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ABSTRACT 

 

Influenza is one of the major viral diseases affecting humans and it is 

responsible for three to five million cases of severe illness and about 

250.000 to 500.000 deaths each year worldwide. A vaccine against 

pandemic influenza infection is much warranted and the most effective 

measure to reduce the risk of a global spread of novel emerging influenza 

strains. While injectable vaccines require trained medical staff and carry a 

substantial risk of spreading contaminating infections, mucosal vaccines 

are easier to administer and considered safer, but, unfortunately, also less 

effective. However, mucosal vaccines can be made more effective by 

using better formulations and adjuvants. We have designed two intranasal 

vaccine candidates against pandemic flu, which were based on the strain-

conserved M2e peptide incorporated into the CTA1-DD mucosal 

adjuvant. Previously, the CTA1-3M2e-DD fusion protein was found to 

stimulate protective immunity. Here, we attempted to further improve its 

vaccine qualities by incorporating it into polysaccharide or liposome 

nanoparticles, which were administered intranasally. Our findings clearly 

indicate that mucosal vaccines based on combinations of the potent 

CTA1-DD immunomodulator and nanoparticles provide a strong basis 

for future mucosal vaccine development. Finally, my thesis work conveys 

optimism about the possibility to develop a broadly protective mucosal 

influenza vaccine not only for adults, but also for young children. 

 

Keywords: Mucosal vaccination; Influenza A virus; CTA1-DD; 

Nanoparticle; Targeted adjuvant; Nasal immunization; Neonatal vaccine; 

Universal vaccine.  
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SAMMANFATTNING PÅ SVENSKA 

 

Influensa är en av våra allvarligaste virussjukdomar, som påverkar 

mängder av människor över hela världen. Man beräknar att 3-5 miljoner 

fall av allvarlig sjukdom är orsakad av influensavirus och cirka 250.000 till 

500.000 dödsfall registreras varje år. Ett brett skyddande vaccin mot 

influensa är därför högt eftertraktat och skulle kunna skydda mot risken 

för en global spridning av nya influensastammar. Vanliga injicerbara 

vacciner kan, tyvärr, sprida annan smitta genom orena kanyler och får 

bara ges av medicinskt utbildad personal. Vacciner som ges via 

slemhinnor, som dryck eller spray däremot, är enkla och säkrare att ge, 

men tyvärr ofta ineffektiva. Sådana s.k mukosala vacciner kan dock göras 

mer effektiva genom bättre vaccinformuleringar och användandet av mer 

potenta immunförstärkare, s.k adjuvans. I denna studie har vi prövat att 

effektivisera ett fusionsprotein som baseras på att M2e-peptiden från 

influensa inkorporerats i vårt CTA1-DD-adjuvanssystem. Denna 

vaccinkandidat, CTA1-3M2e-DD, har visat sig ge skyddande immunitet i 

en musmodell. I dessa studier försöker vi förbättra effekten ytterligare 

genom att inkorporera fusionsproteinet i polysackarid-respektive 

liposom-nanopartiklar. Denna doktorsavhandling visar på lovande 

resultat med dessa kombinationer och ger gott hopp om att vi skall kunna 

utveckla ett brett skyddande mukosalt influensavaccin, som kan ges till 

både vuxna och små barn. 

 

Nyckelord: Mukosala vaccination; Influensa A-virus; CTA1-DD; 

Nanopartikel; Riktade adjuvans; Nasal immunisering; Neonatalvaccin; 

Universellt vaccin. 
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1 INTRODUCTION 

 

Vaccination has been defined as one of the most successful public health 

interventions to date. Our modern vaccinology era started when Edward 

Jenner, an English general practitioner, conducted the first scientific 

investigation on smallpox prevention. This was in 1796.1 During the 

second half of the nineteenth century an increased focus on 

microorganisms and empirical discoveries, relating mainly to antibodies, 

brought about the development of new vaccines. The French chemist 

Louis Pasteur, the German scientist Robert Koch, and Emil von Behring, 

who got the first Nobel Prize in medicine, were the giants of this early 

period.2,3-4 During the twentieth century, research focused on the nature 

of many different infectious diseases and how those were transmitted. 

There was an increasing number of pathogenic organisms being 

discovered and classified. This made it possible to develop new vaccines. 

Whereas these vaccines were developed from the whole organism, it was 

not until later that other forms of formulation were attempted. The most 

recent development in vaccine design has used nanotechnology to 

produce effective vaccines. This trend is now recognized as 

“Nanovaccinology” and its popularity has increased exponentially among 

vaccine manufacturers.5 Today, nanotechnology is used to facilitate 

setting the diagnosis of many diseases, as well as for the delivery of 

biologically-active compounds in disease treatment and prevention. Both 

prophylactic and therapeutic nanoparticle vaccines have been developed 

to improve antigen (Ag) delivery and processing with the purpose of 

enhancing immunogeniciy.6 In the following chapters, the reader will be 

guided into how we developed a subcomponent vaccine against Influenza 

virus infection based on the nanoparticle technology. We explored the 

mucosal CTA1-DD adjuvant that carried a conserved peptide from the 
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extracellular domain of the M2-protein, CTA1-3M2e-DD. This fusion 

protein was formulated into nanoparticles and the combined vaccine 

vector was delivered via the nasal route. Prospects are that this 

nanoparticle-vector can be given to both adults and neonates. 

 

1.1 The mucosal immune system and vaccination 

 

1.1.1 Overview of the mucosal immune system 

Before going into details about the vaccine development itself, it is useful 

to keep in mind that the goal of this project was to deliver an effective 

mucosal vaccine. It is, therefore, helpful at this point to start with an 

introduction of how the immune system is organized and works at the 

mucosal membranes. The mucosal immune system is in fact the largest 

lymphoid organ in the human body, with a surface area close to 400 m2 in 

humans, and it comprises the mucosal membranes of the small and large 

intestine, and the urogenital and respiratory tracts (Figure 1).  

 

Figure 1. Mucosal tissues in the human body. Mucosal immune system includes the mucosal 
membranes of the gastrointestinal, respiratory and urogenital tracts. 
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Within the mucosal immune system, anatomically distinct compartments 

can be found, separated into inductive and effector sites based on their 

anatomical and functional properties. Inductive sites play a major role in 

Ag sampling and the stimulation of adaptive immune responses; the 

effector sites are where immune protection against, for example, a 

pathogen is carried out (Figure 2). The inductive sites are collectively 

called mucosa-associated lymphoid tissue (MALT) and include gut-

associated lymphoid tissue (GALT), which includes the Peyer´s patches 

(PP) and the isolated lymphoid follicles (ILF) of the small intestine, the 

colon patches and the appendix. Separated from the GALT there are the 

mesenteric lymph nodes (MLN). To the MALT we also count the 

nasopharyngeal-associated lymphoid tissues (NALT) and bronchus-

associated lymphoid tissues (BALT), which drain to the mediastinal 

lymph node (mLN), and organized lymphoid tissues in the genitourinary 

tract. The effector sites include the mammary and salivary glands and the 

non-organized lamina propia (LP) of the small intestine and of the 

respiratory and genitourinary tracts. The LP is the layer of connective 

tissue between the epithelium and the muscularis mucosa, which hosts 

smooth muscle cells, fibroblasts, and lymphatic and blood vessels. The 

LP is the main site for effector lymphocytes and where we find most of 

the Ag-specific IgA producing plasma cells and resident T cells.7,8,9  

Figure 2. Inductive and 
effector sites at the mucosal 
surface. M cells are the 
specialized epithelial 
cells that transport Ags 
from the lumen to cells 
of the immune system. 
At the effector sites, T 
cells and plasma cells 
producing dimeric IgA 
dominate. 
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The mucosal surfaces are thin and permeable barriers to allow for their 

physiological functions, i.e. gas exchange (the lungs), 

food absorption (the gut), sensory activities (eyes, nose, mouth, and 

throat), and reproduction (uterus and vagina). This results in that mucosal 

membranes are at risk and vulnerable to infections. At the mucosal sites 

the first line of defense against pathogens is an anatomic barrier, which 

mainly consists of an intact single cell epithelial layer, above which a 

mucus layer is useful to protect the body from the entrance of 

microorganisms.10 However, in the respiratory and genitourinary tracts 

the epithelial layer is more complex and in places pseudostratified or 

squamous. In the oral cavity, pharynx, esophagus, urethra and vagina 

there is a multilayered epithelial lining. The mucus and cilia effectively 

trap microorganisms, which helps expel them from the body.11,12  

Additional mechanisms may inhibit the growth of microbes, such as the 

acidic pH of the stomach or molecules secreted at the mucosal surface, 

such as antibacterial peptides (AMP), interferons (IFN), or collectins. The 

term antimicrobial peptide traditionally refers to small (<100 amino acids) 

cationic peptides that have antimicrobial activity and exert substantial 

immunomodulatory influence locally by inducing secretion of cytokines, 

recruiting immune cells or participate in the remodeling of injured 

epithelia.13 Examples of AMPs are lysozyme and lactoferrin. Lysozymes 

are hydrolytic enzymes found in tears and mucus secretions that can 

cleave the peptidoglycan layer of bacterial cell walls.14 Lactoferrin is a 

globular glycoprotein able to sequester free iron and, thereby, removing 

an essential substrate required for bacterial growth. Moreover, lactoferrin 

binds to the lipopolysaccharide of bacterial walls, affecting the membrane 

permeability and resulting in cell lysis.15 INFs are secreted proteins that 

are commonly grouped into three types. Type I IFNs are also known as 

viral IFNs and include IFN-α (leukocytes) and IFN-β (fibroblasts). Type 

II IFN is also known as gamma IFN (IFN-γ). The more recently 
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described type III IFN is IFN-λ, which has been found not only to 

protect against virus infection, but it is also a potent immunomodulatory 

of mucosal immune responses. Type I IFNs are induced by virus 

infection, whereas IFN- is induced by antigenic and inflammatory 

stimuli. Most types of virally infected cells are capable of synthesizing 

IFN-α/β in cell culture. By contrast, IFN-γ is synthesized only by certain 

cells of the immune system, including natural killer (NK) cells, CD4+ Th1 

cells, and CD8+ T cells. The IFNs exert their effects through cell surface 

receptors, which initiate a signaling cascade (JAK-STAT pathway) that 

eventually affects the transcription of different genes.16 Collectins are 

surfactant proteins that are present in serum, lung secretions, and 

mucosal secretions that can directly kill some pathogens by disrupting 

their lipid membranes or indirectly by enhancing their phagocytosis.17,18,19  

1.1.2 The mucosal immune system of the respiratory tract 

Understanding the mucosal immune system of the airways is important 

for the development of vaccines against lung infections, such as RSV or 

Influenza virus. Because the vaccine developed in this research project is 

directed to protect against influenza virus infection of the respiratory 

tract, we have focused on intranasal vaccine administration.  

The respiratory tract is the body’s second-largest mucosal surface area 

after the digestive tract.20 It is divided into upper (from the nasal and oral 

cavities to the throat) and lower (trachea and lung) respiratory tracts. 

While the upper respiratory tract is exposed to inhaled air and, thus, at 

risk for pathogens (Influenza virus) or opportunistic microorganisms 

(Haemophilus influenzae and Streptococcus pneumoniae) or even resident 

microflora, the lower respiratory tract is essentially sterile in healthy 

individuals.21 The luminal side of the respiratory tract is generally 

physically separated by a single epithelial cell layer with tight junctions 

between the cells. A more complex pseudostratified or squamous 
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epithelium is found in the oral cavity, inferior part of the pharynx and 

esophagus to protect from abrasions. Alveoli are characterized by a very 

thin simple epithelium layer which favors the exchange of gases (Figure 

3). The underlying LP contains elastin, which plays a role in the elastic 

recoil of the trachea to facilitate breathing. Superficial blood vessels 

secure warming of the inhaled air. The epithelial cells have well-

developed cilia and produce mucus composed of mucins (MUC), which 

are high molecular weight, heavily glycosylated protein 

(glycoconjugates).22 At the bronchi, mucus and movement of cilia prevent 

large foreign bodies (>5 mm) from drifting into the alveoli (mucociliary 

clearance). However, pathogens have developed ways to evade the 

physical barrier and can, therefore, establish infections in the alveoli of 

the lungs.10  

Figure 3. The structure of the respiratory epithelium at different sites in the respiratory tract. The 
respiratory epithelium is generally characterized by a single epithelial cell layer. A more 
complex pseudostratified or squamous epithelium is found in the oral cavity, inferior 
part of the pharynx and esophagus. Alveoli are characterized by a very thin simple 
epithelium layer which favors the exchange of gases. 
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1.1.3 Innate and adaptive immune responses 

The innate and the adaptive immune systems continually interact with 

each other to provide an effective immune response.8 The innate 

immune system provides a first-line of defense against pathogenic 

agents. However, these responses are not specific to a particular 

pathogen, but rather respond to microbial signals that are shared by many 

microorganisms. By contrast, the actions of the adaptive immune 

system are very specific and dictated by the receptor mediated 

recognition of a unique epitope associated with a specific microorganism. 

At the first encounter with a pathogen the adaptive immune response 

takes longer to develop, but upon re-exposure to the pathogen it will 

respond rapidly.9 Thus, in contrast to the innate immune system, the 

actions of the adaptive immune system are specific to a particular 

pathogen. The two arms of the adaptive immune system are B cells and T 

cells, which express distinct receptors for the Ag.9  

The protective defenses of the innate immune system at the mucosal sites 

include pattern recognition receptors (PRRs), which are found on the cell 

membrane or intracellularly of innate immune cells.23 The most important 

innate receptors are the toll-like receptors (TLRs), but other examples are 

pulmonary surfactant protein, and C-reactive protein.24,25,26 The PRRs 

recognize pathogen associated molecular patterns (PAMPs) like LPS 

(endotoxin), peptidoglycan (cell walls), lipoproteins (bacterial capsules), 

hypo methylated DNA (CpG found in bacteria and parasites), double-

stranded DNA (viruses), and flagellin (bacterial flagella), produced by 

microbial cells.27,28,29 Once PAMPs are recognized by PRRs, the 

complement proteins are activated and opsonization, cytokine release, 

and phagocytosis are induced.29 There are many cell types that belong to 

the innate immune system, such as dendritic cells (DC) macrophages, 

monocytes and granulocytes. While macrophages and DCs are located in 

the tissues, monocytes are blood circulating cells that can differentiate 
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into specific tissue macrophages or DCs.30 DCs are important in Ag-

presentation and activation of CD4+T cells.31 Granulocytes include 

neutrophils, eosinophils, and basophils/mast cells. Neutrophils are highly 

active phagocytic cells and generally arrive first at a site of inflammation. 

Eosinophils are important in resistance to parasites and for maintaining 

niches of long-lived plasma cells and memory T cells. Basophils in the 

blood and mast cells in the tissues release histamine and other substances 

and are involved in the development of allergies.32,33,34 I will focus more 

on DCs in the following chapters. 

B cell or humoral immunity develops against antigenic epitopes that 

most often are molecules associated with extracellular pathogens.35,36 B 

cells are produced in the bone marrow and then travel to the lymph 

nodes where they await Ag exposure.37 When exposed to foreign Ags, 

naïve B cells undergo T cell-dependent or T cell-independent activation. 

The latter occurs only against certain Ags with repetitive units, such as 

lipopolysaccharides, dextran or bacterial polymeric flagellin. Antibodies 

generated in this way tend to have lower affinity, do not drive memory 

development and are mostly IgM antibodies.38  

By contrast, most antibody responses are against T cell-dependent Ags, 

which involves help from CD4+ T cells to develop antibody responses. 

Hence, the B cells need additional helper factors to undergo cell division 

and differentiate into plasma cells for antibody production at effector 

sites. The B cell receptor (BCR) binds specifically to the Ag, which most 

often hosts a complex epitope that is non-linear and with a 3D-structure. 

Subsequent to the BCR-recognition of the Ag-epitope, the Ag is taken up 

through receptor-mediated endocytosis and degraded to peptides. These 

peptides can then be presented by MHC II molecules to stimulate 

cognate interactions with CD4+ T cells in the lymph node. This initiates 

the process which leads to the development of helper T cell functions.39 

B cell proliferation, immunoglobulin class switch recombination (CSR), 
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and somatic hyper mutation (SHM) primarily occur in the germinal center 

(GC), which is a hallmark of T cell-dependent responses and allows for a 

strong and effective antibody response.36 This results in a much better 

immune response and the development of memory B cells and long-lived 

plasma cells.40  

There are five classes (isotypes) of antibody molecules, IgG, IgM, IgA, 

IgE and IgD, which have different and complementary functions (Figure 

4). Each isotype has a different heavy chain. This is true in mice, as well 

as in humans. IgM is the first antibody produced by B cells challenged 

with Ags and it is expressed on the surface of B cells as monomer. It is 

the B cell receptor (BCR) for Ag recognition in both naïve and in some 

memory B cells. IgM is a strong complement activator and often has 

better neutralizing ability than IgG. IgG is expressed on the surface of 

Ag-activated B cells and it is the most prevalent Ig-class in serum and in 

extravascular spaces. Mouse IgG isotypes displayed marked differences in 

bactericidal (IgG3 >> IgG2b > IgG2a >> IgG1) and opsono-phagocytic 

(IgG3 > IgG2b = IgG2a >> IgG1) activity. The IgG2a has been found 

to correlate with survival and protection against influenza virus challenge. 

The IgD antibody is co-expressed on naïve B cells together with IgM and 

plays a role in B cell development. It is found in very low concentrations 

in serum. IgE is the antibody involved in allergic reactions and parasitic 

infections.  

IgA is the primary isotype induced and secreted at mucosal sites. IgA is 

resistant to digestion and can activate the complement pathway when 

aggregated.41,42,43 The IgA is produced as a dimer and linked together with 

a J-chain by the plasma cell. After secretion, mucosal IgA is transported 

from the basolateral epithelial compartment to the apical/luminal side.44 

Transport of IgA to the lumen is mediated by the polymeric Ig receptor 

(pIgR), which is expressed at the basolateral side of the epithelial cells 

that line the mucosal surfaces.45 During this transport, the pIgR is 
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proteolytically cleaved and the extracellular portion of the molecule, the 

secretory component, is released in association with the pIgA, forming 

altogether the secretory IgA (sIgA).46 These antibodies are secreted in 

milk, tears, saliva and are found in the mucus in the respiratory, genital- 

and gastrointestinal tracts. Monomeric IgA is found in serum, but at 

much lower concentrations than IgG.  

At the luminal site, pIgA binds specifically to Ags in the mucus. In 

addition IgA can bind Ags prior to the transcytosis and form immune 

complex, which are then discarded into the luminal excretory pathway.47 

A few studies have also documented that during the transport through 

epithelial cells, SIgA could neutralize virus infections.48 

 

Figure 4. The different immunoglobulin classes. IgG, IgE and IgD are monomers. IgM can be 
found in monomeric or pentameric forms; the monomer form is the B cell receptor that 
recognizes Ag; the pentameric form is the first antibody released during the primary 
immune response. IgA can be monomeric (serum) or dimeric (sIgA in secretions at 
mucosal membranes). 
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Cell-mediated immunity is effective at eliminating intracellular 

pathogens. T cells are formed in the bone marrow, but critically undergo 

selection and additional maturation to become functional CD4+ and 

CD8+ T cells in the thymus.  

CD4+ cells (or T-helper cells) have the CD4 co-receptor and their T cell 

receptor (TCR) can only recognize peptide epitopes expressed together 

with MHC II protein on antigen presenting cells (APC). CD4+ T cells are 

essential for antibody-mediated immunity and in helping CD8+ T cell 

expansion and maturation. They also exert regulatory functions or 

participate as effector cells to control infecting pathogens. During TCR 

activation in a particular cytokine milieu, naive CD4+ T cells may 

differentiate into one of several functional subsets of Th cells, including 

Th1, Th2, Th17, Tfh and Treg, as defined by their pattern of cytokine 

production and function.49 Th1 and Th2 can be distinguished mainly by 

the cytokines produced by the cells, but also through the expression of 

different patterns of cell surface molecules. Th1 cells promote cell-

mediated immunity against viruses and intracellular bacteria and Th2 are 

involved in antibody-mediated immunity against parasites as well as play a 

major role in allergic conditions, such as asthma. With regard to cytokine 

expression, Th1 cells make IFN-γ as their signature cytokine and also 

uniquely produce lymphotoxin. Th1 cells tend to be good IL-2 producers, 

and many make TNF-α as well. By contrast, Th2 cells fail to produce 

IFN-γ or lymphotoxin. Their signature cytokines are IL-4, IL-5, and IL-

13. They also make TNF-α, and some produce IL-9. Although initially 

thought to be unable to make IL-2, later results indicated that Th2 cells 

could often produce relatively modest amounts of IL-2. Th17 cells are 

characterized by the production of IL-17A, IL-17F, IL-21 and IL-22 as 

signature cytokines, molecules not produced by Th1 or Th2 cells. They 

help fight against extracellular bacteria and fungi. Tregs are regulatory T 

cells and produce IL-10 and TGF-β. Finally, the subset that is involved in 
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regulating the B cell response in the GC is named T follicular helper cells 

(Tfh). These cells produce the cytokines required for class-switching, i.e. 

IL-4, TGF-β and IFN-γ as well as cytokines necessary for differentiation 

and maturation into memory B cells and long-lived plasma cells, such as 

IL-21 (Figure 5).49 

CD8+ T cells (or cytotoxic T cells) have the CD8 co-receptor and only 

recognize peptide plus MHC I complexes. All nucleated body cells, 

except for mature erythrocytes, express the MHC I molecule on their 

surfaces. CD8+ T cells are essential for cell-mediated immunity and 

protecting against intracellular pathogens. These cells produce IFN-γ, 

TNF-α, perforin and granzyme among other factors (Figure 5).50  

 

Figure 5. T cell cytokine production. Upon differentiation, T cells produce cytokines, which 
feed back into the cellular milieu, amplifying and balancing the immune response to 
promote specific pathogen clearance and host survival. 

 

Activated T-cells undergo clonal expansion and differentiation into the 

functional subtypes mentioned above and some develop into memory T-
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cells for future protection against infection with a specific pathogen.51,52,53 

A T cell response typically peaks 7–15 days after initial Ag stimulation. 

Over the next few days, 90–95% of Ag-specific T cells then die off, 

leaving behind a pool of memory cells with a range of phenotypes and 

functionalities. For both CD4+ and CD8+ T cells, there are three main 

subclasses of memory cells: central-memory (TCM), effector-memory 

(TEM) and tissue resident memory T cells (TRM). TCM cells are 

commonly defined phenotypically as expressing high levels of the IL-7 

receptor (CD127), high levels of adhesion markers like CD44 and 

CD62L, low levels of the surface marker killer cell lectin-like receptor 

subfamily G member 1 (KLRG-1), and high levels of the C-C chemokine 

receptor type 7 (CCR7). Furthermore, TCM cells are functionally 

characterized by their increased potential for proliferation after Ag 

reencounter. TEM cells express low levels of CD62L, low levels of 

CD127, high levels of KLRG-1, and are deficient in CCR7. TEM cells 

display rapid effector function (granzyme B and IFN-γ production), but a 

limited proliferative potential. The high expression of CD62L and CCR7 

by TCM cells allow for preferential homing to the secondary lymphoid 

organs, which constitutively produce the CCR7 ligands CCL19 and 

CCL21. TEM, since they lack CCR7 and CD62L expression, circulate 

through non-lymphoid tissues and are the “first responders” at the 

peripheral site where reinfection could occur.54 Once formed, subsets of 

memory cells can survive for decades (the half-life of memory T cells is 

8–15 years), providing protection for the better part of a lifetime.55 The 

TRM population expresses CD69 and CD44 (CD8+ T cells also express 

CD103) and are located in the tissues, where they reside for long periods 

of time. The function of these CD4+ and CD8+ memory T cells is only 

beginning to be investigated, but several model systems have revealed an 

absolute critical function for protection against infection. For example, 

protection against influenza virus has been found completely dependent 

on the lung resident memory CD4+ and CD8+ T cell populations.56 
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1.1.4 Antigen uptake and presentation for stimulation of 

adaptive immune responses  

In this research I have given a special focus to DCs, which are central to 

priming of immune response against T cell dependent Ags. DCs reside in 

most peripheral tissues (skin and mucosae), where they represent 1%–2% 

of the total cell numbers.57,58 The DCs constitutively patrol our tissues 

and, when activated, migrate to the draining lymph nodes to present Ag 

to the T cells. At the mucosal membrane, DCs can take up Ags directly 

from the lumen or they can interact with macrophages (CXCR1+ cells) 

taking up Ags from those cells. Macrophages are distinguished as larger 

vacuolar cells that effectively clear the tissues from apoptotic cells, 

cellular debris and pathogens. These cells are phenotypically defined as 

F4/80high cells in mice. By contrast, DCs are usually defined as cells with a 

stellate morphology that can efficiently present Ags on MHC molecules 

and activate naive T cells. In mice, DCs are defined as CD11chigh, MHC 

II+ cells. DCs generally display a short half-life of approximately 3–6 days 

in the tissues and are constantly replenished from bone marrow 

precursors in a strictly Flt3L-dependent manner.59 The DCs are located in 

the mucosal membranes to secure that foreign Ags can be captured and, 

if recognized by T cells, will initiate an immune response. Activated DCs 

migrate to the draining lymph nodes and more specifically to the T cell 

zone, where the CCR7-ligands CCL19 and CCL21 are expressed.60 These 

DCs are called migratory DCs, while the DC residing in the lymph nodes 

are named resident DCs.61 Mice deficient in CCR7 signals show severe 

defects in lymphoid tissue architecture and immune responses. These 

defects are due to impaired migration of CCR7+ DC and CCR7+ T cells 

into the T cell zones of secondary lymphoid organs and altered DC 

maturation.62 A chemokine receptor, CCR6, has been shown to control 

the migration of immune cells toward the mucosal surfaces.63 The ligand 

for CCR6 is the chemokine CCL20 and it is expressed by a variety of 
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epithelial cell types including keratinocytes, pulmonary epithelial cells, and 

intestinal epithelial cells.64 

DCs are a heterogeneous cell population divided into many different 

subsets on the basis of the expression of some of the following surface 

markers: CD103 (also known as integrin αE), CD11b (also known as 

integrin αM), CX3C-chemokine receptor 1 (CX3CR1), F4/80, CD8α, 

CD24, CD172a (also known as SIRPα and SHPS1), XC-chemokine 

receptor 1 (XCR1), Clec9A (also known as DNGR1), E-cadherin (also 

known as cadherin 1) and CD64 (also known as FcγRI). In mice three 

main lineages of DCs can be found: conventional DCs (cDCs), 

plasmacytoid DCs (pDCs) and monocyte-derived DCs (mo-DCs).  

cDCs are specialized in Ag processing and can efficiently present 

endogenous and exogenous Ag. cDCs are differentiated into cDC1 which 

are CD8α+CD103+ CD11b- DCs, and cDC2 which are 

CD11b+CD172a+CD64- DCs.65-67,68 Whereas DC2 present peptides to 

CD4+ T cells, the DC1 are also able to cross-present peptides to CD8+ T 

cells, which recognize peptides in the context of MHC I. Hematopoietic 

stem cells (HSC) give rise to DC and monocyte-derived cells by distinct 

routes marked by differences in the relative expression of interferon 

regulatory factor 8 (IRF8) and IRF4. Monocytes are IRF4/8 low but can 

be induced to differentiate into mo-DC (Figure 6). 

pDCs are found in the blood and in many tissues and have a highly 

developed secretory compartment.69 They sense viral and bacterial 

pathogens and a hallmark is that they produce large amounts of type I 

interferons in response to infections.70 pDCs have been found to 

contribute to inflammatory responses and cause pathology by driving a 

pro-inflammatory response in the tissue.71  
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moDCs originate from monocyte infiltrates as a consequence of 

inflammation in lymphoid and non-lymphoid organs. moDCs are also 

called DC3 and are CD11b+CD64+.72 These cells are phenotypically 

difficult to discern from cDCs because they share similar expression 

patterns of MHC-II, CD11b, and CD11c. However, some markers differ 

and, for example, they express the Fc-gamma receptor 1 (FcγRI).73,74 

 

Figure 6. Model of hematopoiesis. Common lymphoid and common myeloid progenitors 
(CLP,CMP) arise from the HSC. DCs arise from a macrophage-DC progenitor. HSC 
give rise to DC and monocyte-derived cells by distinct routes marked by differences in 
the relative expression of IRF8 and IRF4 as shown in schematic bivariate plot.  

 

Antigen uptake by DCs 

In areas with a specialized follicle associated epithelium (FAE), 

specialized micro fold (M) epithelial cells take up Ags from the lumen and 
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hand it over to the sub epithelial DCs. Such cells are found in the PP in 

the intestine and in the NALT of the airways.75,76,32,33,34 Tissue DCs are 

able to capture particles as well as soluble molecules. This includes 

pathogens, infected cells, apoptotic cells, or substances from these cells. 

The DCs can use several different and complementary pathways for Ag 

acquisition. The receptor-mediated endocytosis pathway allows for the 

uptake of macromolecules through specialized regions of the plasma 

membrane, termed coated pits. Particulate and soluble Ag can also be 

internalized by phagocytosis or macropinocytosis (Figure 7).77 

 

Figure 7. Pathways of exogenous Ag uptake in DCs. DCs internalize extracellular Ags using 
three main endocytic pathways. Phagocytosis is an endocytic process in which 
opsonized particles bind to specific receptors on the DC surface and enter cells in 
membrane-derived phagosomes. Macropinocytosis mediates non-specific uptake of 
soluble Ags into the cell via macropinosomes. Receptor-mediated endocytosis is a 
process in which small soluble Ags bind to specific receptors on the DC surface which 
internalizes in clathrin-coated vesicles. 
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Receptor-mediated endocytosis is initiated by a signal in the cytoplasmic 

tail of the endocytic receptor, which is recognized by a family of adaptors 

proteins responsible for the recruitment of clathrin lattices and for the 

formation of clathrin-coated endocytic vesicles.78 Furthermore, there is a 

large number of endocytic receptors that are selectively expressed by 

subpopulations of immature DCs. For example, mouse immature DCs 

express receptors for the Fc portion of immunoglobulins (FcR) such as 

FcRI (CD64), FcRII (CD32) and FcRIII (CD16).79,80 Immature DCs also 

express complement receptor CR3 and CR4.81 Moreover, heat shock 

proteins (HSPs) derived from tumor cells or infected cells are internalized 

through specific membrane receptors.82 These are called scavenger 

receptors (SRs) and are cell surface glycoproteins defined by their 

potential to chemically bind modified low-density lipoproteins. SRs are 

implicated in internalization of various bacteria.83 DCs express also 

several transmembrane C-type lectins which bind ligands in a Ca-

dependent manner, including the macrophage-mannose receptor (MMR), 

expressed on alveolar and differentiated macrophages, blood and 

monocyte-derived DCs, interstitial DCs in dermis of the skin and on the 

thymic epithelial cells.84,85 Following uncoating of clathrin, Ags contained 

in clathrin-coated vesicles are delivered to early endosomes and 

eventually to Ag processing compartments for proteolytic degradation 

and peptide-MHC II (pMHC-II) formation. After formation in the 

endosomal Ag processing compartments, pMHC-II complexes traffic to 

the plasma membrane to allow for TCR-recognition and activation of 

CD4+ T cells. 

Phagocytosis and macropinocytosis are actin dependent, require 

membrane ruffling, and result in the formation of large intracellular 

vacuoles. Phagocytosis is generally receptor mediated, whereas 

macropinocytosis is a cytoskeleton-dependent type of fluid-phase 

endocytosis. Phagocytosed Ags can fuse with MHC-II+ lysosomes to 
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generate phagolysosomes or they can be directly targeted into late 

endosomal/lysosomal Ag processing compartments to generate pMHC-

II complexes. Macropinocytosis allows DCs to rapidly and 

nonspecifically sample large amounts of material in the surrounding 

fluid.84 Ags in macropinosomes are transferred into early endosomes that 

eventually fuse with multivesicular late endosomal/lysosomal Ag 

processing compartments. Macropinocytosed Ags are degraded and 

loaded on MHC-II in these compartments. 

Efficient Ag internalization is a specific attribute of immature DCs. 

Noteworthy, during maturation, DCs downregulate their endocytic 

capacity, thus, limiting the ability to take up new Ags as they leave the 

peripheral tissues. This down-modulation of the Ag-internalization 

machinery occurs through two independent mechanisms: a decrease in 

cell surface receptor expression (e.g., MMR/FcR) as well as the down-

modulation of both macropinocytosis and phagocytosis.84 

Whereas some studies on Ag processing have mainly investigated the 

degradation of soluble proteins or bacterial or viral Ags, few other studies 

have analyzed the processing of nanoparticle-associated Ags. Rincon-

Restrepo et al. recently demonstrated that a differential activation of T 

cell immunity could be achieved through differential modes of 

intracellular trafficking of nanoparticles hosting certain features. These 

investigators engineered two different nanoparticle systems in which Ag 

was either encapsulated within the core or decorated onto the surface of 

the nanoparticles. Ags encapsulated within the core of the particle were 

better at driving cytotoxic CD8+ T cell responses, while Ags on the 

surface of nanoparticles preferentially augmented CD4+ T cell and 

antibody responses.86 Hence, intracellular trafficking and localization 

predominantly to endosomal or lysosomal compartments may be used to 

tailor specific immune responses. Therefore, nanocarriers design can have 
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a critical impact on the quality of the induced adaptive immune 

response.87 

Antigen presentation and DCs maturation 

APCs take up Ag and degrade proteins into peptides that are bound to 

MHC molecules, which can be recognized by the TCR. The MHC is a 

highly polymorphic set of genes that encode for molecules essential to 

self/non-self-discrimination and Ag processing and presentation. There 

are two classes of MHC molecules, MHC-I and MHC-II, and are both 

transmembrane glycoproteins belonging to the immunoglobulin 

supergene family.  

MHC I molecules are found on the cell surface of all nucleated cells in 

vertebrates. These molecules are composed of a transmembrane alpha 

chain associated non-covalently with the β2-Microglobulin chain. MHC-I 

molecules are specialized for the presentation of peptides derived from 

endogenous proteins (intracellular Ags) to the TCR of CD8+ T cells. 

Most peptides to be loaded on MHC I molecules are generated by 

proteasome degradation of newly synthesized ubiquitinated proteins. The 

resulting peptides are transferred to the ER by transporters (TAP9) and 

loaded on new MHC I molecules under the control of a loading complex 

composed of several ER resident chaperons.88 Once peptides are bound 

to MHC I molecules, they are rapidly transferred through the Golgi 

apparatus to the plasma membrane (Figure 8).  

MHC-II molecules are composed of two non-covalently linked 

transmembrane chains, the alpha and beta chains. MHC II molecules are 

found only on APCs such as DCs, mononuclear phagocytes, some 

endothelial cells, thymic epithelial cells, and B cells. They are specialized 

for the presentation of extracellular Ags to the TCR of CD4+ T cells. 

Soon after synthesis in the ER, MHC II dimers associate to a trimer of 
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invariant (Ii) chains.89 They exit the ER and pass through the Golgi 

apparatus before being transported to the endocytic pathway. The Ii 

chain is degraded by several proteolytic enzymes of the cathepsin family 

and MHC II dimers become competent to bind antigenic peptides.90,91 

Once loaded with peptides, Ii chain-free pMHC-II complexes reach the 

plasma membrane (Figure 8). 

 

Figure 8. MHC-I and II Ag processing and presentation. MHC I molecules present peptides 
derived from endogenous proteins (intracellular Ags), while MHC II molecules present 
peptides derived from extracellular Ags. Some DCs can cross-present peptides, which 
means that when extracellular proteins are taken up they can be degraded and peptides 

presented on MHC I. 

 

MHC I synthesis and half-life are increased upon induction of DC 

maturation.92 Targeting of proteins for proteasomal degradation requires 

their ubiquitination. Importantly, not only endogenous Ags can be 

presented by MHC I molecules, but also exogenous Ags internalized by 

various pathways. This phenomenon is termed cross-presentation. It is 



22 
 

believed that phagocytosis is a major route for Ag uptake for cross-

presentation, but also macropinocytosis allows for receptor-independent 

cross-presentation of soluble Ags to CD8+ T cells.93,94 In addition, FcR-

mediated uptake of immune complexes, opsonized liposomes, or 

opsonized dead cells could be involved in efficient cross-presentation.95,96  

MHC II molecules are exposed on the surface of immature DCs. 

However, the DCs upregulate the expression of MHC II molecules upon 

activation and maturation. This leads to a stronger expression of pMHC-

II complexes on the surface of the DCs. Whereas Ag degradation is 

relatively inefficient in immature DCs, internalized Ags can remain intact 

in lysosomal compartments for several days. As a consequence, the 

availability of antigenic peptides to load on MHC II molecules could, 

therefore, be limited.97 Once at the cell surface, MHC II molecules are 

rapidly internalized and can associate with new peptides in recycling 

endosomes before going back to the cell surface, or they are directed to 

lysosomes, where they will finally be degraded.98,99 This pathway results in 

a short-term flux of peptide presentation by the immature DCs, but this 

is probably not sustained for long enough to prime CD4+ T cells in the 

draining lymph nodes. On the other hand, following maturation, 

upregulation of MHC II synthesis and protease activity is observed in the 

DCs.92,100 This leads to a dramatically increased complexes formation 

between available peptides and MHC II molecules. pMHC complexes are 

then rapidly formed and transported to endosomal vesicles, where they 

co-localize with costimulatory molecules before being delivered to the 

cell surface as clusters of molecules responsible for priming of the CD4+ 

T cell.97,101 Following maturation, the endocytosis activity in the DCs 

decreases, and additional transport of peptide and MHC II molecules 

going to lysosomal degradation is greatly reduced. This results in 

stabilization of surface expression of pMHC-II complexes.98 Although at 

this stage the DCs even downregulate the synthesis of MHC II 



23 
 

molecules, fully mature DCs can still form new pMHC complexes by 

recycling MHC II molecules from the cell surface.102 Anti-inflammatory 

cytokines can interfere with the regulation of MHC II processing 

pathways in DCs. Macrophage colony stimulating factor (M-CSF) induces 

a rapid and sustained upregulation of MHC II synthesis which influences 

the expression level of the complex in immature DCs. This occurs, 

however, without stabilizing these complexes on the cell surface, which 

negatively affects the ability to prime the CD4+ T cells.103 Also, other 

factors influence MHC II synthesis and expression. For example, IL-10 

inhibits the rise in protease activity by increasing endosomal pH which 

impairs Ag processing and presentation in mature DCs.104 

1.1.5 Priming of naive CD4+ and CD8+ T cells  

After DCs successfully have taken up and processed the Ags into 

peptides, they migrate to draining lymph nodes and prime the T cells in 

the T cell zone. T cell priming and activation relies on three distinct 

signaling pathways. First, the TCR has to recognize the pMHC complex. 

Then, CD28 on the T cell binds to costimulatory molecules (CD40, 

CD80, CD86) on the mature DC. This gives a survival signal to T cell 

and allows it to respond to additional stimulant in the form of cytokines 

(IL-6, IL-12, IL-4, TGFβ) produced by the DC (Figure 9). Of note, when 

pMHC complexes are presented in the absence or with poor co-

stimulation, the outcome is often immune tolerance.105,106 Hence, this 

drives the differentiation of regulatory T cells (Tregs) that act to exert 

immune suppression on the T cell response. DCs can also actively silence 

T cell activation by expressing molecules such as programmed cell death 

ligand 1 (PD-L1).107 The crosstalk between T cells and DCs is 

bidirectional: CD40L-expressing T cells critically promote DC 

maturation.  
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Figure 9. Signals required for naïve T cell priming by DCs. The T cell encounters a DC bearing 
its cognate peptide in an MHC molecule, and binds the pMHC though CD4 or CD8. 
Subsequently, co-stimulation occurs through DC-bound CD86, CD80 and CD40. This 
induces full activation of the T cells, leading to cell division and differentiation into 
effector functions. 

 

The TCR recognition and concomitant costimulatory signals delivered by 

the APC induce a transcriptional program resulting in robust IL-2 

production, which is the prime autocrine and paracrine growth factor that 

stimulates T cell division. When activated CD8+ T cells differentiate in 

the presence of IFN-α/β and IL-12, they develop into cytotoxic T cells. 54 

The CD4+ T cell subsets are Th1, Th2, Th17, Tfh and Tregs. The 

production of IFN-α/β and IL-12 cytokines in response to an 

intracellular pathogen (viruses and mycobacterium tuberculosis) 

upregulate the expression of the transcription factor T-bet, which is a 

master gene involved in Th1 differentiation.108 On the other hand, when 

activated CD4+ T cells develop in the presence of IL-4 or IL-13, they 

differentiate into the Th2 subset.109 In response to extracellular bacteria 

and fungi, innate immune cells generate large amounts of both TGF-β 

and IL-6. When naïve T cells receive these signals with additional and 

sustained IL-21 and IL-23 stimulation, they develop into Th-17 cells 
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under the regulation of the transcription factor RORγT.110 The Tfh 

subset develops in the presence of the cytokines IL-21 and IL-27, which 

are generated in response to a variety of pathogens.111 Tregs are 

exceptionally responsive to IL-2 and can be produced under the influence 

of environmental factors such as TGF-β and retinoic acid (Figure 10).112 

 

Figure 10. T cell differentiation. DCs recognition of a spectrum of pathogens through 
various PRR along with TCR engagement results in cytokine release. The 
microenvironment, thus, plays a central role in the differentiation of the different T cell 
subsets which are programmed by distinct and unique transcription factors.  

 

1.1.6 The germinal center reaction 

The GC are the site of antibody diversification and affinity maturation.113 

GCs form in response to Ag challenge in the center of the B cell follicles 

of secondary lymphoid organs, interspersed within a network of stromal 

cells known as follicular dendritic cells (FDCs). The GC reaction is the 

basis of T-dependent humoral immunity and this is an absolutely essential 

reaction for any vaccine effect, since the GC will generate the memory B 

cell population.114  

FDCs are a non-migratory population found in the B cell follicles in the 

lymph nodes, spleen and MALT. These cells bind to immune complexes 

(IC) and in this ways play a critical role in the GC reaction.115 The FDCs 
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have high expression of complement receptors CR1 and CR2 (CD35 and 

CD21, respectively) and Fc-receptor FcγRIIb (CD32). Unlike other DCs 

and macrophages, FDCs lack MHC II molecules and express few PRR, 

so they have little ability to capture non-opsonized Ags.116 The FDCs 

provide Ags for an extended period of time to enable activated B cell to 

undergo clonal expansion and differentiation into memory B cells and 

long lived plasma cells.115 It has been found that depletion of FDCs 

dramatically impairs CSR, SHM and memory development in 

mice.117,118,119 Moreover, FDCs express receptor ligands and soluble 

proteins to interact with the activated B cells and provide them with 

proliferation and differentiation signals.115,120 For example, CXCL13 has 

been found critical for the recruitment of activated B cells to the GC.  

A second population of cells in light zones of GCs is the Tfh cells. These 

CD4+ T cells express CXCR5 and access the B-cell follicles in a CXCL13-

restricted manner. Although the Tfh represent only a minor population in 

the GCs, 5% to 20% of all GC cells, they are essential for the GC 

reaction and for B cell differentiation.121,122 

Naive B cells continuously recirculate through secondary lymphoid 

organs and upon Ag-encounter at the B-T cell boundary they become 

activated and starts dividing in the presence of CD40L-expressing CD4+ 

T cells. The interaction of CD40, constitutively expressed by the B cells, 

with its ligand CD40L (CD154), expressed by activated CD4+ T cells, is 

crucial for the GC reaction. Activated Tfh cells also secrete cytokines that 

drive B cell proliferation and differentiation and play a central role in 

triggering the molecular events that lead to SHM and immunoglobulin 

CSR, and the production of down-stream isotypes, IgG-, IgE- or IgA-

expressing B cells.  

After initial activation, B cells migrate from the T-B boundary to extra 

follicular areas, where they are induced to rapidly expand and differentiate 
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into plasma blasts and plasma cells which provide the most immediate 

source of Ag-specific antibodies.123 Ag-engaged B cells remain localized in 

B-cell follicles and acquire high rates of mutations (in the order of 10−3 to 

10−4 per base pair per generation) in their immunoglobulin variable region 

(IgV) genes through the process of SHM.124 GC B-cell clones expressing 

variants with increased binding to the epitope are selectively expanded, 

whereas changes that result in impaired Ag binding induce apoptosis of 

GC B cells.125 B-cell clones positively selected within GCs differentiate 

into memory B cells or long-lived plasma cells, which reside in the bone 

marrow and LP.126 The memory B cells have changed their gene 

transcriptional profile to allow for a much more rapid and vigorous 

response than the naïve B cells in the primary immune response.  

1.1.7 Mucosal vaccines  

The choice to develop a mucosal vaccine was based on the fact that, 

although injectable vaccines dominate the market, mucosal immunization 

is superior for stimulating sIgA antibodies, but it also stimulates 

significant serum IgG and, most importantly, lung resident cell-mediated 

immunity. Furthermore, mucosal vaccines appear advantageous 

compared to injectable vaccines from a manufacturing and a regulatory 

point of view.127,128 In general, it can be stated that vaccines that are 

delivered at the mucosal sites do not require extensive purification from 

bacterial by-products, whereas production of injected vaccines is rigorous 

to avoid, for examples, unacceptable endotoxin levels. In addition, 

mucosal vaccines are practical for mass vaccination and do not involve 

the risk of spreading blood‑borne infections, that can occur with 

contaminated injection needles.129,130 The ease of administration, better 

compliance and the possibility that they can be delivered by personnel 

without medical training are also viewed as benefits of mucosal vaccines. 

In particular, mucosal vaccines could be superior for preventing 

pandemic infections, such as influenza virus infections. Taken together, 
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mucosal vaccines are highly warranted. However, only very few mucosal 

vaccines have been approved for human use. In fact, the oral vaccines 

against cholera, typhoid, polio and rotavirus are the only approved oral 

mucosal vaccines.131 Commercial live attenuated flu vaccines given 

intranasally, such as FluMist, are the only approved intranasal vaccines 

today.132-133 Even though there are several advantages associated with 

mucosal vaccines, the delivery of Ag by mucosal route is a challenge, and 

it is associated with various problems such as poor immunogenicity, 

inefficient uptake and presentation by M cells, enzymatic degradation and 

a risk of developing tolerance, rather than protective immunity. 

Therefore, the selection of the route of administration, an adjuvants and a 

potent delivery system are very crucial to achieve more effective mucosal 

vaccines.134 

Route of administration 

When deciding on which route to deliver a vaccine, it has to be taken into 

account the anatomical, functional, and immunological features of the 

different tissues.135 The anatomical structure and spatial organization of 

the tissues, the presence of mucus, peristalsis in the intestine and physical 

discharge in the respiratory tract must all be considered and evaluated. 

Safety issues have also to be considered. 

Oral vaccines represent the biggest challenge for mucosal vaccine 

development. This is because of the harsh gut environment, which 

degrades most antigenic epitopes that are delivered in soluble form. 

Another factor that impairs oral vaccination is the fact that immune 

suppression or tolerance can develop. Intranasal vaccination stimulates 

immune responses in the NALT and is effective at inducing systemic and 

mucosal immunity in the respiratory and genital tracts. In general, 

intranasal vaccination is an attractive approach, as much lower Ag and 

adjuvant doses are required compared with oral vaccination. The 
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sublingual route for vaccine administration is also gaining interest because 

vaccine delivered via this route stimulates strong mucosal IgA and 

systemic IgG antibody responses as well as cytotoxic CD8+ T cell 

responses.136 

An important notion in this context is that the response to mucosal 

vaccination is mostly compartmentalized. In this way, intranasal 

immunization provides poor immunity to the gastrointestinal tract, while 

oral immunization does not protect against lung infections and vice versa. 

Indeed, the presence and localization of particular DCs sub-sets impact 

on the outcome of mucosal vaccination.136  

Adjuvants 

“Adjuvare” in Latin means “to help”. Thus, adjuvants are molecules used 

to induce more potent and long-lasting protective immune responses. 

The addition of an adjuvant to vaccines enhances the immunogenicity of 

the vaccine. In some cases, this also means reducing the required doses of 

Ag for a significant immune response.137 Therefore, an ideal mucosal 

adjuvant should enhance strong humoral and effector and memory B and 

T cell responses.138 The adjuvants used for mucosal vaccination are many, 

but few have found a commercial application. These adjuvants are 

essentially molecules like bacterial toxins, cytokines, TLRs, which are 

capable of augmenting immune responses. 

The bacterial enterotoxins cholera toxin (CT) and the closely related 

Escherichia coli heat labile toxin (LT) have been given the status of golden 

standards for a mucosal vaccine adjuvant.139 These toxins are AB5 

complexes in which the A subunit is composed of the A1 portion (with 

ADP-ribosyl transferase activity) and the A2 chain that merge with the B 

subunit pentamer. The B subunits are responsible for binding to 

gangliosides that are present on the cell membrane of all nucleated cells. 
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Whereas the B subunit of CT binds to GM1 ganglioside, the B subunit of 

LT can also bind to other gangliosides, such as GM2.140,141 Although CT 

and LT act as the most potent mucosal adjuvants we know of today, their 

use in humans is precluded because of their high toxicity. To overcome 

the toxicity various approaches has been taken. Several non-toxic or 

attenuated CT and LT molecules have been generated and tested for their 

ability to enhance immune responses. The CTA1-DD adjuvant is such a 

non-toxic and safe adjuvant derived from CT and it was used in this 

research project. The CTA1 gene, encoding for the ADP-ribosylating 

enzyme, was fused to a dimer from the Ig-binding Staphylococcus aureus 

protein A. Because CTA1-DD fails to bind to the GM1 ganglioside 

receptors, it is also non-toxic and safe.142-144  

Another family of adjuvant molecules is those that bind to the TLRs. 

These adjuvants are potent enhancers of the immune response through 

activation of the innate immune response. Monophosphoryl lipid A 

(MPL) for example is derived from LPS of Gram-negative bacteria, such 

as Salmonella Minnesota. LPS stimulates innate immunity via TLR-4 on 

APCs.145 MPL is usually used in complex formulations that include 

liposomes and emulsions to induce enhanced T-cell responses.146 

Synthetic oligodeoxynucleotides are another TLR-based mucosal 

adjuvant, hosting un-methylated cytosine-phosphate-guanine (CpG) 

dinucleotides.147 Mucosally delivered CpG can stimulate pro-

inflammatory and Th1-inducing cytokines by binding to TLR-9.148 

Another example of TLR-based adjuvant is bacterial flagellin which 

activates via TLR-5.149 

Also purified cytokines can be used as potential adjuvants. These are, 

among others, interferons and granulocyte-macrophage colony-

stimulating factor (GM-CSF). Because these cytokines are short-lived and 

can induce dose-related toxicity, they are difficult to apply to clinical 

vaccination.150 For example, intranasally administered IFN-α/β can 
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increase resistance against influenza virus, but in human trials they failed 

to improve the performance of a trivalent flu vaccine.151 Another example 

is intranasal administration of IL-12, which can enhance activation of 

Th1-associated functions and contribute to IFN-γ dependent Ig-

production, but this is also not clinically feasible on a broader scale.152,153 

Delivery systems 

Delivery systems such as microparticles, liposomes and other particulates 

enhance the immune response based on their particular characteristics. 

An ideal mucosal delivery system should protect from enzymatic 

digestion, induce efficient uptake and presentation of Ags by DCs, be 

non-carcinogenic and non-pyrogenic and stable in wide range of pH 

intervals. Various delivery systems used for mucosal immunization have 

been developed including inert systems such as microparticles, liposomes, 

ISCOMs, and different live attenuated bacterial or viral vector systems.134  

Polymer-based delivery systems have been widely used as carriers for 

protecting Ags from the harsh proteolytic conditions of the 

gastrointestinal tract and facilitate their subsequent release in the 

intestine. In vaccines these polymeric materials allow the release of Ag in 

a controlled manner thereby reducing the frequency of vaccinations and 

promote interaction with mucosal epithelium.154 Liposomes are made up 

of phospholipid and have been widely used as carriers of Ags. The 

immunogenicity of liposomes depends on lipid composition, size, surface 

characteristics, and on the chirality of lipids. Liposomes can protect the 

loaded Ag from enzymatic degradation, and can deliver the Ag to a 

specific cell type, provided that the surface can be equipped with specific 

cell targeting molecules.155,156 
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1.1.8 Vaccination in adults vs neonatal vaccination  

Before going into detail about what is vaccination, it is useful to take a 

step back and focus on immunization in general, i.e. the process by which 

an individual's immune system becomes fortified against an agent (known 

as the immunogen). Improving the immune status of an individual could 

involve both passive and active immunization. Whereas passive 

immunization involves the transfer of preformed antibodies to a naive 

host, the active immunization (vaccination) stimulates an endogenous 

immune response to injected or mucosally administered Ags inducing the 

generation of long-term memory and long-lived plasma cells.157 Passive 

immunization occurs, for example, when antibodies from the mother 

passes through the placenta to the fetus.158 An active immunization 

generates an immune response that could last much longer than passive 

immunization.159,160  

Vaccination of neonates 

Talking about vaccination, it is always very important to keep in mind 

which is the target population of a specific vaccine. The immune system 

of neonates and infants is significantly different from that of the adult. 

This contributes to the increased risk of morbidity and mortality among 

neonates, who can acquire many types of infections. Neonates are 

exposed only to few Ags in utero, and, therefore, they lack an adaptive 

immune response that can convey protection. Hence, neonates are 

completely reliant on passive immunity and maternal antibodies as their 

first line of defense. As the neonate undergoes microbial colonization of 

the mucosal membranes and the intestinal tract, in particular, the systemic 

and local immune systems mature rapidly.161 The innate immune system 

of the neonate is functionally impaired compared to that of the adult. For 

example, blood-derived monocytes from human infants have reduced 

production of cytokines such as IFN-α, IFN-γ and IL-12 upon TLR 
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stimulation, but produce increased levels of IL-10 and the Th17-inducing 

cytokines, such as IL-6 and IL-23. Antiviral cytokines, such as type I 

IFNs, are protective in young children.162,163,164,165,166 Neonates also have 

altered adaptive responses compared to adults. Antibody responses are 

reduced and of shorter duration. The antibodies often have a poor 

affinity for the Ag and the IgG isotype skewed away from IFN-γ 

influenced IgG-subclasses towards Th2-skewing. 167,168,169 In fact, not only 

the frequency of T cells is decreased in neonates, but also the quality of 

the response is altered compared to that observed in adults. The majority 

of peripheral T cells in neonates are recently emigrated from the thymus 

and they are defective in Th1 responses. These differences are thought to 

explain why neonates suffer from poor protection against infections. In 

addition an altered inflammatory response has also been observed in 

neonates. Yet, another possibility is that neonatal T cells may differ in the 

diversity of their TCR. During T cell development, diversity is accrued in 

the TCR repertoire by VDJ recombination and non-coding nucleotide 

insertions and deletions in the complementary determining region (CDR) 

3 of the TCR. These CDR3 insertions and deletions are mediated by the 

enzyme terminal deoxynucleotidyl transferase (TdT), which is responsible 

for up to 90% of the TCR diversity.170 In humans this enzyme is 

expressed in the thymus during the third trimester, but in mice it is 

turned on between days 4 and 5 of age. As mice age, the CDR3 length of 

their TCR increases, but shorter CDR3 regions have been associated with 

increased cross-reactivity and lower affinities to peptides.171,172 Because of 

these shortcomings in the neonatal immune system, only three vaccines 

have been administered to newborns (first 24 hours of life): the hepatitis 

B virus (HBV) vaccine, the Bacillus Calmette–Guérin (BCG) vaccine and 

the oral poliovirus vaccine.173,174  
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1.2 Influenza virus and the importance of a universal 

vaccine  

 

1.2.1 Overview of Influenza virus biology  

Influenza is one of the major viral disease affecting humans and it is 

responsible for three to five million cases of severe illness and about 

250.000 to 500.000 deaths each year worldwide. Typically, the virus 

infects about 10% of the world population during seasonal epidemics, i.e. 

more than 500 million people (World Health organization, WHO). 

Moreover, due to the risk of fast and global spread of the infection, as we 

saw with the 2009 swine-flu, a vaccine against pandemic influenza 

infection is much warranted and mass vaccinations are required to limit 

the severity and spread of infection.  

Influenza virus is a member of the Orthomyxoviridae family of RNA 

viruses, and it is an enveloped virus. There are three types of influenza 

viruses: A, B and C. The Influenza virus A stains are responsible for 

pandemic infections and they can infect humans, as well as many other 

mammals and birds. They are further classified into subtypes based on 

the antigenic structure of their surface glycoproteins, hemagglutinin (HA) 

and neuraminidase (NA).175 To date, scientists have identified 16 HA and 

9 NA subtypes.176 Influenza viruses are pleomorphic virus, as they can 

vary in size and shape. Influenza virus A virions have a spherical 

morphology with a diameter of about 80-120nm. They are characterized 

by a lipid envelope with glycoproteic spikes. Below the lipid envelope 

there is a layer of matrix protein consisting of the M1 protein that 

provides support for the viral envelope. This additional layer encloses the 

nucleocapsid which consists of ribonucleoprotein (RNP) and hosts the 

genome. The viral genome is composed of eight segments of single-

stranded negative sense RNA that have to be copied into single-stranded 
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positive sense mRNA to ensure protein synthesis. The presence of a 

segmented genome gives the virus the opportunity to undergo 

considerable variations in the different structural proteins and, therefore, 

in the antigenic composition (Table 1).177 

The virus initially binds via the HA glycoprotein to its receptor 5-N-

acetyl neuraminic acid (sialic acid) on the surface of the host cells.178 The 

virus is then rapidly internalized into clathrin-coated pits. This process is 

dependent on dynamin, a cellular GTPase.179 The incorporated virus 

traffics through the endocytic pathway and ultimately reaches a low-pH 

compartment of approximately 5.5.180 At this pH, the viral fusion 

machinery is triggered. HA undergoes a conformational change, forming 

a ‘coiled-coil’ of α-helices and exposing the previously buried 

hydrophobic fusion peptide, which is then inserted into the endosomal 

membrane. The presence of the M2 ion channel in the envelope of the 

virus allows for the components inside the virus to become exposed to 

the low pH of the endosome, which leads to the disruption of M1– 

vRNP interactions and the uncoating of the virus.181 This initiates the 

fusion event and the release of the interior components of the virus, i.e. 

M1 and RNPs, into the cytoplasm. The import of vRNPs occurs through 

nuclear pores and is mediated by nuclear localization signals on NP.182  
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Seg. Prot. Bp MW (Da) Function 

1 PB2 2425 86.000 PB1, PB2 and PA constitute the so-called 
transcriptasic complex which is formed by 
the subunit of the viral RNA dependent-
RNA polymerase. 

2 PB1 2341 83.000 

3 PA 2233 85.000 

4 HA  1778  80.000  HA is the receptor that binds the virion to 
sialic acid residues present in glycoproteins 
and glycolipids in the membrane of target 
cells. 

5 NP  1565 56.000 NP has high affinity for RNA, maintains 
the morphology of the nucleocapsid and 
allows the translocation of the viral genome 
from the cytoplasm to the nucleus of the 
target cell. 

6 NA  1413  50.000  NA is able to cut the sialic acid residues 
present on the membrane of the newly 
infected cell. 

7  M1 1027  27.000 M1 interacts with the nucleocapsid during 
the stages of maturation. 

M2 11.000 M2 is able to modulate the pH inside the 
virion by acting as a proton channel, thus 
participating in the uncoating process.  

8 NS1 890 27.000 NS regulates the transport of mRNA, the 
splicing process and the translation process. 

NS2 13.000 

Table 1. Outline of the influenza genome segments and proteins function.  

 

Influenza virus represents one of the few RNA viruses that undergo 

replication and transcription in the nucleus of their host cells.183 In the 

nucleus, the vRNPs serve as templates for the production of two forms 

of positive-sense RNA, namely viral messenger RNA (mRNA) and 

complementary RNA (cRNA). The synthesis of mRNA is catalyzed by 

the viral RNA-dependent RNA polymerase (composed of the three 
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subunits PA, PB1 and PB2). Viral mRNAs are capped (i.e. contain a 

methylated 5' guanosine residue), polyadenylated (i.e. contain a sequence 

of polyadenylic acid at their 3' end), and exported from the nucleus to 

undergo translation. The nuclear export of viral mRNA utilizes the host 

cell machinery and is controlled by the viral non-structural protein NS1. 

Many viral proteins (NP, M1, NS2 and the polymerases) are then 

imported into the nucleus for the final stages of replication and for vRNP 

assembly. The viral cRNA is neither capped nor polyadenylated and 

remains in the nucleus, where it serves as a template for the production 

of negative-sense genomic RNA (vRNA). The newly formed vRNPs are 

exported from the nucleus. This process appears to be a reversal of the 

nuclear import process because it occurs through nuclear pores. M1 is a 

major regulator of nuclear transport. The translocation event might 

depend on nuclear export signals on the NS2 protein, or even on NP 

itself.184 For virus assembly at the plasma membrane, it is essential that all 

of the viral components (i.e. HA, NA, M2, M1 and the vRNPs) are 

present at the correct location in the cell and are correctly processed. 185 

M1 molecules bind to vRNPs, to the plasma membrane and also to other 

M1 molecules to form a shell beneath the virus envelope.186  

The formation of new viruses appears to rely on the presence of the 

cytoplasmic tails of both HA and NA. These glycoproteins, along with 

M1, M2 and host-cell factors (the actin cytoskeleton and the polarized 

nature of the cell), control the morphology of the new particles.187 In 

polarized epithelia, budding of virus particles occurs exclusively from the 

apical surface. The final release of viruses from the cell surface relies on 

the action of the viral NA. NA (sialidase) acts as a receptor-destroying 

enzyme, by removing sialic acid from the surface of host cells. Without 

this step, the newly formed virus particles would immediately re-bind to 

their receptor and would not be released into the extracellular space.188  
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Two closely related anti-viral drugs that block influenza A virus 

infections, i.e. amantadine and rimantadine, target the pH-dependent 

uncoating event and disrupts the function of the M2 channel, preventing 

acidification and inhibiting M2-dependent virus uncoating.189 

Furthermore, two analogues of sialic acid, namely zanamivir and 

oseltamivir, are effective against both influenza A and B viruses because 

they function as inhibitors of NA preventing virus release and spreading 

from cell to cell.  

1.2.2 Influenza virus epidemiology and tropism  

Influenza epidemiology relies on the ability of the virus to give rise to 

variable and antigenically new strains. Genome changes can occur by two 

distinct mechanisms: the antigenic shift and antigenic drift. The antigenic 

drift consists in a modification of the surface proteins (that are capable of 

stimulating an immune response) amino acids sequences. It is due to the 

introduction of a high number of errors during the genome replication by 

RNA dependent-RNA polymerase that lacks the 5'-3' exonuclease 

(proofreading) activity; moreover, the selective pressure elicited by the 

host immune system induces the survival of resistant virus isolates. It 

affects both influenza viruses type A and B, but in A viruses is more 

heavy and frequent; it is responsible of seasonal epidemics. New variants 

become sufficiently unrecognizable to antibodies of the majority of the 

population to make a large number of individuals susceptible to the 

“new” mutated strain.190 The antigenic shift only affects influenza virus 

type A and is fortunately less frequent. It consists in the appearance 

within the human population of a new viral strain with surface proteins 

belonging to a different subtype than those commonly circulating in 

humans. The antigenic shifts are due to the reassortment between human 

and animal viruses (avian or swine) or to the direct transmission of non-

human viruses to humans.191 However, it is important to emphasize that 

the appearance of a virus strain with radically new surface proteins is not 
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sufficient. Efficient spreading from human to human is also necessary. In 

vivo, the principal cell types targeted by influenza viruses are the epithelial 

cells of the respiratory mucosa. When the virus is inhaled, it encounters 

the apical face of columnar epithelial cells. Following replication, the 

virus is also released from the apical face of the cell into the airways. The 

lack of basolateral release generally precludes the systemic spread of 

influenza viruses in their host. Released viruses can spread from cell to 

cell, be exhaled and infect a new host. They can also be recognized by 

cells of the immune system, including alveolar macrophages, which 

engulf and destroy the virus, and circulating DCs, which migrate out of 

the lung tissue and present viral Ags to T cells. In vitro, viruses are 

typically studied either in embryonated chicken eggs or in Madin-Darby 

canine kidney (MDCK) cells, both of which support the multi-cycle 

growth of influenza viruses. Many other cell types can be infected by the 

virus, but undergo only a single cycle of infection without spreading virus 

from cell to cell.192  

1.2.3 Immune responses to influenza virus infection  

The innate immune responses to influenza virus infection have been well 

characterized. The virus infection is sensed by PRRs that react to viral 

RNA. Signaling via these receptors triggers the production of pro-

inflammatory cytokines and type I interferons (IFN-α and IFN-β).193 

Type I interferons induce interferon stimulated genes (ISGs) via the 

JAK/STAT signaling pathway.194 They have strong antiviral activity 

because they inhibit protein synthesis in the infected host cells and limit 

virus replication. Type I interferons also stimulate DCs resulting in 

enhanced Ag presentation and priming of CD4+ and CD8+ T cells, 

thereby driving adaptive immune responses.195 Moreover, alveolar 

macrophages become activated and phagocytize apoptotic influenza 

virus-infected cells, which also limits viral spread.196 These cells produce 

nitric oxide synthase 2 (NOS2) and tumor necrosis factor alpha (TNFα), 
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which are partially responsible for the immunopathology seen with 

influenza virus infections.197 Another important innate response is that of 

NK cells that react to antibody-bound influenza virus infected cells and 

lyse these cells through antibody-dependent cellular cytotoxicity 

(ADCC).198  

The adaptive immune response to influenza virus is initiated by DCs 

below the airway epithelium. These cells take up whole virus or virus Ags 

and migrate to the draining lymph nodes. They also take up apoptotic 

bodies from infected cells and degrade viral proteins to peptides that can 

be presented to T cells in the context of MHC I or class II molecules.199 

In this way, both CD4+ T cells as well as CD8+ T cells with CTL activity 

will be induced. It has even been reported that DCs could exert cytolytic 

activity themselves against infected host cells.200 

Influenza virus infection stimulates specific antibody responses of all 

isotypes. They are directed mainly against the two surface glycoproteins 

HA and NA. The HA-specific antibodies predominantly bind to its 

trimeric globular head and inhibit virus attachment and entry into the 

host cells. Indeed, the presence of antibodies against these proteins 

correlates well with protection.201 Secretory IgA antibodies are produced 

locally, and have been documented to afford protection against infection 

by neutralizing influenza virus in infected epithelial cells.202,203 Serum IgM 

antibodies are produced rapidly in response to infection and are a 

hallmark of a primary infection.203,204 Serum IgG afford long-lived 

protection and are involved in phagocytosis of infected cells as well as 

ADCC mediated protection.205 In contrast to the relatively variable HA 

globular head, the HA stem region is highly conserved mainly because it 

is physically masked for the immune system. Importantly, some anti-HA 

stem-specific antibodies have been found to bind to HA molecules from 

many different subtypes and have broad neutralizing capacity, making 

them highly interesting from a universal vaccine persective.206 
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Furthermore, antibodies against NA also have protective potential and 

facilitate ADCC as well as enhance viral clearance.207 Another interesting 

protein for a universal vaccine is M2, which is highly conserved among 

mammalian as well as avian influenza virus strains. Whereas natural 

infection stimulates only low serum titers against M2, active 

immunization with the M2e-ectodomain is highly effective.208 Also NP-

specific antibodies contribute to protection.209,210 

Cell-mediated protection against influenza infection is well documented 

and prospects are that broadly protective vaccines need to stimulate both 

CD4+ and CD8+ T cell immunity. The reactivity of memory T cells is 

directed against many different Ags and epitopes, including the NP, M1 

and PB1 proteins, but also other proteins may be involved.211,212 These 

proteins are highly conserved and therefore T cell responses display a 

high degree of cross-reactivity, even between different subtypes of 

influenza A virus. This is why a universal broadly protective influenza 

vaccine will carry several of these epitope specificities. Whereas we 

mostly associate CTL activity with CD8+ T cells, recent studies have 

identified that also influenza-specific CD4+ T cells can exert cytolytic 

functions.213 The lytic activity of CTLs is dependent on perforin and 

several granzymes, where granzyme B is important. Whereas perforin 

permeabilizes the cell membrane of the infected cell, granzymes enter the 

cell and induce apoptosis.214 Another mechanism whereby CTLs can 

induce apoptosis of target cells is mediated by Fas/FasL interactions. 

Most of the influenza-specific CD4+ effector T cells of the Th1 and Th17 

subsets are known to contribute to protection through cytokine 

production. The Th1 cells produce IFN-γ, which has been found critical 

for protection against influenza.215 In addition, IL-17 and other cytokines 

from Th17 cells have been found effective in protection against influenza 

virus infection, although the precise mechanism is presently poorly 

understood. In an inflammatory environment, Th17 cells improve T 
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helper responses by producing IL-6, which inhibits Treg-mediated 

suppression, which secures stronger immune effector T cell responses. 216-

217  

Following resolution of primary infection, a subset of responding virus-

specific CD4+ T cells are retained as long-lived memory T cells which can 

persist and convey protective immunity upon Ag re-encounter. Like 

effector T cells, all memory CD4+ T cells retain high-level expression of 

CD44. However, memory T cells are heterogeneous in their expression 

of CD62L and CCR7 which lead to the delineation of the two memory 

subsets: CD62L+CCR7+ TCM and CD62L−CCR7− TEM cells.218 

Following influenza infection, virus-specific TEM are recirculating and 

predominant in the circulation and peripheral tissues, including the lungs, 

while TCM are predominant in lymph nodes. Both populations are 

present in the spleen.219 In addition to TEM and TCM subsets, a distinct 

population of non-circulating CD4+ and CD8+ memory T cells has been 

identified. TRM cells reside in the tissues and persist long-term after 

infection.200,220 The TRM provide early protection and CTL activity in the 

tissues within days from an influenza virus infection.221 Phenotypically, 

CD4+ TRM can be distinguished from circulating TEM and TCM by 

upregulated CD69 and CD11a expression.222 CD8+ TRM express CD69 

as well as the integrin CD103, which is not significantly upregulated by 

CD4+ TRM.223 In mouse models of influenza infection, a population of 

virus-specific CD4+ TRM persists in the lungs for long periods following 

infection.224 

1.2.4 Seasonal vaccination and the challenges of a universal 

influenza vaccine  

Vaccination is an efficient method to prevent influenza virus infection. 

Seasonal influenza vaccines are safe and reduce the impact of the annual 

influenza epidemics. These vaccines have until recently been produced in 
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embryonated eggs and, after enrichment of the virus and inactivation by 

formalin or propriolactone and ultra-centrifugation, are split using a 

detergent.225 The HA content is then quantified by the single radial 

immuno-diffusion assay.226 These inactivated influenza vaccines are given 

as injectable vaccines, but there also exists a live-attenuated influenza 

vaccine (LAIV) that is given as an intranasal spray vaccine (Table 2). 

Because of a high probability for gene reassortments and the antigenic 

diversity among primarily swine and avian influenza virus reservoirs, we 

face a risk of new emerging strains that can cause pandemic infection. 

This means exceptional challenges for influenza vaccine design and 

development to get to a broadly protective universal vaccine against 

influenza. To prepare for future pandemic outbreaks of influenza A 

viruses, new influenza vaccines are under development. 227 The Achilles’ 

heel of today’s seasonal influenza vaccines is that they provide limited 

protection against pandemic influenza strains.228 The WHO coordinates 

an international surveillance system to monitor circulating influenza 

viruses isolated from both humans and animals, (especially birds and 

pigs) and detect newly evolved antigenic variants.229 Currently, two 

subtypes of influenza A virus (H3N2 and H1N1) and one strain of 

influenza B virus are responsible for outbreaks of human disease and are, 

therefore, included in the seasonal influenza vaccines.  
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  Inactivated vaccine  Live attenuated vaccine 

Effect  Generation of antibodies (IgG) against 
HA.  

Generation of antibodies (IgG and 
IgA) against a number of specific gene 
segments such as M2, PB2, and 
NS1.230 

Formulation  - Whole virion.  

- Split virion derived by disrupting 
whole virus particles with 
disinfectants.  

- Subunit form prepared by enriching 
for HA and NA following disruption 
of viral particles. 

HA and NA of the target strain is 
introduced into the backbone, cold-
adapted virus.231 

Route of 
administration 

Parental injection. Intranasal inoculation of replication 
competent virus. 

Advantages  - Efficacy of 70% in the age group 
between 14–60 years.232  

- Safety.  

- Antigenic phenotype of the target 
strain but the attenuated phenotype of 
the master strain.  

- Induction of both a local immune 
neutralizing antibody and a cell 
mediated response. 

Disadvantages  - Efficacy is largely dependent on the 
degree of matching between vaccines 
and circulating strain.  

- Efficacy is reduced with both infants 
and the elderly. 233  

- Immunity generated is not 
particularly broad.  

- At least two doses of vaccine must 
be provided to generate protective 
immune responses in naïve 
individuals. 234  

- Length of time between selection of 
vaccine strains and the availability of 
the first doses of formulated vaccines. 
235  

- Possible reversion to virulence.  

- Requirement of two doses to elicit 
optimal immune responses.  

- Possibility that not all HA and NA 
combinations will form viable viruses 
on the attenuated backbone.  

- The vaccine virus must be able to 
infect the human upper respiratory 
tract .236  

- Potential safety risks of administering 
a live virus. 

Table 2. Features of conventional influenza vaccination approaches.  
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The major challenge with the development of a broadly protective 

universal influenza vaccine is to identify conserved protein regions or 

epitopes to include in the vaccine. One of the most studied vaccine 

epitopes for a universal vaccine is the extracellular portion of the M2 

protein (M2e).237 In addition, conserved domains in the stalk region of 

HA have been explored, as well as a number of other proteins, such as 

M1, NP and PB1.238 Also, lowering the time needed for manufacturing of 

the vaccine is investigated and production of influenza vaccines in cell 

cultures has provided promising results. However, most critical is to 

achieve sufficient breadth of the specific immune response. Exploring 

plasmid-based reverse genetics systems has had important impact on the 

field.239 This allows for the generation of viruses of well-defined genetic 

composition within a shorter time frame and provides advantages in the 

development of seed strains. Another strategy is to use DNA vaccines 

expressing various combinations of the viral HA or NA as well as other 

viral genes.240 The production of DNA vaccines is safe, economic and 

rapid. However, DNA vaccines are typically hampered by low 

immunogenicity, particularly in larger animals and humans. Better 

methods of DNA delivery are currently under development.241,242  

 

1.3 Protein-based vaccines and nanoparticle 

formulation  

 

1.3.1 CTA1-DD, a fusions protein-based adjuvant vector  

Whereas a live attenuated influenza vaccine provides sufficient 

immunogenicity in itself, inactivated or subcomponent vaccines require 

potent adjuvants. This does not only apply to injectable vaccines, but it is 

the main reason for the low number of mucosal vaccines on the 
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market.136 Many different adjuvant formulations have been or are being 

tested for improvement of influenza vaccines. We have developed a 

subcomponent vaccine against influenza virus, CTA1-3M2e-DD, 

consisting of an adjuvant moiety (CTA1), the selected vaccine epitope 

(M2e) and a cell-targeting unit (DD). The CTA1-DD adjuvant is effective 

at mucosal as well as systemic sites. It is potent and non-toxic and 

composed of the ADP-ribosylating moiety of cholera toxin (CT) and a 

dimer of Staphylococcus aureus protein A (DD).243,244 CTA1-DD has been 

shown to be non-toxic and safe in experimental animal models, including 

non-human primates. It acts broadly and enhances a wide range of 

antibody, CD4+ T cell and cytotoxic CD8+ T cell responses following 

intranasal immunizations.142, 245 It exploits the full immunomodulating 

ability of CTA1 in a fusion protein that is effective at targeting DCs via 

the DD-moiety (Figure 11). 

The bacterial enterotoxins CT and E. coli heat-labile toxin (LT) share a 

high degree of homology and are exceptionally potent mucosal and 

systemic adjuvants. These enterotoxins bind via their B subunits to GM1-

ganglioside, which is present on the cell membrane of all nucleated cells. 

This is why they are rather promiscuous and carry unwanted side effects 

given orally or intranasally, resulting in diarrhea and blocking nerve 

functions, i.e. in Bell´s palsy, a transient facial nerve paralysis, 

respectivly.246 For this reason, mutant enterotoxins or derivatives of these 

toxins have been developed and found significantly safer adjuvants. The 

CTA1-DD adjuvant is an example of an effective derivative of these 

enterotoxin adjuvants.243,244,142, 245  
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Figure 11. CTA1-X-DD fusion protein.  

 

In this project we have investigated how to optimize the formulation of 

CTA1-3M2e-DD and other fusion proteins into nanoparticles using the 

liposome or polysaccharide technologies.  

1.3.2 Nanoparticles and the immune response  

Subcomponent vaccines have been found more effective if formulated in 

particles, mimicking their representation in the native microorganism. 

The aim of the nanoparticle formulation is, thus, to enhance and promote 

an effective Ag uptake, especially across the mucosal barrier.247,248 Various 

materials can be used to produce nanoparticles, including polymers, 

lipids, proteins or metals, such as gold. Important factors to consider for 

the successful manufacturing of nanoparticles are the Ag load, size, 

charge, cell target and the desired outcome of the immune 

response.249,250,251,252,253 Although nanoparticles with different 

characteristics have been extensively used for vaccine delivery, their 

mechanism of action and how to optimize their design remain unclear. It 

is well documented that immune responses to nanoparticles are 

differently modulated depending on the different formulations used. 

However, it is difficult to dissect the contribution of individual properties 
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of a formulation, such as size or charge, because changing one element 

usually influences several features and functions. Surface charge can be 

modified by altering the lipid formulation in liposomes, but this also 

affects other properties, such as particle rigidity and stability. Hence, it 

may be difficult to directly assess the influence of changing one 

parameter when assessing physicochemical properties and 

immunogenicity of different nanoparticles.254 

Charge matters 

One of the most critical parameters is the charge of the nanoparticle. 

This is assessed by the zeta potential, which is a measure of the 

electrostatic potential at the limit of a diffuse layer of differently charged 

ions spatially distributed at the surface of the particle. The magnitude of 

the zeta potential, thus, depends on the concentration of ions within the 

double layer, but also other factors, such as the ionic strength and pH of 

the dispersion medium. Because the cell surface, as well as the mucus 

coating of the mucosal membrane, are negatively charged, it is frequently 

hypothesized that positively charged nanoparticles will exhibit stronger 

interactions with the cell membrane, as well as provide increased 

mucoadhesion. The latter leads to reduced clearance rate, i.e. slower 

removal from the mucosal membranes, which is thought to enhance 

immunogenicity. This is because increased interactions with the cell 

membrane and a prolonged exposure time to the Ag lead to increased Ag 

uptake. In general, positively, cationic, charged nanoparticles have been 

shown to be better retained and more immunogenic at mucosal 

membranes than negatively charged or neutral nanoparticles.255,256 

Furthermore, cationic nanoparticles were found to effectively deliver Ag 

to both mucus and APCs.257,258 On the other hand, negatively charged 

nanoparticles have been shown to exert an immunosuppressive effect on 

alveolar macrophages and thereby promoting an enhanced immune 

response.259-261,261-262,263 Thus, several mechanisms are modulated simply by 
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changing the charge of the nanoparticle, which also will affect the fate 

when nanoparticles are given by different routes that often differs in the 

charge of the microenvironment. 

Size matters 

Nanoparticles with varying sizes have been found to have different 

effects following mucosal immunization.264 There is an extensive 

literature analyzing the effect of particle size on the immune response. 

The most consistent result shows an advantage of nanoparticles (smaller 

than 200 nm), over microparticles (>1μm), at priming cytotoxic CD8+ T 

cells (Figure 12).265 A common perception is that nanoparticles 

resembling the dimensions of viruses are processed like viruses and 

induce a strong CD8+ T-cell response, whereas microparticles, being 

closer to the size of bacteria, induce stronger humoral immunity.266 The 

explanation might be that micron-sized particles can be taken up through 

receptor-mediated endocytosis and phagocytosis, but their size may 

restrict macropinocytosis. DCs have an exceptional capacity for 

macropinocytosis and therefore may favor the uptake of nanoparticles 

over microparticles.84,267 On the other hand, macrophages effectively take 

up microparticles. As a consequence, DCs are more prone to stimulate 

CD8+ T cells by cross-presentation, while macrophages are favoring 

MHC II over MHC I presentation.268,269,270  
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 Figure 12. Examples of particles, vaccine components, pathogens, cells and their approximate size 
range.  

 

The molecular composition matters 

The molecular composition is critically influencing not only biological 

features, but also the stability of the nanoparticle. A more stable 

formulation usually leads to delivery of larger Ag loads which can 

contribute to a depot effect. Liposomes are a good example of this as 

various lipid combinations can impact on nanoparticle stability. For 

example, nanoparticles with 1,2-distearoyl-sn-glycero-3-phosphocholine 

(DSPC), having a higher transition temperature, were more stable in vitro 

and likely were better protected from degradation in the gastrointestinal 

tract.271 Moreover, stable nanoparticles containing 1,2-Dipalmitoyl-sn-

glycero-3-phosphoserine (DPPS) induced stronger IgA responses 

compared to formulations without DPPS.272 However, it is important to 

acknowledge that changing the lipid composition also alters the charge, 

which in itself may impact greatly on the performance of the 

nanoparticle.273  
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Antigen compartmentalization matters  

Ags can be carried in many different compartments of the nanoparticle. 

This impacts greatly on the immunogenicity of the Ag. For example, Ag 

can be limited to the aqueous core of the nanoparticle, or inserted into 

the membrane leaflet, or bound to the surface by covalent bonds or 

intermolecular forces. Thus, the nanoparticle formulation may be tailored 

for specific vaccine needs. For an oral vaccine encapsulating the Ag 

inside the nanoparticle has proven an effective strategy to prevent Ag-

degradation. On the other hand, by hiding the Ag inside the nanoparticle 

the immunogenicity may be compromised as specific antibodies could be 

difficult to rise. Moreover, the i.n. route is less exposed to Ag degradation 

compared to the oral route, which could apply also to the adjuvant 

incorporated into the nanoparticle. It is generally thought that the 

adjuvant exerts its most important function in DC-priming of T cells and 

should be encapsulated. However, at variance with this notion, cholera 

toxin B-subunit (CTB) adjuvant bound to the surface of the nanoparticle 

was more effective than when encapsulated into the nanoparticle.274  

Surface modifications matter 

Considerable attention has been given to study how nanoparticles are 

retained by and/or taken up across the mucosal membranes. Many 

different strategies have been tested to enhance the ability to penetrate 

mucus and to be retained at the mucosal membranes. To increase 

membrane adhesion of the nanoparticle chitosan has been explored. It 

was clearly found that chitosan stimulated enhanced IgG antibody 

responses.275 Chitosan is a positively charged polysaccharide that can 

form strong electrostatic interactions with cell surfaces and mucus and, 

therefore, can increase retention time and facilitate interactions between 

the nanoparticle and the APCs. Nanoparticle interactions with the 
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intestinal mucosa have been studied in vivo and ex vivo using many 

different models.276-278,276, 279  

The most used way to retain circulating liposomes is to sterically stabilize 

the liposome surface by lipid-conjugated polyethylene glycol (PEG).280 

PEG is a linear non-immunogenic and hydrophilic polymer and it has 

been approved by FDA for human use. It is hypothesized that the 

presence of hydrophilic polymers, such as PEG, on the surface of 

liposomes attracts a water shell, resulting in reduced adsorption of 

opsonins and retained presence in the circulation. This, in turn, results in 

a decrease in both the rate and extent of uptake of liposomes in APCs. 

On the other hand, at mucosal membranes it was noted that PEGylation 

resulted in better mucus-penetrating nanoparticles and augmented 

immune responses.281 PEG was shown to accelerate the drainage of 

liposomes into LNs, with a prolonged retention in APC, which improved 

vaccine efficiency.282 Significantly higher specific IgA and IgG antibody 

levels were found with PEGylated than with un-PEGylated 

nanoparticles.281 Moreover, PEG reduces protein aggregation owing to 

repulsion between PEGylated surfaces and increases thermal stability of 

proteins. However, a reduction in biological potency has also been 

reported after PEGylation.283 Currently, several preparations with 

increased retention time are commercially available, such as Doxil®, 

doxorubicin-containing PEGylated liposomes.284 

Cell-targeting matters 

Many different cell-targeting strategies with nanoparticles have been 

attempted. For example, specific antibodies have been found to enhance 

binding to M cells, thereby targeting the nanoparticle to the FAE.285 

Similarly, lectin Agglutinin I from Ulex europaeus-coated nanoparticles 

were shown to improve M cell-targeting and Ag uptake.278, 286-287 Also, 

galactosylation of nanoparticles resulted in higher specific IgA and IgG 
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antibody levels compared to unmodified nanoparticles.288 Moreover, 

nanoparticles coated with the influenza virus protein HA were more 

immunogenic than uncoated nanoparticles.289 In addition, mannosylated 

lipids or anti-CD40 antibody-coated nanoparticles were found to host an 

enhanced ability to target DCs and, thereby, greatly promoted stronger 

immune response.290,291 Furthermore, the identification of Mincle, a 

receptor for the mycobacterial cord factor trehalose 6,6’-dimycolate 

(TDM), on innate immune cells led to that TDM analogs were found to 

be effective stimulants of the production of Granulocyte colony-

stimulating factor (G-CSF) in macrophages. Indeed, immunizations in 

mice with cationic nanoparticles containing the analogues TDM 

demonstrated superior adjuvant properties. 292 

DEC-205, Clec9A and Clec12A are DCs receptors that are promising 

target for particle-based vaccination.293 DEC-205 is a C-type lectin 

receptor expressed in mice on thymic epithelial cells and DCs. In humans 

DEC-205 is also found on moDCs, monocytes, B cells and NKT 

cells.294,295 The DEC-205 receptor binds dying cells for uptake and cross-

presentation of debris-associated Ags.296 Several reports have 

demonstrated that ex vivo targeting of mouse DCs, and more specifically 

CD8+ DCs, with ovalbumin (OVA)-conjugated anti-DEC-205 antibodies 

induces robust MHC-I cross-presentation to OVA-specific CD8+ T cells. 

Furthermore, these conjugates elicit high OVA presentation by MHC-II 

molecules.297 Clec9A (also known as DNGR-1) and Clec12A are also C-

type lectin-like receptors expressed in mice on CD8+ DCs.298,299 Clec9 

recognizes an actin-containing cytoskeletal structure that is exposed on 

apoptotic and necrotic cells when the cell membrane is ruptured.300 In vivo 

injection of anti-Clec9A antibodies conjugated to an MHC-II-binding 

OVA peptide together with an adjuvant leads to robust CD4+ T cell 

priming.301 A strong humoral response is observed in mice immunized 

with OVA-conjugated anti-Clec12A antibodies, as evidenced by high 
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specific antibody titers. Furthermore, targeting OVA to Clec12A induces 

the proliferation of OVA-specific transgenic CD8+ and CD4+ T cells, 

albeit less effectively compared to Ag targeting to DEC-205 or Clec9A.299 

1.3.3 Porous nanoparticles  

Polymer nanoparticles have attracted attention for their ability to deliver 

medical drugs as well as vaccine Ags. These nanoparticles are also known 

to be biodegradable. A great variety of synthetic polymers have been used 

to prepare nanoparticles, such as poly(d,l-lactide-co-glycolide) (PLG) and 

poly(d,l-lactic-coglycolic acid) (PLGA), pullulan, alginate, inulin and 

chitosan. We used porous maltodextrin nanoparticles (NPL), which are 

known to be potent vaccine formulations with low reactogenicity. These 

nanoparticles are made of a net of maltodextrin that traps proteins or 

nucleic acids and negative lipids, in our case the 

dipalmitoylphosphatidylglycerol (DPPG).302 Maltodextrin used for 

nanoparticle preparation is typically produced by starch hydrolysis 

through an enzymatic process. This polymer of D-glucose contains α-D-

glucopyranosyl molecules linked through α-1,4 bounds.303 It is a 

polysaccharide generally recognized as safe (GRAS) by the Food and 

Drug Administration (FDA). Maltodextrin nanoparticles (NP+) are 

produced by chemical synthesis by grafting epichlorohydrin to reticulate 

the polymer and glycidyltrimethylammonium chloride (GTMA) to confer 

a positive charge to the particle (Patent US6342226B1, 1998) (Figure 13).  
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Figure 13. Representation of NPL. The chemical formula of maltodextrin and DPPG are 
reported.  

 

The safety of the NP+ has been previously investigated. NP+ are not 

cytotoxic and genotoxic even at high concentrations, therefore NP+ are 

good and safe candidates for drug delivery.304 The carrier behavior is 

modified by the introduction of a negative lipid inside the NP+. Dombu 

et al. showed that NPL deliver proteins in airway epithelial cells more 

efficiently than NP+. Moreover, partial endo-lysosomal escape/cytosolic 

delivery of the protein is observed by OVA-loaded NPL in the same cell 

model.305 This property of the NPL can be used to potentially induce 

MHC I Ag presentation and consecutive cellular response in case of a 

vaccine formulation. NPL are highly stable carriers, able to associate a 

high amount of complex proteins. They are effective as vaccine delivery 

carriers since they induce complete protection against parasitic challenge 

infection after nasal administration in mice.306 These carriers are also 

suitable to deliver lipophilic drugs, such as diminazene.307 Debin et al. 

demonstrated that maltodextrin nanoparticles covered by a lipid bi-layer 

and loaded with HBs Ag and beta-galactosidase were able to induce 

strong mucosal as well as systemic antibody and cytotoxic T cell 
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responses, while free Ag was poorly immunogenic.308 Dimier-Poisson et 

al. demonstrated that nanoparticles loaded with Toxoplasma gondii Ag after 

intranasal administration were able to induce strong Th1 and Th17 

responses and were able to protect mice against an orally administered 

lethal challenge with wild parasite.306 Furthermore, Dombu et al. also 

demonstrated that these nanoparticles were highly endocytosed via the 

clathrin pathway and highly exocytosed via a cholesterol-dependent 

pathway, delivering Ag within the cytosol of airway epithelial cells.305,309 

These results might explain the increased immunogenicity observed. 306 

Bernocchi et al. further investigated the role of these nanoparticles as 

potential vaccine delivery systems in airway mucosa, and the different 

constituents of these NPL were tracked to assess their fate after 

endocytosis in the mucosa. They first confirmed that the lipid loading 

into the NP did not vary the characteristics of size and zeta potential of 

the particles, suggesting the complete lipid incorporation into the 

maltodextrin structure.310 They observed similar uptake kinetics for both 

NPL components, polysaccharide and lipid. This result suggested that the 

lipids are not released from the nanoparticles in the cells during their 

endocytosis. This is in contrast to liposomal preparations whose 

phospholipids were found to be converted to cellular phospholipid after 

lysosomal degradation.311,310 They were able to discount any nose-to-brain 

delivery of these nanoparticles as they were found not to cross the 

epithelial cells in vitro or in vivo. Nose-brain passage of nanoparticles and 

their potential toxicity would prevent further studies for vaccine 

applications.312 Furthermore, cytotoxicity and genotoxicity studies were 

also performed showing that, even at high doses, these NPL were not 

toxic.304 The NPL can be loaded with a large amount of different proteins 

and the formulation is effective to induce humoral, cellular and mucosal 

responses when administered via the nasal route.306 Another benefit of 

the NPL is the simplicity by which we can successfully incorporated 

other recombinant proteins, such as influenza virus HA in the 
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nanoparticle. Bernocchi et al. performed bio distribution studies and 

showed that after 1.5 h the protein administered alone had totally 

disappeared from the nasal area, while nanoparticle formulated protein 

was still present after 6 h. These results suggested that NPL stay in the 

nose and potentially protect the protein from degradation.310,305  

1.3.4 Liposomes 

Lipids are an important building block of many living organisms and they 

are the main constituents of the cellular membranes.313 Among the variety 

of lipids found in living organisms, phospholipids are the most abundant. 

They are made of a hydrophobic tail, consisting of two fatty acids, linked 

by a glycerol backbone to a hydrophilic head group, consisting of 

phosphate and potentially another organic molecule. Taking into account 

the head group, phospholipids can be classified into 6 categories: 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), 

phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylglycerol 

(PG) or phosphatidic acid (PA). PS, PI, PG and PA are negatively 

charged while PC and PE are neutral but zwitterionic, meaning that those 

molecules have two or more functional groups, of which at least one has 

a positive and one has a negative electrical charge and the net charge of 

the entire molecule is zero. It is possible to chemically modify both the 

head group and the tail region to synthesize tailored phospholipids.254 

Liposomes are self-assembling particles that consist of a phospholipid 

bilayer shell with an aqueous core. They can be generated as either 

unilamellar, consisting of a single phospholipid bilayer, or multilamellar 

vesicles, that are made of several concentric phospholipid shells separated 

by layers of water. As a consequence, liposomes can be tailored to 

incorporate either hydrophilic molecules into the aqueous core or 

hydrophobic molecules within the phospholipid bilayers.314 A number of 

liposome systems have been established for drug delivery and approved 

for human use, such as Inflexal® V and Epaxal®.315,316 The liposomes 
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used in this research project were composed of 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC), cholesterol and1,2-distearoyl-sn-

glycero-3-phosphoethanolamine-N-[maleimide(polyethyleneglycol)-2000] 

(PEPEGMCC) or POPC, cholesterol and 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-[4-(p-maleimidomethyl)cyclohexane-

carboxamide] (PEMCC) and contained the fusion protein in the core. 

The fusion protein was also covalently bound to the liposomes using a 

thiol-maleimide reaction (Figure 14). 

 

Figure 14. Representation of LNP.  
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2 AIMS OF THE PROJECT  

 

The general aim of this thesis work was to develop a broadly protective 

mucosal vaccine against influenza virus infection. The idea was to 

combine CTA1-3M2e-DD with two different types of nanoparticles to 

obtain two formulations which could be compared with regard to 

immunogenicity and protective efficacy. A special focus was given to 

mechanisms of action and how to achieve an optimal immunogenic 

nanoparticle.  

More specifically, my aims were:  

- To test the ability of two different types of nanoparticle formulations 

for improving immunogenicity and protective capacity of the CTA1-

3M2e-DD fusion protein. 

- To analyze uptake and processing mechanisms of DCs exposed to the 

nanoparticles.  

- To evaluate the immune priming ability of nanoparticles and assess their 

protective function against live influenza virus challenge infections.  

- To assess the ability of the nanoparticle vaccine to reduce virus 

transmission from infected to unprotected individuals. 

- To determine whether co-incorporated HA could further improve 

nanoparticle vaccine efficacy. 

- To define whether immunizations of neonates could be improved with 

nanoparticle vaccine formulations.   
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3 METHODOLOGICAL CONSIDERATIONS  

 

This section provides an overview of the methods used in this study. A 

detailed description of all the experimental procedures can be found in 

the attached papers. The work plan to develop this thesis project was 

divided into four separate, but interrelated, work packages (WP). The first 

part included the design and development of different constructs 

exploring the CTA1-DD fusion protein self-adjuvanted vaccine platform. 

To this end, M2e peptide was incorporated into CTA1-3M3e-DD for the 

influenza studies, and Eα peptide in CTA1-3Eα-DD for the studies on 

DC presentation (WP1). The fusion proteins were then formulated into 

nanoparticles and characterized (WP2). A third part of the project 

addressed the uptake of the nanoparticle vaccine candidates (WP3). The 

final part assessed the immunogenicity of the nanoparticle formulations 

after mucosal immunizations and the protective capacity of nanoparticle-

based vaccines using the live virus challenge models in mice (WP4). 

 

3.1  WP1: Fusion protein construction  

 

The CTA1-DD fusion protein with enzymatic activity and CTA1(R9K)-

DD, the enzymatically inactive mutant, carrying the M2e or E peptides 

were produced and expressed in E. coli DH5 cells, as described.317 The 

fusion proteins carried three tandem repeats of the peptides. For a 

complete list of peptides inserted in CTA1-DD fusion protein see Table 

3. The molecular weight of the fusion proteins was estimated to be 45 

kDa. 
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Fusion 
protein 

Peptide Sequence Length Ref. 

CTA1-
3M3e-
DD 

M2e SLLTEVETPIRNEWGSRSNDSSD 23aa 318 

CTA1-
3Eα-
DD 

Eα  ASFEAQGALANIAVDKA 17aa 319 

 
Table 3. List of peptides included in different CTA1-DD fusion proteins.  

 

We used the Gate Assembly strategy to incorporate the selected peptides 

into the CTA1-DD DNA sequence.320 Briefly, this technique allows 

multiple inserts to be assembled into a vector backbone using only the 

simultaneous activities of a single Type IIS restriction endonuclease 

(REase) and T4 DNA ligase. This technique exploits the ability of REase 

to cleave DNA outside of the recognition sequence. The inserts and 

cloning vectors are designed to place the REase recognition site distal to 

the cleavage site, such that the REase can remove the recognition 

sequence from the assembly (Figure 15). One advantage of this technique 

is that the fragment-specific sequence of the overhangs allows for an 

orderly assembly of multiple fragments simultaneously. Moreover, since 

the restriction site is eliminated from the ligated product, digestion and 

ligation can be carried out concomitantly.  
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Figure 15. Golden Gate Assembly cloning strategy. In a single reaction tube the backbone 
plasmid vector and the plasmid containing the insert are mixed with an endonuclease 
and a ligase enzyme. 

 

E.coli DH5 cells were transformed with the DNA vector of interest and 

harvested by centrifugation. The fusion proteins, produced as inclusion 

bodies, were washed before extraction by treatment with 8M urea. After 

refolding of the proteins by slowly diluting them in Tris-HCl, the fusion 

proteins were purified in two steps, by ion exchange (Figure 16) and size 

exclusion liquid chromatography (Figure 17).  

  

Figure 16. Ion exchange liquid chromatography. Plot illustrating protein separation with a 
typical ion exchange column (left panel). Protein analysis by SDS-PAGE (right panel). 
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Figure 17. Size exclusion liquid chromatography. Plot illustrating protein separation with size 
exclusion (left panel). Protein analysis by SDS-PAGE (right panel). 

 

After concentration and sterile filtration, the purified fusion proteins 

were stored at -80°C until use. Proteins were analyzed for their purity by 

SDS-PAGE (Figure 18) and concentrations were determined using BCA 

assay. 

   

Figure 18. Purity determination. Protein purity analysis by Western blotting and Image J 
software. 
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The fusion proteins were routinely tested for the presence of endotoxin 

by the end-point chromogenic limulus amebocyte lysate method.321 The 

fusion proteins were used in experimental models only if the endotoxin-

levels were below 100 endotoxin units/mg (EU/mg). ADP-

ribosyltransferase enzymatic activity was tested using the NAD:agmatine 

assay, as described.322  

 

3.2 WP2: Nanoparticle preparation  

 

To improve vaccine efficacy with an enhanced stability for mucosal 

administration, we combined the fusion proteins with two different types 

of nanoparticles. To this end, several possibilities were explored. We 

tested encapsulating as well as surface exposing the fusion protein on the 

nanoparticle or combining the two. By encapsulating antigenic material, 

nanoparticles protect against Ag-degradation, which has proven 

important for oral vaccine administration. Of note, conjugation of the 

fusion proteins to the nanoparticles can allow for processing and 

presentation of the epitopes in the same way as it would be presented by 

the pathogen.  

3.2.1 Porous maltodextrin nanoparticles (NPL)  

To produce polysaccharide nanoparticles maltodextrin was usually 

dissolved in an organic solvent (sodium hydroxide, ethyl acetate or 

methylene chloride) followed by the addition of a mixture of 

epichlorohydrin, glycidyltrimethylammonium chloride and the fusion 

protein, which was then vortexed to obtain a primary emulsion.302 The 

water-in-oil-in-water emulsion was then formed with the addition of an 

emulsifying agent (polyvinyl alcohol or polyvinyl pyrrolidine). This 
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resulted in that the polymer precipitated around the fusion protein. 

Lyophilized nanoparticles were dissolved in water and a lipid (DPPG: 

1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol) was loaded into the 

nanoparticles. The complex was then left to allow solvent evaporation, 

which was followed by a drying step to prevent degradation of the 

polymer due to water-catalyzed ester hydrolysis (Figure 19). This way we 

obtained a formulation fusion protein:NPL at different mass ratio 

(1:0,5,1:3,1:5,1:10). 

 

  

Figure 19. Porous maltodextrin nanoparticles preparation.  

 

The size and the zeta potential of fusion proteins and NPL were 

determined in water by dynamic light scattering. The analysis of fusion 

protein association to NPL was performed by native polyacrylamide gel 

electrophoresis (PAGE). The gel was stained by the silver nitrate method 

to detect unbound fusion proteins. Moreover, the stability of the fusion 

protein and of the nanoparticles was evaluated over 3 months, under 

standard (4°C) or accelerated (40°C) conditions, or after 12 months at 

4°C.  
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3.2.2 Liposomes (LNP)  

Methods for producing liposomes typically involve a reverse phase 

evaporation process to dissolve the phospholipids (monophosphoryl lipid 

A or phosphatidylcholine) in an organic solvent (chloroform or 

methanol). In particular, we used 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC), cholesterol and 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[maleimide(polyethy-leneglycol)-2000] 

(PEPEGMCC) or POPC, cholesterol and 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-[4-(p-maleimido-methyl) cyclohexane-

carboxamide] (PEMCC) in methanol/chloroform. Water was then added, 

along with the fusion protein, and the solvent was evaporated. The 

solution was then extruded 11 times through two 100 nm nucleopore 

track-etched polycarbonate membranes (Figure 20). The fusion protein 

was covalently bound to the liposomes using a thiol-maleimide reaction.  

 
Figure 20. Liposome preparation.  

 

The size distributions of the lipid nanoparticles were determined using 

nanoparticle tracking analysis (NTA). NTA measurements were 

performed over a period of more than 100 days in order to assess the 

stability of the lipid nanoparticles. Liposome concentration and the zeta 

potentials were measured. In order to monitor the lamellarity of the 
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particles cryogenic transmission electron microscopy (Cryo-TEM) was 

performed. The fusion protein content was determined using the 

CBQCA Protein Quantitation Kit. In order to assess the amount of 

material lost during vesicle production, a liposome was assumed to be a 

spherical double lipid layer of the average diameter determined by NTA 

containing lipids with a footprint of 0.68 nm2.  

 

3.3 WP3: Antigen presentation assessment  

 

To study nanoparticle uptake and presentation by APCs and the priming 

ability of CD4+ T cells, we sequentially screened and compared fusion 

proteins and nanoparticles. First, the immunogenicity was assessed in vitro 

and, thereafter, we performed in vivo experiments to determine the ability 

of DCs to prime CD4+ T cells in draining lymph nodes.  

3.3.1 In vitro assays  

We used two different screening assays. The first one employed H-2d-

restricted B cells (A-20) and a CD4+ T cell hybridoma specific for M2e 

complexed with MHC II that upon TCR recognition produced IL-2.213 

The latter was assessed by an IL-2 dependent CTLL-2 proliferation assay. 

Limiting dilutions (starting from 0,2uM) of M2e peptide, CTA1-3M2e-

DD or nanoparticles that carried CTA1-3M2e-DD were tested. The IL-2 

content was assessed by [3H]-thymidine uptake in proliferating CTLL-2 

cells cultured for 24h.  

The second assay employed the D1 cell line, a long-term growth factor-

dependent immature myeloid (CD11b+, CD8α−) DC line of splenic origin 

derived from a female C57BL/6 mouse (Figure 21).323  
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Figure 21. D1 cells after stimulation tend to aggregate in clusters.  

 

In this assay we determined the nanoparticle processing ability of DCs 

and detected Eα peptide on I-Ab MHC II molecules using the Y-Ae 

antibody, specific for the complex (Figure 22).319 The level of MHC II-Eα 

complexes can be assessed by FACS after labeling with the Y-Ae 

antibody. Thus, the Y-Ae antibody detects the same epitope-MHC 

complex as the T cell receptor does and, in this way it could be used as 

proxy for immunogenicity. The CTA1-3Eα-DD was tested alone or 

incorporated in nanoparticles. We determined the ability of D1 cells to 

present a wide range of fusion protein and nanoparticle concentrations 

and correlated the MFI with the expression level of MHC II using a 

specific monoclonal antibody (mAb) for I-Ab.  
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Figure 22. Eα peptide in the MHCII groove is 

recognized by a monoclonal antibody, Y-Ae.  

   

Also other markers reflecting DC activation were assessed by FACS using 

specific mAbs against CD80, CD83 and CD86. These experiments were 

complemented with microscopic analysis of fusion protein distribution in 

subcellular compartments. We labeled the fusion protein with Alexa488 

fluorochrome and exposed D1 cells in Cell Culture Chamber Slides for 

the fusion protein or nanoparticles. Endosomal and lysosomal 

compartments were labeled with Mabs specific for EEA-1 and LAMP1 

respectively, and the nuclei were visualized with DAPI. Confocal 

microscopy was performed at the Centre for Cellular Imaging. 

3.3.2 Eα peptide tracking on DCs and CD4+ T cells priming  

In order to evaluate which DC subtype took up the nanoparticle and 

processed the fusion protein in vivo we used B6.Cg-

Tg(TCRα,TCRβ)3Ayr/J mice that were TCR transgenic for the Eα 

complexed to H2-Ab (I-Ab). This mouse lacks naturally occurring Eα 

peptide as the coding gene in C57BL/6J mice is incapable of expressing a 

protein product. Flow cytometric analysis showed 90% and 95% of CD4+ 

splenocytes expressing TCRα-V2 and TCRβ-V6, respectively.323 Mice 

were given a single intranasal immunization with 50ug of fusion protein 

in the form of soluble protein or incorporated into nanoparticles and the 

mLN were collected after 24 hours. Migratory (MHC IIhigh, CD11c+) and 
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resident (MHC IIlow, CD11c+) DCs were identified and the presence of 

Y-Ae positive cells was analyzed by FACS. A population of Y-Ae+ cells 

was identified and quantified in the migratory DCs population in 

immunized mice (Figure 23). 

   

Figure 23. Migratory and resident DCs tracking. Experiment design (left panel) and FACS 
plot to gate for DCs populations (right panel). 

 

A confounding element in these experiments is the much higher dose 

(10-fold) of fusion protein needed as compared to the normal 

immunization dose. This was necessary as we failed to detect DCs with 

peptide when we used lower doses.  

Next, we assessed the priming ability in vivo. We used an adoptive transfer 

model where TCR transgenic CD4+ T cells were injected into wild-type 

C57BL/6 mice. These CD4+ T cells were labeled with CFSE to allow for 

detection of proliferating cells in vivo. After uptake of nanoparticles, 

migratory DCs were found in the draining lymph node, where CD4+ T 

cell priming was assessed. At different time points after transfer, mLNs 

were collected and TCRα-V2+TCRβ-V6+CD4+ T cells were analyzed for 

the level of CFSE labeling, used as an indicator of cell divisions (Figure 

24).  
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Figure 24. Adoptive transfer protocol. Experiment design (left panel) and FACS plot to gate 

for TCRα,TCRβ CD4+ T cells (right panel). 

  

A modification of this protocol was then used to determine for how long 

migratory DCs could prime CD4+ T cells in the mLN. To do this, 

adoptively transferred C57BL/6 mice were immunized with the CTA1-

3Eα-DD and at different time points, thereafter, mice were injected with 

2x106 B6.Cg-Tg(TCRα,TCRβ)3Ayr/J CFSE-labeled CD4+ T cells and 

after 4 days their proliferation was determined (Figure 25).  

 

 

 

Figure 25. Modification of the adoptive transfer protocol.  

 

3.4 WP4: Mechanisms of action  

 

By comparing soluble fusion protein to nanoparticle bound fusion 

protein, we could determine the relative immunogenicity of the different 

formulations. Following the last immunization spleens, mLN, and lungs 

were harvested and recall responses were assessed in vitro. We then 
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assessed the level of IFN-y and IL-17 in culture supernatants by ELISA 

and ELISPOT. By FACS we determined the presence of M2e-specific 

CD4+ T cells in the lungs using an M2e-tetramer specifically designed for 

these studies. To evaluate whether CD4+ T cells specific for M2e 

contributed to protection, we depleted all CD4+ T cells using 1mg/mL 

nVivoMAb anti-mouse CD4 antibody clone GK1.5 i.p. 3 times 24h apart 

prior to the virus challenge infection. We also assayed for Ag-specific 

antibodies in broncheolaveolar lavage (BAL) and serum.  

Protection against infection was evaluated against a live virus of different 

strains. A potentially lethal dose of 4 LD50, corresponding to 2.5 × 103 

TCID 50) of mouse adapted reassortant influenza A H3N2 virus strains 

X47 (A/Victoria/3/75 (H3N2) with A/Puerto Rico/8/34(H1N1)) or 

A/Puerto Rico/8/34 (H1N1) was administrated intranasally to mice that 

had been lightly anesthetized by isofluoran solution. Mortality was 

monitored on a daily basis for two weeks after challenge. Morbidity was 

followed at one-day intervals by monitoring body weight and mice were 

sacrificed if they lost more than 30% of their weight. Next, we tested the 

ability of the combined vector to impair virus transmission. We used the 

recently established mouse model with DBA/2 mice as contact mice 

(C).324 Following a challenge infection with Udorn virus (H3N2), 

immunized and unimmunized Balb/c mice (index mice, I) were co-

housed with the contact mice for 4 days and virus transmission was 

determined by measuring viral titers in the snouts and lungs of the index 

mice (Figure 26).  

 

Figure 26. Transmission experiment protocol.   
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4 RESULTS  

 

The fusion protein CTA1-3M2e-DD has previously been found to 

stimulate strong protective immunity against a heterosubtypic influenza A 

virus strain challenge and, therefore, was considered a candidate for a 

broadly protective influenza vaccine.213 It has repeatedly been found that 

the use of particulate Ags can be more effective than soluble proteins at 

stimulating strong immune responses and affording long-term 

protection.302, 306, 325-327,328 To improve the immunogenicity and stability of 

our vaccine candidate we speculated that incorporating the fusion protein 

into nanoparticles could be advantageous. 254 Two different nanoparticle 

strategies were tested by i.n. immunizations, the first one based on a 

positively charged maltodextrin nanoparticle and the second on a 

negatively charged liposome. We also attempted oral immunizations with 

the aim of developing a vaccine for neonates. The results from the 

studies are presented in Paper I-III and will be summarized in this 

chapter.  

 

4.1 Paper I - Porous nanoparticles with incorporated 

adjuvant and recombinant hemagglutinin  

 

The first nanoparticle formulation that we successfully used for mucosal 

immunizations consisted of porous maltodextrin particles (NPL).302 The 

porous NPL technology has been successfully used for several i.n. 

vaccine formulations in the past, including a vaccine candidate against 

toxoplasma infection.329 An advantage of these particles is that they allow 
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multiple components to be incorporated into the particle.306 We 

manufactured the NPL and characterized their physico-chemical 

properties. We evaluated their ability to enhance the immunogenicity of 

the CTA1-3M2e-DD fusion protein (FPM2e) and, thereafter, we 

attempted to combine the fusion protein with recombinant HA into one 

NPL. Combining the CTA1-3M2e-DD with HA from influenza virus 

and the NPL formulation we achieved an even more potent 

subcomponent mucosal vaccine formulation. Several other studies 

support the concept of multiple influenza Ags encapsulated into 

nanoparticles as a promising way forward for a broadly protective 

influenza vaccine.330,331 Whereas many previous studies have reported on 

promising mucosal vaccine candidates against influenza, this is the first to 

describe the combination of an enzyme-active adjuvant system 

incorporated into nanoparticles.332,333-334  

4.1.1 Dendritic cells effectively uptake the vaccine candidate  

Since little is known about DC uptake and presentation of Ags delivered 

with these NPL, we initially focused on the DCs.335 To analyze Ag uptake 

and processing, CTA1-3Eα-DD was formulated into NPL (FPEα:NPL) 

in order to detect the Eα peptide when bound to MHC II surface 

molecules on DCs.319 Stimulating D1 cells with the different constructs, 

we could observe a higher expression of MHC II and Eα-MHC II on 

DCs exposed to the combined vector as opposed to when the fusion 

protein was used alone. B6.Cg-Tg(TCR,TCR)3Ayr/J mice, which host 

TCR transgenic CD4+ T cells that recognize the Eα peptide bound to 

MHC II, were instrumental to determine whether the combined 

formulation was taken up by DCs in vivo. Eα peptide was found in 20% 

of the migratory DCs while resident DCs appeared to be less involved in 

the vaccine uptake. In an adoptive transfer experiment B6.Cg-

Tg(TCRα,TCRβ)3Ayr/J CD4+ T cells were injected into C57BL/6 

immunized mice and their expansion was followed after i.n 



75 
 

immunization. CD4+ T cells in the mLN were proliferating slower in 

mice immunized with the NPL vaccine but the expansion was sustained 

until at least day 12 after immunization, when proliferation to the fusion 

protein only was minimal. While the effect in vitro indicated a dramatic 

improvement of peptide expression in exposed DCs, the in vivo 

expression in migratory DC was comparable between fusion protein 

alone and formulated into NPL. NPL formulations are retained in the 

nasal mucosa longer than the soluble Ag and this leads to a slower and 

more prolonged priming of specific CD4+ T cells in the mLN. Also 

earlier studies have observed a depot-effect and retention of CD4+ T cell 

priming in draining lymph nodes when nanoparticle formulations were 

used.336 Therefore, it may be possible to further improve the performance 

of the vector by altering the chemical composition of the NPL or by 

adding chitosan or some known component with an effect on the 

penetration of the mucosal barrier.337,338,339,340  

4.1.2 Enhanced immunogenicity and protection against virus 

transmission  

To determine the immunogenicity of the formulated vaccine we 

immunized Balb/c mice i.n. and we found that the combined NPL vector 

stimulated significant responses. At lower doses of Ag, the NPLs were 

more effective than the soluble fusion protein. Moreover, the ADP-

ribosylating activity of the CTA1-enzyme was a necessary requirement for 

the strong enhancing effect of the fusion protein on immunogenicity. 

This has previously been documented.341 We assessed the protective 

efficacy against a challenge with X47 virus strain, a mouse adapted 

reassortant A/Victoria/3/75 (H3N2) virus strain.342-343 Infected mice 

were monitored for weight loss and survival for 15 days post-infection. 

We found that protection was higher in mice immunized with the 

formulated vector. The protective effect was associated with a strong 

CD4+ T cell priming effect for IFN-γ and IL-17 production, which are 
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the cardinal features of strong heterosubtypic protection in the mouse 

model of influenza infection.344,345,346,347,348 We could identify the presence 

of lung resident M2e tetramer-specific CD4+ T cells, which have a very 

important role for heterosubtypic protection.213 Strong M2e-specific 

antibody responses in serum and BAL were found. This enhancing effect 

is what we have seen with CTA1-DD adjuvant in many other 

studies.144,244,142 We also tested the ability of the combined vector to 

impair virus transmission between animals.324 Following a challenge 

infection with Udorn virus (H3N2), immunized and unimmunized 

Balb/c mice (index mice) were co-housed with the contact mice and virus 

transmission was assessed. Lower virus titres were found in the snouts of 

the contact mice co-housed with index mice immunized with the 

formulated vaccine indicating that the nanoparticle formulation helped 

reducing viral transmission among animals.  

4.1.3 Combinations of fusion protein and recombinant HA 

provides increased protection of the fusion 

protein/nanoparticle vector 

To improve the protective ability of the NPLs, we incorporated 

recombinant hemagglutinin (A/H1N1/PR8/34) with the CTA1-3M2e-

DD adjuvant. We found that mice immunized i.n. with the combined 

vector containing HA were fully protected against a challenge infection 

with the highly virulent PR8 virus (A/Puerto Rico/8/34 (H1N1). HA-

specific IgG serum antibody responses were substantially augmented and 

mice were also protected against X47 virus infection. It was clear that the 

immunogenicity of the incorporated HA greatly benefitted from the 

adjuvant enhancing effects as anti-HA serum IgG titers were higher. To 

assess whether the antibodies were able to neutralize the virus, we pre-

incubated mice sera with PR8-GFP virus and used it to infect MDCK 

cells. Whereas 80% of MDCK cells were infected, immune sera of mice 

immunized with HA:NPL, FPM2e:NPL and HA:FPM2e:NPL were 
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strongly neutralizing as opposed to serum from fusion protein alone 

immunized mice, which were only partially neutralizing (Figure 27).  

 

Figure 27. Neutralization assay. Histograms for GFP-PR8-infected MDCK (left panel) and 
% of neutralization of the infection (right panel). 

 

Importantly, the immunogenicity and protective capacity of the 

combined vector was critically dependent on the enzymatic activity of 

CTA1. Interestingly, excellent protection was achieved also with NPLs 

where HA and the fusion protein were formulated in separate particles. 

However, the augmenting effect on anti-HA IgG serum antibodies was 

not seen when the fusion protein and HA were provided in separate 

NPLs, suggesting that this effect required physical contact between HA 

and the FPM2e. By contrast, anti-HA-specific cell-mediated immunity 

was enhanced irrespective of if HA and the fusion protein were in 

separate or in a single particle. This result is in agreement with a direct 

effect of the CTA1-3M2e-DD on the FDCs in the GC, which could only 

work if expanding HA-specific B cells were recruited to CTA1-3M2e-DD 

exposed FDCs.349,337 Indeed, we have recently found that CTA1-DD 

adjuvant has a direct effect on FDCs by up-regulating gene transcription 
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and, in particular, the CXCL13 gene. CXCL13 is the main chemokine to 

attract activated B cells into the GC.350 The enhanced CD4+ T cell 

priming, on the other hand, would depend more on improved DC-

function, which doesn’t appear to require the close physical contact 

between fusion protein and the NPL.  

 

4.2 Paper II – Liposomes-based vaccine  

 

Different lipid-based vaccine candidates against many different pathogens 

have been developed during the past 20 years, but no commercially 

available vaccine based on this technology exists yet.351 We have 

previously combined CTA1-3M2e-DD with immune stimulating 

complexes (ISCOMs) to achieve a particulate vaccine formulation, with 

excellent and improved immune stimulating properties when given 

intranasally.317 However, while ISCOMs are stable, protein-containing 

cage-like structures composed of cholesterol, phospholipids and saponins 

from the Quillaja saponaria Molina tree, they have limitations in their Ag 

loading capacity and may also be toxic due to the immunomodulating 

saponins.352,353,354 Therefore, to get a more versatile and dynamic particle, 

we explored the liposome technology. We undertook a series of 

experiments to characterize the physico-chemical properties of the 

liposomes and we evaluated their influence on Ag-uptake by DC, the 

effect on T-cell priming, and antibody-stimulating ability. We also tested 

their ability to protect against a live challenge infection with influenza 

homo- or heterosubtypic virus strains. Moreover, we investigated if 

PEGylation had a positive effect on the nanoparticle immunogenicity. 

We hypothesized that adding PEG spacers to the fusion proteins would 

increase coating efficiency and make more protein accessible to the 
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immune system. However, PEGylation has been previously been used to 

enhance the particle retention time at mucosal membranes or used to 

avoid adsorption of proteins from the circulation. It was proposed that 

the formation of a corona around the nanoparticle would mask the 

surface of particles and increase retention.355,356,281 Noteworthy, high 

molecular weight polymers (>PEG5000) are preferentially mucoadhesive, 

while molecular lower weights (for example PEG2000, the one used in 

this work) appear to diffuse better through the mucus layer.357,358  

4.2.1 Liposome vectors improve antigen uptake, presentation 

and T cell priming  

LNPs were made with the fusion protein bound to the surface as well as 

incorporated inside the particle. Earlier studies reported that CTB was 

effective when bound to the surface of the liposome.359 We then 

evaluated the interaction between the liposomes and APCs using two 

different in vitro models for Ag presentation as described in the M&M 

section of my thesis. We observed in both models, at early time points, 

enhanced expression of pMHC-II complexes on the APCs, but after 2h 

of peptide expression was similar.360 Moreover, the expression level of 

MHC II and CD86 molecules was higher on DCs exposed to 

nanoparticles. Thus, the combined LNP vector was superior to soluble 

protein alone for uptake, processing and MHC II presentation.  

Confocal microscopy on D1 cells following incubation with nanoparticles 

showed that the liposomes effectively entered some target cells while the 

soluble Ag was taken up into the APCs more evenly in a dose–dependent 

fashion. The soluble Ag can be visualized in the cell cytoplasm after a 

short incubation time (Figure 28). 
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Figure 28. Confocal microscopy on stimulated D1 cells. Nuclei (blue), construct (green), EEA-1 
(red), LAMP-1 (white) are shown. 

 

Both the soluble fusion protein and that bound by liposomes were found 

within the early endosome compartment. Whereas liposomes targeted 

fewer cells, the soluble fusion protein was taken up by a larger number of 

cells (Figure 29). Differential modes of intracellular trafficking into 

endosomal or lysosomal compartments have been found to directly 

influence the efficiency and mode of T cell priming.87  

Figure 29. Fluorescent microscopy on stimulated D1 cells. Nuclei (blue), construct (green), EEA-1 
(red), LAMP-1 (white) are shown.  
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We analyzed the T cell priming efficiency in vivo by using an adoptive 

transfer model with TCR transgenic mice injected into C57BL/6 mice. 

We observed effective T cell proliferation initiated earlier by the soluble 

fusion protein than by the LNP formulation. Thus, the liposome vector 

primed CD4+ T cells at a later time point but T cell proliferation 

continued until at least day 8, when proliferation to the soluble protein 

had declined significantly. Moreover, the CD4+ T cell priming ability in 

the mLN was maintained for long with both soluble protein and LNP 

immunizations (at least 8 days).  

4.2.2 Local immunity is enhanced by combined LNP vaccine 

vectors  

Immunogenicity of the combined LNP vector was evaluated in vivo 

following three i.n. immunizations in Balb/c mice and specific M2e-IgG 

antibodies in serum were determined. High antibody titers were recorded 

already after two immunizations with LNP vectors, while soluble fusion 

protein was less effective. However, after three immunizations the 

specific IgG antibody levels in serum and the recall cytokine and 

proliferative response to M2e-peptide in whole splenocytes exhibited 

comparable CD4+ T cell priming efficiency of both regimens. As seen 

before, the enhancing effects were strictly dependent on the ADP-

ribosylating ability of the CTA1-moiety. Most importantly, whereas the 

systemic enhancing effects of fusion protein and LNP vectors were 

comparable, the local immune response was significantly stronger in LNP 

immunized mice. The mucosal anti-M2e IgA titers in BAL were stronger, 

and the resident M2e-tetramer specific CD4+ T cell response in the lung 

was dramatically improved.  

The question of whether PEGylation was advantageous or not was 

clearly answered by these experiments. We found significantly weaker 

responses in PEGylated LNP immunized mice than in non-PEGylated 
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LNP immunized mice. Maybe, PEGylation provided a steric hindrance 

for processing of M2e epitopes.361 Of note, though, PEGylation of 

proteins and peptides have previously been found to increase mucus-

penetrance, which could have increased immunogenicity.362,363 In our case, 

we failed to observe a positive effect of PEGylation, but it could be 

possible that with a different lipid composition PEGylation could work in 

favor of an improved mucosal immune response.  

To assess the protective potential of the combined vector, we challenged 

i.n. immunized mice with reassortant influenza A H3N2 virus strains X47 

(A/Victoria/3/75 (H3N2) with A/Puerto Rico/8/34(H1N1)) or the 

heterosubtypic PR8 A/Puerto Rico/8/34(H1N1) influenza virus strains. 

Immunized and challenged mice demonstrated 80 to 100% survival after 

challenge with the X47 virus strain. Most strikingly, only LNP vectors 

induced significant protection against a lethal challenge dose with the 

heterosubtypic PR8 virus strain. This was also reflected in the less severe 

lung tissue damage observed macroscopically and, in fact, at 7 days post 

infection no gross lung pathology was observed in contrast to fusion 

protein only immunized mice that succumbed to infection and exhibited 

hemorrhagic pneumonia. Protection was clearly correlated to an 

enhanced frequency of lung resident M2e-specific CD4+ T cells and local 

IgA antibodies. This is in agreement with our previous study in congenic 

Balb/c and Balb/b mice, which showed strong protection and M2e-

spepcific CD4+ T cells only in Balb/c mice.213 To confirm the importance 

of CD4+ T cells for protection, we depleted CD4+ T cells in fully 

immunized mice just prior to a challenge infection and found that this 

lead to that mice succumbed the infection, despite having comparable 

anti-M2e IgG2a antibodies to those of untreated immunized mice (Figure 

30).  
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 Figure 30. Depletion experiment. A) FACS plot showing successful depletion of CD4+ T 
cells in lungs. B) Survival and weight loss were monitored. Percent of surviving mice 
(left panel) and body weight loss (right panel) following a challenge infection with 

4×LD50 of PR8 virus strain.   

 

When we determined the lung viral titers in the immunized mice we, 

unexpectedly, found that both groups of immunized mice had similar 

viral loads. Thus, despite differences in survival after CD4+T cell 

depletion, the viral titers were comparable (Figure 31). This finding could 

indicate that the LNP immunization stimulated CD4+ T cells that 

provided protection against tissue destruction and preserved lung 

function, suggesting that an anti-inflammatory component in immunized 

mice was decisive for survival. 

 

Figure 31. Viral titer (PFU/lung) in lungs of immunized and challenged mice. 
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4.3 Paper III - Development of a mucosal vaccine for 

neonates and young infants  

 

Protection against influenza virus in newborns and infants is achieved 

through transplacental transfer of maternal antibodies to the fetus. The 

duration of this protection is limited to a few months after birth and it is 

dependent on whether the mother has developed immunity to the 

specific virus strain that the child is exposed to. Therefore, much effort 

has been invested into vaccine development for neonates. However, the 

neonatal immune system is immature, which poses a problem for vaccine 

development. In fact, neonatal vaccination has been a much proposed 

solution to global health interventions in the infectious disease field. The 

lack of effective vaccines contributes greatly to an increased risk of 

morbidity and mortality among neonates and young infants. A hallmark 

of young infants is the poor ability to develop GC reactions and to 

develop memory B cells and raise isotype-switched antibodies.364,365 For 

example, the trivalent influenza vaccine (TIV) showed limited protective 

efficacy in infants between 6 and 25 months of age, while in infants 

younger than 6 months no or very poor effects were shown. Moreover, 

this was associated with significant adverse reactions.366,367,368,369 It is 

commonly agreed that more efficacious, but also safer, adjuvants would 

dramatically improve our chances to develop neonatal vaccines. 

Therefore, the search for vaccine adjuvants that can stimulate maturation 

of the neonatal immune response to become more adult-like is much 

warranted. Recent studies compared various adjuvants for enhanced GC 

and antibody responses in neonatal mice and found that C-type lectin 

receptors (CLR) agonists were more potent than TLR-based adjuvants in 

circumventing the limitations of the neonatal B cell response.370 

Moreover, a mutated version of the heat-labile enterotoxin of E.coli (LT-

K63) has previously been demonstrated to enhance the GC reaction by a 
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mechanism that was proposed to involve FDCs, but no experimental 

support was provided in that study.371  

In the third paper, we asked whether CTA1-DD combined with M2e 

peptide in a nanoparticle formulation could work as an effective mucosal 

vaccine in neonates. We specifically focused on the induction of the GC 

reaction and the effect on the immune response against influenza 

infections. CTA1-DD is able to significantly enhance GC reactions, 

promote development of memory B cells and long-lived plasma cells, as 

well as stimulate a strong and balanced CD4+ T cell response in adult 

mice.143,372,373 A key mechanism of the CTA1-DD adjuvant is the 

activation of complement enabling it to have a direct binding via the 

complement receptors 1 and 2 (CR1,CD35 / CR2,CD21) to FDCs.350 

This way, it modulated the FDC function and augmented the GC 

reaction. Hence, we investigated whether also in neonatal mice we could 

observe a direct effect of CTA1-DD on FDC maturation and function. If 

so, we explored whether this effect was sufficient to enhance GC 

development and augment antibody-, as well as CD4+ T cell, responses 

leading to immune protection against influenza.  

4.3.1 CTA1-DD accelerates FDCs network maturation in B cell 

follicles in neonates 

In a complementary set of experiments we addressed whether CTA1-DD 

could exert a maturational effect on the FDC following immunization. 

We found strong evidence for a direct modulating effect of the adjuvant 

on FDC functions (Schussek et al., manuscript in preparation). The 

mechanism involved an augmenting effect on gene transcription, in 

particular the CXCL13 encoding gene, in FDCs following CTA1-DD 

administration. This effect was ADP-ribosyltransferase-dependent and 

exclusive for FDCs and required CR2 (CD21) expression. A gene-

reporter mouse was developed in which GFP was expressed under the 
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CD21Cre-promotor. Using this model to better identify FDCs we could 

investigate lymphoid tissues in neonatal mice for the presence and status 

of the FDC networks. We identified no FDCs in the spleen or peripheral 

lymph nodes until 17 days of age. After subcutaneous (s.c.) 

administration of CTA1-DD adjuvant to neonates, however, we found 

newly developed FDC networks in 10% of the B cell follicles. Thus, 

already at 7 days of age FDC networks could be stimulated to mature by 

CTA1-DD treatment. Thus, CTA1-DD adjuvant exerted a maturational 

effect on the FDC network in neonatal mice.  

4.3.2 Tfh and GC B cell responses are greatly promoted by 

CTA1-DD adjuvant treatment  

In adults, Tfh cell responses directly translate into GC induction and 

strong antibody responses.370 Also, Tfh cells have a critical role in the 

impaired development of GC reactions in neonates.374,375 To assess 

whether the FDC-maturational effect of CTA1-DD affected GC 

functions in neonatal mice, we analyzed lymph node GC development 

after 10 days following immunization with CTA1-DD. We found that the 

Tfh responses in neonatal mice were significantly enhanced in the 

presence of the adjuvant and that we observed an enhanced frequency of 

GC B cells in both adult and neonatal mice. Furthermore, we found that 

specific isotype-switched antibodies in serum were significantly enhanced 

in neonatal mice already at 12 days following s.c. priming. 

4.3.3 Per oral priming with CTA1-DD adjuvant potentiates PP 

Tfh and GC B cell responses  

We had observed that FDC networks were more mature in neonatal PPs, 

which would be the site for induction of a response to an oral 

vaccine.376,377 This could be a consequence of the microbial colonization 

of the gut in early life. Hence, we asked whether a mucosal vaccine given 

orally would positively affect vaccination of neonates given the more 



87 
 

mature FDCs in PP. To test our hypothesis, we immunized 5 day old 

mice per orally (p.o.) with CTA1-DD and boosted s.c. 30 days later. The 

induction of Tfh and GC B cells was assessed in the MLN and PPs. 

Whereas no induction of an immune response was recorded in MLN, 

PPs exhibited a significant response. We found excellent priming of 

neonatal systemic and local mucosal immune responses after oral 

immunizations with CTA1-DD adjuvant. 

4.3.4 A protective oral influenza vaccine for infants  

To assess the protective potential of CTA1-3M2e-DD, we primed 5-7 

day old mice p.o. with the fusion protein alone or incorporated into the 

two types of nanoparticles (LNP and NPL). We then boosted mice twice 

i.n. before we analyzed the immune responses. We detected substantial 

increases in anti-M2e IgG-specific antibody levels in mice that received 

the oral priming dose. We then evaluated the mice for protection against 

a live challenge infection using 1xLD50 of a reassortant influenza A 

H3N2 virus strains X47 (A/Victoria/3/75 (H3N2) with A/Puerto 

Rico/8/34(H1N1)). Whereas all immunized and challenged mice 

demonstrated 50 to 60% survival, the most striking effect of oral priming 

was a faster recovery and weight gain. M2e-tetramer-specific CD4+ T 

cells in the lung, as well as specific IgG and IgA levels in serum and BAL, 

were comparable between the two groups.  

Our hypothesis was that a nanoparticle formulation would protect CTA1-

3M2e-DD from degradation when given orally to neonates. Of note, we 

have previously attempted to use the CTA1-DD adjuvant orally in adult 

mice without any priming effect at all. We have speculated that this was 

because of enzymatic degradation of the adjuvant. Hence, we were 

concerned about whether soluble protein would have any effect in the 

neonates. It was, therefore, unexpected and surprising that the CTA1-

3M2e-DD was effective at priming the immune response when given 
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orally to neonates. However, equally disappointing was that the 

nanoparticle formulations did not have any priming effect in the neonates 

and FPM2e:NPL p.o. immunizations completely failed to protect the 

mice against the live challenge infection.  

Nevertheless, our study conveys optimisms as to the prospects of an 

effective mucosal vaccine for neonates and young infants. We 

demonstrate in the present work that the fusion protein platform 

provides strong maturational signals for FDCs, which contribute to the 

development of near normal GC reactions when tested in neonatal mice. 

Whereas this study did not indicate any benefit of incorporating the 

CTA1-3M2e-DD into nanoparticles, future attempts at selecting suitable 

formulations for nanoparticle delivery of the vaccine may prove 

otherwise. It awaits to be investigated if there are nanoparticle 

formulations that are effective also in neonates. It can be concluded in 

the present study that liposomes were more effective than porous 

maltodextrin nanoparticles, which hints that the formulation of the 

nanoparticle is critical for the immunogenicity of the fusion protein. 

Whereas oral priming is most effective for immune protection against 

enteric infections, we intend to try our vaccine concept for neonatal 

vaccination for protection against rotavirus infections. Noteworthy, 

earlier studies have evaluated oral live attenuated vaccines in a neonatal 

pig model with promising results, although a subcomponent vaccine 

based on the adjuvanted CTA1-DD:LNP fusion protein is a much bigger 

challenge.  
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5 GENERAL DISCUSSION AND FUTURE 

PERSPECTIVES  

 

The main goal of this research project was to develop a broadly 

protective mucosal vaccine against influenza virus infection. We did this 

by combining the fusion protein CTA1-3M2e-DD with two different 

types of nanoparticles to improve immunogenicity and protective efficacy 

of the fusion protein. Moreover, we explored whether immunizations of 

neonates could be achieved with the combined nanoparticle vaccine 

formulations. Whereas we have convincingly shown that co-

incorporation of adjuvant active molecules and influenza specific target 

Ags into nanoparticles provides better local lung tissue immunity and 

protection in adult mice, we failed to demonstrate that the combined 

nanoparticles were beneficial to the development of protective immunity 

against influenza in neonates.  

While carrying out this research project, we were challenged by several 

problems that had to be addressed. First of all, our fusion protein vaccine 

was already shown not only to stimulate strong M2e-specific serum IgG 

and mucosal IgA antibody responses, but also to induce high numbers of 

lung resident M2e-specific memory CD4+ T cells.213, 317 This meant that 

CTA1-3M2e-DD was already from the start a good vaccine candidate for 

a broadly protective influenza vaccine. Thus, we expected to improve the 

vaccine efficacy from an already strong standing to an even better 

performing vaccine by combining it with nanoparticles. To evaluate the 

improvement, we had to reduce the dose of Ag administered and 

challenge with a more aggressive influenza strain. This way, we hoped to 

be able to assess if there was an advantage of combining the fusion 

protein with the nanoparticles. Furthermore, our final goal was to 
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develop an oral vaccine based on the combined vector for vaccination of 

neonates and young children. However, we know that mucosal immune 

responses are compartmentalized and that oral immunization is not the 

most effective route for priming of a protective immune response in the 

respiratory tract. In this regard, we tested our neonatal vaccine under 

suboptimal conditions, but we believe an enteric infection would have 

been more appropriate. Therefore, in the next phase of the project we 

will test our oral CTA1-DD/LNP vaccine vector in the mouse model for 

rotavirus infections. Our strategy will be to design a CTA1-VP6-DD 

construct that will be incorporated into liposomes with a more rigid 

structure, which recently demonstrated promising effects in our in vitro 

experimental model. The VP6 peptide has previously been shown to 

stimulate strong protective immunity against rotavirus in mouse. 

Another problem in the nanoparticle vaccine field is the lack of reference 

studies, as only few comparative studies have been done. This, 

unfortunately, makes generalizing conclusions problematic and the 

principles for how to design an optimal nanoparticle vaccine difficult. For 

example, at the cellular level, we lack studies that have investigated in 

detail how Ags carried by nanoparticles are processed and presented by 

DCs. It would be important to study the kinetics of these processes and 

whether the formulation will affect the migration of DCs to the draining 

lymph nodes or the priming ability of the DC in the draining lymph node. 

It still remains unclear whether nanoparticles that rapidly penetrate the 

mucosal barrier are strong inducers of mucosal immune responses or fail 

to stimulate local responses because of too little retention time. 

Alternatively, mucoadhesive nanoparticles may provide a depot of Ag for 

an extended loading of DCs with Ag. These considerations made it 

difficult to select a design of the nanoparticle that achieved features of 

what had previously been published as successful vaccine formulations.  
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Moreover, the need for simple screening systems was identified in the 

early phase of the project. We developed a new screening method to 

investigate whether a nanoparticle efficiently promoted DC-mediated 

priming of CD4+ T cells, monitoring the increased expression of peptide 

bound to MHC II molecules.319 We evaluated the performance of the 

nanoparticle on the basis of how effective expression of such complexes 

we observed in vitro and in vivo. We concluded that the density of such 

complexes most likely related to the ability of the DC to effectively prime 

the CD4+ T cells in the lymph node.319 We are convinced that this 

screening method can be useful in the future for screening of different 

type of nanoparticles.  

Nevertheless, further validation of our nanoparticle formulation strategy 

still awaits to be done. Indeed, the validation of new biomarkers for in 

vivo identification of the most potent nanoparticle vaccines is much 

warranted. For example, assessments of the level of serum amyloid A 

(SAA) has been shown to be an early biomarker of severity of influenza 

infections in several mouse strains, including BALB/c, C57BL/2, Swiss-

Webster and DBA.2 mice. Hence, determinations of SAA levels could be 

a way forward to identify effective nanoparticle vaccines. Upon treatment 

with oseltamivir phosphate, levels of SAA were found to be significantly 

decreased and high levels of SAA were associated with poor disease 

prognosis.378 SSA and other biomarkers could potentially be used for 

early screening of different candidate nanoparticle vaccines. 

In the future, we will continue developing the nanoparticle vector by 

replacing or adding components known to improve immunogenicity and 

protection against influenza virus infections. Future studies will reveal if 

the favorable effects of the combined fusion protein and the nanoparticle 

technology could be translated into a human vaccine. In particular, the 

physico-chemical properties of the nanoparticle appears central to 

improving its potential as a vaccine vector. Factors that influence the 
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performance of the nanoparticle are Ag load, size, charge as well as 

efficiency in cell targeting.249,250,251,252,253 In this project, we tested 

PEGylation, which has been described as a means to prolong 

nanoparticle-circulation time.280 PEG was chosen because it reduces 

protein aggregation owing to repulsion between PEGylated surfaces, 

which increases thermal stability of proteins. Moreover, PEG was shown 

to accelerate drainage into LNs and prolong time for Ag-uptake, 

improving vaccine efficacy.282 We observed that PEGylation failed to 

improve the performance of the combined vector although it didn’t 

impair the uptake of liposomes in vitro. By contrast, in vivo PEGylation 

decreased both the rate and extent of peptide-presentation by DCs, 

resulting in dramatically reduced immunogenicity. A reduction of 

biological potency due to PEGylation has been reported in other studies 

showing steric entanglement of polymer chains during the 

protein/receptor recognition process.283 In future experiments, we aim to 

clarify the connection between the physicochemical properties of 

nanoparticles and their use as vaccine carriers. This work will include a 

careful evaluation of whether the composition of different lipids to 

produce the liposomes, leading to changes in liposome rigidity, will 

impact on DC uptake and Ag processing. 

The goal of developing a universal influenza vaccine with the ability to 

protect against newly emerging strains requires a focus on the Ags to be 

included into the vaccine. This is why finding a strategy that could 

overcome the enormous variability and the antigenic shift of viral 

proteins is much needed. The solution that has been brought forward by 

many vaccine developers is to focus on well conserved elements, such as 

M2e. We may need to expand on such conserved elements and include 

multiple epitopes or even proteins which could confer heterosubtypic 

protection. Perhaps a ‘cocktail’ formulation would be better than a single-

epitope immunogen.379 In order to improve our vaccine candidate, we 
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will test the addition of the nucleoprotein (NP), which will elicit strong 

cytotoxic CD8+ T cells.380 In addition, instead of whole recombinant HA, 

we propose to include a stabilized HA stem region, as recently reported 

using ferritin nanoparticles, which stimulated protection against a 

heterosubtypic challenge infection in both mice and ferrets.381,328  

When developing a vaccine for human use, the understanding of whether 

the finding in mice can be effectively translated into the human setting is 

of fundamental importance. This is especially true when the vaccine will 

be delivered intranasally. Although the overall organization of the 

immune system in humans and mice is quite similar, their functions may 

not always be the same. This topic has been reviewed by Patrick J. 

Haley.382 The rodent pulmonary immune response can differ from that in 

humans. The composition of lymphocytes and neutrophils in mice and 

man is quite different: i.e. human blood is neutrophil-rich (50–70% 

neutrophils, 30–50% lymphocytes) whereas mouse blood contains more 

lymphocytes (75–90% lymphocytes, 10–25% neutrophils).383 Human 

pulmonary alveolar macrophages (PAMs) are very effective at bacterial 

phagocytosis and killing, while rodents PAMs are less effective.384 

Moreover, PAMs in human show greater ability to take up particles than 

mouse PAMs. This could be an advantage if the vaccine is delivered into 

nanoparticles.385 While mice have a significant BALT, this is largely 

absent in healthy humans and this could mislead us to expect an excellent 

performance in humans because we found the mucosal vaccine to be 

effective in mice.386 Hence, a primary immunization with large numbers 

of antibody forming cells in the lung of mice, may not be reproduced in 

humans.387,388 Moreover, the number of PPs in mice is established already 

at, or shortly after, birth. The number of B cell follicles and size of the 

PPs in humans increase with age until puberty. The presence of a 

microbiota is needed for the development of PP functions in mice, but 

whether this applies to the human gut has been incompletely 
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investigated.389 The appendix, a large aggregation of lymphoid nodules at 

the ileocecal valve, is present at birth in humans but absent in newborn 

mice. It is clear that species differences exist in the structure and function 

of the immune system and that these differences need to be kept in mind 

when designing experiments with the goal of extrapolating the data for 

the generation of broadly protective influenza vaccines. My thesis work, 

though, shows that it is fruitful to further explore the combined CTA1-

DD and nanoparticle concept for the improvement of mucosal vaccines 

and a novel influenza vaccine, in particular.  
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