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ABSTRACT

Heavy particles suspended in turbulent fluid flows, so-called turbulent aero-
sols, are common in Nature and in technological applications. A prominent
example is rain droplets in turbulent clouds. Due to their inertia, ensembles
of aerosol particles distribute inhomogeneously over space and can develop
large relative velocities at small separations.

We use statistical models that mimic turbulent flow by means of Gaussian
random velocity fields to describe these systems. Compared to models that
involve actual turbulence, our statistical models are simpler to study and
allow for an analytical treatment in certain limits. Despite their simplic-
ity, statistical models qualitatively explain the results of direct numerical
simulations and experiments.

In this Licentiate thesis, we focus primarily on studying one-dimensional
versions of the statistical model. The results of these systems create intuition
for, and give important insights into the behaviour of higher dimensional
models of particles in turbulence.
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PART I

INTRODUCTION

Systems of heavy particles immersed in turbulent fluids, called turbulent
aerosols, are abundant in Nature and technology [1, 2]. A prominent exam-
ple is water droplets in warm stratocumulus clouds [3]. Cloud turbulence
is believed to play an important role in the growth of droplets [4, 5]. When
the droplets are small, they grow primarily through collisions, which are
facilitated by the turbulence [6]. In order to understand the impact of turbu-
lence on droplet growth, a detailed knowledge of the dynamics of turbulent
aerosols is required. In particular, it is vital to understand how often the
aerosol particles come close together and, when they do, how fast they move
relative to each other [7, 8, 9, 10]. Due to particle inertia, heavy particles may
cross the stream lines of the underlying fluid and engage in spatial clustering
[1, 2, 11, 12, 13, 14]. Clustering describes the phenomenon that ensembles
of heavy particles, instead of distributing homogeneously over space, form
regions of high (and low) concentration even though the underlying turbu-
lent fluid may be incompressible. At the same time, particles with different
acceleration histories may approach each other at high relative velocities
due to caustic singularities in the inertial particle dynamics [6, 7, 8, 9, 10, 15],
which affects the rate and outcomes of collisions [2].

Models based on a probabilistic approach to turbulence, called statistical
models in the literature [1], have helped considerably in the understanding
of the dynamics of turbulent aerosols. These models abandon the ambitious
endeavour of describing the underlying turbulence and instead model the
fluid by a random velocity field [11, 16]. The particle dynamics is subject
to forces induced by the random fluid field fluctuations. Using statistical
models, we can study the mechanisms of spatial clustering and the relative
velocity statistics in a simplified environment. Yet these models are realistic
enough to qualitatively explain the results of turbulence simulations and
experiments [1].

In this Licentiate thesis, we review known results and discuss recent
progress in the study of statistical models for turbulent aerosols. We focus
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primarily on one-dimensional versions of the model, for which analytical
results can be obtained. Known models of this type are the white-noise
model [1] and the telegraph model [17]. We introduce a new system with
this property, the persistent-flow model, which is valid for weakly inertial
particles in a highly persistent flow. Despite the apparent simplicity of these
one-dimensional models, they are surprisingly rich in their dynamics and
provide valuable insights for higher dimensional systems [1, 6, 18]. This
aspect is shown and discussed in the research papers appended to the text.

The thesis is organised as follows: After moving step-by-step from the
complex problem of inertial particles in turbulence to statistical models in
Chapter 1, we discuss the phenomenon of spatial clustering in Chapter 2. In
Chapters 3 we review and extend the knowledge of spatial clustering in one-
dimensional statistical models. The research papers produced in the course
of three year’s work are reviewed and put into the context of the preceding
text in Chapter 4. Conclusions are drawn and possible future projects are
discussed in Chapter 5.

This Licentiate thesis is intended to give the interested reader an intelli-
gible and concise introduction to the world of one-dimensional statistical
models of turbulent aerosols. In the author’s personal view, the papers B and
C showcase the value of these models. Paper A discusses the angular velocity
of a single particle in a shear flow and is slightly detached from the rest of
the work.
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1 Particles in fluids

The motion of an ensemble of non-interacting spherical particles in fluid
turbulence is a complex problem to study [1, 2, 6]. This becomes clear already
when considering the motion of a single particle. On the one hand, the fluid
motion, possibly a very complicated motion in itself, applies a force on
the particle which makes it move. The moving particle, on the other hand,
pushes aside the fluid, generating a complicated disturbance of the flow.
Such disturbances may, depending on the viscosity of the fluid, persist for
some time and affect the particle motion later. If more particles are involved,
other effects such as hydrodynamic interactions between the particles come
into play [19, 20]. Due to the complexity of the system, the main challenge is
to find a way of simplifying the problem without losing the essential physics.
Before discussing the approximations and simplifications we are going to
make in this work, we describe the system on a more formal level.

1.1 Problem formulation

The dynamics of particles in an incompressible fluid is described by the
Navier-Stokes equations [21, 22, 23]

∂w

∂ t
+ (w ·∇)w =−∇p −ν∇2w , (1.1a)

∇·w = 0 . (1.1b)

Here, w (x , t ) and p (x , t ) are the velocity of the fluid and the pressure at
position x and time t , respectively. The quantity ν denotes the kinematic
viscosity of the fluid. The first equation (1.1a) can be identified as Newton’s
second law for an infinitesimal fluid parcel. Eq. (1.1b) ensures incompressibil-
ity of the flow. First, we note that the Navier-Stokes equations are non-linear,
because of the so-called convective term (w ·∇)w on the left hand side of
Eq. (1.1a). This non-linearity has drastic and important consequences that
we describe later in this Section. The term −ν∇2w on the right-hand side of
the equation is called the viscous term. It is responsible for the dissipation
of energy in the fluid. Because of the viscous term, perturbations of the flow
smoothen out with time. For our purposes, the Navier-Stokes equations need
to be supplemented by suitable boundary conditions that account for the
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presence of the particles. The no-slip boundary condition is used in viscous
flows. It requires that the fluid velocity relative to the surface of the particles
must vanish [19, 20]. The no-slip boundary condition leads to fluid stresses
on the particle surfaces which in turn result in forces that make the particles
move [19, 20].

There are two fundamental difficulties in describing the above system.
The first one arises, because the problem requires the simultaneous solution
of the field equations (1.1), while satisfying the boundary conditions which
change as a function of time as the particles move through the fluid. Problems
like this require so-called self-consistent solutions that are challenging to
obtain even for a small number of particles [19, 20]. Second, if the fluid
moves quickly, the non-linear term in Eq. (1.1a) renders the solutions of the
Navier-Stokes equations unstable, leading to chaotic fluid motion. In fluid
dynamics, this is known as turbulence [22, 23]. These difficulties make the
complete problem intractable and call for approximations. We explain these
approximations in the Sections that follow.

1.2 One-way coupling approximation

First, we assume that the particle system is so dilute that there are no hydro-
dynamic interactions between the particles. This is typically the case in, for
instance, turbulent air clouds [1]. Note, however, that when there is strong
spatial clustering of the particles, this assumption may break down [1, 24].
Second, we assume that the particles are much smaller than the smallest
structures of the flow. Because of the viscous term, such a smallest spatial
scale exists, a fact we discuss in the next Section.

These assumptions motivate the ‘one-way coupling’ approximation [25].
It assumes that the presence of the particles changes the flow only marginally
so that the boundary condition can be disregarded in Eqs. (1.1). That is to say,
the motion of the particles is influenced by the fluid flow, but the flow-field,
on the other hand, is not affected by the particles. The one-way coupling
approximation is useful because it decouples the flow-field motion from
the motion of the particles, making the problem more tractable. Once the
equations are decoupled, we can discuss turbulence and the particle motion
separately.
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1.3 Turbulence

Turbulence is the most common state of fluids in Nature. It describes the
chaotic and strongly mixing behaviour of rapidly moving fluids and is caused
by the non-linearity of the problem (1.1) [22]. Despite its long history, tur-
bulence is still an active field of research and the non-linear field equations
(1.1) remain a major challenge. Since the times of Navier and Stokes the un-
derstanding of turbulence has improved considerably [26], while several fun-
damental problems remain unsolved. In this Section, we describe important
aspects of turbulence on a phenomenological level. A better understanding
of the existence of a smallest scale in turbulence and the origin of the highly
irregular motion in turbulent flows motivates the main ingredient to our
model for turbulent aerosols, the random flow field. For a detailed account
of turbulence see Refs. [22] and [23].

1.3.1 Reynolds number

Given a length scale L and a velocity scale V , we can construct the dimen-
sionless Reynolds number

Re=
LV

ν
, (1.2)

which characterises the flow behaviour [19, 22]. In simple systems such as
the flow of water through a pipe, there is a single Reynolds number that
characterises the motion of the fluid, regardless of the magnitudes of the
individual quantities in Eq. (1.2). The significance of Re becomes clear when
transforming the variables in the Navier-Stokes equations (1.1a) according
to w → V w , x → Lx , t → (L/V )t and p → (V ν/L 2)p . One obtains the
dimensionless equation

Re(∂t w + (w ·∇)w ) =−∇p −∇2w , (1.3)

that depends only on the Reynolds number, and possibly on the boundary
conditions. Because Re appears on the left-hand side of Eq. (1.3), it controls
the importance of the terms ∂t w and (w ·∇)w . As mentioned earlier, the non-
linear convective term (w ·∇)w is responsible for the onset of turbulence.
At small Re, the non-linearity is negligible and Eq. (1.3) can be treated as
effectively linear. Solutions of the linearised equations are stable and possibly
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steady. In particular, these flows do not mix and individual fluid parcels move
along stream lines. Flows with these properties are called laminar [19].

If we want to describe more complex systems than a simple pipe flow,
the construction of the Reynolds number according to Eq. (1.2) is no longer
unique. Consequently, fluid dynamical problems that contain several length
and/or velocity scales, are characterised by several different Reynolds num-
bers. Thus for a finite-size particle moving in a pipe flow, we have a flow
Reynolds number associated to the motion of the fluid in the pipe and a
particle Reynolds number associated to the relative motion of the particle
and the fluid.

We now discuss a fluid at large Reynolds number, Re� 1. In this case, the
non-linear term renders the flow unstable and we expect the fluid motion
to be highly irregular and complicated. Observations of fluid flows at high
Reynolds numbers indicate, however, that statistical averages of turbulent
flows are highly symmetric. Loosely speaking, the flow looks irregular and
complicated in the same way everywhere and for all times. This simple
argument describes the important concept of statistical homogeneity and
isotropy of turbulent flow [22, 23]. If the Reynolds number is large enough,
suitably defined statistical observables of the flow, such as correlation func-
tions, are invariant under translations and rotations.

1.3.2 Turbulent cascade

It is instructive to think that turbulent fluid motion is characterised by eddies
of different sizes. Think of a cup of coffee and add a little milk to it. Not much
happens so far, but as soon as we start to stir the mixture with a spoon, eddies
of approximately the size of the spoon form. These eddies are unstable and
break up into smaller eddies, which again decompose into even smaller
ones [22]. In the coffee cup we now suddenly see a lot of structure. A whole
ensemble of eddies of different sizes interact with each other, engaging in
the formation of complex patterns. If we were to zoom in into these patterns
very closely, we would realise that there is a finite end to the structure in the
fluid. At small scales, depending how thick, or viscous, the coffee and the
milk are, the eddy-structure so predominant at larger scales, is gone. The
internal friction of the fluid efficiently smoothens out all small structures
below a certain length scale, called the Kolmogorov length ηK [22, 23, 27, 28].

In the turbulence literature, the ensemble of eddies of different sizes is
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Figure 1.1: Schematic of the energy spectrum E (k ) as a function of k .

called the ‘Richardson’ or ‘energy’ cascade [22, 29], because it transports the
injected energy at large length scales (stirring with the spoon) to ever smaller
scales until it is eventually dissipated into heat at scales of the order of ηK.

Eddies of size l have an associated wave number k ∼ 1/l . Hence, small
spatial scales correspond to large k -values whilst large spatial scales corre-
spond to small k . We define the scale-dependent quantity E (k ) to be the
energy content of eddies with wave number k [23]. In a famous series of
papers, Kolmogorov [27, 28] used symmetry and universality arguments to
describe E (k ) for isotropic and homogeneous turbulence. His result is shown
schematically as the red line in Fig. 1.1. The flat regime at small k is the scale
associated to energy injection, called the ‘injection scale’. The energy that is
brought into the system at these large length scales (small k ) is transported
to smaller scales (larger k ) by means of the Richardson cascade described
above. Kolmogorov was able to show that on the basis of his assumptions,
E (k ) has a power-law form with exponent approximately −5/3 at wave num-
bers sufficiently larger than the injection scale [27, 28]. This regime is called
the ‘inertial range’. At large k and small length scales of the order of ηK, this
power law is cut off by dissipation and, hence, by the viscosity of the fluid, in
a regime called the ‘dissipative range’.

As noted in Section 1.2 we want to describe systems in which the particles
are smaller than the Kolmogorov length. It has been shown that the length
scales where the fluid-velocity field is smooth can extend up to several ηK,
depending on the Reynolds number [1, 30]. We may therefore assume that
the fluid flow which the particles experience is smooth.
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1.3.3 Gaussian random-flow model

We now condense the insights gained in the previous Section into a simple
fluid model. Because the detailed turbulent motion at high Reynolds num-
bers is highly irregular, it is practically unpredictable. For systems like this, it
makes sense to consider its long-time statistical properties instead of trying
to predict individual realisations [22, 23, 31]. Here, we go one step further
and adopt a drastic simplification that lies at the heart of the statistical de-
scription of turbulence. We construct models that put emphasis only on
modelling the statistics of the flow field w (x , t ), not its individual realisations
[1]. At first sight, this may not appear to be a great simplification. However,
it allows us to abandon the idea of solving the Navier-Stokes equations (1.1)
and, thus turbulence, all together. Instead, we introduce a field u (x , t )with
statistical properties that are similar to those of w (x , t ) in the dissipative
range. To this end, we define a d -dimensional random field φ(x , t ) in a
periodic box of size L by [1, 11]

φ(x , t ) =Nd

∑

k

a k (t ) f (k )e
i k ·x , (1.4)

where k ∈ (2π/L )Zd and Nd is a normalisation constant that depends on d .
Furthermore, for a given k , a k (t ) is a stationary, complex d -dimensional
random process and f is a function of k that we specify below. Since φ is
real, we need to add the condition that a ∗k (t ) = a−k (t ).

In this work, we use two and three dimensional incompressible random
velocity fields defined by

u (x , t ) =∇∧φ(x , t ) . (1.5)

One-dimensional fields, however, can always be expressed in terms of the
derivative of a potential and are hence compressible. Therefore, we define
one-dimensional compressible velocity fields as

u (x , t ) = ∂xφ(x , t ) . (1.6)

Note that we have defined the random field (1.4) so that spatial and time
correlation factorise if the processes ai ,k (t ) are independent. To see this
consider the correlation function

〈φi (x , t )φ j (y , s )〉=N 2
d

∑

k ,l

〈ai ,k (t )a j ,l (s )〉 f (k ) f (l )ei (k ·x+l ·y ) . (1.7)
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Clearly, if ai ,k are independent so that 〈ai ,k (t )a ∗j ,l (s )〉 = C (|t − s |)δi jδk l ,
Eq. (1.7) factorises and we find

〈φi (x , t )φ j (y , s )〉=δi j C (|t − s |)G (x − y ) , (1.8)

where G (x ) =N 2
d

∑

k f (k )2ei k ·x is proportional to the Fourier transform of
f (k )2. Note further that using this construction, the statistics of φ(x , t ) at
each point x in space is determined by the statistics of the underlying random
process a k (t ), while its time correlation is fixed by the time correlation of
a k (t ). The spatial correlation G (x ), on the other hand, depends only on the
choice of the function f (k ). These conclusions apply in a similar way to the
higher moments ofφ(x , t ).

The above construction allows to generate random fields with a large
variety of different statistics. Generalisations of the procedure using k -
dependent processes a k (t ) are straightforward in principle. In the rest of this
work, we choose a k (t ) to be independent Ornstein-Uhlenbeck processes.
Their components have Gaussian statistics and individual realisations are
solutions of the stochastic differential equations

ȧi ,k (t ) =−
ai ,k (t )
τ

+
p

2Dξi ,k (t ) , (1.9)

where ξi ,k (t ) are complex Gaussian white noises with correlation

〈ξi ,k (t )ξ
∗
j ,l (s )〉=δi jδk lδ(t − s ). (1.10)

Choosing Ornstein-Uhlenbeck processes for a k (t ) rendersφ(x , t ) Gaussian
with time correlation

C (|t − s |) = 2τ−1e−|t−s |/τ , (1.11)

which implies that τ is the correlation time ofφ(x , t ). A convenient choice
for f (k ) is f (k ) = e−η

2k 2/4, for which we obtain the spatial correlation

G (x )∼η−d e−x 2/(2η2) (1.12)

in the limit L→∞.
Using Gaussian statistics has the advantage of being computationally

convenient. However, turbulence fluid velocities can be shown to be highly
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non-Gaussian in the dissipative range, due to ‘intermittency’ [23]which de-
scribes sudden strong outbursts of turbulent fluctuations. Furthermore, real
turbulence exhibits long-lived regions of high vorticity, so-called vortex tubes
[32] that are absent in the statistical model. Finally, the dissipation in Eq. (1.1)
and, hence, the Richardson cascade break time-reversal symmetry in turbu-
lence [23], while the statistical model is time-reversal symmetric [1]. These
shortcomings of the statistical model have measurable consequences when
compared quantitatively to direct numerical simulations [1]. The simplicity
of the model and its ability of qualitatively explaining more complicated
systems makes it, however, attractive for further studies.

A more detailed account on the construction of the random flow, includ-
ing also higher-order correlationsφ is found in Refs. [1, 33].

1.4 Particle motion in a fluid

As the second part of our problem, we need to understand how particles
move in a generic flow. That is, we require the forces that act on the particles
for a given flow field. Depending on how large the impact of the presence
of the particle on the flow field is, the non-linear term (w ·∇)w can become
relevant. Reliable analytical expressions for the force on the particle can be
formulated only for laminar flows when the particle moves slowly relative to
the fluid [19, 20, 34]. For these flows, the Reynolds number associated to the
particle motion, is small.

1.4.1 Low-Reynolds-number flows

In order to know when the force on a particle generated by a laminar flow is a
good approximation in turbulence, we need to compare the size of the non-
linear term in Eq. (1.1a) to that of the other terms. This is done by considering
the particle Reynolds number Rep, which is obtained from using Eq. (1.2)
with the size a of the particle as the length scale and its velocity v0 relative to
the flow as the velocity scale. We obtain

Rep = v0a/ν . (1.13)

Naively, when Rep � 1 the left hand of Eq. (1.3) is negligible and we can
consider the so-called Stokes equation [19, 20]

∇p +∇2w = 0 . (1.14)
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A more detailed analysis, however, reveals that the left-hand side of Eq. (1.3) is
a singular perturbation to Eq. (1.14) [35]. One way of solving such boundary-
layer problems is by using matched asymptotic expansions [36, 37]. Applying
this method one solves two or sometimes even more different perturbation
problems inside and outside the boundary layer(s) and matches them to-
gether. This method allows to obtain the force on a spherical particle given
the unperturbed ambient flow without the particle [35]. For a very small
particle, that moves slowly relative to the flow and is much denser than fluid,
it is a good approximation to use a constant ambient flow to calculate the
force [1]. The corresponding equation for the force is known as Stokes law
[19, 20]

F = 6πνρfa (w (x , t )−v (t )) , (1.15)

where ρf denotes the fluid density. Note that we have neglected gravity
[38, 39, 40, 41] because we solely focus on inertial effects here. The linearity
of Eq. (1.15) in w (x , t )makes the problem tractable both numerically and,
in some cases, even analytically.

1.5 The statistical model

We are now in the position to formulate the system of equations that makes
up the statistical model for turbulent aerosols [1]. Using Stokes law (1.15)
with the fluid velocity field w (x , t ) replaced by the random velocity field
u (x , t ), we obtain the equations of motion for a single particle

d
dt x (t ) = v (t ) , (1.16a)
d

dt v (t ) = γ(u (x (t ), t )−v (t )) , (1.16b)

where γ = 9/2(ρf/ρp)(ν/a 2) is called the viscous damping and ρp is the
density of the particle. The random velocity field u (x , t ) has the first and
second moments (see Section 1.3.3)

〈u (x , t )〉= 0 (1.17a)

〈ui (x , t )u j (y , t )〉= u 2
0

�

1−
(x − y )2

η2

�

δi j e−(x−y )2/(2η2)e−|t−s |/τ . (1.17b)

Because u (x , t ) is taken to be Gaussian, its statistics is completely described
by Eqs. (1.17). Recall from Section 1.2 that we treat the interaction of the
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particle with the fluid within the one-way coupling approximation, so that
adding additional non-interacting particles to the fluid does not alter the
equations. In particular, we can define a whole ensemble of particles and
treat them as the field x (t ) = x (x 0, t )which maps an initial particle position
x 0 at some initial time t0 to a final position x (t ) at time t . This particle field
has an associated velocity field that we call v (x (t ), t ) = ∂t x (x 0, t ). These two
fields satisfy the same equations of motion as the single particle in Eq. (1.16).
We have

d
dt x (x 0, t ) = v (x (t ), t ) , (1.18a)

d
dt v (x (t ), t ) = γ(u (x (t ), t )−v (x (t ), t )) . (1.18b)

From now on, we use the short-hand notation x (t ) = x (x 0, t ) and v (t ) =
v (x (t ), t ). It is worth mentioning that the fields x (t ) and v (t ) are in general
multivalued [6, 7, 8], due to caustics in the particle dynamics described later.
For most purposes in this work, it is convenient to also consider the equations
of motion for the tensor quantities [1, 6, 42]

J(t ) = J(x (t ), t ) =
∂ x (x 0, t )
∂ x 0

, (1.19a)

Z(t ) =Z(x (t ), t ) =
∂ v (x (t ), t )
∂ x (t )

, (1.19b)

in addition to Eqs. (1.16). Taking partial derivatives of Eqs. (1.18) with respect
to x 0 and x (t ), respectively, and using the definitions (1.19), we obtain

d
dt J(t ) =Z(t )J(t ) , (1.20a)
d

dt Z(t ) = γ [A(t )−Z(t )]−Z(t )
2 , (1.20b)

where A(t ) = ∂ u (x (t ), t )/∂ x (t ) is the field of fluid velocity gradients. Fur-
thermore, J(t ) has the initial condition J(t0) = 1.

1.5.1 Dimensionless variables

In our approximation, the whole particle-fluid system depends only on the
four parameters γ, u0, η and τ. Dedimensionalising Eqs. (1.18) with these
parameters, one finds that the system is in fact characterised by only two
dimensionless numbers which we call the Stokes and the Kubo numbers
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[1]. The Stokes number St= 1/(γτ)measures the relevance of particle inertia
while the Kubo number Ku= u0τ/η is a measure for the persistence of the
flow. In this short Section, we give an overview over the two dedimensionali-
sation schemes – we call them the Stokes and the Kubo coordinates – that
we will use in the rest of the work. We first perform the coordinate transform
t → t /γ, u → ηγu , x → ηx and v → ηγv and obtain the dimensionless
equations [1]

d
dt x (t ) = v (t ) , (1.21a)
d

dt v (t ) =u (x (t ), t )−v (t ) , (1.21b)
d

dt J(t ) =Z(t )J(t ) , (1.21c)
d

dt Z(t ) =A(t )−Z(t )−Z(t )
2 , (1.21d)

〈ui (x , t )u j (y , t )〉=Ku2St2
�

1− (x − y )2
�

δi j e−(x−y )2/2e−St|t−s | , (1.21e)

For lack of a better name, we call this first dedimensionalisation the Stokes
coordinates. This scheme is useful because it makes the particle equations of
motion independent of Ku and St. A second rescaling of Eqs. (1.16) reads t →
τt , u → u0u , x →ηx and v → u0v , and leads to a parameter-independent
correlation function. We have [1]

d
dt x (t ) =Ku v (t ) , (1.22a)
d

dt v (t ) = St−1 [u (x (t ), t )−v (t )] , (1.22b)
d

dt J(t ) =KuZ(t )J(t ) (1.22c)
d

dt Z(t ) = St−1 [A(t )−Z(t )]−KuZ(t )2 , (1.22d)

〈ui (x , t )u j (y , t )〉=
�

1− (x − y )2
�

δi j e−(x−y )2/2e−|t−s | . (1.22e)

We call the coordinates that correspond to Eqs. (1.22) Kubo coordinates, be-
cause they are used in an approximation scheme called the Kubo expansion
[1, 43]. Both sets of dimensionless variables are used in this work, because
each of them is convenient for different purposes.

We have come a long way from considering the very complicated problem
of inertial particles in turbulence to the equations of motion for a field of
particles in a random velocity field. The next Sections will teach us how rich
the dynamics of Eqs. (1.20)-(1.22) is, even after the drastic simplifications
we have made. Furthermore, comparisons with the results of direct numer-
ical simulations summarised in Ref. [1] suggest that the statistical model
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is capable of explaining these results qualitatively and in some cases even
quantitatively.
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Figure 2.1: An initially homogeneous distribution of inertial particles (red)
clusters in a random flow. The green lines are level lines of fluid vorticity.
The Kubo and Stokes numbers are 0.1 and 10, respectively. The Figures were
generated by Kristian Gustavsson and are used with permission.

2 Spatial clustering

Spatial clustering describes the formation of regions of high concentration
of aerosol particles [11, 13, 14, 44, 45, 46]. Neutrally buoyant, infinitesimally
small particles, called tracers, distribute homogeneously over space if the
underlying turbulent flow is incompressible [26]. This is because the particle
motion is restricted to the stream lines of the flow. For aerosol particles which
are heavier than the fluid, this is no longer true. In this case, the particles may
detach from the flow. This implies that the particle dynamics takes place
in the higher-dimensional phase space and gives rise to a whole spectrum
of different competing mechanisms that eventually contribute to particle
clustering. Fig. 2.1 shows how an initially homogeneously distributed set
of heavy (red) particles at t = 0 (left panel) forms regions of high and low
concentration over the course of 50 fluid correlation times τ. Clustering
increases the probability of particles to come close together, thereby dras-
tically increasing collision rates [2, 13]. This is important in turbulent air
clouds, where the formation of regions of high water droplet concentration is
believed to increase the probability of droplet collisions, and hence facilitate
droplet growth [2, 4, 26].

In this Chapter we first discuss the physical mechanisms behind par-
ticle clustering. After that we introduce observables that characterise the
phenomenon and explain in which way they are relevant.
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2.1 Origins of clustering

There are three main mechanisms that are known to be important for spatial
particle clustering in incompressible flows. These are preferential concentra-
tion, phase-space contraction and multiplicative amplification, and caustics
[1]. We explain these mechanisms in the following and briefly mention the
effect of flow compressibility which is relevant in the one-dimensional mod-
els.

2.1.1 Preferential concentration

As discussed in Section 1.3, turbulence can be seen as an ensemble of vortices
of different sizes. Loosely speaking, these vortices force tracer particles to
roughly follow circular orbits. Heavy particles, on the other hand, spiral out
of vortices because of centripetal forces, and they accumulate in regions of
low vorticity and high strain. This was first noted by Maxey [39]who used an
expansion around the limit St= 0, to argue for this. His approach is sketched
in what follows. We start with the equations of motion in Kubo coordinates

d
dt x (t ) =Ku v (t ) , (2.1a)
d

dt v (t ) = St−1 [u (x (t ), t )−v (t )] , (2.1b)
d

dt J(t ) =KuZ(t )J(t ) (2.1c)
d

dt Z(t ) = St−1 [A(t )−Z(t )]−KuZ(t )2 , (2.1d)

and treat the Stokes number as small. We take the underlying flow field
to be incompressible and assume that all quantities can be expanded in a
power series in St, the smallest order being the dynamics of tracer particles.
Substituting these series expansions into Eq. (2.1), we can evaluate order by
order in St and obtain a hierarchy of equations, one for each order in St. A
perturbative solution for Z(t ) can now be straightforwardly obtained. One
finds to order O (St) [1, 39]

Z(t )∼A(0)(t ) +St
¦

A(1)(t )− d
dt A

(0)(t )−Ku
�

A(0)(t )
�2©

, (2.2)

whereA(i )(t ) = ∂ i
StA(x (t ), t )|St=0. Taking the trace of Eq. (2.2) and using TrZ=

∇·v , Maxey found that [39]

∇·v ∼−Ku St Tr
�

A(0)(t )
�2
=Ku St (TrO(0)O(0)T −TrS(0)S(0)T ) . (2.3)
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Here,O(0) and S(0) are the vorticity and strain of the fluid velocity field at x (t )
and time t . Hence, straining regions, where TrSST > TrOOT , are sinks of
the particle velocity field while regions of high vorticity act as sources. As a
result, weakly inertial particles tend to accumulate in straining regions of
the flow in accordance with the intuitive picture discussed earlier [1]. Note
that the result (2.3) suggests that the effect of preferential concentration is
proportional to the Kubo number. This is intuitively clear recalling that Ku
measures the persistence of the flow. In a memoryless flow with Ku→ 0,
the aerosol particles react too slowly to changes of the flow as to be able to
accumulate in straining regions.

A conceptual problem with perturbative expansions of this kind is that the
representation of the particle velocity field as a simple function of the smooth
flow fields A(i )(t ) explicitly excludes particle-trajectory crossings. These
crossings become relevant for larger St numbers and appear due to caustics
in the particle phase-space dynamics. We discuss caustics in Section 2.1.3.

2.1.2 Phase-space contraction

The equations of motion governing the particle motion in aerosols are dissi-
pative, which means that energy brought into the system eventually leaves it
again. Dissipative systems have the property that their phase space volume
decreases with time [31]. Consider the equations of motion in Kubo coordi-
nates, Eq. (2.1). Phase-space contraction is quantified by the divergence of
the flow, div[(ẋ (t ), v̇ (t ))], taken with respect to the pair (x (t ), v (t )). We obtain

div[(ẋ (t ), v̇ (t ))] =Ku
d
∑

i=1

∂ vi (t )
∂ xi (t )

+
1

St

d
∑

i=1

�

∂ ui (x (t ), t )
∂ vi (t )

−
∂ vi (t )
∂ vi (t )

�

=−
d

St
< 0 . (2.4)

First, we observe that the divergence of the flow is negative and independent
of the coordinates and of time. It follows that phase space volumesWt evolve
according to

Wt =Wt0
e
∫ t

t0
div[(ẋ (t ),v̇ (t ))]dt =Wt0

e−
d
St (t−t0) . (2.5)

Thus phase space volumes contract exponentially. The same is true for
spatial volumes of particles Vt = detJ(t ) that evolve according to the flow
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(2.1), due to a related phenomenon called multiplicative amplification [1].
Multiplicative amplification and phase-space contraction are naturally de-
scribed by means of Lyapunov exponents [1, 45, 47], which we discuss in
Section 2.2.2.

2.1.3 Caustics

Another mechanism that we know is relevant for spatial clustering is the
occurrence of caustics [6, 7, 8, 15]. Caustics are singularities in the projection
of the phase-space manifold on the coordinate space. Roughly speaking,
because the dynamics of inertial particles takes place in 2d dimensional
phase space, both the particle field x (x 0, t ) and its corresponding velocity
field v (x (t ), t ) are in general multivalued functions with respect to the d -
dimensional coordinate space. Caustics have important consequences for
the particle distribution. At the ‘caustic lines’, the tangent space of the phase-
space manifold is perpendicular to the coordinate space. This implies that
the particle density diverges in a square-root fashion and the probability of
finding particles close to each other is strongly increased at the caustic lines
[7]. The left panel in Fig. 2.2 shows caustic lines for inertial particles (in red)
in a two-dimensional random flow. The right panel depicts schematically
how a caustic line is created at the point xc , where ∂ v (x , t )/∂ x diverges. In
addition to its importance for spatial clustering, the multi-valuedness of the
particle field also allows for large relative velocities between nearby particles
[6, 7, 8]. For this reason, some authors call the occurrence of caustics the
‘sling effect’ [6, 15]: Particles may be strongly accelerated in different regions
in space to come together at high relative velocity. Locally, we can define
a caustic as the event that the Jacobian of the particle field J(t ) becomes
singular at finite time tc:

detJ(tc) = 0 . (2.6)

This is equivalent to saying that the volume of the spatial parallelepiped
spanned by nearby particles collapses to zero [1]. We can express this con-
dition in terms of Z(t ) by taking a time-derivative of detJ(t ) and using the
equation of motion (2.1c). We obtain

d
dt detJ(t ) = detJt Tr

�

J−1J̇
�

=Ku detJ(t )TrZ(t ) . (2.7)
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Figure 2.2: Left: Distribution of inertial particles in a two dimensional random
flow. Caustic lines are the dark-red regions of high particle density. The figure
is taken from [1] with permission. Right: One-dimensional schematic of the
creation of a caustic at xc .

Because J(t0) = 1we find for detJ(t ) as a function of Z(t ) [1]

detJ(t ) = e
Ku

∫ t
t0

TrZ(s )ds
, (2.8)

which implies that the event of caustic formation can be expressed as

∫ tc

t0

TrZ(s )ds →−∞ , (2.9)

at finite time tc <∞.

2.1.4 Compressibility of the underlying flow

Because the models that we discuss in Chapters 3 are one-dimensional, their
underlying flow must be compressible. A compressible flow leads to strong
clustering of the immersed particles. This is true even for tracer particles
with St= 0, which can be seen by taking the trace of Eq. (2.2). We have

TrZ(t ) =∇·v (t )∼ TrA(0)(t ) =∇·u (x (0)(t ), t ) , (2.10)

to lowest order in the Stokes number. Recall that x (0)(t ) is the field of in-
ertialess tracer particles. Consequently, coordinate space volumes, which
are measured by detJ(t ), shrink at sinks where ∇ ·u (x (t ), t ) < 0. For weak
inertia, clustering that is due to the compressibility of the underlying flow is
characterised by a ‘path-coalescence’ regime [16] in which the phase-space
manifold contracts to a point. For larger Stokes numbers, a phase transition
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occurs and the particles behave essentially as in an incompressible flow
[16, 48]. This ‘path-coalescence transition’ [16] is discussed in more detail in
Section 3.3.2 for one-dimensional statistical models.

2.2 Quantities that characterise spatial clustering

We now discuss three different observables that measure clustering in differ-
ent ways. These are the spectrum of fractal dimensions Dq , the statistics of
the finite-time Lyapunov exponents λt and the rate of caustic formation J .

2.2.1 Fractal dimension spectrum

Spatial clustering is characterised by inhomogeneities in the spatial distri-
bution of aerosol particles [1, 13, 14, 30]. One way of characterising these
inhomogeneities is by calculating the fractal dimension spectrum [12, 49, 50].

In order to define the most intuitive representative of the spectrum, the
‘box-counting’ dimension D0, we discretise the space into small boxes of
side length ε� 1 and consider a large but finite number N � 1 of particles.
For a homogeneous particle distribution, the expected minimum number of
boxes 〈N (ε)〉 of side length ε needed to cover the setS of N particles scales
as the box-size raised to the power −d , 〈N (ε)〉 ∼ ε−d . If the particle density
is non-homogeneous, less boxes are needed and the scaling exponent is
smaller than d . The box-counting dimension D0 is defined by [51]

〈N (ε)〉 ∼ ε−D0 , ε� 1 . (2.11)

The box-counting dimension measures, roughly speaking, how space-filling
a fractal is [51, 52]. In many cases, in particular if a fractal is generated by
a set of underlying equations of motion, it is furthermore equipped with a
non-trivial measure, called the natural measure µ [31]. The latter contains
information not only about if regions on the fractal are visited by the particles
but also how often that happens. In order to study the natural measure on
the fractal, we consider the probability µ(x (t ),ε) that a sphere of radius ε
centered at x (t ) is visited by a particle. The spectrum of fractal dimensions
Dq is defined in terms of the scaling relation [52]

®

∫

St

µ(x (t ),ε)q−1dµ(x (t ),ε)

¸

∼ ε(q−1)Dq , ε� 1 . (2.12)
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The integral is performed over the fractal set St at time t and the bracket
〈·〉 denotes a time average. The quantity Dq is called Rényi dimension or
generalised fractal dimension [52]. From Eq. (2.12) we obtain

Dq = lim
ε→0

1

q −1

log
¬

∫

St
µ(x (t ),ε)q−1dµ(x (t ),ε)

¶

logε
. (2.13)

The most important fractal dimension in the present context is the correla-
tion dimension, D2 [13, 53, 54]. Setting q = 2 in Eq. (2.13) we obtain

D2 = lim
ε→0

¬

∫

St
µ(x (t ),ε)dµ(x (t ),ε)

¶

logε
. (2.14)

The correlation dimension is of great importance for physical particle sys-
tems, because it measures the probability of finding a second particle in a
ball of radius ε around a reference particle [55]. That is why a convenient
way of formulating Eq. (2.14), is by considering the statistics of separations
of a particle pair, Y (2)(t ) = ‖x 1(t )− x 2(t )‖. For this quantity it follows from
Eq. (2.12) that [52]

P (Y (2)(t )≤ ε)∼ εD2 , ε� 1 . (2.15)

More generally, consider the positions of q ≥ 2 particles x i (t ), i = 1, . . . , q ,
and define the quantity

Y (q )(t ) = max
i , j∈Sq

{‖x i (t )−x j (t )‖} , (2.16)

where Sq denotes the index set Sq = {1, . . . , q }. It can be shown [12, 52] that
Y (q )(t ) obeys the scaling relation

P (Y (q )(t )≤ ε)∼ εDq (q−1) , ε� 1 , (2.17)

for q ≥ 2. In the majority of this work, we study the correlation dimension D2.
The other fractal dimensions are studied for q > 2 in paper C, where a simple
relation between the different fractal dimensions is found for a particular
model.
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2.2.2 Finite-time Lyapunov exponents

The relative spatial dynamics of nearby particles is characterised by stretch-
ing and folding due to the random fluid velocity gradients. The transients
of these deformations are important for clustering and are described by the
spatial finite-time Lyapunov exponents (FTLE) [1, 12, 18, 26, 45]. The spatial
FTLE are obtained from the eigenvalues of J(t ), which we call Λk (t ) with
k = 1, . . . , d . In the limit t →∞, the absolute values of these multipliers,
|Λk (t )|, typically scale exponentially with characteristic (Lyapunov) exponent
λk . For large enough but finite times, the |Λk (t )| are stochastic processes
with exponents λk (t ):

|Λk (t )| ∼ eλk (t )t , k = 1, . . . , d . (2.18)

The processes λk (t ) are called the spatial finite-time Lyapunov exponents
(FTLE) of the system [26, 56]. The spatial FTLE approach the spatial Lya-
punov exponents in the limit t →∞, λk (t )→λk . In terms of the multipliers
Λk (t ), the FTLE are expressed as λk (t ) = t −1 log |Λk (t )|. Furthermore, using
Eqs. (2.8) and (2.18) we obtain

d
∑

k=1

λk (t ) =
Ku

t

∫ t

0

TrZ(t )dt . (2.19)

In the infinite-time limit we can thus find a simple expression for the sum of
spatial Lyapunov exponents according to

d
∑

k=1

λk = lim
t→∞

Ku

t

∫ t

0

TrZ(t )dt =Ku 〈TrZ〉 , (2.20)

where the the expectation value in the last equality is taken with respect to
the natural measure of the dynamics.

The model systems in Chapter 3 are all one-dimensional, d = 1, so that
Eqs. (2.19) and (2.20) in fact are expressions for the only spatial FTLE and
Lyapunov exponent of the theory, respectively. That is why these equations
are particularly important here. In systems with d > 1, the sum of all spatial
Lyapunov exponents describes how spatial volumes expand (

∑d
k=1λk > 0)

or contract (
∑d

k=1λk < 0). For a complete description of local stretching
and compression, however, the whole set of Lyapunov exponents is required.
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In Section 2.1.2 we noted that phase-space volumesWt of particles tend to
contract under the flow at a constant exponential rate. In terms of the Lya-
punov exponents Eq. (2.5) implies that the sum of all phase-space Lyapunov
exponents sums up to −d /St.

The statistics of the spatial FTLE is studied in terms of their joint prob-
ability density function P (λ(t ) = s )where λ(t ) = (λ1(t ), . . . ,λd (t )). For large
times, t � 1, P (λ(t ) = s ) takes the large deviation form [57]

P (λ(t ) = s )≈ exp [−t I (s )] , t � 1 , (2.21)

where I (s ) is called the rate function of the process λ(t ). In one dimension,
d = 1, there is a simple relation between the rate function for the FTLE and
the correlation dimension of the system that is discussed in Chapter 3 and
Appendix A.

2.2.3 Rate of caustic formation

In Section 2.1.3 we showed that a caustic forms when the integral
∫ tc

t0
TrZ(s )ds

tends to −∞ in finite time tc <∞. Similarly to the FTLEs discussed in the
previous section we treat tc as a random variable. We call ti the time between
the i th and (i − 1)th caustic event. The number N (t ) of caustics that have
occurred at time t > 0 can then be written as

N (t ) :=max{n : Tn ≤ t } , (2.22)

where Tn =
∑n

i=1 ti . For systems with sufficiently quickly decaying correlation
functions, we may assume ergodicity so that N (t ) constitutes a so-called
renewal process [58]. For renewal processes one can prove that [58]

N (t )
t
→

1

〈ti 〉
, for t →∞ . (2.23)

We call the limit in this equation J , the rate of caustic formation

J =
1

〈ti 〉
= lim

t→∞

N (t )
t

. (2.24)

The rate of caustic formation is a measure for the importance of caustics for
spatial clustering in a given system. Typically, caustics are negligible against
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the other clustering mechanisms when Ku and/or St are small. In this case,
J shows an exponentially small activation of the type [1, 7, 8, 15]

J ∼ e−1/ f (Ku,St) , (2.25)

where f is a function Ku and St. The explicit form of f is known analytically
only for one-dimensional models in specific limits of Ku and St [7, 43]. We
discuss these results in Section 3.4.1.



25

3 One-dimensional systems

In this Chapter we introduce the one-dimensional statistical models, which
we use to study the observables defined in the previous Chapter. In one
spatial dimension, the statistical model is much simpler than in two and
three dimensions and allows for analytical treatment in limiting cases. The
equations of motion in Kubo coordinates, Eq. (1.21), read in one dimension:

d
dt x (t ) =Ku v (t ) , (3.1a)
d

dt v (t ) = St−1 [u (x (t ), t )− v (t )] , (3.1b)
d

dt j (t ) =Ku z (t ) j (t ) , (3.1c)
d

dt z (t ) = St−1 [A(x (t ), t )− z (t )]−Ku z (t )2 . (3.1d)

Note that all field quantities are now scalars. The one-dimensional matrix
of spatial deformations, j (t ) = ∂ x (x0, t )/∂ x0 can alternatively be described
by the separation |∆x (t )|= |x1(t )− x2(t )| of a closeby particle pair which has
the same dynamics as j (t ) [1].

We now briefly discuss the implications of reduced dimensionality for the
calculation of the observables discussed in Section 2.2. We start by consider-
ing the computation of the spatial FTLE. Because there is only one spatial
FTLE in one dimension, Eq. (2.19) turns into the simple equation

λ(t ) =
1

t

∫ t

0

z (s )ds . (3.2a)

Consequently, from Eq. (2.20) we get for the Lyapunov exponent

λ= lim
t→∞

λ(t ) = 〈z 〉 . (3.3)

Eq. (2.9) translates into the one-dimensional caustic condition
∫ tc

0

z (s )ds →−∞ . (3.4)

3.1 Generic behaviour

Equation (3.4) implies that a necessary condition for caustic formation is that
z (t )→−∞ in finite time. In one dimension, this means that the dynamics of
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Figure 3.1: The z -coordinate moves in the potential U (x ), leading to a finite
flux towards z =−∞.

z (t ) needs to exhibit finite-time singularities. How these caustic singularities
arise becomes clear by writing Eq. (3.1d) as

d
dt z (t ) =−U ′(z (t ))+St−1A(t ) , (3.5)

with the potential U (x ) = St−1

2 x 2+ Ku
3 x 3. Figure 3.1 schematically shows U

as a function of x . If we disregard for the moment the contribution of A(t ),
the z -dynamics U (x ) has a stable fixed point at x = 0 and an unstable one at
x =−1/(KuSt) [1]. The fixed points are shown as the red dots in Fig. 3.1. For
finite and large enough values of A(t ), the z -coordinate can pass the unstable
fixed point and escape to −∞ [6, 16]. A closer analysis of the equation of
motion (3.1d) shows that the singularity z →−∞ is reached in finite time
and is not integrable, thus leading to a caustic by Eq. (3.4). We know from
Eq. (2.8) that j (t ) goes to zero at a caustic, j (tc ) = 0. For t > tc , j (t )must
become positive again which requires that z (t ) is, immediately after a caustic,
injected back at +∞.

We conclude that z (t ) obeys the following dynamics: For small A(t ), the
z -coordinate spends most of its time close to the origin. When A(t ) be-
comes larger it is more likely that z (t ) passes the unstable fixed point at
z =−1/(KuSt) and escapes to −∞. Due to the periodic boundary conditions
z (t ) eventually returns to the origin z = 0 after a caustic event. Hence, after a
long enough time, z (t ) reaches a non-equilibrium steady state characterised
by a constant negative flux.
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3.2 Statistical models in one dimension

In one dimension the Fourier sum (1.4) for u (x , t ) discussed in Section 1.5,
reads in Kubo coordinates

u (x , t ) = ∂xφ(x , t ) =N
∞
∑

k=−∞
i k ak (t )e

i k x−k 2/4 , (3.6)

where N =
�p

2πη/L
�1/2

. Recall that ak (t ) are chosen to be independent
Ornstein-Uhlenbeck processes. Consequently, A(x , t ) = ∂x u (x , t ) is a Gaus-
sian random field with zero mean and correlation

〈A(x , t )A(y , s )〉=
�

[(x − y )2−3]2−6
	

e−(x−y )2/2e−|t−s | . (3.7)

The model is applicable to the whole range of both Ku and St but it is hard to
obtain analytical results for it, even in one spatial dimension. In what follows,
we introduce three versions of the statistical model for which analytical
results can be obtained.

3.2.1 White-noise model

The white-noise model is obtained by using the equations of motion is Stokes
coordinates, Eq. (1.21), and simultaneously letting Ku→ 0 and St→∞ so
that ε2 = 3Ku2St remains constant. In the white-noise limit, the correlation
function turns into a delta function in time:

〈A(x , t )A(y , s )〉→ 2ε2
�

[(x − y )2−3]2−6
	

e−(x−y )2/2δ(t − s ) . (3.8)

Because the particles move too slowly compared to the flow to accumulate
in straining regions, there is no preferential concentration in the white-noise
model. Hence, the random field A(x , t ) at fixed x has the same statistics
as A(x (t ), t ), which means in turn that A(t ) = ξt , where ξt is a Gaussian
white-noise [59, 60]with correlation

〈ξt ξs 〉= 2ε2δ(t − s ) . (3.9)

The equations of motion for j (t ) and z (t ) read in the white-noise model

d
dt x (t ) = z (t )x (t ) , (3.10a)
d

dt z (t ) = ξt − z (t )− z 2(t ) . (3.10b)
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Modelling A(t ) by the Gaussian white-noise ξt corresponds to the physical
situation of highly inertial particles (St→∞) in a very quickly varying flow
(Ku→ 0). The set of stochastic differential equations given in Eqns. (3.10) con-
stitutes a Markov system which can be treated using Fokker-Planck equations
[59, 60]. This is one of the reasons why the white-noise model has been stud-
ied extensively in one [1, 10, 61, 62] and higher dimensions [47, 53, 54, 63].

3.2.2 Telegraph model

In the so-called telegraph model [17] the velocity gradient A(t ) is modelled
by a telegraph process ηt . The latter is a jump process that takes only two
different values, A0 and −A0, where A0 > 0 is the amplitude of the process.
Transitions from A0 to −A0 occur with rate ν− and back from −A0 to A0

with rate ν+. For large times, ηt reaches a steady state characterised by the
probabilities

lim
t→∞

P
�

ηt = A0

�

=
ν+
ν

, lim
t→∞

P
�

ηt =−A0

�

=
ν−
ν

, (3.11a)

where we denote ν ≡ ν+ + ν−. The mean value µ =



ηt

�

and correlation
function 〈〈ηtηs 〉〉= 〈ηtηs 〉−〈ηt 〉〈ηs 〉 for the telegraph process can be obtained
explicitly [60]. The steady-state correlation function takes the simple form

〈〈ηtηs 〉〉=
�

A2
0−µ

2
�

e−ν|t−s | . (3.12)

Comparing Eq. (3.12), to Eq. (3.7) we observe that we can parametrise the
telegraph model in terms of Ku, St and µ if we identify

ν= St , 3Ku2St2 = A2
0−µ

2. (3.13)

Closer inspection of the model [17], reveals that in order for the combined
process ( j (t ), z (t ),ηt ) to be stationary, one needs to define µ as a function of
the parameters Ku and St. One possible and consistent choice is to fix µ to
be the negative root1 of the quadratic equation [17]

µ2+µSt(St+1) +3Ku2St2 = 0 . (3.14)

Thus 〈A(x (t ), t )〉= 〈ηt 〉=µ< 0 even though 〈A(x , t )〉= 0 for all x . Hence, the
consistency condition (3.14) introduces preferential sampling of negative

1The model corresponding to the positive root turns out to be unphysical.
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fluid gradients in the model [17]. The quadratic equation (3.14) has real
solutions for µ as long as

Ku≤ (St+1)/
p

12 , (3.15)

which prescribes the regime of applicability of the model. The telegraph
model has several interesting properties. Apart from being mathematically
tractable, the model exhibits a region in (Ku, St) state space, where no caustics
occur, because the noise ηt is bounded [17]. Further, the telegraph process
turns into the Gaussian white-noise for St→∞ and Ku→ 0 if Ku2St= ε2/3
remains constant. In this sense, it is a generalisation of the white-noise
model discussed in Section 3.2.1, with finite correlation time.

3.2.3 Persistent-flow model

The persistent-flow model is another limit of the statistical model that we
have come across recently. We discuss the results for this model only briefly in
this Chapter and leave details to a future publication. The model is obtained
by taking Ku→∞ and St→ 0 such that Ku2St2 = κ2/3 remains constant [1].
Physically, this limit describes a situation in which the flow persists for many
relaxation times of the particle dynamics [61]. The particles at each instance
in time adapt to the adiabatic changes of the flow field. In this limit, the
correlation function for A(x , t ) in Stokes coordinates turns into

〈A(x , t )A(y , s )〉→ 3κ2
�

[(x − y )2−3]2−6
	

e−(x−y )2/2 . (3.16)

Note that the exponential time correlation is constant in this limit, e−St|t−s |→
1 and the flow field loses its time dynamics. The Gaussian statistics of
A(x , t ) is obtained from averaging over different realisations of the flow.
Because changes of the flow field are infinitely slow, there is strong pref-
erential sampling of negative fluid velocity gradients. Obtaining realistic
but non-trivial statistics for A(x (t ), t ) in the persistent-flow model is a non-
trivial task. Naively, particles in a highly persistent flow accumulate at
those zeros of u (x , t ) at which the corresponding gradients A(x , t ) are nega-
tive. For Gaussian random functions, the distribution of these gradients is
given by the Kac-Rice formula for random functions [64, 65, 66]. If we call
Ā = limt→∞A(x (t ), t ), the statistics of gradients according to the Kac-Rice
formula reads [66]

P (Ā = a ) =
|a |
κ2

e−a 2/(2κ2)θ (−a ) . (3.17)
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Trivially, the gradient statistics in Eq. (3.17) forbids positive gradients P (Ā >
0) = 0. The correlation function is given by

lim
t ,s→∞

〈〈A(x (t ), t )A(x (s ), s )〉〉= 〈Ā2〉− 〈Ā〉2 = 2κ2 . (3.18)

A naive application of the Kac-Rice statistics does, however, not include
the following dynamical effect [67]: Even if u (x , t ) changes its shape very
slowly, zeros of u (x , t ) can still appear and disappear at a low but finite rate.
Whenever a stable zero of u (x , t ) disappears, the particles that were trapped
there need to travel to the next stable zero and sample non-negative flow
gradients on their way [67]. Including this effect leads to a non-vanishing
probability of positive gradients, P (Ā > 0) > 0, in contradiction to the Kac-
Rice statistics (3.17). This more sophisticated approach is ongoing work.
As a proof of concept, we describe here the case of a Gaussian density but
with mean




Ā
�

and variance 〈〈Ā2〉〉 adjusted to the Kac-Rice statistics (3.17).
We believe this distribution has similar properties as the realistic density
including the aforementioned dynamical effect. Our density P (Ā = a ) thus
reads

P (Ā = a ) =
e−

(a−〈Ā〉)2
4κ2

p
4πκ2

. (3.19)

with mean and variance

〈Ā〉=−
s

π

2
κ , 〈〈Ā2〉〉= 2κ2 . (3.20)

Because Ā is treated as a constant in the equation of motion for z (t ), the
model is exactly solvable, independent of the chosen statistics of Ā.

3.3 Observables

In this Section, we compute the observables defined in Section 2.2 in terms
of the three models discussed above.

3.3.1 Probability distributions

In all three models, the z -coordinate has a statistical steady state distribution
with a finite negative flux, given by the rate of caustic formation. For the
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white-noise model, this distribution is obtained from the Fokker-Planck
equation corresponding to the white-noise equation of motion (3.10). We
have [1]

P (z (t ) = z ) =
J

ε2
e−U (z )/ε2

∫ z

−∞
eU (t )/ε2

dt , (3.21)

with U (x ) = x 2/2+ x 3/3 and J given by

J −1 =

∫ ∞

−∞
e−U (s )/ε2

∫ s

−∞
eU (t )/ε2

dt ds . (3.22)

The distribution P (z (t ) = z ) has power-law tails for |z | →∞. These are due
to the events that the z (t ) coordinate escapes to −∞. Indeed, the weight of
the tails for large z is directly proportional to the rate of caustic formation J
according to

P (z (t ) = z )∼
J (ε)

z + z 2
, |z | →∞ . (3.23)

The same asymptotic relation holds true for both the telegraph and the
persistent-flow model, only replacing J (ε) in Eq. (3.23) by J (Ku, St) and J (κ),
respectively. The derivation of the densities varies, however, since the Fokker-
Planck equation can be used only in the white-noise model. For the telegraph
model P (z (t ) = z ) can be obtained from the ‘Formula of differentiation’ [68]
which was done in Ref. [17]. In the persistent-flow model the conditional
distribution P (z (t ) = z |Ā = a ) is computed for constant A(t ) = Ā. Then one
uses

P (z (t ) = z ) =

∫

R
P (z (t ) = z |Ā = a )P (Ā = a )da , (3.24)

and Eq. (3.19) to obtain the distribution function. Figure 3.2 shows the dis-
tributions P (z (t ) = z ) for the three different models, the white-noise model,
the telegraph model and the persistent-flow model, in the left, middle and
right panels, respectively. All distributions have been obtained analytically
using the methods outlined above. The dashed lines show the correspond-
ing asymptotics (3.23) which agree well with the densities at large z . The
expressions for the rate of caustic formation that enter in Eq. (3.23) were
obtained analytically in terms of integrals similar to Eq. (3.22), but are not
shown here. Note that for the telegraph model, two different distributions
are shown in the middle panel of Fig. 3.2, one for small St and large Ku (light
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Figure 3.2: Left: Steady-state distribution P (z (t ) = z ) for the white-noise
model obtained from Eq. (3.21) with ε2 = 0.1 (red) and the asymptotics (3.23)
(black dashed). Middle: Distributions obtained from the telegraph model with
(Ku, St) = (0.5, 1.0) (light blue) and (Ku, St) = (0.0577, 10) (dark blue). Right: Dis-
tribution obtained from the persistent-flow model with κ= 0.1.

blue) and the other one for small Ku and large St. The exact values for (Ku, St)
are given in the Figure text. For large Ku and small St, the density develops
an integrable singularity at the stable fixed point, which is absent in the
other models [17]. The probability distributions depend surprisingly little
on the choice of model. This can be understood phenomenologically by
returning to the picture of the escape from the stable fixed point discussed in
Section 3.1: The main ingredients that shape the z -distribution are given by
the attraction towards the stable fixed point on the one hand and the escape
process with subsequent return on the other hand. While the former shapes
the maximum around the origin, the latter leads to the power-law tails.

3.3.2 Lyapunov exponent

A compressible underlying flow leads to strong particle clustering indicated
by a negative spatial Lyapunov exponent, λ< 0. The Lyapunov exponent for
the models is calculated from Eq. (3.3) using the z -distributions obtained
in the previous Section. In all three models we consider in this work, the
Lyapunov exponent is negative at small inertia parameter. A negative Lya-
punov exponent implies that all paths in the particle dynamics eventually
coalesce, which is the strongest form of clustering. For larger inertia, the
Lyapunov exponent becomes positive [16]. This behaviour is known for the
white-noise model [16, 48], the telegraph model [17] and can also be observed
in the persistent-flow model. The left panel in Fig. 3.3 shows the Lyapunov
exponents for the white-noise model (red curve) as a function of ε2 as well
as for the persistent-flow model (green curve) as a function of κ. The path-
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Figure 3.3: Left: Lyapunov exponent in the white-noise model (red) and for the
persistent-flow model (green) as functions of the respective inertia parameters
ε2 and κ. Right: Phase diagram for the telegraph model in the (Ku, St) plane.

coalescence transition occurs at ε ≈ 1.33 and κ≈ 10.42 for the white-noise
and persistent-flow models, respectively. The right panel shows the more
intricate phase diagram of the telegraph model [17] in the (Ku, St) plane. The
black dashed line indicates the location of the path coalescence transition.
The dash-dotted line separates the phase where caustics occur from that
where caustics are absent. The solid black line defines the regime of validity
according to Eq. (3.15).

3.3.3 Finite-time Lyapunov exponents

In this Section, we discuss how the statistics of the FTLE is obtained for the
white-noise and the persistent-flow model. We leave out the telegraph model
from the discussion, because we have not been able to obtain sufficiently
accurate results for it yet. We determine the rate function I (s ) for the FTLE
by Legendre transform of the corresponding scaled cumulant generating
function Gs (k ) [57]. The latter is defined by

Gs (k ) = lim
t→∞

1

t
log〈ek tλ(t )〉= lim

t→∞

1

t
log〈 j (t )k 〉 . (3.25)

The rate function I (s ) is given by the Legendre transform of Gs (k ) [69, 70]

I (s ) = sup
k∈R
[k s −Gs (k )] . (3.26)

Hence, our task is to calculate the scaled cumulant generating function.
For the persistent-flow model, it can obtained analytically by means of an
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integral, that we do not show here. In the white-noise model, the cumulant
generating function is obtained as the largest eigenvalue ζmax(k ) = Gs (k )
of a differential operator, the so-called tilted generatorLk [57, 71], which
depends on the parameter k . The tilted generator for the FTLE is given by
[71]

Lk =L +k z , with L = ∂z

�

z + z 2+ ε2∂z

�

. (3.27)

Note that for k = 0 theLk reduces to the Fokker-Planck operatorL corre-
sponding to Eq. (3.10b). For small ε the largest eigenvalue ζmax(k ) can be
calculated from Eq. (3.27) in perturbation theory. One finds

Gs (k )∼ ε2k (k −1)
�

1+ (5−4k )ε2+
�

32k 2−86k +60
�

ε4

+
�

−336k 3+1437k 2−2135k +1105
�

ε6+ . . .
�

. (3.28)

This perturbative result becomes important in the next Section. Exact nu-
merical expressions for ζmax(k ) are calculated from Eq. (3.27) via shooting
[10, 71]. Performing a Legendre transform we find the rate functions I (s ).
The left panel of Fig. 3.4 shows the rate function I (s ) for the white-noise
model for ε = 0.5, 1.5 and 10 in black, blue and red, respectively. The right
panel shows I (s ) in the persistent-flow models for κ= 0.5 (green), 1.5 (lime)
and 10 (olive). Note that the location of the minimum of I (s ) is given by the
Lyapunov exponent. Because the Lyapunov exponents change sign at finite
inertia parameter, so do the locations of the minima of the rate functions. In
both models, we observe that I (s ) becomes broader as the inertia parameter
increases. This suggests that even if the (only) Lyapunov exponent is positive,
particle trajectories may approach each other for a long time, allowing for
spatial clustering even at positive Lyapunov exponent [71, 72].

3.4 Correlation dimension

The correlation dimension is given by the non-trivial zero of the scaled cu-
mulant generating function Gs (k ) discussed in the previous Section [12, 18,
54, 73, 74]:

Gs (−D2) = 0 , (3.29)

A derivation of this formula based on Ref. [74] is given in Appendix A. We now
use (3.29) to calculate D2 for the two models, starting with the white-noise
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Figure 3.4: Left: Rate function I (s ) in the white-noise model for ε = 0.5, 1.5 and
10, black, blue and red, respectively. Right: Rate function I (s ) for persistent-flow
model for κ= 0.5, 15 and 10, green, lime and olive, respectively.

model. Note that for the latter, the tilted-generator approach in combination
with Eq. (3.29) is equivalent to a method of determining D2 based on a separa-
tion ansatz for the Fokker-Planck equation, that was employed in [10, 54, 75]
and paper B. Consider first the perturbative result for D2 obtained from the
perturbation expansion of Gs (k ) given in Eq. (3.28). The infinite series expres-
sion (3.28) is multiplied by k (k −1). This means that k ∗ = 1 is a non-trivial
root of Gs (k ) to all orders in perturbation theory. Hence, we find that the
perturbation expansion of D2 truncates after the first term [10, 54, 75]:

D2 ∼−1 . (3.30)

How a negative correlation dimension in one dimension can be interpreted is
discussed in paper B. Using the exact result for Gs (k ) calculated from numeri-
cally solving Eq. (3.27) we observe that Eq. (3.30) is a very poor approximation
of D2 at finite ε. The left panel in Fig. 3.5 shows D2 obtained from Eq. (3.29)
for the white-noise model as the red curve. In paper B we improved the
asymptotic expansion (3.30) by an exponentially small correction

D2 ∼−1+
e−1/(6ε2)

π
, (3.31)

which is shown by the black dashed line in the left panel of Fig. 3.5. Details on
the calculation are given in paper B. For larger ε, the correlation dimension
increases and becomes positive for ε > εc. The same is true for the correlation
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Figure 3.5: Left: Correlation dimension in the white-noise model shown in red,
asymptotic expression (3.31) (black dashed line). Right: Correlation dimension
for the persistent-flow model (green line).

dimension of the persistent-flow model which is given in the right panel of
Fig. 3.5. The correlation dimension starts out at large negative values for
small κ and becomes positive for κ>κc ≈ 10.4.

3.4.1 Rate of caustic formation

We now briefly discuss explicit results for the activated form (2.25) of the rate
of caustic formation at small inertial parameter. In the white-noise model, J
can be obtained analytically and is given by the integral expression (3.22).
For small ε the integral can be evaluated using a saddle point approximation,
and one obtains [1]

J ∼
e−1/(6ε2)

2π
. (3.32)

Hence the activation function f defined in Eq. (2.25) is quadratic in Ku and
linear in St, f (Ku, St) = 18Ku2St. In the persistent-flow model, we obtain the
asymptotic form of J for small κ by analysing the tails in the distribution
function P (z (t ) = z ):

J ∼
4
p

2

π
κ2e−

1
64κ2 , (3.33)

which means that f (Ku, St) = 192Ku2St2. For the telegraph model recall that
there exists a regime in the (Ku, St) plane, where the rate of caustic formation
is exactly zero, see right panel in Fig. 3.3. Around the regime border, a saddle
point expansion similar to that for the white-noise model can be applied.
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We find for the limit combined limit St→∞ and Ku→ 0 so that κ=
p

3Ku St
stays finite, the expression

J ∼
1

2π
exp

�

−2St
�

χ− atan(χ−)−χ+ atanh(χ+)
�	

(3.34)

with χ± = 1/
p

4κ±1 for κ> 1/4 and J = 0 otherwise. Note that the factor St
can alternatively be written as St= κ/(Ku

p
3), which means that the expres-

sion is non-analytic in both 1/St and Ku in the given limit. The activation
function f has a non-polynomial form for the telegraph model.

3.5 Conclusions

We conclude that in one-dimensional statistical models the observables that
characterise spatial clustering can be computed analytically or numerically
with high accuracy. These one-dimensional results are very useful because
the statistical models are similar in higher dimensions [1]. The different
one-dimensional models share common features such as power-law tails in
the z -distribution that scale with the respective rate of caustic formation and
a path-coalescence transition [16, 48] as a function of their respective inertia
parameter(s). Outside the path-coalescence phase, the one-dimensional
models show clustering even though the spatial Lyapunov exponents is pos-
itive [72]. This is explained by the broad shape of the rate function for the
FTLE [71].
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Figure 4.1: Spheroid in a shear flow in the log-rolling position. Taken from
paper A.

4 Summary of research papers

In this Section we summarise the results of the three research papers A-C
appended to this Licentiate thesis. In particular we explain how they are
connected to the introductory text given in the previous Chapters.

4.1 Research paper A

In this paper, we calculated the angular velocityω= ‖ω‖of a small spheroidal
particle in a simple shear flow in log-rolling position. In this position, the
symmetry axis of the spheroid is oriented perpendicular to the shear plane,
see Fig. 4.1, hence rendering the fluid dynamical problem steady. The char-
acteristic Reynolds number defined in Section 1.3.1 is given by the shear
Reynolds number

Res =
a 2s

ν
, (4.1)

where a is major semiaxis length of the particle, s is the shear rate andν is the
kinematic viscosity of the fluid. When Res is small, the angular velocity can be
expanded in a perturbation series. As noted in Section 1.4.1 the convective
term (w · ∇)w constitutes a singular perturbation to the Stokes equation
(1.14). Hence, regular perturbation theory breaks down far away from the
particle. We used a matched asymptotic expansion of the flow field w , see
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Section 1.4.1, to obtainω to order Re3/2
s :

ω∼−
s

2
+0.0540

3s D

10π
Re3/2

s , (4.2)

where D is a parameter that depends on the particle shape. We conducted di-
rect numerical simulations of the problem and observed excellent agreement.
In the special case of a sphere, where D = 10π/3, the result differs from that
obtained in Ref. [76] by a factor of roughly three. The numerical simulations,
however, support our results. Furthermore, in a recent study [77] the authors
considered the case of general spheroid orientation (including log-rolling)
and obtained Eq. (4.2) as a special case.

4.2 Research paper B

In paper B we studied the distribution of separations and relative velocities
in polydisperse turbulent suspensions of heavy particles, using the statisti-
cal models discussed in Section 1.5 and Chapter 3. Systems of particles of
different Stokes numbers are common in Nature which is why it is important
to understand their dynamics. We studied these systems using the statistical
model for of particles of two different Stokes numbers, St1 and St2. The first
part of the work involved a numerical study of the two dimensional statis-
tical model with finite Ku and St which we discussed in Section 1.3.3. For
bidisperse systems, the different particle species obey two different sets of
equations of motion (1.22), with St1 and St2, respectively. We observed that
the distribution %(vr , r ) of relative velocities vr between different Stokes-
number particles develops a plateau at small separations r that cuts off the
power-law distribution. The plateau is characterised by a cutoff scale vc. A
similar behaviour had been found for the spatial distribution in Refs. [13, 14]
with the corresponding spatial cutoff scale rc. Using a variant of the one-
dimensional white-noise model discussed in Section 3.2.1, we were able to
show that in one dimension, the scales vc and rc depend linearly upon the
dimensionless quantity

θ =
|St1−St2|
St1+St2

. (4.3)

Interestingly, this linear dependence holds true even for the two-dimensional
statistical model. The left panel in Fig. 4.2 shows how the plateau in %(vr , r )
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Figure 4.2: Statistical model simulations for d = 2, Ku = 1 Left: %(vr , r )/r d−1

evaluated for small r , St = 1 and θ = 10−3, 10−2 and 10−1 as the green, black
and magenta lines, respectively. The crossover scales vc are shown as arrows.
Right: Power-law exponent µc as a function of St for small θ . Exponent for the
power-law tails in vr for fixed small r with θ = 10−3 (green boxes) and θ = 10−2

(red circles). Exponent for power-law tails in r for fixed small vr with θ = 10−2

(blue diamonds). Numerical data for µc (solid blue line). Figures taken from
paper B.

at small r develops for θ = 10−3, 10−2 and 10−1 as the green, black and
magenta lines, respectively. Further, we found that the spatial correlation di-
mension µc

1 of the monodisperse particle system discussed in Section 2.2.1,
determines the shape of the tails in the bidisperse distribution %(vr , r )when
replacing the Stokes number by the mean Stokes number defined as

St=
St1St2

St1+St2
. (4.4)

This holds both for the one-dimensional white-noise model and the two-
dimensional statistical model. The right panel in Fig. 4.2 shows µc in the
two-dimensional monodisperse model as a function of St as the blue line.
The symbols show the corresponding exponent in the tails of the bidisperse
system. The tails for large r and small vr , blue diamonds (θ = 10−3), and
for large vr and small r , green boxes and red circles (θ = 10−3 and 10−2,
respectively) have the same exponent just as in the monodisperse case [9].

1Note that here, the difference between the spatial correlation dimension µc and the
phase-space correlation dimension D2 is relevant. They are related by µc =min[D2, d ], see
Refs. [10, 53, 73].
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We further found that finite θ regularises the path-coalescence transition,
discussed in Secs. 2.1.4 and 3.3.2, in the one-dimensional bidisperse white-
noise model. In the path-coalescence regime at small θ , the distribution
of separations and relative velocities obtains power-law tails with negative
correlation dimension µc < 0. For small inertial parameter ε = 3Ku2St we
were able to show that µc behaves asymptotically as

µc ∼−1+
e−1/(6ε2)

π
, (4.5)

for ε� 1. This can be written as µc ∼−1+2J , where J is the rate of caustic
formation in the model. This finding allows to interpret in physical terms
earlier findings of negative correlation dimensions in the path-coalescence
regime [9, 10, 75].
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4.3 Research paper C

In this paper, we considered a one-dimensional, discrete-time model for
inertial particles in fluid turbulence, the so-called correlated random walk
model [72, 78]. In this model, the random displacements of an ensemble of
walkers xn are generated by a Gaussian random function fn (x ) = u (x , tn ).
This random function is identical to the one-dimensional random velocity
field in Section 3.2, but uncorrelated in (discrete) time:

〈 fn (x ) fm (y )〉=α2δnm exp

�

−
(x − y )2

2

�

, (4.6)

where α is the dimensionless inertial parameter of the model. Due to the
spatial correlations of the field fn (x ), nearby walkers are correlated. The
model shows similar behaviour as the one-dimensional continuous time
white-noise model. Thus it exhibits a path-coalescence regime with asso-
ciated negative correlation dimension. For small α one finds similarly to
Eq. (4.5)

D2 ∼−1+4JCR , (4.7)

where JCR is the rate of trajectory crossings, which corresponds to the rate of
caustic formation in continuous time. We identified a particularly simple
kind of trajectory crossing in the model, which we called ‘linear crossings’.
Linear crossings are predominant at small separations and do not change the
relative order of nearby walkers. Using an argument based on these crossings,
we were able to use the scaling relation for Dq given in Eq. (2.17) to express
Dq in terms of D2:

Dq =
D2

q −1
, (4.8)

for q > 2. We confirmed this relation between the Dq numerically.
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5 Conclusions and Outlook

In this Licentiate thesis, we discussed statistical models of heavy particles in
turbulence. After motivating statistical models in Chapter 1 we focussed on
their one-dimensional versions in Chapter 3 and paper C. In Chapter 4 and
paper B, we showed that one-dimensional models are useful in explaining
the results of statistical models in higher dimensions. Thus the distribution
of separations and relative velocities between the heavy particles could be
explained qualitatively using a one-dimensional white-noise model. The
mathematical structure of the observables, the correlation dimension D2,
the finite-time Lyapunov exponents λ(t ) and the rate of caustic formation
J , are richer than one might naively expect from the apparent simplicity of
the one-dimensional models. On the basis of our results, we speculated in
papers B and C that the correlation dimension must be represented by a
‘trans-series’ [79] of the form

D2 ∼
∑

k ,l ,m

ak l mε
k e−l s (ε) logm [ε] , (5.1)

in order to explain its characteristic dependence on the inertial parameter ε
(α in paper C).

In the future, we want to study how this structure arises in two and three
dimensional systems. The correlation dimension and the Lyapunov expo-
nents in these higher-dimensional models have characteristic minima which
are not explained by perturbation theory [16, 53, 54]. It would be interest-
ing to understand if the locations of these minima can be calculated using
trans-series expansions. In order to tackle this question mathematically, we
need to find out if and how matched asymptotic expansions, that take into
account rare caustic events, can be used in higher dimensions. Explaining
these characteristic minima would be a great success, since it is observed
also in simulations [49, 80].

A related but different problem concerns the Lyapunov exponent in the
one-dimensional white-noise model. The perturbation expansion for this
quantity is asymptotic [37] but can be resummed using Padé-Borél resum-
mation [81]. The result agrees very well with the known analytic formula [1].
The Padé-Borél technique fails, however, for the Lyapunov exponent in the
white-noise limits in two and three dimensions. The weak-inertia expansion



46 CONCLUSIONS AND OUTLOOK

for the one-dimensional telegraph model is very similar to that of the white-
noise limit. It is, however, more general and contains the weak-inertia limit
of the white-noise model as a special case. Our plan is therefore to develop a
perturbation theory for the weak-inertia limit of the telegraph model, to re-
sum the corresponding series using Padé-Borél resummation, and compare
the result to the exact expression, which is known in form of an integral [17].
This could explain why the perturbation theory for the Lyapunov exponent
does not fail in the one-dimensional white-noise model. An analysis of this
kind is relatively simple and could give important insights into the more
ambitious question discussed in the previous paragraph.

Another future project concerns the realistic modelling of the statistics
of velocity gradients in the one-dimensional persistent-flow model. As dis-
cussed in Section 3.2.3, this analysis must refer to non-local effects of pref-
erential sampling of particles. Thus the particles spend most of their time
at stable zeros of the flow u (x , t ). These zeros vanish at a certain rate, so
that the particles travel possibly long distances before ending up at the next
stable zero of u (x , t ). In the process, they sample positive velocity gradients
which affects the velocity gradient statistics experienced by the particles
measurably. We plan to use the properties of Gaussian random functions to
find these gradient statistics.

Finally, it could be of interest to study the distribution of time intervals
between caustics tc , mentioned in Section 2.2.3. In the weak-inertia limit,
this time is known to be exponentially distributed with mean 1/J [63]. At
finite inertia, on the other hand, the distribution is different. It could be of in-
terest to compare the probability distribution of tc from the one-dimensional
models with that in higher dimensional statistical models, and turbulence
simulations. Caustics are considered essentially one-dimensional phenom-
ena [18, 61]. Comparing the time distributions in different dimensions would
put this statement to the test. We plan to approach this question using both
theory and simulations. In the white-noise model the distribution of tc can
be calculated by interpreting tc as the first-passage time from z (0) =∞ to
z (tc ) = −∞ and solving a Backward-Kolmogorov equation [59, 60]. In the
persistent-flow model the distribution is easily obtained analytically [61].
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PART III

APPENDIX

A Correlation dimension and FTLE

We now prove the relation (3.29). The proof goes along the same lines as
that given in Ref. [74] for discrete noisy dynamical systems. Consider the
equations of motion for the white-noise model (3.10):

j̇ (t ) = z (t ) j (t ) , (A.1a)

ż (t ) = ξt − z (t )− z (t )2 . (A.1b)

Transforming j (t ) in Eq. (A.1a) into y (t ) = log | j (t )|, we obtain ẏ (t ) = z (t ). If
we now integrate both sides of this equation from 0 to tn = nT with T � 1
we obtain

Xn =

∫ tn

0

z (t )dt , (A.2)

where Xn = y (tn )− y (0) = log | j (tn )|. The random variables Xn obey the
recurrence

Xn+1 = Xn +T λn , (A.3)

withλn = T −1
∫ tn+1

tn
z (t )dt =λ(T ). In the last step we noted thatλn is equal to

the spatial FTLE, λ(T ), of the system. Since T � 1, λn obeys a large deviation
principle according to

P (λn = s )≈ e−T I (s ) . (A.4)

For long enough T , and sufficiently quickly decaying correlation function
c (|t − s |) = 〈z (t )z (s )〉− 〈z (t )〉〈z (s )〉, we can treat Xn and λn as independent
random variables. Hence, Eq. (A.3) suggests that the probability density for
Xn+1, P (Xn+1 = x ), is given by the convolution

P (Xn+1 = x ) =

∫ ∞

−∞
P (λn = s )P (Xn = x −T s )ds . (A.5)
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In the steady state, Xn+1 and Xn are equal in distribution, which means that
P (Xn+1 = x ) = P (Xn = x ). Substituting this condition into Eq. (A.5) we obtain
an integral equation for P (Xn = x )with solution P (Xn = x )∼ eµx , involving
the constant µ. Because Xn = log | j (tn )|, the density of j (t ) is given by the
power-law

P ( j (t ) = x )∼ xµ−1 . (A.6)

We compare this expression to the scaling relation (2.17) and recall that j (t )
has the same dynamics as the particle pair separation |x1(t )− x2(t )|. Using
this we conclude thatµ=D2. We now substitute the expression for P (Xn = x )
into Eq. (A.5) and use the large deviation form (A.4). We obtain

∫ ∞

−∞
e−T (I (s )+D2s )ds ≈ 1 , (A.7)

which we, in turn, evaluate using Laplace’s method for T � 1 [37]. We arrive
at the asymptotic relation exp[−T Gs (−D2)]≈ 1, where

Gs (k ) = inf
s∈R
(I (s )−k s ) = sup

s∈R
(k s − I (s )) , (A.8)

is the scaled cumulant generating function of the FTLE. Clearly this deriva-
tion suggests that

Gs (−D2) = 0 , (A.9)

which is what we wanted to show. Note thatµ= 0 and, thus P (Xn = x ) = const
is another, trivial solution of Eq. (A.5). This trivial solution is independent
of the underlying dynamics, and comes solely from the normalisation of
P (λn = s ) to unity. We conclude that the non-zero root of Gs (k ) is the physical
one.
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