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ABSTRACT 

Background and aim: Every year almost 600 patients in Sweden are diagnosed with 
diffuse large B-cell lymphoma (DLBCL), the most common lymphoma, and with 
immunochemotherapy, approximately 60 % are cured. Yet, for patients with primary 
refractory disease or early relapse, the prognosis is very poor. Despite advances in 
molecular subclassification of DLBCL, the major tool used to risk stratify patients is 
the clinically based International Prognostic Index (IPI). However, there is still no 
available system that with precision can identify the individual patients at highest risk 
of treatment failure. The aim of this thesis was to search for novel prognostic and 
predictive biomarkers, and also investigate the mechanisms behind chemoresistance 
in DLBCL. 
Patients and methods: In paper I and III, tumor tissue from two groups of DLBCL 
patients; (i) patients with primary refractory disease or early relapse (REF/REL; paper 
I: n=5, paper III: n=44); and (ii) long-term progression-free patients, clinically 
considered cured (CURED; paper I: n=5, paper III: n=53), was examined with mass 
spectrometry proteomic approaches to explore possible differences in global protein 
expression, but also with the aim to reveal new mechanisms involved in 
immunochemotherapy resistance. In paper II, metabolomic examination with nuclear 
magnetic resonance spectroscopy was performed on serum from REF/REL (n=27) 
and CURED (n=60) DLBCL patients, to determine if differences in clinical outcome 
could be correlated to diverse metabolomic profiles.  
Results and Conclusions: In paper I, a large number of proteins could be identified 
and quantified. Overexpression of actin-related proteins was found among the 
CURED patients, a finding that appeared to be confirmed in paper III, where in 
addition a novel discovery regarding overexpression of multiple ribosomal proteins 
in the REF/REL group was made. The findings suggest previously undescribed 
mechanisms for immunochemotherapy resistance in DLBCL patients. In paper II, 
differences in the serum metabolome was found between the two groups, that could 
be separated with multivariate statistical analyses. Even though the results are 
encouraging they need to be confirmed in larger unselected studies, with aims of 
further exploring actin-related and ribosomal proteins, not only as possible 
prognostic/predictive biomarkers, but also regarding their functional role in treatment 
resistance in DLBCL. 
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SAMMANFATTNING PÅ SVENSKA 
Bakgrund: Diffust storcelligt B-cellslymfom (DLBCL), den vanligaste 
lymfomtypen, drabbar 500-600 patienter i Sverige varje år. DLBCL är en 
aggressiv sjukdom där överlevnaden är kort utan behandling. Med hjälp av 
immunokemoterapi, dvs dosintensiv cytostatikabehandling (CHOP) med 
tillägg av rituximab (en monoklonal anti-CD20 antikropp), botar man idag 
drygt 60% av patienterna, men i de fall där behandling har dålig effekt 
(behandlingsrefraktär sjukdom), eller där sjukdomen snabbt återkommer efter 
avslutad behandling, är prognosen mycket dålig. Trots att det på senare år 
nåtts framgångar inom molekylär subklassifiering av DLBCL är fortfarande 
det kliniskt baserade IPI (International Prognostic Index), det prognostiska 
instrument som används i klinisk vardag. Men IPI har stora svårigheter att 
förutsäga vilka patienter som har störst risk för dåligt behandlingssvar, dvs 
behandlingsresistens och det finns ett behov av att hitta biologiska 
riskmarkörer som bättre kan identifiera individuella patienter med högst risk.  

Patienter och metoder: I delarbete I och III gjordes proteomikanalyser på 
sparad tumörvävnad från DLBCL-patienter från två distinkt olika grupper; i) 
patienter med primärt behandlingsrefraktär sjukdom eller som fått återfall 
inom 1 år efter diagnos (REF/REL), och ii) botade patienter, dvs patienter som 
ej fått återfall under 5 års uppföljning efter behandling (CURED). Med 
proteomik undersöks det globala proteinmönstret i en vävnad, och målet med 
studierna var att se om man kunde hitta skillnader i proteinuttryck mellan 
grupperna, dels för att kunna använda dessa skillnader som prognostiska 
verktyg, men också för att leta efter okända biologiska mekanismer bakom 
behandlingsresistens.  

I delarbete II gjordes i stället en metabolomikanalys på sparat patientserum 
från samma patientgrupper. Med metabolomik undersöks hur mönstret av 
olika metaboliter och andra mindre molekyler ser ut i ett prov, och syftet med 
delarbete III var att se om skillnaderna i behandlingsresultat mellan de två 
patientgrupperna kunde kopplas till skillnader i detta metabolitmönster. 

Resultat och konklusion: I delarbete I kunde en stor mängd proteiner 
identifieras och kvantifieras i de sammanlagt 10 proverna, som utgjordes av 
färskfrusna lymfkörtelpreparat från DLBCL-patienter. Uttrycket av 
sammanlagt 87 proteiner skilde sig mellan de två patientgrupperna, som med 
hjälp av multivariata statistikmetoder kunde separeras utifrån sina 
proteinuttryck. I gruppen med långtidsöverlevande sågs ett överuttryck av 
proteiner kopplade till cellens actincytoskelett. I delarbete III, det andra 
proteomikarbetet, kunde återigen en stor mängd proteiner identifieras och 
kvantifieras i sammanlagt 97 prover, som denna gång utgjordes av 



formalinfixerade, paraffininbäddade tumörpreparat. Fyndet av överuttryck av 
actinrelaterade protein hos CURED-patienterna verkade stå sig från delarbete 
I, och dessutom hittades ett överuttryck av ribosomala proteiner hos 
REF/REL-patienterna. Ribosomala proteiner är kopplade till ribosomerna, 
som är de små cellulära maskiner som tillverkar proteiner, dvs översätter 
genetisk information och sätter ihop aminosyror till proteiner utifrån DNA-
mallen i arvsmassan. Fynden gällande actinrelaterade och ribosomala 
proteiner kan, förutom möjligheterna till prognostisk information, ge en helt 
ny inblick i möjliga förklaringsmodeller bakom behandlingsresistens vid 
DLBCL, och kan också öka möjligheterna att finna nya mål för riktade 
behandlingar. I delarbete II sågs skillnader i serummetabolomet vid 
jämförelse mellan de två patientgrupperna, skillnader med potential att kunna 
ge prognostisk information men som behöver konfirmeras i större studier. 
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DEFINITIONS IN SHORT 
CURED Patients that were long-term progression-free 

with a follow-up, from diagnosis, of at least 5 
years, clinically considered cured from disease. 

ECOG Performance 
Status 

Scale of performance status developed by the 
Eastern Cooperative Oncology Group, that 
describes the patient’s level of functioning from 
0 (fully active) to 4 (completely disabled). 

Metabolomics Large scale study or investigation of the 
metabolome, i.e. the complete set of small-
molecule metabolites that is found within a 
biological sample. 

Proteomics Large scale study or investigation of the 
proteome, i.e. the entire set of proteins that are 
produced or modified by an organism or system. 

R-CHOP Immunochemotherapy regimen, containing the 
chemotherapy agents cyclophosphamide (C), 
doxorubicin (H) and oncovin (O), high dose 
corticosteroids, i.e. prednisone (P), and the 
monoclonal anti-CD20 antibody rituximab (R). 

REF/REL Patients with primary refractory disease or 
relapse within 1 year after diagnosis. 

SILAC Stable isotope labeling of amino acids in cell 
culture, a proteomic method in which an 
isotope-labeled mix of proteins is analyzed 
alongside the protein sample, to create an 
internal reference for quantification. 
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1 INTRODUCTION 
Lymphomas make up approximately 4% of all cancer in the western world. 
More than 90 different variations of mature lymphoid neoplasms, i.e. 
lymphomas, are listed in the recently updated WHO classification of 
hematological malignances (1). Lymphomas are very heterogeneous diseases. 
They differ greatly in their clinical manifestations, their histological and 
molecular appearances and not least their prognosis. The great majority of 
lymphomas are derived from B-cells (rather than T- or NK-cells) (2), and have 
clinical courses spanning from very indolent, chronic and even asymptomatic 
(3) to very aggressive with a multitude of symptoms and very bad prognosis 
with short-time mortality of 100 % if left untreated.  

The most common lymphoma, diffuse large B-cell lymphoma (DLBCL), 
make up 20-25% of all lymphomas (2), and is in itself a heterogeneous 
disease, that comprises around 15 subgroups among the mature B-cell 
neoplasms in the WHO-classification. In Sweden the annual incidence of 
DLBCL is 5-6/100.000, which means that 500 to 600 people are diagnosed 
every year (4). DLBCL is an aggressive lymphoma that mostly presents with 
enlarged lymph nodes and sometimes associated systemic symptoms (fever, 
weight loss, night sweats). Treatment with standard immunochemotherapy 
can cure well over 50% of patients, but those with tumors that are refractory 
to initial treatment or have a quick relapse, have a very poor prognosis (5, 6). 

Despite great progress in molecular subclassification of DLBCL, much is still 
uncertain regarding the prognostication of the individual patient, and there are 
still mainly clinical variables, i.e. the IPI-score (7) (age, performance status, 
disease stage, extranodal disease, and lactate dehydrogenase in serum) that are 
used to risk-stratify patients newly diagnosed with DLBCL.  

In this thesis tumor tissue or serum from DLBCL-patients with different 
clinical outcome; either cured patients or patients with refractory or relapsed 
disease, have been retrospectively analyzed in search for differences in protein 
expression or metabolite concentration, with the aim of finding new insights 
in the molecular background of the disease, explanations for resistance to 
immunochemotherapy and also new prognostic or predictive biomarkers. 
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1.1 THE B-CELL 
B-cells, lymphocytes that are responsible for the production of antibodies, are 
key players in the adaptive immune system including the humoral immune 
response and the immunologic memory. Different subsets of B-cells manages 
different phases of the immune response. For example, in the marginal zone 
of the spleen, non T-cell dependent B-cells are responsible for the first line 
defense against blood-borne pathogens with low affinity IgM-antibodies, 
whereas the later immune response with high affinity IgG- or IgA-antibodies 
and development of B-memory cells comes from B-cells having matured, with 
the aid of T-cells, in the germinal centers of lymph nodes. The ontogenesis of 
B-cells is a complex course of events where they go through programmed 
mutational processes in which their DNA step-wise is altered to acquire more 
specific recognition of foreign antigens, a process with powerful elements of 
selection to which most B-cells succumb due to non-functioning antibodies or 
too strong recognition of self-antigens. The inborn DNA-modification 
capacity of B-cells also makes them prone to undergo malignant 
transformation, resulting in different types of B-cell lymphomas depending 
on in which stage of B-cell development the oncogenic DNA-changes occur 
(8-10). 

1.1.1 Early B-cell receptor development in the bone marrow  
Central in B-cell development, and necessary for B-cell survival, is the B-cell 
receptor (BCR), which is made up by an antibody, also called 
immunoglobulin (Ig), coupled to transmembrane proteins (CD79A and 
CD79B) with intracellular signaling capacity. Antibodies are Y-shaped 
proteins formed from two heavy chains (H chains) and two light chains (L 
chains), both with variable domains in the ends, domains that together make 
up the antigen-recognizing segments of the Ig. The non-variable ends of the 
H chains define the class or isotype of the antibody, that in the early stages 
always is of IgM-type. The initial DNA-changing events in the Ig-genes of 
the early B-cell occur in the bone marrow (BM). Three different segments of 
the variable portion of the H chain, the V (variable), D (diverse) and J (joining) 
segments, and two variable segments of the L chain, the V and J segments, 
are rearranged by the RAG1/2 recombinase. The human IgH (H chain gene), 
in its variable region contains a palette of 27 DH gene segments, 6 JH segments 
and 120 VH segments, from which the actions of the RAG1/2 recombinase 
randomly select one of each to make the VH(DH)JH recombination. The 
recombined H chain is transiently coupled to surrogate L chains to form a pre-
BCR that is tested for functionality, i.e. some kind of antigen recognizing 
capacity, before being allowed to progress into further development. B-cells 
with non-functioning pre-BCR:s undergo apoptosis, if they are not first saved 
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by available escape-mechanisms to rearrange the properties of the BCR 
(including switching to the other IgH-allele, or additional recombination 
including unused VH-segments of the original IgH-allele). In the positively 
selected B-cells the surrogate L chains are replaced by the definitive light 
chains, in which the variable regions are similarly rearranged to form a VLJL 
recombination, either from the κ-loci or λ-loci of the IgL (L chain gene), thus 
forming either a κ light chain or a λ light chain. The Ig of the BCR is now 
composed of functional heavy and light chains, but before leaving the BM as 
naïve B-cells the BCR must be tested for reactivity to autoantigens. B-cells 
with strong autoreactivity are either saved by further L-chain rearrangements, 
or forced to the path of apoptosis, the latter fate actually affecting a majority 
of B-cells (11-14). 

Figure 1. V(D)J recombination of the immunoglobulin during B-cell development. 
Schematic presentation of how the variable regions of the heavy chain, consisting of 
variable (V), diversity (D) and joining (J) segments, and of the light chain (of either 
κ or λ type) with V and J segments, are assembled by recombination. In this process, 
the unused gene segments are deleted or inverted. The number of possible 
combinations of the different variable regions of the heavy and light chains is an 
astonishing 5 x 1013(13). From (11). Reproduced with permission from Massachusetts 
Medical Society: The New England Journal of Medicine Ó 1999. 
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1.1.2 Migration to the spleen 
The B-cells that escape the negative selection leave the BM and migrate to the 
spleen, where they either become marginal zone (MZ) B-cells that finalize 
their maturation in the spleen, or are referred to secondary lymphoid organs, 
mainly lymph nodes, for further development. In the spleen, MZ B-cells form 
the first line of defense against blood borne pathogens by T-cell independent 
transformation into short lived plasma cells secreting low affinity antibodies 
of the IgM isotype (10). 

1.1.3 Further development in the lymph node 
In lymph nodes resting B-cells can recognize and thereby be activated by 
antigens, thus starting the second line of defense, a more specific B-cell 
response. The activated B-cells internalize the recognized antigens and 
present them to T-helper cells, which in turn starts a loop of reciprocal 
stimulation promoting further B-cell proliferation and induction of the 
somatic hypermutation (SHM) process, which strengthen the BCR affinity to 
the antigens (15). 

1.1.4 The germinal center 
The quickly dividing B-cells, now termed centrocytes and centroblasts, do 
together with T-helper cells and follicular dendritic cells (stromal cells) make 
up the germinal centers of the lymph node follicles, areas that can be likened 
to busy immunological factories that fine tune and mass-produce highly 
specific immunologic responses to invading pathogens. The centroblasts 
constitute the dark zone of the GC, in which rapid proliferation and SHM take 
place. In the light zone, the centrocytes undergo positive or negative selection 
depending on the affinity of their BCR, and here also the Ig class switch and 
differentiation to either plasma cells or memory B-cells happens (16). 

1.1.5 Somatic hypermutation 
Somatic hypermutation is induced by an enzyme, activation-induced cytidine 
deaminase (AID), which causes small DNA-modifications such as point 
mutations, deletions and insertions into the rearranged IgV, i.e. the variable 
genes of the immunoglobulin. This changes the geometry of the antigen-
recognizing segment of the antibody. If this results in a BCR with decreased 
affinity to the antigen or increased affinity to self-antigens the B-cell is 
counterselected and undergo apoptosis. However, if the BCR after SHM 
instead increases its affinity to the antigen the B-cell is positively selected to 
further proliferation including more cycles of SHM (13). 
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1.1.6 Ig class switch and final differentiation 
Towards the end of the B-cell development in the germinal center, the enzyme 
AID is again involved in DNA modifying events, this time through the class 
switch recombination, in which the constant region of the antibody heavy 
chain in some (but not all) of the B-cells are changed to form new isotypes of 
antibodies, primarily from IgM to IgG or IgA. This changes the effector 
functions of the secreted antibody and also affects the intracellular signaling 
capacity of the BCR. Finally, the B-cell can leave the germinal center after 
having differentiated into either an antibody secreting plasma cell or a 
memory B-cell (16). 

Figure 2.  The germinal center (GC). Naïve B-cells that are activated by antigens 
form the germinal center, in which proliferation and somatic hypermutation (SHM) 
take place in the dark zone, and selection and Ig class-switch recombination in the 
light zone. The B-cells cycle between the different compartments of the GC several 
times, to undergo repeated rounds of proliferation, SHM and selection, before 
finally exiting the GC as either memory B-cells or antibody secreting plasma cells. 
B-cells that are counterselected due to weak affinity of the BCR or too strong 
recognition of self-antigens undergo apoptosis. From (16). Reproduced with 
permission from Macmillan Publishers Ltd: Nat Rev Immunol Ó 2015. 
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1.2 ORIGIN OF B-CELL LYMPHOMAS  
As discussed earlier, the numerous DNA-changing events during normal B-
cell development, together with the massive proliferation, make these cells 
prone to undergo malignant transformation. The histologic and molecular 
phenotype of lymphoma cells depend on the stage of normal B-cell 
development in which the malignant cells have their normal counterpart, i.e. 
at which stage the cells have made their final diversion from normal 
development and transformed into malignant cells. A vast majority of 
lymphomas have somatically mutated immunoglobulins in their genome, 
which means that they are stemming from germinal center (GC) B-cells (11). 
However, the first genetic changes probably happen earlier in B-cell 
development, but the last steps of the malignant transformation take place 
when the B-cell is exposed to antigens in the GC (16). Also, with few 
exceptions, most B-cell lymphomas seem to be dependent upon a functional 
BCR, most evident in lymphoma subtypes where proliferation is triggered by 
BCR-autoreactivity (as seen in cases of follicular lymphomas and MALT-
lymphomas) and sometimes even where lymphomas are dependent on BCR-
stimulation by a known pathogen (most studied in Hepatitis C-driven 
lymphomas) (14). 

1.2.1 Examples of genetic alterations in B-cell lymphomas 
Follicular lymphomas, that have an obvious GC origin, not least with regard 
to their histopathological growth pattern, have in 80 % of cases the typical 
t(14;18) translocation involving the anti-apoptotic protein BCL2. This 
translocation, which also is present in 35 % of germinal center B-like (GCB) 
DLBCL (a subtype introduced and explained in chapter 1.3.6), is caused by 
the (misdirected) actions of RAG1/2 recombinase during the V(D)J-
translocation during early B-cell development in the BM, but contributes to 
lymphomagenesis later in the GC reaction (14, 17). 

During the GC reaction, transient expression of MYC, an omnipotent 
transcription factor, is involved in the recycling of B-cells from the light zone 
into the dark zone for further proliferation and SHM. AID, the protein 
responsible for both SHM and Ig class switch, is also the culprit behind the 
t(8;14) translocation that involves MYC, that is present in about 10% of GCB-
DLBCL and 100% of sporadic Burkitt lymphomas (8, 18). 

BCL6, a protein with broad effects on transcription, mainly by repression, 
plays multiple roles in the GC process and is responsible for maintaining the 
B-cell in the GC process to promote further DNA modulation of the 
immunoglobulin genes, and repressing further differentiation into plasma 
cells or memory B-cells. BCL6 is present during the GC phase, and is 
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typically found in lymphomas with a GC phenotype, such as follicular 
lymphoma and GCB-DLBCL. BCL6 disappears during the final 
differentiation of the B-cell, and is typically absent in activated B-cell like 
(ABC) DLBCL (see chapter 1.3.6), a lymphoma subtype that has its probable 
natural counterpart in plasmablasts, i.e. B-cells having passed through the GC 
events and started to differentiate towards plasma cells (16, 19). 

 

Figure 3. The cellular origin of B-cell lymphomas relative to the GC reaction. 
Within the cell-of-origin concept of DLBCL, introduced in chapter 1.3.6, two major 
subgroups can be distinguished; germinal-center like (GCB) DLBCL, and activated 
B-cell like (ABC) DLBCL. From (19). Reproduced with permission from Springer 
Science+Business Media: Methods in Molecular BiologyÓ 2013. 
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1.3 DIFFUSE LARGE B-CELL LYMPHOMA 
DLBCL is the most common lymphoma, making up about 20-25% of all 
lymphomas in the western world. The incidence of DLBCL has, for unknown 
reasons, steadily increased during the last 50 years (2, 20, 21). Five to six-
hundred patients in Sweden are diagnosed with DLBCL every year (4), most 
of them with high age as the only known predisposing factor – the median age 
is 70 years at diagnosis (20, 21). Some cases of DLBCL arise after 
transformation from indolent lymphomas such as follicular lymphoma (1). 
There are also some other established factors that increase the risk of DLBCL, 
among them autoimmune and inflammatory diseases (22), HIV and other 
immune deficiency disorders, post-transplant situations with 
immunosuppression and previous radiation therapy. DLBCL is slightly more 
common in males, the male:female ratio being around 1.2:1 (21). Among first-
degree relatives to DLBCL there is a 10-fold increase in relative risk for the 
same lymphoma type, implying an association of (unknown) specific 
germline genes. (23). There are no known life style factors that significantly 
influence the risk for DLBCL. 

DLBCL is a heterogeneous disease, that comprises around 15 subgroups 
among the mature B-cell neoplasms in the updated WHO-classification (1). 
The term “DLBCL”, has in this text been used as a collective term for the 
subgroups comprising the absolute majority of DLBCL cases, i.e. “Diffuse 
large B-cell lymphoma (DLBCL) Not Otherwise Specified (NOS)” with 
subgroups “Germinal center B-cell type (GCB)” and “Activated B-cell type 
(ABC)”, and also “High-grade B-cell lymphoma, with MYC and BCL2 and/or 
BCL6 rearrangements” and ”High-grade B-cell lymphoma, NOS”.  

1.3.1 Clinical presentation 
Patients with DLBCL often present with enlarged lymph nodes or tumors in 
extranodal sites, and have frequently associated systemic symptoms (fever, 
weight loss, night sweats). The clinical course is aggressive, the symptoms 
often having evolved only during the last weeks or months. Without treatment 
the disease inevitably will have a fatal course, with fast growing tumor masses 
and quick deterioration of the patient´s general condition.  

1.3.2 Diagnosis 
The work-up of patients with suspected DLBCL includes a mandatory tumor 
biopsy that undergo histopathological examination and immunohistochemical 
staining for diagnosis and subclassification according to the WHO (1). For 
best results the pathological examination is made on a lymph node that is 
surgically excised in its entirety, but if that is not possible a needle biopsy can 
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often gather sufficient tumor material for correct diagnosis. DLBCL is, as the 
name implies, morphologically composed of large transformed lymphoid cells 
in a diffuse growth pattern, that disrupt or fully replaces the follicular 
appearance of the normal lymph node. Immunohistochemical staining usually 
detects pan B-cell markers such as CD19, CD20, CD22 and CD79a. 
Expression of other markers like CD30, CD5, CD10, BCL6, BCL2 and 
MUM1 can be seen in various proportions of cases. Proliferation measured as 
Ki-67 fraction is usually high, varying between 40% to over 90%. 

 
Figure 4. The centroblastic variant of DLBCL is the predominant histologic 
type, accounting for approximately 80 % of cases. Here seen in two different 
magnifications; 10x (A) and 40x (B). The tumor is dominated by centroblasts, i.e. 
large cells with a moderate amount of cytoplasm, round to oval nuclei with 2-3 
nucleoli, often peripherally located adjacent to the nuclear membrane. 
Reproduced with permission from dr. Bram Ednersson, Department of 
Pathology, Sahlgrenska University Hospital, Gothenburg. 

A 

B 
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1.3.3 Staging 
Staging of DLBCL is based on the Ann Arbor classification (24) and require, 
for full evaluation of the disease extension, investigation with CT-scan (or 
PET) and also a bone marrow biopsy. High-risk cases undergo examination 
of cerebrospinal fluid for assessment of possible CNS involvement. 45 % of 
patients present with stage I or II disease, the rest being in stage III or IV, i.e. 
having a more disseminated disease at diagnosis (21). 

1.3.4 Treatment, and prognosis relative response  
For many years the standard curative treatment for DLBCL patients was the 
CHOP-regimen, which combines the chemotherapy agents 
cyclophosphamide (C), doxorubicin (H) and oncovin (O) with high dose 
corticosteroids, i.e. prednisone (P). After the addition of the monoclonal anti-
CD20 antibody rituximab (R) almost 20 years ago, the combined so-called 
immunochemotherapy regimen R-CHOP have been the cornerstone of 
DLBCL treatment, a regimen that cures approximately 60% of DLBCL 
patients (25). Several attempts to increase survival rates with more intensive 
frontline chemotherapy, mostly before rituximab was introduced, have not 
proved superior to R-CHOP (26, 27). The fast-growing nature and short 
doubling time of the tumor cells make DLBCL very sensitive to 
immunochemotherapy, and clinicians and patients can often see the tumors 
“melt away” quickly during the first courses of treatment. The goal is a total 
eradication of disease after the last course of the treatment, i.e. having a 
complete remission (CR), which is achieved in about 75% of patients (25).  

Patients with primary refractory or relapsed DLBCL are in a difficult position. 
For younger patients the standard treatment, if the tumor is chemosensitive, is 
high-dose therapy with autologous stem cell transplantation (ASCT) (28). The 
most common treatments preceding the ASCT have been either ICE 
(ifosfamide, carboplatin and etoposide) or DHAP (dexamethasone, cytarabine 
and cisplatin) (29). Lately GDP (dexamethasone, gemcitabine and cisplatin) 
have proven to be as effective as DHAP regarding response to treatment and 
transplantation rates, however with less toxicity and superior quality of life, 
making it a more appealing treatment choice (30). Rituximab is added to the 
regimens if more than six months have passed since the last rituximab dose, 
but is omitted in cases with earlier relapses or primary refractory disease, since 
the tumor then is considered refractory to rituximab. Among the patients who 
relapse after ASCT the prognosis is dismal, but among patients responding to 
salvage therapy, there are cases that can obtain long remissions following 
allogenic stem cell transplantation (31). Also, with recent advances in 
chimeric antigen receptors (CARs), anti-CD19 CAR-T cells with very 
promising activity against chemotherapy-refractory DLBCL have been tested. 
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The risk of severe adverse effects with this treatment is well known, but 
chances of longer remissions are encouraging (32). Axicabtagene ciloleucel, 
an autologous anti-CD19 CAR-T cell therapy tested in a multicenter setting 
on DLBCL patients with refractory disease, is now approved for use in the 
EU, since it gave long remissions in a subset of patients; at the median follow-
up time of 15 months, 40% were still in CR (33).  

For older patients or patients that are less physically fit and consequently don’t 
tolerate stronger treatment options such as ASCT, more palliative-oriented 
treatment options are chosen in the relapse or refractory situation. 

The prognosis of patients with DLBCL is in many ways closely dependent on 
the response to the initial treatment. Patients with early relapse (within a year 
from diagnosis) (29) or primary progressive disease (5, 34) have a very poor 
prognosis, regardless if they are fit for ASCT or other intensive chemotherapy, 
or referred to more palliative treatment choices. The median overall survival 
(OS) in patients under 70 years with primary refractory disease is only 10 
months; 85% are deceased within 18 months and only 7% of patients reaches 
a more prolonged remission (5). For elderly patients with primary refractory 
disease the median OS is only 3.3 months (34). 

Figure 5. A) Overall survival (OS) of patients with primary refractory DLBCL 
who were 70 years of age or younger at the time of secondary progression. 5 year 
OS = 7%. Data from a population study of 1126 patients treated with R-CHOP, of 
whom 15 % had primary refractory disease. From (5). Reproduced with permission 
from Springer Berlin Heidelberg: Annals of HematologyÓ 2015.                                                                                                    
B) OS of elderly patients with primary refractory DLBCL. Results from the 
RICOVER-60 study, that compared CHOP-14 with or without the addition of 
rituximab. The prognosis is equally poor regardless which treatment was given, 
with a median OS of only 3,3 months. From (34). Reproduced with permission from 
Oxford University Press: Annals of Oncology Ó 2017.  
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In stark contrast to this scenario, patients who achieve CR after initial 
treatment, and are free from relapse 2 years after, have a survival that is similar 
to the general population (35). The risk of relapse decreases as time passes, 
and late relapses have a better response to ASCT than early (29).  

1.3.5 Prognostic factors – the IPI 
Up until recently, the only prognostic tool used in clinical practice to risk-
stratify DLBCL patients has been the International Prognostic Index (IPI), that 
is based on the presence of five easily measured clinical parameters at 
diagnosis (7): 

• Ann Arbor Stage ³ III 
• Elevated lactate dehydrogenase (LDH) in serum 
• Performance status (ECOG) ³ 2 
• Age > 60 years 
• Extranodal sites ³ 2 

The IPI was proposed in 1993 (before the introduction of rituximab), and 
could, based on the IPI-score, assign patients to four risk groups (low (IPI 0-
1), intermediate-low (IPI 2), intermediate-high (IPI 3) and high-risk (IPI 4-5)) 
with different five year OS rates ranging from 73% to 26% (7).  

An age-adjusted IPI (aaIPI) was also developed for patients < 60 years of age, 
which constituted only the first three IPI factors, i.e. stage, LDH and 
performance status (ECOG). Based on these parameters, four different risk 
groups could be separated, with different 5 year OS ranging from 83% (low 
risk, 0 factors) to 32% (high risk, 3 factors) (7). The aaIPI also proved to be 
valid among older patients, and is currently in Swedish clinical routine the 
preferred prognostic instrument rather than the original IPI.  

The IPI is also valid in the immunochemotherapy era, however with a better 
overall outcome in all risk groups compared to the pre-rituximab IPI-studies. 
In modern data, the 3-year OS ranges from 91% in low-risk patients to 59% 
in high-risk patients (Figure 6, opposite page) (36).  
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Figure 6. Progression free survival (PFS) and overall survival (OS) in relation to 
International Prognostic Index (IPI) in rituximab-treated patients. Results merged 
from three trials: MabThera International Trial, MInT (n=380), MegaCHOEP trial 
(n=72) and RICOVER-60 trial (n=610). Compared to the pre-rituximab era, 
patients with IPI score 3 have similar outcome as those with IPI score 4-5, thus 
forming a new high-risk group with IPI score 3-5. From (36). Reproduced with 
permission from American Society Of Clinical Oncolgy: J Clin Oncol Ó 2010 

Despite high prognostic precision on a populational level, the IPI is however 
less useful in identifying the individual patients that will have an early relapse 
or primary progressive disease, i.e. the patients with dismal prognosis (37). 
Those patients can be found in all IPI risk groups, although naturally with a 
proportion that increases with higher IPI scores. But still – some patients with 
very poor prognosis are found among those with low IPI scores, and 
conversely, a large proportion of patients with high IPI scores, i.e. with poor 
prognosis as a group, still will be cured from the initial treatment. One can 
speculate that the clinical variables that make up the IPI are only composite 
surrogate markers for the biological risk profile and invasiveness of the 
lymphoma (as reflected in tumor stage, number of extranodal sites and serum 
LDH level), the patient´s response to the tumor (performance status) together 
with the physical state of the patient (age and performance status). More 
aggressive tumors and less fit patients give higher IPI-scores and thereby a 
worse prognosis on a group level.  

There is a great need to find molecular prognostic markers to improve the 
outcome prediction in patients with DLBCL. Markers that better reflect the 
biological heterogeneity of the disease, and better explain the mechanisms 
behind resistance to immunochemotherapy. The following chapters describe 
the latest years advances in the molecular subclassification of DLBCL. 
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1.3.6 Cell-of-origin (COO) 
An important discovery regarding the biological heterogeneity of DLBCL was 
made in the year 2000, when Alizadeh et al published the results from their 
gene expression profiling (GEP) study of frozen tumor samples from DLBCL-
patients (38). They found, based on the gene expression profiles, two 
molecularly different forms of DLBCL, with gene expression patterns 
reflecting different stages of B-cell differentiation. The concept of “cell-of-
origin” (COO) among DLBCL tumors was thus introduced. The first type, 
germinal center B-like (GCB) DLBCL, expressed genes resembling normal 
germinal center B-cells; whereas the second type, activated B-cell like (ABC) 
DLBCL, expressed genes that normally were found in activated peripheral B-
cells in in vitro experiments. (ABC-DLBCL is now thought to have its 
probable natural counterpart in plasmablasts, i.e. B-cells having passed 
through the GC events and started to differentiate towards plasma cells, see 
Figure 3).  

As shown in Figure 7, the patients with GCB-DLBCL had significantly better 
survival than those with ABC-DLBCL. And interestingly, this was also true 
when patients within separate clinical risk groups was compared. Thus, the 
cell-of-origin concept could overcome some of the limitations of the IPI 
scoring discussed earlier, and with better precision find the patients in all 
clinical risk groups with highest risk of treatment failure.  

Figure 7. a) Overall survival (OS) of DLBCL patients based on gene expression 
profiling. Patients with GCB-DLBCL had a significantly better OS than patients 
with ABC-DLBCL.                                                                                                       
b) OS based on clinical risk. Low-risk patients (IPI score 0-2) had significantly 
better OS than high-risk patients (IPI score 3-5).                                                       
c) OS of low clinical risk (IPI score 0-2) DLBCL patients grouped on their gene 
expression profiles. Even within this low-risk group, ABC-DLBCL patients had a 
significantly shorter survival.                                                                                 
From (38). Reproduced with permission from Macmillan Magazines Ltd: Nature Ó 
2000 
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The Alizadeh study was made before the introduction of rituximab, but the 
differences in outcome between GCB- and ABC-DLBCL have later been 
confirmed in patients treated in the immunochemotherapy era, with rituximab 
added to the standard CHOP regimen (39, 40). However, since GEP is time 
consuming and not so easily standardized, attempts have been made to find 
an easier and more clinically accessible method to establish the COO of 
DLBCL tumors. In 2015, a 20-gene expression-based assay, the Lymph2Cx, 
could replicate the results from the Alizadeh study, but this time on formalin-
fixed, paraffin embedded tissue in a standardized, much less time-consuming 
process (41). The Lymph2Cx assay has, with regard to its accuracy and rapid 
turnaround time, proven to be a useful tool in experimental settings, but has 
also potential to be implemented in future routine patient management. 

Some researchers have found the GEP-based COO classification being a 
rather blunt tool, since there are several more naturally occurring 
subpopulations of B-cells than GCB and ABC. Centrocytes and centroblasts, 
cell types with major differences in function and phenotype, can for example 
both be found within the GCB group, and the COO classification doesn’t 
differ between these cells. Recently, Danish researchers have used GEP to 
establish so called B-cell-associated gene signatures (BAGS) on 
immunophenotype-based flow-sorted normal B-cells, thus being able to 
differentiate between naïve, centroblast, centrocyte, memory and plasmablast 
B-cells. When applying these “BAGS” to clinical tumor samples, the different 
DLBCL tumors could be sorted into either of the subtypes, where the two 
most common, the centrocyte and centroblast subtype, showed survival 
differences, at least among GCB patients (42). The BAGS subtyping of 
DLBCL tumors have since been repeated using an easier to reproduce 
NanoString-based assay (43).  

1.3.7 Cell-of-origin by immunohistochemistry 
Since gene expression profiling is not accessible in most clinical settings, the 
COO of DLBCL tumors should be possible to translate to protein-based 
analysis with immunohistochemistry (IHC) on formalin-fixed, paraffin 
embedded tissue, already a routine procedure among hematopathologists 
involved in the diagnosing process of DLBCL. Indeed, since the year 2000, 
several IHC-based algorithms have been proposed for clinical use, of which 
the Hans algorithm is the most commonly used today (44). According to this, 
the tumor expression of three proteins, CD10, BCL6 and MUM, can separate 
the tumors into different COO-groups (44). The groups are here coined GCB- 
or non-GCB-DLBCL, the former group with significantly better survival than 
the latter, albeit not with as big differences between the groups as in the 
original GEP studies. Several other algorithms have been proposed, partly 
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based on other IHC markers (45-47). However, all IHC algorithms seem to 
have low concordance with GEP, show poor reproducibility and the 
prognostic information on individual basis is unreliable, especially in the 
immunochemotherapy era (40, 48). Still, IHC based algorithms to decide the 
COO, i.e GCB- or non-GCB-DLBCL, is for practical reasons widely used in 
clinical routine, simply because IHC already is an integrated part of routine 
hematopathology practice and GEP is not.  

Figure 8. The Hans algorithm. The cell of origin of DLBCL, either GCB- or non-
GCB, can be established based on the expression of three proteins, CD10, BCL-6 
and MUM1. B) Examples of IHC staining of a case of GCB-DLBCL (upper row), 
and non-GCB-DLBCL (lower row). From (44). Reproduced with permission from 
HighWire Press; American Society of Hematology: Blood © 2004 

1.3.8 GCB-DLBCL 
DLBCL tumors with a germinal center B-like (GCB) cell-of-origin, resembles 
normal B-cells involved in the GC reaction, and express proteins that are 
normal for these cells, such as CD10 and BCL6 (see chapter 1.2.1) (38). 
Evident is also, just like in their normal counterparts, an ongoing somatic 
hypermutation driven by the enzyme AID (49).  

An oncogenic pathway typical for GCB-DLBCL is caused by the t(14;18) 
translocation, found in around 35% of cases (see chapter 1.2.1). This 
translocation cause overexpression of BCL2, which has pro-proliferative and 
anti-apoptotic effects on the tumor cells (17, 50). 20% of GCB-DLBCL have 
mutations of the histone methyltransferase EZH2, which causes increased 
proliferation and hinders differentiation, thus forcing the tumor cells to 
continue in their GC mimicking state (51). Activation of the PI3K-AKT 
pathway is in 10% of GCB-DLBCL cases caused by deletion of the PI3K 
inhibitor PTEN (52, 53). Translocations involving the transcription factor and 
pro-proliferative protein MYC is found in 10-15% of cases (see chapter 1.2.1), 
and is associated with worse prognosis (54), especially if there are 
simultaneous translocations involving BCL2 and/or BCL6 (55), so-called 
double- or triple hit lymphomas, which are described in more detail later.  
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1.3.9 ABC-DLBCL 
DLBCL tumors with an activated B-like (ABC) cell-of-origin, have their 
normal counterpart in plasmablasts, B-cells having passed through the GC 
events and started to differentiate towards plasma cells (19, 38). Typical for 
ABC-DLBCL is the continuous activation of the NF-κB pathway, which leads 
to cell proliferation and survival, and is believed to be the major causal factor 
behind the worse prognosis among ABC-DLBCL patients (56, 57). There are 
several oncogenic pathways behind this activation; like chronic B-cell 
receptor signaling caused by CD79a/b-mutations (20% of cases), constitutive 
NF-κB activation through mutations of CARD11 (10%) or MYD88 (35%), or 
inactivation of TNFAIP3 (30%) (16, 58, 59). 

1.3.10 Double Hit and Double Expressor Lymphoma 
Among DLBCL tumors overexpression of MYC and BCL2 can be detected 
by standard immunohistochemical methods, and tumors with elevated levels 
of both proteins are either so-called double hit lymphomas (DHL) (55) or 
double expressor lymphomas (DEL) (60). DHL is defined as a B-cell 
lymphoma with a MYC-rearrangement in pair with either a translocation 
involving BCL2 (most commonly) or BCL6. Tumors with all three 
rearrangements are termed triple hit lymphomas (THL). Patients with 
DHL/THL have an aggressive clinical presentation, often an advanced stage 
lymphoma, with elevated LD and frequent extranodal engagement including 
bone marrow or CNS (61, 62). This often results in high IPI-scores and the 
overall survival of this patient group is poor. DHL/THL can be found in 
around 10 % of DLBCL, but almost exclusively among patients with GCB-
DLBCL, i.e. the cell-of-origin group with better prognosis (63). DHL/THL-
status probably explains a large proportion of the treatment failures that still 
occurs in this patient group. FISH-analyses of those gene rearrangements now 
is part of the routine hematopathological work-up of DLBCL tumors, as the 
presence of double or triple translocations urges for more aggressive 
treatment. Even though no prospective studies have been made on these 
patient groups, retrospective studies indicate that treatments such as dose-
adjusted R-EPOCH (a more intensive “R-CHOP” with added etoposide) 
possibly alternating with CNS-penetrating high-dose methotrexate and 
cytarabine combinations should be considered due to the inadequacy of R-
CHOP for the DHL patients (64).  

In DEL, the high levels of MYC and BCL2 are not caused by translocated 
genes, but instead by gene amplifications. DEL is more common than DHL, 
and found in about 25-30% of DLBCL cases, but in contrast to DHL almost 
all belonging to the ABC-DLBCL cell-of-origin subtype (60, 65). Patients 
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with DEL have an adverse prognosis compared to patients without DEL, but 
still a better prognosis than patients with DHL (60). 

1.3.11 Whole exome sequencing and mutational 
investigations in DLBCL 

With today’s rapid evolution of techniques in whole exome sequencing 
(WES) and mutational analyses of large number of samples, progress have 
lately been seen in investigation of genetic drivers in DLBCL, i.e. genes 
essential for the survival and expansion of the malignant clone (66-68). 
Compared to RNA-based COO, which defines the differentiation of the cell 
depending on differentially expressed genes, WES can detect common 
mutations, which makes it possible to subclassify DLBCL patients according 
to clusters of mutations of functionally associated genes. In one study, almost 
half of 574 DLBCL patients could, according to the distribution of genetic 
alterations, be sorted into four subgroups, with different mutational pattern, 
and different survival (67). Similar and partly overlapping mutational 
subgroups were found in another large study on 304 DLBCL patients, 
however with some contradiction regarding prognosis on one of the GCB-
specific subgroups (68). In the largest of these new studies, where 1001 
DLBCL patients were investigated for mutations, a median of almost 8 
mutations were found per case (66). The study identified 150 potential driver 
genes with recurrent mutations in DLBCL, and from the mutational pattern of 
each patient sample, a “genomic risk” was calculated, and the patients were 
sorted into either a genomic low risk or high risk group, the former with a 
significantly better survival. Prognostication according to IPI, cell-of-origin 
and DHL-status all proved to be valid within this large patient material; 
however, the genomic risk model was robust and highly significant also when 
tested within each of those known risk groups (Figure 9).  

In DLBCL cell lines, selective knock-out of the 150 identified driver genes 
via CRISPR screening, could identify 35 genes whose knockout resulted in 
decreased viability of the cell lines, thus identifying them as functional 
oncogenes. Those 35 genes consequently become potential drug targets in 
DLBCL, and indeed, therapeutic substances targeting nine of them are already 
under investigation in clinical trials or already approved for other indications 
(66).  

With so-called “liquid biopsies” using serum from DLBCL patients, 
mutational analyses have also been possible to perform on cell-free DNA that 
is shed from tumor cells undergoing apoptosis (69), which make the 
mutational status more easily accessible, and also possible to follow 
longitudinally during and after treatment.  
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In summary, the early results from studies on whole exome sequencing and 
mutational analysis of DLBCL patients are very promising, both in the 
prognostic/predictive perspective, but also when exploring novel targets for 
treatment. Since high throughput sequencing in different forms are becoming 
more and more applied in practical clinical routine of hematopathologists, this 
field of research will probably expand greatly in the next years. 

Figure 9. Genomic risk model applied within different known risk groups of 
DLBCL (i.e IPI, cell-of-origin and MYC/BCL2 double expressors). Blue indicates 
genomic low risk, and red genomic high risk. Grey = all patients within the known 
risk group. In this material, the genomic risk model can significantly stratify 
survival within the known risk groups that was tested. From (66). Reproduced with 
permission from Elsevier: Cell Ó 2017 

1.3.12 Chemoresistance and tailored treatments 
The reasons for the differences in outcome between the various molecular 
subgroups of DLBCL have been examined with regard to resistance to 
immunochemotherapy, here named chemoresistance. In the ABC-DLBCL, 
with its post germinal center phenotype, there are several postulated innate 
chemoresistance mechanisms that could explain the shorter survival, for 
example the chronic B-cell receptor (BCR) signaling and downstream 
activation of the transcription factor NF-κB.  

Inhibition of NF-κB in vitro will kill ABC-cells, but not GCB-cells (58, 70), 
and in vivo direct or indirect inhibition of the pathway by drugs like ibrutinib 
(71), bortezomib (72) and lenalidomide (73, 74) has in relapse situations 
shown effects on ABC-DLBCL but not GCB-DLBCL. The drugs are 
currently tested in various stages of first-line treatment studies, however so 
far not with any positive results: a prospective randomized study of newly 
diagnosed DLBCL, REMoDL-B, could not show any differences in survival 
between patients having bortezomib or placebo added to R-CHOP, not even 
in the ABC subgroup (75). A placebo-controlled study of frontline ibrutinib 
added to R-CHOP to patients with ABC/non GCB DLBCL is currently active, 
(ClinicalTrials.gov Identifier: NCT01855750), and there is an ongoing study 
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to compare the addition of lenalidomide to frontline R-CHOP in newly 
diagnosed DLBCL patients (76). 

Subgroups within the GCB-DLBCL also have genetic alterations leading to 
chemoresistance, like the 35% of cases with constitutional activation of the 
anti-apoptotic protein BCL2 via t(14,18) (50), which in itself was a negative 
prognostic marker before the rituximab era, and still is if coupled with MYC-
rearrangements, i.e. DHL (77). Activation of the PI3K-AKT pathway is in 
10% of GCB-DLBCL cases caused by deletion of the PI3K inhibitor PTEN 
(52, 53), which make the tumors resistant to rituximab. Targeted novel agents 
against BCL2 and Pi3K could have theoretical advances in patients with 
GCB-DLBCL compared to ABC-patients (78), and indeed, venetoclax, a 
BCL2 inhibitor, has been positively evaluated as a single agent in the relapse 
situation (79), and is currently tested as an addition to R-CHOP or G-CHOP 
(G=Obinutuzumab, anti-CD20 monoclonal antibody) in a frontline setting for 
newly diagnosed DLBCL patients (ClinicalTrials.gov Identifier: 
NCT02055820). 

Acquired chemoresistance, regardless of COO, is also a feature in DLBCL 
cases. MDR1, an ATP-dependent efflux pump that can transport multiple 
drugs, for example doxorubicin and vincristine, out of malignant cells(80), 
have been shown to be increased in chemoresistant non-Hodgkin lymphoma 
cells compared to treatment-naïve samples (81-83). Resistance to rituximab 
in B-cell lymphoma cell lines can be linked both to a reduction of CD20 
expression, and also to a down regulation of pro-apoptotic proteins Bax and 
Bak (84, 85).  

Other cellular functions that are found to be important contributors of drug 
resistance in DLBCL are histone deacetylases (HDACs), enzymes that make 
the chromatin more compact, and thus repressing transcription of pro-
apoptotic genes (86). Novel HDAC inhibitors have, probably by restoring the 
expression of repressed genes leading to cell-cycle arrest, differentiation and 
apoptosis (87), been shown to regain DLBCL tumor sensitivity to 
immunochemotherapy in previously resistant cases (88-90). Also valproic 
acid, a classic anti-epileptic drug with recently discovered HDAC-inhibitory 
properties, has shown effects as a sensitizer for CHOP-induced death among 
DLBCL cell lines (91), and has been used in a phase I trial together with R-
CHOP for untreated DLBCL patients with promising results (92). 

Other proteins that have been linked to chemoresistance in B-cell lymphomas 
are the tumor suppressor p53 (93-95) and also the type II topoisomerase, the 
latter however so far contradictory regarding if its occurrence makes the 
tumors more (96) or less (97) sensitive to chemotherapy. Another interesting 
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take on chemoresistance is the proposed “chemoresistant niche”, that could 
promote survival of residual lymphoma cells due to microenvironmental 
changes caused by the release of interleukin 6 (IL-6) and tissue inhibitor of 
metalloproteinases 1 (TIMP1) in the thymus in response to doxorubicin 
treatment (98). In summary, there are several known mechanisms behind both 
innate and acquired chemoresistance in DLBCL, mechanisms that in studies 
have been targeted by novel treatment agents both in front-line and relapsed 
settings, but so far none of these have made their way into the standard 
treatment of the disease, i.e. R-CHOP.  

1.4 A NEED FOR NEW PROGNOSTIC AND 
PREDICTIVE MARKERS 

The primary treatment for patients with DLBCL have for long times, despite 
the great heterogeneity of the disease, been picked from a rather limited 
palette of regimens. With the exception of some patients with stage I disease, 
in which case the number of treatment courses can be reduced in favor of 
radiotherapy (99), variations of anthracycline-based immunochemotherapy, 
i.e. R-CHOP, for 6-8 courses have been the treatment chosen for almost all 
patients, and the guide for deciding the exact regimen have been the clinically 
based IPI (100-102). However, in recent times, treatment algorithms in care 
programs have also taken into account information about COO (GCB- or non-
GCB by immunohistochemical methods) or DE-/DH-status, and opted for 
slightly differentiated treatments depending on those factors, for example 
recommending stronger prophylaxis for CNS-recurrence among patients with 
DE-tumors, or a choosing a Burkitt-like treatment for patients with DH-
tumors (103). Several novel lymphoma agents (like lenalidomide, bortezomib 
and ibrutinib) (71-74), have been tested, but not yet made their way into 
standard treatment of DLBCL outside of clinical studies. Also, even with the 
great impact of the seemingly robust GEP-based COO-data from the original 
Alizadeh study (38), the results regarding the differences in survival between 
patients with GCB- and ABC-DLBCL have later been questioned in large 
studies on patients receiving immunochemotherapy: analyses of survival with 
respect to COO (established through GEP) from the RICOVER-60 and 
MegaCHOEP trials could not reproduce the differences in survival between 
GCB and ABC DLBCL patients (104), neither could data from the REMoDL-
B study (75). 

So, despite the progress in molecular subclassification, and the robustness and 
reliability of the old, clinically based IPI scoring, there is still no available 
system that with precision can identify the individual patients at highest risk 
of treatment failure, even though the newly developed genomic risk model 
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(66) seem to be the best effort so far. In fact, the actual failure to initial 
DLBCL treatment is the strongest indicator of bad prognosis we know of (5, 
6, 34), but the prognostic tools we use today are not sufficient for detecting 
those patients early enough in the course of disease (37). Also, we lack the 
means of counteracting the poor prognosis of those patients, not least because 
the mechanisms behind treatment failure are not sufficiently explored. 
Consequently, there is a strong need for new prognostic markers to identify 
the patients at highest risk, and also a strong need for a better characterization 
of the underlying mechanisms behind treatment failure. 

1.4.1 Proteomics 
Through gene expression profiling (GEP), that measures the patterns of 
mRNA mirroring the differentiation of a cell, we have reached a better 
understanding of the background of DLBCL tumors via the cell-of-origin 
(COO) concept (38). However, despite the molecular basis of the concept, and 
despite it being based on a global assessment of gene expression, the COO 
status has not proven to be reliable or sufficient in neither prognostication or 
clinical decision-making of individual DLBCL patients. Also, GEP is not a 
standardized method that can be applied to routine clinical practice. More 
clinically applicable immunohistochemical methods to establish the COO, 
like the Hans algorithm (44), have also had limited clinical value, and the 
results have been contradictory and difficult to reproduce (105-108). Also, 
those methods are based on expression of only a few different proteins, just 
like investigation of other, non-COO based molecular biomarkers like MYC 
and BCL2, whereas a global investigation of protein expression should be 
more representative of tumor biology. Based on data from the human genome 
project, the number of protein coding genes in humans have been estimated 
to around 20 000 (109), but the number of potential proteins or variations of 
proteins is probably even higher, due to for example mRNA splicing and 
posttranslational protein-modification like phosphorylation and glycosylation 
(110). Thus, the gene expression profile of a cell or tissue doesn´t necessarily 
reflect the protein expression, as proven in a frontline study of yeast, in which 
simultaneous measures of mRNA-levels and protein analyses showed a low 
correlation (111).  

Another way to search for potential protein biomarkers in DLBCL could be 
by a proteomic analysis. With proteomics, the total protein expression pattern, 
i.e. the proteome, of a sample is explored. Proteomics have evolved from 
classical methods like two-dimensional gel electrophoresis, but now, because 
of the high sensitivity and speed, different variations of mass spectrometry 
(MS) is used for modern proteomic analyses (112). In recent years different 
proteomic approaches have been applied, mostly on cell lines or in animal 
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models, to investigate the proteome in DLBCL tumor material (113-116). 
Neither of these studies have addressed the prognostic challenge in DLBCL, 
nor the mechanisms behind chemoresistance, but MS-based proteomic 
analyses of both DLBCL cell lines (117) and tumor material from patients 
(118) have been successful in differentiating between GCB- and ABC-
DLBCL, proving the validity of the method. 

Since treatment refractoriness and early relapse of disease are the biggest 
known risk factors in DLBCL, an investigation of the tumor proteome from 
those high-risk patients, compared with patients with low risk disease, i.e. 
patients that are cured from standard immunochemotherapy, could give vital 
information of the differences in tumor biology between those patient groups, 
regardless of their COO. This comparison could potentially find protein 
signatures typical for chemoresistant disease, and also give clues to the 
molecular mechanisms behind treatment failure, which in turn could help us 
find cellular targets of novel treatments. 

1.4.2 Metabolomics 
The metabolome is made up from the different metabolites found in an 
investigated sample, e.g. serum, and is the final down-stream product of the 
metabolic processes in the organism, taking into account both healthy and 
physiological as well as pathological processes (119). This means that in a 
patient with a disease, the pattern of serum metabolites not only could give 
information about the disease, but also about the overall physical state of the 
patient. The different levels of “omics” capture the biological levels in an 
organism from different perspectives. If the transcriptome reflect the 
differentiation and the proteome reveals more about the phenotype of the cell 
or tissue, the metabolome is more representative for the phenotype of the 
entire organism. Events which might happen are captured by genomics, events 
which are happening are captured by proteomics, and events which have 
happened are captured by metabolomics (120). Metabolomics, where low 
molecular weight molecules are detected in body fluids or tissues, is an 
emerging and promising tool for diagnostic and differentiating purposes in 
cancer. Serum metabolomic approaches for diagnostic and prognostic 
purposes in different malignancies, among them acute myeloid leukemia 
(121) and breast cancer (122, 123), have shown promising results. Serum from 
DLBCL patients is, compared to representative tumor material, easily 
accessed. As discussed in the previous chapter, the DLBCL patient group with 
worst survival rates is the patients with primary refractory disease or early 
relapse. Investigation of the serum metabolome from this high-risk patient 
group, and comparison with the serum metabolome from patients that were 
cured from standard immunochemotherapy, could potentially give valuable 
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information about DLBCL prognostication and also of mechanisms behind 
treatment failure.  
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2 AIM 
The overall aim of this thesis was to search for novel prognostic and predictive 
biomarkers in diffuse large B-cell lymphoma (DLBCL), and also to 
investigate the mechanisms behind chemoresistance.  

In addition, we had more specific aims in the different papers: 

• To use a quantitative proteomic analysis in fresh-frozen 
tumor tissue from two groups of DLBCL patients who had 
been treated with modern immunochemotherapy with totally 
different clinical outcome, that is, (i) early relapse/refractory 
patients (REF/REL) and (ii) long-term progression-free 
patients (CURED), in order to explore possible differences 
in global protein expression (Paper I). 
 

• To use a quantitative proteomic approach to analyze the 
global protein expression in formalin-fixed paraffin-
embedded tumor tissues from a larger number of (i) 
REF/REL and (ii) CURED DLBCL patients, with the aim of 
revealing new mechanisms involved in 
immunochemotherapy resistance (Paper III). 
 

• To further investigate the possible influence of actin 
organization and remodeling on drug resistance that we 
found in Paper I (Paper III). 
 

• To use 1H NMR spectroscopy to compare the serum 
metabolome from i) REF/REL and ii) CURED DLBCL 
patients, to determine if differences in clinical outcome could 
be correlated to different metabolomic profiles (Paper II). 
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3 PATIENTS AND METHODS 

3.1 PATIENTS 
All studies were performed on two DLBCL patient subgroups, that were 
sorted retrospectively based on their response to initial treatment: (i) patients 
with primary refractory disease or relapse within 1 year after diagnosis 
(REF/REL); and (ii) patients that were long-term progression-free with a 
follow-up, from diagnosis, of at least 5 years, clinically considered cured from 
disease (CURED). The patients were identified from the Swedish Lymphoma 
Registry, and patients from western Sweden, with sufficient tumor material or 
serum available in biobanks could be included. All patients had received 
modern immunochemotherapy (i.e., R-CHOP: the monoclonal CD20-
antibody rituximab plus cyclophosphamide, doxorubicin, vincristine, and 
prednisone) with curative intent. Patients with primary mediastinal large B-
cell lymphoma, primary central nervous system lymphoma, HIV-related 
lymphoma and transformed lymphoma were excluded. Clinical information 
was obtained from the patient medical records including treatment and 
progression-free and overall survival. Ethical approval for the studies was 
obtained from the Regional Ethics Review Board, Göteborg. 
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3.1.1 Patients in paper I 
All adult patients with de novo DLBCL diagnosed between January 2004 and 
December 2008 at the Section of Hematology of Sahlgrenska University 
Hospital and treated with curative intent were identified. From each of the two 
subgroups, i.e. REF/REL or CURED patients, five patients were selected on 
the basis on the availability of freshly frozen tumor tissue samples in 
biobanks. To avoid obvious morphologic differences between the two groups, 
the pathologists carefully examined the tumor tissue, and only samples with 
evenly distributed blasts without signs of necrosis or abundant visual stroma 
were selected. The clinical characteristics of the patients are shown in Table 
1. 

 
Table 1. Clinical characteristics of the patients from paper I.  

 
  

Pat No Age, 

y 

Sex Ann 

Arbor 

Stage 

B-Symptoms 

(Yes/No) 

S-LDH Performance 

(ECOG) 

aaIPI Outcome 

1 70 M III Yes High 2 3 REF/REL 

2 50 M IV No Normal 0 1 REF/REL 

3 60 F IV Yes High 3 3 REF/REL 

4 85 M I No Normal 0 0 REF/REL 

5 63 M II No High 0 1 REF/REL 

6 55 F I No High 0 1 CURED 

7 74 M III No Normal 0 1 CURED 

8 58 F II Yes High 0 1 CURED 

9 75 M II No High 0 1 CURED 

10 63 F III No Normal 0 1 CURED 
 

aaIPI: Age adjusted International Prognostic Index; CURED: Progression-free with a follow-up of at 
least 5 years; REF/REL: Progressive disease during treatment or early relapse, i.e. relapse within 1 
year after completion of treatment; S-LDH: Serum lactate dehydrogenase. 
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3.1.2 Patients in paper II 
All adult patients with de novo DLBCL diagnosed between January 2004 and 
December 2012 at the Section of Hematology of Sahlgrenska University 
Hospital and neighboring hospitals, and treated with curative intent were 
identified. Patient with biobanked serum samples available could be included. 
Again, in order to study patients with clearly different clinical outcome, we 
selected two subgroups on the basis of response to initial treatment: 
i)REF/REL patients (n=27), and ii) CURED patients (n=60). For metabolomic 
analysis, serum samples from the time of diagnosis (before start of treatment) 
were obtained from the biobank at the Department of Virology at Sahlgrenska 
University Hospital, where serum from lymphoma patients is tested for 
hepatitis A–C and HIV prior to the start of immunochemotherapy. Surplus 
serum is frozen and stored at -80° C until further use. The serum samples were 
not collected in a standardized fashion, but in a clinical routine setting.  

Patient characteristics are given in Table 2. We found no differences in age or 
sex distribution between the patient groups but, as expected, REF/REL 
patients had in larger extent high aaIPI scores. On the other hand, the 
proportion of GCB versus non-GCB did not differ significantly between the 
groups (Table 2). 

 

Table 2. Clinical characteristics of the patients from Paper II 

 CURED patients 

n (%) 

REF/REL patients 

n (%) 

p-value 

Total number of patients 60 (69) 27 (31)  

Male 30 (50) 17 (63) n.s. 
Female 30 (50) 10 (37) 

Age, median (range) years 61 (20-88) 67 (29-85) n.s.  

Ann Arbor Stage III/IV 27 (45) 18 (67) n.s. (p=0.072) 

Serum-LDH elevated 33 (55) 22 (81) 0.020 

Performance Status (ECOG) 2-4 17 (28) 13 (48) n.s. (p=0.091) 

Cell-of-origin (GCB/Non-GCB) 32/28 16/7* n.s. 

aaIPI 2-3 23 (38) 18 (67) 0.014 

aaIPI: age adjusted International Prognostic Index; CURED: Progression-free with a follow-up of at 

least 5 years; REF/REL: Progressive disease during treatment or early relapse, i.e. relapse within 1 
year after completion of treatment; GCB: Germinal Center B-cell-like; LDH: lactate dehydrogenase. 
* REF/REL n = 23. 
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3.1.3 Patients in Paper III 
We again selected two DLBCL patient subgroups based on their response to 
initial treatment: (i) REF/REL patients; and (ii) CURED patients. From the 
Swedish Lymphoma Registry, a total of 270 adult DLBCL patients in western 
Sweden, diagnosed between 1 January 2004 and 31 December 2014, belonged 
to one of these subgroups. All patients received immunochemotherapy (R-
CHOP). Archived formalin-fixed, paraffin-embedded (FFPE) tissue sections 
from the time of diagnosis were re-evaluated. Only cases showing large areas 
of blasts and with sufficient amount of tumor tissue were included, which 
were found in a total of 97 DLBCL patients, 44 patients from the REF/REL 
group, and 53 patients from the CURED group. Patient characteristics are 
shown in Table 3. REF/REL patients were older and had a higher percentage 
of high-risk aaIPI score, MYC-positive and BCL2/MYC double expressors 
compared to CURED patients. There were no statistically significant 
differences in sex distribution, proportion of GCB versus non-GCB, or Ki67 
index. 

  

Table 3. Clinical characteristics of the patients from Paper III 

 CURED patients 

n (%) 

REF/REL patients 

n (%) 

p-value 

Total number of patients 53 (55) 44 (45)  

Male 25 (47) 29 (66) n.s. 

Female 28 (53) 15 (34) 

Age, median (range) years 64 (22-84) 71 (38-80) 0.03 

aaIPI 2-3 19 (36) 26(59) 0.02 

Cell-of-origin (GCB/non-GCB) 30/23 17/27 n.s. 

Ki-67, % (median) 74 79 n.s. 

BCL2 (≥50%) 37 (70) 39 (89) 0.03 

MYC (≥40%) 7 (14)* 18 (42)* 0.003 

BCL2/MYC double expressors 6 (12)* 18 (40)* 0.001 

aaIPI: age adjusted international prognostic index; CURED: Progression-free with a follow-up of at 
least 5 years; REF/REL: Progressive disease during treatment or early relapse, i.e. relapse within 1 
year after completion of treatment; GCB: Germinal Center B-cell-like. 

*CURED n = 50 and REF/REL n = 43.  
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3.2 GENERAL STUDY DESIGN 
As mentioned, all studies (Paper I-III) were retrospective and investigated two 
distinct clinical subgroups of DLBCL patients; (i) (REF/REL); and (ii) 
(CURED) patients. At the time of the studies approximately 20-25 % of 
patients in western Sweden that were diagnosed with DLBCL during the 
different time intervals described in earlier chapters, could be assigned to 
either the REF/REL or the CURED group. The rest of the patients did not at 
that time meet the inclusion criteria, most often because the time of follow-up 
was to short (less than five years). Other reasons for not being included could 
be that the patient didn´t receive immunochemotherapy with curative intent 
but instead a treatment with palliative approach, or that the patient complied 
with any of the exclusion criteria described in chapter 3.1. 

In all studies, freshly frozen or paraffin-embedded tumor material (Paper I and 
III) or patient serum (Paper II) that had been collected at the time of diagnosis, 
i.e. before the start of immunochemotherapy treatment, was analyzed and 
compared between the patient groups. The availability of this patient material 
in biobanks was a limiting factor regarding the final number of patients that 
could be included in all three studies. In Paper III for example, of the 270 
potential study participants, representative FFPE tissue sections was found 
from 97 (36%) of the patients. 

3.3 METHODS 
3.3.1 Proteomics by mass spectrometry (MS) 
This chapter discusses MS-based proteomics in general. More specific 
descriptions of the two different proteomic approaches used in Paper I and II 
are found in the following chapters. 

The principle behind mass spectrometry is to measure the masses of different 
ionized, i.e. electrically charged, compounds in a sample that has been 
transferred to gas phase (most often from liquid phase). The mass-to-charge 
(m/z) ratios of the compounds are identified, quantified and plotted in a mass 
spectrum. A mass spectrum is a histogram where different compounds (with 
different m/z values) are represented by different peaks (124). The position of 
a peak along the x-axis in the mass spectrum corresponds to the molecular 
mass of the compound, and the height of the peak corresponds to the relative 
abundance of the substance in the sample. Proteins have too high molecular 
weight to be properly handled in MS, and a degradation to peptides must be 
done before analysis. Also, a separation of the sample is necessary before it 
enters the mass spectrometer, since the technique only can handle a limited 
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number of peptides per time unit. The separation is done with high pressure 
liquid chromatography (LC), but before that, some kind of pre-separation is 
often made on complex samples (125, 126). Many low molecular weight 
substances can in MS directly be identified based on their m/z ratios, but more 
complex compounds, like peptides, need to be fragmented and reanalyzed in 
a second, tandem MS phase (MS/MS) before a correct identification can be 
made (125). MS can measure the relative abundance of a substance in a 
sample, but for an exact quantification some kind of reference is needed. This 
is handled differently in the different proteomic approaches used in paper I 
and III, but a principal workflow of MS-based proteomics are showed below.  

Figure 10. Principal workflow of MS-based proteomics.                                             
1) In complex protein samples (like homogenized tumor biopsies), the proteins are 
isolated from the rest of the tissue with different techniques like biochemical 
fractionation or affinity selection. The protein mix are then sometimes pre-separated 
by gel electrophoresis, to obtain smaller subsets of proteins that (for reasons of 
higher resolution) are analyzed in the mass spectrometer in sequence instead of 
simultaneously.                                                                                                            
2) The proteins are digested into smaller peptides by trypsin, an enzyme that cleaves 
peptide chains at the carboxyl sides of the amino acids lysine and arginine.            
3) The peptide mixture is fed into the high pressure liquid chromatograph (HPLC), 
which separates them according to their molecular characteristics, among them 
charge and hydrophobic properties. The peptides finally go through electrospray 
ionization (ESI), in which they are ionized and in gas form sprayed into the mass 
spectrometer.                                                                                                               
4) The masses and intensities (relative abundances) of the peptides passing through 
the mass spectrometer are measured, and plotted in a histogram, the mass spectrum. 
The position of a peak along the x-axis in the mass spectrum corresponds to the 
molecular mass of the peptide, and the height of the peak corresponds to the relative 
abundance of the peptide in the sample.                                                                     
5) Since many peptides have similar masses, the exact identity of the peptide cannot 
be decided in from the first MS, but a second step is necessary, the tandem MS 
(MS/MS) analysis. In this step the peptides from the first MS step are fragmented, 
and a new mass spectrum is made from those fragments, stored for later matching 
against protein sequence databases.                                                                     
From (125). Reproduced with permission from Springer Nature; Nature © 2003. 



Diffuse large B-cell lymphoma – proteomic and metabolomic studies on prognosis and treatment failure 

32 

3.3.2 SILAC-based quantitative proteomic analysis on 
freshly frozen tumor tissue (paper I) 

In paper I, a quantitative LC-MS/MS proteomic analysis with the SILAC-
based technique was used, for characterization of proteins from freshly frozen 
tumor tissue (127). Stable isotope labeling of amino acids in cell culture 
(SILAC), is a method in which an isotope-labeled mix of proteins is analyzed 
alongside the protein mix from the tumor, thus creating an internal reference 
in each experiment, which in turn make a comparison between patients 
possible (128). A detailed description of the method is given in paper I; here 
below follows a shorter version, with references to the graphic description of 
the workflow given in Figure 11.  

To enable quantification of a broad number of proteins, and for production of 
a reference protein mix, five DLBCL cell lines were metabolically labeled 
with stable isotopes. This was done by using a cell culture medium in which 
the amino acids lysine and arginine was replaced by 13C6-lysine and 13C6-
arginine, which meant that on all positions, the proteins in the cultured cells 
had been incorporated with “heavy” versions of these two amino acids. The 
isotope-labeled cells were harvested, and proteins were extracted. Equal 
amounts of proteins from the five cell extracts were mixed to produce a 
SILAC-reference mix (Figure 11a).  

From each tumor sample proteins were extracted, and aliquots with equal 
amounts of protein from each sample (containing proteins with “light” 
arginine and lysine) were mixed with aliquots with corresponding amounts of 
protein from the SILAC reference mix (containing proteins with “heavy” 
arginine and lysine), thus creating 1:1 mixtures of “wild type” proteins from 
tumor samples and isotope-labeled proteins from the reference mix (Figure 
11b).  

To enable a higher resolution in the MS analysis, the proteins were pre-
separated with two parallel methods: SDS-PAGE gel electrophoresis (Figure 
11c) and via the FASP protocol (129) (Figure 11b).  

In both experimental paths, proteins were enzymatically digested into 
peptides with trypsin. Trypsin cleaves peptide chains at the carboxyl sides of 
the amino acids lysine and arginine, which rather elegantly results in peptides 
containing either one arginine or one lysine amino acid. This in turn means 
that every peptide from the tumor sample will contain one “light” arginine or 
“light” lysine, and every peptide from the SILAC reference-mix will contain 
one “heavy” arginine or “heavy” lysine. 13C6-lysine and 13C6-arginine each 
contain six 13C atoms instead of the normal 12C atoms, and therefore weigh 
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exactly 6 Da more than their “light” counterparts. Consequently, every 
peptide from the SILAC reference mix will weigh exactly 6 Da more than the 
corresponding peptide from the tumor sample.  

Figure 11. The experimental workflow of the SILAC proteomic analysis.          
K6 : 13C6-lysine; R6 : 13C6-arginine. See chapter 3.3.2 for further definitions. 
From (115), an Open Access publication from Hindawi. 

The peptides were again separated, now in high pressure liquid 
chromatography, before entering the MS and MS/MS as described in the 
previous chapter and Figure 10. However, with the SILAC method, every 
peptide in the mass spectrum generate two peaks: one to the left representing 
the peptide from the tumor mix, and one to the right, exactly 6 Da heavier, 
representing the same peptide from the SILAC reference mix (Figure 11e). 
Since 1:1 mixtures of “wild type” proteins from tumor samples and isotope-
labeled proteins were used in all experiments, the ratio of the relative 

b)

6 Da

f)e)

a) d)c)
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abundance of the “heavy” and “light” peptides (H/R ratio) could be used for 
relative quantification and comparison of protein levels in the different tumor 
samples. In the last phase of the analysis, the tandem MS/MS was performed 
on fragmented peptides for peptide identification (Figure 11f). 

3.3.3 Protein identification and quantification (SILAC-based 
proteomics, paper I) 

Mass spectra from the MS/MS analyses of fragmented peptides were 
processed using the MaxQuant software version 1.2.0.18 (130), and peptides 
were identified with the Andromeda search engine (131), integrated in the 
MaxQuant package. Searches were then performed against the human 
subsection of the UniProtKB database, to couple each identified peptide to the 
corresponding protein. Peptide and protein false discovery rate (FDR) was set 
to 0,01. The ratio of the relative abundance of the “heavy” and “light” peptides 
(H/R ratio), was used for relative quantification and comparison of protein 
levels between the patients. A two sample 𝑡-test was performed to determine 
significant differences in protein ratios between the groups.  

3.3.4 Western Blotting (paper I) 
Expression levels of selected proteins were validated by immunoblot analysis 
of tumor protein extracts from all patients. Equal amounts of protein were 
separated on gels, transferred to nitrocellulose membranes and incubated with 
the primary antibody. For signal detection, membranes were then incubated 
with HRP (horseradish peroxidase) conjugated secondary antibody. The 
SILAC reference mix was used as a control.  

3.3.5 Tandem mass tag-based quantitative proteomic 
analysis on formalin-fixed, paraffin-embedded tumor 
tissue (paper III) 

In the first proteomic study in paper I, the number of participating patients 
was limited to ten. The main reason for this low number was the scarce 
availability of freshly frozen tumor tissue in the biobanks, but another 
important factor was the complexity of the workflow making the analysis of 
each sample very time consuming. For the second proteomic study in paper 
III, we selected a method that enabled us to include more patients. Tandem 
mass tag (TMT)-based proteomic analysis is, compared to the SILAC-based 
method, a principally different proteomic approach, in which several patient 
samples can be analyzed simultaneously (132). TMTs are small chemical 
labels, that in vitro are attached to the N-terminal of trypsin-digested peptides 
prior to the LC-MS/MS procedure. In this experiment we used 10-plex TMTs, 
where each TMT is isotope-labeled, but with the isotopes attached in unique 
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positions for each TMT. This means that the ten different tags have identical 
mass and chemical properties, i.e. being isobaric, thus behaving identically in 
high pressure LC and MS. However, after peptide fragmentation in the tandem 
MS/MS phase, the resulting mass spectra are different for peptides with 
different TMT-labels, which makes relative quantification of peptide levels 
possible (133).  

The proteomic analysis was performed on formalin-fixed, paraffin-embedded 
(FFPE) DLBCL tumor tissue from time of diagnosis. A reference mix 
assembled from 9 random samples (5 REF/REL and 4 CURED patients), was 
used for ratio calculations. A thorough description of the workflow is given 
in paper III (134) and in its additional data. 

3.3.6 Immunohistochemistry (paper III) 
Tissue micro array (TMA) blocks were constructed from the original FFPE-
blocks, after selection of suitable tumor areas. Deparaffinized sections (4 µm) 
from TMA blocks were stained with antibodies for CD10, BCL6, MUM1, 
BCL2, Ki67, c-MYC, RPS5, RPL17, Enah/Vasp-like protein and anti-
MARCKS-like protein. GCB/non-GCB classification was determined 
according to the Hans algorithm (44). For BCL2 and MYC, cut-off values of 
≥ 50% and ≥ 40 %, respectively, were used, and patients expressing both 
BCL2 and MYC were designated “double expressors” (1). Two pathologists, 
blinded to the clinical outcome, independently evaluated the 
immunoreactivity toward RPS5, RPL17, Enah/Vasp-like protein and 
MARCKS-like protein. As all of these four antibodies showed cytoplasmic 
staining, a visual approach was used and cases were divided in two categories: 
negative/weak/intermediate versus high intensity based on comparison to all 
cases for each TMA. Concordance was >80% and the remaining cases were 
examined in a double-head microscope to reach consensus. 

3.3.7 Protein network analysis 
The differentially expressed proteins in paper I were analyzed using three 
different resources for network analysis:  

• DAVID (Database for Annotation, Visualization and 
Integrated Discovery) Bioinformatic resources version 6.7 
(https://david.ncifcrf.gov/) 

• PANTHER (Protein ANalysis THrough Evolutionary 
Relationships) system version 7 (http://www.pantherdb.org) 

• STRING (Search Tool for the Retrieval of Interacting 
Genes/Proteins) version 9.1 (https://string-db.org/) 
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See paper I for more details. 

In paper III, the STRING database was used, and also, for pathway analysis, 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database resource 
(http://www.genome.jp/kegg/).  

3.3.8 Metabolomics through 1H NMR spectroscopy (paper II) 
Two analytical techniques dominate the field of metabolomics: 1H nuclear 
magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). NMR 
is a fast method, that within a couple of minutes can measure relatively 
unaltered samples - the method can even be used in vivo. Also, the method is 
highly reproducible (135), possible to fully automate, and, importantly, also 
directly quantitative, without the need for added reference substances (136). 
With NMR spectroscopy around 70 metabolites can be detected and 
quantified in human serum (137). However, compared to MS, NMR has a low 
sensitivity, and is restricted to measuring the most abundant metabolites in a 
sample. In contrast, MS-based metabolomics have a very high sensitivity and 
low detection limits, but the method is destructive for the samples, not 
quantitative by nature, and also have interlaboratory reproducibility problems. 
Also, MS-based metabolomics are very time consuming, that requires a 
greater amount of pre-analytical sample preparation (138).  

In paper III, we used 1H NMR spectroscopy on patient serum for the 
metabolomic analysis. For general information about 1H NMR please see 
appendix. The workflow of the 1H NMR spectroscopy is in detail described 
in paper II. Identification of metabolites was done with a combination of the 
Chenomx 8.1 NMR software (Chenomx, Edmonton, Canada), and annotation 
from databases such as HMDB (139) and the Birmingham metabolite library 
(140). On selected samples, for identification of metabolites with overlapping 
peaks in one dimensional 1H NMR; additional two dimensional 1H-1H and 1H-
13C correlated NMR experiments were performed. The metabolites were 
annotated according to the four levels of identification suggested by the 
Metabolomics Standard Initiative (MSI) (141). 

3.4 STATISTICAL ANALYSES 
3.4.1 Univariate statistics 
In paper I, the protein levels in the different samples, measured as ratios 
between “heavy” and “light” peptides (H/L ratios), were Log2-transformed to 
obtain a normal distribution and were centered to zero. A two sample 
Student’s 𝑡-test was performed to determine significant differences in protein 
ratios between the groups, using Perseus module (version 1.2.0.17) available 
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in the MaxQuant environment. A p-value < 0.05 was considered to be 
statistically significant. 

In paper II, differences in patient proportions were tested with Pearson’s Chi-
Square and differences in age distribution were tested with Mann–Whitney 
U-test. Mann-Whitney was also used for comparison between metabolite 
levels, after Benjamini-Hochberg (BH) correction (142) for multiple testing. 
All univariate calculations were performed in MATLAB (MathWorks, 
Natick, MA). 

In paper III, Pearson’s chi-squared test and Mann–Whitney U-test were used 
to compare the different clinical characteristics and immunohistochemical 
biomarkers between the two patient groups. A two-tailed Welch’s t-test was 
used to compare log-transformed average peptide expression (with/without 
the Benjamini-Hochberg (BH) procedure), and Pearson’s chi-squared test to 
analyze the proportions of expressed peptides. Statistical analyses were 
performed with SPSS, version 22 (IBM Corp., Armonk, NY, USA) or R, 
version 3.3.2 (R Foundation, Vienna, Austria) software. 

3.4.2 Multivariate statistics  
In paper I and II, Principal Components Analysis (PCA) (143), an un-
supervised multivariate method, was used for data overview, detection of 
trends, and outliers. PCA allows a simple visualization by reducing data 
dimensionality and by separating information from random variation. In a 
PCA-plot, the different patients are plotted according to the values they get in 
the 1st PC (principal component), which is the PC that captures the most 
variation in the data, the x-axis, and the 2nd PC, that captures the second most 
variation in the data, the y-axis. Patients with similar proteomic- or 
metabolomic patterns will cluster together in the graph.  

In paper I, a supervised partial least-squares regression analysis (PLS-DA) 
(144) was performed. In paper II, instead an orthogonal projection to latent 
structures, (OPLS-DA) (145, 146), also a supervised multivariate regression 
method, was used. The methods analyze and compare pre-defined groups, 
(hence “supervised”), and allow the understanding of which variables (i.e. 
proteins or metabolites) that are most correlated to the differentiation between 
the groups, making it possible to make predictions for new samples. In paper 
II, discriminant metabolites were considered significant if their OPLS-DA p 
loadings absolute magnitude was larger than the correspondent confidence 
interval, while also being significantly different in a Mann–Whitney test (at 
95% confidence, after Benjamini–Hochberg (BH) correction for multiple 
testing). Validation of the model was performed by evaluating the cross-
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validated scores, permutation test, and crossvalidation-ANOVA (CV-
ANOVA). All multivariate analyses were done in in SIMCA (UMETRICS 
AB, Umeå, Sweden). 
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4 RESULTS 

4.1 PROTEOMIC ANALYSIS (PAPER I) 
4.1.1 Identification of differentially expressed tumor 

proteins using LC-MS/MS.  
Proteins were extracted from freshly frozen pretreatment tumor samples from 
five patients belonging to either of the two subgroups of DLBCL patients, (i) 
REF/REL; and (ii) CURED.  

In total, 3,588 unique protein groups were identified at 1% FDR (false 
detection rate – determined through an algorithm in the peptide identification 
software), among which B-cell lineage specific markers (e.g., CD20, CD22, 
CD40, and CD79a) were present as well as proteins involved in B-cell 
receptor mediated signaling (e.g., mitogen-activated protein kinase 3 
(MAPK3), spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase (BTK), 
and protein kinase C (PKC)).  

We successfully quantified 3,027 (84%) of the identified proteins in at least 
one of the samples. Identification and quantification in all samples were 
obtained for 1305 proteins and 87 of these proteins were significantly 
(Student’s 𝑡-test, 𝑃 < 
0.05) differentially 
expressed between the 
two patient groups. 66 
proteins were 
overexpressed in the 
CURED group of 
patients; 21 proteins were 
instead overexpressed in 
the REF/REL group. The 
most functionally 
relevant differentially 
expressed proteins are 
described in table 1. 

Figure 12. Numbers of identified and quantified 
proteins in paper I. 

  

Identified
proteins in total:

3588

Quantified
proteins in all 

samples:
1305

Quantified
proteins in total:

3027

Differentially
expressed
proteins:

87
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Table 4. The most functionally relevant differentially expressed proteins 
from paper I 

Fold change: ratio between the relative abundance of the protein in CURED patients relative 
to REF/REL patients. Fold change > 1 indicates overexpression of the protein in the CURED 
group, and fold change < 1 indicates overexpression in the REF/REL group. 

 

4.1.2 Protein network and functional analysis 
The 87 differentially expressed proteins were subjected to functional 
characterization using the bioinformatics software DAVID, PANTHER and 
STRING. With the DAVID database system, 5 functional annotation clusters 
was specified. The cluster with the highest enrichment score consisted of 11 
proteins involved in regulation of the actin cytoskeleton. Other clusters were 
formed by proteins involved in mitochondrial or transmembrane protein 
networks, antigen processing, and membrane and intracellular transport.  
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With PANTHER, the differentially expressed proteins were classified 
according to molecular function (the function of the protein by itself or with 
directly interacting proteins at a biochemical level) and biological process 
(the function of the protein in the context of a larger network of proteins that 
interact in a process at the level of the cell or organism). For molecular 
function, the main areas were binding (33.3%), catalytic activity (31.4%), and 
transcription regulator activity (7.8%), and for biological process, proteins 
involving metabolic process (24.8%), cellular process (15.2%), and transport 
(10.3%) were the three main groups. 

Figure 13. Visualization of network interactions between the 87 differentially 
expressed proteins by using the STRING database. Stronger associations are 
represented by thicker lines. The total number of interactions between the proteins were 
highly enriched (𝑃 < 0.00001), as were interactions in the regulation of the actin 
cytoskeleton network (𝑃 = 0.0043). Proteins involved in the actin network and actin 
modulation, which were all overexpressed in the progression-free group, are highlighted 
with green boxes. From (127), an Open Access publication from Hindawi. 
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With STRING, protein-protein interactions and protein networks could be 
visualized graphically (Figure 13). Three tightly connected protein clusters 
could be suggested: a) HLA-A/ HLA-B/ B2M/ IRF4/ IFI30/ CD44, b)COPA/ 
COPB2/ COPG/ AP2A2 and c)ACTR2/ ARPC1B/ ARPC5/ CAP1/ DNBL. 
The total number of interactions between the proteins was highly enriched     
(p < 0.00001), as were interactions in the regulation of the actin cytoskeleton 
network (𝑃 = 0.0043).  

4.1.3 Multivariate data analysis 
An unsupervised principal component analysis (PCA) was performed in order 
to evaluate the quality of the data and detect possible outliers. For this we used 
the Log2 transformed H/L ratios for the 1305 proteins for which quantitative 
values from all 10 patient samples were obtained. The PCA found that all 
samples were within the 95 % confidence interval of the model, with no 
outliers. Among the proteins overexpressed in the CURED group we found a 
high proportion of proteins associated with the actin cytoskeleton, as analyses 
in the DAVID and STRING databases could confirm. We used Log2- 
transformed H/L ratios for five differently expressed proteins involved in 
regulation of actin cytoskeleton dynamics; moesin, CAP1, actin regulatory 
protein-G (CAP-G), annexin A6, and programmed cell death protein 4 

(PDCD4), as input variables 
in a supervised partial least-
squares regression analysis 
(PLS-DA). The group 
variable was CURED 
patients versus REF/REL 
patients. The PLS-DA model 
(Figure 14) separated the two 
groups, indicating that in our 
material, the expression of 
these actin-related proteins 
could be used as a 
discriminator between 
patients with diametrically 
different clinical outcome.  

Figure 14. A supervised partial least-squares regression analysis (PLS-DA) 
including five selected differentially expressed proteins, involved in regulation of 
actin cytoskeleton dynamics (moesin, CAP1, CAPG, annexin A6 and PDCD4) 
discriminates the two patient groups. Filled squares are patients 1–5 (REF/REL 
patients) while open circles are patients 6–10 (CURED patients). From (127), an 
Open Access publication from Hindawi. 

REF/REL
CURED
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4.1.4 Validation by Western blotting 
On three of the proteins associated with the actin cytoskeleton (moesin, 
annexin A6 and CAP1), a Western blotting was performed to validate the 
results from the LC-MS/MS proteomic analysis. As depicted in Figure 15, the 
data could be confirmed, as the protein levels of the three proteins were higher 
among the CURED patients compared to the REF/REL patients.  

Figure 15. Western blot validation of differences found in the proteomic analysis 
for moesin, annexin A6, and CAP1. “Progression- free” represents the CURED 
patient group (lane 1-5), and “refractory/early relapse” represents the REF/REL 
patients (lane 6-10). The SILAC-reference mix was used as a control (lane C) and 
normalization was performed by loading of equal amounts of protein into each lane 
of the gel. b-tubulin = loading control. From (127), an Open Access publication 
from Hindawi. 

4.2 METABOLOMIC ANALYSIS (PAPER II) 
4.2.1 1H NMR spectroscopy of serum samples 
Serum samples from 87 DLBCL patients, 27 from the REF/REL group and 
60 from the CURED group, were analyzed in 1H NMR. 205 peaks were 
obtained in the initial analysis (as explained in the appendix, each peak 
represents an NMR signal from single or groups of protons, that depending 
on their chemical surroundings have different chemical shifts, which places 
their peaks at different positions along the x-axis). A typical 1H NMR high-
field spectrum, that was recorded for each of the serum samples, is illustrated 
in Figure 16. 

C       1       2       3       4      5      6       7       8       9     10           
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Figure 16.  A merged example of two 1H NMR mean spectra (800 MHz) for 
DLBCL patients (blue denotes a REF/REL patient and red denotes a CURED 
patient). Discriminating metabolite signals, some of which are not identified, are 
indicated. From (147). Reproduced with permission from Taylor & Francis; 
LEUKEMIA & LYMPHOMA © 2016. 

4.2.2 Multivariate data analysis 
An unsupervised principal component analysis (PCA) was performed in order 
to evaluate the quality of the data and detect possible outliers. With this 
method six samples were excluded from further analysis, four from the 
CURED group, and two from the REF/REL group. With further PCA the 
number of peaks could be reduced from 205 to 92, after having removed 
probable multiple peaks from the same metabolite. The 92 remaining peaks 
were run through supervised OPLS-DA that was able to discriminate between 
the REF/REL and CURED patient groups, however not completely (Figure 
17a). The separation between the groups was validated in a permutation test 
and the statistical significance of the model was tested in a cross validation-
ANOVA (p = 2,7 x 10-6). The aaIPI scores were superimposed into the OPLS-
DA discrimination model and, even though more patients with high aaIPI 
scores were in the REF/REL group, no clear separation between the groups 
could be made according to low or high aaIPI risk score. This indicates that 
in this patient-material aaIPI, compared to metabolomic pattern, were of 
relatively lower value for the prediction of which of the patients responded 
unsatisfactory to immunochemotherapy (Figure 17b).  
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Figure 17. a) Score plot from supervised OPLS-DA applied to discriminate 
between REF/REL and CURED patient groups regarding the 92 peaks in the 1H 
NMR spectra. Green circles indicate CURED patients, and red triangles indicate 
REF/REL patients. A separation, although not complete, can be observed.              
b) The same OPLS-DA score plot, but colored according to aaIPI score: low aaIPI 
score (open symbols) versus high (filled symbols); circles = CURED patients; 
triangles = REF/REL patients. Open and filled symbols are evenly distributed in the 
plot, which indicates that the OPLS-DA in this patient material is unable to 
discriminate between patients with regard to low or high aaIPI score. From (147). 
Reproduced with permission from Taylor & Francis; LEUKEMIA & LYMPHOMA 
© 2016. 

4.2.3 Identification of the most relevant individual 
metabolites 

Of the 92 NMR peaks used in the OPLS-DA model, 14 peaks were found to 
be significantly different between the groups. 

The 14 NMR peaks discriminating between REF/REL and CURED patients 
were subject to identification and annotation (Table 5). Five of the NMR 
signals could not be identified from available databases, but among the rest 
some amino acids (lysine and arginine) and the degradation product from 
lysine, cadaverine, were found in significantly higher concentrations in serum 
in REF/REL patients. Also, a compound involved in oxidative stress 
conditions (2-hydroxybutyrate) and the byproduct of muscle metabolism, 
creatinine, were found to be higher in the REF/REL group. In contrast, the 
amino acids aspartate, valine and ornithine, and a metabolite in the glutathione 
cycle, pyroglutamate, were found to be higher in the CURED patient group. 

  

b)a)
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Table 5. Discriminant metabolites 

Annotation of discriminant metabolite Fold change (REF-REL/CURED)* p value** 

Unknown 2.66 0.0030 

Lipids, fatty acid methyls 2.25 0.0170 

Unknown 2.09 0.0030 

2-hydroxybutyrate, L-arginine 2.07 0.0030 

Cadaverine 1.55 0.0414 

Unknown 1.53 0.0074 

L-lysine, Creatinine 1.35 0.0414 

L-valine −1.09 0.0236 

Pyroglutamate, O-phosphocholine −1.20 0.0054 

Unknown −1.28 0.0322 

Pyroglutamate −1.41 0.0030 

L-aspartate −1.57 0.0030 

Unknown −1.58 0.0236 

Ornithine −1.61 0.0362 

*Fold change is positive if the concentration was higher in the REF/REL group, and negative if the 

concentration was higher in the CURED group. **Discriminant metabolites were considered significant if their 

OPLS-DA p-loadings absolute magnitude was larger than the correspondent confidence interval, while also 

being significantly different in a Mann–Whitney test (a p value <0.05 after BH correction for multiple testing). 

4.3 PROTEOMIC ANALYSIS (PAPER III) 
4.3.1 Proteomic analysis: identification of differentially 

expressed proteins 
In total, 2127 proteins were identified, of which 442 were found in all patient 
samples. Of these 442 proteins, 102 (t-test, p < 0.05) were differentially 
expressed between the two patient groups. Sixty-five proteins were 
overexpressed in the REF/REL group and among them were two proteins that 
previously have been reported as a negative prognostic marker or associated 
with multidrug resistance in DLBCL: Y-box protein 1 (148) and 
pontin/RuvBL1 protein (149). Furthermore, 46 of the 65 overexpressed 
proteins in the REF/REL group were ribosomal proteins (RPs). In contrast, 
only 2 of the total of 37 overexpressed proteins in the CURED group were 
RPs (p = 7.6x10-10).  

Interestingly, and in accordance with the results from Paper I (127), we found 
that 20 of 37 overexpressed proteins in the CURED group and only 1 of 65 of 
the overexpressed proteins in the REF/REL group (p = 1.4 x 10-9), were 
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associated with actin organization, regulation or remodeling (Figure 18). 
Some of the differentially expressed proteins in paper I were confirmed as 
overexpressed in the CURED group: actin-related protein 2 (p = 0.0032) and 
actin-related protein 2/3 complex (p = 0.044), while others were not (CAP1, 
p = 0.27; moesin, p = 0.70). All differentially expressed RPs and actin-related 
proteins are listed in Paper III.  

Figure 18. Numbers of identified and quantified proteins in paper III. *p = 7.6 
x 10-10; **p = 1.4 x 10-9. 

4.3.2 Ribosomal proteins and known prognostic biomarkers 
Subgroup analyses were performed, in which the RP expression in REF/REL 
patients was analyzed relative the immunohistochemical expression of MYC 
and BCL2: 

• 13 of 46 RPs were more highly expressed in MYC+ than in 
MYC- REF/REL patients. 

• 22 of 46 RPs had significantly higher expression in BCL2+ 
than in BCL2- REF/REL-patients (where a cut-off of 70% 
BCL2- positive cells was used to capture the possible 
influence of higher BCL2 expression).  

• 9 of 46 RPs were overexpressed in BCL2/MYC double 
expressor REF/REL patients compared to non-double 
expressor patients.  

• Conversely, none of the RPs were more highly expressed 
among the MYC-, BCL2- or non-double expressor 
REF/REL patients compared to the positive groups. 

2127 proteins identified in total

442 proteins identified in all patients

102 proteins differentially expressed
between the groups

65 proteins overexpressed in 
the REF/REL patient group

37 proteins overexpressed in 
the CURED patient group

46 ribosomal
proteins*

1 actin-related
protein**

2 ribosomal
proteins*

20 actin-related
proteins**

15 other
proteins

18 other
proteins
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4.3.3 Protein interaction and network analysis 
When the 102 differentially expressed proteins were subjected to functional 
characterization using the STRING database, two tightly connected protein 
clusters appeared: ribosomal proteins and actin cytoskeleton regulators 
(Figure 2 in Paper III). Also when analyzing functional enrichments 
according to the KEGG pathway database interactions between a) ribosomal 
proteins and (b) proteins involved in the regulation of actin cytoskeleton, were 
determined to be the most significant pathways. 

4.3.4 Immunohistochemical staining 
Immunohistochemical staining was performed with antibodies against two 
ribosomal proteins (RPS5 and RPL17) and two actin-related proteins 
(Enah/Vasp-like protein and MARCKS-like protein). For RPS5, 39% of 
REF/REL patients showed strong intensity compared to 12% of CURED 
patients (P = 0.003) (Fig 19A–C), and 37% of REF/REL patients had strong 
intensity for RPL17 compared to 12% of CURED patients (P = 0.004) (Fig 
19D–F). For MARCKS-like protein, 20% of CURED patients had strong 
intensity compared to 5% of REF/REL patients (P = 0.03) (Fig 19G–I). For 
Enah/Vasp-like protein, no differences were seen between the groups. In 
summary, we found statistically significant differences in 
immunohistochemical staining between the groups in three of the four tested 
proteins. However, the proportion of samples with high intensity staining was 
relative low among all proteins in all patient groups; the highest proportion, 
39%, was seen with RPS5 among REF/REL patients.  
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Figure 19. Immunohistochemical staining of formalin-fixed, paraffin-embedded 
tumor tissue (magnification 20x).                           
1st Row: Ribosomal protein S5 (RPS5). (A) weak, (B) intermediate, and (C) strong 
intensity.                                                                                                                      
2nd Row: Ribosomal protein L17 (RPL17). (D) weak, (E) intermediate, and (F) 
strong intensity.                                                                                                                    
3rd Row: MARCKS-related protein. (G) weak, (H) intermediate, and (I) strong 
intensity.                                                                                                                  
From (134). Reproduced with permission from John Wiley and Sons; British 
Journal of Haematology © 2018. 
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5 DISCUSSION 

5.1 LC-MS/MS PROTEOMICS IN DLBCL 
5.1.1 SILAC-based proteomics on freshly frozen tumor 

samples 
A major aim with the study behind paper I was to evaluate if LC-MS/MS 
based proteomics on patient tumor samples could be used as a tool to reveal 
differences in protein expression between two diametrically different 
subgroups of DLBCL patients, i.e. REF/REL and CURED patients. SILAC-
based quantitative proteomics on different DLBCL cell lines had earlier 
successfully shown differences in the protein expression between the GCB 
and ABC subtypes (117). The pilot study in paper I is the first that use the 
SILAC-based approach on actual DLBCL patient samples, and also the first 
that compare patients with regard to their response to immunochemotherapy 
instead of cell-of-origin status. In freshly frozen tumor tissue we could 
identify over 3500 proteins, of which more than 3000 was possible to quantify 
in at least one patient sample. This can be compared to the range of quantified 
proteins from 2103 (114) to 6223 (117) in SILAC-based studies on DLBCL 
cell lines. Cultured cells allow, compared to patient tissue samples, more 
control in the experimental situation, not least regarding the capacity to 
metabolically label the entire proteome. The resulting number of quantified 
proteins in proteomic studies on cell lines are therefore probably bound to be 
higher. Yet, analyses of tumor cell lines do not necessarily reflect the tumor 
biology seen in vivo where, for example, the tumor cells also interact with 
their microenvironment. In that respect, studies on tumor cell lines, even 
though hypothesis-generating, could perhaps have a more limited role when 
searching for proteins associated with treatment response, refractoriness, and 
clinical outcome. In our study we identified proteins with B-cell specificity, 
both membrane markers (CD20, CD22, CD40, CD79a) and proteins involved 
in B-cell receptor signaling (MAPK3, SYK, BTK and PKC). Another 
indicator of relevance regarding the findings, was the 72 % overlap of the 
proteins identified in our study with the proteins found in the study on DLBCL 
cell lines referred to above (117). Thus, the high number of proteins identified 
and quantified in our study, together with their relevance, indicate that the 
SILAC-based proteomic technique could be used on patient tumor tissue 
samples as a potential platform for finding proteins of differentiating and 
prognostic relevance for DLBCL.  
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5.1.2 TMT-based proteomics on formalin-fixed paraffin 
embedded (FFPE) tumor samples 

Major limitations of the SILAC-based proteomics used in paper I were the 
scarce availability of freshly frozen tumor tissue in biobanks, and also the 
great amount of pre-analytical sample preparation making the method very 
time consuming. Due to rapid advances in proteomic techniques, we could for 
the follow-up study in paper III use a technique that didn’t require metabolic 
labeling, and was possible to perform on small amounts of tissue from FFPE 
tumor samples, that were more accessible in biobanks. With TMT-based 
proteomics on almost 100 DLBCL patient samples, we could identify 2127 
proteins in total. This is less than we found in paper I, but one must bear in 
mind that in paper III, very small tumor sample volumes were used. In a 
German proteomic study on 40 FFPE DLBCL tumor samples, almost 9000 
proteins were identified, but here they combined two different techniques, 
both a SILAC-based and a label free method, on much larger tumor samples 
(118). The small amount of tumor tissue necessary for the TMT-based 
proteomic approach used in paper III, could still identify a sufficient number 
of proteins to open up possibilities for larger studies on the easily accessible 
FFPE DLBCL tumor tissue. 

5.2 PROTEOMIC PATTERNS VERSUS SINGLE 
BIOMARKERS 

The prognostic risk-models used in clinical practice are still based on either 
clinical characteristics of the patient (the IPI (7)) or on a few biomarkers (the 
Hans algorithm (44) and BCL2/MYC-status (55, 60)). In contrast, patterns of 
gene expression can assign DLBCL tumors to their cell-of-origin (38), and 
lately DLBCL patients have been possible to risk stratify according to the 
pattern of their mutational status (66). These patterns, based on multiple 
biomarkers, have so far not been possible to apply in routine clinical practice, 
but has been important as explanatory models for the pathogenesis of DLBCL, 
and also basis for continuous hypothesis-driven research. In paper I, we 
identified over 3500 proteins. However, merely identifying a large number of 
proteins is obviously not enough to pursue possible biomarkers, as it seems 
unlikely that single or few biomarkers could mirror the complexity in this 
disease. Instead, from a biological point of view, it is more interesting to study 
the patterns or networks of proteins to further understand underlying 
mechanisms of disease progression and drug resistance. Indeed, proteins 
related to the actin cytoskeleton were in our studies (paper I and III) enriched 
in the CURED patient group, and ribosomal proteins (RPs) enriched in the 
REF/REL group (paper III). However, the expression of the actin-related 
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proteins or RPs were variable within the groups, and the differences in protein 
levels between the groups were not numerically large, despite them being 
statistically significant. In addition, the immunohistochemical staining of both 
RPs and actin-related proteins in paper III didn´t show any clinically useful 
differences between the groups. In summary, although we found differences 
in the expression of both RPs and actin-related proteins in our studies, they 
can’t as yet be used as single biomarkers in a clinical setting, but the findings 
can instead be seen as hypothesis-generating, more discussed in the following 
chapters. 

5.3 THE ACTIN CYTOSKELETON AND DLBCL 
In paper I, we found that among the 66 proteins overexpressed in the CURED 
patient group, a high proportion of proteins involved in the regulation and 
organization of the actin cytoskeleton, for example, annexin A6, members 
from ARP2/3 complex, drebrin-like protein, CAP1, moesin, and WAFL. Also, 
by inserting the differentially expressed proteins into the DAVID database, 
the most enriched annotated cluster was actin-binding proteins or proteins 
involved in regulation of actin cytoskeleton. Similarly, the STRING database 
found that interactions in the regulation of the actin cytoskeleton network 
were highly enriched (p = 0.0043). When five proteins involved in regulation 
of actin cytoskeleton dynamics (annexin A6, CAP1, CAP-G, moesin and 
PCDP4) were applied in a supervised regression analysis, it allowed a 
discrimination of the two patients groups. In addition, by using 
immunoblotting, we could confirm three of these proteins (annexin A6, CAP1 
and moesin) to be overexpressed in the CURED patient group.  

In paper III, where a different proteomic approach was used on a larger 
selection of patients, the results from paper I seemed to be confirmed as we 
found that several actin-related proteins again were overexpressed among the 
CURED patients. Furthermore, STRING/KEGG pathway analysis showed 
that proteins involved in actin cytoskeleton regulation were significantly 
enriched in this patient group.  

In concurrence with our results, another proteomic study on DLBCL patients 
using 2-DE and MALDI-TOF/TOF-MS technique, concluded that several 
actin related proteins (ezrin, pleckstrin and annexin 5) were overexpressed 
among DLBCL patients sensitive to CHOP treatment (150).  

The actin cytoskeleton is essential for many cellular processes, including cell 
migration, cytokinesis, vesicular trafficking, endocytosis, and morphogenesis 
(151), and dysregulation of the actin cytoskeleton is noted in a variety of 
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diseases, such as autoimmune disorders, neurodegenerative diseases, and 
cancer metastasis (152, 153). Also specific for B-cells, the actin network 
remodeling have been demonstrated to be a crucial factor for both up- and 
downregulation of B-cell receptor (BCR) signaling (154). As BCR signaling 
is implicated as a vital pathway for lymphoma development (155), it is 
tempting to speculate that the levels of actin-modulating proteins not only 
could influence BCR signaling, but by extension also the effects of 
immunochemotherapy. 

Below, all actin-related proteins found to be overexpressed in the CURED 
group in either of paper I or III are presented in italics. 

Different members of the actin cytoskeleton protein network have earlier been 
reported to be involved in the mechanisms behind drug resistance against 
oncovin, a drug included in the standard R-CHOP-regimen used for treatment 
in DLBCL. Low expressions of CAP-G, HSP27 and L-plastin were reported 
in oncovin-resistant ALL (156, 157). A proteomic analysis of a mouse 
xenograft model of acute B-cell lymphoblastic leukemia has shown that 
downregulation of several actin-related proteins (among them moesin, CAP-
G, HSP70 and ezrin), were involved in in-vivo oncovine resistance (158). 
Even though the exact mechanism by which a disrupted actin cytoskeleton 
can induce cellular resistance to antimicrotubule drugs remains to be 
determined, it seems that a normal actin cytoskeleton is required for the 
antimicrotubule cellular action of oncovin.  

The differently expressed actin-related proteins in our studies have been 
investigated in other malignancies. For example, a low expression of HSP27 
was observed in doxorubicin-resistant uterine cancer cells (159). 
Homoharringtonine (HHT), a drug that can be used in late stages of acute 
myeloic leukemia, upregulated the levels of myosin-9 in acute myeloid 
leukemia cells, which also was necessary for the apoptotic effects of HHT 
(160). Profilin-1 potentiated several chemotherapeutic agents (including 
doxorubicin) to mediate cell death via the suppression of NF-kB and 
upregulation of p53 (161). 

An in-vitro study of the actions of the monoclonal CD20-antibody rituximab, 
showed that rituximab polarizes B-cells, causing CD20 to cluster at the B-cell 
surface. This polarization of CD20 augments the therapeutic function of 
rituximab in NK-cell-mediated antibody-dependent cellular cytotoxicity 
(ADCC) (162). The study also, unexpectedly, showed that the capping of 
CD20 required an intact microtubule network, and that the actin-related 
proteins moesin and ICAM-1 also selectively were recruited to the CD20 cap. 
Thus, a higher expression of proteins involved in the modulation of the actin 
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cytoskeleton network in DLBCL cells could imply functional importance for 
an efficient rituximab-mediated cell killing by ADCC. 

RhoA, a member of the Rho GTPase family, was upregulated in the CURED 
patient group in paper III. RhoA has an important role in the regulation of actin 
polymerization/nucleation, actin stabilization and the formation of stress 
fibres (163). This effect is mediated by a number of downstream partners, 
such as profilin, cofilin, and the ARP2/3 complex (all found overexpressed in 
the CURED group) and Rho kinase 1 (ROCK1). Inactivating mutations in the 
RhoA pathway promoted B-cell lymphoma development and mutations of 
RhoA itself or the G-protein coupled receptor Ga13 were reported in Burkitt 
lymphoma (164) and GCB-type DLBCL (165), supporting a tumor 
suppressive role for the RhoA pathway. 

The RhoA pathway is also involved in the cytotoxic effects of the drug 
doxorubicin, which affects the actin cytoskeleton by inhibition of actin 
polymerization (166). This action seems to be ROCK1-dependent since 
depletion of ROCK1 was associated with resistance to doxorubicin (167). 
Thus, activation of the RhoA pathway might be a potential mechanism for a 
sustained response to doxorubicin-containing immunochemotherapy in 
DLBCL. 

The immunomodulating drug (IMiD) lenalidomide has well-known anti-
tumoral effects in ABC DLBCL cells associated with the downregulation of 
IRF4 (MUM1) and B-cell receptor-dependent NF-kB activity (74). Another 
important mechanism of its action appears to be the upregulation of the actin 
cytoskeletal protein network including Rho-GTPases (168). Supporting this, 
it has been shown that pomalidomide (another drug in the IMiD family), via 
the activation of RhoA, enhanced F-actin formation, stabilized microtubules 
and increased cell migration, actions which were blocked by the inhibition of 
ROCK1 (169). 

Taken together, the results from paper I and III imply that the expression of 
proteins involved in the modulation of the actin cytoskeleton network in 
DLBCL cells could be of functional importance both for an adequate response 
to the CHOP regimen but also for an efficient rituximab-mediated target cell 
killing by ADCC. This could possibly explain a better clinical outcome for 
DLBCL patients with high expression of actin-related proteins when treated 
with immunochemotherapy. Conversely, the absence of such a pattern could 
instead indicate resistance or refractoriness to the R-CHOP regimen, as seen 
in the REF/REL patients. 
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5.4 RIBOSOMAL PROTEINS AND DLBCL 
In paper III, we found that a number of ribosomal proteins (RPs) were 
overexpressed, both on an individual level and enriched in a network analysis, 
in DLBCL patients belonging to the REF/REL group, compared to the 
CURED patients. Apart from a small study showing the overexpression of 
RPS6 in six DLBCL lymph nodes compared with reactive nodes (170), and a 
recent study on RP mutations (171), there is no previous available data on RP 
dysregulation in DLBCL. 

Being a complex molecular machine, the ribosome is responsible for protein 
synthesis from mRNA and consists of four ribosomal RNA species and 80 
RPs that form two subunits, the small (S) that read the RNA, and the large (L) 
that join the amino acids in the polypeptide chain making up the protein. RPs 
are hence termed RPS or RPL, depending on which subunit they belong to.  

Even though RPs have a primary role in ribosome biogenesis and protein 
translation, most RPs also have extra-ribosomal functions such as cell 
proliferation and regulation of apoptosis, tumorigenesis, tumor progression 
and metastasis (172). As most cancers have an elevated protein synthesis rate, 
RP overexpression in the REF/REL group could be interpreted as a just an 
indication of increased proliferation. However, we found no differences in 
proliferation index (by the standard Ki67+ cells) between our patient groups. 
Another possible explanation for RP overexpression in the REF-REL group 
could be that it correlated with MYC expression. Indeed, MYC is a general 
inducer of protein synthesis by activating the transcription of RNA 
polymerase (Pol) I, II and III (173), and specifically induces the expression of 
several genes encoding RPs, including RPS3, RPL6, RPL23, RPL35 and 
RPL44 (174). However, we found that a minority (28%) of RPs were more 
highly expressed in MYC-positive REF/REL patients compared with MYC-
negative REF/REL patients. Together, this indicates that RP overexpression 
could be a more general finding in DLBCL patients resistant to R-CHOP 
rather than attributed to proliferation rate or MYC expression.  

Although many RPs are upregulated in human cancers, several of the 
overexpressed RPs in our study are also associated with chemotherapy 
resistance in other cancer forms. RPL4 and RPL5 are overexpressed in a 
doxorubicin-resistant human colon cancer cell line (175), and RPS13, RPL6 
and RPL23 are associated with multidrug resistance (doxorubicin and 
vincristine) by suppressing drug-induced apoptosis (176, 177). In addition, 
doxorubicin-induced apoptosis in different hepatocellular carcinoma cell lines 
was inhibited by the overexpression of the ribosomal protein receptor for 
activated C kinase (RACK1), a component of the small ribosomal subunit, 
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and in contrast, the silencing of the same protein instead increased the 
cytotoxic effects of doxorubicin (178). Furthermore, RPL34 is overexpressed 
in pancreatic cancer patients and the knock-down of RPL34 in pancreatic 
cancer cells sensitized the tumor cells to gemcitabine and 5-flourouracil (179). 
Interestingly, even if ribosome biogenesis, i.e. formation of ribosomes, occurs 
in both proliferating and resting normal cells as well as cancer cells, there is 
evidence that the inhibition of ribosome biogenesis may cause selective 
damage to malignant cells (180). RNA polymerase I is the initiator of 
ribosome formation. The inhibition of RNA polymerase I with a novel small 
molecule drug, CX-5461, could in a promising study, via p53 induced 
apoptosis, selectively kill B-cell lymphoma cells in-vivo while maintaining a 
viable wild-type B-cell population (181). Furthermore, the combined 
inhibition of ribosome biogenesis and function, using CX-5461 and the 
mTOR inhibitor everolimus, enhanced the induction of apoptosis and 
improved the survival of mice transplanted with MYC B-cell lymphoma 
(182). Most recently, the selective targeting of ribosomal biogenesis with CX-
5461 in myeloma cell lines showed that the inhibition overcame both 
adhesion-mediated drug resistance and resistance to conventional and novel 
agents (183).  

Most recent data from a study of mutations in RPs in DLBCL patients, show 
that patients with non-mutated p53, have a statistically higher death rate if 
they have RP-mutations compared to those without RP-mutations. These data 
suggest that mutations of RPs could provide lymphoma cells with an 
alternative mechanism to inactivate p53-mediated apoptosis (171). 

Taken together, the data from paper III indicate that RP overexpression 
contributes to immunochemotherapy resistance in DLBCL patients. 

5.5 SERUM METABOLOMICS AND DLBCL 
In paper II, the serum metabolomic signature at diagnosis (before start of 
treatment), analyzed by 1H NMR spectroscopy, seemed to differ between 
DLBCL patients from the REF/REL and CURED groups. In addition, several 
individual metabolites discriminated between the two patient groups.  

The reason why some patients fail to respond to standard 
immunochemotherapy is most certainly very complex, where both tumor 
biology and microenvironment play their role, but also global host factors 
could be of importance. Indeed, despite the advances in sub-classifying 
DLBCL into different prognostic subtypes (GCB and ABC), the IPI remains 
the major prognostic tool used in clinical practice to risk-stratify DLBCL 
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patients. One reason for this could be that when compared to gene expression 
profiling or algorithms for immunohistochemical staining, techniques that 
only reflect tumor biology, the IPI assesses both tumor- and patient-related 
factors. Likewise, one appeal of metabolomics is the simultaneous assessment 
of tumor and host, which offers a global image of the balance between the 
tumor metabolism and the physiological condition of the patient.  

Paper II is the first, and so far the only, study of serum metabolomics in 
DLBCL. The results show that the two patient groups can be separated in 
multivariate statistical analyses according to the pattern of their metabolome, 
which indicates that serum might provide information on general metabolic 
changes that appears to be correlated to clinical outcome in DLBCL. 

When studying individual metabolites that could be identified and that 
differed between the groups, the concentrations of lysine, arginine, 
cadaverine, 2-hydroxybutyrat, and creatinine were significantly higher among 
the REF/REL patients, whereas aspartate, valine, and ornithine were instead 
higher among the cured patients. There were also metabolites that were not 
possible to identify, but still differed significantly between the groups. 
Previous studies, using NMR- or MS-based metabolomics, have described the 
above-mentioned metabolites in different cancer forms, although there is no 
clear consistency in the direction of the results.  

In this study, we have not compared patients with healthy controls, but instead 
compared two DLBCL populations with totally different clinical outcome, in 
order to find possible biological diversities. Yet, even though we found 
several metabolites to be significantly differentially expressed between the 
two patient groups, their expression was highly variable, which probably 
would make them less useful as single biomarkers. In concordance with the 
discussion about the proteomic analyses in paper I and III, in a hypothetical 
future clinical application of serum metabolomics, the detection and 
quantitation of single or few metabolites will probably have inferior 
significance compared to the global pattern of metabolites, or the 
metabolomic fingerprint. NMR-based metabolomics is a fast method that is 
highly reproducible, possible to fully automate, and, importantly, also directly 
quantitative, all being qualities that give the technique a great future potential 
of being incorporated into routine clinical practice. Indeed, some studies have 
already shown that clinical decision-making could benefit from metabolic 
phenotyping of patients during both surgery and critical care (184, 185). The 
results from paper II suggest that in DLBCL-patients, a certain metabolomic 
pattern could reflect a more aggressive or resistant disease, possibly combined 
with different host factors important for the response to treatment. Further 
studies on larger, unselected DLBCL patient cohorts are necessary to create a 
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metabolomic reference material. 1H NMR-based metabolomics could then 
have possible potential to be used as a tool to refine the present prognostic 
models in DLBCL. 

One weakness with the study can be attributed to the 1H NMR spectroscopy 
method in itself, because of its sensitivity to variations in both pre- and post-
sampling conditions. The results are affected by the dietary status of the 
patient, the sampling time point and the time span from patient sampling to 
centrifugation and freezing of the serum. None of these factors could be 
controlled in the study, since it was made retrospectively. On the other hand, 
the fact that the results turned out to be significant despite the non-
standardized sampling procedure is actually a strength of the study. Still, in 
future prospective studies of serum metabolomics in DLBCL, the serum 
sampling should be performed in a standardized fashion.  
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6 CONCLUSIONS 
6.1.1 Paper I 
In conclusion, with SILAC-based quantitative proteomic analysis a large 
number of proteins could be identified and quantified in freshly frozen tumor 
tissue from patients with diffuse large B-cell lymphoma. This could broaden 
the possibilities of using a proteomic platform for finding proteins of 
differentiating and, hopefully, prognostic significance in this disease. The data 
also indicate that a higher expression of proteins involved in the regulation of 
the actin cytoskeleton could be of functional importance for a sustained 
response to immunochemotherapy 

6.1.2 Paper II 
In conclusion, the serum metabolomic profile at diagnosis, analyzed by 1H 
NMR spectroscopy, seemed to differ between DLBCL patients with 
refractory disease/early relapse and long-term progression-free patients. 
Certainly, there are several issues regarding NMR-based metabolomics that 
has to be solved before it can be implemented in a broad clinical setting. Yet, 
the technique is evolving and even though the results need to be validated in 
a larger prospective cohort, the method appears promising and might become 
a supportive tool for more precise prediction of response to 
immunochemotherapy.  

6.1.3 Paper III 
In conclusion, the TMT-based proteomic approach found a sufficient number 
of proteins which could open up possibilities for this technique to be used in 
larger studies on more easily accessible formalin fixed, paraffin-embedded 
DLBCL tumor samples. The finding from paper I of overexpression of actin-
related proteins among long-term progression-free DLBCL patients appeared 
to be confirmed in this study. In addition, a novel discovery regarding 
overexpression of multiple ribosomal proteins in DLBCL patients with early 
relapse or refractory disease was made. The findings suggest previously 
undescribed mechanisms for immunochemotherapy resistance in DLBCL 
patients. 
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7 FUTURE PERSPECTIVES 
Based on the results from the two proteomic studies in paper I and III, a larger 
study on 220 unselected DLBCL patients treated with R-CHOP is under way, 
in which again TMT-based explorative proteomic analysis on FFPE tumor 
samples will be used. Compared to the study in paper III however, a 
considerably larger volume of tumor tissue will be used, to enable more 
proteins to be identified, but also to include the important tumor 
microenvironment in the analysis. 

A study using Parallel Reaction Monitoring (PRM) is being discussed, in 
which a limited number, 12-15 mainly actin-related and ribosomal proteins, 
are analyzed with a targeted proteomic method. The analyses are made on 
FFPE tumor tissue from the same large, unselected DLBCL patient cohort as 
above, with the aim to be able to use the proteins as predictive biomarkers. 
The PRM technique is, compared to explorative proteomics, easier to 
reproduce, and have future potential to be used in a more standardized way 
even in a clinical setting.  

A study of RNA-sequencing of FFPE tumor tissue from the same patient 
cohort used in paper III have shown preliminary results, where differential 
expression of genes connected to the actin cytoskeleton and ribosome 
biogenesis was seen between CURED and REF/REL-patients. The plan is to 
expand this study to include a larger, unselected patient group, and to integrate 
the RNA-sequencing results with the results from the large proteomic study 
above, thus obtaining a proteogenomic approach to DLBCL prognostics and 
investigations on treatment resistance and possible future therapeutic targets. 

Functional studies are planned, in which both older immunochemotherapy 
drugs like R-CHOP and etoposide, and newer drugs like B-cell receptor 
inhibitors (ibrutinib), BCL2-inhibitors (venetoclax), IMiDs (lenalidomide) 
and inhibitors of ribosomal biogenesis (CX-5461), will be tested on CRISPR-
modified cultured DLBCL cell lines, in which the expression of different 
actin-related and ribosomal genes/proteins have been either inhibited or 
amplified. These studies will investigate the direct impact of these proteins on 
the resistance to chemotherapy, and will have a potential to find proteins that 
could be targeted in future treatment studies.  

A prospective study on serum metabolomics of newly diagnosed DLBCL 
patients is planned. In this study some of the limitations of the study in paper 
II are addressed, and the collection of serum samples will be organized in a 
highly standardized way, not only at time of diagnosis, but also during and 
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after treatment. In addition to the normal treatment evaluation, certain 
metabolic factors will be measured, such as BMI, muscle strength and loss of 
muscle volume. 
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APPENDIX 
1H NMR SPECTROSCOPY 
NMR is dependent on the physical property of spin, that is possessed by 
protons, neutrons and electrons. The nucleus of a hydrogen atom, i.e. a proton, 
have spin, and can therefore be used in NMR experiments. A proton, because 
of its spin, behaves like a small magnet with a north and a south pole. When 
placed in a strong magnetic field, the proton can, due to the spin, align to the 
magnetic field in two different ways; either with the magnetic poles aligned 
(low energy state), or in the opposite direction, i.e. against the magnetic field 
(high energy state). A transition from the low energy spin state to the high 
energy spin state require input of energy in the form of electromagnetic 
radiation. Nuclear magnetic resonance (NMR) occurs when a radiofrequency 
pulse is resonantly absorbed and consequently emitted by certain atom nuclei, 
in this case protons, by transitions between the different energy levels. The 
energy that is emitted is measured as an oscillating induced current in coils 
surrounding the sample in the NMR spectrometer. The time-domain detected 
signal can be Fourier-transformed and plotted as an NMR spectrum with 
signals occurring according to their resonance frequency. The exact frequency 
of a given nucleus is dependent on the atoms surrounding the proton/hydrogen 
atom in the investigated molecule. This phenomenon is called chemical shift, 
measured in ppm to be independent of the employed magnetic field strength 
of the instrument, which in effect causes different molecules to give different 
1H NMR signals, making it possible to identify different substances in a 
sample (186). An example of an NMR spectrum is depicted below. 

Figure 20. 1H NMR spectrum of ethanol 
dissolved in chloroform-d. The structural 
formula of the ethanol molecule, with 
three hydrogen-containing groups (CH3, 
CH2 and OH) with different chemical 
shifts, give three peaks along the x-axis, 
on which the chemical shifts are plotted 
as ppm. Each hydrogen-containing 
group will, depending on the spin of their 
protons, influence the chemical shifts of 
the other two groups, thus forming the 
unique pattern of peaks upon which the 
substance, i.e. ethanol, can be identified. 
Spectrum downloaded from SDBSWeb : 
https://sdbs.db.aist.go.jp (National 
Institute of Advanced Industrial Science 
and Technology). 
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