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ABSTRACT 

Acute kidney injury is a common complication after cardiac surgery with 

cardiopulmonary bypass (CPB), and has a major impact on morbidity, 

mortality and costs. The mechanism of CPB-related renal impairment is not 

fully understood. The aim of this thesis was to describe how CPB affects the 

kidneys, and whether increased CPB flow might improve renal oxygenation. 

In addition, we compared the systemic and renal effects of two inotropes in 

patients with impaired cardiac and renal function.  

Methods: In patients undergoing cardiac surgery we used urine measurement 

of N-acetyl--D-glucosaminidase (NAG) to assess tubular cell injury (n=61). 

Renal vein catheterization was used to study renal blood flow, oxygenation, 

and filtration during normothermic CPB at 2.5 L/min/m2 (n=18), and at 

different CPB flow levels (2.4, 2.7 and 3.0 L/min/m2) applied in a randomized 

order (n=17). In 32 patients with cardiac and renal impairment, pulmonary 

artery and renal vein catheters were used to study the differential effects of 

levosimendan and dobutamine in a randomized blinded trial.  

Results: NAG was elevated already after 30 minutes of CPB, and increased to 

a six-fold peak early after discontinuation of CPB. In a multivariate analysis, 

the duration of CPB and the degree of rewarming were independent predictors 

of peak NAG excretion.  Renal oxygenation was impaired during CPB, mainly 

through reduced oxygen delivery due to hemodilution and renal 

vasoconstriction. After CPB, renal oxygenation was further impaired due to 

increased oxygen consumption and inefficient sodium transport. At higher than 



normal CPB flow rates, renal oxygen extraction was reduced by 12 – 23 % at 

an unchanged filtration fraction, indicating that renal oxygenation was 

improved. In contrast to dobutamine, levosimendan did not only increase 

cardiac output and renal blood flow, but also increased the glomerular filtration 

rate by 22%.  

Conclusions: Cardiopulmonary bypass impairs renal oxygenation due to renal 

vasoconstriction and hemodilution during and after cardiopulmonary bypass, 

accompanied by increased release of a tubular injury marker. The 

postoperative tubular injury is increased after longer CPB times and higher 

degree of rewarming. Increasing the CPB flow rate may ameliorate the 

impaired oxygenation seen during CPB. In patients with heart failure and renal 

impairment, levosimendan may be the inotrope of choice.  

Keywords: cardiac surgery, cardiopulmonary bypass, glomerular filtration 

rate, renal blood flow, renal oxygenation, tubular injury, N-acetyl-ß-D-

glucosaminidase  
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SAMMANFATTNING PÅ SVENSKA 

Sedan 1950-talet har användning av hjärtlungmaskin där maskinen tar över 

hjärtats pumpmekanism möjliggjort operation på stillastående hjärta. Tyvärr 

drabbas upp till 30 % av patienterna av njursvikt efter operationen, vilket leder 

till ökad kostnad, vårdtid, lidande och dödlighet. Risken för njurskador vid 

hjärtlungmaskinanvändning har varit känd i decennier, men fortfarande är 

orsakssambandet inte klarlagt, vilket gör det svårt att ta fram effektiva 

förebyggande åtgärder. Samtidig hjärt- och njursvikt, ett tillstånd med hög 

dödlighet, behandlas ibland med hjärtstärkande läkemedel. Syftet med den här 

avhandlingen var att studera hur hjärtkirurgi med hjärtlungmaskin påverkar 

njurarna, och att undersöka om ökat blodflöde i hjärtlungmaskinen kan 

förbättra njurens syresättning. Därtill studerades skillnaderna i effekt på hjärta 

och njure mellan två hjärtstärkande läkemedel hos patienter med samtidig 

hjärt- och njursvikt.   

I de tre första artiklarna visades bland annat att man redan efter 30 minuter på 

hjärtlungmaskin ser en njurcellskada, och skadan är som störst ca en timme 

efter avslutad hjärtlungmaskin. Skadans blir större ju längre tid patienten 

tillbringar i hjärtlungmaskin och ju större återuppvärmning av kroppen som 

behövs. Under användning av hjärtlungmaskin sker en spädning av blodet och 

en omfördelning av blodflödet bort från njurarna, vilket försämrar njurarnas 

syresättning. Efter hjärtlungmaskin blir njurarnas förmåga att koncentrera urin 

mer ineffektiv, vilket ökar syrgasbehovet och förvärrar syrebristen i vävnaden. 

Om man ökar blodflödet i hjärtlungmaskinen förbättras njurarnas syresättning, 

sannolikt på grund av ökat njurblodflöde och syrgastillförsel. I det fjärde 

delarbetet visades att båda de hjärtstärkande läkemedlen levosimendan och 

dobutamin ökar hjärtats pumpförmåga och blodflödet till njurarna hos patienter 

med hjärt- och njursvikt. Vid behandling med levosimendan sågs dessutom en 

förbättrad njurfunktion.  

Vår slutsats är att användning av hjärtlungmaskin försämrar njurarnas 

syretillförsel, vilket leder till en syrebristskada i njurarna, som ytterligare 

förvärras efter avslutad behandling. Denna kunskap kan bidra till förståelsen 

av njursvikt efter hjärtkirurgi och strategier för att förhindra eller behandla 

detta allvarliga tillstånd. Ökat blodflöde i hjärtlungmaskin kan förbättra 

syresättningen, och vi planerar nu en uppföljande jämförande studie av olika 

blodflödens effekt på postoperativ njurskada och njursvikt. Vid behov av 

hjärtstärkande behandling hos patienter med hjärt- och njursvikt kan 

levosimendan förbättra både syresättning och funktion hos njurarna, och bör 

därför övervägas som förstahandsval. 
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1 INTRODUCTION 

1.1 CARDIOPULMONARY BYPASS 

Since its first use in 1953, cardiopulmonary bypass (CPB) has made open 

cardiac surgery possible.1 CPB allows the surgeon to operate on a non-beating 

heart, under fairly blood-less conditions and good visibility while the function 

of the heart and lungs are replaced by the CPB system. The technique has 

undergone extensive development, but retains some key features, which are 

briefly described below.  

Figure 1. Schematic drawing of the cardiopulmonary bypass circuit. CC Creative 

Commons License.  

The basic bypass circuit consists of a pump, an oxygenator, a heater/cooler 

system and tubing. These parts allow for the clinical perfusionist, a highly 

specialized nurse/technician, to control the systemic blood flow, gas exchange 

and temperature of the patient. The CPB circuit, usually constituting a volume 

of 1–1.5 L, is filled with fluid, primed, before the patient is connected to the 

system. This priming solution can be blood, but is often a cell-free electrolyte 

solution, which means that the patient undergoing cardiac surgery with CPB is 

to some extent hemodiluted. After systemic heparinization, the ascending aorta 

(or other sites) and caval vein(s) are cannulated, and the patient is connected 

to the CPB circuit. The venous return is drained from the vein cannulas, flows 

passively into a reservoir and is then pumped through the oxygenator and back 
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into the patient via the aortic cannula. An aortic clamp placed proximal to the 

aortic cannula isolates the heart from the body, and a potassium-rich solution, 

cardioplegia, is then injected into the aortic root. A competent aortic valve 

prevents back-flow into the left ventricle, and the aortic clamp prevents 

systemic flow, thus forcing the cardioplegic solution to perfuse the coronary 

arteries and cause cardiac arrest. Additional cardioplegia may be administered 

as needed during the CPB period. Upon completion of the surgery, the aortic 

clamp is removed, the returning coronary blood flow washes out the 

cardioplegia and the cardiac contraction resumes.  

Historically, a pump flow of 2.2–2.5 L/min/m2, mimicking the cardiac output 

of an unsedated adult person, has been considered adequate for normothermic 

CPB.2,3 When hypothermia is used, the CPB flow is reduced due to the lower 

whole-body oxygen consumption. Mean arterial pressure is usually kept within 

50 – 80 mmHg by use of vasoactive substances.  

Although the vast majority of patients undergoing cardiac surgery with CPB 

emerge unscathed, some complications remain a concern. These include 

coagulopathy and bleeding, and cerebral dysfunction, both short- and long-

term. Renal impairment, the main focus of this thesis, is a well-known 

complication after cardiac surgery with CPB, and will be discussed in depth in 

the following section.  

1.2 ACUTE KIDNEY INJURY AND CHRONIC 

KIDNEY DISEASE 

Acute kidney injury (AKI), previously called acute renal failure, is a clinical 

syndrome of rapidly deteriorating renal excretory function. The current 

definition of AKI by Kidney Disease: Improving Global Outcomes (KDIGO) 

is based on elevated levels of serum creatinine (SCr) and urine output, see 

table.4 Both criteria reflect the ability of the kidney to uphold its functional 

capacity, i.e. glomerular filtration. Creatinine is formed upon breakdown of 

creatine in muscle cells, and produced at a fairly constant rate depending on 

the muscle mass. Creatinine is then eliminated in the kidneys through 

glomerular filtration and secretion by the proximal tubulus cells, with little or 

no reabsorption. Thus, when glomerular filtration is reduced, SCr 

concentration increases. The cut-off value was based on the findings by 

Lassnig and colleagues that patients with SCr increase ≥26.5 μmol/l after 

cardiac surgery suffered a four-fold mortality increase.5    
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Table 1. KDIGO criteria for the definition of AKI.4  

RRT; renal replacement therapy. 

CKD is defined as abnormalities of kidney structure or function persisting for 

more than 3 months with implication for health. GFR is considered the best 

overall indicator of kidney function, and a decreased GFR is defined as 

<60 ml/min/1.73 m2, which means a roughly halved filtration compared to 

healthy young men and women.6 Common causes of CKD include diabetes 

mellitus, parenchymal kidney disease and cardiac or hepatic failure.   

1.3 SCOPE OF THE PROBLEM 

After cardiac surgery, up to one third of the patients develop AKI of any grade, 

as assessed by increased serum creatinine or urinary output (KDIGO).7 The 

incidence is around 10 % in patients undergoing isolated CABG8, and is higher 

after valvular surgery and combined procedures.9 The importance of AKI is 

underlined by the close correlation between AKI, mortality and morbidity. 

Indeed, even minor increases in serum creatinine after cardiac surgery are 

associated with impaired prognosis5,8 and the mortality increases with the 

grade of renal impairment.10 Thus, the in-hospital risk of death is quadrupled 

in patients with milder AKI11, and the mortality rates in patients who require 

dialysis as a result of AKI are above 35 %.10 The economic impact of AKI is 

monumental. In a recent study, patients with AKI had a longer stay (median 3 

days), and when renal replacement therapy was needed, the length of stay was 

11 days longer than for comparable patients without renal impairment.12 AKI 

is associated with higher costs than myocardial infarction or gastrointestinal 

bleeding, and comparable with the cost of stroke. Another recent US study 

found that the mean hospitalization cost was doubled in patients with post-

cardiac surgery AKI, and that the annual cost of AKI was more than 1 billion 

USD.9   

Furthermore, patients who suffer an episode of AKI are at increased risk of 

chronic kidney disease and end-stage renal failure requiring dialysis or 

transplantation.8 This emphasizes that an AKI episode might be more serious 

Stage Serum creatinine Urine output 

1 1.5 – 1.9 times baseline OR ≥ 26.5 μmol/l 

increase (within 48 hours) 

< 0.5 ml/kg/h for 6 – 12 hours 

2 2.0-2.9 times baseline < 0.5 ml/kg/h for ≥ 12 hours 

3 3.0 times baseline OR increase to ≥ 354 

μmol/l OR initiation of RRT 

< 0.3 ml/kg/h for ≥ 24 hours OR 

anuria for ≥ 12 hours 
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than previously believed. It has also been argued that AKI and CKD may be 

viewed as a continuum.13 Thus, an initial renal insult may cause AKI, either 

transient or persisting, with a further progress to CKD. 

1.4 RENAL ANATOMY AND PHYSIOLOGY 

The kidneys are paired organs with retroperitoneal location at each side of the 

vertebral column at the level of the twelfth thoracic vertebra. In a cross section, 

the outer cortex region and the inner medulla are clearly visible. Each kidney 

is normally perfused via a single renal artery, which divides into interlobar 

arteries, with further subdivisions down to the afferent arterioles and the 

glomerular capillaries, where the filtration takes place. The blood flow then 

enters the efferent arterioles, perfusing each, single nephron.  

 

 

Figure 2. Representative image of the renal preglomerular vessels (Panel A), 

glomerular vessels, and tubules (Panel B). From Guercy 201714, with permission.  

Nephrons are the basic functional unit of the kidneys, and around one million 

nephrons are found in each kidney. The nephrons consist of the Bowman’s 

capsule, the proximal tubule, the thin loop, the distal tubule and the collecting 

duct. The afferent arteriole feeds into the glomerulus, where primary urine is 

formed by filtration of plasma across the basal membrane into Bowman’s 
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capsule. The filtration is influenced by several factors; the permeability of the 

basal membrane (ultrafiltration coefficient, KUF) and the differences in 

hydrostatic and colloid osmotic pressure across membrane. The glomerular 

filtration rate (GFR) relationship can be expressed as:  

GFR = KUF x [(Pglom + πBow) – (PBow + πglom)] 

where Pglom and PBow are the hydrostatic pressures, and πglom and πBow are the 

colloid osmotic pressures in the glomerulus and Bowman’s capsule, 

respectively. Blood flow may affect GFR by changes the colloid oncotic 

pressure. When plasma flow through the glomerulus is reduced, the increased 

transit time allows for more filtration and higher πglom, which acts to reduce 

GFR. The opposite is true for increased RBF. Thus, the GFR is to some extent 

flow dependent.  

The primary urine is concentrated by a 100-fold along its way through the 

tubular system. Thus, the primary urine volume filtered through the glomeruli, 

approximately 180 L/day, is reduced to an excreted volume of 1–2 L/day. This 

is a highly energy demanding process, which is discussed in further detail 

below.   

Cortical nephrons constitute the majority (85 %), and have glomeruli close to 

the surface of the kidney and shorter loops of Henle. The remaining 15 % are 

the juxta-medullary nephrons, with have long loops of Henle that penetrate 

deep into the renal medulla. The urine concentration capacity of the nephron 

is proportional to the length of the loop of Henle.  

1.4.1 RENAL PERFUSION AND BLOOD FLOW CONTROL 

Although the kidneys’ combined weight is less than 350 g, they receive about 

20 % of the cardiac output, or 1 L per minute in healthy adults. The renal blood 

flow is controlled by several mechanisms, which affect the vascular tone of the 

afferent renal arterioles. The so-called autoregulation of renal blood flow 

maintains the blood flow and GFR over a wide range of mean arterial pressures 

(MAP). Thus, in the MAP range of 80 – 180 mmHg, the renal blood flow is 

held fairly constant.15 The renal autoregulation appears to be effective in 

controlling cortical blood flow, but less so in the medulla.15 The two primary 

mechanisms of renal autoregulation are the myogenic response and the tubulo-

glomerular feedback mechanism (TGF).  

The myogenic response is a rapid mechanism by which elevated systemic 

blood pressures induce vasoconstriction of the afferent arterioles. Stretch of 
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the vascular smooth muscle activates ion channels, which allows cellular influx 

of calcium and cellular contraction. Several vascular beds, including muscle, 

brain and kidneys, are autoregulated through this mechanism.15  

The TGF, a somewhat slower mechanism, is sensitive to renal metabolic 

changes. It is dictated by signaling from the macula densa cells, which reside 

adjacent to the distal tubule and the afferent arterioles. Chemoreceptors in the 

macula densa respond to the sodium concentration in the filtrate by release of 

adenosine triphosphate and/or adenosine, which affect the tone of the afferent 

arterioles. Increased blood pressure leading to increased GFR and sodium 

concentration induces afferent arteriolar constriction and subsequent reduction 

in blood flow and GFR. Decreased blood pressure or GFR leads to increased 

blood flow by vascular relaxation. TGF has been suggested to have a role in 

the prevention of tubular ischemia by reducing the sodium load when 

metabolic demand exceeds DO2.
16 

These two mechanisms operate through changes in the afferent arteriolar tone, 

and thus in theory has no effect on the filtration fraction, i.e. GFR/RBF.  

However, GFR and RBF may change independently if the tone of the efferent 

arterioles is altered.  

The renin-angiotensin system exerts control of the renal circulation through 

renin release from granular cells in the afferent arterioles. Renin may be 

released in response to reduced blood pressure (vascular wall tension), by 

sympathetic stimulation or by reduced sodium concentration at the macula 

densa cells. Renin then reacts with angiotensin to produce angiotensin I, which 

is converted to angiotensin II by angiotensin converting enzyme. Angiotensin 

II causes vasoconstriction of the efferent arterioles, which reduces RBF but 

maintains or increases GFR. High levels of angiotensin II leads to contraction 

of mesangial cells in the glomerulus (which reduces GFR) and causes systemic 

vasoconstriction with further reduction of RBF. Increased renin-angiotensin 

activity is common in heart failure patients17, and might be one mechanism by 

which reduced cardiac function may negatively affect renal function, e.g. the 

cardiorenal syndrome.   

Several agents may cause vasodilatation or vasoconstriction in the renal 

circulation and balances or counteracts the above-mentioned mechanisms. 

Prostaglandins and natriuretic peptides induce vasodilatation, and may have 

important roles in the control of intrarenal flow distribution. Vasopressin 

modulates the medullary blood flow, and the effect appears to be dependent on 

the hydration status of the studied animals.18  
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Nitric oxide (NO) is an important regulator of oxygen supply and oxygen 

consumption. NO induces vasodilation of both afferent and efferent arterioli, 

increases GFR and also act on mitochondria to reduce oxidative metabolism.14 

Reducing NO production by blocking of the NO-synthase, has been shown to 

increase renal oxygen consumption and reduce renal plasma flow.19,20 

 

Figure 3. Intrarenal blood flow and oxygen tension. Reproduced with permission 

from Brezis 1995, Copyright Massachusetts Medical Society.21  

The intrarenal blood flow distribution is highly uneven. The medullary 

circulation is arranged in parallel to the cortical circulation, which in turn is 

parallel to the total body circulation.22 The renal medulla is perfused by cortical 

efferent arterioles, and receives less than 50 % of the cortical blood flow.  

Medullary oxygen tension is low, around 10–15 mmHg, compared to 50 

mmHg in the cortex.21 While the osmolality is plasma-like in the cortex, the 

low blood flow in combination with counter-current arrangement of the vasa 

recta, supplying the loops of Henle, permits the medulla to maintain a high 

osmolality. This facilitates efficient electrolyte and water reabsorption.  
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1.4.2 RENAL OXYGEN CONSUMPTION 

The oxygen consumption of the kidneys (RVO2) can be regarded as the sum of 

the contributions from the basal metabolism and the cost of active electrolyte 

transport. The basal metabolism, i.e. cellular processes apart from sodium 

reabsorption, constitutes approximately 15–25 % of the total RVO2.
23,24 

The bulk of the renal oxygen consumption is linked to tubular sodium 

reabsorption, which is a key process in the urine concentration mechanism. 

Sodium ions passively diffuse from the tubular lumen through the apical 

membrane of the tubular cells. The Na-K-ATPase actively transports sodium 

into the intersititum, from where it is absorbed into the tubular capillaries along 

a gradient formed by the intravasal colloid osmotic pressure. Tight junctions 

between the cells prevent the return of sodium into the tubular lumen.  

Figure 4. Tubulus cells and sodium transport. Sodium diffuses passively from the 

tubular lumen through the apical membrane of the tubulus cell, and is then pumped 

by the Na-K-ATPase through the basolateral membrane to the interstitium. Low 

intravascular colloid osmotic pressure draws the sodium into the peritubular 

capillaries. Tight junctions prevent the sodium from leaking back into the tubular 

lumen. From Redfors 2010, with permission.  

While the basal metabolic energy requirements are fairly constant at a given 

temperature, the cost of sodium transport varies with the load of filtered 
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sodium and the cost of reabsorption. Several studies have shown a close 

relationship between GFR, tubular sodium load and RVO2 in different 

settings.25-27 

The energetic cost of sodium reabsorption may vary between different sites 

along the nephron.28 It may also be affected by nitric oxide availability and 

neuro-hormonal milieu29, which may be significantly altered in kidney injury 

or disease. 

The renal medulla, more specifically the medullary thick ascending limbs 

(mTAL), harbors the highest concentration of Na-K-ATPase, and 

consequently has the highest oxygen consumption.30 Thus, the renal medulla 

is on the verge of hypoxia even in normal conditions due to the high medullary 

oxygen consumption, in combination with low blood flow and oxygen 

delivery.21 Therefore, the renal medulla is particularly susceptible to ischemia.  

1.5 CARDIOPULMONARY BYPASS AND 

KIDNEY INJURY 

The link between CPB and AKI has been debated and studied for decades. The 

pathophysiology is complex, and still poorly understood, which makes targeted 

interventions to ameliorate injury difficult. Some established risk factors for 

AKI after cardiac surgery are summarized in the table below.  

Table 2. Risk factors of AKI after cardiac surgery.  

Adapted from O’Neal, Crit Care, 2016,7, and Nadim, JAHA 2018.31  

In cardiac surgery, possible mechanisms of renal injury include inflammation, 

altered perfusion pressure and blood flow, micro-embolization and reperfusion 

injury.32 There is mounting evidence that renal oxygenation is of central 

Preoperative Intraoperative Postoperative 

Advanced age Complex surgery Hypovolemia 

Female gender CPB duration Hypotension 

Hypertension Hemodilution Anemia 

Chronic kidney disease Hypoperfusion Venous congestion 

Emergency surgery Transfusion Cardiogenic shock 

COPD Hypothermia Sepsis 

Diabetes Mellitus Emboli  

Anemia Inflammation  

Peripheral vascular disease Hemolysis  
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importance in the development of cardiac surgery-associated AKI (CS-AKI). 

During CPB, both the oxygen carrying capacity of the blood and systemic 

oxygen delivery seems to affect renal oxygen delivery. It has been shown that 

the degree of hemodilution33 and a decreased systemic oxygen delivery34,35 are 

independent risk factors for the development of postoperative AKI. More 

specifically, studies have found that nadir systemic oxygen delivery index 

(DO2I) below the range of 225–272 ml/min/m2 is a strong predictor of 

postoperative AKI.34,36,37 Temperature management may affect the oxygen 

consumption, and intraoperative hypothermia, elevated postoperative 

temperatures and rapid rewarming have been associated with AKI.38,39 The 

mechanisms of CS-AKI will be discussed further in detail in the discussion 

chapter.  

 

Figure 5. Pathophysiology of acute kidney injury following cardiac surgery. SNS; 

sympathetic nervous system, ROS; reactive oxygen species. From O’Neal 2016,7 CC 

License.  

 

No perioperative pharmacologic intervention has consistently shown effect in 

reducing CS-AKI40, and the efforts to find preventive measures has been 

hampered by the lack of understanding of the mechanisms behind of the CPB-

related renal impairment. Strategies aimed at minimizing the risk of CS-AKI 

are largely centered on systemic oxygen delivery, such as maintaining 
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perfusion pressure and hematocrit above critical levels, and provide adequate 

systemic blood flow.41 One approach to prevent renal hypoxia during CPB 

could be to optimize renal hemodynamics during CPB by e.g. increasing CPB 

pump flow rate with the aim to improve renal perfusion. Remarkably enough, 

this approach has, to our knowledge, not been studied in patients undergoing 

cardiac surgery with CPB.  

 

1.6 BIOMARKERS OF RENAL INJURY 

A biomarker is defined as “a characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes, 

or pharmacologic responses to a therapeutic intervention”.42 A number of 

biomarkers reflecting renal dysfunction or tubular injury have been developed. 

These are heterogeneous substances that originate from different cells or 

processes involved in renal injury. The biomarkers reflect changes in renal 

function (i.e. glomerular filtration) or structure, such as the integrity of renal 

tubulus cells. Their use may include prediction or early diagnosis of AKI and 

prediction of outcome. Structural or subclinical AKI is an emerging concept 

where cellular injury (assessed by biomarkers) occurs after an insult, but serum 

creatinine remains stable.43 

N-acetyl-β-D-glucosaminidase (NAG) is a lysosomal enzyme with high 

molecular weight (130 kDa) found in the renal proximal tubular cells. The 

large size of the molecule precludes glomerular filtration, and the low 

concentrations normally found in urine are mainly the result of exocytosis.44 

Thus, increased urine NAG-levels are considered to be an indication of tubular 

cell injury. This has been demonstrated in several settings, such as ischemic 

reperfusion injury after renal transplantation45, administration of nephrotoxic 

agents or radio contrast.44 NAG-excretion may also increase as a result of local 

infection or inflammation, such as glomerulonephritis46. In a review of 

biomarkers, postoperative urinary NAG had a modest predictive value for CS-

AKI47, comparable to most other studied compounds. However, the review 

found no studies where biomarkers were assessed, intraoperatively, during 

CPB. 
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Figure 6. Physiology of biomarkers of AKI (acute kidney injury). H-FABP; heart 

fatty acid binding protein, IGFBP-7; insulin-like growth factor binding protein 7, IL-

6; interleukin-6, IL-10; interleukin-10, IL-18; interleukin-18, KIM-1; kidney injury 

molecule-1, L-FABP; liver fatty acid binding protein, NAG; N-acetyl-β-D-

glucosaminidase, NGAL; neutrophil gelatinase-associated lipocalin, TIMP-2; tissue 

inhibitor metalloproteinase-2. From Schaub 201648, CC License.  

  

1.7 INOTROPES AND RENAL FUNCTION 

In patients with heart failure (HF), renal impairment is common, and is an even 

stronger predictor of mortality than low left ventricular ejection fraction or 

New York Heart Association (NYHA) class.49 The use of inotropes in 

decompensated HF is considered an option for patients with severe reduction 

of cardiac output and compromised perfusion of vital organs, such as the 

kidneys.50 The drugs most commonly used are dopamine, dobutamine, 

milrinone and levosimendan. All of these agents increase cardiac output, but it 

is uncertain whether there are differences in their effects on renal function.  

Levosimendan is a calcium sensitizer and an opener of ATP-dependent 

potassium channels that has inotropic and arterial and venous dilating 

properties.51 Several studies have suggested that levosimendan may have 

beneficial effects on renal function, both in cardiac surgery52, HF 53 and heart 
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transplantation.54 Bragadottir et al found that levosimendan, when compared 

with placebo, increased both renal blood flow and glomerular filtration rate in 

post-cardiac surgery patients with normal preoperative serum creatinine.55  

Dobutamine is a catecholamine with beta-1 and beta-2-adrenergic effects, 

which causes increased cardiomyocyte contractility and reduced afterload.56 

Animal studies are conflicting  regarding  how dobutamine may influence renal 

vascular resistance and renal blood flow.  

Selected patients with HF may undergo cardiac transplantation. In these 

patients, preoperative renal impairment has been associated with higher early 

and late post-transplant mortality.57 It is unclear if strategies to optimize renal 

function may translate into improved survival. Currently, the guidelines from 

the American Heart Association and European Society of Cardiology give no 

suggestion on the choice of inotrope in the treatment of patients with HF and 

reduced renal function.58,59 
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2 AIM 

1. To study the effect of cardiac surgery with cardiopulmonary bypass 

(CPB) on a renal tubular cell injury marker, and to identify 

independent predictors of intraoperative tubular injury 

2. To study the impact of CPB on renal blood flow, glomerular 

filtration rate and renal oxygenation during cardiac surgery 

3. To study the effects of various CPB flow rates on renal oxygenation 

and renal filtration fraction during cardiac surgery 

4. To study the differential renal effects of the two inotropic agents, 

dobutamine and levosimendan, in patients with heart failure and 

reduced renal function  



Lukas Lannemyr 

15 

3 PATIENTS AND METHODS 

3.1 ETHICS AND TRIAL REGISTRATION 

All studies were performed in accordance with the recommendations guiding 

physicians in biomedical research involving human patients adopted by the 

18th World Medical Assembly, 1964 and later additions (Declaration of 

Helsinki). In addition, study IV was performed in accordance with the 

principles of ICH Harmonized Tripartite Guideline for Good Clinical Practice. 

The study protocols were approved by the Gothenburg Regional Ethics 

Committee. All studies were registered in ClinicalTrials.gov, with identifier 

for Paper I; NCT02410642, Paper II; NCT02405195, Paper III; 

NCT02549066, Paper IV; NCT02133105. 

3.2 PATIENTS 

3.2.1 Paper I, II and III – studies during cardiopulmonary 

bypass  

Studies I-III were undertaken at the Department of Cardiothoracic Anesthesia 

and Intensive Care, at Sahlgrenska University Hospital. All patients were 

informed at the pre-operative evaluation, and written informed consent was 

obtained from all patients before enrollment in the studies.  

In paper I, 70 adult patients scheduled for cardiac surgery with CPB and with 

a normal preoperative serum creatinine, were enrolled. Exclusion criteria were: 

CPB duration <60 minutes, lowest bladder temperature during CPB ≤30 °C 

and on-going treatment with nephrotoxic agents. In seven patients, surgery was 

cancelled or delayed, and 2 patients were excluded (one due to CPB duration 

<60 minutes, and one due to bladder temperature ≤30 °C). Thus, 61 patients 

completed the study protocol. Patient characteristics are summarized in table 

3. 

In paper II, 28 adult patients scheduled for cardiac surgery with CPB and with 

a normal preoperative serum creatinine and a left ventricular ejection fraction 

(LVEF) ≥50 % were enrolled. The exclusion criteria were: CPB duration <60 

min, unsuccessful catheterization of the renal vein, contraindication to radio-

contrast, cardiac transplantation and thoracic aortic surgery. In four patients, 

surgery was cancelled or delayed, two patients were considered non-eligible 

by the surgeon, and four patients were excluded (three due to unsuccessful 
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catheterization of the renal vein and on due to CPB duration <60 minutes). The 

characteristics of the 18 patients who completed the protocol are summarized 

in table 3. NAG-excretion data obtained from these patients were also used in 

study I. 

In Paper III, 28 adult patients scheduled for cardiac surgery with CPB and with 

a normal preoperative serum creatinine and a LVEF ≥50 % were enrolled. The 

exclusion criteria were: CPB time <60 min, unsuccessful catheterization of the 

renal vein, a body mass index ≥32 kg/m2, previous cerebrovascular lesion, and 

radiographic contrast allergy. In 10 patients, surgery was cancelled or 

postponed. Eighteen patients were randomized; one patient was excluded due 

to CPB duration <60 minutes. Thus, 17 patients completed the protocol, and 

their characteristics are summarized in the table 3. 

Table 3. Patient characteristics in papers I, II and III.  

Values are n (%) or mean±SD. CPB; cardiopulmonary bypass, CABG; 
coronary artery bypass grafting, COPD; Chronic obstructive pulmonary 
disease. Other surgical procedure includes combinations of Maze surgery 
and valve surgery. NA; data not available.   

 

Variable Paper I Paper II Paper III 

No of patients 61 18 17 

Male gender 43 (70) 16 (89) 14 (82) 

Age (years) 71±8 70±7 69±10 

Body Surface Area (m2) 1.93±0.08 1.95±0.20 1.95±0.22 

Left Ventricular Ejection Fraction 

(%) 

57±8 58±5 58±4 

Preoperative S-creatinine (μmol/L) 87±13 87±11 86±12 

CPB time (minutes) 133±44 132±31 123±41 

Aortic cross clamp time (minutes) 100±32 103±24 93±39 

Comorbidities    

- Hypertension 34 (58) 10 (56) 13 (76) 

- COPD NA NA 3 (18) 

- Atrial fibrillation NA 7 (39) 8 (47) 

- Diabetes Mellitus 5 (8) 1 (6) 1 (6) 

Type of surgery       

- Isolated valve surgery 19 (31) 9 (50) 7 (41) 

- Valve surgery and CABG 32 (53) 9 (50) 6 (35) 

- Other 10 (16) 0 4 (24) 
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3.2.2 Paper IV – levosimendan vs. dobutamine 

Individuals with chronic heart failure (HF), scheduled for a right-sided cardiac 

catheterization as a part of an elective heart transplant evaluation, were 

screened for study participation. The inclusion criteria were: 1) signed 

informed consent, 2) age ≥18 years, 3) chronic congestive heart failure 4) left 

ventricular ejection fraction (LVEF) ≤40 %, 5) serum-N-terminal pro-brain 

natriuretic peptide (NT-pro-BNP) ≥500 ng/L and 6) estimated (MDRD) or a 

measured GFR between 30–80 ml/min (clearance of chromium ethylene 

diamine tetra acetic acid [51Cr-EDTA]). The exclusion criteria were: 1) 

untreated acute HF, 2) systolic blood pressure <100 mmHg, 3) heart rate >100 

beats per minute, 4) a Canadian Cardiovascular Society class III angina 

pectoris or higher, 5) aortic stenosis, 6) hypertrophic cardiomyopathy, 7) 

restrictive cardiomyopathy, 8) presence of kidney disease diagnosed before 

HF, 9) recent administration of radiographic contrast, 10) radiographic contrast 

allergy, and 11) in the opinion of the investigator, a clinically significant 

disease that could be adversely affected by study participation.   

In total, 33 patients were enrolled. One patient, randomized to levosimendan, 

developed atrial fibrillation with circulatory instability prior to the study drug 

administration and was excluded. Thus, 32 persons completed the study. 

Patient characteristics are summarized in table 4.  
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Table 4. Patient characteristics from paper IV.  

Values are numbers (%), mean±SD, or median [interquartile range]. BMI; 
body mass index, DCM; dilated cardiomyopathy, eGFR; estimated 
glomerular filtration rate according to the Modification of Diet in Renal 
Disease formula, HF; heart failure, LVEF; left ventricular ejection fraction, 
mGFR; measured glomerular filtration rate, NT-proBNP; N-terminal pro-
brain natriuretic peptide, NYHA, New York Heart Association. 

  

 Variable   Levosimendan (n=16) Dobutamine (n=16) 

Gender Male 14 (88) 
 

14 (88) 
 

Age Years 58.1±11.6 
 

58.6±10.0 
 

BMI kg/m2 29.1±4.2  28.6±5.5  

NYHA class II 1 (6) 
 

1 (6) 
 

 
III 14 (88) 

 
12 (75) 

 

 
IV 1(6) 

 
3 (19) 

 

DCM   8 (50)   9 (56)   

Ischemic heart disease  8 (50) 
 

6 (38) 
 

Other cause of HF 0  
 

1 (6) 
 

Hypertension 4 (25) 
 

3 (19) 
 

Diabetes mellitus 6 (38) 
 

5 (31) 
 

Atrial fibrillation 8 (50) 
 

7 (44) 
 

Pulmonary disease 1 (6) 
 

3 (19) 
 

LVEF % 27.2±8.0 
 

26.0±8.1  
 

Heart rate beats/min 72±7 
 

76±15  
 

Hemoglobin g/L 127±18 
 

136±16 
 

S-creatinine μg/L 143±37 
 

122±31 
 

NT-proBNP ng/L 2290 [1500–4650] 1760 [1057–5995] 

eGFR ml/min 49.4±16.3 
 

55.3±18.7 
 

mGFR ml/min 42.8±15.4  
 

53.4±15.2 
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3.3 METHODS 

3.3.1 Anesthesia and CPB - Papers I–III 

Anesthesia and CPB were conducted in accordance with our department’s 

clinical standard, unless specified below. Premedication consisted of 

oxazepam (5–10 mg) and oxycodone (10 mg). Anesthesia was induced by 

administration of fentanyl (5–10 µg/kg), propofol (1–1.5 mg/kg) and 

intubation facilitated by rocuronium (0.6 mg/kg). Before and after CPB, 

anesthesia was maintained with sevoflurane (0.5–2.5%) in a 50% O2/air 

mixture. During CPB, anesthesia was maintained with an intravenous infusion 

of propofol (2.5–4 mg/kg/hour). 

CPB circuit and fluid management 

The CPB circuit consisted of a Primox® or Inspire 8® oxygenator (Sorin 

Group, Italy), an HVR Hard-shell reservoir (Sorin Group), a Sorin Adult® 

tubing system, a Stöckert S5® heart-lung machine, and a Stöckert Heater 

Cooler System 3T® (Stöckert Instrumente, Germany). The priming solution 

consisted of 1,200 ml acetated Ringer’s solution and 10,000 IU heparin. 

Hydroxyethyl starch was not used in the pump prime, nor during or after CPB. 

Furthermore, loop-diuretics or albumin was not used before, during, or after 

CPB.  

In Paper I, mannitol (200 ml, 150 mg/ml) was given in the priming solution in 

some patients at the discretion of the surgical team. No mannitol was 

administered to patients in Paper II or III.  

After heparinization with 400 IU/kg, the patients were cannulated in the aortic 

root followed by venous mono- or bicaval cannulation depending on the 

surgical procedure. Activated clotting time was kept at more than 480 s during 

CPB. During CPB, the target hematocrit was 25–35%. The target body 

temperature (bladder) was 33–36°C in Paper I, and 35–36°C in Papers II and 

III. Before weaning from CPB, the patients were rewarmed to a target body 

temperature of 36.0–36.5°C. Cold, hyperkalemic blood cardioplegia was given 

at an induction dose of 800–1000 ml followed by subsequent doses when 

deemed necessary by the surgeon. Alpha-stat pH management was used during 

CPB. After weaning from CPB, the heparin was antagonized by protamine 

sulphate (4 mg/kg). 
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CPB flow and pressure 

In studies I and II, non-pulsatile CPB was conducted with a target flow of 2.5 

L/min/m2. In study III, non-pulsatile CPB was initiated at a flow of 2.4 

L/min/m2 and the flow was later changed according to the study protocol. 

In Paper I, mean arterial pressure (MAP) was allowed to vary between at 50 – 

80 mmHg as deemed appropriate by the attending anesthetists considering co-

morbidities and preoperative blood pressure. In studies II and III, mean arterial 

pressure was maintained at 60 to 80 mmHg. Vasopressor (norepinephrine) or 

vasodilator (nitroprusside) therapy was used when necessary.  

3.3.2 Measurements of systemic hemodynamics 

In all papers, mean arterial pressure (MAP) was measured with a radial or 

femoral artery catheter, and central venous pressure (CVP) was measured with 

a central venous catheter with the tip in the upper caval vein. In papers II–IV, 

a pulmonary artery thermodilution catheter (Baxter Healthcare Corporation, 

USA) was inserted through either the left subclavian vein or the right jugular 

internal vein and placed in the pulmonary artery. Measurements of 

thermodilution cardiac output (CO) were performed in triplicate and indexed 

to the body surface area (BSA) for cardiac index (CI). The pulmonary capillary 

wedge pressure (PCWP) was measured intermittently. Other variables were 

calculated according to standard formulas, see table below.   

Table 5. Formulas for calculation of systemic variables.  

CI; cardiac index (L/min/m2), CVP; central venous pressure (mmHg), Hb; 
hemoglobin level (g/L), HR; heart rate (beats/minute), MAP; mean arterial 
pressure (mmHg), PaO2; arterial oxygen tension (kPa), PCWP; pulmonary 
capillary wedge pressure (mmHg), SaO2; arterial oxygen saturation (%), 
SvO2; mixed venous oxygen saturation. 

 

Variable Formula 

Arterial oxygen content (CaO2) 1.39 x Hb x SaO2 x 0.01 + 0.0023 x PaO2 

Venous oxygen content (CvO2) 1.39 x Hb x SvO2 x 0.01 + 0.0023 x SvO2 

Systemic oxygen delivery index (DO2I) CI x CaO2 

Systemic oxygen consumption index (VO2I) CI x (CaO2 - CvO2) 

Stroke volume index (SVI) CI / HR  

Systemic vascular resistance index (SVRI) 80 x (MAP - CVP) / CI 

Pulmonary vascular resistance index (PVRI) 80 x (MAP - PCWP) / CI 
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3.3.3 Measurements of renal variables 

All renal data were normalized to a body surface area of 1.73 m2. 

Renal vein catheterization (Papers II–IV) 

In Papers II–IV renal vein catheterization was used for invasive measurement 

of renal variables. In Paper II and III, a 7.5-Fr CCO Pulmonary Artery 

Catheter® (Edwards Lifesciences Corporation, USA) or an 8-Fr catheter 

(Webster laboratories, USA) was inserted in the left or right renal vein via the 

left or right femoral vein under fluoroscopic guidance. In Paper IV, an 8-Fr 

catheter (Webster laboratories, USA) was inserted in the left renal vein via the 

right internal jugular vein under fluoroscopic guidance. The catheter was 

placed in the central portion of the renal vein, and its position was verified by 

venography using ultralow doses of iohexol (Omnipaque® 300 mg I/ml; GE 

Healthcare, Sweden). Since the cross-sectional area of the renal vein is 

approximately 25 times the cross-sectional area of the renal vein catheter, the 

risk of the catheter to partially occlude the vein is minimal.   

Figure 7. Radiograph showing a 

renal vein catheter placed in the left 

renal vein.  

 

 

 

 

 

 

Renal blood flow by infusion clearance of para-aminohippuric acid (Papers II 

& IV) 

Renal blood flow (RBF) was measured by infusion clearance of para-

aminohippuric acid (PAH), corrected for the PAH-extraction by the renal vein 

catheter. After renal vein catheterization, blood and urine blanks were taken. 

An intravenous priming dose of PAH (Merck, NJ, USA, or Bachem AG, 

Bubendorf, Switzerland) was given, followed by infusion at a constant rate, 
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individualized to body surface area and preoperative serum creatinine. The 

equilibrium time before start of the study was 60–90 minutes, and plasma 

concentrations of PAH activity was measured with a spectrophotometer 

(Beckman DU 530; Life Science UV/Vis, USA). Renal plasma flow was 

calculated as the amount of infused PAH divided by the difference in arterial-

renal vein PAH concentrations.  

Table 6. Formulas for calculation of renal variables.  

51Cr-EDTA = 51chromium-ethylenediaminetetraacetic acid; CVP = central 
venous pressure; CaO2 and CrvO2 = arterial and renal vein oxygen contents; 
FF = filtration fraction; GFR = glomerular filtration rate; MAP = mean 
arterial pressure; PAH = para-aminohippuric acid; PAHart = arterial PAH 
concentration, PAHrv = renal vein PAH concentration, RBF = renal blood 
flow; RPF = renal plasma flow. 

 

Renal filtration fraction (Papers II, III and IV)  

Renal filtration fraction (FF) was defined as the renal extraction of chromium 

ethylenediaminetetraacetic acid (51Cr-EDTA). After the collection of blood 

and urine blanks, an intravenous priming dose of 51Cr-EDTA was given, 

followed by infusion at a constant rate, individualized to BSA and preoperative 

serum creatinine. Serum activity of 51Cr-EDTA in arterial and renal vein blood 

were measured with a well counter (Wizard 3” 1480, Automatic Gamma 

Counter; Perkin Elmer LAS, Finland). The filtration fraction was corrected 

taking the urine flow into account, in order to eliminate errors due to variations 

in RBF and urine flow.  

Variable Formula 

Renal plasma flow (RPF) Amount of PAH infused/(PAHart-PAHrv) 

Renal blood flow (RBF) RPF/(1-hematocrit) 

Filtration fraction [RPF x 51Cr-EDTAart–(RPF-UF) x 51Cr-EDTArv] 

/RPF x 51Cr-EDTAart 

Glomerular filtration rate (GFR) FF x RPF 

Renal vascular resistance (RVR) (MAP – CVP)/RBF 

Renal oxygen consumption (RVO2) RBF x (CaO2 – CrvO2) 

Renal oxygen delivery (RDO2) RBF x CaO2 

Renal oxygen extraction (RO2Ex) (CaO2 – CrvO2)/CaO2 

Renal sodium filtration GFR x serum sodium concentration 

Renal sodium excretion UF x urine sodium concentration 

Renal sodium reabsorption (GFR x serum sodium concentration – (UF x urine 

sodium concentration) 
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Urine analysis (Papers I, II and III) 

All patients had a Foley catheter for measurements of urine flow and urine 

concentration of sodium and creatinine.  

In Papers I and II, urine samples were assayed for N-acetyl-β-D-

glucosaminidase (NAG) by a spectrophotometric method (ABX Pentra 400, 

Horiba Medical, CA, USA) using a commercially available kit (Reference no. 

10 875 406 001, Roche Diagnostics GmbH, Mannheim, Germany) with an 

intra-assay coefficient of variation of 4.6–10.4% and a lower limit of detection 

of 0.30 U/L. The urinary NAG levels were corrected for urinary creatinine 

levels and expressed as units/mmol creatinine. 

Analysis of oxygen, sodium and hemoglobin 

Arterial, mixed venous and renal vein blood was analyzed for the content of 

oxygen, hemoglobin and sodium using an automated blood gas analyzer 

(Radiometer ABL 700 series, Copenhagen, Denmark).  

3.3.4 Experimental procedures 

Paper I 

In a prospective observational study, 61 patients with normal preoperative 

serum creatinine undergoing cardiac surgery with CPB were studied. Urine 

NAG (corrected for urine creatinine) was measured before, during and after 

CPB. Urine samples were collected at ten occasions: after induction of 

anesthesia but before surgery and CPB (baseline), at 30, 60, 90 and 120 

minutes after start of CPB, 30 minutes after end of CPB, upon arrival in the 

ICU (60–90 minutes after weaning from CPB) and at 4, 8 and 18 hours after 

arrival in the ICU. Peak NAG excretion was defined as the difference between 

baseline NAG and the postoperative peak NAG. Hemodynamic data, blood 

gases and CPB-related data were recorded. MAP was allowed to vary between 

50–80 mmHg as deemed appropriate by the attending anesthesiologist 

considering co-morbidities and preoperative blood pressure. Vasopressor 

(norepinephrine) or vasodilator (nitroprusside) therapy was used when 

necessary.  

Post-operative AKI was defined according to the KDIGO criteria based on 

changes in serum creatinine at postoperative day 1–2.  
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Paper II 

In a prospective observational study, 18 patients with a normal preoperative 

serum creatinine undergoing cardiac surgery procedures with normothermic 

cardiopulmonary bypass (2.5 L/min/m2) were included. After induction of 

anesthesia, pulmonary artery and renal vein catheters were inserted. Systemic 

and renal hemodynamic variables, and urine NAG were measured before, 

during, and after cardiopulmonary bypass. Arterial, mixed venous and renal 

venous blood samples were taken for measurements of systemic and renal 

oxygen delivery and consumption. Measurements were made before CPB 

(baseline), after 30 and 60 minutes of CPB and at 30 and 60 minutes after 

weaning from CPB. Renal blood flow and filtration fraction were measured by 

the infusion clearance technique of PAH and 51Cr-EDTA, respectively. Mean 

arterial pressure was allowed to vary between 60–80 mmHg, and infusions of 

norepinephrine or nitroprusside was used as needed to keep blood pressure 

within these limits.  

Paper III 

In a randomized crossover study, 17 patients with normal preoperative serum 

creatinine and LVEF ≥50 % undergoing cardiac surgery with normothermic 

CPB were included. After induction of anesthesia, pulmonary artery and renal 

vein catheters were inserted, and baseline systemic hemodynamic and renal 

measurements were obtained (Pre-CPB). CPB was initiated at 2.4 L/min/m2. 

The study commenced after aortic cross-clamp and cardioplegia administration 

under stable hemodynamic conditions. In a randomly determined order (sealed 

envelopes), the cardiopulmonary bypass flow was set to 2.4, 2.7 and 3.0 

L/min/m2. Each pump flow level was maintained for 10 minutes, followed by 

blood samples and recording of hemodynamic data. Filtration fraction was 

measured by the infusion clearance technique of 51Cr-EDTA. Mean arterial 

pressure was allowed to vary between 60–80 mmHg, and infusions of 

norepinephrine or nitroprusside was used as needed to keep blood pressure 

within these limits. The venous reservoir volume was held above 10 % of the 

CPB flow rate (L/min), and crystalloid solution (Ringers acetate, Baxter, 

Sweden) was administered into the reservoir to reach or maintain this safety 

limit.  

Paper IV 

In a randomized double-blind study, 32 patients with chronic heart failure 

(LVEF <40 %) and impaired renal function (GFR <80 ml/min/1.73m2) were 

included. The patients were randomized (1:1) to receive levosimendan or 
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dobutamine. Their order was stratified according to the level of the right 

ventricular end-diastolic pressure (above or below 12 mmHg at baseline). A 

study nurse, not otherwise involved in study procedures, performed the 

randomization and administration of the study drug. The infusion pump 

containing the study drug was concealed behind a curtain and equipped with 

an opaque infusion line to ensure blinding. Levosimendan administration was 

initiated with a loading dose of 12 μg/kg given over 10 minutes followed by a 

continuous infusion of 0.1 μg/kg/min for 65 min. Dobutamine was given as a 

continuous infusion started at 5.0 μg /kg/min for 10 minutes, and thereafter 

increased to 7.5 μg/kg/min for 65 minutes.  

A pulmonary artery catheter was used for hemodynamic measurements, and a 

renal vein catheter was used to determine renal plasma flow (RPF) using the 

infusion clearance technique for PAH, and FF was measured by renal 

extraction of 51Cr-EDTA.  

Duplicate baseline measurements (B1 and B2) of systemic hemodynamics and 

renal variables (arterial and renal vein blood samples) were performed before 

initiation of the drug infusion. The study drug was then administered as 

described above. Duplicate measurements were repeated after 60 and 75 

minutes of treatment (T1 and T2).  

To prevent drug-induced hypotension (i.e. MAP falling below 60 mmHg for 3 

minutes or more), a crystalloid fluid (Ringer-Acetate®, Baxter Viaflo, Lund, 

Sweden) was administered (50–100 ml/hour) from the start of the study drug 

administration in patients without clinical signs of hypervolemia (e.g. jugular 

vein distension and/or central venous pressure (CVP) ≥12). Response to 

hypotension was standardized; administration of Ringers-Acetate with the aim 

of keeping CVP 5–10 mmHg, or secondary, norepinephrine infusion with the 

aim of keeping MAP at 70±5 mmHg.  
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3.4. Statistical analyses and sample size 

Quantile regression in Paper I was made using Stata version 14 (StataCorp 

LCC, Texas, USA). All other statistical analyses were made using Predictive 

Software Statistics version 18–25 (SPSS Inc., USA). A probability level (p-

value) of less than 0.05 was considered statistically significant.  

Paper I 

The primary outcome variable was the longitudinal NAG-excretion. The 

sample size was chosen to allow for the detection of three independent 

predictors of NAG-excretion. In a quantile regression, 20 observations are 

deemed a necessary sample size for each predictor. Thus, 60 patients (3 x 20) 

were needed for the analysis, and 70 patients were enrolled to allow for 

exclusions.  

The longitudinal NAG-excretion was analyzed statistically with a linear mixed 

model (LMM) followed by a Fisher’s least significant difference post hoc test.  

The intra-operative tubular injury was defined as the difference between 

baseline NAG and the post-operative peak NAG, i.e. peak increase in NAG. 

For evaluation of variables associated with intra-operative tubular injury, a 

quantile regression model of the median was used. This regression method is 

valid also in circumstances where the dependent variable is not normally 

distributed, as was the case for peak increase in NAG. The predictors were 

chosen based on previously shown association with AKI.  

Univariable correlates for intra-operative renal injury among baseline 

characteristics and comorbidities and intra-operative variables (see below) 

were tested. Variables with a p-value <0.10 in the univariable analysis were 

included in a multivariate analysis, and variables with a p-value <0.05 in the 

multivariate analysis were considered significant independent predictors of 

tubular injury.  

The baseline characteristics and comorbidities that were explored were: 

Gender, Age, BMI, Hypertension, Diabetes Mellitus, LVEF, pre-operative 

serum-creatinine, pre-operative estimated GFR (using the Modification of Diet 

in Renal Disease [MDRD] formula), and pre-operative hemoglobin. The 

explored intra-operative variables were: (1) CPB duration (min), (2) the degree 

of rewarming, defined as the temperature (°C) difference between the lowest 

bladder temperature during CPB and the bladder temperature 30 min after 
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discontinuation of CPB, (3) fluid delivery during CPB, defined as the total 

amount of crystalloid fluid given during CPB divided by patient weight and 

CPB duration (ml/kg/min), (4) change in renal perfusion pressure (RPP), 

defined as the difference in renal perfusion pressure before and the mean RPP 

during CPB, where the RPP is the mean arterial pressure minus central venous 

pressure (mmHg), (5) the use of mannitol in the prime solution, (6) the intra-

operative use of low-dose (2 μg/kg/min) dopamine, (7) pump flow index 

(L/min/m2), defined as the mean CPB pump flow during CPB, (8) lowest DO2I 

(ml/min/m2) defined as the lowest oxygen delivery during CPB, indexed to 

body surface area [i.e. CPB pump flow index · hemoglobin · 1.39 · arterial 

oxygen saturation] and (9) the intra-operative change in serum hemoglobin, 

defined as the difference between pre-operative hemoglobin and the mean 

hemoglobin during CPB. The ability of NAG-excretion to predict post-

operative AKI was tested using binary logistic regression.  

Paper II 

The primary outcome variable was renal oxygen extraction (RO2Ex). In 

previous studies, RO2Ex has had a SD of 4 % in repeated measures.60 Thus, to 

detect a relative change of 30% in RO2Ex during CPB at a power of 80 % and 

a two-sided significance level of 0.05, 15 patients were needed. We aimed to 

compile approximately 18 to 20 patients who could be analyzed, and to include 

30–50 % more to allow for dropouts.  

Data were analyzed by repeated measures ANOVA. A significant ANOVA 

was followed by a Bonferroni-Holm post hoc test for comparison of baseline 

(pre-CPB) values versus data from subsequent measuring points. Data 

obtained after CPB (30 and 60 min) were pooled. A within-subject correlation 

was performed to correlate NAG/creatinine ratio to RO2Ex.  

Paper III 

The primary outcome variable was RO2Ex. In Paper II, renal oxygen extraction 

had a SD of 4 % in repeated measures during CPB. Thus, 15 patients were 

needed to detect a relative change in renal oxygen extraction of 30 % with a 

power of 80 % and a two-sided significance level of 0.05. We planned to 

include 50 % more patients to allow for dropouts.  

The differential effects of the cardiopulmonary bypass pump flow levels were 

studied using a linear mixed model with a compound symmetry matrix, using 

CPB flow as a fixed factor. Post-hoc paired T-tests were used to assess 

differences between the 2.4 and 3.0 L/min/m2 flow rates.  
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Paper IV 

The primary outcome variables were GFR and RBF. Based on previous 

studies, the standard deviation for the difference between two GFR 

measurements estimated by infusion clearance is approximately 10 ml/min. 

Thus, to detect an estimated 20% difference in GFR between groups, with a 

power of 80% and an alpha of 0.05, a sample size of 26 (13 patients in each 

group) was required. In total, we planned to include 32 patients to allow for a 

20% dropout. 

Normal distribution of continuous data was checked using histograms. 

Continuous normal distributed data are presented as mean±SD, and non-

normal distributed continuous data are presented as median and interquartile 

range. Data on renal and systemic hemodynamic variables from the two 

baseline measurements (B1 and B2) as well as during study drug 

administration (T1 and T2) were pooled. The differential effects of 

levosimendan and dobutamine were studied using a linear mixed model with a 

compound symmetry matrix, with “time” (baseline and treatment) and “group” 

(levosimendan or dobutamine) as fixed factors. Changes within-groups were 

studied with paired t-tests. Differences between the groups at baseline were 

studied with independent samples t-tests. 
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4 RESULTS 

4.1 PAPER I 

To evaluate the effects of CPB on the renal tubular injury marker, NAG, 61 

patients with a normal preoperative serum creatinine undergoing open cardiac 

surgery with CPB were studied. Urinary NAG (U-NAG) release was measured 

before, during and after CPB, and factors influencing peak U-NAG (defined 

as the postoperative peak value minus preoperative baseline concentration of 

U-NAG) were studied in a regression model.   

Urinary excretion of NAG 

Urine samples were obtained for all patients at 30 and 60 min after the start of 

CPB. Forty-two patients (69%) were sampled at 90 min, and 20 (33%) at 120 

min of CPB. In five patients (8%) data on U-NAG after ICU arrival was 

missing due to logistic reasons.  

Figure 8. Excretion of N-acetyl-b-D-glucosaminidase (NAG) before, during and after 

cardiopulmonary bypass (CPB). The levels of urinary NAG in patients undergoing 

cardiac surgery with CPB were measured; before (Pre-CPB), at 30 min intervals 

during CPB, 30 min after CPB, at arrival in the intensive care unit (ICU arrival), 

and at 4, 8 and 18 h after ICU arrival. Data are presented as mean± SEM. Asterisks 

indicate significant difference vs. Pre CPB at *P<0.05, **P<0.01, ***P<0.001.  

U-NAG increased during and after surgery (p<0.001). The level of U-NAG 

was significantly increased, doubled, compared to baseline, already at 30 min 
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after the start of CPB, and remained significantly higher throughout the CPB 

period. After discontinuation of CPB, the NAG excretion peaked at a mean of 

7.3±7 units/μmol creatinine upon ICU arrival. At 18 h after arrival in the ICU, 

NAG had returned to the preoperative baseline level in all patients.  

Determinants of intra-operative tubular injury 

CPB duration and the degree of rewarming were the only significant predictors 

of the peak increase in NAG-excretion in the univariable regression model, and 

both remained significant in the multivariate model (p=0.022 and p=0.032, 

respectively).  

Table 7. Variables associated with peak increase in NAG excretion.  

CPB; Cardiopulmonary Bypass, DO2I; systemic oxygen delivery, eGFR; 
estimated glomerular filtration rate, LVEF; left ventricular ejection fraction, 
RPP; renal perfusion pressure, SCr; serum creatinine. 

Variable Univariable regression Multivariable regression 

 B 95 % CI p B 95 % CI p 

CPB time  0.066 0.014–0.117 0.013 0.063 0.009 –0.117 0.022 

Degree of 

rewarming   

2.421 0.44–4.43 0.019 2.12 0.185–4.05 0.032 

Fluid delivery  -7.29 0.57–18.2 0.569    

Change in RPP  -0.018 -0.16–0.13 0.806    

Use of Mannitol  1.07 -3.9–6.1 0.670    

Use of Dopamine  1.76 -4.9–8.5 0.602    

Pump flow index  -14.2 -38.1–9.81 0.242    

Lowest DO2I 0.011 -0.04 –0.063 0.665    

Change in Hb   -0.029 -0.27–0.22 0.811    

Male Gender -0.411 -6.6–5.8 0.895    

Age  -0.116 -0.48 –0.24 0.519    

Body mass index -0.030 -0.65–0.59 0.924    

Hypertension  -1.60 -6.6–3.4 0.524    

Diabetes   -1.36 -11–8.0 0.771    

LVEF  -0.014 -0.34–0.31 0.930    

Preoperative SCr  0.031 -0.19–0.25 0.778    

Preoperative 

eGFR  

-0.036 -0.20–0.13 0.658    

Preoperative Hb -0.009 -0.18–0.17 0.922    
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After surgery, 18 patients (30%) developed AKI within 48 h (grade 1, n=15; 

grade 2–3, n=3). No patient required hemodialysis. In the logistic regression, 

peak NAG-excretion did not predict the development of AKI.  

In a post-hoc analysis, a receiver operating characteristic (ROC) curve was 

created using the NAG-excretion at 4 hours after surgery to predict AKI. The 

area under the ROC-curve was 0.651. A urinary NAG level of 1.35 U/mmol 

creatinine at 4 hours postoperatively had a sensitivity of 64 % and a specificity 

of 74 % to predict the development of AKI. 

4.2 PAPER II 

To evaluate the effects of CPB on renal perfusion, filtration and oxygenation, 

18 patients with a normal preoperative serum creatinine and LVEF ≥50 % 

undergoing elective cardiac surgery with normothermic CPB at 2.5 L/min/m2 

were studied.  

Effects of CPB on systemic variables 

Cardiac index (CI) before CPB was 1.87±0.39 L/min/m2. Mean systemic 

perfusion flow rate during CPB was 2.47±0.08 at 30 min and 2.49±0.08 

L/min/m2 at 60 min. Systemic perfusion flow thus increased by 32 to 33% 

(p<0.05 and p<0.001), and SVRI decreased by 15 to 17% (p<0.05 and p<0.01) 

during CPB, compared with pre-CPB values, while mean arterial pressure 

(MAP) was not significantly changed. Hematocrit, serum hemoglobin, and 

CaO2 decreased by 16 to 20% (p<0.001) during CPB. In spite of this, systemic 

oxygen delivery index (DO2I), if anything, increased (8%), due to the increase 

in systemic perfusion flow rate during CPB. Body temperature and VO2I were 

not significantly affected during CPB. 

After CPB, CI was higher (18%; p<0.01), SVRI was lower (−21%; p<0.01), 

while MAP was not different from the pre-CPB values. After CPB, hematocrit, 

serum hemoglobin, and CaO2 were lower (16 to 19%; p<0.001) when 

compared with the pre-CPB values. After CPB, body temperature and VO2I 

(20%, p<0.05) were significantly higher when compared with the pre-CPB 

values. Two patients received nitroprusside during the trial to maintain MAP 

less than 80 mmHg. Twelve patients required norepinephrine to maintain a 

target MAP between 60 and 80 mmHg. The dose of norepinephrine was not 

changed during CPB. After CPB, the dose of norepinephrine was significantly 

higher when compared with the pre-CPB dose. No other inotropic or 

vasoactive agents were used during the study. 
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Table 8. Effects of CPB on systemic hemodynamics.  

Values are mean±SD. CPB; cardiopulmonary bypass, CI; cardiac index, 
CVP; central venous pressure, DO2I; systemic oxygen delivery index 
(ml/min/m2), MAP; mean arterial pressure, SvO2: mixed venous oxygen 
saturation, VO2I; systemic oxygen consumption (ml/min/m2). * p<0.05, # 
p<0.001 vs. Baseline (Pre CPB). 

Effects of CPB on renal variables 

During CPB, renal vascular resistance (RVR) increased by 15–23 % (p<0.005) 

with no change in RBF. Thus, as systemic perfusion flow increased, the 

relationship between RBF and perfusion flow, the RBF/CI ratio, decreased by 

25 to 29% (p<0.01 and 0.001), suggesting a redistribution of blood flow away 

from the kidneys during CPB. Hemodilution, in combination with a maintained 

RBF, caused an 18 to 23% decrease in RDO2 (p<0.05 and p<0.001). GFR, 

filtration fraction, sodium filtration, sodium reabsorption, and urine flow were 

not affected by CPB. RVO2 was not affected, while RO2Ex increased by 33 to 

44% (p<0.05) during CPB. Neither arterial PAH concentration nor renal PAH 

extraction was changed during CPB. 

After CPB, RDO2 was still lower (-17%; p<0.05), while RBF and RVR were 

not different from the pre-bypass values. After CPB, GFR, filtration fraction, 

sodium filtration, sodium reabsorption, and urine flow did not differ from 

baseline. After CPB, RVO2 was higher (50%; p<0.05) compared with baseline, 

and RO2Ex increased further and was 78% higher (p<0.001) than the baseline 

value. After CPB, arterial PAH concentration and renal PAH extraction did not 

differ from baseline.  

 Time  

Variable Pre-CPB CPB 30 min CPB 60 min Post-CPB p 

MAP (mmHg) 76±12 75±10 73±10 70±7 0.16 

CI or perfusion 

flow (L/min/m2) 1.87±0.39 2.47±0.08 # 2.49±0.08 # 2.21±0.52 * < 0.001 

CVP (mmHg) 11±4 -1±4 # -1±4 # 9±3 < 0.001 

Hb (g/L) 125±14 102±13 # 100±12 # 103±12 # < 0.001 

DO2I 

(ml/min/m2) 319±59 346±45 343±38 305±78 0.038 

VO2I 

(ml/min/m2) 74±17 81±11 81±11 89±16 * 0.007 

SvO2 (%) 75±6 76±4 76±3 67±5 <0.001 

Temperature 

(C) 35.7±0.41 35.6±0.32 35.7±0.43 36.4±0.39 # < 0.001 

Norepinephrine 

(μg/kg/min) 0.020±0.011 0.017±0.007 0.020±0.009 0.076±0.030* 0.046 
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Table 9. Effects of CPB on renal variables.  

Values are mean±SD. CPB; cardiopulmonary bypass, GFR; glomerular 
filtration rate, PAH; para-aminohippuric acid, PAHart; arterial PAH 
concentration, RBF; renal blood flow, RBF/CI; renal blood flow divided by 
cardiac index, RDO2; renal oxygen delivery, RO2Ex; renal oxygen extraction, 
RPP; renal perfusion pressure, RVO2; renal oxygen consumption, RVR; renal 
vascular resistance. * p <0.05, # p <0.001 vs. baseline.  

The oxygen cost per millimole reabsorbed sodium (RVO2/mM sodium) was 

0.9±0.3 ml/mM before CPB and increased by 55% to 1.4±0.4 ml/mM after 

CPB (p<0.01). 

Figure 9. The effects of 

cardiopulmonary 

bypass (CPB) on 

systemic (DO2I) and 

renal(RDO2)  oxygen 

delivery before (Pre-

CPB), 30min (CPB 30′), 

and 60 min (CPB 60′) 

after initiation of CPB, 

and after end of CPB 

(Post-CPB). * p < 0.05, 

*** p < 0.001 versus 

baseline (Pre-CPB).  

 Time  

Variable Pre-CPB CPB 30 min CPB 60 min Post-CPB p 

RPP (mmHg) 66±11 76±12* 75±12* 61±7 <0.001 

RBF (ml/min/1.73m2) 554±126 524±116 564±162 558±130 0.638 

RVR (mmHg/ml/min) 0.13±0.04 0.16±0.04 * 0.15±0.06 0.12±0.04 0.005 

RBF/CI 0.30±0.06 0.21±0.05# 0.23±0.06* 0.26±0.09 < 0.001 

RDO2 (ml/min) 96±22 74±17# 79±24 * 80±17 * 0.001 

GFR (ml/min/1.73/m2) 67±23 68±23 70±19 67±18 0.972 

Filtration fraction 0.20±0.07 0.20±0.06 0.19±0.07 0.18±0.06 0.794 

Sodium filtration 

(mmol/min) 8.6±3.8  9.5±3.2 8.9±3.2 9.1±3.0 0.674 

Sodium reabsorption 

(mmol/min) 8.4±3.7 9.3±3.1 8.7±3.1 8.9±2.8 0.889 

Urine flow (ml/min) 2±0.4 2±0.5 1±0.2 3±0.7 0.177 

RVO2 (ml/min) 8.0±2.8 8.7±3.0 8.6±3.1 11.6±3.8 * 0.017 

RO2Ex 0.09±0.03 0.12±0.05 * 0.13±0.06 * 0.16±0.05# < 0.001 

PAHart  0.28±0.07 0.27±0.07  0.26±0.07  0.27±0.07 0.248 

PAH extraction  0.76±0.1 0.75±0.2 0.74±0.1 0.71±0.1 0.692 

Pre CPB CPB 30' CPB 60' Post CPB
0

100

200

300

400

0

50

100

150

Time

D
O

2
I 
(m

l/
m

in
/m

2
)

DO2I

RDO2

*** * *

R
D

O
2
  (m

l/m
in

/1
.7

3
 m

2
)



Cardiopulmonary bypass and the kidney 

34 

4.3 PAPER III 

To evaluate the effects of different CPB flow rates on renal oxygenation, 17 

patients with a normal serum creatinine and a LVEF ≥50 % undergoing cardiac 

surgery with normothermic CPB were studied. 

Effect of different CPB flow rates on systemic variables and the CPB circuit 
At CPB flow rates of 2.7 and 3.0 L/min/m2, MAP (6–9%, p=0.003), renal 

perfusion pressure (7–9%, p=0.007), SvO2 (4–7%, p<0.001) and DO2I (16–

28%, p<0.001) were higher, SVRI (-4 to -12%, p<0.001) was lower, while 

CVP, arterial hemoglobin, VO2I, body temperature and the norepinephrine 

dose were unchanged, when compared to a CPB flow rate of 2.4 L/min/m2.  

Table 10. Systemic variables before CPB and at different CPB flow levels.  

Values are mean±SD. CI; cardiac index, CPB; cardiopulmonary bypass, 
CVP; central venous pressure, DO2I; systemic oxygen delivery index, MAP; 
mean arterial pressure, SVRI; systemic vascular resistance index, VO2I; 
systemic oxygen consumption index. Difference vs. 2.4 L/min/m2 pump flow 
rate is indicated * p <0.05, # p <0.001.    

Effects of different CPB flow rates on renal variables 

At CPB flow rates of 2.7 and 3.0 L/min/m2, renal vein oxygen saturation was 

higher (2–4%, p=0.001) and renal oxygen extraction was lower (-12% to -23%, 

p=0.001) when compared to a CPB flow rate of 2.4 L/min/m2. This 

corresponds to an increase in the renal oxygen supply/demand ratio (DO2/VO2 

ratio, i.e. the reciprocal of RO2Ex) by 14 and 30%, respectively, at the two 

higher flow rates.  There was a trend for an increase in renal sodium excretion, 

while renal FF was not affected by increasing CPB flow rates. During CPB, 

  CPB flow (L/min/m2)  

Variable 

Baseline 

(Pre-CPB) 2.4 2.7 3.0 p 

CI (L/min/m2) 1.8±0.4     

MAP (mmHg) 73±8 70±10 74±9 * 76±8 * 0.003 

CVP (mmHg) 11±5 2±4 2±4 3±3 0.470 

SvO2 (%) 72±9 76±2 79±2# 81±2# <0.001 

Hemoglobin (g/L) 120±11 102±10 102±9 101±9 0.423 

DO2I (ml/min) 278±42 322±45 374±32# 412±36# <0.001 

SVRI 

(dyn/s/cm5/m2) 3587±768 2810±443 2704±339 2485±301# <0.001 

Norepniephrine 

(μg/kg/min) 0.06±0.05 0.08±0.07 0.07±0.06 0.06±0.06 0.064 
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the changes in RO2Ex were negatively correlated with SvO2 (R2=-0.853, 

p=0.003), but not with MAP (p=0.671).  

Table 11. Renal variables before CPB and at different CPB flow levels. 

Values are mean±SD. CPB; cardiopulmonary bypass, RO2Ex; renal oxygen 
extraction, SrvO2; renal vein oxygen saturation. Asterisks indicate difference 
vs. 2.4 L/min/m2 pump flow rate at * p<0.05, ** p<0.01.   

 

Figure 10. Renal 

oxygen extraction 

before CPB 

(baseline) and 

during CPB at 2.4, 

2.7 and 3.0 

L/min/m2 flow 

rates. Values are 

mean±SD. 

 

 

 

Effects on reservoir volume and trans-oxygenator pressure  

Increasing CPB flow from 2.4 to 3.0 L/min/m2, increased the pressure head 

over the oxygenator by 34% and decreased the blood volume of the reservoir 

by 18%. To ensure the safety minimum reservoir level, one patient received a 

200 ml crystalloid bolus at the CPB flow rate of 2.4 L/min/m2, and two patients 

were given 200 and 400 ml, respectively, at the CPB flow of 3.0 L/min/m2. 

  
CPB flow (L/min/m2) 

 

 

Variable 

Baseline  

(Pre-CPB) 

 

2.4 

 

2.7 

 

3.0 

 

p 

SrvO2 (%) 86±4 83±6 85±6 * 86±4 ** 0.001 

RO2Ex (%) 12.1±4.0 15.7±6.2 13.8±5.8 * 12.1±4.4 ** 0.001 

Filtration fraction 0.26±0.8 0.20±0.9 0.21±0.9 0.22±0.9 0.476 

Urine flow 

(ml/min) 

1.3±1.6 1.7±1.3 2.1±1.6 2.8±1.8 ** 0.012 

Sodium excretion 

(mmol/min) 

0.09±0.10 0.10±0.12 0.15±0.17 0.21±0.24 0.069 
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4.4 PAPER IV 

To evaluate the differential effects of levosimendan and dobutamine, 32 

patients with heart failure and impaired renal function (GFR<80 

ml/min/1.73m2) were studied. Patients were randomized (1:1) to receive either 

levosimendan (loading dose 12 µg/kg + 0.1 µg/kg/min) or dobutamine (7.5 

µg/kg/min) for 75 minutes. The duplicate measurements made at baseline and 

after treatment were pooled before analysis.  

In three patients (all in the levosimendan group) renal data were incomplete: 

due to missing data (n=1) and/or displacement of the renal vein catheter during 

the experimental procedure (n=2). In the two latter patients, exceptionally high 

PAH concentrations confirmed that the blood samples were, to a great extent, 

sampled from the inferior vena cava and not exclusively from the renal vein. 

Systemic variables 

Systemic variables did not differ between study groups at baseline, nor did they 

display between group differences with respect to treatment effects. 

Levosimendan and dobutamine increased stroke volume index (14 % and 13 

%, respectively), cardiac index (17 % and 28 %, respectively), systemic 

oxygen delivery (18% and 29 %, respectively) and SvO2 (4.7 % and 7.8 % 

units, respectively). CVP and PCWP decreased in both groups. Both drugs 

caused an increase in heart rate, which tended to be more pronounced in 

patients receiving dobutamine. There was a trend for a larger fall in SVRI in 

the dobutamine group (-21%) compared to the levosimendan group (-8%). 

In the dobutamine group, 3 patients received both norepinephrine and 

crystalloid, and 1 patient received only norepinephrine.  One patient in the 

levosimendan group received norepinephrine for hypotension. Neither the 

mean infusion rate of the crystalloid nor the mean dose of norepinephrine 

differed between the groups. No serious adverse events occurred during the 

trial. 
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Table 12. Systemic variables before and after study drug administration.  

CI; cardiac index, CO; cardiac output, CVP; central venous pressure, DO2I; 
systemic oxygen delivery index; HR; heart rate, MAP; mean arterial 
pressure, MPAP; mean pulmonary artery pressure, PCWP; pulmonary 
capillary wedge pressure, PVRI; pulmonary vascular resistance index, SaO2; 
arterial oxygen saturation, SVI; stroke volume index, SvO2; mixed venous 
oxygen saturation, SVRI; systemic vascular resistance index, VO2I; systemic 
oxygen consumption index. An asterisk indicates difference vs. baseline at:   
* p<0.05, # p<0.001. 

Renal variables 

Baseline measurements (B1 and B2) of arterial PAH concentration were 

0.29±0.12 and 0.29±0.11 in the levosimendan group (p=0.98), respectively and 

0.31±0.06 and 0.31±0.07 in the dobutamine group (p=0.51), respectively; 

suggesting that a steady state was reached in both groups. There were no 

significant differences between the groups at baseline.  

After treatment, RBF increased by 22 % in the levosimendan group and 26 % 

in the dobutamine group, with corresponding increases in renal oxygen 

delivery and no significant differences between groups. The renal vascular 

resistance decreased in both groups (-9 % in the levosimendan group, and -16 

% in the dobutamine group, p=0.25). GFR increased by 22 % in the 

levosimendan group, but remained unchanged in the dobutamine group 

                        Levosimendan, n=16 
 

Dobutamine, n=16 
  

Variable Baseline Treatment 
 

Baseline Treatment 
 

p 

CI (L/min/m2) 2.30±0.36 2.70±0.59 * 2.41±0.58 3.08±0.53 # 0.162 

HR (min-1) 71±5 73±5 * 
 

78±19 88±20 * 
 

0.057 

MAP (mmHg) 69±10 71±9 
 

70±9 70±9 
 

0.349 

MPAP 

(mmHg) 

31±9 29±9 
 

25±10 24±11 
 

0.864 

CVP (mmHg) 9±5 7±4 * 
 

8±9 6±8 * 
 

0.728 

PCWP 

(mmHg) 

19±7 17±6 
 

14±8 12±9 * 
 

0.795 

DO2I 

(ml/min/m) 

348±73 409±89 * 
 

391±110 504±102 # 0.116 

VO2I 

(ml/min/m2) 

129±18 136±24 
 

130±29 129±16 
 

0.367 

SaO2 (%) 93.4±3.6 93.8±2.5 
 

95.1±2.2 96.1±1.9 * 
 

0.298 

SvO2 (%) 57.4±10.3 62.1±6.3 * 
 

62. ±7.9 70.5±7.8 # 0.369 

SVRI 

(dyn/s/cm5/m2) 

2141±494 1961±491 
 

2162±574 1704±338 * 0.092 

PVRI 

(dyn/s/cm5/m2) 

440±300 394±205 
 

386±245 349±219 0.506 
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(p=0.012). Filtration fraction was not affected by levosimendan and decreased 

by 17 % with dobutamine (p=0.045). Renal oxygen extraction decreased in 

both groups with no differences between groups. The ratio between RBF and 

CI was not affected by either of the two agents. 

 

Table 13. Renal variables before and after study drug administration.  

GFR; glomerular filtration rate, FF; filtration fraction, PAHart; arterial 
para-aminohippurate concentration, PAHext; renal extraction of PAH, RBF; 
renal blood flow, RDO2; renal oxygen delivery, RO2Ex; renal oxygen 
extraction, RVO2; renal oxygen consumption, RVR; renal vascular 
resistance, SrvO2; renal vein oxygen saturation. An asterisk indicates 
difference vs. baseline at: * p<0.05, # p<0.001. 

 Levosimendan, n=13  Dobutamine, n=16   

Variable Baseline Treatment   Baseline Treatment    p 

RBF (ml/min/1.73 m2) 426±197 518 ± 276 * 397 ± 121 499 ± 154 # 0.732 

GFR (ml/min/1.73 m2) 36.5±18 44.5±19 * 47.1±15 47.3±6.9  0.012 

FF 0.146±0.08 0.143±0.07 0.19±0.07 0.16±0.08 * 0.045 

PAHext 0.70±0.21 0.65±0.22 * 0.793±0.15 0.754±0.19 * 0.614 

PAHart 0.29±0.11 0.26±0.10 # 0.31±0.06 0.27±0.07 # 0.194 

RVO2 (ml/min) 9.2±6.3 10.1±6.2  8.3±2.6 8.9±4.3  0.801 

RDO2 (ml/min) 67.0±36.5 82.4±50.3 * 65.0±23.8 82.2±29.3 # 0.728 

RO2Ex (%) 15.5±6.7 13.8±5.0 14.5±7.0 12.0±6.5 * 0.487 

SrvO2 (%) 78.6±8.6 80.5±5.9  81.3±7.7 84.6±7.1 * 0.117 

RBF/CI (%) 18.5±7.7 19.5±9.8  16.9±4.9 16.8±6.3  0.474 

RVR (mmHg/ml/min) 0.161±0.05 0.147±0.05 * 0.171±0.07 0.144±0.06 * 0.249 
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5 DISCUSSION 

5.1 STUDY POPULATION AND ETHICAL 

ISSUES 

In papers I–III, the study populations were elective cardiac surgery patients. 

The main inclusion criterion in these studies was an expected CPB time 

exceeding 60 minutes, which would allow for repeated measurements during 

the CPB period. This, and logistical reasons excluded many faster CABG 

cases. In papers II and III, the included patients had a LVEF ≥50 %, but the 

indication for surgery in a majority of these patients was valvular disorders, 

which might explain the relatively low levels of cardiac index in these patients 

when anesthetized, before CPB (1.9 and 1.8 L/min/m2 for paper II and III, 

respectively) 

 The second main inclusion criterion in these studies, a preoperative serum 

creatinine within the normal range, was chosen since renal oxygenation and 

possibly also renal autoregulation might be affected in patients with renal 

impairment.  However, the normal creatinine range is wide, and in an elderly 

population a normal creatinine might veil a dwindling kidney function. The 

mean preoperative estimated GFR (using the MDRD formula)61 was 75±15, 

79±11, and 78±11 ml/min/1.73m2 in studies I–III, respectively.   

Thus, the patients in these studies were possibly more marginal in their cardiac 

and renal function than the average CABG patient, but they are, nonetheless, 

representative of patients undergoing more complex cardiac surgery.   

One limitation in papers I and II is that there were no control groups subjected 

to cardiac surgery without the use of CPB. Ideally, controls undergoing off-

pump cardiac surgery or other major surgery could have been studied and 

compared to the study group in papers I–II. On the other hand, off-pump 

cardiac surgery is no longer performed at our institution.  

In paper III, the choice of flow rates was based on clinical practice and safety 

considerations. We chose to exclude patients with a BMI >32 kg/m2, as their 

body surface area would lead to high flow with the possible associated risks. 

In addition, patients with a history of cerebral lesions were excluded. 

In paper IV, we studied patients with chronic heart failure and reduced renal 

function. The patients were scheduled for right heart catheterization either as a 



Cardiopulmonary bypass and the kidney 

40 

work-up for possible heart transplantation or as a comprehensive investigation 

to optimize heart failure therapy. Since patients with acute decompensated 

heart failure were excluded, the study participants were not in immediate need 

of inotropic therapy. One could argue that this reduces the clinical applicability 

of the study. However, our method of choice, with invasive measurement of 

renal variables, by renal vein catheterization, requires the patient to be 

cooperative and able to lie supine for the duration of the entire study procedure, 

often 2–3 hours. As patients with acute decompensated heart failure might, for 

obvious reasons, have difficulties to comply with such a protocol, we chose 

(after ethical and practical considerations) to include only patients with stable 

chronic heart failure and impaired renal function. To perform a similar invasive 

pharmacological investigation on patients suffering from acute heart failure 

would be very difficult, if not impossible.  

The study’s definition of a renal impairment, GFR <80 ml/min/1.73 m2, is 

above the definition of cardiorenal syndrome, i.e. a GFR <60 ml/min/1.73 m2.6 

This cutoff was chosen due to problems of recruiting suitable patients with a 

more severe renal dysfunction. However, the measured GFR in both the 

levosimendan and dobutamine groups were well below 60, at 43±15 and 53±15 

ml/min/1.73 m2, respectively. 

In all four studies, a majority of the participants were men. The study 

populations partly reflect the population of patients undergoing cardiac 

surgery, where women are underrepresented.62 In addition, catheterization of 

the renal vein is often significantly harder in smaller persons, and most of the 

patients who were excluded due to failed catheterization were women.  

5.2 METHODOLOGICAL CONSIDERATIONS 

5.2.1 RBF by infusion clearance of PAH 

We used the so-called constant infusion clearance technique, in which renal 

clearance of PAH is calculated from the arterial serum level of PAH and the 

infusion rate of PAH, a technique that makes the collection of urine redundant. 

This technique for estimation of RBF, corrected for renal extraction of PAH, 

has been validated in cardiac surgery patients against standard urinary 

clearance for PAH.63 It was found to have a high reproducibility and a high 

level of agreement with the urinary clearance reference method. The 

requirements for an infusion clearance technique are that the test substance 

(e.g., PAH) is rapidly equilibrated after the start of infusion, not metabolized 

and only excreted by the kidney. Furthermore, the rate of infusion and the rate 
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of excretion should be at equilibrium, as indicated by stable serum 

concentrations of the test substance.  

In paper II, this technique was used to measure renal blood flow in patients 

during CPB. Both at the initiation and discontinuation of CPB, there are major 

shifts of fluid that could affect the volume of distribution. Thus, a reasonable 

time must be allowed for a steady state, i.e. equilibrium in the infusion and 

excretion of PAH. In paper II, arterial concentration of PAH was unchanged 

throughout the measurements before, during, and after CPB, suggesting that a 

steady state was reached. In paper III, the periods of each CPB flow level (10 

minutes) were deemed too short to allow for reliable measurements of RBF 

with the infusion clearance technique.  

Redfors et al found that the mean renal extraction of PAH was 0.68 in post-

cardiac surgery patients with AKI, as compared to 0.85 in uncomplicated 

postoperative patients24, and that the difference might be attributable to tubular 

injury which might reduce the tubular secretion of PAH in the AKI group. In 

the patients of paper II, the mean renal extraction of PAH was 0.74–0.76 during 

CPB. The early postoperative NAG-peak suggests that a tubular injury has 

occurred during CPB, which could explain lower PAH extraction during CPB, 

when compared to an uncomplicated post-cardiac surgery group.24 Another 

explanation could the slight hypothermia seen during CPB (35.5–36.0 C), 

which could decrease the efficiency of the tubular secretory pumps due to the 

lower metabolic rate. In paper IV, the arterial PAH level was stable between 

the two baseline measurements, indicating that a steady state was reached 

before start of the intervention. Both levosimendan and dobutamine induced 

similar reductions in PAH extraction. These findings suggest that both agents 

redistribute blood flow from the outer cortex to the inner cortex and medulla, 

as the latter areas have the lowest extraction of PAH, as previously described 

for dopamine.27,64,65 

5.2.2 Filtration fraction by renal extraction of 51Cr-EDTA 

51Cr-EDTA is filtered freely into the primary urine, but neither reabsorbed nor 

secreted by the kidney. Thus, its rate of excretion in the urine is directly 

proportional to the rate of filtration of water and solutes across the glomerular 

membrane. It can easily be shown that the renal extraction of 51Cr-EDTA, 

([51Cr-EDTA arterial] - [51Cr-EDTA renal vein]) / [51Cr-EDTA arterial] is a 

direct measurement of the renal filtration fraction (FF), i.e. GFR/RPF. Thus, 

by measuring RPF and FF, GFR can be calculated. The coefficients of 

variation for repeated measurements of FF by renal extraction of 51Cr-EDTA 

has been shown to be 5%.63 The formation of urine induces a 
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hemoconcentration of 51Cr-EDTA, which will increase renal vein 

concentration of 51Cr-EDTA and thereby underestimate FF and GFR. The 

formula for renal extraction of 51Cr-EDTA should therefore be corrected for 

urine flow, particularly at high levels of urine flow, as was done in paper II. In 

paper IV, urine correction was not performed, as these patients had no urinary 

catheter for measurement of urine flow.  

5.2.3 Tubular injury marker N-acetyl-β-D-glucosaminidase  

Strong evidence points towards renal, and especially medullar, ischemia as a 

key factor in the development of post cardiac surgery AKI.66 Thus, to assess 

renal ischemia in papers I and II, we chose to measure NAG in urine. Urine 

NAG is considered a sensitive marker of tubular injury.44 Although NAG may 

increase in cases of elevated lysosomal activity67, it has not, unlike NGAL, 

been shown to increase in response to systemic inflammation per se.68 

Furthermore, due to its high molecular weight, it is not subject to glomerular 

filtration, in contrast to NGAL, and increased levels of urinary NAG is 

associated with tubular necrosis in cardiac surgery patients.69  

Urinary biomarkers and proteins are commonly reported as a ratio to urinary 

creatinine concentration in order to reduce the impact of urine flow. However, 

urinary creatinine levels are affected by renal function. Creatinine is filtered in 

proportion to GFR and the excreted creatinine is subject to leakage back into 

the blood stream through damaged cells in the tubular epithelium. This could 

bias the levels of urinary biomarkers expressed as a ratio to creatinine, 

probably mainly in the direction of increasing sensitivity at the cost of 

decreased specificity.70 Since the urine flow might be highly variable during 

surgery, we chose to correct the NAG-values for creatinine to compensate for 

changes in diuresis.   

5.2.4 Dose selection of levosimendan and dobutamine 

The protocol used in paper IV was based on a previous study on the renal 

effects of levosimendan vs. placebo in post-cardiac surgery patients.55 The 

recommendation of the manufacturer is to start levosimendan treatment with a 

bolus dose of 6–12 µg/kg, but this has been abandoned in many centers due to 

the risk of hypotension. The elimination half-time of levosimendan is 

approximately 1 hour, and without a bolus dose, a steady state is reached after 

>3 hours.51 In the present study, in which blood pressure was monitored by an 

intra-arterial line, a bolus infusion was used to reach a steady state more 

quickly and, thereby, allow for measurements of clinical effects within a 

reasonable time frame.  
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Levosimendan is metabolized in the liver, and forms several active 

metabolites, e.g. OR-1896 and OR-1855.51 OR-1896 has a prolonged effect, 

which may explain the long duration, up to a week, of levosimendan. The 

metabolites are formed slowly and are at peak concentration at two days after 

the end of a 24-hour infusion.51 Thus, it is unlikely that the concentration of 

the metabolites would be high enough to have an impact on renal variables in 

study IV. To our knowledge, there is no information on the renal effects of 

OR-1896 or OR-1855.  

Our aim was to use a dose of dobutamine that would increase CO to a similar 

degree, at least, as would levosimendan. The dose increase after 10 min from 

5 to 7.5 µg/kg/min was made to mimic the change in levosimendan infusion 

rate and thereby facilitate and ensure blinding. The recommended starting dose 

of dobutamine is 5 µg/kg/min, which can be adjusted to 2–20 µg/kg/min 

according to the clinical response. In the present study, dobutamine and 

levosimendan exerted comparable effects on stroke volume, while there was 

an insignificant trend for a more pronounced heart rate increase in the 

dobutamine group. 

5.3 RENAL TUBULAR INJURY DURING CPB 

(PAPER I) 

The main findings of paper I were that the tubular injury marker NAG 

increased already after 30 minutes of CPB, remained elevated throughout the 

CPB period and peaked after weaning from CPB. This excretion pattern 

suggests that there is an ongoing renal insult during CPB, which is even more 

aggravated early after discontinuation. The nature of this insult is not entirely 

clear, but the NAG-levels correlate with the renal oxygen extraction (r=0.57; 

p<0.001, paper II), which points toward ischemia as an important factor in the 

development of CPB-related tubular injury.  

The study’s second findings were that the magnitude of postoperative tubular 

injury is dependent on the duration of CPB and the change (increase) in 

temperature, i.e. rewarming after CPB. This is in line with a study of 

biomarkers by Boldt and colleagues, where patients with a CPB time 

exceeding 90 minutes showed more pronounced kidney injury.71 The negative 

effects of rewarming found in our study is also consistent with the predictions 

made in a computer model, where the medullary oxygen consumption is 

greatly increased during the rewarming phase, but the oxygen delivery is 

increased only moderately during the same period, causing a medullary oxygen 

supply demand mismatch.72    
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One could speculate that the hemodilution and reduced oxygen delivery during 

CPB renders the renal medulla ischemic, with loss of tubular cell integrity as 

a result. Thus, the injury sustained during CPB leaves the kidney in a 

vulnerable state. The second insult, after discontinuation of CPB, might 

represent a reperfusion injury of the previously hypo-perfused tissues. At this 

time point, the added rewarming increases oxygen consumption72, which 

further offsets the medullary oxygen balance.  

In addition to a possible direct ischemic insult to the kidneys, activation of the 

immune and complement systems during surgery and CPB might cause tubular 

injury through several pathways. The CPB-induced provocation of the 

systemic inflammatory response syndrome (SIRS) may explain the link 

between CPB duration and peak NAG. Systemic inflammation will activate 

the neutrophils, platelets and vascular endothelium with upregulation of 

adhesion molecules and release of proteases, free oxygen radicals, chemokines 

and cytokines, which will cause capillary leak, lipid peroxidation edema and 

tubular cell injury.73-77 Some of the pro-inflammatory cytokines (TNF-alpha, 

IL-1, IL-8) are smaller molecules and undergo glomerular filtration, and it has 

been shown that there is a correlation between levels of urinary cytokines and 

tubular injury (NAG release) in cardiac surgery using CPB.78  

In this material, the peak NAG excretion seen at 90 minutes after weaning from 

CPB was not associated with postoperative AKI, according to the KDIGO 

criteria.4 Previous studies on the performance of NAG at predicting AKI have 

shown conflicting results. Liangos et al found no association between u-NAG 

at 2 hours after CPB and AKI.79 Vermeulen-Windsant and colleagues found 

higher u-NAG levels at 15 minutes after CPB in patients who later developed 

AKI, but there was no difference between the groups at 2 hours after CPB.80 

Han and colleagues found a modest correlation (AUROC 0.61) between u-

NAG collected immediately after CPB and postoperative AKI.69 In a recent 

study of several urinary tubular injury markers, the biomarker levels at 3 hours 

after ICU admission could improve a clinical model of AKI detection, but the 

biomarker levels at ICU admission did not differ between patients who 

developed postoperative AKI and those who did not.81 Thus, in addition to 

different timing of the urine sampling, differences in strategies regarding 

postoperative rewarming and circulatory goals might attribute to the disparity 

of data on NAG and other biomarkers for AKI prediction. Furthermore, the use 

of serum creatinine for assessment of AKI could be dubious, particularly in 

cardiac surgery patients, as serum concentration of creatinine may be heavily 

affected by hemodilution due to water overload in the early postoperative 

period. 
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Prediction of AKI was not the aim of the present study, nor was the study 

powered for it, but it is nonetheless an interesting finding. If anything, it 

underscores the considerable functional reserve capacity and regenerative 

potential of the kidneys. After milder tubular injury, a profound proliferation 

of the uninjured epithelial cells is seen, which leads to restoration of the normal 

epithelium.82 However, if the tubular cells suffer repeated mild or more severe 

injury, it results in interstitial fibrosis, inflammation and glomerulosclerosis.83 

Thus, the ischemic tubular insult during and shortly after CPB may not be 

deleterious if additional injury can be prevented in the early postoperative 

period. On the other hand, it was recently shown that subclinical/structural AKI 

assessed by biomarkers of tubular injury was associated with reduced renal 

functional reserve capacity, even in the absence of clinical postoperative 

AKI.84 This might represent a renal impairment, undetected by serum 

creatinine changes, that may have long-lasting impact for the patient.   

Limitations 

One major limitation of the present study was the relatively low number of 

included patients. Furthermore, no inflammatory markers were measured, so 

any correlation between inflammation and NAG-release could not be explored. 

Another limitation was that urine output criteria for AKI diagnosis were not 

used.  

5.4 RENAL BLOOD FLOW, OXYGENATION 

AND FILTRATION DURING CPB (PAPER II) 

The main finding was that the renal oxygenation is impaired during CPB. This 

was seen as an increase in RO2Ex, mainly due to reduced renal oxygen delivery 

(RDO2) at maintained oxygen consumption (RVO2). The reduction in RDO2 

during CPB was caused by hemodilution and increased renal vascular 

resistance (RVR), which caused redistribution of blood flow away from the 

kidneys.  

The mean systemic DO2 during CPB was around 345 ml/min/m2, well above 

the critical levels of systemic DO2 of 225–272 ml/min/m2, that have been 

shown to be predictive of postoperative AKI.34,36,37 Hematocrit levels below 

22–26 % during CPB are associated with cardiac surgery-associated AKI (CS-

AKI).36,85,86  The mean hematocrit in the present study was only reduced to 

around 30 % during CPB. We therefore believe that CPB was safely performed 

in the current study with respect to systemic oxygen delivery, as mixed venous 

oxygen saturation was well maintained. However, in spite of this, RDO2 was 
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reduced by 20 % during CPB. The increased RO2Ex and corresponding NAG-

release suggest that at normothermia and a pump flow of 2.5 L/min/m2, renal 

ischemia and tubular injury is ongoing throughout the CPB period.   

 

Figure 11. Renal oxygen 

extraction before, during 

and after cardiopulmonary 

bypass (CPB). Values are 

mean±SEM. Asterisks 

indicate difference vs. Pre 

CPB at * p<0.05, ** 

p<0.01. 

 

 

The renal oxygen supply/demand mismatch starting already during CPB was 

further aggravated after CPB, as shown by a nearly 80% increase in RO2Ex. 

The increase in RVO2 after CPB could not be attributed to an increase in GFR 

and tubular reabsorption, since neither of these variables differed from 

baseline. One obvious explanation is the higher body temperature seen after 

CPB (36.4° vs. 35.7°C), which increased VO2I. On the other hand, the increase 

in RVO2 was considerably higher than the increase in VO2I (45% vs. 20%). 

Another explanation could be the finding that after CPB, the oxygen 

consumption per millimole of reabsorbed sodium was 55% higher than before, 

indicating a shift in the relationship between sodium reabsorption and RVO2. 

Such an increased oxygen utilization for tubular sodium transport has 

previously been described in patients with post–cardiac surgery AKI.24 

Efficient vectorized sodium reabsorption is dependent on polarized tubular 

cells and intact tight junctions. Ischemic tubular damage has been shown to 

depolarize tubular cells and disrupt tight junctions.87-89 Thus, reabsorbed 

sodium ions may leak back to the tubular lumen to be reabsorbed again, which 

might explain the high oxygen utilization per millimole net sodium reabsorbed, 

as seen in the current study. This might, in turn, be caused by tubular 

injury/dysfunction, as also manifested by the release of renal injury marker 

NAG. 
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Figure 12. Renal oxygen 

consumption per 

millimole sodium 

reabsorbed before (Pre 

CPB and after (Post 

CPB) cardiopulmonary 

bypass. Values are 

mean±SEM. Asterisks 

indicate difference with 

a p-value <0.01 (paired 

T-test).  

 

 

Limitations   

The use of vasopressors may have influenced renal vascular tone and RDO2. 

Twelve patients required norepinephrine during CPB to maintain a MAP 

between 60 and 80 mmHg. One could argue that the use of norepinephrine in 

the majority of the patients (67%) could have contributed to the increase in 

renal vascular tone and impaired oxygen delivery during and after CPB. We 

believe that this is less likely, as we have previously shown in post–cardiac 

surgery patients with AKI that restoration of MAP from 60 to 75 mmHg 

increased RDO2 and GFR and improved renal oxygenation.90 Furthermore, the 

switch from sevoflurane to propofol during CPB could have influenced renal 

vascular tone and RDO2. However, experimental studies have shown that 

propofol does not affect RBF or RVR.91,92 

5.5 IMPACT OF CPB FLOW ON RENAL 

OXYGENATION (PAPER III) 

As a consequence of the finding of impaired renal oxygenation at 

normothermic CPB at 2.5 L/min/m2, we studied the effect of increased pump 

flow on renal oxygenation. The main finding of the study was that increased 

CPB flow rates improved renal oxygenation, expressed as reduced renal 

oxygen extraction. Thus, increasing the pump flow from 2.4 to 3.0 L/min/m2 

improved the oxygen supply/demand relationship by 30 %, and RO2Ex was 

reduced to pre-bypass levels.  
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In a retrospective study, Svenmarker and colleagues found that systemic blood 

flow control to target SvO2 >75 % during CPB was associated with reduced 

risk of AKI, and this was more pronounced for procedures exceeding 90 

minutes.93 Our results are in line with these findings, and the CPB-induced 

changes in SvO2 were closely correlated to RO2Ex (R2=0.853, p=0.003). This 

implies that the target SvO2 of 75 % might be too low to avoid impaired renal 

oxygenation during CPB.  

Figure 13. Individual change in renal oxygen extraction and mixed venous oxygen 

saturation at different CPB flow levels.  

Although renal blood flow (RBF) was not directly measured in the present 

study, it is not unreasonable to interpret the improved renal oxygenation at a 

CPB flow rate of 2.7 and 3.0 L/min/m2, as shown in the present study, as a 

result of increased RBF and oxygen delivery. The dependency of RBF on CPB 

flow is supported by a study of Mackay and colleagues, who found that 

changes in pump flow and perfusion pressure could significantly alter RBF in 

a porcine model of normothermic CPB.94 The only published clinical human 

study, using hypothermic (28 °C) CPB and low CPB flows (1.4–2.2 L/min/m2), 

also revealed that RBF was primarily determined by the pump flow rate and 

less so by MAP.95  

The urine flow in study III was increased by 24–65 % when CPB flow rate was 

increased to 2.7 and 3.0 L/min/m2. This is in line with a retrospective study by 

Hori and colleagues, where urine flow rate correlated with CPB flow rate. In 
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addition, the authors also found that a urine flow of <1.5 ml/kg/h during CPB 

was independently associated with CS-AKI.96  

It is not immediately evident that an increase in RBF, induced by e.g. an 

increase in CPB flow rate, would improve renal oxygenation. Renal tissue 

oxygenation is dependent on the balance between renal oxygen consumption 

and oxygen delivery. Experimental studies have shown that renal oxygen 

consumption is dependent on RBF and that changes in RBF and oxygen 

delivery will cause correspondent changes renal oxygen consumption. Thus, 

an increase in RBF will increase GFR and the filtered amount of sodium, which 

in turn will increase the tubular sodium load and consequently the renal oxygen 

consumption.16,97 It has repeatedly been shown in patients undergoing cardiac 

surgery that both tubular sodium reabsorption and renal oxygen consumption 

are closely correlated to GFR, which is a major determinant of renal oxygen 

consumption.25,26,98 In the present study, the renal filtration fraction, i.e. the 

renal extraction of 51Cr-EDTA, did not change significantly with variations in 

CPB flow, indicating a maintained balance between GFR, renal oxygen 

consumption and RBF. One would therefore have expected no change in renal 

oxygenation at increasing levels of CPB flow rates. The fall in renal oxygen 

extraction with increasing CPB flow rates, at an unchanged filtration fraction, 

as demonstrated in paper III, thus implies that other mechanisms in general and 

during CPB in particular, may be of importance for renal oxygenation.97 Thus, 

the improved renal oxygenation and concomitant increased urine flow at 

increased CPB flow suggest an uncoupling of renal oxygen consumption and 

GFR. A dissociation of sodium reabsorption from oxygen consumption has 

been observed in several experimental studies.97 The mechanisms are not fully 

understood, but might include intrarenal redistribution of blood flow, or a shift 

of sodium reabsorption to sites of higher oxygen utilization efficiency.99 Renal 

autoregulation is mainly effective in controlling cortical blood flow15, and 

increases in MAP and RBF during CPB may thus redirect flow to the medulla. 

In our patients, higher CPB flows were accompanied by increased MAP and a 

trend for an increase in sodium excretion. This could reflect pressure 

natriuresis, which is mediated by an inhibition of sodium reabsorption,100 and 

might be another mechanism by which renal oxygenation is improved at higher 

CPB flow rates. 

Higher CPB flow may have negative consequences, such as increased tissue 

edema,101 exaggerated inflammatory response, increased blood cell shear stress 

with hemolysis and activation of cellular blood components.102-104 Other 

potential problems include increased venous blood return to the surgical field 

and low reservoir volume with need for volume replacement. As expected, we 

found that the trans-oxygenator pressure head increased with higher CPB flow 
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rates. Although the level of hemolysis could not be adequately measured due 

to the short time spent at each CPB flow rate, the available evidence does not 

support a linear correlation between trans-oxygenator pressure and hemolysis 

in contemporary oxygenators.105,106 The venous reservoir volume decreased 

with increased flow, but the changes occurred within the first minute of altered 

CPB flow, and no ongoing fluid shifts could be detected throughout the 

measurement periods.  

Limitations 

The main limitation of the study is that renal blood flow was not measured. 

Consequently, GFR, renal oxygen delivery and consumption could not be 

determined. The PAH-method for renal plasma flow assessment requires a 

steady state, and is not suitable for rapid changes in RBF. The retrograde renal 

vein thermodilution technique for measurements of RBF was tested in some 

pilot cases, but yielded unstable measurements.   

It is also unclear whether the beneficial effect of a higher CPB flow on renal 

oxygenation is sustained beyond the 10-minute intervention period. Due to the 

nature of the experimental procedure, we have no data on whether high CPB 

flow rates are beneficial in terms of renal outcome. Thus, whether the improved 

renal oxygenation seen at the higher than normal CPB flow rates, as shown in 

the present study, will translate into a lower incidence of postcardiac surgery 

AKI, remains to be shown in a randomized trial. 

5.6 RENAL PHYSIOLOGY DURING AND 

IMMEDIATELY AFTER CPB 

Our findings suggest that the renal medulla is in a state of continuous 

hypoxia/ischemia with ongoing tubular injury (increased NAG-excretion) 

during CPB. This might be caused by the mismatch in renal DO2/VO2, as 

evidenced by the increased RO2Ex, which is correlated with the NAG-

excretion (r=0.57; p<0.001). Hemodilution from cell-free priming solution in 

the CPB circuit reduces the oxygen carrying capacity of the blood, and renal 

vasoconstriction reduces the proportion of blood perfusing the kidneys in 

relation to the total systemic blood flow. Furthermore, the renal function, as 

assessed by GFR, and renal oxygen consumption, is not reduced during CPB, 

adding to the oxygenation imbalance.  
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After weaning from CPB, reperfusion of the injured tubular epithelium adds to 

the injury, with further increased NAG-excretion and RO2Ex. In this phase, 

rewarming also increases oxygen consumption. The dramatic increase in NAG 

and RVO2 suggests that the integrity of the tubular cells and the tight junctions 

are disrupted. This loss of polarization leads to inefficient sodium transport, 

where the Na-K-ATPase continues its oxygen-consuming pumping action but 

the sodium leaks freely back into the tubular lumen. Hence, the oxygen cost of 

sodium reabsorption is increased by 55 % compared to pre-CPB levels.     

Figure 14. Tubulus cell injury and sodium transport. Ischemic injury leads to 

disruption of the cell membrane and tight junctions, which allows sodium to leak 

back into the tubular lumen. Thus, the net oxygen cost per mmol sodium that is 

transported into the peritubular capillaries is increased. From Redfors, 2010, with 

permission.   

 

The intrarenal blood flow distribution may be altered during CPB. In a rat 

model, Darby and colleagues found that anemia during CPB increased 

medullary blood flow compared to cortical, but that tissue hypoxia was more 

severe and sustained in the medulla.107 In addition to the macro-circulatory 

changes during CPB, the microcirculation may be altered. In patients 

undergoing CABG, Koning and colleagues found that CPB reduced sublingual 

capillary perfusion, but that pulsatile flow during CPB could preserve the 

postoperative microcirculation.108 More recently, the same authors found 

systemic microvascular shunting in patients undergoing CABG with CPB, but 
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not in off-pump CABG controls.109 Based on experimental studies, it has been 

suggested that diffusive shunting of oxygen from arteries to veins in the cortex 

and from the descending to ascending medullary vasa recta, may limit renal 

oxygen delivery.97 One could speculate that this intrarenal oxygen shunting 

might be aggravated during CPB, inducing tissue hypoxia and tubular injury. 

These perfusion alterations and oxygen shunting at capillary levels may not be 

reflected in renal or systemic VO2 or oxygen extraction.  

Data on the physiological state of the kidneys beyond the first hour after 

cessation of CPB are limited. Redfors compared patients with AKI and 

uncomplicated controls after cardiac surgery.24 Both groups were sedated and 

mechanically ventilated. The control group was studied 4–6 hours after 

weaning from CPB, while the AKI group was studied 2–6 days after surgery. 

Table 14. Systemic and renal variables after cardiac surgery with CPB. 

Values are mean±SEM. CI; cardiac index, FF; renal filtration fraction of 
51Chromium-EDTA, GFR; glomerular filtration rate, O2/Na+; oxygen 
consumption per millimole reabsorbed sodium, PAHext; renal extraction of 
para-aminohippurate, RBF; renal blood flow, RDO2; renal oxygen delivery, 
RO2Ex; renal oxygen extraction, RVO2; renal oxygen consumption, RVR; 
renal vascular resistance.  Data from Paper II and Redfors24, with 
permission. 

Although these groups are not entirely comparable, the state of the renal 

oxygenation shortly after CPB does have some similarities with that of AKI. 

In both groups, the renal oxygen extraction is high, mainly due to high RVR 

and reduced RDO2, and the oxygen cost of sodium transport is increased, 

reflecting tubular dysfunction or injury.  

Variable Early post CPB  

 

Postoperative AKI  

 

Postop controls 

 N=18 N=12 N=37 

CI 2.21±0.12 2.77±0.16 2.63±0.08 

RO2Ex 0.16±0.01 0.163±0.01 0.097±0.004 

RBF 558±30 496±34 822±40 

GFR 67±4.2 33.6±3.4 80.3±4.2 

FF 0.18±0.01 0.11±0.01 0.148±0.005 

RVR 0.116±0.01 0.131±0.095 0.086±0.004 

PAHext 0.71±0.03 0.68±0.04 0.85±0.01 

RDO2 80±4.0 71±4.5 120±6.6 

RVO2 12±4 11.8±0.8 11.4±0.5 

O2/Na+ 1.4±0.94 1.94±0.36 0.82±0.06 
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5.7 DIFFERENTIAL EFFECTS OF 

LEVOSIMENDAN AND DOBUTAMINE (PAPER 

IV) 

The main finding of the study was that levosimendan, in contrast to 

dobutamine, not only increased cardiac index and renal blood flow, but also 

GFR.  

These findings are in line with a previous study of levosimendan in 

uncomplicated post-cardiac surgery patients with normal renal function, where 

levosimendan increased both RBF and GFR compared with placebo.55  

 

 

 

 

 

 

Figure 15. Relative (%) changes in cardiac index (CI), renal blood flow (RBF) and 

glomerular filtration rate (GFR) after administration of levosimendan and 

dobutamine.  

Both agents induced a renal vasodilatory effect accompanied by an increase in 

RBF. The renal filtration fraction (GFR/renal plasma flow) remained 

unchanged in patients receiving levosimendan, and it decreased in those treated 

with dobutamine. These findings could mean that levosimendan preferentially 

causes vasodilation of the afferent arterioles, which, at a certain mean arterial 

pressure, induces a proportional increase in both RBF and GFR. The presence 

of ATP-dependent potassium channels on afferent arterioles and activation of 

these channels have previously been demonstrated in experimental studies.110 

Dobutamine, in contrast, seems to induce a balanced vasodilation of both 

afferent and efferent arterioles, thereby increasing RBF, while maintaining a 

constant glomerular filtration pressure, as indicated by no change in GFR. This 

pattern is similar to that previously described for low-dose dopamine in post-

cardiac surgery patients, in whom it induced a pronounced increase in RBF 

with no effect on GFR.27 
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Experimental studies indicate that levosimendan may exert a beneficial effect 

on the glomerular capillary ultrafiltration coefficient.111 Smooth muscle-like 

cells in the mesangium of the glomerulus, the mesangial cells, regulate the 

glomerular capillary surface area. They respond to vasoconstrictors such as 

angiotensin II and react by decreasing the available surface area for filtration. 

This angiotensin II-mediated mesangial cell contraction is reversed by 

levosimendan.111 Heart failure patients have high circulatory levels of 

angiotensin II,17 and the increase in GFR seen after levosimendan 

administration could to some extent be explained by an inhibition of the 

angiotensin II-mediated mesangial cell contraction and an increase of the 

available glomerular capillary surface area. 

It has been assumed that any inotropic drug that displays a favorable effect on 

central and peripheral hemodynamics would, inevitably, also improve renal 

function.112 Current guidelines on inotropic treatment in patients with heart 

failure provide no suggestions on the choice of agent.58,59 The differential 

effects of levosimendan and dobutamine on GFR, as demonstrated in paper IV, 

are, therefore, of clinical interest and might imply that levosimendan could be 

the preferred inotropic agent for treatment of the cardiorenal syndrome. 

Limitations 

A major limitation is the relatively small sample size of the study population. 

Furthermore, our protocol was a pharmacological intervention of short 

duration, and only the acute effects of the administered inotropic agents were 

studied; therefore, the effect of a more prolonged (24–48 hours) period of 

levosimendan treatment on measured GFR is not known. Moreover, the 

participants of the study were not in need of inotropic support, in contrast to 

patients with acute HF, who are considered for such interventions. In addition, 

urine was not collected for analysis of, for example, sodium excretion. 
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6 CONCLUSION 

• In cardiac surgery, a renal tubular cell injury is seen early after onset 

of CPB with a peak biomarker increase early after the 

discontinuation of CPB. 

• The magnitude of this tubular injury is independently related to CPB 

duration and the degree of rewarming.  

• Cardiopulmonary bypass impairs renal oxygenation due to renal 

vasoconstriction and hemodilution 

• After CPB, the renal oxygenation is further deteriorated due to 

increased oxygen consumption. 

• The renal oxygenation mismatch during and after CPB is correlated 

with tubular cell injury. 

• The impaired renal oxygenation seen during CPB is ameliorated by 

an increase in CPB flow rate.  

• The feasibility of higher CPB flow rates and the clinical relevance of 

these findings, in terms of renal outcome, should be explored in 

future studies. 

• In patients with HF and renal impairment, the levosimendan-induced 

elevation of cardiac output not only increased RBF but also, and in 

contrast to dobutamine, enhanced GFR, suggesting a preferential 

dilation of preglomerular afferent arterioles. 

• Levosimendan may be the preferred inotrope when treating patients 

with cardiac and renal failure 
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7 FUTURE PERSPECTIVES 

The studies in this thesis have added to the current knowledge on the renal 

effects of cardiac surgery with cardiopulmonary bypass. Hopefully, this may 

lead to improvements in the patient care, and to the development of new 

strategies to reduce the risk of postoperative AKI. The dire state of the kidneys 

shortly after discontinuation of CPB suggests that this is a critical period, 

where care should be taken to optimize perfusion and oxygenation. Also, more 

studies of the “natural course” of renal oxygenation in the hours after CPB 

should be undertaken to see which interventions might be the most appropriate. 

Increased CPB flow rates might be reno-protective, and could be one way to 

reduce postoperative AKI in selected patients. We plan to perform a 

randomized outcome study of different CPB pump flow levels, which may 

reveal the clinical applicability of our findings in paper III.  

The findings of paper IV may have impact on the guidelines on the 

management of acute heart failure accompanied by AKI, where levosimendan 

might be the preferred agent. The renal and systemic effects of levosimendan 

in postoperative AKI remains to be studied.  
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