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ABSTRACT 

Complex social cognitive processes underlie social behavior. Oxytocin has long 

been recognized as crucial in social behavior in animals, but its role in 

regulating human social cognition and behavior is less clear, particularly with 

regard to endogenous oxytocin. The aims of this thesis were to investigate (i) 

how endogenous oxytocin affects face and emotion recognition in humans, (ii) 

how it may modulate social impairments in autism spectrum disorder and 

antisocial behavior, (iii) how exogenous (intranasal) oxytocin may influence the 

salience of human faces, and finally (iv) the role of endogenous oxytocin in 

zebrafish social behavior. 

We investigated endogenous oxytocin by studying genetic variation in oxytocin-

related genes, and found that oxytocin influences social cognition in humans, 

specifically via modulation of face recognition (Paper I) and via modulation of 

emotion recognition in women (Paper II). In addition, we found tentative 

associations between variation in oxytocin-related genes and autistic-like traits 

in the general population (Paper III), and showed that variation in the oxytocin 

receptor gene is associated with antisocial behavior in men (Paper IV). We also 

showed that exogenous (intranasal) oxytocin acts to increase the salience of 

human faces (Paper V), a mechanism that may underlie its behavioral effects. 

Finally, we demonstrated that an oxytocin receptor antagonist decreases social 

preference in adult and larval zebrafish (Paper VI).  

In conclusion, this thesis confirms the importance of endogenous oxytocin for 

social cognition in humans, and demonstrates one mechanism by which 

exogenous oxytocin may act. Furthermore, we established an animal model for 

future research on the oxytocin system. 
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SAMMANFATTNING PÅ SVENSKA 

Socialt beteende underbyggs av komplexa kognitiva mekanismer (social 
kognition), som gör det möjligt för oss att till exempel känna igen 
personer vi tidigare träffat, och att korrekt identifiera de känslor de 
uttrycker. Detta gör det möjligt för oss att fungera i sociala situationer, 
där vi behöver ge korrekta gensvar. 

Oxytocin har en väl etablerad betydelse för socialt beteende hos djur, 
men dess betydelse för socialt beteende och social kognition hos 
människa är mer oklar. Studier på oxytocin administrerat via nässpray 
har gett ett flertal intressanta resultat, men vilken roll kroppseget 
oxytocin spelar har varit svårt att studera. Genom att titta på variation i 
oxytocin-relaterade gener kan man dock etablera en länk mellan 
kroppseget oxytocin och socialt beteende. 

Många psykiatriska sjukdomar karaktäriseras av svårigheter med sociala 
interaktioner – ett exempel på detta är autismspektrumstörning, där 
svårigheter med sociala interaktioner är ett kärnsymptom. Det är 
därmed av yttersta vikt att finna specifik och effektiv farmakologisk 
behandling for sociala svårigheter, vilket idag saknas. Oxytocin har 
föreslagits som behandling, men den underliggande mekanismen bakom 
dess effekter är dock inte klarlagd. 

I denna avhandling kunde vi visa att kroppseget oxytocin påverkar hur 
väl man känner igen ansikten, och att detta är kopplat till 
aktiveringsgrad i hjärnregionen amygdala. Vi kunde även koppla 
kroppseget oxytocin till känsloigenkänning hos kvinnor. Vidare 
undersökte vi hur endogent oxytocin påverkar svårigheter med sociala 
interaktioner, och kunde visa att det kan influera autismliknande drag i 
normalpopulationen såväl som aggressivitet hos män. Experimentellt 
påvisades också hur oxytocin givet i form av nässpray påverkar visuell 
perception, där oxytocin ökar hur framträdande ett mänskligt ansikte är 
i medvetandet. Slutligen visas att kroppseget oxytocin spelar roll för 
socialt beteende hos zebrafiskar. 

Sammanfattningsvis understryker denna avhandling oxytocinets 
betydelse för mänsklig social kognition, och undersöker en mekanism 
genom vilken det kan verka. Vi etablerar även en djurmodell för att 
ytterligare studera hur oxytocin påverkar hjärnan vid socialt beteende. 
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PREFACE 

Social interactions characterize human life from the moment we are 
born to the moment we die. The ability to function adequately, in the 
multitude of daily social transactions we participate in, is crucial to our 
well-being. The sophistication of social behavior requires a set of highly 
specialized cognitive skills. This social cognition encompasses several 
different phenomena, such as the ability to recognize and remember 
other individuals; to ascertain some notion of their state of mind by 
recognizing their emotional expressions; to imagine and understand 
their idiosyncratic emotional and cognitive perspectives, needs, and 
aspirations; and to respond appropriately to these socially-induced 
internal states and the external social environments. 

The importance of the neuropeptide oxytocin (OXT) for social behavior 
and its associated social cognition in animals is well-established [1-5]. 
While there is support for involvement of this neuropeptide in human 
social behavior and cognition, the precise role of endogenous OXT in 
humans remains somewhat unclear, in part due to the difficulties of 
measuring OXT levels in a satisfactory way [6]. However, studying 
genetic variation in OXT-related genes provides an opportunity to 
establish a link between endogenous OXT and social cognition and 
behavior in humans. 

Several psychiatric disorders are characterized by difficulty in social 
functioning [7], including autism spectrum disorder (ASD), where social 
impairments are a core feature [8]. It is of great importance to find 
targeted and effective treatment for social impairments. While OXT is an 
appealing treatment candidate, the mechanism and the neural 
underpinnings of the effects of exogenous (and endogenous) OXT on 
social cognition are still unclear. 

The aims of this thesis were to investigate (i) how endogenous oxytocin 
affects face and emotion recognition in humans, (ii) how it may modulate 
social impairments in autism spectrum disorder and antisocial behavior, 
(iii) how exogenous (intranasal) oxytocin may influence the salience of 
human faces, and finally (iv) the role of endogenous oxytocin in zebrafish 
social behavior. 

This text aims to provide a background, summarizing relevant research 
on OXT as it pertains to the included papers. Chapter 1 briefly discusses 
social behavior, including the importance of social impairments in 
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psychiatric disorders, using ASD as an example. Chapter 2 introduces 
OXT as a molecule – its structure, receptor, evolution, and current 
literature about its location and function in the brain. Chapter 3 
examines the role of OXT in social behavior and social cognition. Chapter 
4 summarizes the findings of the studies included in this thesis, and 
finally, a concluding discussion is found in Chapter 5. The Appendix 
briefly discusses methodology used in the various papers. 
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1 SOCIAL BEHAVIOR 

In Song VI of The Iliad [9], Trojan prince Hector meets his wife 
Andromache and their son Astyanax at one of the gates of Troy, sharing a 
moment with them prior to returning to battle with the Greeks. The 
scene encompasses the interactions between husband and wife, and 
between parents and child. Hector reaches for his son, but his plumed 
helmet obscures his face and scares the child. Removal of the helmet 
facilitates face recognition, and his son is no longer frightened. Hector is 
also able to perceive the grief of his wife and attempts to comfort her, 
before he ultimately returns to the battle and is killed by Achilles. 

This scene describes characteristics of social interactions: the ability to 
convey emotion [10], and social behavior, here defined as behavioral 
responses to socially relevant stimuli. The passage highlights the body 
language of Hector, Andromache, and the young Astyanax: Hector smiles, 
Andromache sighs and weeps, and the child cries with fear. More 
importantly, when the child displays fear, Hector can interpret that, 
understands that his visage is altered by the plumed helmet on his head, 
and removes it, whereupon Astyanax happily lets his father hold him. 

Social behavior is present in virtually all species of animals, from insects 
[11] to humans. Honey bees display brood care, defensiveness, 
aggression, and an intricate dance language [12]. Zebrafish form 
cohesive shoals, and display coordinated motion, territorial aggression, 
and kin preference [13]. Monk parakeets form monogamous pairs, share 
foraging information, and establish dominance hierarchies [14]. Non-
human primates share many of the features of human social culture, such 
as symbolic elements in communication, and a rich emotional range 
which can be clearly displayed – indeed, the term “social culture” has 
been applied to non-human primate interactions [15]. Humans also 
exhibit “theory of mind” – i.e. the ability to take another individual’s 
perspective, knowing that other people know, want, and feel things, and 
the ability to perceive their mental state [16, 17]. 

Social behavior is thus an incredibly diverse phenomenon, and terms 
that were previously used to describe particular behaviors, such as 
“sociality” and “prosocial behavior”, have gradually become more 
broadly applied to encompass a wide variety of behaviors [18]. The term 
social behavior includes (but is not limited to) pair-bonding, grouping 
behavior, parental behavior, and  aggression [18]. It is also important to 
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bear in mind that the presence and prominence of these behaviors vary 
by species [18] – for example not all species form monogamous pairs or 
parental behavior. While it is convenient to use an umbrella term, it is 
important to not conflate these social behaviors, but rather study them 
as distinct phenomena. 

Nonetheless, these behaviors have been evolutionarily selected for 
because they ultimately and consistently serve to increase the likelihood 
of survival and reproduction. Affiliative behavior (sometimes called 
prosocial behavior) can be exemplified by pair-bonding (the dyadic 
constellation of individuals displaying marked partner preference for 
each other) and grouping behavior (the aggregation of conspecifics in 
cooperative formations – in animals exemplified by flocks, herds, and 
shoals). Pair-bonding in animals provides benefits such as increased 
offspring survival [19], and has been linked to physical and mental 
health in humans [20]. Grouping behavior in animals similarly provides 
survival benefits, such as protection, access to sexual partners, collective 
foraging, shelter, etc. [21]. In humans, collective behavior allows for the 
sharing of information and thus has been argued to shape much of our 
cultural development and adaptation to novel environments [22]. 
Aggression, in turn, is prevalent throughout much of the animal kingdom 
[23], and can be defined as behaviors with the intention of doing harm 
[24]. It is necessary for survival and fitness, including competition for 
resources and mates [25]. However, aggression can also be abnormal, so 
that it is excessive in the context where it is displayed. While excessive 
aggression can be elicited in animals, it has also been argued that it is 
something exclusive to humans living in an organized society [26]. The 
term antisocial behavior in the following chapters serves as an umbrella 
term comprising both aggressive and non-aggressive behavior in 
humans, broadly characterized by the violation of social and legal norms. 

1.1 SOCIAL COGNITION 

Social behavior is an outwardly visible and quantifiable phenomenon. 
For instance, one can assess how much one rat sniffs another [27], or 
observe humans interacting in a controlled setting [28], and thus 
quantify behavior according to a set of specific parameters. However, the 
observed behavior must necessarily be the product of some form of 
neural processing [29]. Thus, while social behavior can be regarded as 
the output (or the response, appropriate or not, to any given social 
interaction), the input (social cues, context, factors outside of the 
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individual) is necessarily processed in cortical and subcortical circuits which serve to determine manifest behavior. Social interaction involves a number of possible sensory communication avenues (such as vision, hearing, and body language), receiving input in the form of sensory cues specific to social behaviors and based on dynamic information from a conspecific that is also making its own decisions [29]. Social cognition, i.e. the mechanisms through which animals acquire and process social information in order to respond to social situations, thus includes the ability to assess, evaluate, and respond to social signals and cues [30]. For instance, a prerequisite for interaction with conspecifics is social recognition, as in recognizing a face, which in humans conveys a wealth of social information, including identity, ethnicity, and gender [31]. In addition, processing of emotional expressions – emotion recognition – conveyed by faces, voices, or body language, is equally crucial to determine the correct response to any given social situation [32]. 

   
Figure 1. The social decision-making network. POA: preoptic area. AH: anterior 
hypothalamus. VMH: ventromedial hypothalamus. PAG: periaqueductal gray. CG:
central gray. LS: lateral septum. BNST: bed nucleus of the strial terminalis. 
meAMY: medial amygdala. Str: striatum. NAcc: nucleus accumbens. VP: ventral 
pallidum. blAMY: basolateral amygdala. HIP: hippocampus. VTA: ventral
tegmental area. Adapted from O’Connell 2011 [33]. 
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Social cognition requires engagement of a multitude of brain areas, and it 
is beyond the scope of this thesis to review this in full. However, from 
animal literature it has been suggested that social cognition, with its 
evaluative and decision-making process, depends on a social decision-
making network (SDM; see Figure 1) [33], consisting of a synthesis of the 
social behavior network (SBN) [34, 35], and the mesolimbic reward 
system [33, 36]. This SDM seems to be remarkably conserved throughout 
vertebrate evolution, from teleost fish to mammals [33].  

The SBN, as posited by Newman, contains six nodes: the preoptic area, 
anterior hypothalamus, ventromedial hypothalamus, parts of the 
midbrain (periaqueductal and central gray), lateral septum, and the bed 
nucleus of the stria terminalis/medial amygdala [34]. Each of the nodes 
responds to various stimuli – behavioral contexts elicit distinct 
activation patterns across the nodes, and these nodes serve as the “core” 
of the social brain, integrating input from other areas involved in social 
decision-making [35]. Due to its associative function for sensory 
processing areas, the SBN plays an important part in complex social 
cognition [37].  

Crucially, the mesolimbic reward system serves to evaluate stimuli for 
salience, and underlies appetitive behavior [36]. Treated as a part of the 
SDM, it contains eight nodes, where dopaminergic projections from the 
ventral tegmental area to the nucleus accumbens are central. Additional 
nodes are the basolateral amygdala, ventral pallidum, striatum, 
hippocampus, lateral septum, and the bed nucleus of the stria terminalis 
[33]. Two nodes of the SBN are shared with the mesolimbic reward 
system: the lateral septum and the bed nucleus of the stria terminalis, 
and the various nodes of both systems are heavily interconnected [33]. 
This coupling of the SBN to the mesolimbic reward system allows social 
behavior to be rewarding and reinforcing, and thus adaptive – allowing 
for not only the evaluation of social stimuli, but also for social learning, 
where bonds and behaviors may be reinforced. 

Many of the relevant structures for social cognition in humans have been 
deduced using functional magnetic resonance imaging (fMRI), showing 
for instance that the fusiform gyrus is necessary for face processing [38, 
39]. Several of the areas activated in the evaluation of a social situation 
in humans also recapitulate the hypothesized SDM. The ventral striatum 
plays a part in evaluating relationships [40], and the result of a social 
decision is evaluated by engaging the dopaminergic midbrain and the 
striatum [41, 42]. 
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1.2 SOCIAL IMPAIRMENTS IN PSYCHIATRIC 
DISORDERS 

Many psychiatric disorders present with impairments in social cognition, 
and some argue that almost all of these disorders imply some level of 
social impairment [7]. For example, schizophrenia patients show 
impairments in theory of mind, i.e. trouble inferring other people’s 
intentions and mental states [43, 44],  and psychopathy is associated 
with difficulties in reading certain facial expressions, such as fear [45]. 
Social anxiety patients show a negative bias toward interpreting 
ambiguous social cues [46], and attend more to negative facial 
expressions such as anger [47]. 

One example of a disorder characterized by social impairments is ASD, 
which – according to the most recent diagnostic criteria – encompasses 
two core symptom domains: (a) impairments in social communication 
and social interaction, and (b) restricted and repetitive behavior [8]. 
First described by Leo Kanner in 1943 [48], ASD is pervasive and 
typically life-long. Historically and commonly referred to simply as 
autism, this disorder was originally considered quite rare, but later 
epidemiological studies have placed the prevalence at approximately 1% 
of the population [49-51], with some estimates exceeding that [52]. 
There is some debate concerning what the cause of this increased 
prevalence is, and while it is difficult to definitely rule out an increase in 
prevalence, recent studies indicate that the increase in diagnosed cases 
does not correlate with a corresponding increase of symptomatology in 
the general population [53], and that it can be at least partly explained 
by changes in clinical practice [54]. 

Autistic-like traits (ALTs) are problems with social interaction or 
repetitive behavior that do not meet formal criteria for a diagnosis of 
ASD. Population-based studies suggest that an ASD diagnosis represents 
the lower end of a normally distributed spectrum of social interaction 
abilities [55, 56]. Thus, while the diagnosis is based on a clinical cut-off 
point of impairments, this continuous spectrum of social ability exists 
within the normal population, and many individuals exhibit ALTs [55].  

The etiology of ASD remains unknown, but epidemiological studies 
indicate a strong genetic influence, with higher concordance rates for 
monozygotic twins (60% to 90%) than dizygotic twins (0% to 30%) 
[57]. Heritability estimates vary somewhat, but ASD has been 
characterized as a highly heritable disorder, with heritability estimates 
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mostly between 70 and 90% [58-60]. Higher ALTs in parents also to 
some extent predict the emergence of ASD in their children [61, 62], 
further supporting a genetic background. 

Molecular genetic studies of ASD have identified a large number of risk 
genes with rare causative mutations in 10-25% of ASD patients, and 
common genetic variants could additionally explain a significant 
proportion of the heritability of ASD [63]. This suggests significant 
heterogeneity in the genetic etiology of ASD [57]. The influence of 
common variants seems substantial, but causality is difficult to prove 
since there are a high number of variants, each of which is only 
associated with a very modest risk [64]. However, the core symptom 
domains have been suggested to have partly different genetic influences 
[65], which means that the clinical heterogeneity displayed by 
individuals with ASD could partly be explained by their underlying 
genetic idiosyncrasies. Furthermore, ALTs and ASD have through twin 
studies been shown to share common genetic and environmental 
influences [66, 67], showing that they are etiologically linked – thus 
studying the molecular genetics of ALTs in the general population may 
be informative for ASD as well.  
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2 OXYTOCIN 

Sir Henry Hallett Dale received the Noble Prize in 1936 (with Otto 
Loewi) for his demonstrations of how acetylcholine acts in 
neurotransmission, a fundamental and paradigmatic discovery. Given his 
other groundbreaking discoveries, Dale’s involvement in discovering the 
contractile properties of OXT seems rather incidental. In the days of Dale, 
the specific hormones of the pituitary had not yet been isolated and 
defined, and “pituitary extract” would instead be applied in various 
preparations to elicit physiological effects. Thus, in 1906, while studying 
the effects of ergot on the physiology of several organ systems, he noted 
almost in passing: “…dried ox-pituitary was given intravenously, 
producing the rise of blood-pressure and contraction of the uterus…” 
[68], marking the first recorded observation of what would later form an 
integral part of obstetrics (which was initiated not much later, when 
such pituitary extracts were used clinically to induce uterine 
contractions in cases of post-partum hemorrhage [69]). 

Less than a decade after Dale described the uterine contractions caused 
by pituitary extracts, their involvement in lactation was discovered [70]. 
In 1928, the two highly homologous neuropeptides OXT and arginine 
vasopressin (AVP) were distinguished from each other [71]. In the 
1950s, OXT was successfully synthesized [72]. The genetic sequence of 
OXT was characterized in the 1980s [73], and the OXT receptor (OXTR) 
was sequenced in 1992 [74]. 

For close to 60 years after the discovery of its peripheral roles, OXT was 
mainly seen as the facilitator of childbirth and breastfeeding. This role, 
constrained to female reproduction, is apparent in its name, taken from 
the Greek words ὀξύς (oxys) and τόκος (tokos): “quick birth”.1 However, 
some early observations of behavioral effects of neuropeptides were 
noted. In 1955, vasotocin – the homologue of AVP in bony fish – was 
found to induce a spawning reflex in killifish [75], and in the 1960s OXT 
and AVP were demonstrated to alter the rate of extinction of conditioned 
avoidance behavior [76]. However, the seminal breakthrough for the 
study of OXT as a mediator and regulator of social behavior was the 
experiments carried out in the 1970s by Pedersen and Prange, 

                                                      
1 Having experienced the births of his two daughters, one of them by induction 
of contractions using exogenous OXT, the author wishes to remark that this may 
be somewhat of a misnomer. 
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illustrating that intracerebroventricular (icv) injections of OXT in virgin 
female rats induced maternal behavior [77]. Following this, the interest 
in OXT as a behavioral modulator has steadily increased, as evidenced by 
the great body of research that has been generated over the past four 
decades, specifically investigating the role of the neuropeptide in social 
behavior in a variety of species (for reviews illustrating this, see [1, 3, 
78]). 

2.1 THE OXYTOCIN MOLECULE AND ITS 
RECEPTOR 

Mammalian OXT is a small molecule composed of nine amino acid 
residues (nonapeptide), where a disulphide bridge joins the cysteine 
residues at position 1 and 6 [1]. This general nonapeptide structure of 
OXT is shared with AVP, and indeed with all neurohypophyseal 
hormones of all species where they have been observed [79]. It is worth 
noting that OXT (and AVP) homologues exist outside of vertebrate taxa, 
for instance in insects and nematodes [3], illustrating that these 
molecules are strongly conserved, with only slight variation between 
species [80, 81]. However, to allow better focus, the brief overview of the 
evolution of nonapeptides presented next is limited to the vertebrata 
taxa (see Table 1 for a comparison of structure between selected 
vertebrates). 

 

The mammalian OXT and AVP genes (OXT and AVP) are highly 
homologous and located on the same chromosome (chromosome 20 in 
humans), separated by a short intergenic region of about 11 kilobases 
(kb) in humans (the length of this intergenic region is variable between 

Table 1. Comparison of nonapeptides in vertebrate taxa. 

 

1 2 3 4 5 6 7 8 9 Taxa 

Oxytocin Cys Tyr Ile Gln Asn Cys Pro Leu Gly Placentals 

Mesotocin * * * * * * * Ile * Marsupials, avian 

Isotocin * * * Ser * * * Ile * Osteichthyes 

Vasotocin * * * * * * * Arg * Nonmammalian 

Vasopressin * * Phe * * * * Arg * Mammals 

Adapted from Jurek 2018 [3]. 
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species). Both contain three exons and two introns, but have opposite transcriptional directions (see Figure 2) [1]. The ancestor gene of all nonapeptides is vasotocin, which still exists in its original form as the AVP homologue in certain species, for instance birds and teleost fish [3]. Vasotocin underwent gene duplication before the divergence of vertebrates, and the vast majority of vertebrates possess two nonapeptides: an OXT-like form and an AVP-like form, where the different forms of each constitute two families of nonapeptides. The distinction between the OXT family and AVP family is based on the amino acid at position 8, where the AVP family contains either lysine or arginine (both basic amino acids), whereas the OXT family contains a neutral amino acid – leucine in humans, and isoleucine in birds and teleost fish [79]. In addition, secondary gene duplications have led to marsupials possessing three AVP-like nonapeptides and two OXT-like peptides [3].           In parallel with the evolution of the nonapeptide molecules, their receptors have followed a similar trajectory, displaying the same highly conserved biochemical structure [82, 83]. An ancestral vasotocin receptor gene gave rise to both the AVP and the OXT families of receptors [84]. All these receptors belong to the G protein-coupled 

Figure 2. OXT and AVP (large arrows) on human chromosome 20, with exons 
(small arrows). The preprohormones (boxes) contain a signal peptide (SP), a 
neuropeptide (OXT or AVP), neurophysin (NP), and in the case of AVP, a
glycopeptide (GP). Two amino acids vary between the neuropeptides (green). 
Adapted from Lee 2009 [1]. 
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receptor superfamily, and contain seven transmembrane α-helix 
domains [85]. 

For practical purposes, this section describes only the receptors in 
humans (mammals) and zebrafish (teleost fish), as these are most 
relevant to the papers included in this thesis. Mammals have only one 
recognized OXT receptor (OXTR), while there are three AVP receptors 
[79]. In teleost fish, the OXT homologue isotocin differs from OXT on 
position 4 (in addition to position 8), where isotocin contains serine in 
place of glutamine. Isotocin binds to two receptors, which have resulted 
from a secondary gene duplication in the teleost lineage (the same is true 
for the teleost AVP receptors) [86]. The isotocin receptors are termed 
the oxytocin receptor (Oxtr) and oxytocin receptor like (Oxtrl). 

Having evolved from the same ancient precursor, OXT and AVP have 
partly similar functionality [87]. Mammalian AVP has three receptor 
subtypes: vasopressin receptor 1A (AVPR1A), 1B (AVPR1B), and 2 
(AVPR2), of which the 1A receptor mediates most of the effects of AVP 
on social behavior [88]. AVP receptors are found throughout the primate 
brain, with AVPR1A being most widespread [89]. There is significant 
cross-talk between these peptides and their receptors. Peripherally 
administered OXT can act through AVPR1A to induce physiological 
effects, and AVP can similarly act through OXTR [85]. The same holds 
true for OXT administered in the brain, where icv administration of OXT 
can act via AVPR1A to rescue social behavior deficits in OXTR knockout 
mice [90]. Conversely, administration of AVP into the septum of a strain 
of rats which lack AVP altogether improves social recognition by acting 
through OXTR [91]. It has been suggested that OXT may be more 
directed towards “altruistic” behavior (i.e. maintenance of the social 
group or species through sexual behavior, birth, and bonding), and AVP 
towards “selfish” functions and behavior (i.e. aggression, maintenance of 
homeostasis, arousal, memory) [92]. However, given the complexity of 
the OXT and AVP systems, and the cross-talk between them, this may be 
an oversimplification. More research is needed to clarify how these two 
systems complement each other, and how they differ. 

2.2 OXYTOCIN NEURONS 

OXT is primarily produced in magnocellular neurons of the 
paraventricular and supraoptic nuclei of the mammalian hypothalamus, 
but some synthesis also takes place in parvocellular neurons of the 
paraventricular nucleus [93-96]. Magnocellular neurons project to the 
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neurohypophysis, while the parvocellular neurons do not, but both have 
extrahypothalamic projections [97-99]. While the number of OXT axons 
is rather low and varies between brain regions [93], magnocellular 
neurons in rodents have been found to terminate in widespread areas of 
the brain, including the prefrontal cortex, anterior olfactory nucleus, 
nucleus accumbens, lateral septum, hippocampus, and medial and 
central amygdala [93, 96, 98, 100, 101]. 

In addition to axonal release of OXT, there is also evidence for dendritic 
release of the neuropeptide, whereby it is hypothesized that OXT 
subsequently diffuses through extracellular space to exert its effects 
[102]. However, given that there are axonal projections of OXT neurons 
to OXTR-containing regions of the brain, and additionally the rapid onset 
of effects of OXT neurotransmission as well as the estimated necessary 
concentrations for sufficient receptor binding, it seems unlikely that 
dendritic release would be a primary mechanism [103]. 

Differentiation of OXT neurons is influenced by the co-expressed and 
heterodimerizing transcription factors aryl hydrocarbon receptor 
nuclear translocator 2 (ARNT2) and Single-minded 1 (SIM1) [104, 105], 
and mice haploinsufficient for SIM1 display a near 80% reduction in OXT 
expression in the paraventricular nucleus [106]. Furthermore, cluster of 
differentiation 38 (CD38), a transmembrane protein, plays an important 
role in OXT release in the hypothalamus of mice [107]. 

2.3 OXYTOCIN RECEPTOR DISTRIBUTION 

In addition to identification of origin and projection of OXT neurons, 
studying the location of OXTR can also help toward understanding the 
role of OXT in the neurophysiology underlying social behavior. The 
distribution of OXTR in mammalian brains has been extensively studied 
in rodents, where a relatively large and diverse number of areas have 
been identified as containing OXTR to various degrees [3]. It should be 
noted that, as illustrated in prairie and montane voles, expression levels 
of OXTR seem highly species-specific [108]. That being said, the text here 
briefly describes the areas where OXTR has been reported to be 
expressed in mammals. 

While there is widespread expression of OXTR in many parts of the 
mammalian brain [3], the most well-established expression in rodents is 
found in the hypothalamus, the prefrontal cortex, the hippocampus, and 
the amygdala. In the hypothalamus of mice, there is relatively sparse 
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expression in the paraventricular nucleus [109-111], but the expression 
is more pronounced in the ventromedial hypothalamus of rodents, non-
human primates, and humans [112, 113]. In the hippocampus and 
medial prefrontal cortex of rodents, OXTR is expressed on inhibitory 
interneurons [114, 115], and finally, OXTR expression has been 
confirmed in the central and medial amygdala of several species, 
including rodents and humans [116]. 

One of the issues with locating OXTR in primate brains has been ligand 
promiscuity. While ligands that selectively bind only to OXTR are 
available in rodents, those same ligands are promiscuous for OXTR and 
AVPR1A in primates [117]. It is therefore only very recently that 
receptor locations have been determined in primates with some 
certainty. Early attempts at localizing OXTR in human brain, unaware of 
the promiscuity of the ligands used, gave a brief and early indication of 
receptor localizations [109, 118]. A later attempt using more specific 
methods found OXTR in the central and basolateral regions of the 
amygdala, medial preoptic area, anterior and ventral hypothalamus, 
olfactory nucleus, and lateral septum, but not in the hippocampus [119] 
– however, this was performed using only a single brain sample from a 
female human. More recently, a specific autoradiographic protocol was 
developed, and used to establish location of OXTR in several brain areas 
of the rhesus macaque important for gaze control, visual attention, and 
auditory processing, as well as the ventromedial hypothalamus [117]. In 
the coppery titi monkey, OXTR has been found in similar areas, and also 
in the hippocampus, and primary visual cortex [89]. Applying the same 
protocol to human brain stem and spinal cord, OXTR was found in the 
nucleus prepositus, which is important for eye gaze stabilization [120]. 
Thus, while there has been progress in establishing receptor locales in 
primates including humans, the relative certainty possible for rodent 
receptor distributions is lacking in primates. Given the previously 
mentioned specificity of expression, mapping receptors and their 
expression levels in humans would be highly informative. 

It should be noted that OXTR displays not only species-specific, but also 
sex-specific differences. While there are intriguing species comparisons, 
such as the case of the prairie and montane voles [108], analyses of 
sexual dimorphism in several species commonly used in research are 
lacking, and the literature so far covers AVP receptors to a larger extent 
than OXTR [121]. While this is too broad a subject to cover in any great 
detail here, some examples can be mentioned. For instance, OXTR 
expression was higher in male than in female Wistar rats in the nucleus 
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accumbens, putamen, lateral septum, bed nucleus of the stria terminalis, 
hippocampus, and the medial amygdala [122]. Similarly brain-region-
specific sex differences have been found in species of voles [123, 124], 
and in mice [125]. As stated above, there is still a paucity of studies on 
OXTR distribution in humans and non-human primates, and those 
carried out either had few subjects of either sex or did not perform 
analysis on sex differences [89]. Furthermore, OXTR expression is 
regulated by gonadal hormones through estrogen receptor alpha, which 
can bind to a response element in the promotor region of OXTR [126]. 
Treatment with gonadal hormones, as well as gonadectomy, and estrus 
status in females, lead to changing in OXTR binding densities in male and 
female rats [122, 127, 128]. In conclusion, there is significant evidence 
that the OXT system displays sexual dimorphism, which is also 
supported by sex-specific behavioral effects of exogenous administration 
of OXT [121, 129]. While there are still unanswered questions, 
particularly regarding this sexual dimorphism in humans, it is something 
that should be considered when studying OXT. 

On a final note, there is significant overlap between the SDM and the OXT 
system, at least confirmed in rodent species. OXT neurons have been 
found to project to the lateral septum [100], the amygdala [93], nucleus 
accumbens [101], and the striatum [130]. In addition, OXTR has been 
found to be expressed to varying degrees in large parts of the SDM (see 
[3] for details on relative expression levels). This underlines the 
importance of OXT in social decision-making in rodents and implies a 
significant role of OXT in human social interactions. Indeed, it has been 
proposed that the function of OXT (and AVP), may in part be to enhance 
functional connectivity between nodes in the SDM, as well as between 
other brain areas important in the processing of social information [5, 
131]. 
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3 THE ROLE OF OXYTOCIN IN SOCIAL 
BEHAVIOR AND SOCIAL COGNITION 

The role of OXT in regulating social behavior is most clearly established 
in animal models. Therefore, the following sections first focus on the 
importance of OXT for animal behavior, and then summarize what has 
been shown for humans. 

It should be mentioned that OXT has been reported to have many and 
varied behavioral effects that are not restricted to social behavior. It has 
been shown to reduce avoidance behavior during shock training in rats 
[132], induce depression-like forced swimming behavior in rats [133], 
and reduce anxiety in the open field test in mice [134, 135] and the 
elevated plus maze in rats [136]. OXT has also been demonstrated to 
induce non-social place preference in rats [137]. OXT is also established 
in regulating food intake and energy balance, with potent anorexigenic 
effects [138], and in some species it may be involved in sodium excretion 
[139]. Thus, while this thesis pertains mainly to the social behavior 
functions of this neuropeptide, it is important to remember that its 
regulatory effects reach beyond the social dimension. 

With regard to social behavior, this text is restricted to more in-depth 
summaries of the more relevant behaviors for the papers assembled 
herein. However, it is worth mentioning that OXT has been associated 
with more social behaviors than the ones listed below. For example, OXT 
affects various aspects of sexual behavior [140], which is not addressed 
here. 

3.1 ANIMAL MODELS 

Initial focus on behavioral OXT research was directed on maternal 
behavior, such as the previously mentioned induction of maternal 
behavior in virgin rat females by use of icv administration of OXT [77]. 
OXT is crucial for the establishment of maternal behavior and the bond 
between mother and offspring in several mammalian species, including 
rats [77, 141], mice [142, 143], and sheep [144]. Of note here, OXT elicits 
maternal behavior in virgin female rats, by modulating the balance 
between excitation and inhibition in the left auditory cortex. Once 
retrieval behavior has been established, it is not abolished by infusion of 
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OXT antagonist, suggesting that OXT acts a facilitator of the 
establishment of behavior [143]. 

Apart from the bond formation between mother and offspring, pair-
bonding has also been studied in some detail. Approximately 3-5% of 
mammals develop persistent monogamous pair bonds between partners 
[2, 3, 145]. One of the most established animal models used to discern 
the role of OXT in affiliative behavior – specifically pair-bonding – is the 
monogamous North American prairie vole, which in addition to dyadic 
bonding exhibits biparental care for its offspring. The prairie vole is 
often contrasted with the polygamous montane vole, and it has been 
demonstrated that the prairie vole has higher OXTR densities in nucleus 
accumbens compared to the montane vole [108, 146], highlighting a 
possible mechanism for species-specific affiliative behavior. Infusion 
(icv) of OXT also triggers partner preference in female prairie voles 
[147], while icv administration of an OXT antagonist abolishes it in both 
sexes [148, 149]. In addition, altering the densities of OXTR in nucleus 
accumbens of female prairie voles changes partner preference behavior 
[150, 151]. 

There are comparative studies of OXTR distributions in other animals, 
for instance between the monogamous California mouse and the 
polygamous deer mouse [152]. This comparison also demonstrated 
differing receptor expression between key brain regions, but the pattern 
between the two species of mice was not consistent with the pattern 
between the above two species of voles. While this underscores the idea 
that social organization may in part be underpinned by OXTR 
distributions in the brain, it remains to be clarified how these differences 
relate to specific behavior in specific species. 

Although the great detail with which prairie and montane voles have 
been scrutinized is not available in non-human primates, there are still 
some indications that OXT plays a part in social bonds in chimpanzees, 
where urinary OXT concentrations are higher after grooming with 
bonded individuals than non-bonded individuals [153]. Preference for 
novel faces of infant rhesus macaques correlates with cerebrospinal fluid 
concentrations of OXT [154], and the same species show altered OXTR 
expression levels in the hippocampus of reared by another individual 
than their mother [155]. 

The above pair-bond formation of prairie voles has been suggested to be 
underpinned by the influence of OXT on social recognition [156], a social 
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cognitive trait. Social cognition in animals is often studied through 
behavioral proxies, such as relying on the tendency of rodents to 
investigate an unfamiliar individual more than a familiar one – this then 
is utilized as a measure of social recognition [157]. There is ample 
evidence to suggest that OXT plays an important part in social cognition 
in rodents. For example, icv administration of an OXT antagonist 
decreases investigatory social behavior in both rats and mice [158]. OXT 
in the medial amygdala has been shown to be crucial for social 
recognition in mice [37, 159, 160]. Furthermore, Global as well as 
forebrain-specific OXTR knockout has been shown to decrease social 
recognition in mice [134, 161]. Finally, considering emotion recognition, 
this is naturally difficult to study in animals, but one may consider 
consolation behavior in prairie voles, which requires the ability to 
recognize distress or grief, and which is blocked by infusion of an OXT 
antagonist [162]. 

Thus, from the various models mentioned, it can be concluded that in 
mammals, endogenous OXT or treatment with exogenous OXT facilitates 
social behavior, while antagonism of OXT results in social deficits. 
Similar regulatory functions have been demonstrated in avian species for 
the avian OXT homologue mesotocin [131], which influences flocking 
behavior [163]. The matter is somewhat less clear in zebrafish [164]. 
Exogenous OXT has been demonstrated to increase zebrafish social 
preference and decrease fear response in a dose-dependent manner 
[165], and embryonal ablation of OXT neurons in the posterior 
tuberculum of zebrafish results in decreased social preference [166]. 
Furthermore, OXT and the OXT agonist carbetocin rescue social deficits 
in zebrafish caused by treatment with a glutamate antagonist [167]. 

While there are indications that OXT functions as a regulator of social 
behavior in zebrafish, this remains to be established. In Paper VI, we 
used a selective OXT antagonist to block the zebrafish Oxtr and Oxtrl. 
This decreased social preference in both adults and larvae, and 
decreased grouping behavior in adults. 

In terms of aggressive behavior, there are indications that OXT is 
involved in maternal aggression and pup defense – an adaptive form of 
aggression serving to protect the offspring [168]. However, extant 
findings seem highly species- and brain region-specific, and the effect of 
OXT is modulated by factors such as the anxiety level of the individual, 
and the sex and age of the intruder being defended against [3, 168]. 
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While maternal aggression is adaptive and defensive, OXT has also been 
implicated in offensive aggression, which is proactive and/or rewarding 
rather than reactive or protective. Animal studies of offensive aggression 
are usually conducted on males – thus, the following section refers to 
studies on males. 

Most studies seem to indicate that OXT decreases offensive aggression in 
rodents (however, see [169] and [170]). In genetic models, aggression 
increases in knockout mice lacking either OXT or OXTR [90, 134, 171, 
172]. Initial studies on exogenous administration of OXT showed that it 
decreases offensive behavior in male prairie voles and rhesus macaques 
[173, 174]. Additionally, as with the effect on pair-bonding, the effect of 
exogenous OXT administration seems species-specific – as opposed to 
prairie voles, no effect was found on aggressive behavior for OXT 
treatment in montane voles [174].  

More recent studies on exogenous OXT administration show that icv OXT 
in male rats reduces aggressive behavior, with a stronger modulation in 
highly aggressive rats [175], suggesting a differential effect of oxytocin 
dependent on baseline aggressive levels. The same anti-aggressive (and 
pro-affiliative) effect in rats was achieved with intranasal administration 
of OXT [176]. Excessively aggressive rats display a lower amount of OXT 
expression in the paraventricular nucleus and elevated OXTR binding in 
the central amygdala compared to rats that are not excessively 
aggressive at baseline [177]. Thus, the neurobiological architecture of 
the OXT system could play a part in response, not only between species 
and strains, but also between individuals. Furthermore, chronically 
altered OXT levels in the rat brain causes enduring effects, where OXT 
infusion over several days decreases aggressive behavior, while similar 
infusion of an OXT antagonist only slightly increases it [178]. This 
suggests that chronically heightened OXT levels contribute to the 
establishment of social behavior. Also, microinjection of OXT into the 
central amygdala produces marked anti-aggressive effects in male rats, 
which can then be reversed by injection of OXT antagonist in the same 
area – an OXT antagonist by itself does however not affect aggression 
when injected in the central amygdala [179]. Taken together, the results 
from animal studies generally point to a moderating effect of exogenous 
OXT on offensive aggression in male rodents. The role of endogenous 
OXT is less clear – a complete and life-long loss of OXT function does 
increase aggression, but treatment with an antagonist does not seem to 
produce the same effect. 
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In conclusion, animal studies show that (1) OXT is crucial for social behavior in several species, (2) its exact function is species-specific, and finally that (3) its effects are dependent on the context and the individual. In addition, OXT is important for social recognition, a social cognitive aspect. The role of OXT in human social cognition and associated behavior is however less clear. 
3.2 HUMANS Much of the wealth of experimental methods available in animal experiments is not feasible when investigating the effects of OXT in humans. Thus, human studies generally utilize methods such as measuring peptide levels, investigating genetic variation, or intranasal delivery of OXT [180]. There has been a large number of these studies conducted in humans (see [3, 181] for extensive reviews), and while this text cannot summarize them all, it describes selected findings from genetic and pharmacological studies. 
GENETIC ASSOCIATION STUDIES. Social behavior is heritable, with genetic influences ranging between approximately 20% and 60% for various behaviors [78]. While there are a multitude of genetic association studies on social behavior or social cognition in relation to the OXT system, many of them utilize small sample sizes, investigate phenotypes that are relatively disparate, and their findings are often constrained to subgroups, e.g. specific patient groups. This section is limited to summarizing the most pertinent findings thus far, and which relate to the papers included in this thesis.       The most studied OXT-related gene with regards to social functioning is 
OXTR. This gene contains several single nucleotide polymorphisms 
Figure 3. OXTR with selected SNPs. 

coding region intron untranslated region 

rs
45

64
97

0 
 

rs
53

57
6 

 

rs
22

54
29

8 
 

rs
10

42
77

8 
 

rs
76

32
28

7 
 

3’ 5’ 

rs
22

68
49

8 
 

rs
23

78
87

  

rs
75

77
5 

 

rs
22

28
48

5 
 

rs
67

70
63

2 
 



Daniel Hovey 

21 

(SNPs;  see Figure 3 for OXTR polymorphisms discussed below) that have 
been shown to influence various social abilities [181]. Two of these SNPs 
have prominently featured in genetic association studies of social 
behavior, namely rs53576 and rs2254298, both localized in intron 3. A 
meta-analysis of studies carried out on these two polymorphisms 
showed no combined effect on human sociability of either SNP [182]. 
However, a later meta-analysis maintained that the earlier analysis may 
have conflated general sociability with sociability in close relationships, 
and found an overall effect of rs53576 on general sociability [183]. 

For analysis of closer relationships, the OXTR rs7632287 polymorphism 
in the 3’ downstream region has been associated with pair-bonding in 
women, and with childhood social problems in girls – and childhood 
social problems was also demonstrated to predict pair-bonding later in 
life [184]. This provides a human parallel to the previously mentioned 
studies on voles [108], indicating that OXT may be crucial for pair-bond 
formation in humans as well. 

With regard to the social cognitive aspect of face recognition, congenital 
prosopagnosia (i.e. face blindness) has been associated with 
polymorphisms rs53576 and rs2254298 [185]. The rs237887 
polymorphism, also localized in intron 3, has been shown to affect face 
recognition [186] – however, see [187]. While studies directly testing the 
role of OXTR variation in face recognition are limited to those mentioned 
above, there have been several investigating how variation in OXTR 
influences the anatomy or activation of the amygdala, which is involved 
in processing social stimuli, including faces [188]. Larger amygdala 
volumes have been demonstrated in rs2254298 A allele carriers [189-
191], and A allele carriers also show heightened amygdala response 
when viewing facial stimuli [191]. Functional resting-state connectivity 
between various amygdala sub-regions and face processing areas (e.g. 
the fusiform gyrus) are modulated by rs2268498, located in the 
promoter region [192]. Variants in the genes encoding CD38 and 
catecholamine-O-methyltransferase (metabolizes dopamine) show an 
epistasis effect, where the effect of intranasal OXT on amygdala activity 
while viewing social stimuli is modulated by both genes [193]. Levels of 
OXTR methylation has also been linked to amygdala activity when 
viewing fearful and angry faces [194]. There is thus evidence that 
variation in OXTR modulates amygdala activity while processing social 
stimuli, and this may influence performance on social cognitive tasks. 
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There are few studies linking OXTR variation to both amygdala activity 
and face recognition performance. In Paper I, we found that the 
rs7632287 polymorphism in OXTR affects face recognition in adult 
humans. This was accompanied by a neural correlate, i.e. altered 
amygdala activity during encoding of faces. 

The argument for the role of the amygdala in face processing can be 
made for emotion recognition as well. Genetic studies on OXTR and this 
social cognitive aspect show more consistent results than those for face 
recognition. Carriers of the rs2268498 T allele performed significantly 
better at an interpersonal perception task [195], and displayed more 
accurate recognition of facial emotion [196]. The exonic polymorphism 
rs2228485 has been associated with better performance on the Reading 
the Mind in the Eyes test [197]. In addition, rs53576 affects processing of 
emotional social cues as measured by electroencephalography [198]. 

While variation in OXTR has previously been investigated in relation to 
emotion recognition, other OXT-related genes have not. In Paper II, we 
demonstrated that the rs4778599 polymorphism in ARNT2 affects 
emotion recognition in adult women. 

As for antisocial behavior, many of the genetic studies on OXT and this 
behavior have focused on psychopathy. Psychopathic traits in 
adolescence predict antisocial behavior in adulthood [199]. OXTR SNPs 
rs6770632 and rs1042778 in the 3’ untranslated region have been 
tentatively linked to callous-unemotional traits in extreme childhood-
onset aggression [200-202], and the potentially functional rs1042778 
[201] has also been associated with callous-unemotional traits in 
children with conduct problems [202]. A recent, large-scale fMRI study 
in men also showed that rs1042778 was also linked to higher right 
amygdala reactivity to angry faces, which in turn was correlated with 
antisocial behavior [203]. Furthermore, greater methylation of OXTR has 
been associated with both higher callous-unemotional traits and lower 
circulating oxytocin [204]. Two other SNPs in OXTR were shown to 
interact with alcohol for trait anger in a population sample [205], and of 
these, rs4564970 in intron 1, showed a similar interaction with alcohol 
on aggressive behavior in an experimental setup [206]. A later meta-
analysis found a significant main effect of total variation in OXTR on 
aggressive behavior under the influence of alcohol in experimental 
setups [207]. Furthermore, the above mentioned rs53576 was found to 
interact with social stress, such that one allele produces higher levels of 
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antisocial behavior after experiencing high social stress [208]. Lastly, an 
interaction between childhood abuse and OXTR methylation in 
predicting psychopathology has also been demonstrated [209]. Taken 
together, these studies offer support for the notion that endogenous OXT 
modulates antisocial behavior in humans.  

Most of the cited studies above were carried out using relatively small 
samples, or focused on groups with extreme phenotypes. In Paper IV, we 
showed that the rs7632287 polymorphism in OXTR is associated with an 
increase in interpersonal aggression in a large sample of young men 
from the general population. 

INTRANASAL OXYTOCIN. In the past decade and a half, there has been a 
great wealth of studies published on the effects of exogenously applied 
OXT, mostly administered through intranasal spray, on social cognition 
and social behavior. Initially, intriguing results showed an effect of 
intranasal OXT on trust in humans [210, 211]. However, these studies on 
OXT and trust have since been the subject of some criticism, and indeed a 
recent meta-analysis of studies on the link between OXT and trust failed 
to find collective evidence that OXT influences trust in humans [212] – 
however, see [213] for potential effects on trust depending on in-group 
and out-group relationships. 

Among the great many other studies on intranasal OXT, effects have been 
indicated on social memory and processing of emotional faces [214-216], 
recognition of facial emotional expressions [217] and body language 
[218], socio-emotional responses [219], perception of trustworthiness 
and attractiveness [220], and reduced cortisol response during social 
conflict [221]. However, while all the above stated effects are positive 
and significant, their effect sizes are small, and there is a number of 
studies showing opposite effects or no effect at all (see for example [222] 
and [223]), forming a relatively disparate picture [224].  

Two meta-analyses of the effect of intranasal OXT on emotion 
recognition found positive effects on recognition of basic emotions, 
particularly happy and fearful faces [225, 226], but there was no effect 
on interpretation of emotions in neuropsychiatric clinical populations 
[225]. The potential clinical effect on social cognition in neuropsychiatric 
disorders was also found to be modest in a recent meta-analysis, which 
found only a small effect on theory of mind [227]. Thus, meta-analyses 
provide some indication that intranasal OXT may improve social 
cognition in healthy and clinical populations, but the picture remains 
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incomplete. However, there may be factors that are not considered in the 
studies included in the meta-analyses, such as the fact that the effect of 
OXT may be contingent on personality and context [224]. 

The studies directly assessing the effect of exogenously administered 
OXT on aggression in humans are relatively few. In the Point Subtraction 
Aggression Paradigm – a monetary game that allows for self-interested, 
punitive, or collaborative action – OXT has been shown to interact with 
anxiety in women such that women with higher anxiety were more 
aggressive under placebo, with a significant reduction of their aggressive 
behavior under OXT [228]. A study on healthy males found no main 
effect of intranasal OXT in this paradigm, but did find a positive 
correlation between aggressive responding under OXT and antisocial 
personality traits [229]. A recent study, also utilizing a version of the 
same paradigm, found pro-aggressive effects of OXT, but only when the 
participants receiving OXT were unfamiliar with the paradigm [230]. 
Individuals with a selfish value orientation who received intranasal OXT 
showed increased cooperative behavior in a prisoner’s dilemma 
paradigm if playing against a partner they were familiar with, but 
increased self-interested behavior when playing against a stranger – this 
effect was however not apparent in individuals with a prosocial value 
orientation [231]. In a similar vein, intranasal OXT increased propensity 
for intimate partner violence, but only in participants who were already 
inclined toward physical aggression [232]. Thus, these pharmacological 
studies on OXT and aggression collectively indicate that exogenous OXT 
may modulate aggressive behavior, but display conditional effects, 
where the study context and the characteristics of individual participants 
seem to create differential effects – in some cases even increasing the 
propensity for aggressive behavior. Considering the modest power of the 
studies conducted so far, the results should however be interpreted 
carefully. 

THE SOCIAL SALIENCE HYPOTHESIS. The disparate results in studies on 
intranasal OXT, on both prosocial and antisocial outcomes, and the 
potentially modulating effect of context and personality, have 
engendered efforts to formulate hypotheses regarding what the primary 
function of OXT might be – one that may possibly encompass and explain 
all the extant results of these studies. Bartz and colleagues proposed that 
the social effects of OXT may be influenced by the context in which the 
neuropeptide is administered, along with individual factors [223]. They 
further proposed that a hypothesis of social salience would be most 
suited to explain the varied findings, something later expanded on by 
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others to include a dopaminergic mechanism by which OXT makes social 
cues salient [222, 234]. According to this social salience hypothesis, OXT 
would work to facilitate salience of social cues in the environment, and it 
has been further suggested that OXT may regulate approach and 
avoidance to personally relevant and emotionally evocative stimuli, 
whether they are social or not [235]. Strictly considering social stimuli, 
the social salience hypothesis may indeed explain many studies on 
intranasally applied OXT, in particular those that show a reinforcing of 
cooperative in-group and antagonistic out-group behavior [236-238]. It 
seems probable that OXT exerts its effects on behavior through subtle 
modulation of social cognition, which is also moderated by background 
factors such as personality and learned patterns (e.g. expectations, 
coping strategies). 

In Paper V, we showed that intranasally administered OXT in humans 
increases the salience of human faces, regardless of the emotions those 
faces display. This provides further support for the social salience 
hypothesis. 

3.3 OXYTOCIN IN AUTISM SPECTRUM DISORDER 

Impaired social cognition in ASD is supported by several studies, 
particularly with regard to emotion recognition [239-243] and face 
recognition [244-247]. Given that OXT has been demonstrated to play a 
part in social cognition, it has been hypothesized that a dysfunctional 
OXT system might underlie or influence ASD symptomatology [248]. This 
is further supported by animal models of ASD, where administration of 
OXT rescues social deficits [249], including those where the OXT system 
has been disturbed, such as OXTR or CD38 knockout rodents [250]. 

Some human studies indicate slightly lower plasma levels of OXT in 
individuals with ASD compared with controls, but few ASD patients in 
these studies fall outside the range of the plasma levels of the controls 
[251-253]. Furthermore, sex differences and methodology further 
influence these results [254]. One study found that the relationship 
between plasma levels of OXT and social cognition was stronger than the 
relationship between plasma levels and ASD diagnosis, and in addition 
that the association between the OXTR rs53576 SNP and social cognition 
was independent of ASD diagnosis [255], which suggests that the 
functionality of the OXT system may modulate social impairment in ASD, 
rather than be linked to the diagnosis per se. 



On oxytocin and social behavior 

26 

While there is at least one case of an ASD patient with a deleterious 
heterozygous mutation of OXTR [256], such examples of major genetic 
aberrations in the OXT system are rare and hard to draw conclusions 
from. However, several SNPs in OXTR have been associated with ASD, 
including rs22554298, rs237887, rs1042778, rs7632287, and rs75775 
[257-266]. A recent meta-analysis including 16 polymorphisms, 11 
studies, and a total of 3941 subjects, found an association between ASD 
diagnosis and four OXTR polymorphisms, as well as the gene as a whole 
in a gene-based test [267].  

While OXTR is the most studied gene in the OXT pathway pertaining to 
ASD, a handful of other OXT-related genes have also been investigated. 
SNPs in the OXT have been tentatively associated with ASD or ASD 
symptoms [262, 268]. Polymorphisms in the CD38 gene have been linked 
to ASD [269], and ARNT2 [104] also contains polymorphisms linked to 
ASD [268]. 

Few studies have looked at ASD in relation to variation in OXT-related 
genes outside of OXTR. In Paper III, we showed an association between 
the rs3434354 polymorphism in SIM1 and ALTs in nine-year-old boys. 

The etiology of ASD remains unknown. However, among the many 
genetic studies on ASD, a growing number implicate genes with a role in 
synaptic plasticity [57, 270, 271], such as those coding for neuroligins 
[272], the three SH3 and multiple ankyrin repeat domains (SHANK1, 
SHANK2, and SHANK3) [273], and contactin associated protein-like 2 
(CNTNAP2) [274]. All of the above genes code for proteins important for 
synaptic function, and it has therefore been hypothesized  that ASD is 
characterized by aberrant synaptic connectivity, or a failure of synaptic 
homeostasis [57].  

It is interesting to note that OXT in rodents plays a role in the modulation 
of synaptic plasticity, by modifying synaptic properties and neural 
activity, in the hippocampus [275], and in social neurocircuits such as 
the medial amygdala [276, 277]. In reference to the above-mentioned 
genes, rats lacking SHANK3, a rodent model of ASD, display reduced 
synaptic plasticity in cortical pathways, and social recognition deficits – 
these deficits were attenuated with OXT treatment [278]. In addition, 
CNTNAP2-deficient mice present with social deficits, and these deficits 
were rescued by both exogenous and evoked OXT [279]. A 
neurobiological in vitro model, using a neuroblastoma cell line, was used 
to demonstrate that OXT increased expression of SHANK1 and SHANK3, 
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and in addition increase neurite outgrowth – demonstrating that OXT 
may be involved in synaptic scaffolding [280]. Taken together, these 
findings suggest that OXT may well play an important part in synaptic 
homeostasis. 

It has also been suggested that there is an excitatory to inhibitory 
imbalance in ASD [281], which is supported by animal experiments [282, 
283]. Furthermore, ASD is often comorbid with epilepsy, and an 
increased excitatory to inhibitory ratio could explain increased 
excitability and propensity for epileptic seizures [284]. This has led to 
promising trials using bumetanide, a diuretic that reduces intracellular 
chloride levels, so that the excitatory to inhibitory ratio is lowered [285-
287]. 

OXT has been implicated in the so-called γ-aminobutyric acid (GABA) 
switch. In immature neurons, GABA-A receptors are excitatory, and there 
are two GABA switches during early development, where the receptors 
go from being excitatory to inhibitory: one which is transient and takes 
place during parturition [282], and one which is postnatal and 
permanent [288]. Maternal OXT seems to play an important part during 
parturition in rats, by triggering the initial transient switch [282]. Pre-
delivery treatment with OXT in two rodent models of ASD (valproate-
exposed rats and Fragile X mice) rescued social behavioral deficits [283]. 
Moreover, OXT also seems important for the permanent switch [288], 
and these switches are dependent on chloride transporters, of which 
OXT directly influences expression levels [288]. OXTR knockout mice 
also display increased seizure susceptibility, as well as an altered 
excitatory to inhibitory balance [90]. Thus, OXT seems important in 
establishing the correct excitatory to inhibitory balance in early 
development.  

Taken together, human and animal studies show that while it may be 
difficult to say that ASD would be primarily underpinned by aberrations 
in the OXT system, OXT may play a significant part in modulating the 
symptomatology of the disorder. Furthermore, recent animal literature 
[278-280] suggests that OXT deserves further research as a candidate for 
treatment of ASD. 
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3.3.1 OXYTOCIN AS TREATMENT FOR AUTISM 
SPECTRUM DISORDER 

Several researchers have investigated the usability of exogenously 
administered OXT as treatment in ASD, with the hope that this may 
improve social functioning, even if it is unlikely to target core 
pathophysiology. This thought is appealing, since in the hitherto 
conducted studies of repeated administration of OXT to ASD patients, 
OXT has been well tolerated during and after treatment [289]. 
Furthermore, intranasal OXT is relatively easy to administer, with 
minimal training required. 

There are a number of pharmacological single dose studies where 
exogenous OXT has been administered to ASD patients. Single 
intravenous administration of OXT resulted in improved ability to 
remember social information [290], and in reduction of the frequency 
and severity of repetitive behaviors [291]. Intranasally administered 
OXT in a single dose to ASD patients has additionally been shown to 
improve empathic accuracy [292], strengthen inference and recognition 
of emotions [293, 294], improve interactions with a cooperative partner 
[253], and mitigate sociocommunicative deficits [295]. A recent study 
employed a real-time, naturalistic interaction setting to demonstrate that 
single dose OXT increases the level of eye contact in ASD patients [296]. 
Thus, the effects of single-dose administration are promising. It should 
however be noted that in one study, a single dose of OXT restored 
attentional preference to faces in ASD individuals with high social 
anxiety [297], and genetic variation in OXTR seems to predict the 
response to intranasal OXT in single dose administration [298]. This 
suggests again that the effects of OXT are modulated by background 
factors. 

While single dose studies can give insights into the potential of a drug to 
alleviate symptoms, and repeated administration studies have confirmed 
safety, randomized controlled trials with a longitudinal design are 
crucial in order to establish efficacy and optimization of a treatment. 
Clinical trials to date have used intranasal spray as the medium of 
administration.  The earliest clinical trial where ASD was treated with 
OXT included primarily male adult patients, and reported no changes 
after six weeks of treatment in social functioning or repetitive behavior, 
but an improvement in secondary outcomes, including the Reading the 
Mind in the Eyes test [299]. A later study on male adults treated over six 
weeks, reported significant improvement on their primary outcome of 
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social responsiveness [300]. A recent study on young adults with high-
functioning autism showed that the effect of intranasal OXT over 24 
weeks of treatment was modulated by dosage, where the high but not 
low dose would yield a positive effect, and as with single dose 
administration that variation in OXTR would predict outcomes for 
individuals in the low dose group [301]. 

Studies on children and adolescents have yielded mixed results. One 
study, treating primarily male children aged 3-8 years over five weeks in 
a cross-over design, did report significant improvement in social 
responsiveness [302]. However, male adolescents aged 12-18 years 
treated over an eight- week period, did not show any improvement in 
social responsiveness [303], and likewise male children aged 7-16 years 
treated for four days showed no improvement in behavioral outcomes 
compared to placebo [304]. Finally, a study including both adolescents 
and adults, where male ASD individuals aged 15-40 years were treated 
over eight weeks, reported no significant improvement of symptoms 
[305]. 

Thus, while there is some indication that exogenous OXT may be fruitful 
when given to ASD patients, the studies to date show mixed results, 
potentially due to mixed designs. Between studies, there is poor 
standardization and inconsistent reporting of adverse events, and no 
data regarding adherence to the treatment regimen, and a lack of 
consistent outcome measures [306]. Furthermore, looking at the studies 
above, various doses are used, the participants are of varying ages, and 
mostly male. Larger and more standardized studies are therefore needed 
in order to evaluate the efficacy of OXT treatment for ASD. In addition, 
given the potentially context- and personality-dependent nature of the 
effect of OXT [224] and the single- and multidose studies that indicate 
differential effects based on genotype and phenotype [297, 298, 301], 
future studies should take this into consideration. 
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4 SUMMARY OF RESULTS 

4.1 PAPER I – OXYTOCIN AND FACE 
RECOGNITION 

The ability to recognize previously encountered individuals is crucial for 
successful social interactions. OXT is essential for social recognition in 
rodents [37, 157, 307], and specifically involves the amygdala [159]. 
Intranasal OXT has been shown to enhance face recognition in humans 
[215, 292, 308-310]. The role of endogenous OXT for face recognition in 
humans is however less clear. 

Face recognition has been shown to be substantially heritable (61%) 
[311], and to correlate negatively with ALTs [312]. There are two genetic 
association studies on face recognition [186, 187]. SNPs in OXTR have 
previously been associated with activity in the amygdala when viewing 
faces [191, 313], but there is a paucity of studies looking simultaneously 
at variation in OXT-related genes and brain activation in relation to 
remembering faces. The aim of this study was therefore to investigate 
associations between variation in OXTR and ability to recognize neutral 
faces, as well as amygdala activity during encoding of those faces. A 
sample of 54 male and female participants was included in the analyses, 
genotyped for 12 SNPs in OXTR, and exposed to a face encoding and 
recognition paradigm while in an fMRI scanner, looking specifically at 
amygdala activation during encoding and recognition. 

The rs7632287 polymorphism in OXTR (see Figure 3 for location in 
OXTR) showed an association with face recognition, such that GA 
genotype carriers displayed higher accuracy than GG carriers. This effect 
was not modulated by sex or age. Additionally, there was a correlation 
between face-elicited right amygdala activity and face recognition 
accuracy, and GA carriers displayed a higher face-elicited right amygdala 
activity than GG carriers. Our findings thus indicate that variation in 
OXTR affects social cognition through an amygdala-dependent 
mechanism, which is in line with animal studies on social recognition 
[37, 159]. 
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4.2 PAPER II – OXYTOCIN AND EMOTION 
RECOGNITION 

Being able to accurately perceive facial emotional expressions is 
important to respond appropriately in social situations. Heritability 
studies of emotion recognition in humans are few, but there is some 
evidence for moderate heritability in processing expressions of affect 
[314], and emotion recognition deficits shared between first-degree 
relatives further support this [315, 316]. Previous studies investigating 
genetic variation in emotion recognition have focused mainly on OXTR. 
This study aimed to expand on this by scrutinizing OXT, AVP, OXTR, 
AVPR1A and AVPR1B, the transcription factor genes ARNT2 and SIM1, 
and CD38. Expanding the scope to other genes in the OXT pathway is 
further motivated by results from animal literature, where for instance 
CD38 knockout mice display impaired social recognition [317]. In 
addition, rodent knockouts of OXTR and OXT do not necessarily display 
the same outcome in behavior [134, 171, 172]. In light of the fact that 
emotion recognition is a social cognitive aspect previously linked to 
ALTs, alexithymia, emotional expressivity, and perspective taking [318-
321], we also included assessments of these traits to investigate if they 
modulated the genetic influence. Participants of both sexes (n=492) from 
the general population were included, and their emotion recognition 
ability was assessed using the Emotion Recognition Assessment in 
Multiple modalities (ERAM) test. ERAM presents emotions of varying 
difficulty, contains 12 different expression (both positive and negative 
emotions), and presents these emotions in three different modalities – 
video only, audio only, and combined audio and video. Thus, the study in 
Paper II is unique, in that it has a substantial number of participants, 
along with a test designed to be highly sensitive, with a large number of 
emotions, different modalities, and live emotional displays rather than 
images. 

The main finding, surviving correction for multiple testing, was an 
association between rs4778599 in ARNT2 and audio-visual emotion 
recognition in women, such that the A allele carriers displayed a lower 
ability to discern emotions in this audio-visual condition. ARNT2 is a 
transcription factor important for the migration and development of OXT 
(and AVP) neurons [104]. We hypothesize that this finding may reflect a 
role for OXT (or AVP) in integrating multimodal stimuli, as it has been 
shown that OXT influences different sensory modalities and promotes 
cross-modal cortical integration during development [322]. In line with 
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previous studies of rs2268498 in OXTR [196, 323], we were able to find a 
nominal association between the T allele of this SNP and superior visual 
emotion recognition. This SNP has previously been linked to altered 
expression levels of OXTR in the hippocampus [324]. 

The rs4778599 finding was not moderated by ALTs, nor were ALTs 
associated with any ARNT2 SNPs. In fact, none of the other traits 
investigated – alexithymia, expressivity, or perspective taking – modified 
our main finding. One reason for the lack of moderation by ALTs may be 
that while emotion recognition has previously been associated with ASD, 
this holds true only for certain subgroups of individuals with ASD [325], 
such as those with comorbid alexithymia [326], and these subgroups 
were likely not present in our sample. Indeed, our sample contained no 
individuals with a clinical ASD diagnosis. 

4.3 PAPER III – OXYTOCIN AND AUTISTIC-LIKE 
TRAITS 

ALTs are highly heritable, with estimates ranging from 60% to 77% 
[327]. While previous studies had looked at genetic variation in OXTR in 
relation to ASD or ALTs [184, 259, 328], few [268] had looked at other 
genes in the OXT pathway, such as SIM1 and ARNT2 (coding for 
transcription factors involved in the development of OXT neurons 
[104]), and CD38 (involved in OXT release [329]), or the OXT gene itself. 
In addition, many studies used small sample sizes, and often relied on 
dichotomous case/control outcomes, when in fact looking at ALTs in the 
general population may yield greater variability and thus increased 
power to detect effects. The purpose of this study was therefore to 
investigate how normal variation in OXT, CD38, ARNT2, and SIM1 relates 
to ALTs in a large sample of nine-year-old children from the general 
population. In total, nine SNPs in these four genes were investigated, 
based on either that they had previously been associated with ASD or 
ALTs, or that they are potentially functional with regard to 
transcriptional activity. The study was carried out by leveraging a large 
population sample of twins available in Sweden through the Child and 
Adolescent Twin Study in Sweden (CATSS) [330], resulting in one of the 
largest samples at the time of publication to investigate ALTs in relation 
to these genes, comprised of 1771 nine-year-old children. ALTs were 
investigated using the Autism-Tics, ADHD, and other Co-morbidities 
inventory (A-TAC) [331], describing the overall level of ALTs in each 
individual as a single score. This total score was a summation of three 



Daniel Hovey 

33 

scores each describing one of the three core symptom domains of ASD as 
defined in the DSM-IV: language impairment, social interaction 
impairment, and restrictive and repetitive behavior [332].  

The only finding that survived correction for multiple testing was the 
rs3734354 polymorphism in SIM1, where male carriers of the TT 
genotype scored significantly higher on language impairment. While this 
result is tentative and restricted to a small group of individuals, it is 
interesting since the minor T allele has been shown to be potentially 
functional, by lowering transcriptional activity of SIM1 in humans [333]. 

We also found SNPs nominally associated with ALTs. The CD38 
rs6449182 minor G allele was in our sample linked to lower language 
impairment scores in both sexes. The G allele has previously been shown 
to increase CD38 transcript levels [334], and CD38 transcript levels have 
further been linked to social communication abilities [335]. 
Furthermore, we found a nominal association between the ARNT2 
rs3901896 polymorphism and ALTs. 

4.4 PAPER IV – OXYTOCIN AND ANTISOCIAL 
BEHAVIOR 

As with ALTs, antisocial behavior has been shown to be heritable (67%) 
[336]. When Paper IV was published, several animal studies had 
indicated the importance of OXT in rodent aggression (see [175-179]), 
but in humans, there had been relatively few and small studies on 
antisocial behavior, including a handful of studies on OXT levels in 
antisocial personality disorder [337], and genetic studies on 
psychopathy [202, 204, 208]. 

Antisocial behavior, like most disorders and aberrant behaviors [338], is 
arguably a quantitative trait. The aim of this study was to investigate the 
phenomenon of antisocial behavior, in relation to genetic variation in 
OXTR, in two large independent samples from the general population. 

The discovery sample was drawn from the CATSS study, where genotype 
and phenotype data were available for 2372 18-year-olds. The 
phenotype data consisted of two scales commonly used to measure 
antisocial behavior: the Life History of Aggression questionnaire (LHA) 
[339], and the Self-Reported Delinquency Questionnaire scale (SRD) 
[340]. The SRD was divided into two subscales: covert aggression (i.e. 
not targeting another individual directly) and overt aggression (i.e. 
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targeting another individual directly). The replication sample consisted 
of 1232 twins aged 16-20 years old from the Twin Study of Child and 
Adolescent Development (TCHAD) [341]. This sample contained another 
version of the SRD, which did not include enough overt aggression items 
to justify the subdivision carried out in the discovery sample – please see 
Paper IV for details. 

In the discovery sample, two SNPs were associated with antisocial 
behavior in males after correction for multiple testing, namely 
rs7632287 and rs4564970 (see Figure 3 for locations in OXTR). 
Particularly, rs7632287 was associated with overt aggression, i.e. 
targeting other individuals. We were also able to replicate the results for 
rs7632287 in the replication sample. The rs4564970 SNP has previously 
been linked to aggressive behavior [205, 206]. Additionally, we found a 
nominal association between antisocial behavior in males and rs53576. 

The rs7632287 polymorphism has not been directly linked to antisocial 
behavior in previous studies (but it has been associated with ASD [267] 
and lower relationship quality and higher social impairments [184]) – 
however, it is in strong linkage disequilibrium with rs6770632 (which 
has been associated with childhood-onset aggression [201]) and a 
previous in silico analysis has indicated that it may influence 
transcription factor binding [181], which was further supported by our 
in silico analyses in Paper IV. 

4.5 PAPER V – OXYTOCIN AND SALIENCE OF 
FACES 

The social salience hypothesis of OXT suggests that the primary function 
of this neuropeptide may be to increase the salience of social cues, and 
thus the subsequent behavioral results of this increase in salience is 
dependent on the cues the individual is exposed to and their 
idiosyncratic background [234]. The purpose of this study was to 
investigate if exogenous OXT increases the salience of social cues using 
the psychophysiological phenomenon of binocular rivalry. In brief, this 
visual phenomenon appears when each eye is presented with a different 
picture, and results in the alternating dominance of either one of these 
pictures in what the subject actually perceives as seeing, or a mix of the 
two [342]. This phenomenon has previously been used as a means to 
investigate questions relating to visual consciousness, and what 
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information becomes salient and takes precedence in our conscious 
minds [342]. 

The study employed a randomized, double-blind, cross-over design, and 
included a final sample of 45 adult male participants. During each of two 
sessions, and following administration of either intranasal OXT or 
placebo, participants were presented with visual stimuli, where each eye 
would be exposed to either a face or a house, or vertical or horizontal 
lines (Gabor patch). The faces displayed one of six emotions, or were 
neutral. 

The results showed a robust effect that OXT increases the salience of 
human faces, i.e. social stimuli, such that the average dominance 
duration of a face was increased compared to placebo. Moreover, this 
effect was not modulated by the emotional expression of the face. In 
addition, we were able to tentatively show that OXT may increase the 
dominance durations of non-social stimuli as well. 

4.6 PAPER VI – OXYTOCIN AND ZEBRAFISH 
SOCIAL BEHAVIOR 

The zebrafish is an emerging model which has shown great potential for 
elucidating neural mechanisms of behavior. The influence of OXT (more 
specifically the teleost homologue isotocin) on social behavior in 
zebrafish has not been extensively researched, albeit there are 
indications that it plays a part in agonostic interactions [343], social 
preference [165, 166] and predator avoidance [165]. 

The aim of this paper was to further elucidate the importance of 
endogenous OXT for zebrafish social behavior, utilizing the specific and 
nonpeptidergic OXTR antagonist L-368,899 [344]. Firstly, we conducted 
in vitro studies to ascertain ligand potencies for isotocin, vasotocin, and 
mammalian OXT, along with the affinity of L-368,899, on zebrafish OXT 
and AVP receptors. For details on the endogenous ligands, please see 
Paper VI. L-368,899 showed affinity for the two zebrafish OXT receptors 
Oxtr and Oxtrl, but no affinity for any of the AVP receptors. This 
confirmed that L-368,899 is highly specific for OXT receptors in 
zebrafish as well. 

We then proceeded to test how antagonism of endogenous OXT affected 
anxiety and social behavior in zebrafish. In brief, L-368,899 treatment 
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decreased social preference in adult and larval zebrafish, and decreased 
grouping behavior in adults, compared to vehicle treatment. This effect 
appeared independent of anxiety. 
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5 DISCUSSION 

The neuropeptide OXT is important for social behavior in many animal 
species [3, 4], but hard evidence is lacking with regard to its role and 
function in human social behavior [345, 346]. Experimental studies of 
exogenous OXT have shown promising results, but endogenous OXT is 
somewhat more difficult to study in humans, since much of the 
experimental methods used in animals are not feasible. OXT as a 
candidate for targeted drug treatment of social impairments is appealing, 
given (a) its well-established role in social behavior in animals, (b) its 
ease of administration, and (c) its apparent lack of major side effects. 
However, several issues remain to be clarified. For instance, how does 
endogenous OXT influence social cognition in humans, and how does it 
modulate social impairments? What is the mechanism of and neural 
underpinnings of the effects of exogenous and endogenous OXT? This 
thesis attempted to shed some light on these questions. 

5.1 ENDOGENOUS OXYTOCIN IN SOCIAL 
COGNITION 

Genetic association studies allow us to study the function of endogenous 
OXT in humans and to clearly establish a link between the genetic code 
and behavior, even if we cannot draw firm conclusions about the 
mechanisms underlying that link. We thus investigated the role of 
endogenous OXT in social cognition, by looking at face recognition and 
emotion recognition. 

In Paper I, we showed an association between rs7632287 in OXTR and 
superior face recognition, in line with previous results on variation in 
OXTR and face recognition [186]. A later study, which did not include 
rs7632287, intriguingly found only one SNP nominally associated with 
face recognition, and that SNP is in perfect linkage disequilibrium with 
rs7632287 [187]. Additionally, we found that rs7632287 predicted 
higher amygdala activation during encoding of faces. This is comparable 
to studies showing that variation in OXTR is linked to amygdala 
connectivity [192], and heightened amygdala activity when viewing 
facial stimuli and performing a face-matching task [191]. Taken together 
these results indicate the importance of the OXT system in face 
recognition in humans.  In addition, our research group has previously 
found an association between rs7632287 and pair-bonding [184]. In 
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animals, social recognition has been suggested to underlie pair-bonding 
[156], and our findings indicate that this may be the case in humans as 
well. In animals, OXT seems to have subtle sex-specific effects on social 
recognition [121], but we did not find any sex difference in the effects of 
this polymorphism on face recognition. 

In contrast to Paper I, our findings from Paper II highlight the sex-
specificity of the OXT system. Firstly, along with previous studies 
showing that exogenous OXT improves recognition of emotions [347, 
348], our finding in Paper II that variation in ARNT2 affects emotion 
recognition in women provides further indication that the OXT system is 
important for social cognition. Secondly, we found sex-specific effects, 
which are in agreement with prior studies that show that intranasal OXT 
dampens amygdala response to affective stimuli in men [349-352], but 
increases it in women [353, 354]. As the neurobiological details of this 
sexual dimorphism are not well defined in humans, more research is 
needed to shed further light on this issue. 

5.2 ENDOGENOUS OXYTOCIN IN SOCIAL 
IMPAIRMENTS 

The social cognitive traits of face and emotion recognition have been 
suggested as potential endophenotypes of ASD and antisocial behavior 
[239-247, 355]. Since both exogenous and endogenous OXT seems to 
influence social cognition in humans, it is of interest to establish whether 
it can modulate social impairments seen in ASD and antisocial behavior. 
In addition, elucidating the role of OXT in these impairments may help 
clarify its importance for human social behavior in general. 

ALTs are prevalent in the population and provide a continuous 
distribution of traits which share genetic influences with ASD, a disorder 
at the extreme end of this distribution. Our conclusion in Paper III that a 
potentially functional SNP in SIM1 may influence language impairments 
in ASD is an indirect link between OXT and social impairments, but it is 
nevertheless interesting, given that language acquisition is highly 
dependent on social interactions between children and their parents 
[356]. OXT has previously been linked to speech learning and processing 
in humans, such that intranasal OXT facilitates speech comprehension 
[357], and both variation in OXTR and OXT plasma concentrations have 
been associated with impairments of verbal communication in ASD 
patients [358, 359]. In addition, the avian OXT homologue mesotocin has 
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been shown to play a part in the vocal learning and behavior of 
songbirds [360-362]. OXT has also been theorized to be linked to 
language development, as it affects traits that are crucial for this process, 
such as eye contact and social responsiveness [363]. Furthermore, a role 
for OXT in language development is supported by its interactions with 
dopamine (see more on this in Section 5.3), where OXT stimulates 
dopaminergic neurons in the ventral tegmental area, which has many 
projections to vocal learning systems in songbirds and humans [362]. 

The findings of Paper III replicated some findings from earlier studies. 
Our nominal finding that rs3901896 in ARNT2 is associated with ALTs 
was also subsequently supported in another study [364]. However, we 
note that our own preliminary analyses of a subsequent larger sample, 
also drawn from the CATSS population, show unclear results for the 
same SIM1 SNP (unpublished data). The sample in Paper III was 
somewhat enriched in individuals reaching the validated ALT threshold 
for potential ASD diagnosis (due to recruitment procedures at different 
times in data collection), which suggests that as with other phenotypes – 
such as emotion recognition [325] – the effects of endogenous OXT on 
language development or social impairments may be contingent on 
subgroups in the general or clinical population. Additionally, we are 
currently analyzing data from a genome-wide association study on the 
same large sample of twins, where we included all normal variation in 
OXT pathway genes. Preliminary analyses suggest that even with a 
relatively liberal correction for multiple testing, we are unable to find 
any stable association with ALTs (unpublished data). 

These results taken together highlight the need for more in-depth 
studies of the importance of OXT in ALTs and ASD. It may be that the A-
TAC is not sensitive enough to reflect how OXT plays a part in ASD, or 
perhaps there are subgroups which distort the effect across the whole 
population. OXTR polymorphisms rs53576 and rs2254298 differentially 
affect social abilities across neuro-developmental disorders, increasing 
social deficits in ASD, but decreasing them in attention deficit 
hyperactivity disorder (ADHD) [365]. Since ADHD is commonly 
comorbid with ASD [366] this may have confounded the results, as our 
sample included individuals with ADHD traits. Previous studies have 
indicated that OXT may not directly affect ASD, but may exert 
independent and additive effects on social functioning, and modulate the 
symptoms and their severity [255]. While there are intriguing results 
from animal studies showing links between OXT and ASD risk genes 
[278-280], the differential effects of endogenous OXT in 
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neurodevelopmental disorders [365] highlight the importance of 
considering subgroups within the clinical population [248]. 

We also investigated antisocial behavior (Paper IV) as a continuous trait 
found in the general population. In contrast to ALTs, our results in Paper 
IV indicate that variation in OXTR seems to clearly affect antisocial 
behavior, which we could replicate in a second independent sample. 
Parallel with the idea that OXT may modulate ASD symptomatology, a 
recent study found that variation in OXTR may underlie aggressive 
behavior in ASD [367]. 

Impaired processing of faces has been suggested to partly underlie 
disorders characterized by antisocial behavior, and intranasal OXT has 
been shown to improve emotion recognition in antisocial personality 
disorder [355]. Interestingly, the rs7632287 AA genotype in OXTR was 
associated with antisocial behavior in Paper IV, and the A allele was 
associated with higher amygdala activity when viewing faces in Paper I. 
Due to the small sample size in Paper I, the AA genotype (associated with 
higher antisocial behavior in Paper II) could not be properly assessed for 
face recognition or amygdala activity, and future work needs to include a 
larger sample in order to clarify the effect on face processing of this 
genotype. However, this further provides an intriguing and potential link 
between processing of faces and antisocial behavior. 

Two large meta-analyses of genome-wide association studies on 
antisocial behavior have been carried out since the publication of Paper 
IV. One of these investigated a broad spectrum of (aggressive and non-
aggressive) antisocial behavior across age groups ranging from seven-
year-old children to adults in their 50s, and found that in a gene-based 
analysis of candidate genes, the only gene which attained nominal 
significance was OXTR [368]. The other meta-analysis focused on 
children aged 3-7 and 12-15, and included mainly maternal assessments 
of childhood aggressive behavior [369]. They also performed gene-based 
analyses of a select number of candidate genes (not including OXTR), and 
found that AVPR1A significantly associated with antisocial behavior. The 
suggestive results for OXTR and AVPR1A are highly intriguing. Taken 
together, we would conclude that our study and previous studies provide 
intriguing support for the notion that endogenous OXT modulates 
antisocial behavior.  



Daniel Hovey 

41 

5.3 EXOGENOUS OXYTOCIN AND SOCIAL 
SALIENCE 

The effects of OXT on social cognitive aspects such as face and emotion 
recognition have been suggested to depend on the ability of OXT to 
increase the salience of social stimuli [234, 310]. Building on our genetic 
association studies, we carried out a human experimental study (Paper 
V), specifically to investigate the effect of exogenous OXT on the salience 
of human faces displaying different emotions, compared to non-social 
stimuli. Here, we demonstrated that conscious visual perception of a 
face, when competing for conscious awareness of a non-social stimulus, 
increased following OXT administration, which is in line with the social 
salience hypothesis. This increase was true regardless of the emotion 
conveyed, which implies that all social cues, regardless of valence, 
become more salient following exogenous OXT administration.  Indeed, 
the social salience hypothesis was proposed in order to attempt to 
explain extant results from intranasal OXT studies, where both prosocial 
and antisocial effects have been noticed [222, 224]. It is reasonable that 
an increase in salience might lead to an increase in emotion recognition, 
or in the ability to remember a face [310]. Future studies should 
incorporate measures of face or emotion recognition abilities – this could 
provide a clearer link between salience and social recognition. Moreover, 
given the aforementioned sex-specific effects of OXT, future studies 
should examine women in their samples, to ascertain whether this effect 
is sex-specific or not. In addition, attempts have previously been made to 
establish neural correlates of reward effects on binocular rivalry using 
fMRI [370], and a similar approach of combining OXT treatment and 
brain imaging may well be highly informative in exploring the effects of 
the neuropeptide on social salience. 

Our binocular rivalry experiment also invites speculation on possible 
mechanisms underlying the effects of OXT on subsequent ability to 
recognize faces or emotion, and ultimately on behavior. While top-down 
influences play a part in determining the dominance patterns in 
binocular rivalry [342, 371], it has been described as a reciprocal and 
fluctuating lateral inhibition of the visual cortices [372]. This is 
interesting in light of several animal studies showing that OXT is 
involved in regulating the balance between excitation and inhibition [90, 
143, 282, 283, 288, 373], and the fact that OXTR has been documented in 
the primary visual cortex of rodents [374] and primates [375], where 
such a regulation might take place. 
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Regarding potential top-down mechanisms, serotonin has been shown to 
influence dominance durations in binocular rivalry [376, 377]. The 
connection between OXT and serotonin is well-established in rodents 
[135, 378-380]. In humans, administration of ecstasy – a releasing agent 
and reuptake inhibitor of serotonin – causes an elevation in plasma OXT 
levels [381]. Furthermore, the link between OXT and serotonin has been 
demonstrated using positron emission tomography scans showing an 
inhibitory role for OXT in the regulation of serotonin signaling [382]. 
Taken together, this suggests that an alternative way for OXT to 
influence binocular rivalry may be through serotonin signaling. 

It should be noted that social reward mediated through the nucleus 
accumbens requires simultaneous activation of both OXTR and serotonin 
receptors in mice [101], highlighting a potential mechanistic interaction 
between OXT and another monoamine neurotransmitter, dopamine. The 
nucleus accumbens is a crucial part of the mesolimbic reward system, 
and dopamine neurons in the ventral tegmental area project to the 
nucleus accumbens and the amygdala, two structures involved in 
assessing the value and valence of stimuli [383]. Dopamine also plays a 
role in attention [384], which has been shown to influence binocular 
rivalry [385]. In rodents, there are well-documented interactions 
between dopamine and OXT in social behavior [386-390], along with 
expression of OXTR in both the nucleus accumbens, the amygdala, and 
the ventral tegmental area [3]. Specifically, OXTR is expressed on 
dopaminergic neurons projecting from the ventral tegmental area to the 
nucleus accumbens of mice [391], and pharmacological manipulation of 
OXTR in the ventral tegmental area of rodents affects social behavior 
[392, 393], indicating that social reward is also driven by OXTR 
receptors in the ventral tegmental area. This interaction between OXT 
and dopamine in the ventral tegmental area and nucleus accumbens is 
the central mechanism of the social salience hypothesis of OXT [234], 
where attention to social stimuli is held to be driven by the interplay of 
OXT and dopamine. 

5.4 ENDOGENOUS OXYTOCIN AND SOCIAL 
BEHAVIOR IN ZEBRAFISH 

Elucidating the neural mechanisms of the OXT system is crucial to 
understanding its role in social cognition and behavior, and will aid in 
developing treatment options based on this neuropeptide. While the 
architecture and function of the OXT system frequently display species-
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specificity, there is homology between species – in part supported by the 
findings of our group that face recognition (Paper I) and pair-bonding 
[184] are both influenced by endogenous OXT, analogous to the case in 
voles [156]. Therefore, we wanted to investigate the role of OXT in social 
behavior in zebrafish, an animal model with great potential to help 
clarify the neurobiology of social behavior. 

In Paper VI, we showed that endogenous OXT is important for social 
preference in both adult and larval zebrafish, and for grouping behavior 
in adult zebrafish. These results align with the relatively few studies on 
exogenous OXT in zebrafish, which showed that manipulation of OXT 
(via administration of OXT or its agonist) could rescue social deficits in 
zebrafish. Social interaction deficits induced by the glutamate antagonist 
MK-801 were reversed following treatment with the OXT agonist 
carbetocin [167]. In a dose-response study, OXT had a bell-shaped effect 
on zebrafish social preference such that increasing dose at first increased 
social preference, and then further increases in OXT dose decreased 
social preference [165].  

Our finding that an OXT antagonist decreases grouping behavior are in 
line with previous work on birds, where the homologue mesotocin 
increases flock formation, while a mesotocin antagonist reduces it [163]. 
Previous work in zebrafish on the effects of intraperitoneal injections of 
isotocin and its antagonist on shoaling behavior had been inconclusive 
[164], and highlights a need for zebrafish studies that explore behavior 
following manipulation of centrally available or endogenous OXT. 

While our results clearly showed that endogenous OXT is an important 
modulator of social preference in zebrafish throughout the lifespan, the 
details of this modulation are still unclear. This animal model provides 
excellent opportunities for genetic and pharmacological manipulation 
[394], and future studies could utilize this model to further explore the 
neural mechanisms of the OXT system in social behavior. For instance, 
our antagonist blocked both Oxtr and Oxtrl – these receptors have arisen 
due to a gene duplication event in the zebrafish lineage, which is 
proposed to serve as an evolutionary mechanism for adapting genes to 
new functions [395]. Future studies can help determine if these two 
receptor types serve different functions. Moreover, looking at neural 
activation patterns may delineate patterns across the SDM in response to 
specific social stimuli. Given the sophistication of genetic manipulation 
available in zebrafish, manipulation of genes upstream or downstream of 
OXT, or targeting potential interactions between OXT and the 
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aforementioned monoamines (dopamine and serotonin), could provide 
further clarity about OXT mechanisms underlying vertebrate social 
behaviors. In addition, use of larval zebrafish may facilitate high-
throughput screening of compounds that could be used to alleviate social 
impairments. 

5.5 CONCLUDING REMARKS 

While the popular notion of OXT is often limited to its proposed 
prosocial benefits, the effects of the neuropeptide on social behavior is 
characterized by a great degree of nuance and complexity. The nature of 
its involvement in human social behavior is by all appearances far more 
intricate than the popular press and even some scientists hold to be the 
case. While this neuropeptide has been linked to social behavior and 
social neurocircuits in humans, much remains to be clarified. 

This thesis provides support for the role of endogenous OXT in human 
social cognition, specifically by showing that it influences face 
recognition and amygdala activation in both sexes, and that it may 
modulate emotion recognition in women. We were also able to show that 
exogenous OXT increases the salience of human faces, regardless of what 
emotional signals those faces convey. This increase in salience may serve 
as a mechanism for affecting aspects of social cognition such as face and 
emotion recognition. The ultimate behavioral effects of such an increase 
in salience by exogenous OXT may however depend on several factors, 
such as dosage regimen [396], genetic variation in OXT-related genes 
[298, 301], sex [397], personality, previous experiences, and 
expectations [224]. 

We also demonstrated that endogenous OXT may influence antisocial 
behavior, specifically interpersonal aggression in men, and potentially 
also ALTs in young children. It is likely that there are subgroups in the 
population, demarcated by various phenotypes, for instance ADHD and 
anxiety, which may show differential patterns in social functioning in 
relation to endogenous OXT [365]. While we did not look more closely 
into subgroups of the population, our sex-specific results support this 
idea, again highlighting the importance of looking at the individual 
differences and context when evaluating the function of OXT. 

Given that social impairments are likely underpinned by dysfunction of 
social cognition, as posited for both ASD and antisocial behavior [355, 
398], and given that OXT seems to work by modulating social cognition, 
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this naturally breeds the thought of using exogenous OXT as treatment 
for social impairments. The trials of OXT as treatment for ASD to date 
show mixed results [399], and many questions remain to be answered 
[400]. As stated above, defining the characteristics of the individual (his 
or her genotype, co-morbidities, and personality) more precisely should 
be fundamental for future studies to delineate the role of OXT in humans. 
In addition, further elucidation of specific neural circuits relevant to OXT 
is crucial. We here provide support for the role of the OXT system in 
social behavior in zebrafish. This animal model provides opportunities to 
clarify the specific neural mechanisms of social behavior, and offers the 
opportunity of screening for drug candidates in high-throughput 
settings. 
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APPENDIX: METHODOLOGICAL OVERVIEW 

This section presents brief discussions on the methods used. Please see 
the Methods of each paper for details relevant to each study. 

GENETIC ASSOCIATION STUDIES 

In 1953, James Watson and Francis Crick described the double helix 
structure of deoxyribonucleic acid (DNA), and noted, presumably with 
some excitement, that “[i]t has not escaped our notice that the specific 
pairing we have postulated immediately suggests a possible copying 
mechanism for the genetic material” [401]. The clarification of the 
structure of DNA and the makeup of the genetic code laid the foundation 
for investigations into how simple and complex traits are inherited, and 
into how genetically underpinned disorders arise. 

DNA consists of the nucleotides adenine (A), cytosine (C), guanine (G), 
and thymine (T), which bind in specific base pairs (A to T, and C to G) to 
form the DNA double helix. A gene typically consists of a variable 
number of exons, which are the coding parts specifying which amino 
acids will be integrated in the protein product, and introns, which are 
segments between exons that serve no coding function, but may have 
regulatory roles. Between genes there are intergenic regions, which also 
have no coding function, but of which parts contain regulatory elements, 
such as transcription factor binding sites. 

Genetic variation between humans is limited to approximately 0.1% of 
the genetic code, where mutations have given rise to changes in the DNA 
sequence – this variation, in addition to environmental factors, is what 
makes individuals different [402]. Each locus of DNA has two copies – 
one on the maternal chromosome and one on the paternal. These 
complementary copies are termed alleles, and the combination of alleles 
is a genotype, which can be homozygous (identical alleles) or 
heterozygous (different alleles). A locus which has alleles with a 
frequency of >1% in the population is called a polymorphism. 

There are several different kinds of variation in DNA, ranging in size 
from chromosomal (more or less than the standard two paired 
chromosomes – trisomy or monosomy), through copy number variation 
(duplications or deletions of large segments of DNA), to single base-pair 
variation (single nucleotide polymorphism, or SNP). Papers I-IV of this 
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thesis are all studies on common SNPs, i.e. occurring with a frequency of 
>1% in the population. 

DNA was initially sequenced using rather time-intensive and costly 
Sanger sequencing [403], and the first whole genome was sequenced 
using a method based on this [404]. However, over the course of the last 
decades, significant progress has been made in decreasing the cost of 
DNA sequencing, where genotyping a single SNP incurs a fraction of the 
previous cost. Likewise, the cost of genome-wide association studies, 
whereby a large number of SNPs (often in the neighborhood of 500,000) 
is genotyped quickly and efficiently using chips. Similar advances have 
been made for whole genome sequencing, where so called next 
generation sequencing has substantially lowered the cost and increased 
efficiency. 

The appeal of candidate gene studies is that they allow for the 
hypothesis-driven investigation of endogenous molecules in humans, 
which is otherwise somewhat difficult – especially given the difficulties 
of measuring endogenous OXT [6]. While in such studies it is difficult to 
draw any precise mechanistic conclusions about what exactly a 
particular molecule such as OXT does or how its receptor is affected to 
produce a particular phenotype, the advantage is that a genetic 
association can be established between the genetic code and that 
phenotype. 

As all the genetic studies included herein investigate SNPs, it should be 
noted that many SNPs that associate with a particular phenotype fall 
outside the coding regions of genes and are therefore of unknown 
biological significance, but they may for example influence transcription 
levels, or be in linkage disequilibrium with a SNP that is functional. While 
there is a paucity of functional studies on SNPs in OXT-related genes, 
there are some – for instance, rs2268498 has been shown to affect 
transcription of OXTR in hippocampal tissue [324]. There is a need for 
functional characterization of polymorphisms, to inform conclusions 
drawn from genetic association studies.  

INTRANASAL OXYTOCIN STUDIES 

Intranasal OXT was first used in the 1960s to facilitate lactation in cases 
of unsuccessful milk-letdown [405], an application still used today. 
Intranasally applied OXT thus reaches the periphery, where it causes 
substantial spikes in plasma concentration [406]. The interest in 
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applying intranasal OXT to humans in order to try to affect behavioral 
outcomes, however, took longer to develop, but has increased drastically 
over the past decade [407]. One reason for why intranasal 
administration of OXT has become so prevalent is because this has been 
considered an alternative route across the blood-brain-barrier [408], 
which as a peptide OXT is effectively barred from crossing [409]. 

However, this has raised the fundamental methodological question of 
whether intranasal OXT does indeed reach the brain in sufficient 
quantity. Despite the vastly supraphysiological amounts (usually 24 IU, 
corresponding to 48 µg) of OXT regularly applied intranasally [3], only 
an estimated 0.002-0.005% has been proposed to actually reach the 
brain, and there is some inconsistency in extant findings [408, 410-413]. 

The studies investigating whether any quantity of OXT reaches the brain 
have been criticized, citing methodological issues with measuring CSF 
levels of OXT or microdialysis, as well as the failure to establish a 
plausible path for OXT to reach the brain after intranasal application 
[180]. Proposed routes from the nose to the brain include uptake 
through the olfactory and trigeminal nerve, followed by axonal transport 
to central targets – this has been questioned due to the time it would 
take for the neuropeptide to reach the brain [408]. Another mechanism 
might be passage into the subarachnoid space, but transport across the 
arachnoid membrane seems to be a relatively unimportant route for 
access to the brain [414]. The question of exactly how intranasal OXT 
reaches the brain thus remains unsolved. 

However, effects of intranasal OXT on behavior in placebo-controlled 
studies support the argument that while the route is as yet unknown, 
central effects are achieved. Furthermore, recent studies on whether the 
peptide actually reaches the brain provide further support that such is 
the case. A mass spectrometry study, using labelled OXT applied 
intranasally and intravenously in rhesus macaques, demonstrated 
central uptake into the CSF of labelled OXT for both routes equally, 
without causing an increase in endogenous OXT [415]. Furthermore, a 
radiolabeled OXTR tracer was applied intranasally to rats, and 
subsequently demonstrated significant uptake in the olfactory bulb, at 
least indicating that this pathway is possible [416]. 
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THE ZEBRAFISH AS A MODEL ORGANISM 

The zebrafish (Danio rerio) is a small teleost fish of tropical origin, and 
has emerged as a model species for biomedical research, particularly in 
developmental studies and drug discovery [417, 418]. The species is 
relatively simple and cheap to breed and maintain, with a high rate of 
fecundity and short generation time; the offspring is independent and 
develop without parental support; and modern techniques for genetic 
manipulation and visualization of neural pathways make zebrafish a 
useful and convenient species for generating animal models of disease 
and behavior [394] – indeed, it has been used to elucidate neural 
circuitry for several behaviors, for example prey capture [419] and 
locomotor control [420].  

In terms of social neurobiology, the zebrafish has also proven promising 
as a model for psychiatric disorders, including ASD [421] and the effects 
of social isolation [422]. Social behavior is well-established in zebrafish – 
they display preference for conspecifics [423], kin recognition [424, 
425], as well as social interaction and group behavior in the form of 
shoaling [426-429]. These behaviors are quantifiable in zebrafish, and 
betray an impressively complex social behavioral repertoire. In addition, 
available neuroanatomical literature demonstrates that teleosts possess 
an SDM homologous to that in mammals [33, 35], making it further 
suitable as an animal model for investigating social behavioral circuits. In 
addition, a recent study identified a specific subset of OXT neurons in the 
zebrafish posterior tuberculum, and showed that embryonal ablation of 
these specific neurons decreased social preference [166], demonstrating 
the facility with which detailed neurobiological studies can be carried 
out in the species. 
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