
MSc Finance
Graduate School

June 2018

Transition Matrices Conditional on Macroeconomic Cycles:
A Portfolio Stress-Test Application

Jesper Karlsson

University of Gothenburg, School of Business, Economics and Law

Master’s Thesis

Supervised by Stefano Herzel & Alexander Herbertsson



Abstract

Transition matrices show the probabilities of credit rating migrations for a pool
of ratings within a particular industry, geographical area, time-horizon, etc. Regu-
lation, in the form of Basel accords, has opted for standards in banking that among
other techniques use transition matrices, and thus the probability of default, for
internally-based risk-assessment, as well as incorporating the external credit rating
in the capital requirement calculation. We address credit-risk through the lens of
the recent regulation, IFRS 9, which regulates the immediate recognition of losses
on credit for loans entire lifetime if there has been a significant increase in credit-risk
from future uncertainty in the macroeconomic environment. Our chosen approach
is to simulate Markov chains, for credit ratings, conditional on background infor-
mation (cycles in the economy). To quantify the effect on losses for a bank, we
apply the transition matrices to a portfolio of bonds under the CreditMetricsTM-
framework for portfolio stress-tests, and use the pricing formula for defaultable
bonds given by Jarrow, Lando, and Turnbull (1997) to value the portfolio. We use
data on rating changes from Standard & Poor’s for 934 U.S. companies during 1986
– 2018 to estimate the generator matrix, the Weibull-distribution of upgrade and
downgrades, and the transition matrix. We compare simulations with a constant
rate to the empirical results, to analyze how well the Markov property holds for each
rating transition. The rates are then calibrated for macroeconomic cycles in each
company’s simulated Markov chain. We allow for two cycles in the economy (”ex-
pansion” and ”contraction”) and three magnitudes of the cycles (”low”, ”medium”
and ”huge”). The transition matrices are applied to stress-tests in discrete-time
for 10-years forward, under time-homogeneous models that analyzes consecutive
years of economic expansion and contraction, as well as in a Mixture of Markov
chains-model, by Fei et al. (2012), which mixes a Markov chain for business cycles
with the Markov chain for ratings. We find that in scenarios of consecutive years
of economic contraction and expansion respectively, the future loss distribution is
apparent to be affected by the magnitude of the cycles, for those cycles assumed to
be low and huge.
JEL Classification Numbers: G180 G240
Keywords: Risk Management, Migration Analysis, Intensity Models, IFRS 9,
Basel Accords, Portfolio Stress Test
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1 Introduction

The newly adopted accounting standard for recognition and measurement of financial
instruments, IFRS 9, started out in 2008 after massive credit losses due to delayed
recognition of bad loans during the financial crisis of 2008 – 2009. The rule became
effective on January 1, 2018, and aims at preventing some losses on loans, by intro-
ducing a forward-looking model that accounts for coming losses as soon as a financial
instrument is recognized (International Accounting Standards Board (IASB), 2014).
An external credit rating for a company or sovereign debt, are assigned by rating
agencies and measures the default-risk. Corporate debt ratings are either ascribed to
long-term issues, short-term issues or for a company itself, which are called issuer-
ratings. Non-default classes also combine into two broader categories that tell about
the quality of an investment in the obligation. These are often used in studies on
default-risk and are investment grade, usually AAA to BBB−, and speculative (or
junk) grade ratings, from BB down to C (Lannotta, 2010).

The score has a massive impact on the price of debt securities, as a claim’s
value decreases if there is a smaller probability that you get back the investment. Rat-
ing changes from a rating agency occur when the evaluation of the company, regarding
firm-specific or macroeconomic factors, influence the default-risk assessment. When
the assigned rating is meant to only survey during a fixed time, taking into account
macroeconomic conditions, it is a ”point-in-time” rating, whereas the opposite is a
”through-the-cycle” rating that holds through future business cycles. These different
systems govern how rating agencies look at the current and future cycles in credit risk
assessments. In general, meetings between rating agencies and corporate managers,
after an initial rating, occurs at least once a year. For the company, future outlook,
strategies, etc. are re-assessed by the rating agency as a way of providing surveillance
in changing markets. Changes to external credit ratings occur when the rating agency,
for instance during an annual meeting, finds a need to adjust the rated debt instru-
ment, which means they are not periodical (Trueck and Rachev, 2009). Changes to
internally-based ratings, however, occur more often as the rating is assessed on the
balance sheet by the financial institution each year. This delay for rating agencies
means that the external rating lag weeks and sometimes even months after the market
has already adjusted its prices of the debt. Therefore, external credit ratings are the
slowest to change, in comparison to alternatives that use continuous measures of credit
risk (Schönbucher, 2003). In the context of IFRS 9 a discrete-time forward-estimated
transition matrix can estimate expected credit losses from defaults, in the long-term,
which a portfolio of bonds will have throughout its lifetime (Perederiy, 2017).
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An interesting feature of the transition matrix is that it is an ex-post mea-
sure of the performance of the credit ratings given out by rating agencies because it
shows the ability of rating agencies to give out accurate scores that predict changes in
creditworthiness after the period has finished (Estrella and Basel Committee on Bank-
ing Supervision, 2000). Models for transition matrices, where macroeconomic shocks
are assumed to have an impact on the distribution of rating changes, means dealing
with some of the same problems as assigning a ”through-the-cycle” rating, namely an
ex-ante estimation of the probability of default of firms in the future.

This thesis examines the effect of credit rating transition matrices (TM) con-
ditional on economic cycles. The transition matrix can be used as a credit risk man-
agement tool, since it contains credit rating transition probabilities over a period (e.g.
1-year default probabilities). From the viewpoint of banks, which have massive credit
exposure, a change in the forecasted probabilities of rating changes can be used to
assess the effect it has on the bank’s expected losses from default. Bond portfolio
stress-tests of credit ratings that use a structural model, based on the Merton (1974)
model for contingent claims on the firm’s value, assumes that the probability of default
(PD) connects to individual asset returns by the distance-to-default (DD) measure.
An application of this assumption is CreditMetricsTM, which simulates asset values
and assigns new ratings from the defined upper-thresholds using the distance to de-
fault. Any modification of the probabilities of default that is calculated conditional
on cycles in the economy, therefore, leads to changes in the estimated credit losses
of a portfolio of bonds, when using a rating-based pricing formula for risky bonds by
Jarrow Lando and Turnbull (JLT) (1997) (Gupton, Finger and Bhatia, 2007).

The relation between rating and default, in the simplest model, only depends
on the current rating. These processes for the credit ratings are known as Markov
chains, since it is a series of changes to credit ratings with Markov property, which
means that the process is entirely dependent on its current state. The assumption
of transition probabilities during infinite-small times, called intensities, together with
the Markov property leads to the continuous-time Markov chain model for the rating
process, which is the model we use for simulating companies’ ratings (Schönbucher,
2003). In our portfolio stress-test, all the bonds expire in 10-years, which means
Markov chains for each obligor are simulated for 10-years in different cycles (Gupton,
Finger and Bhatia, 2007). We allow the intensities to vary in three magnitudes, in
time, which we call ”low”, ”medium” and ”huge” and we assume that the economy
has the following two states:

• ”contraction”, where upgrades are less common and downgrades are more com-
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mon, and
• ”expansion”, where upgrades are more common and downgrades are less common

for all credit ratings.

The result of our calculated transition matrices from the simulated Markov chains
shows that stronger cycles shift the transition probabilities towards added upgrades
(downgrades) and fewer downgrades (upgrades) in economic expansions (recessions).
These results are in-line with the economic theory about expected credit events in
positive and negative cycles, respectively.

Based on the ideas of Bangia et al. (2002), Frydman and Schuermann (2008)
and Fei et al. (2012), we propose a Mixture of Markov Chains (MMC)-model in
discrete-time that combines a Markov chain for the business cycle to the credit rat-
ing Markov chain. Our first hypothesis is that it is possible to account for future
uncertainty in the macroeconomic environment in discrete-time through a mixture of
Markov chains-model, which mixes the Markov chain for business cycles with the sim-
ulated Markov chains for ratings. The second hypothesis is that the CreditMetricsTM

method can quantify the effect that changes in the probability of default, due to cycles,
have on the losses for a bank holding a broad portfolio of risky zero-recovery bonds.

We organize the rest of this thesis as follows. Section 2 outlines the definitions
of credit ratings, the distance-to-default measure, regulatory framework for a stress-
test on credit ratings and connection between the external rating in a Markov process
to the term-structure to obtain a rating based pricing formula for defaultable bonds.
Section 3 details the rating-models for the analysis, which includes a Markov chain
with constant intensities and time-varying intensities as well as a discrete and time-
homogeneous calculation of the transition matrix several years into the future in a
mixture of Markov chains process for the business cycle. Section 4 is a formalization
of how you apply CreditMetricsTM for simulating the expected losses for a portfolio
of risky bonds, by applying the assumption of distance to default for the underlying
asset values. Section 5 describes the models and data that we use in the analysis, and
the portfolio we use in the simulated stress-test. In Section 6, we present our results
of the empirical transition matrices, the transition matrices from simulated Markov
chains conditional on cycles, and the loss distributions from the portfolio stress-tests,
which applies the probabilities of default that are calculated from the simulations of
Markov chains. We end with the conclusion in Section 7.
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2 Credit Ratings

In the broad perspective of capital markets, the external credit score is known to have
a massive impact on the price of financial instruments and the score is mainly an
assessment of the default-risk for the rated instrument (Lannotta, 2010). A credit
rating does however also take into account some binding conditions of the financial
obligation, such as what the recovery is if a default would occur (S&P, 2018). Credit
scores on corporate debt instruments issued by a rating agency typically consist of
ratings in the form of letter-scale. All three of the most prominent rating agencies,
Moody’s, S&P and Fitch adopts a letter scale for assigning a score on the credit
quality of the obligor, or bond issue. The definitions of the letters-score in each of the
different groups of rating issues, such as long-term or short-term obligations by the
rating agencies are publically available on their respective websites.1 A good external
rating should mean that investments in the company are less risky since they have a
considerable chance of surviving until the end of the contract.

For instance, the definitions for Standard and Poor’s scale maintains that if
you include all the rating modifiers for relative strength in creditworthiness, denoted:
(+) and (−), a scale of 22 different possible ratings (including default) applies for long-
term issuer ratings. Table 1 shows an example of the relative strength modifiers being
assigned to speculative ratings for a company’s long-term issuer rating. The short-
term issuer ratings, on the other hand, adopts a range of eight possible ratings in a
letter-scale, hence the difference in scales depending on the nature of the classification.
By having cleared out the broad definitions that external ratings are supposed to cover

Date Rating
2015–02–02 B+
2011–11–28 BB-
2011–10–27 BB
2010–10–29 BB+
2009–10–28 BB-

Table 1: Observed Rating Migrations for a Corporate Bond. Rating history of Netflix Inc.
long-term issuer ratings from Standard and Poor’s. The table illustrates the frequency of relative strength modifiers
added and removed yearly between 2009 – 2011 to speculative rating BB, and then one the following month. The last
rating migration occurred 31/6 years later and was a downgrade in rating.

on debt markets, we now turn to the calculation of the distance to default measure
and show the relation to the upper-threshold that determines a rating in the basic
structural model by Merton (1974), the regulatory framework necessary to consider in

1Rating Scale Definitions on Rating Agencies Websites
Moody’s: https://www.moodys.com/researchdocumentcontentpage.aspx?docid=PBC_79004
Standard and Poor’s: https://www.standardandpoors.com/en_US/web/guest/article/-/view/
sourceId/504352
Fitch: https://www.fitchratings.com/site/dam/jcr:6b03c4cd-611d-47ec-b8f1-183c01b51b08/
Rating%20Definitions%2021%20March%202018.pdf

https://www.moodys.com/researchdocumentcontentpage.aspx?docid=PBC_79004
https://www.standardandpoors.com/en_US/web/guest/article/-/view/sourceId/504352
https://www.standardandpoors.com/en_US/web/guest/article/-/view/sourceId/504352
https://www.fitchratings.com/site/dam/jcr:6b03c4cd-611d-47ec-b8f1-183c01b51b08/Rating%20Definitions%2021%20March%202018.pdf
https://www.fitchratings.com/site/dam/jcr:6b03c4cd-611d-47ec-b8f1-183c01b51b08/Rating%20Definitions%2021%20March%202018.pdf
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a stress-test under the assumption of distance to default, as well as utilizing a Markov
chain for ratings to price defaultable bonds using the model by Jarrow, Lando and
Turnbull (1997). Specifically, in Subsection 2.1, we formulate the distance to default
measure, which is an industry standard for linking probabilities of default to rating
threshold. Then in Subsection 2.2 we present some empirical research on the effect of
macroeconomic variables on the transition probabilities for credit ratings. Subsection
2.3 explains the regulatory framework for a portfolio stress-test using external credit
ratings as the changing variable. Then in Subsection 2.4 we detail how defaultable
bonds are priced using the Markov model for term-structure by Jarrow, Lando and
Turnbull (1997).

2.1 The Distance to Default

In this subsection, we use the Merton (1974) model, to define an equation for the
probability of default for an individual firm using the distance to default. Loosely
speaking, the rating is intended to represent the PD, which all companies within a
group of classification should face equally (S&P, 2018). The default-time is, however,
non-trivial to model, even over a relative short time-horizon due to unexpected cyclical
effects, and only being observed after it has occurred (Trueck and Rachev, 2009). The
KMV-method by Moody’s for default-risk gives a much quicker credit risk assessment
of a company since this model builds on firms capital structure using a continuous
measure of the distance to default (McNeil, Frey, and Embrechts, 2010). In the Merton
(1974) model, it is possible do derive an explicit expression for the default probability
of a company as function of parameters describing the dynamics of the asset-value of
the firm. More specificaly, using a structural model, e.g. the model by Merton (1974),
a single company’s default will occur when the value of their assets, VT , at time T
falls below the value of their debt, F , or some other specified default-threshold. The
default-threshold’s connection to a normaly distributed value of the firm’s assets are
illustrated in Figure 1. Using a standard geometric Brownian motion model for the
asset value, we can write the default probability as a function of the distance-to-default,
from the evolution of the asset value from time, 0, to, T , as (Chan et al. 2012):

P (τ ≤ T ) = P (VT < F ) = P (V0 exp((µ− σ2

2 )T + σZT ) < F ) = N(−DD(T )), (1)

where
DD(T ) =

ln(V0
F

) + (µ− 1
2σ

2)T
σ
√
T

, (2)
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Figure 1: Illustration of the Distance to Default. Illustration of the default threshold defined on
normally distributed asset-values in CreditMetricsTM (from Gupton, Finger and Bhatia, 2007, p.37).

µ is the asset return drift, σ is the volatility, ZT is standard Brownian motion, N(·) is
the normal cumulative distribution function and P (τ ≤ T ) is the default probability
of the company under real probabilities. Moody’s KMV-method connects a specific
rating with default through thresholds, z, for each rating class. Gordy and Heitfield
(2001) extend the Merton (1974) model by assuming other alpha-stable distributions
for the distance-to-default, that accounts for errors in otherwise normally distributed
asset returns. In their model, ratings are assumed to be independently assigned, both
cross-sectionally between a group of obligors and through time and the underlying
stochastic process of the asset value:

Vt+1 = Vt + ωx+
√

(1− ω2)ε, (3)

where, x, is the systematic risk factor arising from macroeconomic conditions, ε, is
an idiosyncratic risk factor, and, ω, is the factor loading parameter. The systematic
effect, x, on asset return can assume to have an alpha-stable distribution, such as
normal distribution, or other thick-tails.

It is beyond the scope of this paper to examine the firm-specific factors on
credit ratings, and as such, in the remaining part firms within a score will always
be treated as homogeneous. The firm-homogeneity assumption also holds for the
CreditMetricsTM-model (stress-test application), where the asset returns are assumed
to be normally distributed, with mean, 0, and standard deviation, σ (Gupton, Finger
and Bhatia, 2007). The thresholds that determine the ratings are therefore the number
of standard deviations from the mean, which is 0 in CreditMetricsTM, that the obligor’s
assets need to move to change in rating. For example, the case of a single obligor, h,
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using the formulation provided in CreditMetricsTM, has an upper-threshold for default,
z0, that is defined as:  Default: if zh ≤ z0

σ

No Default: if zh > z0
σ

.

The CreditMetricsTM-model of only moving different standard deviations, depending
on rating, in order for a default to occur is realized by looking at Figure 1 if the mean of
the function is 0. The default-probability for obligor, h, associated with the threshold
then becomes:

P (Default) = P (zh ≤
z0

σ
) = N(z0

σ
). (4)

In other models, e.g. the one by Gordy and Heitfield (2001), the defaults do not have
to be normally distributed and can have any alpha-stable cumulative distribution. In
CreditMetricsTM, asset returns are however assumed to be normally distributed and
correlated, e.g. between industries (Gupton, Finger and Bhatia, 2007). The needed
amount of standard deviations that has to change, z0, in order for an obligor, h, with a
certain rating to default, becomes independent of its own asset return, zh in Equation
(4). As such, obligors within the same rating are homogeneous in the structural
models, in terms of thresholds. Therefore, analogously to Equation (4), probabilities
of default for any rating can be converted into thresholds by taking the inverse of
the normally distributed cumulative function and multiplicating with the standard
deviation (Gupton, Finger and Bhatia, 2007):

z0 = N−1(P (Default))σ. (5)

The risk of any rating change and or defaults can hence be represented, by
using either transition matrices consisting of probabilities, or by a matrix consisting of
the upper-thresholds, z. A convenient way to convert from probabilities to thresholds
is to use the function: transprobtothresholds in Matlab, which converts utiliz-
ing the convention established in CreditMetricsTM (Matlab and Financial Toolbox
Release 2018a, The MathWorks, Inc.). The structural models and its ability to ap-
proximate thresholds are a crucial assumption in CreditMetricsTM. There is, however,
some benefits to instead use intensity models for the credit rating dynamics, instead
of a structural model. As is shown later, the times spent in ratings can be assumed to
be exponentially distributed. Under intensity models for the rating process, we do not
need to model the evolution of the asset value. Instead rating changes are exogenous
and depend on each of the transition rates. The structural model will, however, be
revisited in the application of CreditMetricsTM, since it is a part of the stress-test to
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simulate asset returns and let the upper-threshold determine the new ratings (Gupton,
Finger and Bhatia, 2007).

2.2 Macroeconomic Factors on Default Probabilities

It is no doubt that Moody’s, S&P and other rating agencies assign their ratings depend-
ing on cycles in the economy. Moody’s private rating process, known as RiskCalc, looks
at several relevant factors individually to account for how they can change depending
on the macroeconomic environment (Dwyer et al. 2004). Nickell et al. (2000) have
studied the transition matrix of Moody’s long-term bonds between the period 1970 –
1997 in three different cycles, referred to as: ”trough”, ”normal” and ”peak”. They find
statistically significant results that Moody’s rating transition rates depended on the
stage of the business cycle during the period in which the bonds ratings got published.
There is a significant increase in non-investment grade bonds defaulting during reces-
sions and default rates for all ratings increased (Nickell et al. 2000). Research has also
shown that periods of high economic growth tends to swing the transition probabilities
downwards, resulting in more upgrades. In Figlewski et al. (2012) they conclude that
macroeconomic variables which mainly impacted the intensity of upgrades and default
of credit ratings were GDP growth rate, unemployment, and inflation.

Even though cyclical patterns are observable for credit ratings from all rating
agencies, the dominating method in risk-management aims for an approach towards
”through-the-cycle” ratings, so that the evaluation withstands cycles in the economy,
which is evident in Basel II accords (The Basel Committee on Banking Supervision,
2003):

”A borrower rating must represent the bank’s assessment of the borrower’s
ability and willingness to contractually perform despite adverse economic
conditions or the occurrence of unexpected events.” (Basel II, paragraph
376, Basel Committee on Banking Supervision, 2003)

With this in mind, there seems to be a motivation to study if the use of recent data, can
estimate a transition matrix that shows notable differences in probabilities for default
and rating transitions, due to the recent financial crisis of 2008 – 2009, compared to
what the transition matrices published by rating agencies over a larger observation
period usually indicates. Our analysis will, however, be limited in this regard as we
look at the distribution of upgrades and downgrades over a period that spans multiple
cycles, which should not be compared to the external transition matrices estimated
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from rating agencies over other periods characterized by another business cycle.

2.3 Regulatory Framework for a Portfolio Stress-Test Under
Macroeconomic Cycles

The first Basel accord (The Basel Committee on Banking Supervision, 1987) regulated
bank’s capital in a relatively simplistic way by assigning risk-weights (10%, 20%, 50%,
100%) for claims according to their relative risk, which incorporated credit risk. How-
ever, the external ratings played no role in the claims risk-weight. Thus, in the starting
phase of the Basel accords, the amount of bank capital needed was only based on these
risk-weighted assets. Lando and Skødeberg (2002) describe how the second revision of
the accords, Basel II (The Basel Committee on Banking Supervision, 2003), aimed to
set out a system where vast differences in risk for financial instruments can be well-
recognized and quantified. Technically, there were three-pillars in Basel II. However,
the connection to ratings and hence the TM became stronger in the overall aims since
more requirement in risk-management were established. Basel II also introduced the
internal ratings-based approach for banks to have supervisors, within their bank, to
see over creditworthiness of the bank’s assets and credit exposures. Supervisors were
required to evaluate the risks according to Basel standards and principals, which were:

”The overarching principle behind these requirements is that rating and
risk estimation systems (...) provide for a meaningful differentiation of risk
and accurate and consistent quantitative estimates of risk.”(Basel II, para-
graph 351, Basel Committee on Banking Supervision, 2003)

”Banks must have a robust system in place to validate the accuracy and
consistency of rating systems, processes, and the estimation of all relevant
risk components.” (Basel II, paragraph 463, Basel Committee on Banking
Supervision, 2003)

Regulators hence advocated for internal credit risk models, which had an advantage
for the stability of international banking sectors, compared to the previous accord of
only using risk-weighted assets. In many ways, the increased regulation was due to the
complexity of financial derivatives. Basel II, implemented in 2007, now meant ratings
for a bank’s portfolios of assets, should be priced and weighted accordingly with the
inherent credit risk represented in the external credit score. Basel III (The Basel
Committee on Banking Supervision, 2017), which is the newest accord, outlines more
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standards for loss distributions and measures for including a credit value adjustments
into the price of derivatives. The new strengthened rules thus regulate further how to
adopt internally based loss-models for capital and liquidity requirements, which is the
focus in our analysis of a credit rating transition matrix model for stress-testing.

Together with evidence from previous studies that macroeconomic covariates
influence the creditworthiness assessment, the aims of the two most recent Basel ac-
cords suggests that a bank’s capital allocation process, to a varying extent, is up to a
bank’s internal model, e.g. one similar to the model of CreditMetricsTM. The stan-
dards in the Basel accords taken together with an appropriate model for the credit
rating TM, could, for example, approximate economic capital needed in a bank. Thus,
by analyzing the 95%-confidence-level you get in a CreditMetricsTM loss-distribution
from a simulation it would be possible to measure the required capital needed to
cushion against future losses on a 95% certainty-level (Gupton, Finger and Bhatia,
2007).

2.4 Ratings Changes Implications on Portfolios

By modeling the TM conditional on business cycles, it becomes a tool for risk managers
to account for sensitivity to cycles in their calculations of the credit exposure (Bangia
et al. 2002). CreditMetricsTM provides a method for quantifying the effect of different
transition probabilities in the transition matrix on losses for a portfolio (Gupton,
Finger and Bhatia, 2007). Using a transition probability-weighted price for a bond is
not correct. Therefore, we will apply the Jarrow, Lando, and Turnbull (JLT) (1997)-
model for pricing bonds in our stress-test. We explain the connection between external
ratings and risk-neutral bond pricing using the JLT-model in Subsection 2.4.1, as well
as limitations of any external ratings based term-structure model in Subsection 2.4.2.

2.4.1 Rating Based Bond Pricing

Pricing risky bonds under the martingale measure mean we cannot use empirical prob-
abilities of default for this purpose to assess how much we are expected to have left
of a portfolio after a period of uncertainty. An illustration of this remark given by
Lando (2004), shows that the real spread of a corporate bond could be much greater
than the implied spreads, Figure 2. Since we use real probabilities as inputs to sim-
ulate the rating transitions in the Markov chain, the elements need to account for a
risk-premium, set by market prices, if used in an equation to price bonds.
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Figure 2: Comparison of Implied and Real Credit Spreads. Illustration of the difference between
implied spread using two loss given defaults, δ, and the real spread for a single investment-graded bond issue (from
Lando, 2004, p.147).

Jarrow and Turnbull (1995) provide the pricing equation of risky zero-coupon
bond (zcb), maturing at time T , by discounting the expected payoff given the risk of
default at time τ ∗ using the risk-free zcb p(t, T ). For a loss given default δ and a
martingale measure denoted Q̃, which we assume is independent of the term-structure
for risk-free bonds2, the bond pricing equation becomes:

v(t, T ) = p(t, T )(δ + 1(1− δ)Q̃t(τ ∗ > T )). (6)

Jarrow, Turnbull and Lando (JLT) (1997) were the first to provide a model for cali-
brating the rating Markov chain process to prices, by extending Equation (6) into a
Markov model for the term-structure. We assume that there exist estimates of real
transition probabilities, e.g. published by a rating agency, under probability measure

2This assumption is more realistic for investment-graded bonds than for speculative rated issues
(Jarrow, Turnbull and Lando, 1997).
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Q, and that the K ×K transition matrix fufills:

Q =



q11 q12 q13 ... q1K

q21 q22 q23 ... q2K
... ... ... . . . ...

qK−1,1 qK−1,2 qK−1,3 ... qK−1,K

0 0 ... ... 1


, (7)

where qij ≥ 0 ∀i, j, j 6= i and qii = 1 −∑K
j=1 qij, i = 1, ..., K − 1. In the JLT-pricing

model (1997), Equation (6) depends on credit rating i, and the survival probability is
such that:

Q̃i
t(τ ∗ > T ) =

∑
j 6=K

q̃ij(t, T ) = 1− q̃iK , (8)

where q̃ij(t, T ) are the elements of a transition matrix under risk-neutral probabilities,
Q̃. As Figure 2 show, the market implied default probabilities are greater than real
default probabilities3. In Equation (8), we should have probabilities of default for all
ratings under the Q̃ measure to be able to price the portfolio of bonds correctly in the
stress-test, where we will be using Equation (6). In general, it is not a problem that
we simulate the Markov chain under real probabilities since the pricing Equation (6)
is independent of the path of ratings or the transition probabilities other than those
into default. Therefore it is possible to retrieve market implied probabilities of default
from CDS spreads and use this implied PD as q̃iK in Equation (8).

This way the portfolio of bonds will be able to transition between ratings
under the real probabilities, and we are consistent with pricing under the risk-neutral
measure. We are aware that using risk-neutral measures for forecasting future losses
on loans for a bank is not appropriate for a stress-test, nor an industry standard, for
a bank since they likely want to analyze real losses and not those measured under a
risk-neutral setting. Hence it is a limitation in our model that the losses in the stress-
test are under the risk-neutral measures. However, as we use empirical distributions
of rating transitions, the dynamics of the rating changes will be under real-world
probabilities which we believe adds to the robustness of combining a Value-at-Risk
simulation with risk-neutral pricing approach in Equations (6) and (8).

2.4.2 Limitations of Using Ratings Based Term-Structures

”Credit ratings are often viewed by the market as lagging indicators. For
these bonds, the ratings are difficult to reconcile with the default probabil-

3In Appendix D we show the sensitivity of our stress-test to different risk premiums.
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ities as assessed by the markets. It might be argued that it is not sufficient
to focus only on credit ratings when assessing whether assets are ”low risk”,
according to CDS spreads.” (Ernst & Young, 2014)

Rating agencies have a reputation for being slow, compared to e.g. Moody’s
KMV-database, when it comes to re-evaluating their rated issues. There is also some
raised criticism on regulation on Basel II, which further emphasized a score-based
credit risk model for institutions acting on the financial markets. McNeil, Frey, and
Embrechts (2010) explain this criticism in that such regulation might be ”eating its
own tail”. The risks are often much more complicated than merely a rating could
ever describe. Further, this lack of public data on companies creditworthiness means
that statistical models that account for credit ratings are limited to trust the agencies
opinion. Another limitation is the default dependence, meaning that if we price a
portfolio of bonds according to the benchmark for a similarly rated corporate bond,
we do not consider the domino effect of firms’ default rate as they are likely correlated.
As recessions start to happen, one company’s default will affect others through the
linkage of borrowing. The result of such a limitation of external ratings is that once
the recession starts, companies dependence in the slow external rating’s model leads
to a large Value-at-Risk (VaR) for a portfolio, defined for a fixed percentage as the
certain losses. The effect might, in reality, be a lot stronger than what the underlying
model shows (McNeil, Frey and Embrechts, 2010).

3 Models

One is likely to encounter problems if future credit loss-models were only using the
historically estimated transition matrix. To begin with, some events, e.g. default or
change into a speculative rating, for investment graded bonds have zero probability
since the sample does not include any of those cases. As Lando (2004) explains, this
is something you want to avoid to have in models of the credit risk for a portfolio
of bonds, as it does not reflect real-world scenarios. Of course, historical estimates
do not capture all events, and there is always an inherent default-risk, even for a
top investment-grade bond. The dataset that is used to estimate the TM might not
include any of those scenarios. However, once the default happens, it could lead to
massive unexpected losses for carelessly calibrated credit risk models, see for example
the previous discussion about correlated defaults in Subsection 2.4.2. Therefore, an
exclusion of the probability of unlikely events in credit risk models might be enough to
ensure that capital is not available to cushion for unexpected losses once they occur.
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Secondly, there is the problem with using empirically estimated default-probabilities
in pricing a portfolio, as we explained in Subsection 2.4.1, as risk-neutral probabilities
are the way to go.

In what follows in this section, the aim is to explain our models used for
rating processes, by accounting for systematic risk, and how the mixture of Markov
chains (MMC)-model work by mixing the process for credit ratings with the process
for future stochastic cycles in the economy. We begin in Subsection 3.1, by outlin-
ing the continuous-time Markov chain assumption and then show how the Markov
chain is simulated with a constant rate and with a rate conditional on background
information from the macroeconomic environment. Then, in Subsection 3.2 we show
how to calculate the transition matrix in discrete-time from a Markov chain, several
years forward. We show the discrete-time calculations in the time-homogeneous case,
using both an assumption about consecutive ”expansions” and ”contraction” and in
a Mixture of Markov chains-model, which as mentioned mixes these with the process
for macroeconomic cycles.

3.1 Markov Chain for Ratings’ Processes

In this subsection, we introduce continuous-time Markov chains. We begin by first
defining the essential concepts in a continuous-time Markov chain, which are the
Markov property, the generator matrix, and the Chapman-Kolmogorov differential
equation of choice. In Subsection 3.1.1 we explain the estimation procedure for the in-
tensities, which uses the duration spent in ratings. In Subsection 3.1.2 we show how to
simulate a Markov chain with constant intensities. Then in Subsection 3.1.3 we state
the simulation technique for a Markov chain conditional on background information.

The arguably most important assumption, used in many models for credit
rating dynamics, is that ratings follow a continuous-time Markov chain process. This
assumption is much appreciated for its broad applications when modeling transition
probabilities, or merely corporate default. In simple terms, the Markov property means
that a future state can be predicted by its present state alone, thus not requiring
knowledge about the history of how the process moved between states. The Markov
chain property is also the foundation in our of construction of a conditional TM for
credit ratings. Using survival analysis, we analyze how well the Markov property
is fulfilled historically, by looking at the past distribution of credit rating upgrades
and downgrades.4 The assumption applied in the analysis of how rating changes

4See Appendix B for this analysis.
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are distributed differently in economic cycles from what the empirical results of the
Markov property show, lead to a benchmark for the distribution of rating upgrade and
downgrades occurring at a constant rate. For a set of, K, scores: S = {1, ..., K}, the
Markov property can be formulated as follows (Schönbucher, 2003):

Markov property. A stochastic process for the credit rating, is said to be a Markov
process if the probability of the rating being r ∈ S at a later time T > t only depends
on the current rating, Rt:

P (RT = r|Ωt) = P (RT = r|Rt), ∀r ∈ S,

where Ωt is the information set until time t.

Data on credit score changes comes in discrete time intervals, whereas the rate
of a credit event (e.g. upgrade or downgrade) can be assumed to be the probability of
the credit event occurring at an arbitrary small times after an initial rating’s issue. The
Markov assumption in continuous-time lets you construct a generator matrix, which
is well-suited in modeling the dynamics of the rating for a group of homogeneous
obligors, using the infinite-small probabilities for moving from state i to state j during
∆t conditional on being in state i at time t.

The intensity of a credit event is the probability of the event occuring after a
short period, ∆t (Trueck and Rachev, 2009). To get a formulation for the intensities
for ratings, assume that the probabilities of a transition are proportional to time when
the time, ∆t, is small. Using the specification for the rating process as specified in the
Markov property, we have (Trueck and Rachev, 2009):

P (Rt+∆t = j|Rt = i) = λij∆t, for i 6= j. (9)

As shown in Schönbucher (2003), a matrix where the off-diagonal elements are repre-
sented by each intensities such that: λij ≥ 0 ∀i, j ∈ S, i 6= j, the diagonal elements are
defined as: λi = −∑i 6=j λij, ∀i ∈ S and the matrix is the logarithm of the transition
probabilities for a fixed time t, is called a generator matrix and has the form:

Λ =


−λ1 λ12 λ13 ... λ1K

λ21 −λ2 λ23 ... λ2K
... ... ... . . . ...

λK,1 λK,2 ... ... −λK

 . (10)

The generator matrix (Λ) is neatly connected to the TM through the Chapman-
Kolgomorov differential equations. We will use a time-homogeneous model, which
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is a simplifying assumption for solving this forward differential equation:

∂

∂T
Q(t, T ) = Q(t, T )Λ(T ), T > t, (11)

with the solution:

Q(t, T ) = exp((T − t)Λ) :=
inf∑
n=0

1
n! ((T − t)Λ)n. (12)

Note that Q(t, T )ij = P (RT = j|Rt = i). For more on Chapman-Kolmogorov dif-
ferential equations related to credit ratings and the generator matrix in the non-
timehomogeneous case, see Appendix 2.3 in Lando (2004). In the Chapman-Kolmogorov
equations, transitions consist of intermediate stages between each movement for rat-
ings, and the probability of moving from one grade to another means going through all
the middle hazards. The generator matrix, Λ(t), which has the instantaneous proba-
bilities at t, and the TM, Q(t, T ), that spans a longer period from t to T , is connected
through the forward differential equations, by the assumption of intermediate steps,
in the Equation (12). We will use the assumption of a time-homogeneous model in
every calculation of the transition matrix. Given that we have a generator matrix, it
is a straightforward task to solve Equation (12) in Matlab, using the function expm,
which calculates the matrix exponential (Matlab Release 2018a, The MathWorks,
Inc.).

3.1.1 Estimation of Intensities Using Duration

The intensities that make up the generator matrix in Equation (10) is calculated using
a maximum likelihood formula, which we will not go into detail about since the solution
to the maximum likelihood estimation in this case is a widely popular equation. A
yearly λij of transitioning from rating, i, to, j, is given by the formula (Schönbuscher,
2003):

λij = nij∫ t
0 Yi(s)ds

, (13)

where nij are transitions from, i, to, j, in the interval [0, t] and Yi(s) is the number
of firms rated, i, in a year, s. The denominator in Equation (13) represents the
total duration spent for all the obligors in rating, i, over the period [0, t] and has the
unit of time. It is therefore readily recognized that the intensities, λ, are the average
migrations per unit of time (Lando, 2004). In the time-varying case, the interpretation
of intensities merely means that the instantaneous likelihood of changing from one
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state to another changes continuously. From Equation (9) we know that under a short
period, the probability of moving from rating i to j is equal to the corresponding
transition intensity. The sum of the rows in the generator matrix is zero because λij
are the probabilities for moving away and the diagonal is the negative sum of that
(Lando, 2004). The modeling technique of using continuous-time Markov chains for
rating processes are also widely used in the empirical literature, by e.g. Bangia et
al. (2002) for their calculation of transition matrices conditional on specific economic
cycles.

3.1.2 How to Simulate a Markov Chain with Constant Intensities

The arrival times spent in each rating, S, are random and only determined by the
given state of the process, Rt. Assuming constant intensities is the most basic kind
of Markov process, where S, are exponentially distributed. In computational terms,
it means that each S can be simulated from a uniformly distributed random variable,
U , using the formula (Kay, 2006):

S = 1
λ

ln 1
1− U , (14)

where U ∼ U(0, 1) and λ is the negative of the diagonal element in the generator
matrix in Equation (10) that corresponds to the rating the process Rt is currently in.
An illustration of simulated rating changes for a Markov chain using Equation (14) is
shown in Figure 3. Each time spent in the ratings, S, in Figure 3 are exponentially dis-
tributed with an intensity equal to the negative of the diagonal element corresponding
to the current rating Rt in the generator matrix in Equation (13).

3.1.3 How to Simulate a Markov Chain with Time-Varying Intensities

McNeil, Frey, and Embrechts (2010), as well as Lando (2004), gives an explicit algo-
rithm for simulating arrival times in a generalized Poisson process, in a simple 2-step
process and we attribute the model to Lando’s (1998) work on Cox processes for
credit ratings. The requirement is that the time-dependent λ(s), is continuous and
non-negative. Note that λ(s) does not need to be deterministic. In fact, it would
maybe make more sense that it depends on a process for the short-rate, Xs. However,
our contribution is to utilize a deterministic function that is achieved by calibrating the
empirical distributions of transition rates. The algorithm for simulating the first jump
of a continuous-time Markov chain process conditional on background information is
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Figure 3: Illustration of Simulated Markov Chain. Illustration of a simulation of the rating Markov
chain, Rt, for a single company that is starting in rating AA.

as follows:

1. Simulate a standard exponentially distributed random variable, E, that is inde-
pendent of the intensity function λ(t) ∀t ≥ 0. The random variable, E, acts as
the ”threshold” for accepting the time, S.

2. McNeil, Frey and Embrechts (2010) and Lando (2004), then show that for a
strictly increasing and finite cumulative hazard function h(t) =

∫ t
0 λ(s)ds, t > 0,

the conditional first stochastic arrival time will have the distribution:

S = h−1(E) = inf{t ≥ 0 : h(t) ≥ E}, (15)

where, E ∼ Exp(1). Equation (15) is an important result, that can be used to analyze
the effect of systematic risk (or macroeconomic factors) on credit rating transitions.
From the results of Equation (15), it would then be possible to specify a time-dependent
intensity, λ(t), and have an exponentially distributed random variable, E, with unit in-
tensity simulated to get the first time spent in the initial rating. By iterating Equation
(15) for a company until finally S > T , can give us multiple times spent in each rating,
S, for a company during T years conditional on a time-changing intensity. This will
prove very useful in our analysis of the macroeconomic effect on transition probabili-
ties, as the hazard rate distribution of downgrade and upgrades can first be estimated
empirically and then be deterministic and depend on time as shown in Figure 16 in
Appendix A (Lando, 1998).
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Low Cycles
Transition Contraction Expansion
Downgrade 1.2 0.8
Upgrades 0.8 1.2

Medium Cycles
Transition Contraction Expansion
Downgrades 1.3 0.7
Upgrades 0.7 1.3

Huge Cycles
Transition Contraction Expansion
Downgrades 1.5 0.5
Upgrades 0.5 1.5

Table 2: Weibull α-Shape Parameter Used in Markov Chain Simulation in Business
Cycles. This table shows the values for the shape parameter, α, in the Weibull probability density function
f(t) = λαtα−1 for the time spent in a rating until a credit event, downgrade or upgrade happens. An α > 1 means
that the rate is increasing in time, and an α < 1 means that the rate is decreasing in time. We distinguish three cycles
of varying parameter for, α, named in the order from least effect of time-variation to most time-dependent: ”low”,
”medium” and ”huge”.

We will adjust the intensities conditional on a 2-state economy, downturn, and
expansion, by adjusting the shape distribution parameter, α, in a Weibull-distribution
for the transition rates, to correspond to cycles in the economy, depending on if it
is an upgrade or downgrade.5 In total, 3 magnitude cycles will be accounted for
with different α:s that determine the magnitudes of time-variation (”low”, ”medium”,
”huge”). The distributions for the transition rates that are used in our simulations
are summarized in Table 2. Under the distribution assumption in Table 2, we can
calculate the discrete-time transition matrix for each Markov chain using Equations
(10), (12) and (13), such that the transition matrices QC will represent the business
cycle of economic contraction, where upgrades are less common, and downgrades are
more common and transition matrices QE will represent the business cycle of economic
expansion, where upgrades are more common, and downgrades are less common.

3.2 Calculating Forward Transition Matrix in Discrete-Time

The Cohort model is used by rating agencies when they publish one-year average TMs
for all rating classes that belong to the corresponding cohort. The model works well
for presenting ordinary TMs, when using an extensive database of rating changes, such
as the one available to significant rating agency companies (Schönbucher, 2003).

In the Cohort model of transition probabilities, the probability of going from
rating, i, to, j, is usually calculated over a year and the formula for the probabilities
are (Schönbucher, 2003):

Q(t, t+ 1)ij = nij
ni
, (16)

where, nij, are the number of transitions from, i, to, j, and, ni, are the number of
5See Appendix A for the survival probability of Weibull-distribution.
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obligors in rating i in the beginning (previous year).

In discrete-time, the transition matrix can be calculated n-years into the
future, if the model for the transition matrix is time-homogeneous and in discrete-
time, by simply having a yearly TM Q(t, t + 1) and raising it to power, n (Perederiy,
2017):

Q(t, t+ n) = Q(t, t+ 1)n. (17)

Equation (17) therefore corresponds to the case where the same TM is expected to
hold consecutively for, n-years, with non-switching business cycles. One way to obtain
a forward estimate for the credit rating TM that is conditional on switching cycles in
the economy is to use a regime switching Markov chain model for business cycles. A
stochastic process for the business cycle combined with the Markov chain for ratings
leads to a Mixture of Markov Chains-model, which conditions the TM on the uncer-
tainty of the future states as well. These models have been used to study credit rating
data by e.g. Bangia, et al. (2002), Frydman and Schuermann (2008) and Fei et al.
(2012).

In the regime switching model, the future state is still unknown, but institu-
tional changes between macroeconomic cycles are modeled as a Markov chain, which
means that changes to business cycles only depends on the current cycle that we are
in. Each of the cycles has a rating Markov chain for companies characterized by the
cycle. The uncertain future state of the economy, after one year, is represented by
a transition probability matrix of two business cycles, expansion (E) and contraction
(C) as:

QBC(t, t+ 1) =
 pE,E (1− pE,E)

(1− pC,C) pC,C

 . (18)

By making use of the assumption of time-homogeneity for credit ratings, the resulting
future rating transition matrix, calculated for some years forward, becomes an average
of the TMs conditional on economic contraction and expansion, weighted by the prob-
abilities of the different states occurring in the current time in Equation (18) (Trueck
and Rachev, 2009). A way to implement a Mixture of Markov Chains-model for the
rating process in practice is to simulate Markov chain conditional on cycles such as
those explained in the previous section, with 1-year transition matrices QE(t, t + 1),
and, QC(t, t + 1), by using the simulation technique explained in Subsection 3.1.3.
Then, estimate the business cycle transition matrix in Equation (18) from published
research on business cycles. Of course, only relying on published business cycle reports
from e.g. National Bureau of Economic Research (NBER), means that we also need to
know if there exists a relationship between the stochastic process which determines the
business cycle probabilities and credit rating events. Fortunately, the MMC-model,
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in this implementation has already been used by Bangia et al. (2002) and Fei et al.
(2012). Bangia et al. (2002), use quarterly data on U.S. business cycles from NBER
to estimate state transition probabilities for one year ahead. With these past studies
in mind, we deem the method to be justifiable to use in our case as well.

The methods used by Bangia et al. (2002) and Fei et al. (2012) of calculating
the rating transition probabilities corresponding to different economic cycles are the
same in both their articles. Bangia et al. (2002) and Fei et al. (2012) use a method to
divide the sample of rating changes into periods of different economic activity and use
the data in these periods to get conditional transition probabilities corresponding to
each state. However, Fei et al. (2012), generalizes the regime-switching models, to be
able to account for the evolution of transition matrices, n-years into the future, whereas
Bangia et al. (2002) use a model only for one forward year. Since we want to look at
losses for the full life-time the n-years method will be used. A n-year forward estimate
of the TM conditional on cycles is obtained by following the method of Fei et al.
(2012). We write out the matrix dimensions for easier reading the formulas. A block
matrix, consisting of the TMs conditional on the two states and the corresponding
transition probabilities for the each state is first defined as:

QM(t, t+ 1) =
 pE,EQE(t, t+ 1) (1− pE,E)QC(t, t+ 1)

(1− pC,C)QE(t, t+ 1) pC,CQC(t, t+ 1)


2K×2K

, (19)

where the number of ratings (discrete state-space) in the Markov chain is K. It is
then possible to obtain the TM conditional of business cycles after, n-years, assuming
time-homogeneity. The formulas for the conditional TMs then become (Fei et. al,
2012):

Q(t, t+ n) = FQn−2
M L′, (20)

where in Equation (20), the variables, L′ and F are defined as:

L′ =
pE,EQE(t, t+ 1) + (1− pE,E)QC(t, t+ 1)

(1− pC,C)QE(t, t+ 1) + pC,CQC(t, t+ 1)


2K×K

, (21)

and if the current regime is expansion (E):

F =
(
pE,EQE(t, t+ 1) (1− pE,E)QC(t, t+ 1)

)
K×2K

, (22)
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or if the current state is contraction (C):

F =
(
(1− pC,C)QE(t, t+ 1) pC,CQC(t, t+ 1)

)
K×2K

. (23)

In our results we will assume that the current state is expansion. From Table
2 we have in our mixture of Markov chains three block matrices, Equation (19), since
the magnitude of the conditional Markov chains defined by the transition matrices,
QE(t, t+ 1) and QC(t, t+ 1) are either ”low”, ”medium” or ”huge”.

4 Portfolio Application for Stress-Testing on Losses

CreditMetricsTM is a portfolio-based approach to credit risk, introduced by JP Mor-
gan’s risk management team in 1997. The approach in CreditMetricsTM is to weigh
prices of claims with its probabilities, assuming that bonds prices should depend on
all transition probabilities of a rating, and obtain a value for the full portfolio that
way (Gupton, Finger and Bhatia, 2007). As we have seen in Subsection 2.4.1, this
is not how you price bonds. The pricing formulas in Gupton et al. (2007) are not
industry standards in bond pricing, nor do they provide an accurate method of pricing
a portfolio of bonds, as only the risk-neutral default-probabilities are relevant. For
the sake of applying our transition matrix in a stress-test to analyze expected and
unexpected losses, we use the standards in the CreditMetricsTM-method for simulat-
ing asset values that determine the new ratings, which we explained in Subsection
2.1. However, for pricing the portfolio under a ratings based model, we will not use
the formulas in CreditMetricsTM, since they would be wrong for pricing bonds trading
on the market. Thus we price the portfolio of bonds using Equation (6) which we
explained in Subsection 2.4.1.

A Value-at-Risk (VaR)-analysis is used to assess what losses the bank is
certain to incur on a portfolio of bonds from default. We are interested in the VaR
due to credit, as it is an essential measure for a bank to account for losses on credit,
which are required by IFRS 9 for financial instruments (IASB, 2014). CreditMetricsTM

uses a three-step method for analyzing the credit-VaR of a portfolio, which we modify
to bond pricing formulas:

1. Simulate several evolutions of the underlying assets of the portfolio
of bonds and assign new credit ratings, RT , based on the upper-
thresholds for each simulation
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In Subsection 2.1, we explained how to do this using thresholds, where a formula
for the default threshold was given in Equation (5). The industry correlation
matrix, Table 3, will be used to simulate correlated asset returns. Correlation
in asset returns is a realistic assumption, and in CreditMetricsTM it is motivated
for analyzing diversification benefits between different fixed-income investments.
However, our analysis is on the marginal effect on the losses from having different
probabilities of default and not a study on diversification. To be consistent with
CreditMetricsTM, we also assume assets to be correlated by industry. For the sake
of examining marginal effect due to the transition matrix as well as comparing the
results between the mixture of Markov chain model and the model that assumes
consecutive years of contraction or expansion, we set the asset distribution the
same in each models.

Energy Basic
materials Industrials

Cyclical
consumer

goods
services

Non
cyclical

consumer
goods

services

Financials Healthcare Technology Tele-
com Utilities

Energy 1.00 0.80 0.72 0.63 0.55 0.62 0.49 0.61 0.55 0.43
Basic

materials 0.80 1.00 0.80 0.76 0.57 0.68 0.62 0.74 0.56 0.41

Industrials 0.72 0.80 1.00 0.92 0.76 0.89 0.74 0.84 0.61 0.47
Cyclical

consumer
goods

services

0.63 0.76 0.92 1.00 0.76 0.85 0.72 0.86 0.60 0.41

Non-cyclical
consumer

goods
services

0.55 0.57 0.76 0.76 1.00 0.71 0.75 0.65 0.69 0.62

Financials 0.62 0.68 0.89 0.85 0.71 1.00 0.70 0.75 0.49 0.34
Healthcare 0.49 0.62 0.74 0.72 0.75 0.70 1.00 0.67 0.49 0.47
Technology 0.61 0.74 0.84 0.86 0.65 0.75 0.67 1.00 0.52 0.42

Tele-
com 0.55 0.56 0.61 0.60 0.69 0.49 0.49 0.52 1.00 0.57

Utilities 0.43 0.41 0.47 0.41 0.62 0.34 0.47 0.42 0.57 1.00

Table 3: Industry Asset Return Correlations. This table shows the correlation matrix for the ten
major industry classifications. The correlation matrix was calculated using 10-years index return data of the Thomson
Reuters North America Indicies, retrieved 2018 – 04 – 03. In CreditMetricsTM a correlation matrix is used when
simulating the asset returns of the portfolio of bonds.

2. Calculate the portfolio loss
In our risk-neutral pricing formulas, the loss, L, is the sum of the current value
of the bonds that defaulted after simulation of the asset returns VT which deter-
mines the new rating, RT . The loss function is:

L =
∑
l

vl(0, T ), (24)

where vl = {vi(0, T ) : RT = K, i = 1, ..., K − 1|R0 = i} are the defaulted bonds.
A defaulted zero-recovery bond in the future will be worth nothing and hence be
a loss to us. This means that we do not account for expected losses on credit from
anything other than the default, which comes from having, q̃iK in the valuation
formula for a risky bond in Equation (8). The maximum loss is equal to the
portfolio value today, which corresponds to the case where all bonds default in
the future. If no bonds defaulted in the future but got downgraded to the lowest
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rating, the loss would still be zero. An assumption we make in the stress-tests are
that the loss is under the risk-neutral pricing formulas, given that the transition
matrix for the future changes conditional on cycles is used to determine the new
ratings.

3. Summarize the result as a distribution of the losses
Expected losses are the average value of the losses. The upper tail of the loss-
distribution, correspond to the bank’s credit-VaR, such that for a loss-density
fL(s):

FL(x) = P (L ≤ x) =
∫ x

− inf
fL(s)ds, (25)

V aRα(L) = F−1
L (α). (26)

Hence, V aRα is the α-quantile of L. The expected shortfall is:

ESα = E[L|L > V aRα] (27)

5 Model Implementation

In our analysis, we choose to analyze credit rating changes from S&P and restrict the
obligors to U.S. firms, to account for some otherwise unwanted heterogeneity of the
data. We also do not distinguish between firms on watchlists, unsolicited and solicited
ratings, as this information was not possible to tell from our dataset. In the portfolio
stress-test, our restriction to U.S. companies facilitates pricing of risky bonds, since
we treat all firms within a rating homogeneously in Equation (6). In as many manners
as was possible, our implementation of the models for the rating process, calculation
of transition matrix and portfolio stress-test will coincide with practices explained in
the empirical literature on credit ratings, or suggested by financial institutions. We
begin by mentioning some of the assumptions in our model, then in Subsection 5.1 we
describe the rating migration data. In Subsection 5.2 we give a data description of
the macroeconomic index we used for the Markov chain for business cycles. Finally,
in Subsection 5.3 we detail our simulation techniques.

We restrict the scale by removing all relative strength modifiers, (+) and (−).
An assumption we make in the stress-tests are that industry, as a variable, provides
correlation to asset returns. The use of 95%-percentile for the VaR is also used in
other studies as a standard risk measure. Lastly, we chose to have a portfolio that
mimics a real index (Frydman and Schuermann, 2008; Bangia et al. 2002; Gupton,
Finger and Bhatia, 2007). However, an unusual assumption we make is to exclude
claim seniority and hence, any recovery for the bonds in the portfolio. Fortunately,



5 MODEL IMPLEMENTATION 25

we use the same bonds in each test, such that the marginal effect, of having different
transition matrices, on the losses still allows for analysis. The Markov chains are
simulated for 10-years, which matches the maturity of the bonds in the portfolio.
This analysis of discrete-time forward transition matrices coincides with Perederiy
(2017) study on rating transitions, in light of IFRS 9 emphasis on long-term horizons,
since it also simulates transition rates 10-years forward. It also coincides with the
loss distribution standard of 10-years provided in Basel III (The Basel Committee on
Banking Supervision, 2017).

5.1 Rating Data Description

In this subsection, we explain our data on rating migrations. Further in Subsection
5.1.1 we detail the sample selection bias of defaults, which affected the data, and how
we accounted for the bias in the analysis. In Subsection 5.1.2 we detail the discrete
state-space of ratings that are used in our analysis.

The rating data consists of changes to long-term issuer credit ratings from
Standard and Poor’s and spans a total of 32 years, with the first observed rating change
occurring at 1986 – 01 – 05 until the last observed rating in 2018 – 01 – 13. There
are a total of 934 unique companies in the dataset. The companies are those that
had an assigned long-term issuer-rating changed by S&P as well as survived, and was
a part of the constituents of the indices: S&P500, Nasdaq Composite, and S&P400
MidCap in 2018 – 01 – 13. Figure 4 shows the number of companies represented by
each industry in the full dataset. As can be seen, the most common industries in the
dataset are consumer discretionary, financials and technology.

5.1.1 Sample Selection Bias

A consequence of only modeling the surviving companies is that there will be no
transitions into default. However, as Table 5 shows, there are transitions from default
to a non-default rating. This is because, in our initial dataset, a default was not an
absorbing state, which means a company can be rated as, D, and then restructure
and survive. Compared to e.g. Lando’s (2004) definitions for generator matrices,
K, is an absorbing state. A total of 29 observations where a company gets out of
default are present in our data. To account for default-risk in our dataset, which
has a selection bias for defaulted companies, therefore, we must find out the default
probability externally, and the rating data is mainly used for analyzing the transitions
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Figure 4: Industries of the Companies in the Dataset. This histogram shows which industries the
companies in our dataset are classified into.

between non-default ratings. Our choice was to use the market-implied probability
of default from CDS-spreads for this purpose, and thus we approximated the yearly
default-intensities, λiK , i = 1, ..., K − 1 in the generator matrix, from the 1-year
implied default probability. The implied probabilities of default from the CDS spreads,
for each rating class in the U.S. corporate benchmark retrieved from Thomson Reuters
Eikon as of 2018 – 04 – 03 are summarized in Table 4. The CDS spreads implies that

Rating Q̃i0(τ ≤ 1)
AAA 0.41
AA 0.18
A 0.28

BBB 0.44
BB 0.72
B 2.96

CCC 16.61
Table 4: 1-Year Implied Probabilities of Default. This table shows the retrieved implied probabilities
of default in percentage for 1 year U.S. corporations retrieved from Thomson Reuters Eikon.

the risk-neutral PD is larger for, AAA, rated bonds than for, AA, or, A, and almost
equal to the PD of, BBB as shown in Table 4. Although somewhat unexpected, it
reflects the market’s credit risk premium and means that the risk premium for AAA
is very large over a year.

Table 5 shows the total number of changes observed in the data. Excluding
the diagonal, we have that the upper-right half corresponds to downgrades and the
lower-left half corresponds to upgrades in ratings. The total observed upgrades are 604
and total observed downgrades are 727. The reason for there being more downgrades,
than upgrades, begs the questions if the companies can well-represent a diverse set
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of company ratings for a proper analysis of the transition dynamics. However, as we
show in the survival analysis of rating upgrades and downgrades in Appendix B, rating
upgrades were greatly time-decreasing with a Weibull-α of 0.57, due to the economy
during the time we observe the ratings. Downgrades had a Weibull-α of 1.14. The
result of this survival analysis is that downgrades dominated over upgrades. Thus
it might be tricky to find a dataset of credit ratings, during this period, that is not
characterized by this same behavior as well as a full dataset with companies that
defaulted.

5.1.2 Available Ratings

We only consider rating changes into letters, to reduce the set of available ratings. It
means that we convert the scores that are either of the modifiers: (+) or (−), into
their corresponding letter grade. Rating changes into, NR, are completely omitted
since it does not indicate a rating. Ultimately, the nine ratings in the data are: AAA,
AA, A, BBB, BB, B, CCC, CC and D. Typically analysts use a scale of eight ratings,
omitting, CC. Because we choose not to merge, CCC, into, CC, we are consistent with
each letter rating in the migration analysis. An unusual property of the migrations
in Table 5, which happens to be an effect of the conversions, is that the diagonal is
non-zero. This means ratings have moved from one rating to the same. As explained
above, this is due to the joining of grades that have been added or removed a (+) or
(−) by S&P. Regarding the analysis, it will merely be treated as any change to another
rating and the only difference is the definition of the generator matrix. The diagonal of
the generator matrix is defined as the negative sum of all transition probabilities away
from a rating over the duration of the rating. When performing simulations, we want
to check how well the simulations compared to the real data, and therefore we treat
these as a rating transition on its own. By substituting the diagonal entries that are
traditionally in the generator matrix, the method for simulation through intensities
work in all cases. To summarize, we allow rating changes to occur into the same rating,
and at the same rate as observed in the real data.

Table 6 shows the complete, average and standard deviation of the firm-
duration, in years, of the ratings. The number corresponds to the total amount of
years that all the companies in total have spent in each classification. The grade with
the most extended span is, BBB. The longer the duration is for a rating, the smaller
the intensity becomes. Therefore, λij away from a score i with long duration e.g. BBB
becomes smaller and the transition less likely.
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Terminal Rating
AAA AA A BBB BB B CCC CC D

In
it

ia
l

R
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g

AAA 2 13 0 0 0 0 0 0 0
AA 3 139 78 4 0 0 1 0 0
A 0 34 842 218 1 1 0 0 0

BBB 0 0 130 1443 153 4 0 2 0
BB 0 1 2 180 1146 139 1 0 2
B 0 0 1 3 176 608 56 6 2

CCC 0 0 0 0 2 37 63 18 9
CC 0 0 0 0 0 2 4 4 19
D 0 0 0 1 3 11 14 0 2

Table 5: Credit Rating Changes in the Dataset. Data description of the credit rating changes for
long-term issuer data by S&P for 934 U.S. companies during the period 1986 – 01 – 05 to 2018 – 01 – 13. Observations
where the final rating is the same as the initial rating are also shown. The dataset contains observations from one
rating to the same (diagonal elements) because the scores got modified by (+) or (−), which S&P defines as a sign of
relative strength and weakness respectively within the rating category.

AAA AA A BBB BB B CCC CC D
Total Duration (Years) 96.3 773.2 3568.9 5356.4 3332.2 1675.7 143.9 21.3 37.7

Average Duration (Years) 6.42 7.98 11.06 10.42 7.59 5.72 2.57 1.01 1.35
Standard Deviation (Years) 9.38 6.97 7.54 7.00 5.86 4.95 3.49 3.52 1.86

Table 6: Credit Rating Duration of the Dataset. This table summarizes the duration in years for
each rating, where rating histories for a total of 934 U.S. companies, observed in the period 1986 – 01 – 05 to 2018 –
01 – 13. The dataset does not contain ratings prior to 1986 – 01 – 05, thus the first observed rating for each company
occurred sometime during the 32 years period. All durations equals 15, 005.6 years, which means the dataset on average
observe each company’s rating history for 16 years.

5.2 Macroeconomic Data Description

In this subsection, we give a description of the data from National Bureau of Economic
Research (NBER) used for stochastic business cycles in the Mixture of Markov chain
(MMC)-model of the transition matrix. In the MMC-model, the same method as used
by Bangia et al. (2002) is used, where data on business cycles is used for calculating
the cycle TM. Business cycle data on the U.S. economy is available from the website for
NBER.6 The data is monthly and spans from December 1854 to June 2009. Business
cycles are classified as either ”peak” or ”trough”. For the total period, peak years have
a total duration of 48 years and trough has a total duration of 106.5 years. The TM
for business cycles are estimated using the duration method. The transition matrix for
the business cycle can be annualized, by assuming time-homogeneity and calculating
the exponential power of the matrix equal to the number of periods, which is 12 for
monthly business cycle data.

5.3 Simulation Technique

In total, two different kinds of simulations are performed. The first simulation is of
the continuous-time Markov chains conditional on cycles, as we explain in Subsection
5.3.1. From this, we calculate transition matrix conditional on cycles in discrete-time.

6NBER
http://www.nber.org/cycles/cyclesmain.html

http://www.nber.org/cycles/cyclesmain.html
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The second simulation is the portfolio returns in the stress-test, which we detail in
Subsection 5.3.2.

5.3.1 Simulating the Markov Chains
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Figure 5: Distribution of the Initial Ratings for the Companies in the Dataset. Histogram
showing the initial long-term issuer ratings from S&P for the 934 U.S. companies in the dataset. The histogram is
not explanatory for whether it is the first rating ever for the company since it shows the first rating change for each
company in the period 1986 – 01 – 05 to 2018 – 01 – 13. This initial distribution is a useful information when an
attempt is made at trying to simulate the same rating history, as observed during the real 32 year period, to see how
well the model can be described by a data generating process.

At first, the constant intensities are calculated using Equation (13) on all
credit rating migration data. Then we simulate Markov chains for each company with
the rates equal to the computed intensities. The initial rating of each company, as
shown in Figure 5, are then observed for the same amount of time as in the real data,
to see how well the constant intensities can be used to simulate the real ratings for
a total period of 32 years. After we establish that the data generating process works
for the estimated constant intensities from Equation (13), it is time to calibrate the
TM for cycles in the economy. A set of uniformly distributed ratings (including D) for
1, 000 companies will be used to simulate the rating changes during a 10-years period.
The rating distribution that is used for the simulations are shown in Figure 6. The
conditions for the cycles are shown in Table 2. To further consider the probabilities of
ending up in a business cycle, a regime switching Markov model is used. The 1-year
TM for the business cycles is calculated from data on U.S. economic cycles determined
by NBER during the period December 1854 – June 2009. The conditional forward
TM for credit ratings are then calculated, using the equation with consecutive years of
expansions and contractions given in Equation (17), and also in the Mixture of Markov
chains in Equation (20). In all stress-tests, we set the forward time, n, to 10 years.
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Figure 6: Distribution of Ratings for 1000 Companies Before Simulations. This figure
shows the rating distribution for 1, 000 companies, which will be used to simulate the rating changes in a generalized
Poisson process with time-varying intensities. All ratings are included (even default) as these ratings are not used to
represent a real portfolio of companies, but rather used for analyzing the dynamics of the ratings. Since the state, D,
is non-absorbing it poses no problem to also include it and allow it to switch as well.

5.3.2 Simulations for the Portfolio Stress-Tests

Lastly, the future TMs are used as an input in CreditMetricsTM to analyze changes
in the distribution of losses, arising from the differences in probabilities of default in
the transition matrices due to macroeconomic cycles. Here the asset return that is
subject to correlation, which is multivariate normally distributed, due to its industry.
The correlation matrix is shown in Table 3. In Matlab, the function mvnrnd is
used to simulate the return distributions for each asset (Matlab Release 2018a, The
MathWorks, Inc.).

Consistent with CreditMetricsTM, a factor loading parameter, ω, for the asset
returns weight, which is due to the industry it is operating in, must be specified. We
choose to arbitrarily set the factor loading parameter to 0.65 in all companies. As
long as we are consistent with the factor loading parameter, the results will still be
comparable since the same companies are used in each stress-test. The expected
return of the portfolio is, therefore, the same in each of the tests. The weight of the
idiosyncratic return, the non-correlated univariate part of the return, is then solved
from Equation (3):

√
(1− 0.652) = 0.76 (Gupton, Finger and Bhatia, 2007).

The portfolio will consists of zero-coupon bonds, with the principals uni-
formly distributed between 10, 000 and 100, 000 USD in increments of 10, 000 USD.
The portfolio is constructed such that the initial rating distribution mimics that of
the companies in the S&P500 Index that we have long-term issuer rating data from
S&P on as of 2018 – 01 – 13. In total it means 441 companies. The bonds are set
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to mature after 10 years, which will make the duration of the portfolio of bonds co-
incide with the simulation period for Markov chains in cycles. In the initial time, all
bonds in the portfolio is valued by Equation (6) and (8) corresponding to each rating.
The risk-neutral default probabilities are the implied default-probabilities from CDS
spreads summarized in Table 7. A simplifying assumption that we make is that, LGD,

Rating Q̃i0(τ ≤ 10)
AAA 7.94
AA 10.23
A 13.8

BBB 20.2
BB 35.67
B 61.12

CCC 85.71
Table 7: 10-Year Implied Probabilities of Default. This table shows the retrieved implied probabil-
ities of default in percentage for 10 year U.S. corporations retrieved from Thomson Reuters Eikon.

is 1 for each credit rating in the portfolio stress-test. As stated in CreditMetricsTM,
recovery rates are random and unpredictable unless advanced models are used.

6 Results

We present estimated empirical intensities in Subsection 6.1 and empirical transition
matrices in Subsection 6.2. The result of the calculated 1-years transition matrices
from simulated Markov chains using exponentially and Weibull-distributed time in
ratings are presented in Subsection 6.3. The resulting 10-years transition matrices
of the discrete-time Mixture of Markov chains-model is detailed in Subsection 6.4.
Finally, the result of the portfolio stress-test is shown in Subsection 6.5.

6.1 Empirically Estimated Intensities

Terminal Rating
AAA AA A BBB BB B CCC CC D
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AAA -0.135 0.135 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AA 0.004 -0.111 0.101 0.005 0.000 0.000 0.001 0.000 0.000
A 0.000 0.010 -0.071 0.061 0.000 0.000 0.000 0.000 0.000

BBB 0.000 0.000 0.024 -0.054 0.029 0.001 0.000 0.000 0.000
BB 0.000 0.000 0.001 0.054 -0.098 0.042 0.000 0.000 0.001
B 0.000 0.000 0.001 0.002 0.105 -0.146 0.033 0.004 0.001

CCC 0.000 0.000 0.000 0.000 0.014 0.257 -0.459 0.125 0.063
CC 0.000 0.000 0.000 0.000 0.000 0.094 0.188 -1.175 0.893
D 0.000 0.000 0.000 0.027 0.080 0.292 0.372 0.000 -0.770

Table 8: Empirical Generator Matrix. Results showing the estimated generator matrix (Λ) from rating
transition data. Each row sums up to 0, and all off-diagonal elements are non-negative which makes it a proper
generator matrix. The off-diagonal elements should be interpreted as the distribution parameter for the arrival time of
a type of transition. For example, the element corresponding to an initial rating, AAA, and terminal rating, AA, means
that the average time until that migration occurs for an obligor with rating AAA, is: µexp = 1/λ = 1/0.135 = 7.41
years.

Table 8 shows the generator matrix, estimated using Equation (13) in Sub-
section 3.1.1. The intensities are very low, due to the large number of right-censored
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AAA AA A BBB BB B CCC CC D
0.02 0.18 0.24 0.27 0.34 0.36 0.44 0.19 0.05

Table 9: Empirical Intensity of an Obligor Being Rated the Same. Result of estimates for the
constant rate of getting assigned the same rating as before. These rates counts as right-censored observations, as they
are not a rating transition and exist because S&P modifiers for relative strength were converted into its letter-grade
equivalent in our analysis. These rates are still used in the simulations, when trying to simulate the real data of
transitions that was observed. The rating with the highest rate of this kind is CCC, corresponding to an average of
1/λ = 1/0.44 = 2.3 years until a CCC got modified by either (+) or (−) by the dataset from S&P.

observations, when an obligor migrates to the same rating. The rating data initially
had 21 ratings, where there were (+) and (−)-modifiers for the S&P long-term issuer
ratings from AA to CCC (no C rating was ever present in the sample). Therefore, an
explanation for the low intensities is due to obligors staying long in their initial ratings
until a change occurs. The duration, shown in Table 6 is therefore significant for many
of the scores, and the transition count is low, which further lowers the intensities. In
Table 9, the intensity for the right-censored arrival time in each rating has been cal-
culated, which is the intensity by which the new rating will be the same as it already
is. It is estimated by dividing the diagonal of Table 5, which are the right-censored
observations, with the durations in Table 6. As we see in Table 6, the rate at which the
same rating is being assigned is higher than all other possible migrations combined for
ratings AA down to B, which is the negative of the diagonal in the generator matrix.
The scores where there is a higher intensity of migrating than staying in the same
rating is AAA, CCC, CC, and because of the sample selection bias, D. Hence it is
not relevant to compare the intensity of default in the empirical tables, since not all
defaulted companies were not included from the beginning in the dataset.

6.2 Empirically Estimated Transition Matrices

Terminal Rating
AAA AA A BBB BB B CCC CC D
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AAA 94.792 5.208 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AA 0.393 89.253 9.567 0.655 0.000 0.000 0.131 0.000 0.000
A 0.000 0.946 93.009 5.903 0.086 0.057 0.000 0.000 0.000

BBB 0.000 0.000 2.432 94.614 2.741 0.135 0.000 0.039 0.039
BB 0.000 0.031 0.062 5.362 90.555 3.616 0.218 0.031 0.125
B 0.000 0.000 0.062 0.373 10.441 86.389 2.051 0.311 0.373

CCC 0.000 0.000 0.000 0.000 1.493 23.881 73.134 0.746 0.746
CC 0.000 0.000 0.000 0.000 0.000 13.043 13.043 65.217 8.696
D 0.000 0.000 0.000 2.778 8.333 19.444 2.778 0.000 66.667

Table 10: Empirical Transition Matrix - Cohort Method. Results showing the 1-year TM in
percentage, estimated using the Cohort method. The dataset included ratings by S&P for 934 U.S. companies during
the time 1986 – 01 – 05 to 2018 – 01 – 13. We see that rating downgrades for the initial investment graded ratings:
AA to BBB, are far more common than upgrades for the same ratings. For the speculative ratings: BB to CC, rating
upgrades were more common. Another characteristic of this Cohort estimated TM is that all rating cohorts have a high
probability of staying in the same rating after one year. The table also shows that migrations to neighboring ratings,
for both upgrades and downgrades, are dominating for all grades except for the lowest, CC.

Table 10 shows the yearly TM estimated using the cohort method. Other
than for the lowest speculative rating classes, CCC and CC, the probability of a
rating migration to any different rating than a neighboring one is smaller than 1%.
The estimated yearly TM using the duration method is displayed in Table 11. By
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Terminal Rating
AAA AA A BBB BB B CCC CC D

In
it

ia
l

R
at

in
g

AAA 87.399 11.936 0.613 0.044 0.001 0.001 0.007 0.000 0.000
AA 0.343 89.541 9.219 0.762 0.012 0.015 0.099 0.005 0.004
A 0.002 0.870 93.244 5.745 0.108 0.029 0.001 0.001 0.000

BBB 0.000 0.011 2.282 94.890 2.656 0.125 0.005 0.022 0.010
BB 0.000 0.028 0.119 5.020 90.977 3.716 0.087 0.009 0.046
B 0.000 0.002 0.061 0.425 9.355 87.030 2.551 0.314 0.263

CCC 0.000 0.000 0.008 0.158 2.435 20.518 65.139 5.740 6.001
CC 0.000 0.000 0.011 0.696 2.655 14.000 16.325 31.656 34.658
D 0.000 0.001 0.035 2.015 6.719 22.144 20.723 1.102 47.262

Table 11: Empirical Transition Matrix - Duration Method. Results showing the 1-year TM in
percentage, estimated using the duration method. The dataset included rating changes by S&P for 934 U.S. companies
during the time 1986 – 01 – 05 to 2018 – 01 – 13. We see that rating downgrades for the initial investment graded
ratings: AA to BBB, are far more common than upgrades for the same ratings. For the speculative ratings: BB to
CC, rating upgrades were more common. All ratings have a high probability of staying in the same grade after one
year. The table also shows that migrations to neighboring ratings are dominating.

comparing the two empirical TMs, we see that they are similarly distributed for the
transition probabilities for ratings AA to B, and in fact differ less than 1% in each
probability. There is a higher probability of 7 percentage units of being downgraded
from the best rating, AAA, in the duration TM. Downgrade probabilities for the junk
ratings: CCC to C or default and CC into default, are also much more common in
the duration matrix.

The duration matrix manages to ”smooth” out some of the probabilities
away from the diagonal of only migrating to the neighboring rating. This effect is
small, but it shows that the duration matrix is a better choice than the cohort matrix
when it comes to modeling some transitions that are less likely. Both historically
estimated TMs are, however, downgrade-biased which was caused by the increase in
downgrades over the full period and the decreasing rate of upgrades, lasting from the
very first rating in 1986 until the last upgrade was assigned at 18th December 20187.
Upgrades also mainly occurred after 1–2 years after the previous rating change, which
is a contributing factor why some upgrade probabilities are low, due to their low
occurrence in the rating changes data.

Regarding the probability to default, these empirically estimated transition
matrices lack default data, which means it should not be interpreted as the real default
probabilities.

6.3 1-Year Transition Matrices From Simulations

First, in Subsection 6.3.1, the exponentially distributed simulation of the TM is pre-
sented, then the simulated Weibull-distributed transition matrices in Subsection 6.3.2.
For transition matrices from simulated Markov chains, we use heatmaps to visual-

7See Appendix B for a survival analysis of the empirical upgrades and downgrades in the dataset.
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ize the transition matrices graphically and to distinguish them from the empirically
estimated transition matrices.

6.3.1 Exponentially Distributed Rating Changes
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Figure 7: 1-Year Transition Matrix From Exponentially Distributed Rating Changes.
Result of a 1-year transition matrix in percentage from simulated Markov chains with constant rates for the initial
ratings in Figure 5, displayed as a heatmap. By comparing the transition probabilities to those estimated from the real
data in Table 11, we see that constant intensities are able to provide a reasonably good data generating process.

Terminal Rating
AAA AA A BBB BB B CCC CC D
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g

AAA 0 -0.57 0 0 0 0 0 0 0
AA -0.08 -1.37 -0.11 -0.11 0 0 -0.05 0 0
A 0 -0.38 -22.4 -6.45 0.17 -0.05 0 0 0

BBB 0 0 -0.7 6.87 2.18 0.32 0 0.24 0
BB 0 -0.09 0.33 3.95 25.73 3.32 -0.08 0 0.1
B 0 0 0.03 0.24 3.47 -1.39 0.94 0.02 0.22

CCC 0 0 0 0 -0.05 1.69 0.62 0.12 0.37
CC 0 0 0 0 0 -0.02 -0.2 0.42 0.09
D 0 0 0 0.01 0.05 0.35 0.14 0 -0.08

Table 12: Mean Error in the Constant Intensity Model. Result of calculated means of the
difference between simulated rating transitions and observed rating transitions for 100 simulations of rating changes
with constant intensities. Each initial rating in the dataset was used to simulate the rating changes. The companies
were observed for the same amount of time as in the real data. A low (large) absolute value in any cell means that the
rating transition is (not) approximated well with a constant intensity.

In Figure 7, the initial ratings for the companies in the dataset were used in
the simulation and we assumed that all times in ratings are exponentially distributed.
The intensities were calculated using the duration method from the real data. The
companies were observed for as long as they were observed in the real data. Figure 7
show that, for a basic model, exponentially distributed arrival time will do a decent
job of modeling the TM, as long as the constant intensities come from the duration
formula. The rating transitions which fits the best are speculative ratings, AAA, down
to, B. The elements in Figure 7, show that for these ratings the probability of staying
in the same rating over a year can be well-estimated and likewise each of their transition
probabilities. It is a beneficial feature to have in a model since it will show with what
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probabilities the scores won’t change, e.g. in the case of a portfolio manager looking to
keep a certain proportion of investment grades each year. The transition probabilities
for, AAA, down to B, all differ by less than 1% in the simulated data compared to
the real data in Table 11. The junk ratings, CCC, CC and default, D, in the TM are,
therefore, most sensitive to changing rates over time and constant intensities functions
worse for these ratings. Transitions are more likely to happen for these and there is a
lot less data, which explains the difference. The mean error of the simulations seems
to be affected by the duration and rating changes observations. Therefore, as one uses
a larger dataset, it is clear that a constant intensity better approximates the TM.

6.3.2 Weibull Distributed Rating Changes

The result of the simulated conditional yearly TMs in Figure 8 show how sensitive the
probabilities were to the change in rates. Results are clear, namely that our model for
the dynamics of the transition probabilities are in-line with expectations for almost all
rating classes. As the absolute value of the shape-parameter increases, the magnitude
of cycles, the effect is that rating changes closest to the diagonal will become more
frequent. In contractions (expansions) it is the probabilities right (left) of the diagonal
that increase corresponding to a downgrade (upgrade).

In huge cycles, AAA bonds have a less than 6% of being downgraded in
expansions, whereas that probability is over 22% in contractions. The simulated prob-
abilities of default imply that they are larger for every rating class in huge recessions
compared to when the country experiences huge economic growth. In huge cycles of
contraction, the recovery of a default, which occurred 29 times in our dataset, got
reduced. Historically, the probability of staying defaulted was 47%, which in the sim-
ulated worst-case increased to 61%, hence 14 percentage units greater. The simulated
TMs thereby capture the increased difficulty of restructuring in bad cycles. The down-
grade probability of an AA bond is 17.6% in contractions and only 6.5% in expansions
(huge cycles). For both A, and BBB-rated bonds, the downgrade probability in huge
contractions is 2.7 times greater than in huge expansions. Even though the proportion
diminishes the lower the rating is for the investment graded bond, there is still notable
differences in the distribution and rate of downgrades. The upgrade probability is more
than double for BBB-rated bonds in vast cycles of expansion compared to contrac-
tion. For rating BB, the dynamics in huge cycles means that upgrades are more than
double as likely, and downgrades are half as likely in expansions as in contractions.

In conclusion, the calculation of conditional transition matrices using hazard
processes conditional on background information proved successful. The dynamics ac-
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Figure 8: 1-Year Transition Matrices Conditional on Business Cycles. Simulation results
of yearly TMs conditional on time-varying intensities displayed as heatmaps. An initial set of 1, 000 companies with
uniformly distributed ratings, shown in Figure 6, were used to simulate all the Markov chains that makes up the
transition matrix. The length that every company was observed for was 10-years. Left-hand panels are the result of
economic contraction, with upgrade intensities decreasing and downgrades intensities increasing in time. Right-hand
panels are the results of economic expansion, with upgrade intensities increasing and downgrades intensities decreasing
in time. The intensity of being rated the same, shown in Table 9, were constant in all cases. The magnitude of time-
variation is lowest in the upper panels, medium in the middle panels and strongest in the lower panels. The rating
changes are distributed as a Weibull-distribution, with the magnitude of the shape-parameter, α, depending on cycle.
The α:s are summarized in Table 2.
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counted for the historical distribution, sample-selection bias, and in each rating change,
the models managed to develop a realistic probability given the cycles. Speculative
grades were trickier to model because of fewer data than dynamics of investment-grade
transitions.

6.4 10-Years Transition Matrices From the Mixture of Markov
Chains-Model

The estimated yearly TM for U.S. cycles of economic expansion, E, and contraction,
C, from NBER’s data during the period December 1854 – June 2009 is in percentage:

Q̂BC(t, t+ 1) =
 p̂E,E (1− p̂E,E)

(1− p̂C,C p̂C,C

 =
56.5 43.5

19.6 80.4

 .
The resulting credit rating TM for 10-years forward in a MMC-model are shown in
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Figure 9: 10-Years Transition Matrix in Low Cycles. Result of MMC-model for credit rating TM
(in percentage) assuming low cycles in the next 10-years displayed as a heatmap. The business cycle TM from NBER,
Q̂BC , combined with 1-year credit rating transition matrices from simulated ratings conditional on cycles, Q̂E(t, t+ 1)
and Q̂C(t, t+1), with time-varying rates for rating changes corresponding to low cycles in Table 2, leads to this forward
TM.

Figures 9, 10 and 11. The resulting TMs are spread when it comes to the probabilities.
Results does not differ particularly much between cycles. Therefore, we can conclude
that the MMC-model smooths out the resulting forward TM in all scenarios that we
modeled.
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Figure 10: 10-Years Transition Matrix in Medium Cycles. Result of MMC-model for credit
rating TM (in percentage) assuming medium cycles in the next 10-years displayed as a heatmap. The business cycle
TM from NBER, Q̂BC , combined with 1-year credit rating transition matrices from simulated ratings conditional on
cycles, Q̂E(t, t + 1) and Q̂C(t, t + 1), with time-varying rates for rating changes corresponding to medium cycles in
Table 2, leads to this forward TM.
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Figure 11: 10-Years Transition Matrix in Huge Cycles. Result of MMC-model for credit rating
TM (in percentage) assuming huge cycles in the next 10-years displayed as a heatmap. The business cycle TM from
NBER, Q̂BC , combined with 1-year credit rating transition matrices from simulated ratings conditional on cycles,
Q̂E(t, t+ 1) and Q̂C(t, t+ 1), with time-varying rates for rating changes corresponding to huge cycles in Table 2, leads
to this forward TM.
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6.5 Portfolio Stress-Test Application
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Figure 12: Loss Distribution Unconditional of Cycles. CreditMetricsTM output for 10, 000 sim-
ulated portfolio losses, using the PDs in the empirical transition matrix for 10-years forward, risk-free rate, rf = 0%
and Q̃i0(τ ≤ 10) as in Table 7. On the x-axis is losses defined by Equation (24) and on the y-axis is the frequency.

Figures 12, 13, 14 and 15 shows the portfolio stress-test results using the
same portfolio, and asset returns, after 10-years. The figures can be compared between
each other to see the marginal effect that the transition matrix have on losses. The
portfolio consists of zero-coupon, zero-recovery bonds of companies that have a rating
and industry distribution that mimics the S&P500 as of 2018 – 01 – 13. In total
there are 441 companies in the portfolio. The principal for each bonds are chosen
from a uniform distribution between 10, 000 to 100, 000 USD in increments of 10, 000
USD. The industry correlation of the companies in the portfolio were accounted for,
by having a factor loading parameter for the systematic return of 0.65. In each of the
scenarios, the asset return over the period are fixed, so that only the marginal effect
on losses due to a change in the forward transition matrix can be analyzed between
the different types of macroeconomic cycles. The maturity of the bonds are ten years
and the portfolio value today using Equation (6) with the risk-neutral probabilities of
default in Table 7 is 19, 510, 290 USD.

To begin, we can make a comparison of our simulations conditional on macroe-
conomic cycles in Figures 13, 14 and 15 against the purely historically-estimated tran-
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Figure 13: Loss Distribution Conditional on Business Cycles. CreditMetricsTM output for
10, 000 simulated portfolio losses, using the PDs from an MMC-model for the forward transition matrix for 10-years
forward, risk-free rate, rf = 0% and Q̃i0(τ ≤ 10) as in Table 7. On the x-axis is losses defined by Equation (24) and on
the y-axis is the frequency.
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Figure 14: Loss Distribution Conditional on Consecutive Contraction. CreditMetricsTM

output for 10, 000 simulated portfolio losses, using the PDs from the transition matrix conditional on consecutive
economic contraction for 10-years forward, risk-free rate, rf = 0% and Q̃i0(τ ≤ 10) as in Table 7. On the x-axis is
losses defined by Equation (24) and on the y-axis is the frequency.
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Figure 15: Loss Distribution Conditional on Consecutive Expansion. CreditMetricsTM

output for 10, 000 simulated portfolio losses, using the PDs from the transition matrix conditional on consecutive
economic expansion for 10-years forward, risk-free rate, rf = 0% and Q̃i0(τ ≤ 10) as in Table 7. On the x-axis is losses
defined by Equation (24) and on the y-axis is the frequency.

sition matrix, with sample selection bias, in Figure 12, where we estimate losses using
the empirical default-rates in Table 11. In this benchmark, the losses are the lowest
out of all stress-tests since the data did not include cases where companies stayed
defaulted, which means there were low default probabilities in the transition matrix.
The 95%-VaR in the benchmark is 325, 800 USD. Not so unexpected, the closest out of
all stress-tests conditional on cycles, the closest 95%-VaR to this value is the scenario
with huge expansions consecutively for ten years, with 1, 648, 107 USD. Hence by only
using the empirical transition matrix, with few defaults, losses are also fewer and corre-
sponds to a relatively rare case where economic expansion is expected to happen with
large magnitude each of the next 10-years, in our stress-test. The reason behind the
large difference to the purely empirical benchmark is that we adjusted the simulations
with implied PDs on the market, which the empirical matrix did not include due to
the sample selection bias of defaults in the dataset. Obviously Figure 12 shows some
issues in credit risk models when you are uncareful about which historical data to use.

The Mixture of Markov chain (MMC)-models, were not practical to use for
modeling transition matrices, as the transition probabilities became smoothed and
similar in all periods. In Figure 13 we show that the stress-test of the MMC-models
resulted in expected losses, 95%-VaR and expected shortfall that changed little in
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relative terms depending on cycle magnitude. The 95%-VaR change with an increase
of 13% from low to huge cycles, in comparison to change in absolute value of 22%
for contraction and 39% for expansion going from low to huge. A conclusion arising
from this is that such a model smooths out the weighted probabilities between good
and distressed times, in no small degree making the outputs less useful. Therefore,
the effect on losses becomes marginal when MMC is used to account for probabilities
of cycles. The models with time-homogeneous TMs used consequently, with results
shown in Figures 14 and 15, is therefore a better alternative for stress-tests as they
show greater variation in regards to cycle strength.We see a change in expected losses
of a factor 0.7 (a decrease of 30%) when expansions go from low to huge cycles. For
contractions, expected losses increase similarly with a factor 1.33 from small to huge
business cycles (an increase of 33%). In all three stress-tests of macroeconomic cycles,
the medium cycles showed, oddly enough, the opposite effect than what was expected
given the direction of intensities. In part, it could be due to the limitations in the
stress-test, such as the assumption of zero-recovery and that implied probability of
default, in Table 4, used in the simulation of rating changes was higher than other
investment-grade bonds. However, as we see from the transition matrices in Figure 8
the speculative grades dynamics were more challenging to model, due to fewer data
on those ratings initially. Since speculative ratings account for most of the default,
it hence limits our stress-test to some degree. Huge cycles, however, more accurately
managed to capture the dynamics of a recession and expansion respectively, of credit
rating events when compared to low cycles. By only comparing huge cycles and low
cycles, the stress-test show results that were in-line with expectations.

The conditional 10-years forward transition matrices assuming time-homogeneity
showed greater changes in losses between expansion and contraction simulations. We
see from Figure 15 that 95%-VaR lies between 1, 648, 107 and 2, 283, 372 USD in expan-
sions and between 4, 519, 406 and 5, 498, 319 USD for contractions. The results show
that modeling the direction of intensities in Markov chains for ratings, in cycles, has
pronounced effect on the 95%-VaR for a portfolio of bonds when used in this stress-test.
Overall from the CreditMetricsTM output, we see that the simple time-homogeneous
model for future TMs is an excellent choice to account for higher variation in transition
probabilities due to cycles. Our simulation of conditional Markov chains has therefore
shown to have an apparent marginal effect on the losses on a portfolio of assets.
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7 Conclusions

Our analysis of intensity models for the rating transitions showed that, given that
the empirical distribution of the rating transitions are known, one could account for
macroeconomic cycles by changing the shape-parameter, α, in theWeibull-distribution,
which incorporate time-variation in rates. In particular, the simulations show that
stronger cycles shift the transition probabilities in the transition matrix towards added
upgrades and fewer downgrades in economic expansions. For economic contractions,
the simulated TM show the opposite effect. Therefore, the implementation of simulated
rating changes using Lando’s (1998)-model provided results, for the TM, which are
in-line with economic theory. To account for a potential progressive decline in credit
quality for outstanding loans, banks, and other financial institutions can use this model
for immediately recognizing losses on the deteriorated claims in the future, required
under IFRS 9 accounting regulation.

Lastly, regarding the portfolio stress-test, we can conclude if our hypothesis
stated in the introduction were true:

• The Mixture of Markov Chains-model had the effect of weighing the conditional
TMs, which smoothed out the probabilities and we ended up with similar losses in
each magnitude of cycles, compared to the other stress-tests. However, the time-
homogeneous model of consecutive ”expansion” or ”contraction” years showed
a clear difference between low and huge cycles for expansion and contraction
respectively.
• By setting constant a portfolio of bonds, asset return, and correlation, we devel-

oped a Value-at-Risk-model that worked well in showing the marginal effect of
having different probabilities of default from the conditional transition matrices
in the future.

A drawback of our model is that we assumed no recovery in the case of default for
the portfolio stress-tests and that we had to use implied probabilities of default as the
initial default probability when we simulated credit rating Markov chains for compa-
nies, which would provide different results if better real-world estimates were chosen
instead. Further research on generalized Markov chain processes for analyzing the
transition matrix in IFRS 9 context of portfolio stress-test against future losses, seem
to point two ways – either a state variable could be used to incorporate for example
the current short-term rate in the intensity function. Or, the model of deterministic
Weibull-distributed rates which we used can be extended, for example by changing the
scaling parameter. Either direction, those models would provide more insights into the
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macroeconomic effect of cycles on the transition matrix and its effect on credit losses.



A DISTRIBUTIONS FOR RANDOM EVENTS 45

A Distributions for Random Events

The goal of our analysis of past distribution of transition rates is to obtain and ana-
lyze the parameters for the distributions of credit transition probabilities, by fitting
the empirically estimated functions to known probability density functions. In our
models, the distributions for rating times, which we use, will be the same as those
explained by McNeil, Frey, and Embrechts (2010). Such fitted deterministic functions
can illustrate the change in the probability distribution over time, which is useful when
a model should be calibrated for time-varying business cycle effects later on. By doing
a survival analysis, a comparison between rating change, in different ratings, can from
the estimated distribution parameters be illustrated graphically as well.

An exponential distribution is appropriate in the case where we assume that
the times until a downgrade or upgrade occur randomly but at a constant rate, λ. The
exponential density function is (McNeil, Frey and Embrechts, 2010):

f(u) = a exp(−λu). (28)

The survival function, S(t), for the exponential distribution is calculated by substitut-
ing Equation (28) into (Rodríguez, 2007):

f(u) = −S ′(u), (29)

and integrating over t. The resulting survival function only depends on the constant
rate, λ, and has the form (McNeil, Frey and Embrechts, 2010):

S(t) = exp(−λt). (30)

The mean and variance of the exponential density function are (McNeil, Frey and
Embrechts, 2010):

µexp = 1
λ
, σ2

exp = 1
λ2

The exponentially constant rate for the distribution corresponds to the cases
in which the Markov property, explained in Section 3.1 is wholly fulfilled (Frydman and
Schuermann, 2008). Another density function for describing the rate of the random
times are Weibull-distributions. A Weibull-distribution has a time-varying rate at
which the random arrival times occur. The Weibull-probability density function, in
the form used by McNeil, Frey and Embrechts (2010) is:

f(u) = λαuα−1 exp(−λuα). (31)
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The surival function in a Weibull distribution gets the form (McNeil, Frey and Em-
brechts, 2010):

S(t) = exp(−λtα). (32)

The mean and variance of the Weibull density function are (McNeil, Frey and Em-
brechts, 2010):

µWB = λ−
1
αΓ(1 + 1

α
), σ2

WB = λ−
2
α (Γ(1 + 2

α
)− (Γ(1 + 1

α
))2),

where Γ is the gamma function.

Both distributions are popular choices for fitting the estimated survival func-
tions and can be used to adjust empirical data on rating changes, e.g. upgrades, and
downgrades, to obtain the parameter values for their respective distributions. Note
from the survival functions in Equation (30) and Equation (32), that it is clear that the
Weibull-distribution will have a changing hazard-rate, whereas the exponential model
has a constant hazard rate. The Weibull-shape parameter, α, in Equation (31) deter-
mines the time-variation and is used to control the magnitudes of our cycles shown in
Figure 16.

B Survival Analysis of Upgrade and Downgrades

Figure 17 and 18 shows the survival probability using the Kaplan-Meier estimators,
and the Weibull-fitted curves (Kaplan and Meier, 1958). We see that the rate at
which downgrades occurs, in the beginning, is 0.0383. If this rate had been kept
constant throughout 32 years, it would correspond to an average of 26.1 years for
any non-defaulted company until a downgrade. We see that the survival function in
the left-hand panel of Figure 17 exhibits some of the Markov property, meaning that
downgrades appear to occur at a reasonably linear rate and does not seem to be too
much affected by how long it has survived up until a point in time. Evident from
the estimated shape parameter, determined to be 1.1416, which in a case with full
Markov property would be 1, some Markov property holds. From this, we conclude
that the Markov property, characterized by arrival times with exponential distribution
at a constant rate, to some extent provides a good model of downgrades.

The slope of the downgrade survival function is, however, not entirely linear,
particularly in the right-hand panel of Figure 17. The right-hand panel shows the
survival function with omitted right-censored observations. In this case, α is 0.8003
and the survival probability of the random time is a lot steeper from the initial time
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Figure 16: Weibull-Distributed Intensity Functions. The upper graph shows decreasing intensities
in time, and the lower graph shows decreasing intensities based for random events with Weibull probability density
function (PDF) with different Weibull-shape parameter, α. The functional form in both graphs is: λ(t) = λ0αtα−1.
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Figure 17: Empirical Survival Function for Rating Downgrades. Results showing empirically
estimated survival functions, S(x) = 1−P (Downgrade|τ̃ > x), of any rating downgrade occuring at time τ̃ > 0. The left
panel shows the survival probability distribution for any obligor at risk of a downgrade, calculated from the Kaplan-
Meier product limit estimator (Kaplan and Meier, 1958). The right panel shows the function when right-censored
observations are excluded, such that only the cases where downgrades actually occurred counts, calculated from the
Kaplan-Meier product limit estimator. 95%-confidence bounds are also displayed. The Weibull-fitted curve in the left
panel has a scale-parameter, λ = 0.0383 and a shape-parameter, α, of 1.1416. This means that the hazard increases
in time. The rate seems to be decreasing from time 0 up until 10 years and then again from 10 to around 27 years
but at a different rate. This means that the Markov property is not completely fulfilled for rating downgrades, as the
cumulative probability distribution of downgrades depend on how much time has passed before the rating got changed.
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Figure 18: Empirical Survival Function for Rating Upgrades. Results showing empirically
estimated survival functions, S(x) = 1 − P (Upgrade|τ̃ > x), of any rating upgrade occuring at time τ̃ > 0 The left
panel shows the survival probability distribution for any obligor at risk of an upgrade, calculated from the Kaplan-
Meier product limit estimator (Kaplan and Meier, 1958). The right panel shows the function when right-censored
observations are excluded, such that only the cases where upgrades actually occurred counts, calculated from the
Kaplan-Meier product limit estimator. 95%-confidence bounds are also displayed. The Weibull-fitted curve in the
left panel has a scale-parameter, λ = 0.0928 and a shape-parameter, α, of 0.5724. This means that the hazard, or
instantaneous probability of an upgrade, decreased a lot during the total period. If the Markov property were fully
satisfied, the curves would be sloping down linearly, as upgrades then occurs at a constant rate.
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up to 12 years. It then flattens out, making the curve convex, which is a property
of having an α below 1, where the rate decreases over time. The right-hand panel of
Figure 17, hence indicates both visible and from the shape parameter, that there is
an apparent effect of the time on the evaluation of the rating agency. The Weibull
mean for the left-hand panel in Figure 17 corresponds to a downgrade time, where
the increase in intensity is accounted for, that over the full time is estimated to be
an average of 16.6 years. Distinguishing between the averages is essential as it does
not mean that this was the average time for the obligors that got a lower rating. To
get this average time, we use the survival function which excludes all the cases with
obligors being upgraded or assigned the same score, shown in the right-hand panel in
Figure 17. The mean time until a downgrade for those obligors that downgraded were
instead 12 years.

We also see from the graph that the rate at which the decrease in survival
probability occurs are convex in both panels of Figure 17. Looking at the Kaplan-Meier
estimated survival function, there seem to be at least four time-intervals characterized
by different distribution for the random time of downgrades. The first is the period
between 0 and 10 years. Either upgrades or ratings into the same rating are shown
to be more common than downgrades in the initial 10 years after a rating is assigned.
The second period after 10 years, shows a sharper decline in the empirical survival
function, going on for 4 years, such that the survival probability goes from 70% down
to 50% in the four years that follows. The increase in the rate for this period compared
to the time that precedes it is apparent by the hunched shape at time 10 in the left-
panel of Figure 17. The third distribution phase is the goes from 14 to 28 years, and
lastly, the sharpest decline occurs in the last four years. It is interesting to note that
the shape of the real distribution of the survival function and the one that excludes
right-censored data has a somewhat similar distribution towards the second half of the
period. What this means is that in the first half, more obligor was rated the same as
before, or got upgraded. In the latter half (firms unrated for over 15 years) downgrades
are so frequent that they make up almost all rating changes.

In Figure 18 the empirical distribution of the survival function for rating
upgrades are shown. Since upgrades that occurred very heavily distributed in the
beginning year, the empirical function will not go to zero as there are only right-
censored observations after 22 years. When a Weibull fit is used for this function it
will, therefore, give a very small α and λ such that a rating upgrade is not expected
to occur until 102.1 years into the future. This, of course, does not make sense and as
mentioned has to do with trying to fit values that a very skewed towards a low number
of years for the rating upgrades that occurred in the data. For example, the mean of
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the right-hand panel in Figure 18, shows that the average time until the upgrade for
the obligors that were upgraded was 1.41 years. Almost no upgrade occurred after 10
years. In the end, we conclude that upgrades in our sample were not approximated
well by Markov properties, as indicated in both panels of Figure 18.
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Figure 19: Empirical Cumulative Hazard Function for Rating Downgrades.Result of the
empirically estimated cumulative hazard function, ĥ(x), for any rating downgrade in the dataset. The left panel shows
the cumulative hazard for any obligor at risk of a downgrade, calculated from the Kaplan-Meier product limit estimator
(Kaplan and Meier, 1958). The right panel shows the function when right-censored observations are excluded, such that
only the cases where downgrades actually occurred counts, calculated from the Kaplan-Meier product limit estimator.
95%-confidence bounds are also displayed. The function is fitted to the exponential function: y = a exp(λx). If the
Markov property were fully satisfied, the curves would be sloping linearly to the upper-right, as the expected transition
increase linearly with time at the same rate.

Figure 19 shows the cumulative hazard functions for rating downgrades. The
graphs further illustrate the time-varying distribution of downgrades, since the curves
would be linear otherwise. The left panel in Figure 19 indicates what the expected
number of downgrades is at each time. From the analysis of the survival function for
downgrades, we know that the average time until a downgrade for a non-defaulted
obligor was 16.1 years. As shown in Figure 19, we hence see that this value on the
x-axis corresponds to a cumulative hazard of 1 (the first hitting time). Figure 20 shows
the cumulative hazard function for upgrades. Since, α, is below 1, for the fitted curve,
it means that the shape of the cumulative hazard is logarithmic. Thus it bends the
other way compared to that of the downgrade cumulative distribution. We also see
that this corresponds to a much stronger decrease rate over time for upgrades. The
right-hand panel in Figure 20 shows that an upgrade is likely to happen only few years
from the previous rating. In comparison to the downgrade cumulative hazard, the
time until a change is much sooner for upgrades.

From the survival analysis for any upgrade or downgrade, we conclude that
the most significant difference between upgrade and downgrade distributions are the
estimated, α. Upgrades diverged far more from Markov properties (α = 1) than for
downgrades. The motivation of using different shape-parameter in cycles, is therefore



B SURVIVAL ANALYSIS OF UPGRADE AND DOWNGRADES 51

Kaplan-Meier Estimator

Upper Confidence Bound

Lower Confidence Bound

Exponential Fit (a = 0.0888,  = 0.1003)

x

y

Cumulative Hazard Function - Upgrade

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Kaplan-Meier Estimator

Upper Confidence Bound

Lower Confidence Bound

Exponential Fit (a = 0.9773,  = 0.09938)

x

y

Cumulative Hazard Function - Upgrade
Excluding Righ-Censored Observations

0 5 10 15 20 25
0

2

4

6

8

10

12

Figure 20: Empirical Cumulative Hazard Function for Rating Upgrades. Result of the
empirically estimated cumulative hazard function, ĥ(x), for any rating upgrade in the dataset. The left panel shows
the cumulative hazard for any obligor that can be upgraded, calculated from the Kaplan-Meier product limit estimator
(Kaplan and Meier, 1958). The right panel shows the function when right-censored observations are excluded, such that
only the cases where upgrades actually occurred counts, calculated from the Kaplan-Meier product limit estimator.
95%-confidence bounds are also displayed. The function is fitted to the exponential function: y = a exp(λx). If the
Markov property were fully satisfied, the curves would be sloping linearly to the upper-right, as the expected transition
increase linearly with time at the same rate.

strong, as it accounts for differences in the expected number of credit events.
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C Simulated Final Ratings
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Figure 21: Final Rating Distributions after Simulations. Simulation results, showing how the final
ratings of the 1, 000 companies in Figure 6, ended up after their rating changes were dependent on different economic
cycles. Note that no state was absorbing, so each distribution still consists of 1, 000 companies.



D LOSS DISTRIBUTIONS SENSITIVITY TO RISK PREMIUMS 53

D Loss Distributions Sensitivity to Risk Premiums
Loss Distribution for Different 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Losses million USD 106

0

500

1000

1500

2000

2500
F

re
qu

en
cy

 = 2, VaR-95%:  $879022.
 = 3, VaR-95%:  $1560397.
 = 4, VaR-95%:  $2304655.
 = 5, VaR-95%:  $3000918.
 = 6, VaR-95%:  $3704050.

Figure 22: Loss Distribution for Different Risk Premiums. CreditMetricsTM output for 10, 000
simulated portfolio losses, using the empirical forward TM for 10-years and setting a constant risk premium, π, for all
ratings relating the empirical probabilities of default to the risk-neutral probabilities of default. On the x-axis is losses
defined by Equation (24) and on the y-axis is the kernel function values for the loss distribution.

As we discussed in Subsection 2.4.1, the risk-neutral default probabilities are
often much more substantial, implying that there is a risk premium for ratings. Figure
22 shows the same stress-test as performed in Figure 12, utilizing the corresponding
empirical probabilities of default but using five different risk-premiums, which we de-
note π. The real probabilities of transitions are related to the risk-neutral probabilities
in the formula (Lando, Jarrow and Turnbull, 1997):

q̃ij(t, t+ 1) = πi(t)qij, πi(t) ≥ 0, i = 1, ..., K − 1 (33)

Note in Equation (33) that the risk-premias πi(t) for a rating class i only depends
on i and not j, but can still be used to transform an empirical transition matrix Q
into a risk-neutral transition matrix Q̃, which are used in Equation (6) to price bonds.
By modelling the term-structure from a Markov chain of ratings using the model by
Jarrow, Turnbull and Lando (1997) in Equation (6) means we have to know the risk
premium at maturity of the portfolio which we want to value, 10-years. In the Jarrow,
Turnbull, and Lando (JLT) (1997)-model the risk premium is used to relate risk-
neutral transition probabilities with empirical transition probabilities. From Figure
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22 it is clear that losses increase if we choose to work with a higher risk premium in
the stress-tests.
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