uk/FRAXY/), have been developed to help clinicians
determine when treatment is indicated. These tools integrate the risks
associated with clinical risk factors with or without BMD (40-42) and
currently include age, sex, weight, height, previous fractures, parent fractured
hip, smoking status, use of glucocorticoids, rheumatoid arthritis, secondary
osteoporosis and alcohol intake above 3 units per day with or without
addition of femoral neck BMD. Identifying genetic determinants of
osteoporosis and fracture risk might improve prediction models such as
FRAX, and/or, serve as a basis for new targets for pharmaceutical
intervention.

1.6 TESTOSTERONE, BONE MASS AND FRACTURE RISK

T is a steroid synthesized from cholesterol in several steps. It can be
transformed into the more potent androgen dihydrotestosterone by the Sa-
reductase enzymes or converted into E2 by the aromatase enzyme (Figure 2).
It exerts its action through binding to and activation of the androgen receptor
(AR) or, indirectly, after aromatization to E2 via estrogen receptor alpha
(ERa) or estrogen receptor beta (ERP) (43). The testes in males and, to a
lesser extent, the ovaries in females are the main producers of T in males and
females, respectively, but small amounts are also produced by the adrenal
glands. Serum T levels in males are approximately seven times higher than in
females (44).
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Testosterone
Aromatas/ \Sa-reductase
Estradiol DHT
ERa ERB AR

Figure 2. Testosterone.pathway. Testosterone can be converted to DHT or Estradiol.
ERa = Estrogen receptor alpha, ERf = Estrogen receptor beta, AR = Androgen
receptor, DHT = Dihydrotestosterone.

T is largely bound to two plasma proteins. Most of the circulating T (50—
60%) is bound with high affinity to sex hormone-binding globulin (SHBG),
while a smaller fraction (40—50%) is bound loosely to albumin, and 1-3% is

unbound and termed free T (45).

Although animal studies have shown that T, via activation of the AR,

regulate bone mass in male rodents, it seems that aBMD is mainly affected
by E2 and not T in males (8, 46, 47). In fact, the more modest effect of T on

fracture risk is proposed to be mediated by effects on muscle strength and
risk of falls rather than due to an effect on BMD (48, 49).
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1.7 DEFINITION OF HYPOGONADISM

Hypogonadism is classically defined as primary or secondary. In primary
hypogonadism (hypergonadotrophic hypogonadism), it is the testes that fail
to produce adequate amounts of T, despite elevated gonadotropin levels (low
T and increased luteinizing hormone [LH] and follicle-stimulating hormone
[FSH]). In secondary hypogonadism (hypogonadotrophic hypogonadism)
failure occurs at the hypothalamus—pituitary level (low T and low
gonadotropin or LHRH levels) (50). Many chronic illnesses are associated
with low T levels but do not fit into the two classical endocrine situations
described above. These syndromes, with clinical symptoms of
hypogonadism, are acquired in adulthood and often exhibit functional
hyposecretion at the level of both pituitary and testis (51). It should be noted,
however, that although suppressed serum T is common in ageing men, only a
small proportion of them develop the genuine syndrome of low T associated
with diffuse sexual (e.g., erectile dysfunction), physical (e.g. loss of vigor and
frailty) and psychological (e.g., depression) symptoms (52). The European
Male Ageing Study (EMAS) has recently defined a strict diagnostic criteria
for late onset hypogonadism (LOH) which includes three sexual symptoms
(lessened sexual thoughts, weakened morning erections and erectile
dysfunction), and either repeated (at least twice) serum total T level <8
nmol/l, or serum total T of 811 nmol/l and free T <220 pmol/l (53). By these
criteria, only about 2% of 40- to 80-year-old men have LOH. In particular
obesity, but also impaired general health, is a more common cause of low T
than chronological age per se.

1.8 HERITABILITY OF SERUM TESTOSTERONE

It is well established that serum T is negatively associated with age and
BMI and positively associated with smoking (54). Of these, BMI has the
strongest correlation with serum T. Studies in male twins indicate that there is
a strong heritability for serum T, with genetic factors accounting for 65% of
the variation in serum T (55), but few genetic variants associated with T have
been identified. The largest genome-wide association study (GWAS) to date
explaining less than 5% of total variance, was led by our research group and
identified two single nucleotide polymorphisms (SNPs) at the SHBG locus
and one near the FAM9B locus on the X chromosome independently
associated with serum T in males (56). Interestingly, the SNP (or one which
completely correlates with it) at the FAMO9B locus has later been shown to be
associated with BMD and E2 in males (57, 58).
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Also, one of the SHBG SNPs identified was non-synonymous, meaning
that the polymorphism gives rise to a change in amino acid sequence, which
resulted in an affected binding affinity of serum T to SHBG (56).

1.9 MEASUREMENT OF SERUM TESTOSTERONE

Serum T is commonly measured by immunoassay-based techniques.
These techniques have, however, a questionable specificity, especially at
lower concentrations (59, 60). Mass spectrometry (MS) is the golden
standard for the quantification of sex steroids in serum samples (61).

1.10 OBESITY

Obesity is often defined simply as a condition of abnormal or excessive
fat accumulation in adipose tissue, to the extent that health may be impaired
(62). Overweight is defined as having a BMI between 25 and 30 while
obesity is defined as having a BMI above 30 kg/m*. BMI is a low cost
population-level measure of obesity. Although it is the most widely used
metric, it does not account for the wide variation in body fat distribution, and
may not correspond to the same degree of fatness or associated health risk in
different individuals and populations (62).

Using a hypothesis-free approach, a GWAS offers a technique that could
identify previously unknown genetic markers associated with a trait through
multiple linear regression models, where each regression tests the association
between the trait and an individual SNP. Most GWASs focusing on obesity
have used BMI as the phenotypic trait, but there have also been studies with
somewhat smaller sample sizes that target other metrics such as waist
circumference and waist-hip-ratio. In a recent co-authored study, six
anthropometric traits (BMI, height, weight, waist and hip circumference and
waist-to-hip ratio) were combined using a principal components analysis
(63), revealing six new loci associated with body shape. Hence, our metrics
for obesity does not single-handedly capture the nature of body shape and
obesity. Furthermore, we have also found evidence of age-dependent genetic
effects on obesity (64, 65).

Although using specific and/or multiple metrics in a study would provide
more detailed information on the different aspects of obesity than BMI alone,
the availability of subjects with that metric might be an issue since a small
sample size might result in a lack of statistical power. Hence, despite its
obvious shortcomings as a detailed measurement of obesity, BMI is often
used as it allows for large sample sizes.
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1.11 TESTOSTERONE AND OBESITY-RELATED TRAITS

It has been known for about forty years that obese men have lower T
compared to lean men (66). Since then, multiple cross-sectional and
prospective studies have consistently found inverse correlations between both
total and free T levels and adiposity in men (67). Total T levels decrease as
BMI increases, partly because sex hormone binding globulin (SHBG)
concentrations are reduced. Free and non-SHBG-bound T levels, however,
may also decline, especially with massive obesity (68). In fact, in the
HERITAGE Family Study, the well-established inverse relationship between
age and total T could no longer be demonstrated after adjusting for body fat
mass (69).

Low serum T has also been found to be associated with CVD (70),
however, as for the association between serum T and obesity, the question of
cause and effect between obesity (and the resulting obesity-related diseases)
and T remains.

1.12 GENETICS

DNA

Deoxyribonucleic acid (DNA) is a molecule that stores all information
necessary for the growth, development, functioning and reproduction of all
known living organisms. In humans, DNA molecules consist of two strands,
containing the same biological information, coiled around each other to form
a double helix(71). Each strand is composed of simpler monomer units called
nucleotides, where each nucleotide is composed of one of four nitrogen-
containing nucleobases — cytosine (C), guanine (G), adenine (A), or thymine
(T) — a sugar called deoxyribose, and a phosphate group. The nitrogenous
bases of the two separate strands are bound together, according to base
pairing rules (A with T, and C with G), with hydrogen bonds to make the
double-stranded DNA. It is the sequence of these four nucleobases that
encodes biological information. However, most of the DNA (more than 98%
for humans) is non-coding, meaning that these sections do not serve as
patterns for protein sequences, but might still influence transcription.

GWAS

There is a varying degree of variation of single nucleotides within the
human population. At a specific location in the DNA, 60% of all males might
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have a C, whereas the remaining 40% might have an A. These single
nucleotide variations are called SNPs and are common throughout our DNA.
In genetics, these SNPs have enabled the study of diseases in a completely
new way. Rather than looking at a few genes and their association with a
disease, GWASs use millions of regression analyses, where each analysis
focuses on the association between the disease and one SNP. However, rather
than genotyping the whole genome (i.e. listing all of the nucleotides in order
from one end of the DNA strand to the other), most previous GWASs have
used chips with a specified number of specific SNPs throughout the genome.
Since each SNP usually explains a very small amount of the variation in a
trait (such as a disease), a very large number of subjects are needed to obtain
statistical significance for some of these SNPs. This is especially so since the
threshold for significance (usually p<0.05) needs to take into account
multiple testing. After an adjustment for the number of tests, 5*10™ was the
significance threshold for GWASs for many years. Recently, due to the
reduced cost of genotyping and improved imputation, the number of available
SNPs for testing has increased drastically, resulting in a lowered significance
threshold. Due to the massive costs of obtaining both genetic and phenotype
data for a sufficiently large number of subjects, GWASs are seldom
performed in single cohorts. Rather, the results of many research groups are
combined together using a method called meta-analysis, which attaches
weight to each group's result based on the number of subjects and standard
error of the analysis. This enables researchers to share summary statistics
rather than raw data between groups.

Since the chips used for genotyping differ between manufacturers and
because these chips only provide a small fraction of all SNPs, a method
called imputation (Figure 3) emerged as a way to calculate a predefined set of
SNPs based on the inherent relationships between different SNPs (i.e. by
knowing the exact value of X SNPs it is possible to calculate another Y SNPs
in close vicinity). It is achieved by using known haplotypes (sets of tightly
linked SNPs that tend to always occur together) in a population, for
instance from the HapMap (approximately 2 million variants;
https://www.genome.gov/10001688/international-hapmap-project/), or
the 1000 Genomes Project (approximately 80 million variants in phase
3; http://www.internationalgenome.org/about#1000G_PROJECT) in
humans.
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After imputation:
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Figure 3. Genotype imputation. Variants are imputed by matching reference haplotypes
to genotyped haplotypes. If more than one reference haplotype matches the genotyped
haplotype, the corresponding values are added probabilistically (1/3T and 2/3 G, for
example).

Today, it is even possible to get the whole DNA sequenced, which is
referred to as Whole Genome Sequencing (WGS). The haplotype reference
consortium ((http://www.haplotype-reference-consortium.org/) constitutes
another recent effort which aims at building a much larger combined
haplotype reference panel. This, in turn, enables more detailed haplotypes
which could be used for the imputation of SNPs with low minor allele
frequency (MAF) (72).

The imputed set of SNPs thus provides the necessary framework needed
to be able to compare the results from different groups that use a variety of
genotyping chips. Although quite a lot of significant associations between
different SNPs and a disease have been identified, it is only in rare cases that
the significant SNPs cause the decrease or increase in risk for developing the
disease. Rather, it is often only associated with the causative SNP. It does,
however, provide a clue to which gene(-s) that might be involved in the
pathogenesis. In order to achieve more than associations between loci
identified in a GWAS and the trait of interest, the results needs to be
combined with other analyses as well. Translational research, where animal
models are used to knock out the gene of interest is one way forward.
Another way is to use expression quantitative trait loci (eQTL) analyses that
focus on how different genomic loci contribute to variation in expression
levels of mRNAs (which is later translated to proteins).

11
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Two tools for graphically displaying the results from the numerous
regression analyses performed in a GWAS are the Quantile-Quantile (QQ)
(Figure 4) and Manhattan plots (Figure 5). The QQ plot shows the expected
distribution of association test statistics (X-axis) across the million SNPs
compared to the observed values (Y-axis). Any deviation from the X=Y line
implies a consistent difference between cases and controls across the whole
genome, suggesting bias from population stratification etc. However, if the
plot shows a dotted line matching X=Y until the dotted line sharply deviates
at the end, the deviating dots are likely to represent one, or more, true
associations.
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Figure 4. QQ plot. The straight line corresponds to expected p values. The demolished
lines correspond to 95% confidence intervals. The dotted line corresponds to observed
p values. The deviation of observed vs expected p values corresponds to significant
association(-s).

Unlike the QQ plot that displays the results from the many regression
analyses over the whole genome, Manhattan plots depict the results on
chromosomes individually. Since there are many correlated SNPs, Manhattan
plots provide an easy way to determine on which chromosome the most
significantly associated SNPs reside and, since there is no correlation
between SNPs on different chromosomes, whether significant SNPs
constitute obviously independent signals.
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Figure 5. Manhattan plot. Observed p values per chromosome. Significant associations
are above the horizontal black line (p<=>5x10"").

Mendelian randomization

A method called Mendelian randomization (MR) uses genetic variants in
observational epidemiology to make causal inferences about modifiable (non-
genetic) risk factors for disease and health-related outcomes (73). Since our
genetic variants are determined at conception and remain constant throughout
life, MR is not influenced by reverse causation (74). Furthermore, since
random assortment of alleles occurs during gamete formation, genetic
variants with effect on a modifiable exposure, for example BMI, are
randomly distributed in relation to potential confounders. Under the
assumption that the genetic instrument (or instrumental variable, IV, based on
genetic variants) is not directly associated with the outcome, or any potential
confounding variable, but rather, that the association is with the risk factor of
interest, the genetic instrument divides the population into subgroups which
systematically differ in the risk factor, but not in any competing risk factor.
The genetically-defined subgroups are then analogous to treatment arms in a
randomized controlled trial (75).

Despite the fact that MR studies are less susceptible to reverse causation
and confounding than observational studies, there are limitations to the
approach. These include population stratification (genetic associations reflect

13
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latent strata in the population), pleiotropy (genes influencing multiple
phenotypes), canalization (the ability of a population to produce the same
phenotype regardless of variability of its environment or genotype),
inadequate power and linkage disequilibrium (interdependence between
genetic variants included in the same genetic instrument, such as an allele
score) etc (73-75). MR analyses could be categorized as one-sample analyses
(when the same cohorts are used for the [V-exposure and IV-outcome
analyses) or two-sample analyses (when the set of cohorts used for the I'V-
exposure and I'V-outcome analyses are different), or a hybrid of the two
(when there is a partial overlap between the cohorts used in the I[V-exposure
and IV-outcome analyses).

The assumptions of MR have been discussed to great length and the
exclusion restriction criteria, relating to pleiotropy (i.e. that the instrumental
variable should not affect the outcome independently of the exposure)
remains the most critical one (76), Possible solutions have been proposed,
including that of Davey-Smith and Hemani used in paper IV that suggests
that it is highly unlikely that independent I'Vs produce similar causal effects
(74). Another method, MR-Egger, developed by Bowden et al has gained a
lot of interest in the genetic epidemiology field lately (77). Rather than
developing a risk sum based on individual SNPs, MR-Egger considers each
SNP individually as a single instrumental variable. Under the assumption that
across all genetic variants, the covariance between the effect of the IV on the
outcome and the effect of the IV on the exposure is zero (‘InSIDE
assumption’), IVs with a stronger effect on the exposure should give less-
biased MR estimates. A regression of the MR estimates on the first stage
coefficients including an intercept then provides a consistent estimate of the
causal effect (77). Despite its widespread use today, however, MR-Egger has
some serious drawbacks of its own. Recent simulations have shown that
estimates from the MR-Egger method can be more biased and have greater
Type 1 error rates compared with traditional methods in settings when
pleiotropic effects of multiple genetic variants act through the same
confounder (78). Hence, the InSIDE assumption is crucial to the
interpretation of causal inferences from the MR-Egger method in the case of
pleiotropy. However, the InSIDE assumption cannot be tested and may not
hold if the genetic variants used as Vs are correlated with confounders of the
association between exposure and outcome. Moreover, in one-sample settings
(where the association between instrument(-s) and exposure and the
association between instrument(-s) and outcome are tested in the same
sample) MR-Egger may suffer heavily from weak instrument bias (78).

A new interesting, but far less studied, approach called pleiotropy-robust
Mendelian randomization (PRMR) have been demonstrated using
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simulations and real data to provide unbiased estimates of causal effects even
when all genetic instruments violate the exclusion restriction. In order to do
so, however, it requires that there is a subsample where the first stage
regression (between instrumental variable and exposure) is zero. If no such
subsample is available, unbiased estimates are not guaranteed, but the method
could still be used as a sensitivity analysis to determine how strong the
violation of the exclusion restriction would have to be in order to render the
causal effect f to be 0 (78).
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2 AMM

The aim of this thesis can be divided in two. The aim of paper I-III was
to increase our understanding of the genetic architecture underlying various
bone parameters and to evaluate the clinical use of these genetic variants for
fracture risk prediction.

Low T has been shown to be associated with an increased risk of
osteoporosis and fractures in men. In addition, observational studies have
demonstrated that obesity is strongly associated with low serum T, but the
direction and causality of this relationship is unclear. Therefore, the aim of
paper IV was to evaluate the potentially causal relationship and direction
between low T and obesity in men.

Specific aims:

Paper I: Identify novel genetic loci associated with DXA-derived
two-dimensional aBMD

Paper II: Determine the clinical usefulness of these genetic findings
for prediction of bone loss and fractures

Paper III: Use a three-dimensional pQCT to identify novel genetic
loci associated with cortical and trabecular bone

parameters separately

Paper IV: Determine if high BMI causes low T, or if low T causes
high BMI in men using a bi-directional MR approach

16
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3 METHODOLOGICAL CONSIDERATIONS

Several international cohorts contributed to the data used in the analyses for
this thesis (see Table 1). For details regarding each cohort, please see the
methods section in each paper.

Table 1. Main cohorts included in each paper.

Cohort Country Paper [ Paper 11 Paper 111 Paper IV
Gothenburg Osteoporosis and Sweden X X X
Obesity Determinants Study

(GOOD)

The Osteoporotic Fractures in Men Sweden x* X x* X
Study

(MrOS Sweden)

The Osteoporotic Fractures in Men usS X

Study

(MrOS US)

The Study of Osteoporotic us X

Fractures

(SOF)

The Avon Longitudinal Study of UK X

Parents and Children

(Alspac)

Young Finns Study Finland x* X

(YFS)

The Intervention 1999 Study Denmark X
(INTER99)

The Study of Health in Pomerania Germany X
(SHIP-TREND)

The Study of Health in Pomerania Germany X
(SHIP)

Amish Family Osteoporosis Study uUsS X

(AFOS)

Anglo-Australasian Osteoporosis Australia, X

Genetics Consortium New Zealand,

(AOGC) UK

Cardiovascular Health Study us X

(CHS)

DeCODE Genetics Study Iceland X

(DeCODE)

Erasmus Rucphen Family (ERF) Netherlands X

European Prospective Investigation UK X

into Cancer, Norfolk study
(EPICNOR)
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Framingham Heart Study us X
(FHS)

Health Aging and Body us X
Composition
(HABC)

Hong Kong Osteoporosis Study China X
(HKOS)

Indiana Genetics of Bone Fragility US X
Study
(Indiana)

The Orkney Complex Disease UK X
Study
(ORCADEYS)

Rotterdam Study-I Netherlands X
(RS-1)

Rotterdam Study-II Netherlands X
(RS-II)

Rotterdam Study-I Netherlands X
(RS-I1I)

TwinsUK UK X
(TUK-1)

TwinsUK UK X
(TUK-23)

* part of the replication phase

3.1 DEVELOPMENT OF A GENETIC RISK SCORE

Genetic risk scores for aBMD were created in paper I and II, and for
serum T and BMI in paper V. Creating a genetic risk score combines the risk
of all included SNPs. The genetic risk scores developed in paper I, II and IV
were based on independent SNPs. As a result, the calculated combined risk
adds the risk of each SNP. Depending on whether a weighted or an un-
weighted model is used, combining the risk either means calculating the risk
simply by counting the number of risk alleles (un-weighted model),

m
Score; = z Xij
j=1

, where m = the number of SNPs and x;; = the number of risk alleles of
individual i at locus j
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or by attaching weight to each risk allele based on the effect, relative to
the other SNPs, that the risk allele has on the phenotype in question.

m
Score; = Z bj x;j
j=1

, where m = the number of SNPs, b, = weighted risk for each risk allele at
locus j, x;= the number of reference alleles of individual 7 at locus ;.

Weights for the weighted GRS on BMD, BMI and serum T were based
on each SNP’s effect size with BMD in project I, with BMI in the meta-
analysis by Locke et al and with serum T in earlier studies of ours (56, 58,
79).

Although using a weighted model incorporates more information on the
association between SNPs and phenotype, it also requires that the data set
where the effect size of the association between a SNP and the phenotype is
estimated and the data set where the genetic risk score is evaluated are
disjoint. In other words, one should not evaluate a weighted genetic risk score
and estimate the SNPs' effect sizes in the same cohorts as this might lead to
biased results. Unfortunately, because of the small effect sizes, large samples
are required, which usually means that GWASs include most, if not all, of the
cohorts with available phenotype and genotype data. Finding cohorts with
relevant data, that were not part of the original study, might therefore become
a challenging task. In paper II and IV there is an overlap in cohorts between
the original study identifying and estimating the effect sizes and the study
where the genetic risk score (-s) is calculated. For aBMD and BMI this
overlap is less than 4.5%, while it is considerably larger for T in paper
IV (40%). As this could potentially bias the results, we calculated both a
weighted and an un-weighted risk score and arrived at similar results.

3.2 META-ANALYSIS

Due to ethical constraints regarding the sharing of individual subject
data, summary statistics (sample size, standard error and estimated effect
size) from locally performed analyses are often shared instead. In the papers
included in this thesis, analyses using pooled data have been performed when
possible (due to the ethical constraints mentioned above, we have not shared
any individual data from the Gothenburg Osteoporosis and Obesity
Determinants [GOOD] and Osteoporotic Fractures in Men [MrOS Sweden]
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cohorts). It has been suggested, though, that there is no, or minimal, loss in
power for linear regression analyses used in most GWASs when summary
statistics is meta-analyzed instead of performing a pooled analysis of all
individual data (80). In paper IV, where raw data was available, results were
very similar for both pooled and meta-analyzed data.

If all studies had the same variation in their results, combining their
results to take advantage of the larger number of subjects, would only amount
to computing the mean effect. Unfortunately, this is never the case. Some
studies will have more precise effect estimates than others. A meta-analysis
combines these results using a weighted mean, where some studies will be
given more weight than others. Two commonly used models are the fixed
effect and the random effects models. Both models assign weights based on
each study's variance. Whereas the fixed effect model assumes that there is
one true effect size underlying all studies, the random effects model allow for
multiple true effect sizes. As a consequence, in the fixed effect model there is
only one source of error in the estimate of the combined effect and that is the
random error within studies. Hence, given a sufficiently large sample this
error will tend towards zero.

The weight assigned to each study, w;, in the fixed effect model is

Wi = 1 / Vi
, where V; is the within-study variance for study (7). The weighted mean
T is then computed as:

T = Z{'c=1 w; T
X wi
, which is the sum of the products w;T; (effect size multiplied by weight)
divided by the sum of the weights. The variance of the combined effect is
defined as the reciprocal of the sum of the weights:

In contrast, in the random effects model, there are two sources of
sampling and two sources of error. The first relates to estimating the true
effect size within each study (which is similar to the fixed effect model).
Given a large enough sample size the sampling error will tend toward zero.
The second source of sampling, however, relates to estimating the mean of
the true effects. Here, the number of studies, rather than the size of each
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study, will decrease the second source of sampling error. Since the variance is
a sum of both errors, the random effects model will always have a larger
variance, standard error and confidence interval (CI) for the combined effect
than the fixed effect model unless between-study variation is zero.

Concretely, the weights assigned to each study in the random effects
model are

Wi=

*
l

o I

, where v; is the within-study varianc
studies variance, t°.

for study (i) plus the between-

*

v; = v+ T2
The weighted mean,T™, is then calculated as

k k
T =) wiT)/ ) wi
i=1 i=1

, which is the sum of the products divided by the sum of the weights. The
variance of the combined effect is defined as the reciprocal of the sum of the
weights.

1
K

*
i=1 Wi

In the papers included in this thesis, the choice of model was based
primarily on a test of heterogeneity, where a random effects model was used
when there was evidence of high heterogeneity and a fixed effect model
otherwise. Although this is common practice, it should be noted that if the
number of studies is small and the within-studies variance is large, this test
may have low power (81).

3.3 ANALTERNATIVE METHOD FOR DEVELOPING A
GENETIC RISK SCORE

Today, the total number of GWASs performed is quite large, but it is
often the case that it is not possible to get access to individual data due to
ethical constraints. Thus, the ways of calculating genetic risk scores
described above, which requires raw data, is not an option.
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Interestingly, another use of the meta-analysis model was recently
presented (82). As it turns out, small effect sizes of multiple SNPs that are in
linkage equilibrium with each other are effectively identical when estimated
jointly by a multiple linear regression model and in a series of single SNP
regression models. Thus, it is possible to mimic the regression of a genetic
risk score based on a number of SNPs by single regressions on each of the
included SNPs, thus removing the need for data on single individuals for the
analysis. Each SNP is then treated as a cohort in the meta-analysis setting,
with weights for individual effect sizes based on the precision of each effect
size (e.g. variance). In paper IV this was used to evaluate a potentially causal
effect of serum T on BMI. As it was possible that a lack of a significant
causal effect in the cohorts with available data could be the result of a too
small sample size, we used the method described above to evaluate a
potential causal effect of T on BMI using the very large GIANT consortium.
This enabled us to increase the sample size more than tenfold.

3.4 RECLASSIFICATION

A number of metrics have been proposed in order to evaluate a model's
discrimination capabilities, but the area under the receiver operating
characteristic (ROC) curve (AUC) has traditionally been the most popular
metric (88). It is the probability that given two subjects, one who will
develop an event and the other who will not, the model will assign a higher
probability of an event to the former (89) and is defined as follows: Let X
represent the predicted probability of developing an event and D be the event
indicator. If f is the probability density function of X, for any cut-off point u,
0<u<1, we can express sensitivity and one minus specificity (negSpec) as

1
Sensitivity (u) = S(u) =PX >ulD =1) = j f(x|D = 1)dx
0

1
negSpec (u) = P(u) =P(X >u|D =0) = f f(x|D = 0)dx
0

Then, AUC can be expressed as

o~ Pdu = fol Sw)f(ulD = 0)du = P(X; > X;|D; =
1,D] == 0)

22



Joel Eriksson

In paper II, we evaluated the clinical usefulness of a genetic risk score for
fracture prediction based on the aBMD-associated SNPs identified in paper I.
For this task, we used three different metrics: AUC (c-statistics), continuous
net reclassification improvement (NRI) and integrated discrimination
improvement (IDI).

All three metrics have their own weaknesses. For instance, the AUC
calculates a model's sensitivity and specificity for all cut-offs for the
probability of an outcome, including cut-offs that would never have found
their way into a clinical setting. After all, why would anyone care for a
model's ability not to cause false alarms (false positives) at points where its
ability to correctly identify a true positive is close to zero (Figure 6; lower
left corner on the diagram)?

1.0

Point X

AUC

0.4

True positive rate

| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Figure 6. Receiver Operating Characteristic (ROC) curve. Area under curve (AUC) is
the area between the ROC curve and the straight diagonal line. Point X close to (0,0)
corresponds to a cutoff with close to 0 false and true positives (model will predict
almost no events).
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Another issue with using the c-statistics to evaluate a new marker is that
it has been shown that in order to arrive at a meaningful increase in c-
statistics, when starting out with a reasonably good model, a very strong,
independent association between the new marker and the outcome is
required, thus potentially failing to identify a marker as one that should be
incorporated into the prediction model (83-85).

Reclassification quantified in terms of NRI is the sum of differences in
proportions of individuals moving up minus the proportion moving down for
those with the outcome, and the proportion of individuals moving down
minus the proportion moving up for those without the outcome. Formally,

P(event|up) * P(up) — P(event|down) * P(down)

P(event)
P(nonevent|down) * P(down) — P(nonevent|up) * P(up)

NRI =

P(nonevent)

t#tevents with increased predicted probability

Where P(event|up) * P(up) =

# events

P(event|down) * P (down), P(nonevent|up) * P(up) and
P(nonevent|down) * P(down) are all calculated in a similar way.

Originally, NRI was designed to evaluate a marker at a specified cut-off.
In Sweden, using the well-established fracture prediction tool, FRAX, a 15%
risk of osteoporotic fracture within the next 10 years is the cut-off where a
DXA scan (to measure aBMD) is warranted (86). Unfortunately, with our
study's prevalence of fractures, this would be inappropriate. Therefore, we
chose to use a continuous NRI. As a consequence, it is susceptible to the
same criticism as the AUC: there is no guarantee that reclassification occurs
at cut-offs that are clinically relevant. Furthermore, NRI says nothing about
the magnitude of the change in predicted risk for a subject. Rather, it merely
counts the number of subjects with changed risk prediction. It is, however,
considerably more sensitive to improvements of the original model. In
contrast, IDI, is equivalent to the difference in discrimination slopes of two
models, meaning it quantifies the change between the new and old model in
the gap in predicted risk between subjects with and without an event.
Formally,

If Prew events denotes the mean of the new model-based predicted
probabilities of an event for those who develop events and P4 epenes denotes
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the corresponding quantity based on the old model. Let Py ey nonevents and
Py1d noneventsdenote the corresponding quantities for nonevents. IDI can then
be estimated as

IDI = (Pnew,events - Pnew,nonevents) - (Pold,events - old,nonevents)-

In order to minimize the drawbacks of each respective metric, we
calculated AUC, NRI, and IDI in paper II.

3.5 ZSCORES

The issue of obtaining comparable results involves not only genotyping
with different chips giving different SNPs, but also the phenotyping itself. In
genetics, imputation was developed to ensure comparable results across study
populations. Comparable continuous phenotypes call for a far less complex
solution. In this thesis we used standard scores, z-scores, which express the
raw score (e.g. serum T levels, weight etc) in terms of the number of standard
deviations away from the mean:

Z-score = (Observed — sample mean) / sample standard deviation

Z-scores have been used in the papers herein on all phenotypes, including
T, BMI and different types of metrics on BMD. Furthermore, we have used
log transformation of non-normally distributed traits.

A concern regarding the use of z-scores relates to the fact that the sample
variance can differ quite a lot from the overall population variance in some
instances, resulting in a overestimated, or underestimated, difference (e.g.
standard deviations from the mean) between subjects. This might pose a
problem in some situations where the study population of interest is chosen
based on the individuals characteristics in some regard (e.g. personal bests of
international pro marathon runners), as the variance within this group might
be far smaller than in the general population. It is less obvious, however, how
this would be a problem in cohorts where non-performance metrics are used
and subjects are chosen randomly.
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3.6 IMPUTATION

The HapMap (https://www.genome.gov/10001688/international-hapmap-
project/) has been the main reference panel used for the papers in this thesis.
The 1000G reference panel
(http://www.internationalgenome.org/about#1000G PROJECT) was used as
a secondary analysis to increase the resolution in the areas close to a
significant SNP in paper 1. The rationale behind this is that the SNPs found in
a GWAS are seldom causally linked to the phenotype. Rather, they are
correlated with the causal variant. Increasing the resolution, could, then,
provide the causal variant, or provide a SNP which is more highly correlated
with it.

Imputed, rather than genotyped, information has been used for all SNPs
including those which where genotyped originally. This procedure has
previously been shown to provide consistent and reliable results for common
variants (87). At the time of paper I and paper 111, GWASs were performed
almost exclusively using HapMap with reference panels for specific ethnic
groups such as Caucasians. Although the growth of the genetic research area
owes much to imputation in general and HapMap in particular, there are
limits. One of the most important aspects is related to the concept of MAF.
MAF corresponds to the percentage of risk alleles in a population. A low
MAF means that a larger sample is needed for an acceptable power.
Historically (including paper I and III), a 5% cutoff has often been used,
where SNPs with a lower MAF are excluded from the analyses due to power
issues. Although having a lower MAF cutoff means performing regression
analyses on more SNPs, and thus lowering the significance threshold, it is not
the increased number of tests that presents the greatest challenge (partly
because many SNPs are correlated and thus do not give rise to a lower
significance threshold because they do not constitute independent tests).
Rather, it is the common-disease, common-variant hypothesis, which holds
that genetic influences on diseases of high population prevalence are old, and
are thus typically very common, together with the issue of having low power
to detect a significant association for rare variants (88). Recently, concerns
have also been raised regarding the challenges on the analytical side. For
instance, the rare variants might be too few for traditional statistical tests and
multicollinearity might make it difficult to identify independent associations
(89). Moreover, until recently the imputation accuracy for SNPs with allele
frequency below 5% has been unsatisfying (90). Hence, the choice to focus
on common variants provided a necessary compromise between imputation
quality and power on one side and the number of significant findings and
variance explained on the other, and reflects the resources available at that
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time. With larger data sets and reduced cost of genotyping new possibilities
arise. For example, in a more recent co-authored publication, focusing on less
common (MAF 1-5%) and rare variants (<1%), we found a SNP in the EN1
gene (MAF = 1.7%) with an effect on lumbar spine BMD four times stronger
than the mean of previously reported common variants and two times
stronger than that of the largest previously reported effect on lumbar spine
BMD (91).

Since paper I and III, focus has shifted towards rare variants and the
number of individuals included in nonspecific-population reference panels as
well as the number of smaller population-specific reference panels have
increased. To date, there has been conflicting evidence regarding whether to
use large reference panels, smaller population-specific panels or combined
reference panels that uses more than one reference panel for SNPs with
MAF<1% (92-94).

3.7 MENDELIAN RANDOMIZATION

In paper IV we used an MR approach to evaluate a potential causal
relationship between BMI and serum T. Although MR analyses offer
epidemiologists a tool that has the potential to detect relationships beyond
mere correlation, they rely on three key assumptions (Figure 7):

1.  The instrumental variable (in our case the genetic risk score) is
associated with the exposure.

2. The instrumental variable is independent of any confounders
of the exposure and the outcome.

3.  The association between the instrumental variable and the
outcome exists only because of the association between the
instrumental variable and the exposure; the instrumental variable
is independent of the outcome given the exposure (no pleiotropy).
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Figure 7. Assumptions of Mendelian Randomization analyses. Assumption 1 assumes
that the instrumental variable (1V) is associated with the exposure. Assumption 2
assumes that the 1V is independent of the unmeasured confounding factors. Assumption
3 assumes that the 1V is independent of the outcome given the exposure and unmeasured
confounding factors (no pleiotropy).

Of these, only the first is easily tested. Using BMI-associated and serum
T-associated SNPs from the largest GWASs on BMI and serum T,
respectively, we developed genetic risk scores for both phenotypes. The
association between each risk score and risk factor were then assessed in
order to evaluate if assumption one was violated.

Age and smoking are known to be associated with serum T levels. An
association between any of these, or other unknown confounders, and the
genetic risk score, thus, risks violating assumption two. We therefore tested
the association between each genetic risk score and age and smoking.
However, as it is not possible to test unknown confounders, it is possible that
assumption two is still violated.

To evaluate assumption number three, the assumption of no pleiotropy
(i.e. no effect on the outcome independent of the exposure or unmeasured
confounding factors), we used two separate, independent, genetic risk scores
(one comprised of the well-established BMI-related FTO SNP and the other
the remaining 96 SNPs) as a way to detect a pleiotropic effect. Although it
doesn't remove the possibility of pleiotropy, it would require similar
pleiotropic effects starting out from two independent genetic “sites”. With
that said, had we performed additional sensitivity analyses such as MR-Egger
with the same results, it would have further strengthened our conclusions.

It is well established that an instrumental variable that fulfills the
assumptions above, could still be inappropriate because its association with
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the risk factor is too weak, i.e. the variance explained of the risk factor is low.
The F statistics is a way to measure how well an instrumental variable
captures the variation of a risk factor and depends on sample size and the
variance explained of the exposure variable by the genetic instrument. A
weak instrument (usually interpreted as an F statistics below 11) risks
introducing a bias away from the null in a one-sample MR analysis, due to
the fact that a weak instrumental variable is biased in the same direction as
the observational association (95). For BMI and serum T, this means that a
weak instrument would have an increased risk of suggesting a causal
relationship where there is none. However, all genetic risk scores used in
paper IV had high F statistics that makes weak instrument bias highly
unlikely.

The F statistics and the power to detect a significant association are
related. While the power is dependent on variance explained of the exposure
by the genetic risk score as well as sample size, it also depends on the
correlation between exposure and outcome. It is thus possible to have a
suitable genetic risk score (which does not suffer from weak instrument bias),
but still have low power due to a low correlation between the exposure and
outcome. In paper IV, we had very good power assuming the causal effect
would be similar to the observed association between risk factor and
outcome. However, it is by no means certain that the un-confounded causal
effect is of the same magnitude. Thus, for the genetic risk score for T, we
used a larger sample from the GIANT consortium to test the association. Had
this association been statistically significant, it would have been possible to
perform something close to a two-sample MR analysis as there was very little
overlap between the cohorts used for the [V-exposure and IV-outcome
analyses. Also, due to the very large sample size of the GIANT consortium,
this meant effectively reducing the risk of low power as the reason for the
lack of a significant causal effect of T on BMI.

Population stratification, often the result of geographical restrictions,
refers to the systematic differences in allele frequencies between sub-
populations within a population followed by genetic drift in each group. If
present, it could affect the results. The subjects included for the analyses in
paper IV were all Caucasians, where population stratification based on our
sample was considered to be a minor problem. The similar allele frequencies
for the SNPs in this study provide further support of this (96). If present, but
properly adjusted for, it is unlikely to be a major problem where no family
connection is allowed between subjects (88, 97, 98). Thus, in paper I, II and
IIT where population stratification might be an issue, models were further
adjusted for population stratification.
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We did not test for canalization, which means that the genetic effect
would be compensated for by some feedback mechanism. However, since
such feedback mechanism would bias the results toward the null, it cannot
explain the effect of BMI on serum T.
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4 RESULTS

4.1 PAPERI

Genome-wide meta-analysis identifies 56 bone mineral density loci and
reveals 14 loci associated with risk of fracture

Aim
To identify novel genetic loci associated with DXA-derived two-
dimensional aBMD

Using 17 cohorts including 32,961 individuals of European and East
Asian ancestry, we performed the largest meta-analysis to date on lumbar
spine (LS) and femoral neck (FN) BMD. In addition, we also tested the top
BMD-associated markers for replication in 50,933 independent subjects and
for association with risk of low-trauma fracture in 31,016 individuals with a
history of fracture (cases) and 102,444 controls.

Main results

. 56 loci (32 new) associated with BMD at genome-wide significance
(P <5 x 10"*). Most SNPs were associated with BMD at both FN
and LS.

° Fourteen BMD-associated loci were also associated with fracture
risk (P <5 x 107*, Bonferroni corrected)

. Two of the newly identified loci were discovered in the sex-
stratified meta-analysis: 8q13.3 in women and Xp22.31 in men

e In general, the effect of these SNPs on BMD was larger than on
fracture risk

Conclusions

We identified 56 loci (64 SNPs), including 32 novel loci, that were
independently associated with FN and/or LS BMD.
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Discussion

Although the effect size of each BMD-associated SNP is small, this study
identified previously known as well as new genes within the pathways Wnt
factors, mesenchymal stem cell differentiation and endochondral ossification.

Fracture risk and BMD are correlated, but other bone characteristics not
captured by BMD as well as balance and muscular strength etc also influence
the risk for fracture. Hence, some important fracture variants may have
limited impact on BMD and vice versa. This is true for the SNP at 18p11.21,
which was the most significantly associated SNP with fracture (OR = 1.08,
95% CI=1.06-1.10; P = 8.8 x 107", despite a modest effect on BMD. This
is in sharp contrast with the majority of variants identified in this study that
were found to have strong effects on BMD, but lacked a significant
association with fracture. Hence, given the complex nature of fracture risk,
future well-powered GWAS meta-analyses should focus on fracture risk as
the primary end point.

Interestingly, although not unexpected, our study also found evidence of
sex and site specificity with regard to BMD variation. rs5934507 at Xp22.31
was only significant in men. In a previous study of ours, this SNP was found
to be associated with serum T in men (56). It is likely that it affects serum T,
which, in turn, regulates BMD directly, or perhaps more likely, via E2.

We also found evidence of site specificity, where some markers were
only associated with BMD at the femoral neck or the lumbar spine. This is in
line with the different bone characteristics at these sites where trabecular
bone is the dominant type at the lumbar spine, whereas the femoral neck
consists mostly of cortical bone. These findings further highlight the
importance of a future GWAS focusing on specific cortical and trabecular
bone phenotypes.
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4.2 PAPERII

Limited Clinical Utility of a Genetic Risk Score for the Prediction of Fracture
Risk in Elderly Subjects

Aim
To determine the clinical usefulness of the BMD-associated SNPs found
in paper I for prediction of BMD loss and fracture

Using two male (MrOS US, MrOS Sweden) and one female (Study of
Osteoporotic Fractures [SOF]) large prospective cohorts of older subjects, we
studied the clinical utility of a genetic risk score based on 63 autosomal
BMD-associated SNPs (GRS63) and a genetic risk score based on 16
autosomal fracture-associated SNPs (GRS16) for the prediction of BMD,
BMD change and radiographically and/or medically confirmed incident
fractures (8,067 subjects, 2,185 incident fractures).

Main results
e GRS63 was associated with BMD, but not with BMD change.

e Similar significant associations with fractures were found for both
GRS63 and GRS16. For both GRSs, the associations were
substantially attenuated after BMD adjustment.

e Net reclassification improvements with the addition of the GRSs to a
base model (age, weight and height) were modest and substantially
attenuated in BMD-adjusted fracture prediction models.

e No significant improvements in C-statistics were found when the
GRSs were added to a fracture prediction model including age,
weight, height and BMD.

Conclusions

GRS63 is associated with BMD, but not BMD change, suggesting that
the genetic determinants of BMD differ from those of BMD change. When
BMD is known, the clinical utility of the two GRSs for fracture prediction is
limited in elderly subjects.

Discussion
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Previous studies have shown that both BMD and BMD change are highly
heritable traits (32-36).

In the present study, GRS63, which is based on BMD-associated SNPs,
was highly significantly associated with BMD, but not with BMD change,
suggesting that the genetic architecture underlying BMD change differs from
that of peak BMD.

Although osteoporosis is defined in terms of BMD, neither BMD nor
osteoporosis is important in their own rights. Rather, their importance is
derived from their connection to the risk of fractures. Today's tools for
fracture risk prediction combine clinical risk factors with BMD
measurements. Although helpful for clinicians, they are still in need of
improvement. Therefore, the present study evaluated the GRSs association
with and ability to predict fractures and found that both GRS63 and GRS16
are significantly associated with hip, non-vertebral and all fractures.
However, adding FN-BMD as a covariate substantially reduced the effect
sizes. This was not surprising given the fact that all included SNPs for both
GRSs were identified initially using BMD. That both GRSs remain
significantly associated with non-vertebral and all fractures might be partly
explained by the fact that a single BMD measurement does not capture all of
the BMD information during lifetime. It is also possible that some of the
SNPs have an effect on other bone parameters such as specific cortical and
trabecular bone traits not quantified by the 2-dimensional DXA technique.

In most cases, BMD measurements are readily available in developed
countries. Because of this, a potential clinical utility of a GRS must take this
into consideration. We found only minor improvements in AUC for fracture
prediction (both hip and all fractures) when the GRSs were added to a base
model adjusted for age, height and weight. After adjustment for BMD, there
was not a significant improvement in AUC for any fracture type in any of the
cohorts for GRS63 or GRS16. Although a significant improvement in
reclassification metrics could be seen in two of the cohorts for all fractures,
the quantitative changes in assigned risk, on average, were small (a 1.1%
increase in predicted risk in those with a fracture and a 0.2% decrease in
predicted risk in those without a fracture), thus limiting the clinical utility of
the GRSs when BMD is known. In countries where BMD is not available, the
utility of these genetic risk scores would be higher. Improving the GRSs
clinical utility in the future might include incorporating future GWASs aimed
at identifying SNPs associated with fracture, lean mass and risk of falls as
well as more bone-specific traits.
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4.3 PAPERII

Genetic determinants of trabecular and cortical volumetric bone mineral
densities and bone microstructure

Aim
To identify novel genetic loci associated with specific cortical and
trabecular bone parameters separately using three-dimensional pQCT

Trabecular and cortical vBMD were measured using pQCT. Separate
GWA meta-analyses for both traits were then performed using up to 5,878
subjects, including both men and women followed by replication. The
identified SNPs were further analyzed in a subset (n=729) consisting of
young men with available data on HR-pQCT, where the impact of these SNPs
on trabecular bone microstructure and cortical porosity was determined.
Finally, in an attempt to assess the underlying functional mechanism of the
identified loci, we examined their potential role in regulating gene expression
using eQTL in primary human osteoblasts.

Main results

e Four separate loci (RANKL rs1021188, p=3.6 x 10 LOC285735,
rs271170, p=2.7 x 10™'%; OPG, 157839059, p=1.2 x 107'%; and
ESR1/C60rf97, 156909279, p = 1.1 x 10™”) were genome-wide
significantly associated with cortical VBMD (p<= 5 x 10'®).

e One locus, FMN2/GREM2 ( rs9287237, p = 1.9 x 10”), reached
genome-wide significance in the analysis on trabecular vBMD.

e 151021188 (RANKL locus) was significantly associated with cortical
porosity.

o 159287237 (FMN2/GREM?2) was significantly associated with
trabecular bone volume fraction, number and thickness, as well as
fracture risk and prevalent x-ray verified vertebral fractures in the
MrOS Sweden cohort and with GREM2 expression in human
osteoblasts.

35



Genetic studies of the regulation of bone parameters and serum testosterone

e There was a low correlation between femoral neck aBMD and
cortical vBMD (correlation= 0.04) and a modest correlation between
femoral neck aBMD and trabecular vBMD (correlation=0.65).

Discussion

A number of GWA meta-analyses have been performed identifying a
large number of SNPs associated with aBMD (58, 99-103). Although aBMD
decreases with age, it is well established that age is also a major predictor of
fracture independently of aBMD (27). The increased risk of fractures later in
life is believed to be due to a deterioration of bone quality that is not
detectable by DXA. This age-associated deterioration is associated with
trabecular perforation, thinning, and loss of connectivity, as well as increased
cortical porosity (27, 104).

Thus, the objective of the present study was to identify genetic
determinants of vBMDs and bone microstructure parameters separately for
the cortical and trabecular bone compartments. Due to the fact that only a few
of the subjects included in this study had data available from a HR-pQCT
analysis, we started by performing the GWAS on cortical and trabecular
vBMD as analysed by standard pQCT and then evaluated the associations for
identified genetic signals on bone microstructure using the HR-pQCT with
higher spatial resolution.

Analyses using bone microstructure have previously enabled us to
identify a missense variant in the WNT16 gene to be associated with cortical
bone thickness (105). Translational research later demonstrated that mice
lacking the WNT16 gene had reduced cortical thickness (18).

Of the five identified significant vBMD loci, one of the four cortical
vBMD loci (LOC285735) and the trabecular vBMD locus (FMN2) are novel
bone-related loci. The remaining three significant cortical vBMD loci have

previously been shown to be associated with aBMD in paper I and elsewhere
(58, 100).

The low to modest correlation between the vBMD phenotypes and
aBMD means that there is information on bone-specific traits that cannot be
quantified by DXA measurements. This might also help explain why this
study was able to identify novel bone-associated genetic loci despite the low
number of subjects included compared to that of paper I.
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Some recent studies have confirmed the effect of RANKL on cortical

vBMD, whereas others have also shown an effect on the trabecular traits
(106-109).

The significant SNP rs9287237 resides in the FMN2 locus. FMN2 has
not previously been described to be associated with skeletal phenotypes.
However, rs9287237 is located only slightly downstream of GREM2, which
is an extracellular antagonist of bone morphogenetic proteins (BMPs) and it
inhibits osteoblastic differentiation (110, 111). Interestingly, the eQTL
analyses in human osteoblasts demonstrated that this SNP was significantly
associated with the expression of the nearby GREM2 gene. In fact, the allele
that was associated with increased trabecular vBMD, increased trabecular
bone volume fraction and reduced risk of vertebral fractures was also
associated with a decreased expression of GREM?2 in human osteoblasts. This
suggests that GREM2 might be the gene affecting the trabecular vBMD.
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44 PAPERIV

Causal relationship between obesity and serum testosterone status in men: A
bidirectional Mendelian randomization analysis

Aim
To determine if high BMI causes low T, or if low T causes high BMI in
men using a bi-directional MR approach

Serum levels of T were measured in 7,446 men from Denmark, Germany
and Sweden. The study subjects also had genotype data on 97 BMI-
associated SNPs and 3 T-associated SNPs readily available. Based on the
results from our previous GWAS we developed both weighted and un-
weighted genetic risk scores for both BMI and T. Using a bi-directional MR
analysis we then examined the direction and causality of the relationship
between BMI and T. Sub-analyses included testing the association between
the weighted genetic risk scores for both BMI and T with SHBG and dividing
the GRS for T into SNPs residing within and outside the SHBG locus.

Main results
e Both the weighted (,,GRSgmi, p =2.0 x 10_3) and the un-weighted
(wGRSpMm, p=1.7 X 10_3) genetic risk score for BMI were
significantly and inversely associated with serum T in the meta-
analyzed combined cohort. A pooled analysis showed similar results.

e For a body weight reduction, where BMI declines from 30 (cut off
for obesity) to 25 (cut off for overweight) kg/m?, the effect would
equal roughly a 13% to 15% increase in serum T.

e Neither the GRSt nor the , GRSt (or the GRSs developed for T
SNPs within and outside the SHBG locus) were associated with BMI
in the included cohorts. Furthermore, the autosomal SNPs were not
individually, or combined, associated with BMI using the GIANT
consortium of up to 104,349 men.

Discussion

The prevalence of having a low total serum T (defined as <300 ng/dl)
based on one sample ranges from 24 - 77% (112-117). Adding further
requirements such as an additional sample, that the samples are taken in the
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morning and that the patient has clinical symptoms lowers the prevalence to
somewhere around 6% (112, 113).

Although Sweden is still trailing the US, the number of patients receiving
TRT in Vistra Gotalandsregionen, a part of Sweden, has increased steadily
over the last few years, which coincides at least partly with the timing of
aggressive advertisement campaigns depicting TRT as somewhat of a miracle
pill for (ageing) men (118, 119).

Observational studies demonstrate that obesity is associated with low
serum T (54), but the direction and causality of this relationship is unclear.
Although most randomized, placebo-controlled trials have indicated that T
treatment increases lean mass and reduces fat mass in men with low serum T
(120-125), the effect of different T levels on BMI and body weight is
inconsistent. Reverse causation has been proposed as one possible
explanation (126-128).

In light of the obesity epidemic in the western world, the inverse
association between T and obesity-related diseases (70, 129, 130) has
initiated a discussion as to whether T supplementation could be used as a
means to reduce the risk of developing obesity-associated cardiometabolic
diseases in men with low serum T. Reverse causation as well as safety
concerns regarding increases in cardiovascular risk still need to be addressed,
however (131, 132).

In the present study, we found evidence of a causal effect of BMI on
serum T. Each SD genetically instrumented increase in BMI was associated
with a 0.25 SD decrease in serum T, which is similar to the effect of the
observational association. For someone reducing their BMI from 30 to 25
kg/m?, this equals a 13 - 15% increase in serum T. The finding is also in line
with a recent meta-analysis by Corona et al that revealed that body weight
reductions as a result of both low-calorie diet and bariatric surgery are
associated with significantly increased serum T (133).

The identified causal effect of BMI on serum T was rather similar
regardless of if the calculations were performed by pooling the samples or
meta-analyzing the results from each cohort, or whether weighted, or un-
weighted, genetic risk scores were used.
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In contrast, we found no evidence of a causal effect of serum T on BMI,
regardless of whether a weighted or un-weighted model was used.
Furthermore, since SHBG is known to be associated with serum T levels, we
also performed a sub-analysis where the SNPs constituting the GRS for T
where divided based on whether they were within or outside the SHBG locus.

Despite the fact that the study was well-powered according to the power

analysis, a key assumption underlying this result was that the causal effect of
T on BMI was close to the observed association. Since it is possible that the
causal effect is smaller, implicating that the study might still be
underpowered, we also used the GIANT consortium to test the association
between T-related autosomal SNPs and BMI in a much larger sample
including as many as 104,349 men. Despite the considerably larger sample
size, we failed to identify a causal role of T on BMI.
One of the greatest challenges when applying an MR analysis to answer
questions of causality in biological systems is the question of pleiotropy,
where one gene affects the outcome independent of the exposure of interest.
By using as many as 97 recently reported independent SNPs to index BMI,
we were able to minimize the risk of shared pleiotropy and linkage-
disequilibrium-induced confounding pleiotropic effects (134, 135). Also, the
use of two separate independent genetic instruments with similar point
estimates of the causal effect of BMI on serum T further reduced the risk of
pleiotropy (134, 135). Despite the efforts to minimize the risk of pleiotropy
described above, it is a limitation of this study that none of the more recently
developed sensitivity analyses such as MR-Egger were performed.
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5 SUMMARY

In the largest GWAS on DXA-derived BMD to that date, we identified 56
genetic loci, of which 32 where novel, associated with two-dimensional
aBMD at the femoral neck and/or lumbar spine.

Based on these findings, we developed two genetic risk scores. One
based on those SNPs that were significantly associated with BMD (GRS63)
and one that was based on those SNPs that were significantly associated with
fractures (GRS16). Both GRSs were associated with fractures, but the
estimated effect sizes were substantially reduced after adjustments for BMD.
The clinical utility, as assessed by AUC and reclassification, was limited
when BMD is known.

As the 2-dimensional DXA technique cannot differentiate between
cortical and trabecular bone, we performed GWASs using the more specific
3-dimensional pQCT. Using this technique and HR-pQCT, we managed to
identify one novel locus significantly associated with cortical vBMD and one
significantly associated with trabecular vBMD, trabecular number and
thickness as well as GREM2 expression in human osteoblasts and fracture
risk.

Low serum T levels are associated with an increased risk of osteoporosis
and fractures. but the determinants of serum T are to a large extent unknown.
Observational studies have demonstrated that obesity is strongly associated
with low serum T, but the direction and causality of this relationship is
unclear. As a second objective of this thesis, we therefore applied an MR
approach and found evidence of a causal effect of BMI on serum T, where 1
SD lower BMI increased serum T by 13 - 15%. No evidence was found
supporting a causal effect of serum T on BMI.
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6 GENERAL DISCUSSION AND FUTURE
PERSPECTIVES

When we performed the largest GWAS on FN and LS BMD at that time,
we identified 32 novel loci. These findings could be of use as potential new
pharmaceutical targets and/or for improving prediction models to identify
patients at risk of osteoporotic fractures. Admittedly, in our search for new
pharmaceutical targets, a GWAS is merely the beginning, but a potentially
important one. In fact, evidence suggests that drug targets implicated by
GWAS are twice as likely to succeed in clinical trials (136), which, given the
costs of clinical trials, is of substantial worth. Interestingly, the WNT16
identified in paper I and elsewhere might well turn out to be such an example.
The work of our research group and others (18, 137, 138) has revealed at
least part of the mechanisms by which it exerts its effect on BMD. Also, the
FMN2/GREM2 gene identified in paper III, with an effect on both trabecular
bone and fracture, also constitutes an interesting object for further
mechanistic studies.

In contrast to the two promising examples discussed above from paper I
and II1, the total genetic variance explained (5-6%) of BMD in paper I, and
elsewhere, has been low despite large sample sizes. This is not solely an issue
for BMD, but seems to be the case for most complex traits in human
populations (139). The debate on the missing heritability has fueled the
discussion regarding the success or failure of GWAS. Interestingly, Yang et al
demonstrated that, for height at least, most of the heritability is not missing.
Rather, it has still to be detected because of the small individual effects that
are too small to pass stringent significance tests. Moreover, the remaining
heritability is due to incomplete linkage disequilibrium between causal
variants and genotyped SNPs, exacerbated by causal variants having lower
MAF than the SNPs explored to date (139). Thus, still larger sample sizes
that allows for identification of SNPs with smaller effects and SNPs with
lower allele frequencies, together with population-specific imputation panels
is likely to increase the variance explained. Also, several theoretical studies
have suggested that by selecting subjects from the extremes of the population
distribution, power can be increased considerably (140-142) given the same
sample size. Hence, the fact that the UK Biobank
(http://www.ukbiobank.ac.uk/) was made available to researchers world-wide
with its large sample size and well-characterized phenotypes and state-of-the-
art whole genome sequencing, it is not unlikely that the variance explained
will increase dramatically for a number of different phenotypes. In fact, a
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recent analysis on heel BMD using ultrasound in the UK Biobank, revealed
153 new loci significantly associated with BMD at this site. This explained
approximately 20% of the total genetic variance (143).

In paper I, we aimed at identifying the clinical utility of the findings in
paper 1. Although associated with BMD and fractures, the GRSs did not
improve AUC significantly when BMD was part of the base model. This is in
line with the results of Lee et al (144). Although both Lee and the present
study found significant improvements of NRI, it is questionable whether this
translates into a meaningful increase in clinical utility.

A future GRS for fracture prediction might benefit from the addition of
markers identified in other fracture-associated traits such as risk of falls and
our recent co-authored GWAS on lean mass (145). Using the results from
larger GWASs on more detailed specific bone-related phenotypes such as
trabecular and cortical vBMD will most likely also yield important
contributions. The weight assigned to each marker could then be assigned in
a similar fashion as in paper II using each SNP's effect on fracture risk. These
extended GRSs could then potentially improve fracture risk prediction when
combined with the clinical risk factors, enabling personalized fracture risk
assessment.

There are several alternatives to the prediction model used in paper II.
One of the more obvious is to use a less stringent p-value threshold for the
inclusion of SNPs (i.e. resulting in more true positives and false positives in
the model). This approached has been adopted by many studies of late (146-
152). Results indicate that this could improve the prediction capability of the
model (153-156). The optimal threshold, however, depends on a number of
factors, including the ratio of true positives to false positives, sample size
(possibly due to the fact that true positives become more enriched in the SNP
sets with lower p-value thresholds in larger sample sizes) and the metrics
used for the evaluation of risk prediction (151, 154).

The findings in paper III explained 1.5% of total genetic variance of
cortical vBMD and 0.7% of trabecular vBMD in the replication cohort. If the
ratio between genetic variance and total variance is taken to be roughly the
same for these traits as for aBMD, this equals a genetic variance of about 1.8-
2% and 0.9-1.2%, respectively. Hence, despite having a sample size of less
than one tenth of that used in paper I, in paper III we managed to identify
new loci with an explained genetic variance of 1/3 of that explained by both
new and already known loci in paper I. Part of the explanation might lie in
the fact that the cohorts used in paper III were based almost exclusively on
Caucasian men, whereas the study population used in paper I was highly
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genetically heterogenous. However, the most plausible explanation is that the
complex nature of aBMD with a mixture of different variables including
cortical and trabecular vBMD and bone dimensions introduces more noise
than do more specific individual phenotypes such as cortical, or trabecular
vBMD. Regardless, rather than just increasing the sample size for the readily
available aBMD by more genetically heterogeneous cohorts, it would be well
advised to consider moving forward with more detailed studies using pQCT
or HR-pQCT in homogeneous populations.

The findings in paper IV are important due to the increasing trend of T
prescription and safety concerns related to T treatment. While we found no
evidence of a causal effect of serum T on BMI, it should be remembered that
BMI is a metric of weight and does reflect neither the distribution of body fat
nor the distribution between muscle and fat. Hence, it cannot be ruled out that
an effect on fat loss is at least partly compensated for by a gain in lean mass.
Future studies on more specific phenotypes with known connections to CVD
are warranted.
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7 CONCLUSION

Osteoporosis and its related fractures are a global public health concern,
accounting for huge costs to society, with costs expecting to increase further
with an aging population. By using the largest sample size to date then, we
managed to identify 32 novel genetic loci associated with aBMD at the
femoral neck and/or lumbar spine. By developing genetic risk scores based
on these findings we showed, unfortunately, that they had limited clinical
utility for fracture prediction, when aBMD is known. The utility of these
findings should not only be discussed in terms of fracture prediction,
however, as evident by the WNT16 gene. The WNT16 gene identified in
paper I and elsewhere have recently been the subject of intense research as
our research group and others have identified mechanisms and effects that
make it interesting to evaluate its merits as a potential new pharmaceutical
target.

Bone at different skeletal sites consists of a mixture of trabecular and
cortical bone. At some sites trabecular bone is the predominantly bone type,
whereas cortical bone is more abundant at other sites. Although aBMD is the
golden standard for diagnosing osteoporosis in a clinical setting, it cannot
differentiate between cortical and trabecular vBMD. We therefore performed
a successful GWAS on cortical and trabecular vBMD that, despite its modest
sample size, identified two novel loci associated with cortical and trabecular
vBMD, respectively.

Finally, in paper IV we applied an MR approach and found evidence of a
causal effect of BMI on serum T, but not the other way around. This supports
the idea that the increasing number of obese non-hypogonadal men with low
serum T should be offered lifestyle interventions rather than T treatment as a
first intervention. In fact, based on the trends of reduced serum T and
increased BMI in men, together with these results, it is quite possible that
successful population level interventions reverting the obesity epidemic
might also lead to a reversal of the secular trend of reduction in serum T.
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