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ABSTRACT 

Helicobacter pylori is the most common human gastric pathogen, colonizing 

half of the world's population. Helicobacter suis colonizes the stomach of 60-

95% of pigs at slaughter age and it is the most prevalent non-Helicobacter 

pylori Helicobacter species found in the human stomach causing severe gastric 

disorders. The first barrier that gastric pathogens encounter is the mucus layer, 

of which the main components are highly glycosylated mucin glycoproteins. 

Mucins carry a high diversity of mucosal glycan chains terminating with 

glycan structures that vary between species, individuals and tissue locations 

and provides an extensive repertoire of interaction surfaces for bacteria. 

In this thesis, we describe a constant dynamic interplay between Helicobacter 

spp. and host gastric mucins. Helicobacter infection induces changes in host 

gastric mucin composition and glycosylation, and these alterations affect the 

binding avidity, growth and gene expression of the bacteria. The mucin 

interaction with pathogens is mediated by its glycan composition and shows 

high inter-individual difference. We show that H. pylori and H. suis bind to 

human and pig gastric mucin glycans and glycolipids via different binding 

modes and with different specificity. H. suis binding to gastric mucins and 

glycolipids occurs via two modes of adhesion: to structures with terminal 

galactose at both neutral and acidic pH, and to negatively charged structures at 

acidic pH. These binding modes enable H. suis adhesion to mucins at lower 

pH close to the gastric lumen and in parietal cells and a more intimate adhesion 

to mucin glycans and glycolipids closer to the host epithelial cells. 

We demonstrated that mucins play important role in host defense mechanism 

against gastric pathogens. Mucins are able to limit bacterial growth by 

adhesion and aggregation of H. pylori and they affect the adhesin gene 

expression of the bacteria. Helicobacter infection changes host mucin 

glycosylation in a way that decreases the amount of mucin glycan structures 

targeted in binding and impairs the growth regulating effects of the mucins 

maintaining a more inhabitable niche in the stomach. 

Understanding the dynamic interplay between Helicobacters and host gastric 

mucins and alleviating the impairments of the host defense by these pathogens 

can contribute to the development of preventive strategies against Helicobacter 

infection.  
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SAMMANFATTNING PÅ SVENSKA 

Helicobacter pylori (H. pylori) är den vanligaste sjukdomsalstrande 

organismen i magen och halva jordens befolkning bär på denna bakterie. 

Helicobacter suis (H. suis) är nära besläktad med H. pylori. H. suis koloniserar 

grisens mage och är även den vanligaste icke-H. pylori Helicobacter-arten i 

magen hos människa. Infektion med både H. pylori och H. suis orsakar 

inflammation magen och kan leda till magsår och magcancer. Behandling av 

dessa infektioner med antibiotika blir alltmer problematisk på grund av den 

globala ökningen av förvärvad antimikrobiell resistans. Sjukdomsalstrande 

organismer i lantbruksdjur utgör ett hot mot människors hälsa både på grund 

av att zoonotiska bakterier såsom H. suis kan infektera både människor och 

lantbruksdjur och på grund av att antibiotikabruk i djur ökar belastningen av 

antibiotikaresistenta bakterier i omlopp. Den vanligaste vägen bakterier 

kommer in i kroppen på är via slemhinnan. Denna yta är täckt av ett 

kontinuerligt utsöndrat slem som tvättar bort bundna partiklar. 

Huvudkomponenterna i detta slem är utsöndrade muciner. Mucinerna bär ett 

stort antal kolhydratstrukturer, vilket ger många potentiella ställen för bakterier 

att binda till. 

I denna avhandling har vi visat att H. suis i likhet med H. pylori lever i 

slemlagret som täcker magslemhinnan. Båda dessa bakterier binder till 

muciner, fast till olika kolhydratstrukturer på mucinerna och därigenom binder 

de till olika muciner. Infektion och inflammation kan orsaka kvalitativa och 

kvantitativa förändringar i kolhydratstrukturerna som sitter på muciner. 

Eftersom bakteriens bindning, tillväxt och genuttryck påverkas av mucinernas 

kolhydratstrukturer förändrar detta relationen mellan bakterien och värden. Vi 

visade att mucinerna, förutom att bära antimikrobiella glykanstrukturer, kan 

begränsa bakteriell tillväxt genom att binda bakterierna. Helicobacter spp. 

infektion kan minska mängden kolhydratstrukturer som binder till H. suis och 

kan försämra de tillväxtreglerande effekterna av mucinerna, vilket kan leda till 

en mer  gästvänlig nisch för H. suis i magen. Vi observerade ett dynamiskt 

samspel mellan Helicobacter spp. och värdmuciner. Vi tror att störning av 

dessa värd-mikrob interaktioner och utveckling av strategier för att förändra 

slemhinnans beteende vid infektion skulle kunna användas både förebyggande 

och som ett alternativ till antibiotika i framtiden.
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1 INTRODUCTION 

1.1 Mucus 

An adherent mucus layer covers the epithelial surfaces of the eye and 

gastrointestinal, respiratory and reproductive tracts in order to protect the 

mucosa from mechanical damage or entrance of harmful chemicals, such as 

drugs, toxins and heavy metals (1-3). In the stomach and duodenum, the mucus 

contributes to surface neutralization of luminal acid by mucosal bicarbonate 

secretion (4) and prevents access of luminal pepsin to the mucosal surface (5). 

The viscous mucus layer is the first barrier in the gastrointestinal tract nutrients 

and enteric drugs must interact with and diffuse through, in order to gain access 

to their targeted organs through the circulatory system (6).  

The thickness of the mucus layer varies greatly among organs, ranging 

between 70-100 µm in the oral cavity (7), approximately 250 µm in the 

stomach, 150-400 µm in the small intestine and reaching 800-900 µm in the 

colon (8). In the gastrointestinal tract, the mucus is continuously cleared by the 

peristaltic movement of luminal food and faecal material and can be rapidly 

replaced from goblet cells by continuous secretion or by compound exocytosis 

in response to chemical or physical irritation (8-10). Mucus consists 

approximately 95% water but it also contains salts, lipids (11) and proteins 

with protective function, such as lysozymes, immunoglobulins, defensins, 

growth factors and trefoil factors (12-14). The main component of the mucus 

is the gel-forming mucin glycoprotein, which is responsible for its viscous 

properties (6, 15). 

1.2 Mucins 

Mucins are highly glycosylated glycoproteins with a molecular weight ranging 

between 0.5 and 20 MDa (6). Mucins consist of a protein core with tandemly 

repeating amino acids rich in serine and threonine, where O-linked 

carbohydrate chains are added in the Golgi apparatus during biosynthesis (16). 

The two major types of mucins are transmembrane and secretory mucins. 

Transmembrane (cell-surface) mucins are located on the apical surface of the 

mucosal epithelial cells. In the human gastrointestinal tract, cell surface mucins 

include MUC1, MUC3, MUC4, MUC12, MUC13, MUC15, MUC16 and 

MUC17 (17). They participate in mucosal defense translating external stimuli 

to cellular responses (18). They can also play an important role under host-

pathogen interactions (19). The expression of MUC1 is upregulated in 
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response to infection (20) and acts as a decoy to limit adhesion of the bacteria 

to the cell surface (21). Secretory mucins are one of the major components of 

the extracellular mucus barrier and they are characterized by high molecular 

weight. They can be gel-forming (MUC2, MUC5AC, MUC5B, MUC6 and 

MUC19) or non-gel-forming secreted mucins (MUC7). The gel-forming 

mucins have cysteine-rich motifs that are important in the formation of 

oligomers via inter-molecular disulphide bonds (22). In a healthy human 

stomach, MUC5AC and MUC6 are the major gel-forming mucins located in 

the surface and glandular region, respectively (23), whereas in the intestine the 

main secreted mucin is MUC2. In the gastrointestinal tract, secretory mucins 

are produced  and secreted by mucous cells of glandular tissues and by goblet 

cells which are specialized epithelial cells (24). The intestinal goblet cells 

migrate from the bottom of the crypts to the villus tip where the mucus shed to 

the lumen and they constantly get replaced (25). The migration along the crypt-

surface axis causes changes in morphology and mucin composition of the 

goblet cells (26, 27). Mucin secretion can happen via vesicle secretion or 

compound exocytosis and can be regulated by numerous environmental 

stimuli, including cholinergic agonist, hormones, neurotransmitters and 

intracellular messengers, such as Ca2+ and cAMP (28, 29). In response to 

infection, both innate and adaptive immunity can regulate the expression of 

mucins. Inflammatory cytokines, such as IL-1β, IL-4, IL-6, IL-9, IL-13, IFNγ, 

tumor necrosis factor (TNF), nitric oxide and granulocyte proteases can 

directly upregulate the expression of mucins (30).  

1.3 Mucin glycosylation 

Posttranslational modifications of proteins by glycosylation can occur in N-

linked and O-linked form. Mucin-type O-glycosylation takes place in the Golgi 

complex and is initiated by the addition of α-N-acetylgalactosamine (GalNAc) 

to the hydroxyl group of Ser/Thr side chains of the folded protein (31, 32). The 

complex oligosaccharides on proteins have three regions: core region (core 1 - 

core 8), backbone region (type 1 and type 2) and peripheral region. This latter 

region can be terminated by fucose, galactose, GalNAc or sialic acid residues, 

forming histo-blood group antigens such as A, B, H, Lewis a (Lea), Lewis b 

(Leb), Lewis x (Lex), Lewis y (Ley), as well as sialyl-Lea and sialyl-Lex 

structures (33) (Table 1). The structure of carbohydrates depends on 

glycosyltransferases expressed in the cells (34). The mucin oligosaccharide 

terminal structure varies between species (35), individuals (36) and between 

tissue locations within one individual (37, 38). For instance, type 1 blood 

group-related antigens are expressed in the cells of the surface epithelium, 

whereas type 2 antigens are found mainly in the glandular region of the human 



   Médea Padra 

 

 3 Introduction 

gastric mucosa (39). The majority of normal gastric mucin O-glycans are 

neutral and fucosylated (36), increased sialylation and /or sulphation as well as 

expression of Tn and T antigens can indicate aberrant or incomplete 

glycosylation (40). 

Mucin O-glycans contribute up to 80% of the molecular weight of mucins (6). 

The high level of glycosylation enables mucins to function as a protective 

barrier by lubricating the epithelium (41) and preventing the degradation of the 

protein backbone by proteases (42). Mucin glycans can modulate cell adhesion 

(43), serve as ligands for cell surface receptors (44) and take part in host-

pathogen interaction (20, 45, 46).  Glycan structure alterations are associated 

with many pathological conditions. Cancer associated mucin glycosylation 

changes have been reported in tumor tissues from different organs (47, 48) and 

these modifications can be potentially used as biomarkers of the development 

or progression of tumors (49-51). Bacterial infection can also alter mucin 

production and glycosylation quantitatively as well as qualitatively at both 

cellular and subcellular level (52-54).  

Histo bloodgroup antigens Glycan structure 
  

 Blood group H Fucα1-2Galβ1-   

 Blood group A Fucα1-2(GalNAcα1-3)Galβ1-  

 Blood group B Fucα1-2(Galα1-3)Galβ1-  

 Lewis a (Lea) Galβ1-3(Fucα1-4)GlcNAcβ1-  

 Lewis b (Leb) Fucα1-2Galβ1-3(Fucα1-4)GlcNAcβ1- 

 Sialyl-Lea NeuAc(α2-3)Galβ1-3(Fucα1-4)GlcNAcβ1- 

 Sialyl-Lex NeuAcα2-3 Galβ1-4(Fucα1-3)GlcNAcβ1- 

 Lewis x (Lex) Galβ1-4(Fucα1-3)GlcNAcβ1-  

 Lewis y (Ley) Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ1- 

  

Table 1. Histo-blood group antigens carried by mucin O-glycans. 

1.4 Pig gastric mucins 

The stomach mucosa of pigs can be divided into two main parts: a glandular 

part (containing cardiac gland zone, fundic gland zone and antrum with pyloric 

glands) and a non-glandular part called pars esophagea that is covered by a 

stratified squamous epithelium (55). The non-glandular region and the cardiac 

gland zone have a pH around 5-7 due to the presence of saliva and cardiac 

gland bicarbonate secretions (56), while the fundic and pyloric glands provide 

lower pH in the distal part of the stomach with high inter-individual variability 
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(57). The mucus secreted in the different regions of the pig stomach shows big 

variations regarding density, size, viscosity and amino acid and glycan content 

(58-60). Mucins produced by the surface epithelium also differs from the gland 

mucins in apoprotein content and length of the glycosylated domains 

indicating that the surface epithelium and the glands produce different mucins, 

which mucins might represent the porcine equivalents of the human MUC5AC 

and MUC6 mucins, respectively (61).  

Alterations in pig mucins can be induced by certain environmental factors and 

conditions, e.g., weaning associated mucin glycosylation changes play an 

important role in the adaptation to new dietary constituents, physical 

environment as well as commensal and pathogenic bacteria (62, 63). In weaned 

pigs, increased mucin secretion occurs (64) and an elevated level of 

fucosylated mucin glycans has also been reported (62). These glycosylation 

changes can be further modified with dietary changes (63-66) and by microbial 

activities (67).  

1.5 Host-pathogen interactions in the mucus niche  

The mucus layer serves as the first barrier between pathogens and host cells on 

several organs providing a surface for host-pathogen interaction. Microbes 

commonly interact with the glycan structures of the host glycocalyx to colonize 

mucosal surfaces (68). The high variety of mucin oligosaccharides forms an 

extensive repertoire of attachment sites for bacteria (69). Microorganisms 

attach to mucosal glycans via adhesins with different carbohydrate specificities 

(46, 70, 71) and the high diversity of mucin glycan chains can lead to region-

specific colonization by the bacteria (72). Binding of pathogens to the cell 

surface mucins supports the barrier function of mucus by releasing the 

extracellular domain together with the bound bacteria from the cell surface, 

acting as a releasable decoy (21).  

Mucus can serve as a reservoir for numerous pathogens (73-75), and be used 

as a matrix for replication and colonization (76). Mucus can provide an 

important source of nutrients for bacterial growth (77, 78). A number of 

bacterial strains are able to degrade mucins by producing specific enzymes, 

including glycosidases, sulphatases, sialidases and use the released glycans as 

energy source (79-84).  The microbiota inhabiting the mucus layer is able to 

modulate the mucus niche in a way that it becomes beneficial for the bacteria. 

Studies on germ-free mice have revealed that Bacteroides thetaiotaomicron, 

by secreting signaling molecules, induces the expression of fucose on cell 

surface glycoconjugates and these fucosylated glycans can be utilized by these 
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bacteria as carbon source (67). Some pathogens can also alter the pH of the 

mucus in their microenvironment decreasing its viscoelasticity that can 

facilitate bacterial motility (85). In response to infection, host mucins have the 

ability to affect the behavior of the bacteria by regulating the growth and gene 

expression of pathogens (86-88) which leads to a constant dynamic host-

pathogen interaction. 

1.6 Helicobacter pylori 

Helicobacter pylori (H. pylori) is a Gram-negative spiral-shaped 

microaerophilic bacterium that colonizes the stomach of half the human 

population. In 1983, Dr. J. Robin Warren and Dr. Barry Marshall reported the 

hypothesis that peptic ulcers are caused by spiral shaped bacteria in the 

stomach and they were the first who successfully isolated H. pylori from 

gastric biopsies (89). H. pylori infection usually occurs at a very young age 

and becomes persistent (90). Although the majority of H. pylori infections are 

asymptomatic, infected patients may develop non-ulcer dyspepsia, peptic ulcer 

disease, adenocarcinoma, and mucosa-associated lymphoid tissue (MALT) 

lymphoma (91-93). The International Agency for Research on Cancer (IARC) 

classified H. pylori as a class I carcinogenic agent based on epidemiologic 

evidence (94). The clinical outcome of H. pylori infection can be determined 

by the interplay of several bacterial, host or environmental factors, reviewed 

in (95). 

1.7 H. pylori interaction with mucins 

H. pylori colonizes the human gastric mucosa and is predominantly located in 

the mucus layer that covers the surface epithelial cells and only a small 

percentage are found in close association to the epithelial cells (96). Because 

of the rapid gastric mucus turnover, the bacteria need to develop strategies to 

avoid being shed into the gastric lumen and to maintain a stable niche in the 

stomach. The pH gradient across the gastric mucus layer ranges between 2 and 

7, being very acidic close to the lumen and approximately neutral at the 

epithelium. H. pylori can use the pH gradient in the mucus for chemotactic 

orientation, which plays an important role in the persistence in the stomach 

(97). H. pylori secretes urease enzyme, which is responsible for the tolerance 

of the acidic environment and facilitates the motility of H. pylori in the gastric 

mucus (98). Experiments using urease-negative H. pylori mutants 

demonstrated that urease activity is crucial for gastric colonization and survival 

of the bacteria (99). Urease level detection is a commonly used rapid diagnostic 

tool for H. pylori infection in the stomach (100).  
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1.8 H. pylori adhesion to mucins 

H. pylori adhesion to gastric mucins allows the bacteria to gain access to 

nutrients from host tissues (71, 101), and triggers host inflammatory responses 

(102-104). Binding to membrane bound mucins protects the bacteria from 

being shed by the passage of luminal content (21), which is crucial for 

maintaining a stable niche in the mucus layer. The glycan environment that H. 

pylori is exposed to constantly changes in response to different environmental 

effects, such as bacterial infection and development of diseases (53, 105-107).  

H. pylori requires a wide range of adhesive molecules to adapt to the dynamic 

microenvironment in the stomach. The genome of H. pylori codes for 

numerous outer membrane proteins (108) which allows adhesion to several 

different carbohydrate structures on mucins. H. pylori binds to glycan 

structures present on both glycolipids and mucins, the former providing a more 

intimate adhesion to the host cells and the latter can serve as a decoy and be 

part of the host defense system (21, 71, 109). 

The blood group antigen binding adhesin (BabA) recognizes fucosylated 

structures, such as Leb and H-type 1 antigen (46, 110) and mediates a high 

affinity bacterial binding to these structures (71). H. pylori strains expressing 

BabA have been considered more virulent, since they are more commonly 

associated with the development of severe gastric diseases (110-113). BabA-

mediated binding can be influenced by certain environmental factors. It has 

been shown that BabA-Leb adhesion is acid sensitive but fully reversible by 

pH neutralization (114). This type of binding can also be reduced by treatment 

with the redox-active pharmaceutical N-acetylcysteine that has been suggested 

to be used in H. pylori eradication therapy development (115). 

The sialic acid binding adhesin (SabA) mediates adhesion to α2,3-sialylated 

structures, such as sialyl-Lea and sialyl-Lex (116). In a healthy human stomach, 

sialyl-Lex antigen containing glycoconjugates are rarely expressed, whereas it 

has been shown to be upregulated after H. pylori infection and inflammation 

(116, 117). The acid responsiveness of sabA expression can be controlled by 

the ArsRS two-component signal transduction system (118, 119). In vitro 

studies demonstrated that sabA transcription is repressed by the acid-

responsive ArsS and the H. pylori J99 isogenic mutant lacking ArsS histidine 

kinase locus (J99ΔarsS) had a 10 fold SabA-dependent binding to human 

gastric cells compared to the wild-type strain (118).  

Several other adhesion molecules have been described to mediate H. pylori 

binding (Table 2). The lacdiNAc specific adhesin (LabA) has been suggested 
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to bind to the lacdiNAc structure (GalNAcβ1-4GlcNAc) on gastric mucins 

(120). The neutrophil activating protein A (NapA) has been shown to mediate 

binding to sulphated carbohydrate structures on high-molecular-mass salivary 

mucins (121, 122) as well as to Lex blood group antigen (121) and to sialylated 

glycans (122). Studies using isogenic mutants of H. pylori discovered a role of 

adherence-associated lipoprotein A and B (AlpA and AlpB) in binding to the 

host extracellular molecule laminin (123, 124) and a role of outer inflammatory 

protein A (OipA) in binding to gastric epithelial cells (125), although, the 

target receptor of the latter has not yet been identified. The Helicobacter pylori 

adhesin A (HpaA) lipoprotein has been characterized as an N-

acetylneuraminyllactose-binding hemagglutinin (126). The HopZ membrane 

protein of H. pylori has also been associated with adhesion to gastric cancer 

cells (127). The type IV Cag secretion apparatus can also contribute to H. 

pylori adhesion carrying the CagL adhesive protein that has been shown to 

mediate α5β1 integrin binding on gastric epithelial cells (128).  

Lipopolysaccharide (LPS) on the surface of most H. pylori strains express 

Lewis blood group antigens with structural identity to the ones on host cells 

(129, 130). This molecular mimicry helps the survival of H. pylori in the 

stomach making the bacteria less recognizable by host immune cells (131).  

The most likely mechanism of adhesion of H. pylori-expressed O-glycans to 

host cells happens via the galactoside-binding lectine, galectin-3 (132). H. 

pylori LPS is able to bind to surfactant binding protein D (SP-D) which is a C-

type lectin involved in antibody-independent pathogen recognition and 

clearance (133).  

Adhesion molecule Adhesion target Reference 

BabA Leb, H-type-1 (46, 110) 

SabA Sialyl-Lea, sialyl-Lex (116) 

LabA LacdiNAc (120) 

NapA Sulphated, sialylated glycans, Lex (121, 122) 

AlpA, AlpB Laminin (123, 124) 

OipA Unknown (125) 

HpaA N-acetylneuraminyllactose (126) 

HopZ Unknown (127) 

HopQ CEACAM (134, 135) 

CagL Integrin (128) 

LPS Galectin-3, SP-D, E/L-selectin (132) 

 

Table 2. Adhesion molecules and adhesion targets of H. pylori. 
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Bacteria that penetrate the mucus layer get in contact with the large membrane-

bound mucins before they reach the host tissue (136, 137). In a healthy human 

stomach, MUC1 is the most highly expressed cell surface mucin. MUC1 serves 

as an adhesion target for H. pylori since it can carry ligands for the BabA and 

SabA adhesins (21). After bacterial adherence, MUC1 can act as a releasable 

decoy shedding together with the bound bacteria from the epithelial surface to 

the gastric juice (19, 21). 

1.9 Effects of mucins on H. pylori growth 

Besides serving as attachment sites, mucins can be important for bacterial 

colonization by providing energy source for the bacteria. Depending on the 

origin and type of the mucin, it can have a stimulatory or inhibitory effect on 

bacterial growth (86). In vitro proliferation assays revealed that culturing H. 

pylori in the presence of purified human gastric mucins from tumor tissue and 

from surface mucosa had a growth promoting effect, whereas mucins from the 

glandular region tended to inhibit the growth of H. pylori (86). Glandular 

mucins with α1,4-linked N-acetylglucosamine (α1,4-GlcNAc) terminating O-

glycans have been suggested to have an antimicrobial effect by inhibiting the 

synthesis of a vital cell wall component, cholesteryl-α-D-glucopyranoside 

(138, 139). The α1,4-GlcNAc glycan structure can be found on MUC6 

produced by gland mucus cells which can explain H. pylori colonizing the 

surface mucous layer and only rarely appear in deeper mucus (139).  

1.10 H. pylori infection induced mucin glycosylation 

changes 

H. pylori infection can alter the expression of normal gastric mucins (53) and 

impair mucin production and turnover rate (54). Prolonged infection with this 

pathogen showed a decrease in fucosylation and an increase in sialylation of 

mucin glycans in human stomach (140). Increased sialyl-Lewis antigen 

expression have also been observed in H. pylori infected rhesus monkeys one 

week after infection where the glycosylation returned to baseline level by 10 

months post-infection (107). In addition, increased sialyl-Lewis antigen 

expression upon H. pylori infection was observed in mice and mongolian 

gerbils (141-143). These alterations in mucin glycosylation enable further H. 

pylori infection by increasing receptors for the SabA adhesion molecule (144). 

These mucin glycosylation changes can be explained by the ability of H. pylori 

to alter the expression of several genes involved in glycan biosynthesis. 

Infection experiments on human gastric cell lines demonstrated that H. pylori 
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infection alters the expression of GlcNAc-transferase (β3GnT5) gene that 

drives the biosynthesis of sialyl-Lex (145).  

1.11 Helicobacter suis  

Tightly coiled spiral shaped bacteria in the pig stomach were first described by 

Mendes et al. and Queiroz et al. (146, 147). The temporary name of this 

bacterium was ‘Gastrospirillum suis’ because of its morphological similarity 

to the bacterium ‘Gastrospirillum hominis’ (148). However, sequencing of the 

16S rRNA gene of this bacterium revealed that it belongs to the Helicobacter 

genus and the bacterium was renamed as ‘Candidatus Helicobacter suis’ (149). 

Helicobacter suis is a Gram negative tightly coiled spiral-shaped bacterium 

that requires highly enriched biphasic medium at pH 5 and a microaerobic 

atmosphere for in vitro growth (150). In its main host, the pig, H. suis colonizes 

mainly the antrum and the fundic gland zone of the stomach (151) and the 

presence of H. suis DNA was also shown in the pars oesophagea (152). The 

prevalence of H. suis in pigs gradually increases with age reaching up to 90% 

at slaughter age (150, 153). In pigs, H. suis infection is associated with chronic 

gastritis (55), decreased daily weight gain (154) and the presence of ulcers in 

the pars oesophagea (155). H. suis infection may result in increased gastric 

acid secretion, contributing to the contact of the non-glandular part of the 

stomach with hydrochloric acid (55). H. suis can often be found in close 

contact with the acid producing parietal cells (156, 157) and they are able to 

affect the viability and function of these cells (158). The outcome of H. suis 

infection in pigs was shown to be dependent on the phase of infection and the 

age of the pigs (159). 

H. suis is the most prevalent non-Helicobacter pylori Helicobacter (NHPH) 

species in the human stomach, with a prevalence ranging between 0.2 and 6%, 

which refers to its zoonotic importance (55). Pigs may serve as source of 

infection for humans by direct contact or by consuming raw or undercooked 

meat (160). Direct human-to-human transmission of H. suis has not yet been 

reported. In the human host, H. suis can contribute to the development of peptic 

ulcer disease, gastric mucosa-associated lymphoid tissue (MALT) lymphoma 

and chronic gastritis (161). The risk of developing MALT lymphoma after 

infection with NHPH species is higher than after H. pylori infection (162).  

Apart from pigs and humans, H. suis infection has also been described in 

rhesus monkeys and cynomolgus monkeys (163) where it caused relatively 

mild gastric disorders (164, 165).  

http://ijs.sgmjournals.org/content/58/6/1350.long#ref-42
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2 AIM 

General aim: 

The overall aim of the thesis was to investigate the dynamic interplay between 

Helicobacter spp. and host gastric mucins. A better understanding of this host-

pathogen interaction can contribute to the development of therapeutic 

strategies that can be used to manage Helicobacter infection.  

Specific aims: 

 To investigate the relationship between H. pylori adhesin 

mediated binding, aggregation, growth and adhesin gene 

expression using purified human gastric mucins and synthetic 

glycoconjugates. 

 

 To identify and characterize pig gastric mucins, investigate H. 

suis binding to pig and human gastric mucins and glycolipids 

and define bacterial binding-active structures on mucins.  

 

 To study the effect of experimental H. suis infection on pig 

gastric mucin glycosylation. 

 

 To study how Helicobacter spp. infection related mucin 

glycosylation changes affect H. suis binding and growth. 
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3 METHODOLOGY 

The methods used in the thesis are described in details in the attached papers. 

Here I discuss reasons behind the choice and required optimization and 

adjustments of certain methods. 

3.1 Bacterial growth detection 

Mucins can promote or inhibit bacterial growth depending on the source and 

the type of the mucin. To study the effect of purified gastric mucins on the 

growth of different Helicobacter strains, we cultured the bacteria in the 

presence or absence of mucins. Optical density (OD) is a widely used measure 

of bacterial growth with the interpretation that the OD value of bacteria is 

directly related to the bacterial cell count. Although this method appears 

accurate in many cases, we have discovered that several H. pylori cultures with 

strong binding to the added mucins resulted in high OD values despite low 

colony forming unit (CFU) counts which can be explained by bacterial 

aggregate formation (Paper I). If the aggregates are not fully dispersed prior to 

the CFU plating, several bacteria can appear as one colony leading to an 

enhancing error in OD measurements, and a diminishing error using the CFU 

counting method. Another disadvantage of the bacterial growth detection with 

OD measurement is that this method does not give information about the 

viability of the bacteria (i.e. the ratio of live and dead cells in the bacterial 

culture) that makes this method less informative about the growth response of 

bacteria to different agents. Therefore, there was a need to develop a method 

for the accurate assessment of H. pylori growth and viability. The metabolic 

activity of bacteria can be measured by adding alamarBlue cell viability 

reagent to the bacterial cultures (166). Our growth experiments demonstrated 

that, the relationship between the alamarBlue signal and CFU counts is similar 

to the relationship between OD measurement and CFU counts in the absence 

of bacteria binding elements in the culture, thus metabolic activity 

measurement with alamarBlue seems to be accurate in H. pylori growth 

detection.  

The same method, however, could not be used for H. suis growth detection, 

since this pathogen requires a culture media with pH5 for in vitro growth which 

is below the optimum pH for alamarBlue bioassays. Therefore, we needed to 

develop a method that measures the metabolic activity of the bacteria in the 

environment that is crucial for the bacterial growth. For this purpose, we used 

the RealTime-Glo™ viability assay that is a luciferase reaction based assay, 

where the detected light production is proportional to the number of live 
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bacterial cells in the culture media (Paper III). With this method, we can 

continually monitor the bacterial growth while maintaining an optimal 

environment for the bacteria (Figure 1). 

 

Figure 1. H. suis growth detection by RealTime-Glo™ viability assay. H. suis growth 

curve when cultured in the absence (■) or presence of a growth promoting (●) or a growth 

inhibiting (▲) mucin. 

3.2 Bacterial binding detection  

We used four different assays to study bacterial binding to purified mucins, 

glycoconjugates and glycolipids. 

3.2.1 Binding assay using antibody detection (Paper I, II) 

Helicobacter spp. binding to purified mucins and glycocojugates can be 

analyzed in a microtiter-based binding assay using Helicobacter specific 

antibody. In this assay, the samples are coated on 96-well polysorp plates and 

incubated with the bacteria. Helicobacter specific primary antibody and 

horseradish peroxidase conjugated secondary antibody are added to the wells. 

The bound bacteria are visualized by adding 3,3’,5,5’-Tetramethylbenzidine 

(TMB) to the wells that is a substrate for horse radish peroxidase on the 

secondary antibody. After color development, the reaction is stopped with 

0.5 M H2SO4 and absorbance is measured in a microplate reader at 450 nm. 

During the binding evaluation process, the background signal given by the 

binding of bacteria to the plastic wells and the binding of antibody to the mucin 

are subtracted from the detected binding values.  
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3.2.2 Binding inhibition assay (Paper II) 

To investigate the binding of bacteria to monosaccharides that are not 

conjugated to carrier protein, hence cannot be coated on polysorp plates, 

binding inhibition assay was performed. In this method, a mucin with strong 

bacterial binding ability was coated on the 96-well plate and the bacteria were 

pre-incubated with the sugars of interest prior to the incubation with mucins. 

If the glycans that are used during pre-incubation are targets of the bacterial 

adhesins, they are expected to inhibit binding of the bacteria to the mucin 

sample by occupying the binding site of the adhesion molecules. 

3.2.3 Binding to purified mucins and glycoconjugates using 

biotinylated bacteria (Paper II, III) 

The H. suis binding signal detected with the antibody detection method was 

relatively weak compared to the level of adhesion found with H. pylori. The 

low binding signal and high background signal due to the cross-reaction 

between the antibody and mucins was technically challenging, thus we 

performed an adhesion assay using biotinylated bacteria. To avoid damaging 

the adhesins by biotinylation, mild biotinylation of bacteria was performed, as 

previously described (167). Similarly to the binding detection with antibody, 

the mucin and glycoconjugate samples were coated on 96-well polysorp plates, 

and incubated with biotinylated bacteria. Bound bacteria were detected by the 

reaction between biotin carried by the bacteria and horseradish peroxidase 

conjugated streptavidin and the binding was visualized with TMB substrate. 

The results obtained with this method were similar to the results obtained with 

the antibody detection method, but with higher signal to noise ratio. 

3.2.4 Binding of Helicobacter spp. to glycosphingolipids on thin-

layer chromatograms (Paper II) 

Glycolipids can carry similar glycoepitopes as mucins that can serve as binding 

sites for bacteria providing a more intimate bacterial adhesion to the host. The 

use of glycolipids in binding studies simplifies the investigation of the binding 

specificity, since these molecules carry only one glycan, contrary to the 

multiple glycans carried by mucins. Binding detection to glycolipids was 

performed by using 35S-methionine labeled bacteria. The labeling of 

Helicobacter spp. was performed as described (168). The glycosphingolipids 

were separated on aluminum-backed silica gel plates and the bound 35S-labeled 

bacteria were detected by autoradiography. Due to that the low incorporation 

of radioactive label into H. suis made the glycolipid binding results difficult to 

reproduce, we also demonstrated binding of this pathogen to glycoconjugates 
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terminating with the same epitopes using binding methods independent of 

metabolic labeling of the bacteria (i.e. the above methods). 
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4 RESULTS AND DISCUSSION 

4.1 BabA mediated binding of H. pylori affects the growth 

and gene expression of the bacteria (Paper I) 

The presence of certain gastric mucins in bacterial culture has been shown to 

promote or inhibit H. pylori growth, depending on the type and origin of the 

mucin (86). Mucin molecules carry a vast array of different oligosaccharide 

structures that can be utilized as nutrition source by mucin degrading bacteria, 

hence can stimulate bacterial growth (83, 84, 169). Glandular mucins that carry 

α1,4-GlcNAc terminating O-glycans have been suggested to have an 

antimicrobial effect inhibiting the biosynthesis of a major H. pylori cell wall 

component (138, 139), although, this cannot be the only explanation for the 

growth inhibitory effect of mucins, since not all the mucin samples that inhibit 

H. pylori growth carry this structure (86). To investigate the growth of H. 

pylori in response to mucins and mucin glycans, we cultured the bacteria in the 

presence of Leb and SLex glycoconjugates that are the adhesion targets of H. 

pylori adhesin BabA and SabA, respectively, and in the presence of mucins 

that carry these structures. In these experiments, we used strains with different 

adhesin gene expression: strain J99 that carries both the babA and sabA gene 

and strain P12 that carries the babA gene only. Both strains had stronger 

binding avidity to Leb than to SLex and both strains bound better to the mucin 

derived from healthy stomach that carries Leb and is lacking SLex, than to the 

tumor-derived mucin that carries both Leb and SLex glycan structures. H. pylori 

growth measurement by detecting alamarBlue reduction revealed that Leb-

conjugates decreased the metabolic activity of both H. pylori strains, 

suggesting that adhesion to Leb and to mucins carrying these glycan structures 

inhibit the growth of the bacteria. This hypothesis was supported by further 

binding and growth experiments using adhesin deletion mutants. As expected, 

babA deletion mutants of both strain J99 and P12 had lower binding avidity to 

Leb glycoconjugate and to mucins that carry this structure than the isogenic wt 

strains and they showed low or no binding to SLex. Deletion of babA reversed 

the growth inhibiting effect on strain J99 and enhanced the growth of strain 

P12 in the presence of the mucin and Leb, indicating that strain P12 has a 

positive growth response to mucin glycans, which is suppressed by the BabA 

mediated binding. These results together indicate that the interaction of both 

H. pylori strains with mucin glycans is mediated by BabA and that the effect 

of mucins on bacterial growth is highly dependent on the glycosylation of 

mucins. 
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To visualize the morphology and viability of the bacteria in the presence of 

mucin glycans, the bacterial culture of strain J99 wt and its isogenic mutants 

after co-culturing with Leb and SLex glycoconjugates were stained with 

Live/Dead double staining kit that stains viable and dead bacterial cells in the 

culture media with different colors. This staining revealed aggregate formation 

with J99ΔsabA and J99 wt in the presence of Leb-glycoconjugate, which was 

accompanied by decreased metabolic activity as measured by alamarBlue 

reduction. There was no aggregate formation when J99ΔbabA was cultured in 

the presence of Leb, and it did not affect the metabolic activity of the bacteria. 

Adhesive interaction between bacteria has been shown to be induced by 

unfavorable growth conditions (170, 171), and the role of aggregate formation 

in bacterial resistance towards antimicrobial agents has been also described 

(172). These observations suggest that aggregate formation might be beneficial 

for the bacteria as part of the bacterial survival strategy in response to 

environmental factors. In this thesis, we describe the benefits of bacterial 

aggregate formation for the host and we hypothesize that in addition to 

facilitating washing away the bacteria from the stomach, mucin binding 

controls the pathogen number in the stomach by the growth limiting effect of 

aggregate formation. As it was revealed by Live/Dead staining, the majority of 

the aggregate forming bacteria were alive, suggesting that there is no direct 

antimicrobial effect of aggregate formation, the growth limiting effect can be 

instead explained by the slow replication due to physical hindrance or inter-

bacterial communication.  

Apart from affecting the growth of the bacteria, attachment to mucins can alter 

the expression of H. pylori genes relevant to colonization. We have previously 

shown that culturing H. pylori in the presence of mucins from different 

individuals can affect the adhesin expression of the bacteria (86). Here we 

demonstrated that H. pylori BabA and SabA adhesin expression in response to 

mucins negatively correlates with the binding avidity of the bacteria to these 

mucins. To verify the effect of adhesion on bacterial gene expression, we 

analyzed adhesion gene expression level after co-culturing the bacteria with 

SLex- and Leb-glycoconjugates and we observed that the presence of Leb 

decreased babA expression, whereas the level of this gene was not affected by 

the presence of SLex. The repression of babA gene expression in response to 

Leb binding might be part of the bacterial defense mechanism avoiding 

excessive binding to mucins that would lead to the removal of the bacteria 

along with shedding mucus. Decreasing the amount of adhesins in response to 

binding might serve as a negative feedback loop that can enable long-term 

colonization by H. pylori.  
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4.2 ArsS affects H. pylori growth and BabA-dependent 

binding (Paper I)  

H. pylori expresses the ArsS pH sensor histidine kinase protein that plays a 

role in urease gene transcription and in urease protein delivery in order to 

enhance acid acclimation (173). Increased of SabA expression level has been 

previously shown in an H. pylori strain lacking the ArsS (118). In line with 

these results, we detected increased binding of J99ΔarsS to SLex and to SLex 

containing mucins compared to that of J99 wt and it was accompanied by 

decreased binding to Leb and Leb containing mucins with the arsS deletion 

mutants of both J99 and P12 strains. Deleting the arsS slightly increased BabA 

protein expression in J99ΔarsS, whereas decreased in P12ΔarsS to a similar 

degree. These results suggest that level of BabA-dependent binding is more 

dependent on the topographical localization rather than the number of adhesins 

present on the bacteria. Contrary to the growth inhibitory effect of mucin 

glycans on the H. pylori wt strains, J99ΔarsS and P12ΔarsS growth did not 

decrease in the presence of the mucin samples or Leb glycoconjugate, which 

can be due to the lack of aggregate formation. The adhesion and growth 

experiments using the H. pylori arsS deletion mutants further confirmed the 

role of bacterial aggregate formation in the growth inhibitory effect of mucins.  

4.3 H. suis resides in the mucus layer and can also be 

found associated with parietal cells (Paper II, III). 

In H. pylori infected human stomachs, the majority of H. pylori have been 

detected in the surface mucus layer (96) that protects the bacteria from the low 

acidity in the stomach and provides surface for host-pathogen interactions (70). 

Here we analyzed the mucus layer of the pig stomach and the spatial 

distribution of the pig gastric pathogen, H. suis. On pig gastric tissue sections, 

we detected a thick mucus layer covering the epithelial cells. Antibody 

detection on these sections as well as proteomic analysis on purified gastric 

mucin samples revealed that MUC5AC is the predominant secreted mucin in 

the pig stomach, similarly to the human stomach. We performed fluorescent in 

situ hybridization on pig gastric tissue sections obtained from pigs 

experimentally or naturally infected with H. suis and detected H. suis in the 

mucus layer lining the surface epithelium and throughout the gastric pits. We 

and others also detected this bacterium in close association with the acid 

producing parietal cells (156). These findings suggest that H. suis is exposed 

to neutral pH in the mucus layer closer to the epithelial cells and in the lamina 
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propria and exposed to acidic pH closer to the gastric lumen as well as when 

inside the parietal cells. 

4.4 Gastric mucin glycosylation differs between pigs and 

humans as well as between H. suis infected and non-

infected pigs (Paper II, III) 

H. suis is associated with the development of severe gastric disorders in its 

main host, the pig and also in humans. Since H. suis resides in the gastric 

mucus layer, interaction with mucin glycans can be crucial for colonization 

and survival of the bacteria and can also support the host defense system 

maintaining a dynamic host-pathogen interplay in the stomach. To get a better 

understanding of this host-pathogen interaction, we analyzed the glycosylation 

of purified pig gastric mucin samples by mass spectrometry analysis, and since 

H. suis is of zoonotic importance, we studied the differences between pig and 

human gastric mucin glycosylation. The glycan profile of both pig and human 

mucins showed high inter-individual differences. We detected higher number 

of different glycan structures in the human mucins than in the pig mucins, 

which does not necessarily provide evidence for higher inter-individual 

variability in humans than in pigs, since the pig samples analyzed here only 

include non-infected pig mucins, whereas the human samples also include 

pathological specimens. The length of mucin O-glycans varied between 2 and 

14 residues in pig samples and from 2 to 12 residues in human mucins. Both 

pig and human gastric mucin oligosaccharides were mainly extended core 1 

and core 2 O-glycans, although, structures with core 3 and 4 were also detected. 

The relative abundance of extended core 1 O-glycans was higher in pig than in 

human mucins. The terminal residues on the mucin glycans are usually vital 

parts in mucin-pathogen interaction, therefore we quantified the relative 

abundance of these glycan epitopes on pig and human gastric mucins (Figure 

2A). The most abundant terminal residue was galactose on pig mucin glycans 

and fucose on human mucin glycans. The level of sialylation of gastric mucins 

was low both in pigs and in humans. The relative abundance of mucin glycans 

with terminal galactose were higher in pig mucins, whereas the relative 

abundance of fucose terminating glycans were higher in human mucins. The 

main difference between human and pig glycan terminal epitopes was the level 

of sulphation which was around 50% in pig mucins and very low, around 0.6% 

in the human samples.  

Since H. pylori infection has been shown to trigger qualitative and quantitative 

changes in host gastric mucins (53, 54, 141-143), we studied the alterations of 
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pig gastric mucins in H. suis infection. With mass spectrometry analysis on 

purified pig gastric mucins, we identified that MUC5AC is the major secreted 

mucin in the pig stomach. A decreased level of MUC5AC was detected among 

mucins from H. suis infected pigs compared to the samples from non-infected 

pigs, similarly to the effect of H. pylori infection in the human stomach (53). 

We detected in total 118 different oligosaccharides on the pig gastric mucin 

samples, out of which 18 structures with low fucose and sialic acid content 

were detected only in the non-infected samples and 7 structures containing 

higher fucose and sialic acid level were only detected in the infected group. 

The number of different oligosaccharide structures detected in the mucin 

samples was lower in the infected group, implying a decrease in the number of 

glycan structures on pig gastric mucins upon infection limiting the variety of 

glycan epitopes for bacterial interactions. In mucins from the infected group, 

we detected an increase in the relative abundance of acidic (mostly sulphated) 

and fucosylated glycan structures and a decrease in glycan structures 

terminating with galactose (Figure 2B). These terminal glycan structures play 

important role in the binding and growth of H. suis in the presence of mucins, 

as it is described later in the thesis.  

 

Figure 2. Differences in the relative abundance of terminal glycan epitopes between pigs 

and humans as well as between H. suis infected and non-infected pigs. A. Differences in 

the relative abundance of terminal glycan structures between pig and human gastric mucins 

B. Changes in pig gastric mucin glycosylation upon H. suis infection. Stars indicate 

statistically significant difference between mucin glycans, *, ** and *** indicate p ≤ 0.05, 

0.01 and 0.001, respectively, Two-way ANOVA. 

4.5 H. suis binding to gastric mucins in health and disease 

(Paper II, III). 

We analyzed H. suis binding to purified pig and human gastric mucins at the 

pH range present in the stomach and compared it with the binding of H. pylori 



Helicobacter spp.-host interaction in the mucus niche 

 
 

Results and Discussion 20  

to the same human mucins. H. suis and H. pylori binding to purified mucins 

and glycoconjugates showed different pattern both regarding their pH 

preference and glycan specificity (Figure 3). H. suis binding level was highest 

at pH 2 with a gradual decrease towards neutral pH, whereas H. pylori bound 

better at neutral pH.  H. suis and H. pylori bound to the same mucin samples 

as well as glycoconjugates with different avidity, suggesting that the two 

Helicobacter species use different modes of adhesion with different glycan 

specificities. H. pylori binding to mucins has been described to happen via four 

modes of adhesion (70), the most well characterized of which are the BabA 

and SabA mediated binding to Leb and sialylated glycans, respectively. H. suis 

genome analyses revealed that H. suis lacks homologs of BabA and SabA, 

although, contains some OMPs similar to the major OMP families described 

in H. pylori, which might be involved in binding to gastric mucins (161).  Our 

bacterial binding experiments showed that H. suis binding avidity differed 

between the mucin samples investigated. Some samples bound the bacteria 

only at acidic pH, whereas other samples bound also at neutral pH. 

Furthermore, H. suis binding to GuHCl soluble mucins was more pronounced 

than to insoluble ones. The differences in H. suis binding avidity to the 

different mucin samples can be explained by the glycosylation differences 

between the samples.  Here we suggest that H. suis uses two ways of adhesion 

to mucins: one binding mode that is dependent on acidic pH and one that is 

functional also at neutral pH, and both binding modes depend on the glycan 

structures carried by the mucins.  

To find the glycan structures on the mucins that might serve as adhesion targets 

for H. suis, we analyzed the relation between the bacterial binding amplitude 

to the mucins and the abundance of the different glycan structures carried by 

these mucins. We focused primarily on the terminal residues, since these 

glycans are more exposed for bacterial binding. At pH 2, the relative 

abundance of acidic (i.e. sulphated and/or sialylated) glycans correlated with 

the level of H. suis binding, indicating that H. suis can bind to acidic structures 

via charge dependent mode. This hypothesis was also confirmed by H. suis 

binding to the highly charged DNA at pH 2, but not at pH 7. The stronger 

binding avidity to mucins at lower pH cannot be the consequence of protein 

denaturing because not all the mucin samples that were tested bound H. suis at 

low pH. In addition, binding at low pH to DNA also suggests that binding at 

acidic pH occurs to charged structures, not to denatured proteins (Figure 3A). 
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Figure 3. H. suis and H. pylori binding differences regarding pH and glycan specificity. 

A. H. suis binding to purified mucins, glycoconjugates and DNA at pH 2 and pH 7. B. H. 

pylori binding to purified mucins, glycoconjugates and DNA at pH 2 and pH 7. The binding 

values are shown after subtracting background signal (bacteria binding to plastic well). 

Glycolipids can carry similar glycan structures as mucins and they represent a 

more intimate adherence to the host by Helicobacter species. To further 

investigate H. suis binding specificity, we examined H. suis binding to 

glycosphingolipids isolated from porcine stomach, where binding to 

lactotetraosylceramide (Galβ3GlcNAcβ3Galβ4Glcβ1Cer) was detected. To 

confirm the binding specificity to this structure, H. suis binding to Lacto-N-

tetraose (LNT, Galβ3GlcNAcβ3Galβ4Glc) conjugated to human serum 

albumin (HSA) was also tested. In line with the glycolipid binding results, H. 

suis bound to LNT conjugated to HSA at pH 7 and the binding remained 

functional at pH 2. We also demonstrated that binding to pig mucins can be 

inhibited by pre-treating the bacteria with LNT or sialylated LNT. Together 

these data indicate that H. suis can bind to mucins with terminal galactose and 

that acidic modification may have beneficial effects on binding. 

H. pylori induced gastric mucin glycosylation changes have been demonstrated 

to influence the mucin binding avidity of the pathogen (107). The decreased 

Leb level and increased sialylation in the gastric mucosa decrease BabA 

mediated binding and increased the adhesion via SabA and via the charge-

dependent binding modes (70, 107) leading to an overall decreased adhesion, 

since BabA mediated binding is generally higher than binding via SabA. To 

study the effect of Helicobacter infection on the binding avidity of H. suis, we 

used purified pig gastric mucins with or without H. suis infection as well as 

human gastric mucins with and without Helicobacter spp. infection and tested 

H. suis binding to these mucins at acidic and neutral pH. In line with previous 
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observations, H. suis binding to pig gastric mucins was higher at pH 2 than at 

pH 7, regardless of the infection status of the pigs (Figure 4A, B), whereas pH 

did not affect the binding avidity to human gastric mucins. Infection caused a 

decreased H. suis binding avidity to pig gastric mucins at pH 7 (Figure 4B) but 

not at pH 2 (Figure 4A). At neutral pH, the decreased binding after infection 

can be explained by the infection-induced loss of adhesion targets by the 

decreased terminal galactose on mucins and at acidic pH, H. suis also binds via 

charge dependent mode to acidic structures, the abundance of which structures 

increased during infection.  

Bacterial adherence to gastric mucins can serve as important part of the host 

defense mechanism protecting the epithelial cells from the invasion by 

Helicobacters. This hypothesis has been supported by observations where H. 

pylori-infected children and rhesus monkeys secreting mucins with less H. 

pylori binding capacity, develop higher H. pylori density and more severe 

gastritis (107, 174). Our results demonstrate that Helicobacter spp. infection 

decreases the ability of mucins to bind H. suis, thereby avoiding the removal 

of the pathogen from the gastric niche.  

 

Figure 4. H. suis binding and growth in the presence of gastric mucins derived from H. 

suis infected or non-infected pigs. A. H. suis binding to H. suis infected or non-infected pig 

gastric mucin samples at pH 2. B. H. suis binding to H. suis infected or non-infected pig 

gastric mucin samples at pH 7. C. H. suis growth in the presence of gastric mucin samples 

derived from H. suis infected or non-infected pigs. (*p<0.05, ***p<0.001, Two-way 

ANOVA). 

4.6 Helicobacter spp. infection induced mucin 

glycosylation changes increase H. suis growth (Paper 

III).  

The growth of H. pylori has been shown to have different response to mucins, 

depending on the origin and the type of the mucin (86). For instance, when H. 
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pylori is cultured in the presence of mucins that carry glycan structures that the 

bacteria adheres to, the binding-induced aggregate formation slows down the 

growth of the bacteria (Paper I). H. pylori growth can be also inhibited by 

mucins containing α1,4GlcNAc-capped O-glycans (139), a structure that 

primarily is associated with the glandular mucins in the stomach. In this thesis, 

we demonstrated that the growth of H. suis is affected by both porcine and 

human gastric mucins and the response of the bacteria to mucins is dependent 

on the infection status of the individual the mucin was isolated from. Mucins 

from non-infected individuals inhibited the growth of H. suis, whereas mucins 

from infected individuals had a growth promoting effect (Figure 3C). To find 

the possible glycan structures on the mucins that affect the bacterial growth, 

we studied the relationship between the effect of mucin samples on H. suis 

growth and the abundance of glycan structures carried by these mucins. The 

growth inhibitory effect of mucins correlated with the abundance of galactose 

terminating structures and was independent of α1,4GlcNAc-capped O-glycan 

abundance.  Positive correlations between growth and the abundance of acidic 

and fucosylated structures on mucin glycans were observed.  These results 

suggest that Helicobacter spp. infection induced host mucin glycosylation 

changes create a more stable and growth-promoting environment for H. suis, 

and possibly for other Helicobacter species in the stomach that facilitates the 

long term colonization by these pathogens.  
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5 CONCLUSIONS 

In this thesis, we investigated host-pathogen interactions in the mucus niche 

focusing on Helicobacter spp. and gastric mucins. We analyzed the mucus 

alterations in infection and how these changes affect bacterial behavior. Based 

on our results of mucin characterization as well as bacterial adhesion and 

growth assays we can conclude that:  

 Helicobacter spp. infection induces a constant host-pathogen 

adaptation and response process in the stomach. The mucin interaction 

with pathogens is mediated by the mucin glycan composition, which 

is able to inhibit H. pylori growth by adhesion and aggregation of 

bacteria. Mucins also have the ability to influence H. pylori 

pathogenicity by affecting adhesin gene expression.  

 H. pylori and H. suis binding to human and pig gastric mucins differ 

in specificity and pH preference and show high inter-individual 

variation, which can be explained by mucin glycosylation differences. 

 H. suis binding to gastric mucins and glycolipids occurs via two modes 

of adhesion: to structures with terminal galactose at both neutral and 

acidic pH, and to negatively charged structures at acidic pH. These 

binding modes may enable bacterial adhesion at low pH close to the 

gastric lumen and in parietal cells and a more intimate adhesion to 

mucin glycans and glycolipids close to the epithelial cells.  

 Helicobacter spp. infection alters host mucin composition and 

glycosylation in a way that decreases the amount of H. suis binding 

glycan structures on gastric mucins and the H. suis growth regulating 

effects of the mucins. By these alterations, Helicobacters create a more 

stable and inhabitable niche in the stomach which may be crucial for 

long-term colonization.  
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