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This thesis provides a comprehensive overview of the sensitivity of the optimal de-
fault barrier in regard to its input parameters and the use of contingent convertible
bonds. Contingent convertible bonds are financial instruments designed to help
banks prevent default and absorb losses by converting from debt to equity in times
of financial distress. We also study how contingent convertible bonds would have
affected the optimal default barriers of the four biggest Swedish banks during the
2007-2009 financial crisis. The results from this thesis suggest that issuing contin-
gent convertible bonds typically increase the optimal default barrier, but that the
negative impact on solvency is diminished during the financial crisis. We conclude
that the usefulness of contingent convertible bonds is primarily derived from its util-
ity as a bail-in instrument, rather than as a tool to prevent default.

Keywords: Contingent Convertible Bonds, CoCo Bonds, CoCos, Optimal Default
Barrier, Swedish Banks, Financial Crisis.
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1. Introduction

In this thesis, we use a structural credit risk model to examine the sensitivity of the
optimal default barrier, which indicates the point at which declaring bankruptcy
maximizes equity value for shareholders. We also examine how the optimal de-
fault barrier changes with the use of contingent convertible bonds. The contingent
convertible bond or CoCo bond for short, is a type of subordinated debt product
designed to help banks absorb losses in the event of default. We proceed to apply
said model on real bank data from year 2005 to 2011 to study how CoCos affect the
optimal default barriers of major Swedish banks in the period around the 2007-2009
financial crisis (henceforth simply referred to as the financial crisis). Our results
show that the optimal default barrier increases when CoCo bonds are issued, which
suggests that the issuance of CoCos has a negative impact on the likelihood of de-
fault. When we apply our model to aforementioned bank data, we find that the
negative impact that CoCo bonds exert on the optimal default barrier is reduced
during the crisis years. The findings of this thesis contribute to the literature on
CoCo bonds by questioning the effectiveness of using CoCos as a means to mitigate
the default risk of banks in distress.

Central to this thesis is the CoCo bond, which is a type of hybrid security with
traits that resemble both debt and equity instruments at different occasions. When
issued, a CoCo acts like a debt instrument and pays coupons to the CoCo bond
holder; if the CoCo bond is not issued perpetually, the CoCo bond holder also re-
ceives a principal payment upon maturity, just like in the case of a vanilla bond.
However, certain contingent events will trigger CoCos to either convert to some
amount of equity, or have its value written down altogether; hence the name con-
tingent convertible bonds. Figure 1.1 shows the main design features of CoCos. As
can be seen from the left leg of Figure 1.1, the trigger of a CoCo bond conversion
can either be mechanical, discretionary, or both. A mechanical trigger is usually
designed to link the CoCo conversion to a financial measurement of book or mar-
ket value in such a way that conversion takes place as the bank experiences severe
financial distress. For example, if a bank’s required capital reserves drops below a
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certain threshold, a conversion of its CoCos could be triggered. Alternatively, CoCo
conversion can be commissioned at the discretion of a relevant authority, such as a
banking supervisory authority (BISd, 2017). As an example, the European Central
Bank’s banking oversight body, the Single Resolution Body stepped in to write down
all of Banco Popular’s outstanding CoCo bonds in 2017 (Smith and Khan, 2017).

Figure 1.1: Main design features of CoCos (Avdjiev et al., 2013).

The purpose of CoCos is to reduce the risk of default and to help banks absorb losses
if default occurs through a bail-in scheme. Bail-in refers to how CoCo bond holders
help bear the bank’s losses like equity holders in bad times, thus absorbing some
of the costs that would otherwise be born by taxpayers via government bail-outs
(Perotti and Flannery, 2011). More specifically, the loss absorption process involves
one of two things, either converting CoCos to equity stakes or writing down the
CoCos altogether, as can be seen from the right leg in Figure 1.1. If the conversion
rate is not pre-specified, the amount of shares a CoCo bond holder gets may depend
on the financial situation of the company at the time of conversion. The more dire
the crisis the bank is in, the fewer the shares might CoCo bond holders reasonably
expect to receive upon a conversion; in the most extreme case, all outstanding Co-
Cos may be wiped off the balance sheet, thus leaving the CoCo bond holders empty
handed post-conversion. Given the higher risk that is embedded in CoCos compared
to ordinary bonds, holders of CoCos typically receive a higher return - in the form
of bigger coupon payments - than holders of vanilla debt.

Literature on CoCos date back to 2005, when Flannery (2005) first introduced con-
tingent convertibles. The topic of this thesis however, connects CoCos to the optimal
default barrier, which is also the primary topic of research for Chen, Glasserman,
Nouri, and Pelger (2017). The difference is that the incentive effects of CoCos are
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the focus of Chen et al. (2017), while the focus of this thesis is on the sensitivity of
the optimal default barrier to Coco bonds. Moreover, Chen et al. (2017) find that
CoCos have at least three features that create strong incentives for equity sharehold-
ers to invest in a firm to avoid conversion. Firstly, reductions in rollover costs give
equity holders some potential to benefit from an increase in investment. Rollover
costs may be reduced for various reasons, improved company solvency and interest
rate cuts by the central bank are two such examples. Secondly, the dilutive effect of
CoCos create an incentive for shareholders to prevent conversion. Thirdly, if CoCo
coupons are tax deductible, shareholders have more incentive to invest in the firm
before conversion triggers to avoid the loss of this tax benefit (Chen et al. (2017)).
Using a different structural model, Hilscher and Raviv (2014) decompose bank lia-
bilities into sets of barrier options to study the incentive effects of CoCos, and find
that setting an appropriate conversion ratio can significantly reduce the likelihood
of default. Their positive results are in line with the results of Chen et al. (2017). In
another study, Jaworski, Liberadzki, and Liberadzki (2017) compare issuing CoCos
to issuing conventional bonds to examine how bank solvency changes using a value-
at-risk and expected shortfall approach. Their results show that CoCos only improve
the issuer’s solvency if the probability of conversion is greater than the significance
level of the value at risk. In other words, Jaworski et al. (2017) concludes that it
only makes sense to issue CoCos if the probability of default is high enough above a
certain point, which in turn is derived from the value at risk. Meanwhile, Schmidt
and Azarmi (2015) study the link between CoCos and default using regressions to
test how markets react to the announcement by Lloyds Banking Group (LBG) to
issue CoCos, by looking at the share price and Credit Default Swaps (CDS) spreads
of LBG before and after the announcement. They find a drop in share price and
a rise in the CDS spread, indicating that CoCos had a negative effect on both the
share price and the default likelihood.

This thesis has two objectives. The first objective is to provide a more compre-
hensive understanding of the impact that CoCos have on the livelihood of default,
approximated through the optimal default barrier. This objective is achieved by
studying the sensitivity of the optimal default barrier to CoCos and changes in its
input parameters. The second objective is to study the impact that CoCos would
have had on the solvency of Swedish banks for the period around the financial crisis.
The second objective is achieved by comparing the optimal default barrier of banks
during the years around the financial crisis to the optimal default barrier that the
banks would have had if they also had CoCos in their debt mix. Furthermore, we
limit the scope of testing to the four biggest Swedish banks: Nordea, SEB, Swedbank
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and Handelsbanken. The reasons are that these four banks are fairly comparable in
terms of business models and size, and their data is more accessible because they
are publicly traded on the Stockholm Stock Exchange. Moreover, our thesis con-
tributes to the research on how CoCos impact the likelihood of default by using
bank data outside the US, which is different from Chen et al. (2017). This is inter-
esting because the US was at the epicenter of the financial crisis, whereas Sweden
was not. In contrast to the US and most of the developed world, Sweden’s economy
recovered relatively quickly from the crisis (Ekici, Guibourg, and Åsberg-Sommar,
2009). According to Jaworski et al. (2017), issuing CoCos only makes sense if the
financial distress is grave enough, which implies that the positive impact of CoCos
on bank solvency may be exaggerated for banks in non-US countries, perhaps even
absent. Furthermore, we use a different model from that of Jaworski et al. (2017)
to examine how CoCos impact the solvency of banks, and explore the relationship
between CoCos and the optimal default barrier while shifting the underlying input
parameters to observe a number of different scenarios. Studying these different sce-
narios also help us explain the relationship between the likelihood of default and key
parameters, such as the risk-free interest rate, volatility and debt maturity, which
we will see in Chapter 4.

The remainder of this thesis is structured as follows: Chapter 2 contains a dis-
cussion about the relevance of CoCos from a regulatory standpoint. Chapter 3
outlines the asset and credit risk models that we apply in the thesis. In Chapter
4, we discuss how valuation models are adapted to accommodate the inclusion of
CoCos and its implications. We present a result comparison and sensitivity analyses
in Chapter 5 to examine the relationship between the optimal default barrier, its
input parameters and the use of CoCo bonds. Then, in Chapter 6, we show the
results of our model application on real bank data. Finally, Chapter 7, contains a
summary of our findings and our concluding remarks.
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2. Banking Regulation

The surge in popularity for CoCos since the financial crisis is largely driven by
upcoming regulatory requirements. In this chapter, we discuss the Basel Accords,
which is the primary regulatory framework that banks must comply with in terms
of capital requirements. The purpose of clarifying the connection between CoCos
and banking regulations is to explicate the impact that CoCos have on banks on a
microeconomic level.

In response to the financial crisis, the Basel Committee of Banking Supervision
(BCBS) set out to address the key issues that had caused the global economy to
derail (BISb, 2018). BCBS identified insufficient liquidity in banks as one of the
major drivers behind the crisis and sought to tighten capital requirements through
the third Basel Accords. The Basel Accords are a set of recommendations for the
banking industry that are typically enforced on a national level, scheduled to be fully
implemented in 2019 (BISc, 2013). The third Basel Accords or Basel III, expands
on the "three pillars" concept used in Basel II by enhancing the contents of Basel II
with more stringent regulatory requirements (BISd, 2017). The three pillars of Basel
III are designed with the intention of addressing the biggest issues in the banking
industry and is categorized as follows:

• Pillar 1: Regulatory Capital

• Pillar 2: Supervisory Review

• Pillar 3: Market Disclosure

The aspect of Basel III that is relevant to the topic of this thesis are the capital
requirements - the first pillar of Basel III. The regulatory capital requirement rec-
ommends that banks hold 6 percent of all risk-weighted assets as so called "Tier One
capital", which is the core measure of a bank’s financial strength (BISd, 2017). Tier
One capital is a core measure because the asset types under Tier One are the most
secure kind of assets from the bank’s perspective; Tier One capital comprises either
pure equity or near-equity equivalents. Out of its 6 percent, the Tier One Capital is
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further segmented into 4.5 percent Common Equity Tier One (CET1) capital and
1.5 percent Additional Tier 1 (AT1) capital. CET1 is simply shareholder’s equity
that the bank holds onto to counterbalance any risk-weighed assets it has outstand-
ing, rather than investing; this makes CET1 the most expensive type of capital
as it cannot be invested to improve a bank’s turnover. The 1.5 percent AT1 can
be made up of either common equity or subordinated debt instruments. Issuing
CoCos, which is the most popular subordinated debt instrument for banks to use
to remain compliant with AT1 requirements, is often preferred to holding common
equity, because CoCos can achieve the goal of reducing default risk more cheaply
(Thompson, 2014). Thus, we have shown that the impact of CoCos is derived from
the regulatory environment for banks, which encourages its use.

Due to the fact that Basel III requires AT1 instruments to be perpetual, CoCos
are typically issued without maturity dates (Avdjiev, Kartasheva, and Bogdanova,
2013). In our model however, we are assuming that new CoCos are issued once old
CoCos mature. The reason for making this assumption, rather than assuming that
CoCos are perpetual is for modeling purposes; by assuming that straight debt and
CoCos are rolled over upon maturity, we are able to find closed-form solutions. More
details on assumptions and the formulas are found in Chapter 4. Moreover, this debt
environment bears some resemblance to existing revolving credit agreements and is
consistent with that of Leland (1994), Chen and Kou (2009) and Chen et al. (2017).
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3. Credit Risk Modeling

The purpose of this chapter is to justify the selection of our credit risk model by
providing a an overview of relevant credit risk models, since we use one to calculate
the optimal default barrier. We do this by developing our model from its simplest
version in Section 3.1, followed by a discussion about the relationship between en-
dogenous default and the optimal default barrier in Section 3.2.

3.1 Model Background and Development

One could make the broad distinction that credit risk can be modeled using one
of two approaches: the reduced-form approach or the structural approach. The
reduced-form approach of modeling credit risk aims to provide a simple framework
to fit a variety of credit spreads by abstracting from the firm-value process and pos-
tulating default as a single jump time; for examples of the reduced-form approach
see Jarrow and Turnbull (1995); Jarrow, Lando, and Turnbull (1997); Duffie and
Singleton (1999); Collin-Dufresne, Goldstein, and Hugonnier (2004); Madan and
Unal (1998). The structural approach aims to provide an intuitive understanding
of credit risk by specifying a firm value process and modeling equity and bonds as
contingent claims on the firm value. The structural models that are most frequently
applied are the models by Black and Scholes (1973) and Merton (1974). The pop-
ularity and widespread application of the classic Black-Scholes model stems partly
from their analytical framework and ease of use in practice. The main criticism
towards Black-Scholes has been directed towards its inconsistencies with empirical
data; in particular, two empirical phenomena that the model does not account for.
The first issue is concerned with the leftward skew of the return distribution in the
Black-Scholes model and the fact that it has a higher peak and two heavier tails than
those observed in normal distributions. The second problem is directed towards the
constant volatility assumption, whereas in practice, implied volatility is a convex
curve of the strike price, thus forming a "volatility smile" (Kou, 2002).
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For the goals of this thesis, we use a type of first-passage time model, which is
a class of models that belong to the structural credit risk model family. Hence,
we can define default as the first time the firm value falls below an optimal de-
fault barrier level. Moreover, the model we use is an extension of the basic Merton
model, which assumes that the assets of a firm follows a geometric Brownian motion
(GBM), according to:

dVt = µVtdt+ σVtdWt,

where Vt is the asset price, µ is the drift, σ is the volatility and W (t) is a Wiener
Process. GBM indicates that it is a continuous time stochastic process. Merton’s
model can be modified to include jumps by simply including a ’jump term’. In fact,
general jump diffusion processes are processes of the form:

Xt = σWt + µt+
N(t)∑
i=1

Yi.

Note the addition of the jump term to the right. We use a double exponential jump
diffusion model developed by Kou (2002), which expresses the asset price V (t), under
the physical probability measure P as:

dV (t)
V (t−) = µdt+ σdW (t) + d

(N(t)∑
i=1

(Ȳi − 1)
)
,

where N(t) is a Poisson process with jump intensity λ, and Yi is a sequence of
independent and identically distributed (i.i.d.) non-negative random variables such
that Yi := ln(Ȳi) has an asymmetric double exponential distribution, with density:

fy(y) = pη1e
−η1y · 1y≥0 + qη2e

η2y · 1y<0,

η1 > 1, η2 > 0,

where p and q represent the respective probabilities for upward and downward jumps
and p+ q = 1. We also have η1 and η2 which represents the jump sizes in the model.
Since studying the point of default is the focus of this study, the jump probabilities
are edited in such a way that p = 0 and q = 1, so that only downward jumps are
considered. Since p is multiplied by η1, that term will always be equal to 0, which
makes η2 the only relevant part of our model; whenever we refer to η without a
subscript henceforth, it is η2 that we refer to. If the possibility of upward jumps
is not precluded, our results would not change, but they would be weaker, as it
would take longer to observe defaults. The justification for choosing the model by
Kou (2002) is as follows: Firstly, the model produces results that are consistent
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with the results of the Black-Scholes model and fits stock data better than some
other models, e.g. the normal jump-diffusion model. Secondly, Kou’s model offers
an explanation for the two empirical phenomena that the Black-Scholes model has
been unable to explain, mentioned previously in this section. Thirdly, the model is
simple enough for computation and offers a closed-form solution. Finally, the model
has a psychological interpretation of real world behavior (Kou, 2002).

3.2 Optimal Default Barrier

The point of default for any company can either be set exogenously or determined
endogenously. Exogenous default refers to when the point of bankruptcy is exter-
nally set to be linked to some critical event, such as failure to meet interest payments
when due or upon reaching a certain debt principal value. In this thesis, along with
Chen et al. (2017) and Leland and Toft (1996), we are assuming that default is in-
stead endogenously determined, which is when the point of bankruptcy is optimally
determined by equity owners. This idea transforms declaring bankruptcy from be-
ing an event-linked consequence into an optimal decision made by equity holders
to surrender company control to bond holders. Since bankruptcy is assumed to be
endogenously determined, a point of optimal default must be specified as part of
our model. Furthermore, the point is essentially a barrier that tells the shareholders
of a company to declare bankruptcy if the firm value hits or falls below the barrier,
hence the term optimal default barrier. Examining the relationship between CoCos
and the optimal default barrier is the first main objective in this thesis.
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4. Model Implications of CoCo Bonds

Introducing CoCos has several implications on modeling, which is discussed in this
chapter. Section 4.1 begins with an overview of the modeling assumption that we
make for valuing assets and liabilities, respectively. Section 4.2 follows up with a
discussion about the idea of ‘debt-induced collapse’, which is a unique situation
where CoCos degenerate to straight debt before conversion. Lastly, Section 4.3
dissects the model by Chen et al. (2017), which we use to model the optimal default
barrier.

4.1 Valuation of Assets and Liabilities

Chen et al. (2017) assumes that the firm finances its assets using straight debt, con-
tingent convertible debt and equity. In the subsequent subsections, we will briefly
discuss how these are modeled and the underlying assumptions made. These mod-
els give closed-form expressions, which is important for calculation and purposes of
analysis. It is thanks to closed-form expressions that we later can derive the optimal
default barrier (Chen et al., 2017).

4.1.1 Valuation of Assets

The valuation of assets in our model builds on the background discussion in Chapter
3. We use the model of Kou (2002):

dV (t)
V (t−) = µdt+ σdW (t) + d

(N(t)∑
i=1

(Ȳi − 1)
)
, (4.1)

where we define µ, following the syntax of Chen et al. (2017), as µ = r − δ + λ
1+η .

Substituting µ in Equation (4.1) gives us:

dV (t)
V (t−) =

(
r − δ + λ

1 + η

)
dt+ σdWt + d

( Nt∑
i=1

(Yi − 1)
)
, (4.2)
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where δ is the payout rate of the company, λ is the jump intensity, r is the risk-free
interest rate and η represents the sizes of the downward jumps.

4.1.2 Straight Debt

Straight debt is modeled following Leland et al. (1996) where they assume that a
firm issue new debt continuously at par value p1. The maturity m of this debt is
exponentially distributed with a mean of 1/m and it pays a coupon c1 per unit of
p1. According to Chen et al. (2017) this continuous issue rate and maturity profile
gives the following equation for calculating total par value of debt P1:

P1 =
∫ ∞
t

(∫ t

−∞
p1me

−m(s−y)du

)
ds = p1

m
. (4.3)

This so called debt rollover where the debt is settled and reissued at a continuous rate
lays an important foundation for the model and further analysis regarding incentives
for equity holders. Another factor that affects the valuation is the funding benefit
k1, which is defined in the interval (0,1), that arises depending on where the fundings
come from. One example is that the cost of debt can decrease when issuing new
debt since coupon payments are tax deductible. Another funding benefit could be
if the banks have a government that insures some of the deposits, this would give
investors a safety net that they are willing to pay extra for (Chen et al., 2017). There
are different discussions on how to model this effect. DeAngelo and Stulz (2013)
and Sundaresan and Wang (2015) models it as an increase in liquidity which lowers
the net cost of deposits while Allen (2015) models funding benefit as a product
from market segmentation. In this thesis we follow Chen et al. (2017) where they
introduce k1 such that net cost of coupon payments is (1− k1)c1P1.

4.1.3 Contingent Convertibles

One of the main differences in the model between Chen et al. (2017) and Chen et al.
(2009) is the addition of Cocos. Modeling CoCos follows the similar arguments and
structure as the modeling of straight debt in Equation 4.3. The total par value of
CoCos will be denoted P2 instead and pay a continuous coupon rate of c2, with a
mean maturity of 1/m. As in the case of straight debt there also exist a funding
benefit k2 from issuing CoCos.
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4.1.4 Liability Valuation

Equity value is expressed as:

Equity (E) = Firm value (F )− Straight debt (P1)− CoCos(P2). (4.4)

Depending on whether the goal is to value, post-conversion (PC), before conversion
BC or when there are no conversion (NC) we will get different values. When consid-
ering value of the firm post-conversion (V PC) the equity value will be the residual
between firm value and straight debt (P1) since the CoCos would have been con-
verted. If we are considering V BC , EBC will follow Equation (4.4) and if we do not
have conversion, considering V BC , ENC will denote the equity when the firm do not
convert the CoCos. We refer the interested reader to Chen et al. (2017) for a deeper
discussion about these calculations.

4.2 Debt-Induced Collapse

While CoCos are designed with the intent to help banks absorb losses, they may
fail to do so if the bank undergoes a crisis so severe, that wiping CoCos would still
be insufficient to save the bank from bankruptcy. Banks with CoCos could also go
bankrupt if equity owners decide to declare bankruptcy before conversion, which is
a phenomenon that Chen et al. (2017) call "debt-induced collapse". The term coined
by Chen et al. (2017) refers to the increase in a firm’s debt load when bankruptcy is
declared before CoCo conversion, which causes a sharp increase in the firm’s prob-
ability of default and a decline in equity value. The sharp increase in debt burden
in turn, causes the firm to collapse. The idea of debt-induced collapse is impor-
tant to understand for this thesis because it introduces the third state that was not
considered in Chen et al. (2009). The state where no CoCo conversion occurs, as op-
posed to if we would only consider the firm values before and after CoCo conversion.

Debt-induced collapse is a consequence of bankruptcy being endogenously deter-
mined, since the optimal default barrier might be above the conversion point of the
CoCo. In contrast, if default is exogenously determined, the point of CoCo con-
version would typically be set to precede bankruptcy. The hazard of debt-induced
collapse can be avoided by setting the trigger for CoCo conversion at a sufficiently
high level above the optimal default barrier. So, debt-induced collapse occurs if the
optimal default barrier, V ∗b , falls below the conversion threshold, Vc, which is the
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value of V that triggers the conversion of CoCos. Moreover, the possibility for debt-
induced collapse introduces the three cases that must be considered at all times,
when valuing the firm:

1. Value of firm before conversion (V BC)

2. Value of firm post conversion (V PC)

3. Value of firm with no conversion (V NC)

The firm value is linked to the value of debt and value of equity at each time point;
which is why the same three cases will also have to be considered for these. Endoge-
nous default implies that equity holders choose a bankruptcy policy that maximizes
the value of equity. This leads to that the optimal default barrier will vary based on
which of the three cases that yields the highest equity value for shareholders, since
the default barrier is a function of the firm value. At the same time, the policy must
be consistent with limited liability, meaning that equity value does not fall below
zero at any point. This is a standard formulation that is in line with Leland (1994),
Leland et al. (1996) and Chen et al. (2017).

Upon default, a fraction of a bank’s asset value is assumed to be lost to bankruptcy
and liquidation costs, represented by (1 − α), where 0 ≤ α ≤ 1. The time when
bankruptcy is declared is denoted τb and Vτb

the value of the firm at that moment.
Firm value after bankruptcy costs are used to repay the creditors and are denoted
αVτb

. In the normal case where default occurs after conversion, only straight debt
remains at bankruptcy. On the other hand if debt-induced collapse occurs and de-
fault is declared before conversion is triggered, the CoCos degenerate to junior debt
and are repaid from any assets that remain after the senior debt is repaid.

4.3 Modeling the Optimal Default Barrier

We develop our analysis in a structural model of the type introduced in Leland
(1994) and Leland et al. (1996), as extended by Chen et al. (2009) to include jumps.
Building on the idea of endogenously triggered default, Chen et al. (2017) proceed
to derive the optimal default barrier, denoted as V ∗b , which is the optimal point
for equity holders to declare bankruptcy. Meanwhile, arbitrary default barriers are
simply denoted Vb. According to Chen et al. (2009), the optimal default barrier
when issuing only straight debt can be expressed as:

V PC
b = P1ε1, (4.5)
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where ε works as a weighting factor that maximizes the barrier (Chen et al., 2009)
and is defined as:

ε1 =
c1+m
r+m γ1,r+mγ2,r+m − k1c1

r
γ1,rγ2,r

(1− α)(γ1,r + 1)(γ2,r + 1) + α(γ1,r+m + 1)(γ2,r+m + 1)
η + 1
η

, (4.6)

where −γ1,β > −η > −γ2,β are the two negative roots of the following equation:

G(x) =
(
r − δ − 1

2σ
2 − λ( η

η + 1 − 1)
)
x+ 1

2σ
2x2 + λ

(
η

η + x
− 1

)
= β. (4.7)

V PC
b expressed above represents the post-conversion (PC) firm value, and show that

a firm only holds straight debt after CoCos have been converted. We list the method
that we use to find the roots to Equation (4.7) Appendix B along with a second
method proposed by Kou (2005). For a more elaborate discussion on Equation (4.7)
and its derivation, see Appendix A. The variable notation used here is generally
consistent with what is used in Chen et al. (2017). The only difference in notation
from what Chen et al. (2017) uses is what they call ρ is instead called β here since ρ
was also used to represent minimum capital ratio, which it represents in this thesis
as well. There are also some discrepancies between Equation (4.7) in Chen et al.
(2017) and Chen et al. (2009). They state that they use the same formula, but
present them slightly differently which we show and discuss further in Appendix A.
Chen et al. (2017) extend the models of Chen et al. (2009) and show that the optimal
default barrier for a firm with no conversion can be expressed as:

V NC
b = P1ε1 + P2ε2,

where P2 represents the par value of CoCos outstanding and ε2 quite similar to ε1

can be expressed as:

ε2 =
c2+m
r+m γ1,r+mγ2,r+m − k2c2

r
γ1,rγ2,r

(1− α)(γ1,r + 1)(γ2,r + 1) + α(γ1,r+m + 1)(γ2,r+m + 1)
η + 1
η

. (4.8)
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5. Model Robustness and Sensitivity Analysis

In this chapter, we first attempt to replicate parts of the study by Chen et al. (2017),
using an altered version of their original model. Section 5.1 contains the results of
our comparison and our comments on noteworthy differences and similarities. Later,
in Section 5.2, we examine the sensitivity of the input parameters that are used by
testing for small changes in volatility σ, the risk-free rate r, payout rate δ, jump
intensity λ, the firm-specific jump component η, maturity m and recovery rate α.
After assessing the reliability of our model compared to that of Chen et al. (2017),
this chapter provides an extensive sensitivity analysis of the optimal default barrier.

Chen et al. (2017) provide a table containing most of the input parameters they
use for their calculations on page 3935 in their paper. The same input parameters
have been listed here in Table 5.1, and these are the same input parameters that we
have used in our models unless otherwise stated.

Table 5.1: Base-case input parameters (Chen et al., 2017).

Parameter Value
Initial asset value V0 100
Risk-free rate r 6%
Volatility σ 8%
Payout rate δ 1%
Funding benefit k1, k2 35%
Jump intensity λf 0.3
Firm-specific jump exponent η 4
Coupon rates (c1, c2) (r+3%, r+3%)
Bankruptcy loss (1− α) 50%

In addition to the values provided in Table 5.1, we also assign values to P1, P2, m,
ρ, p and q in our model when we stress-test individual parameters. As previously
mentioned, we use p = 0 and q = 1, because we are only interested in downwards
jumps. Furthermore, we have opted to use ρ = 0.05, P2 = 5 and P1 = 65, which is
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what Chen et al. (2017) typically have used in their tests, see pages 3940-3944 in
Chen et al. (2017). In Section 5.2 we set maturity to a constant of m = 1 in all tests
except when we test for maturity in Figure 5.9.

5.1 Model Comparisons with Chen et al. (2017)

In this section we discuss our attempts to replicate some of the results by Chen et al.
(2017). Attempting to replicate their models serves two purposes: 1. it helps us to
verify that our model works and 2. it tells us if our results are consistent with their
conclusions.

Chen et al. (2017) do not explicitly list all their parameters used to produce every
graphical result. Therefore, it was necessary to make some estimates here, which
consequently produces results that differ somewhat from that of Chen et al. (2017).
Slight differences, such as shifts in intercepts, maximum and minimum points are
expected. Rather, the focus is on the general trends, whether the lines develop
in the same directions and have similar curvature. In general, all our results were
consistent with that of Chen et al. (2017), in the sense that our replicated versions
developed in similar ways and had similar shapes as theirs. However, one difference
that persisted in all our graphs was that our trends typically lagged behind their
trends. For example, when we tried to replicate Figure 4 in Chen et al. (2017),
which is shown in Figure 5.1 here, we came up with Figure 5.2. While the figures
imply that the general trend is the same in both models, they display differences
in curvature. There are several possible explanations for this. The first is that our
input parameters differ, which is due to the fact that we have made estimates where
Chen et al. (2017) did not provide values. A second plausible explanation is that
the underlying models differ; as mentioned in Section 4.3 and Appendix A. The
inconsistency between these formulas could imply that we are not using the same
underlying model as Chen et al. (2017).
Since debt-induced collapse arise if V PC

b > Vc, Chen et al. (2017) reasons that the
condition (ε1(1 − ρ) − 1)P1 > P2 must hold, where ε1 follows Equation 4.6. Using
this condition, we evaluate values using average maturity on the x-axis, as can be
seen in Figure 5.2. For the full Matlab code to Figure 5.2, see Appendix D.

5.2 Sensitivity Tests and Limitations

In their paper, Chen et al. (2017) do not discuss the sensitivity of their model
parameters at length. But since understanding the sensitivity of model parameters
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Figure 5.1: Figure 4 from page 3940 from Chen et al. (2017).
Shows the critical values of straight debt P1, over various bond mean

maturity rates, ranging from 0.1 to 1.

is important for interpreting the results of any model, we have chosen to dedicate
this section to discussing how the optimal default barrier is impacted by changes in
the input variables. On the subsequent pages that follow, Figures 5.3 to 5.9 illustrate
the relationship between the most important input variables and the optimal default
barrier V NC . In every one of these figures, we have included three different cases,
each case representing a different par value for CoCo bonds P2, while holding the
amount of straight debt constant. Then, by changing the independent variable, we
can observe how a specific input parameter and the use of CoCos impact the optimal
default barrier.

5.2.1 Risk-Free Rate

In Figure 5.3 we can see the relationship between the risk-free rate and the optimal
default barrier. The figure shows that the risk-free rate has a non-linear negative
correlation with the optimal default barrier, where increases in r pushes the barrier
down. In other words, higher interest rates reduces the optimal default barrier and
the likelihood of default. One economic explanation for this relationship is that an
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Figure 5.2: Attempted replication of figure 4 in Chen et al. (2017).
Shows the critical values of straight debt P1, over various bond mean

maturity rates, ranging from 0.1 to 1.

increase in the risk-free rate reduces the value of outstanding debt, thus lowering
the ratio of debt to equity at market value, which in turn reduces the likelihood of
default. This economic result is consistent with the results that Leland (1994) has
found for financially stable companies. Another explanation for this relationship is
that an increase in the risk-free rate would increase interest payments, which would
increase the tax shield. A bigger tax shield would contribute towards reducing the
default risk of the company. However, the positive effects would be marginal, since
the benefits of an increased tax shield are weighed against a higher cost of debt.
Furthermore, Figure 5.3 shows that the impact that the risk-free rate has on the
optimal default barrier is diminishing in nature. A possible explanation for this
tapering effect is that the cost of debt becomes more pronounced the higher the
interest rate grows, which counterbalances the ratio of debt to equity by reducing
the equity value. However, Leland (1994) also point out that "junk-bonds" exhibit
a special relationship that is different from "normal" bonds, where instead increases
in the risk-free rate lead to increases in debt value. Furthermore, the relationship
between r and the optimal default barrier appears indifferent to the par value of
CoCos used, which can be inferred from the practically constant distance between
the curves across the entire x-axis. Another interesting observation is that issuing
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Figure 5.3: Shows the impact of risk-free rate r on the optimal
default barrier. Created using an interval ranging from 0.01 to 0.15
for r, while holding all other variables constant as given in table 5.1.

The different lines represent CoCos with different par values.

CoCos has an adverse impact on the optimal default barrier, since more CoCos result
in a higher optimal default barrier. A possible explanation for this is that CoCos
burden the company in their day-to-day operations, which makes the likelihood of
default rise. But this may be a premature conclusion, since we added CoCos without
withdrawing any straight debt in exchange for this increased debt load. At the very
least however, this suggests that reducing the likelihood of default should not be the
primary reason for issuing CoCos.

5.2.2 Payout Rate

The payout rate is calculated as the fraction of a company’s total assets that goes
towards paying all dividends and interest coupons, and is expressed as a weighted
percentage of outstanding debt and equity (Leland et al., 1996). We assume that
Chen et al. (2017) uses the same definition as Leland et al. (1996), since they claim
they are, although their description of the payout rate is very simple; Chen et al.
(2017) describe the payout rate as "total dividends and interest payments". If a
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company has a high δ, it implies that they are spending a greater portion of its
funds to finance interest and dividend payments than a company with a low δ.
Figure 5.4 shows that the correlation between the payout rate, δ and the optimal
default barrier is strictly positive for the entire range. One explanation for this is
that the bigger the proportion of funds that are directed towards paying creditors
and shareholders, the less will the company have left to finance its other needs,
thus increasing the probability of default, which subsequently raises the optimal
default barrier. If we then compare the scenarios with different values for P2, we
see that CoCos adversely impact the optimal default barrier for the tested range,
similar to the case of the risk-free rate. Similar to the risk-free also, is that the par
value of CoCos does not have a noteworthy impact on the relationship between the
dependent and independent variable in the given range.

Figure 5.4: Shows the impact of payout rate δ on the optimal
default barrier. Created using an interval ranging from 0.01 to 0.1
for δ, while holding all other variables constant as given in table 5.1.

The different lines represent CoCos with different par values.
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Figure 5.5: Shows the impact of jump intensity η on the optimal
default barrier. Created using an interval ranging from 0.01 to 10
for η, while holding all other variables constant as given in table 5.1.

The different lines represent CoCos with different par values.

5.2.3 Firm-Specific Jump Exponent

Figure 5.5 shows the optimal default barrier plotted against changes in η. η denotes
the magnitude of jumps in the jump process. Since we only consider negative jumps,
a higher η represents a stronger negative jump. In Figure 5.5, we can see that η
is positively correlated with the value of the optimal default barrier, where higher
values of η results in a preference for declaring bankruptcy earlier and at higher
firm values. Moreover, Figure 5.5 also shows that the relationship is non-linear and
that the impact of additional units of η have marginally less impact on the optimal
default barrier as η grows. This relationship has a solid economic explanation, which
is that sharp negative jumps are expected to be more crippling to a firm’s livelihood
than small jumps. Hence, default is more imminent, the bigger the jumps are. The
flattening of the curve can also be plausibly explained. Since the impact of jumps
of high orders, such as η = 7 or η = 9 is already so devastating to the firm, the
difference between them become marginalized. In contrast, the difference between
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going from a scenario of no jumps, η = 0, to jumps, η = 2, drastically constrains a
firm’s ability to operate, leading to a sharp increase in the optimal default barrier.
In Figure 5.5, we can also see that issuing CoCos has an increasing impact on the
optimal default barrier, but that the gravity of this impact depends on the size of
η. While issuing CoCos has a sizable impact on the optimal default barrier for high
values of η, the impact is practically negligible for small values of η, although it still
increases the barrier. Rather than explaining this phenomenon through η however,
a more plausible explanation would be that the impact of CoCos depends on the
solvency of the firm at the time of issuance. On the one hand, if the firm is highly
solvent, the added debt burden of issuing CoCos is not very significant. On the
other hand, if the firm is already close to insolvency, any added debt burden from
CoCos will be alarming as the company might collapse under the debt.

5.2.4 Jump Intensity

Figure 5.6: Shows the impact of jump intensity λ on the optimal
default barrier. Created using an interval ranging from 0.01 to 1 for
λ, while holding all other variables constant as given in table 5.1.

The different lines represent CoCos with different par values.
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Figure 5.6 illustrates the relationship between the jump intensity λ and the optimal
default barrier. The jump intensity is the frequency of jumps within a time interval,
in this case a year. Thus, a smaller λ signifies fewer jumps per time interval compared
to a bigger λ. As can be seen from Figure 5.6, higher λ correlates with a higher
optimal default barrier, implying that more frequent jumps lead to a higher optimal
default barrier and a more imminent threat of bankruptcy. One possible explanation
for this is that more jumps increase the uncertainty and the likelihood for a fatal
mishap that bankrupts the company, thus increasing the optimal default barrier for
the company. Furthermore, Chen et al. (2009) find a negative correlation between
the optimal debt to equity ratio and λ, which would support our findings here, since
lowering the debt to equity ratio means to wind down the leverage and is a prudent
response to dealing with a more risky environment with a greater likelihood for
default. Figure 5.6 further shows that issuing CoCos increases the optimal default
barrier and that its potency seems to be linked to the value of the optimal default
barrier; if the barrier is low, issuing CoCos have a lesser impact, if the barrier is
high, issuing CoCos has a more significant impact. Again, this is consistent with
what was observed on the previous figures in this section.

5.2.5 Volatility

Figure 5.7 shows how the optimal default barrier changes with changes in volatility
σ. From the figure, we can see that σ initially exhibits a positive correlation with
the optimal default barrier, but it peaks at around σ = 0.23, after which it turns
into a relationship with negative correlation. We could explain the first part of the
figure by using a similar argument as when we explained the relationship between λ
and the optimal default barrier, namely that increasing volatility is linked to more
uncertainty and a higher likelihood of default, thus pushing up the optimal default
barrier. Chen et al. (2009) find that increasing the volatility leads to lower optimal
debt to equity ratios, i.e. a lower optimal leverage. Lowering the optimal leverage
implies that the current the financial situation of the company has worsened, which
is consistent with a higher optimal default barrier. However, this only helps explain
the part before the peak and not the downward sloping relationship after the peak.
Here we concede that there is not always a realistic explanation, simply due to
model design; just like how the Black-Scholes formula lacks a sound explanation for
the "volatility smile" (Kou, 2002). The impact of issuing CoCos on the other hand
exhibits the same negative impact on the optimal default barrier as before. In other
words, CoCos increase the optimal default barrier, more if the barrier is high and
less if the barrier is low, which could be explained using the same line of reasoning
offered for the other parameters; namely that issuing debt when company solvency
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Figure 5.7: Shows the impact of volatility σ on the optimal default
barrier. Created using an interval ranging from 0.01 to 1 for σ, while
holding all other variables constant as given in table 5.1. The different

lines represent CoCos with different par values.

is poor has a more severe negative impact on the firm than when company solvency
is sound.

5.2.6 Recovery Rate, α

In the event of bankruptcy, α represents the recovery rate, which is the portion
of a firm’s assets that is left after subtracting bankruptcy and liquidation costs.
Conversely, (1 − α) represents the bankruptcy and liquidation costs. Figure 5.8
shows how changes in α affect the optimal default barrier, everything else unchanged.
Since α is found in the range 0 ≤ α ≤ 1, the figure tells us that the optimal default
barrier always increases with increases in α. The positive correlation between the
recovery rate and the optimal default barrier can be explained by investors having
a greater risk appetite when more is recovered upon default. The higher the α, the
better off are creditors and shareholders in the event of a default, which incentives
shareholders to liquidate the company earlier. Their comfortability with the idea of
default suggests that a greater leverage is more optimal, which consequently raises
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Figure 5.8: Shows the impact of recovery rate α on the optimal
default barrier. Created using an interval ranging from 0.01 to 1 for
α, while holding all other variables constant as given in table 5.1.

The different lines represent CoCos with different par values.

the stakes and the optimal default barrier. In fact, α the optimal default barrier
increases at an exponential rate with increases in α, which can be seen from the
convex shape of the curve in Figure 5.8. This result is also in line with the results
of Chen et al. (2009), who find that the optimal debt to equity ratio is an increasing
function of α, which signals that higher α incentives a higher leverage and risk.
Furthermore, issuing CoCos has an impact on the optimal default barrier, which is
consistent with previous results in this section.

5.2.7 Maturity, m

Figure 5.9 plots the maturity against the optimal default barrier and we can see that
there is a positive relationship. This indicates that the use of longer maturity bonds
makes declaring bankruptcy sooner a more viable option. One possible explanation
for this is that with longer maturity bonds, coupon payments must be made for
a longer period time, thus keeping the firm leveraged for a longer period of time.
Furthermore, the marginal increase in the optimal default barrier per one more unit
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Figure 5.9: Shows the impact of average debt maturity m on the
optimal default barrier. Created using an interval ranging from 0.01
and 10 for maturity, while holding all other variables constant as
given in table 5.1. The different lines represent CoCos with different

par values.

of maturity decreases over time, which can be explained by a limit to the downside of
maturity. After all, a bond with a 100-year maturity and a 500-year maturity bond
may have different maturities on paper, but in practice, the company is unlikely to
outlive either bond. Hence, it makes sense that the additional impact that maturity
has on the optimal default barrier tapers off as maturity grows very large. In Figure
5.9, we can also see that the impact of issuing CoCos depends on the value of the
optimal default barrier, which consistent with previous results, is explained through
the impact of additional debt on the company’s current state of solvency.

5.2.8 Limitations

We have shown that changing any of the input parameters δ, α, λ, η, r, m or σ will
change the optimal default barrier in a non-linear way. Our results indicate that
the optimal default barrier is an increasing function of the recovery rate α, the firm-
specific jump exponent η, the payout rate δ, the maturity m, the jump intensity
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λ and in some parts of the volatility σ. We have also found that the optimal
default barrier is a decreasing function of the risk-free rate r, and in some parts of
the volatility σ. A general trend we have found on the topic of CoCos is that the
increasing effect that CoCos has on the optimal default barrier depends on the value
of the barrier. The effect is smaller when the optimal default barrier is smaller, and
the effect is greater when the optimal default is bigger. In this chapter, we have not
compared how CoCos fare in comparison to straight debt in terms of affecting the
optimal default barrier, since we have kept the amount of straight debt in our models
constant. This was done in order to look at the full impact of CoCos, both as a debt
instrument and its conversion mechanic. In the next chapter however, we use a more
realistic scenario, which is to replace some straight debt with CoCos, thus focusing
on the conversion mechanic’s impact on the optimal default barrier. But for now
we can at least conclude that the impact that CoCos have on the optimal default
barrier is not insignificant and that the potency of using CoCos to prevent default
may be overshadowed by its properties as a debt instrument and its fixed coupon
payments. Moreover, the values of the input parameters can take a host of different
values, as can be seen in Figures 5.3 to 5.9, implying that choosing different values
would produce different curves and numerical results. If such changes are made, the
general conclusions drawn here may also be subject to change. Since altering any
parameter will change the numerical outcome of our models in a non-linear fashion,
the key takeaways and contributions of this section of the thesis are on the subject
of broad trends between key model parameters and not necessarily exact values.
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6. Application on Swedish banks

In this chapter, we apply the model that we used in Chapter 5 on real data belonging
to the four biggest Swedish banks: Nordea, Swedbank, Handelsbanken and SEB.
Since we use a similar process as Chen et al. (2017), we first explain the data
collection process and assumptions made by Chen et al. (2017) in Section 6.1. Later,
in Section 6.2, we showcase the development of the optimal default barrier between
January 2005 and December 2011 for each of the four banks.

6.1 Data Collection and Processing

In their paper, Chen et al. (2017) apply their model on 17 major American bank
holding companies to estimate how CoCos might have potentially affected the sol-
vency of those banks during the financial crisis. Chen et al. (2017) use quarterly data
from 2004 to 2011 and divide the debt of each bank into three categories: deposits,
short-term debt and long-term debt, which are sorted in order of seniority. How-
ever, they do not distinguish between long-term debt and subordinated debt due to
complications in doing so reliably. They then proceed to calculate the average debt
maturity for each debt category. The average debt maturity is used to identify the
US treasury bill or bond with the closest maturity, which they in turn use as a proxy
for the risk-free rate for that debt type. Furthermore, Chen et al. (2017) calculate
the total payout rate δ each year, based on how much a bank paid in interest and
dividends in that year. Jump parameters are not readily available, so Chen et al.
(2017) use jump intensities λ of 0.1 and 0.3, and jump sizes η as an integer between
5 and 10. For unavailability reasons also, coupons are set to 3 percentage points over
the risk-free rate, while the funding benefits are kept the same as in the base case
at 35%. Chen et al. (2017) also linearly interpolate average debt maturity between
the annual reports and the other variables between the quarterly reports to obtain
weekly observations and argue that weekly observations lead to less abrupt changes
at the end of each quarter.
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The Swedish financial market is a lot smaller than that of the U.S., and although
our sample contains the major players, it still only comprises four banks: Handels-
banken, Nordea, SEB and Swedbank. These four banks were the largest banks in
Sweden during the tested time interval, and still are at the time of writing. Our
sampling period begins in 2005 and ends in 2011. Our data is primarily retrieved
from the Bloomberg terminal and the banks’ respective annual reports. For values
that are not readily available, such as η and λ, we make the same assumptions as
Chen et al. (2017) to make comparison easier. Just like Chen et al. (2017), we start
by calculating the average debt maturities for each bank, based on information on
outstanding debt found in the annual reports, which we then interpolate to obtain
weekly observations. For each week we get four average debt maturities, one for
each bank, and we match them with the closest Swedish government bond yield
rate among the 2-year, 5-year, 7-year and 10-year Swedish government bonds to use
as our risk-free rate. Since our definition of the payout rate follows the definition by
Leland et al. (1996), it is given as follows:

Payout rate = Dividends

Equity
+ Interest expenses

Debt

In the case of the payout rate, we linearly interpolate quarterly data into weekly
observations. For volatility, we use the 10-day trailing volatility at the end of ev-
ery week for each bank to reflect the weekly volatility in any given week - it is the
shortest interval option that Bloomberg provides. In the case of CoCo bond coupon
rates c2, we adopt the same approach as Chen et al. (2017) and use r + 3% as the
c2 rate, since no banks had CoCos during the sampled data period. However, for
straight debt coupon rates c1, we opt to use a weighted average of coupons as pre-
sented in Bloomberg, rather than an estimated fixed value like Chen et al. (2017),
for higher accuracy. This setup works out well, since it leads to c2 > c1, implying
that CoCo bond holders receive bigger coupon payments than senior debt holders,
which is plausible. Moreover, we obtain weekly observations for any straight debt
outstanding P1 of each bank. Chen et al. (2017) use two different values of λ to
test their model, λ = [0.1, 0.3]. We choose to iterate using λ = 0.3 only, firstly
because this is the base case value, as shown in Table 5.1, and secondly because
using λ = 0.3 yields fewer outliers than using λ = 0.1. Appendix C contains a more
comprehensive justification for this decision. Finally, we diverge from Chen et al.
(2017) in the selection of a value for η; rather than using a η value in the interval
{5, 10} like Chen et al. (2017) do in their application, we use η = 4, which is the
base case value of Chen et al. (2017). Increasing η at higher values exerts little
additional pressure on the optimal default barrier, due to diminishing returns of η,
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which we showed in Figure 5.5. Thus, choosing η = 4 does not incur any drastic
changes to our results compared to say η = 5.

Calculating the optimal default barrier is done using Equation (4.7). Equation
(4.7) require roots, which we calculate using the first method listed in Appendix B,
and insert them into Equation (4.6) and Equation (4.8) to obtain values for ε1 and
ε2. Given that the optimal default barrier is (V NC

b = ε1P1 + ε2P2), we are able to
calculate it using ε1 and ε2. We repeat this procedure for every week from January
2005 to December 2011 using the weekly values for r, m, δ, σ, c1 and c2. In order
to compare how CoCos impact the optimal default barrier in the debt mix we set
P2 ∈ {0%, 5%, 10%, 20%} and reduce the amount of P1 proportionally whenever
we increase P2 to keep the total debt level unchanged. When P2 = 0% we get V PC

b

from Equation (4.5), while if P2 assumes any value above 0, for example P2 ∈ {5%,
10%, 20%} we get different levels of V NC

b .

6.2 Presentation of Results

Figures 6.1 to 6.4 illustrate how the optimal default barriers of the Swedbank, Han-
delsbanken, SEB and Nordea changes every week from January 2005 to December
2011. A common feature for all graphs is the general development in each graph;
the optimal default barrier typically becomes more volatile during the financial cri-
sis, dips somewhere in early 2009 and peaks sometime in early 2011. The banks in
our dataset decrease their debt levels during the financial crisis. Since the optimal
default barrier of a bank is calculated based on its own total debt, reductions in
either P1 or P2 are interpreted as lowered debt burdens, which consequently lowers
the value of the optimal barrier. This helps explain the drop in the optimal default
barrier during the financial crisis. Another contributing factor is the rise in volatil-
ity during the financial crisis, which is shown in Figures 6.5 to 6.8. An increased
volatility contributes to lowering the optimal default barrier for high values of σ,
which we showed in Figure 5.7. After the financial crisis, we can observe a rise in the
optimal default barriers for all banks in Figures 6.1 to 6.4, which begins somewhere
around year 2010. A rise in the barrier implies a greater likelihood of default and
is primarily explained by an increased debt burden among the banks. During this
period, banks scrambled to secure financing through additional borrowing, which
subsequently drove up their debt levels. Lower volatility also contributes to increas-
ing the optimal default barrier at lower values of σ, as we established in Subsection
5.2.5 and showed in Figure 5.7.
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Figure 6.1: Shows the weekly changes in the optimal barrier of
Swedbank with varying amounts of CoCos in the time interval 2005-
2011. A new barrier is calculated every week from the equity holders’
point of view. The different lines represent 4 different combinations
of debt and CoCos, from using 0% CoCos and up to 20%. V PC

b

shows the optimal default barrier post conversion which implies that
P2 = 0, while the other lines represent different levels of V NC

b .

Figures 6.1 to 6.4 also show how the use of CoCos affect the optimal default barrier
by changing the debt mix. In all figures, including more CoCos - indicated by a
higher portion of P2 - leads to a higher optimal default barrier. This relationship
is particularly visible in the years before the financial crisis. Rather than issuing
CoCos anew, like we did in Chapter 5, we replace straight debt with CoCos here.
Issuing CoCos without switching out other debt allowed us to study the effects of
CoCos by itself in sensitivity analysis. Now we prefer to study the effects of CoCos
when they are replaced by straight debt, which is arguably more realistic, since
nothing else is added, only the debt type differs. Still, our result here turn out
to be consistent with our findings in Chapter 5, which showed that issuing CoCos
generated a higher optimal default barrier. We can also see from Figures 6.1 to 6.4
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Figure 6.2: Shows the weekly changes in the optimal barrier of
Handelsbanken with varying amounts of CoCos in the time interval
2005-2011. A new barrier is calculated every week from the equity
holders’ point of view. The different lines represent 4 different com-
binations of debt and CoCos, from using 0% CoCos and up to 20%.
V PC
b shows the optimal default barrier post conversion which implies
that P2 = 0, while the other lines represent different levels of V NC

b .

that during and following the financial crisis, increasing the proportion CoCos has
a significant smaller effect on the optimal default barrier, than it did before. The
diminished negative impact of CoCos on the likelihood of default was also observed
in Chapter 5 and was then attributed to the greater solvency of banks, which made
the added debt burden of CoCos manageable. We use a similar line of reasoning to
argue that the lower debt burden the banks had during the crisis allowed them to
more easily overcome the bigger coupon payments demanded by CoCo bond hold-
ers. Moreover, the option to convert CoCos to equity in the case of financial distress
also helps explain the close-to-zero impact that CoCos seemingly has on the optimal
default barrier during the crisis.

The results from our model application on real bank data suggests that the use
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Figure 6.3: Shows the weekly changes in the optimal barrier of
SEB with varying amounts of CoCos in the time interval 2005-2011.
A new barrier is calculated every week from the equity holders’ point
of view. The different lines represent 4 different combinations of debt
and CoCos, from using 0% CoCos and up to 20%. V PC

b shows the
optimal default barrier post conversion which implies that P2 = 0,

while the other lines represent different levels of V NC
b .

of CoCos tends to have a negative impact on the optimal default barrier, but that
this negative effect diminishes during the financial crisis. In their study, Chen et al.
(2017) find that CoCos could have had a significant positive impact on the large
bank holding companies during the financial crisis through incentive effects. While
our negative results may seem to be at odds with the positive results of Chen et al.
(2017), that is not necessarily true. Chen et al. (2017) calculate the reduction in
debt overhang costs that result from the banks’ increased ability to absorb losses to
show that issuing CoCos prior to the crisis could have incentivized shareholders to
inject more equity and increased the loss absorption capacity of the banks in ques-
tion. Debt overhang costs are the costs associated with a company with too much
debt and consequently are unable to pursue attractive investment opportunities.
Even if a company is profitable, debt overhang can discourage equity holders from
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Figure 6.4: Shows the weekly changes in the optimal barrier of
Nordea with varying amounts of CoCos in the time interval 2005-
2011. A new barrier is calculated every week from the equity holders’
point of view. The different lines represent 4 different combinations
of debt and CoCos, from using 0% CoCos and up to 20%. V PC

b

shows the optimal default barrier post conversion which implies that
P2 = 0, while the other lines represent different levels of V NC

b .

taking on projects, since more of the profit ends up at the debt holders table. The
reduction in debt overhang that Chen et al. (2017) observe serves as an indication
of whether issuing CoCos would have increased the motivation of investors to put in
more capital. Although our results show that the contribution from CoCos is at best
no negative impact, the incentive effects that are gained through reduced overhang
may actually make the net impact of CoCos positive, all things considered. But
even if the benefits of having CoCos overshadow the drawbacks during a crisis, one
must weigh this benefit against the drawback of having to operate with an increased
likelihood of default during non-crisis times.
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Figure 6.5: Shows the 10-day trailing volatility at weekly frequen-
cies between the period 2005-2011 for Swedbank.

Figure 6.6: Shows the 10-day trailing volatility at weekly frequen-
cies between the period 2005-2011 for Handelsbanken.
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Figure 6.7: Shows the 10-day trailing volatility at weekly frequen-
cies between the period 2005-2011 for SEB.

Figure 6.8: Shows the 10-day trailing volatility at weekly frequen-
cies between the period 2005-2011 for Nordea.
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7. Conclusion

In this thesis, we study the sensitivity of the optimal default barrier to changes in its
input parameters and issuing CoCos. Our findings suggest that the optimal default
barrier may vary greatly depending on the input parameters used. Furthermore, our
sensitivity analysis shows that issuing CoCos has an adverse effect on the optimal
default barrier and the likelihood of default, but that the potency of this adverse
effect depends on the value of the optimal default barrier. We also examine how the
solvency of the Swedish banks would have been impacted if the banks included Co-
Cos in their debt mix. Consistent with the results from our sensitivity analysis, we
find that including CoCos in the debt mix of the banks would increase their optimal
default barriers. Although the optimal default barrier becomes higher, it does not
tell us whether or not the new barrier is better or worse for the shareholders. Our
model presents a value where the shareholders equity is maximized in an expected
sense, so even if the barrier is higher, we can not tell whether the shareholder value
is higher or lower than before. In our study, we also find that the adverse effect
of CoCos diminishes during the financial crisis, implying that the burden of paying
higher coupons is negated by the CoCo bond’s conversion mechanic. The findings
in our study suggest that the use of CoCos adversely impacts the likelihood of de-
fault, which is particularly noteworthy during non-crisis times. This result however,
does not discredit the utility of CoCos as a bail-in instrument, nor does it deny the
existence of any incentive effects that Chen et al. (2017) proposes.

For future research, it would be interesting to study the sensitivity of the optimal
default barrier by changing two or more variables simultaneously to better under-
stand the interaction between input parameters. Since we found the use of CoCos
to be detrimental to the default likelihood outside of crises situations, it would also
be interesting to make a longitudinal cost-benefit analysis, to compare the costs to
society if all banks used CoCos versus if CoCos were not used at all. Finally, a
study using market values rather than book values of debt could provide meaningful
insights to the results of our study, since the markets lowered the value of all debt
during the crisis, as a result of distrust for standing credit ratings.
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Appendix A: Model Discussion

A.1 The G(x) Equation

The original double jump diffusion model presented in Kou (2005) looks as follows:

G(x) =
(
r − δ − 1

2σ
2 − λξ

)
x+ 1

2σ
2x2 + λ

(
pη1

η1 − x
+ qη2

η2 + x
− 1

)

where ξ = pη1
η1−1 + qη2

η2+1 − 1 and p is the probability for upside jumps and q is the
probability for downside jumps. Since we are only interested in the downside jumps
that can potentially cross the optimal default barrier, V ∗b , we set q = 0 and q = 1.
This yields the equation (4.7), also shown below:

G(x) =
(
r − δ − 1

2σ
2 − λ( η

η + 1 − 1)
)
x+ 1

2σ
2x2 + λ

(
η

η + x
− 1

)
= β

Where β is either β = r or β = r + m depending on whether we are solving for γr
or γr+m). Lemma 2.1 in Kou and Wang (2003) suggest that the above equation has
exactly four real roots, two negative and two positive, denoted as follows: γ1,β, γ2,β,
−γ3,β, −γ4,β. Moreover, the four roots are related to η1 and η2 in the following way:

0 < γ1,β < ηd < γ2,β <∞, 0 < γ3,β < ηu < ηu < γ4,β <∞

The roots to the equation are inputs to ε1 and ε2, which in turn are inputs to find
the optimal default barrier. The method we use to find the roots is outlined in
Appendix B.

A.2 Inconsistency between Chen et al. (2017) and
Kou (2005)

Most of the derivations on the G(x) formula were done in Kou (2005), and Chen
et al. (2017) only provide the final formula in its appendix and refer to Kou (2005)
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for details. However, the calculations provided in the appendix of Chen et al. (2017)
are not exactly the same as the ones that Kou (2005) provide. To clarify, we opted
to follow the calculations and formulas provided in Kou (2005). The reason being
that developing the formula is a part of the research in Kou (2005), whereas Chen
et al. (2017) uses it at one point for some of their research. For this reason, we
believe that the formula provided in Kou (2005) is less likely to be wrong.

The difference in question concerns a missing variable, x; below is a comparison
of the two formulas.

Formula in Chen et al. (2017):

G(x) =
(
r − δ − 1

2σ
2 − λ( η

η + 1 − 1)
)

+ 1
2σ

2x2 + λ

(
η

η + x
− 1

)
(A.1)

Formula in Kou (2005):

G(x) =
(
r − δ − 1

2σ
2 − λξ

)
x+ 1

2σ
2x2 + λ

(
pη1

η1 − x
+ qη2

η2 + x
− 1

)

When we are only interested in down-side jumps we can set p = 0, q = 1, η2 = η,
η1 = 0 and substitute ξ = pη1

η1−1 + qη2
η2+1 − 1, and then we can simplify as follows:

G(x) =
(
r− δ− 1

2σ
2−λ( pη1

η1 − 1 + qη2

η2 + 1 −1)
)
x+ 1

2σ
2x2 +λ

(
pη1

η1 − x
+ qη2

η2 + x
−1

)

G(x) =
(
r − δ − 1

2σ
2 − λ(0 + η2

η2 + 1 − 1)
)
x+ 1

2σ
2x2 + λ

(
0 + η2

η2 + x
− 1

)

G(x) =
(
r − δ − 1

2σ
2 − λ( η

η + 1 − 1)
)
x+ 1

2σ
2x2 + λ

(
η

η + x
− 1

)
(A.2)

After simplifying the equation from Kou (2005), we obtain Equation (A.2), which
is identical to Equation (A.1) provided by Chen et al. (2017) in every way except
for a missing x. Since the roots are ultimately used to calculate the optimal default
barrier, any error could bear a significant impact on the results.
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Appendix B: Finding Roots

In their appendix, Kou (2005) outlines two analytical methods for finding the roots
of Equation (4.7) are provided. We attempted to solve the roots using both methods
at first, but were only successful with the first method and chose to proceed with the
roots obtained from using the first method. Since the roots of the equation should
be the same regardless of which method is used, our results should not have been
compromised in any way. For the sake of transparency however, we have listed both
methods here; the second method can also be found in the appendix of Kou (2005).
Equation (4.7) has again been listed below as Equation (B.1).

G(x) =
(
r − δ − 1

2σ
2 − λ( η

η + 1 − 1)
)
x+ 1

2σ
2x2 + λ

(
η

η + x
− 1

)
= β (B.1)

B.1 Method 1

Kou et al. (2003) finds that equation B.1 has four real roots and Kou (2005) provide
the method to solve these roots in their Appendix B. Furthermore, they show that
since Equation (B.1) is essentially a quartic equation and its roots can be found
by rearranging the terms, which then show that the roots of the equation should
satisfy:

ax4 + bx3 + cx2 + dx+ e = 0

where

a = σ2

b = 2µ− σ2(η1 − η2)

c = −σ2η1η2 − 2µ(η1 − eta2)− 2λ− 2α,

d = −2µη1η2 − 2λp(η1 + η2) + 2λη1 + 2α(η1 − η2)

e = αη1η2
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and

µ = r − δ − 1
2σ

2 − λξ

ξ = η

η + 1 − 1

B.2 Method 2

The second method presented by Kou (2005) is derived from the first method and
was developed by Lodovico Ferrari back in 1540. A more in-depth discussion about
the formulas provided in Kou (2005) can be found in Borwein and Erdelyi (1995)
and Boyer and Merzbach (1991). However, we were unsuccessful attempting to use
this method to find the roots to (B.1); there is often an imaginary root when rea-
sonable input parameters are used. After evaluating this model over different input
variables we found that to avoid imaginary values we would need to use nonsensical
values for variables such as σ way above 1. Similar results was obtained for other
variables and this made us decide to not use this model even though it, if it worked,
would have provided quicker calculations.

The method proposed by Kou (2005) is outlined below in case a reader wants to
attempt to apply this method instead. The four roots to equation (B.1) are denoted
as β1, β2, β3 and β4 respectively:

β1 = − b

4a + p1 − p̃2

2 , β2 = − b

4a + p1 + p̃2

2 , β3 = b

4a + p1 − p2

2 , β4 = b

4a + p1 + p2

2
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where

B0 = c2 − 3bd+ 12ae

B1 = 2c3 − 9bcd+ 27ad2 + 27b2e− 72ace

B2 =
√
B2

1 − 4B3
0

B3 = b2

4a2 −
2c
3a

B4 = b2

2a2 −
4c
3a

B5 = d
bc

a2 − 8d
a
−
(
b

d

)3

B̃ = 3
√
B1 +B2

C0 =
3
√

2B0

3aB̃

C1 = B̃

3 3
√

2a
p1 =

√
B3 + C0 + C1

p2 =
√
B4 − C0 − C1 −

B5

4p1

p̃2 =
√
B4 − C0 − C1 + B5

4p1

Note that the β used to represent roots here are unrelated to the β used in G(x) = β

(i.e. in equation (B.1)):
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Appendix C: Selection of Lambda

Figures C.1 to C.4 plots the optimal default barriers of the four Swedish banks from
the beginning of 2005 to the end of 2011 using λ = 0.1 and λ = 0.3. A persistent
characteristic in the graphs, is that λ = 0.1 produces more volatile barriers than
λ = 0.3. Moreover, there are occasions when using λ = 0.1 produces nonsensical
results that lack causal explanations; such as the sudden spike in Figure C.1 around
late 2005, which does not coincide with any evidence of heightened financial stress
or likelihood of default for Swedbank. Less evident but similar jumps in the optimal
default barrier can be observed in the other figures around that time. We can also
see that the general trend maintains a fairly similar shape for both values of λ in all
graphs, and thus argue that it is more appropriate to use λ = 0.3 in Section 6.2.

Figure C.1: Displays the monthly change in the optimal default
barrier of Swedbank between 2005 and 2011, for λ = 0.1 and λ = 0.3.
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Figure C.2: Displays the monthly change in the optimal default
barrier of Handelsbanken between 2005 and 2011, for λ = 0.1 and

λ = 0.3.

Figure C.3: Displays the monthly change in the optimal default
barrier of SEB between 2005 and 2011, for λ = 0.1 and λ = 0.3.
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Figure C.4: Displays the monthly change in the optimal default
barrier of Nordea between 2005 and 2011, for λ = 0.1 and λ = 0.3.
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Appendix D: Matlab Code

The following Matlab-code is used to produce Figure 5.2:

%% Fig4
% Base case parameters
rho =0.05;
P2=5;
de l tau =0.01;
lambda=0.3 ;
r =0.06;
sigma=0.08;
eta=4;
eta1=0;
eta2=4;
k1=0.35;
a l f a =0.5 ;
m=[10 : −0 . 1 : 1 ] ;
c1 =0.09;
p=0;
q=1;

c1 = [ 0 . 0 1 : 0 . 0 2 : 0 . 1 9 ] ;
f o r j =1:1 : l ength ( c1 )

f o r i =1:1 : l ength (m) ;

%Finding roo t s "gamma_r"
x i=p∗ eta1 /( eta1−1)+q∗ eta2 /( eta2+1)−1;
mu=r−deltau −0.5∗ sigma.^2− lambda∗ x i ;
a=(sigma . ^ 2 ) ;
b=2∗mu−(sigma .^2 )∗ ( eta1−eta2 ) ;
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c=−(sigma .^2)∗ eta1 ∗ eta2−2∗mu∗( eta1−eta2 )−2∗lambda−2∗r ;
d=−2∗mu∗ eta1 ∗ eta2−2∗lambda∗p∗( eta1+eta2 )+2∗ lambda∗ eta1+2∗r ∗( eta1−eta2 ) ;
e=2∗r∗ eta2 ∗ eta1 ;
func=[a b c d e ] ;
s o l t e s t_ r=roo t s ( func ) ;
so lu t i on_r=−1∗s o r t ( s o l t e s t_ r ) ;

%Finding roo t s "gamma_rm"
mu2=r−deltau −0.5∗ sigma.^2− lambda∗ x i ;
a2=(sigma . ^ 2 ) ;
b2=2∗mu2−(sigma .^2 )∗ ( eta1−eta2 ) ;
c2=−(sigma .^2)∗ eta1 ∗ eta2−2∗mu2∗( eta1−eta2 )−2∗lambda−2∗( r+m( i ) ) ;
d2=−2∗mu2∗ eta1 ∗ eta2−2∗lambda∗p∗( eta1+eta2 )+2∗ lambda∗ eta1+2∗( r+m( i ) )∗ ( eta1−eta2 ) ;
e2=2∗( r+m( i ) )∗ eta2 ∗ eta1 ;
func=[a2 b2 c2 d2 e2 ] ;
so l test_rm=roo t s ( func ) ;
solution_rm=−1∗s o r t ( so ltest_rm ) ;

%Eps i lon from appendix o f Chen et a l . (2017)
ep s i l on1 =(((( c1 ( j )+m( i ) ) / ( r+m( i ) ) )∗ solution_rm (1)∗ solution_rm (2)−(( k1∗c1 ( j ) )/ r )∗ so lu t i on_r (1)∗ so lu t i on_r ( 2 ) ) / . . .

((1− a l f a )∗ ( so lu t i on_r (1)+1)∗( so lu t i on_r (2)+1)+( a l f a )∗ ( solution_rm (1)+1)∗( solution_rm (2)+1) ) )∗ ( ( eta+1)/ eta ) ;

P1( j , i )=P2/( ep s i l on1 ∗(1− rho )−1);

%We are only i n t e r e s t e d in numbers in the range 0 to 100 .
i f P1( j , i ) < 0 ;

P1( j , i )=nan ;
end

end
end

p lo t (m,P1 ( 1 , : ) , ’ : ’ ,m, P1 ( 2 , : ) , ’ : ’ ,m, P1 (3 , : ) , ’ − ’ ,m, P1 (4 , : ) , ’ − ’ ,m, P1 (5 , : ) , ’ − ’ ,m, P1 ( 6 , : ) , ’ − . ’ ,m, P1 ( 7 , : ) , ’ − . ’ ,m, P1(8 , : ) , ’−− ’ ,m, P1(9 , : ) , ’−− ’ ,m, P1(10 , : ) , ’−− ’ )
ax i s ( [ 1 10 0 100 ] )
x l ab e l ( ’Mean Maturity 1/m’ )
y l ab e l ( ’ C r i t i c a l P_1’ )
t i t l e ( ’ Attempted r e p l i c a t i o n o f Figure 4 in Chen et a l . 2017 ’ )
s e t ( gca , ’ Xdir ’ , ’ r eve r s e ’ , ’ XTickLabel ’ , [ 1 0 . 9 0 .8 0 .7 0 .6 0 .5 0 .4 0 .3 0 .2 0 . 1 ] )
l egend ( ’ c =0.01 ’ , ’ c =0.03 ’ , ’ c =0.05 ’ , ’ c =0.07 ’ , ’ c =0.09 ’ , ’ c =0.11 ’ , ’ c =0.13 ’ , ’ c =0.15 ’ , ’ c =0.17 ’ , ’ c =0.19 ’ , ’ Location ’ , ’ northwest ’ )
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